[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / lib / Transforms / Utils / BypassSlowDivision.cpp
blob9a6761040bd89eae2d8eaaf094665e183c0520af
1 //===- BypassSlowDivision.cpp - Bypass slow division ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains an optimization for div and rem on architectures that
10 // execute short instructions significantly faster than longer instructions.
11 // For example, on Intel Atom 32-bit divides are slow enough that during
12 // runtime it is profitable to check the value of the operands, and if they are
13 // positive and less than 256 use an unsigned 8-bit divide.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/Transforms/Utils/Local.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/Instruction.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/KnownBits.h"
37 #include <cassert>
38 #include <cstdint>
40 using namespace llvm;
42 #define DEBUG_TYPE "bypass-slow-division"
44 namespace {
46 struct QuotRemPair {
47 Value *Quotient;
48 Value *Remainder;
50 QuotRemPair(Value *InQuotient, Value *InRemainder)
51 : Quotient(InQuotient), Remainder(InRemainder) {}
54 /// A quotient and remainder, plus a BB from which they logically "originate".
55 /// If you use Quotient or Remainder in a Phi node, you should use BB as its
56 /// corresponding predecessor.
57 struct QuotRemWithBB {
58 BasicBlock *BB = nullptr;
59 Value *Quotient = nullptr;
60 Value *Remainder = nullptr;
63 using DivCacheTy = DenseMap<DivRemMapKey, QuotRemPair>;
64 using BypassWidthsTy = DenseMap<unsigned, unsigned>;
65 using VisitedSetTy = SmallPtrSet<Instruction *, 4>;
67 enum ValueRange {
68 /// Operand definitely fits into BypassType. No runtime checks are needed.
69 VALRNG_KNOWN_SHORT,
70 /// A runtime check is required, as value range is unknown.
71 VALRNG_UNKNOWN,
72 /// Operand is unlikely to fit into BypassType. The bypassing should be
73 /// disabled.
74 VALRNG_LIKELY_LONG
77 class FastDivInsertionTask {
78 bool IsValidTask = false;
79 Instruction *SlowDivOrRem = nullptr;
80 IntegerType *BypassType = nullptr;
81 BasicBlock *MainBB = nullptr;
83 bool isHashLikeValue(Value *V, VisitedSetTy &Visited);
84 ValueRange getValueRange(Value *Op, VisitedSetTy &Visited);
85 QuotRemWithBB createSlowBB(BasicBlock *Successor);
86 QuotRemWithBB createFastBB(BasicBlock *Successor);
87 QuotRemPair createDivRemPhiNodes(QuotRemWithBB &LHS, QuotRemWithBB &RHS,
88 BasicBlock *PhiBB);
89 Value *insertOperandRuntimeCheck(Value *Op1, Value *Op2);
90 Optional<QuotRemPair> insertFastDivAndRem();
92 bool isSignedOp() {
93 return SlowDivOrRem->getOpcode() == Instruction::SDiv ||
94 SlowDivOrRem->getOpcode() == Instruction::SRem;
97 bool isDivisionOp() {
98 return SlowDivOrRem->getOpcode() == Instruction::SDiv ||
99 SlowDivOrRem->getOpcode() == Instruction::UDiv;
102 Type *getSlowType() { return SlowDivOrRem->getType(); }
104 public:
105 FastDivInsertionTask(Instruction *I, const BypassWidthsTy &BypassWidths);
107 Value *getReplacement(DivCacheTy &Cache);
110 } // end anonymous namespace
112 FastDivInsertionTask::FastDivInsertionTask(Instruction *I,
113 const BypassWidthsTy &BypassWidths) {
114 switch (I->getOpcode()) {
115 case Instruction::UDiv:
116 case Instruction::SDiv:
117 case Instruction::URem:
118 case Instruction::SRem:
119 SlowDivOrRem = I;
120 break;
121 default:
122 // I is not a div/rem operation.
123 return;
126 // Skip division on vector types. Only optimize integer instructions.
127 IntegerType *SlowType = dyn_cast<IntegerType>(SlowDivOrRem->getType());
128 if (!SlowType)
129 return;
131 // Skip if this bitwidth is not bypassed.
132 auto BI = BypassWidths.find(SlowType->getBitWidth());
133 if (BI == BypassWidths.end())
134 return;
136 // Get type for div/rem instruction with bypass bitwidth.
137 IntegerType *BT = IntegerType::get(I->getContext(), BI->second);
138 BypassType = BT;
140 // The original basic block.
141 MainBB = I->getParent();
143 // The instruction is indeed a slow div or rem operation.
144 IsValidTask = true;
147 /// Reuses previously-computed dividend or remainder from the current BB if
148 /// operands and operation are identical. Otherwise calls insertFastDivAndRem to
149 /// perform the optimization and caches the resulting dividend and remainder.
150 /// If no replacement can be generated, nullptr is returned.
151 Value *FastDivInsertionTask::getReplacement(DivCacheTy &Cache) {
152 // First, make sure that the task is valid.
153 if (!IsValidTask)
154 return nullptr;
156 // Then, look for a value in Cache.
157 Value *Dividend = SlowDivOrRem->getOperand(0);
158 Value *Divisor = SlowDivOrRem->getOperand(1);
159 DivRemMapKey Key(isSignedOp(), Dividend, Divisor);
160 auto CacheI = Cache.find(Key);
162 if (CacheI == Cache.end()) {
163 // If previous instance does not exist, try to insert fast div.
164 Optional<QuotRemPair> OptResult = insertFastDivAndRem();
165 // Bail out if insertFastDivAndRem has failed.
166 if (!OptResult)
167 return nullptr;
168 CacheI = Cache.insert({Key, *OptResult}).first;
171 QuotRemPair &Value = CacheI->second;
172 return isDivisionOp() ? Value.Quotient : Value.Remainder;
175 /// Check if a value looks like a hash.
177 /// The routine is expected to detect values computed using the most common hash
178 /// algorithms. Typically, hash computations end with one of the following
179 /// instructions:
181 /// 1) MUL with a constant wider than BypassType
182 /// 2) XOR instruction
184 /// And even if we are wrong and the value is not a hash, it is still quite
185 /// unlikely that such values will fit into BypassType.
187 /// To detect string hash algorithms like FNV we have to look through PHI-nodes.
188 /// It is implemented as a depth-first search for values that look neither long
189 /// nor hash-like.
190 bool FastDivInsertionTask::isHashLikeValue(Value *V, VisitedSetTy &Visited) {
191 Instruction *I = dyn_cast<Instruction>(V);
192 if (!I)
193 return false;
195 switch (I->getOpcode()) {
196 case Instruction::Xor:
197 return true;
198 case Instruction::Mul: {
199 // After Constant Hoisting pass, long constants may be represented as
200 // bitcast instructions. As a result, some constants may look like an
201 // instruction at first, and an additional check is necessary to find out if
202 // an operand is actually a constant.
203 Value *Op1 = I->getOperand(1);
204 ConstantInt *C = dyn_cast<ConstantInt>(Op1);
205 if (!C && isa<BitCastInst>(Op1))
206 C = dyn_cast<ConstantInt>(cast<BitCastInst>(Op1)->getOperand(0));
207 return C && C->getValue().getMinSignedBits() > BypassType->getBitWidth();
209 case Instruction::PHI:
210 // Stop IR traversal in case of a crazy input code. This limits recursion
211 // depth.
212 if (Visited.size() >= 16)
213 return false;
214 // Do not visit nodes that have been visited already. We return true because
215 // it means that we couldn't find any value that doesn't look hash-like.
216 if (Visited.find(I) != Visited.end())
217 return true;
218 Visited.insert(I);
219 return llvm::all_of(cast<PHINode>(I)->incoming_values(), [&](Value *V) {
220 // Ignore undef values as they probably don't affect the division
221 // operands.
222 return getValueRange(V, Visited) == VALRNG_LIKELY_LONG ||
223 isa<UndefValue>(V);
225 default:
226 return false;
230 /// Check if an integer value fits into our bypass type.
231 ValueRange FastDivInsertionTask::getValueRange(Value *V,
232 VisitedSetTy &Visited) {
233 unsigned ShortLen = BypassType->getBitWidth();
234 unsigned LongLen = V->getType()->getIntegerBitWidth();
236 assert(LongLen > ShortLen && "Value type must be wider than BypassType");
237 unsigned HiBits = LongLen - ShortLen;
239 const DataLayout &DL = SlowDivOrRem->getModule()->getDataLayout();
240 KnownBits Known(LongLen);
242 computeKnownBits(V, Known, DL);
244 if (Known.countMinLeadingZeros() >= HiBits)
245 return VALRNG_KNOWN_SHORT;
247 if (Known.countMaxLeadingZeros() < HiBits)
248 return VALRNG_LIKELY_LONG;
250 // Long integer divisions are often used in hashtable implementations. It's
251 // not worth bypassing such divisions because hash values are extremely
252 // unlikely to have enough leading zeros. The call below tries to detect
253 // values that are unlikely to fit BypassType (including hashes).
254 if (isHashLikeValue(V, Visited))
255 return VALRNG_LIKELY_LONG;
257 return VALRNG_UNKNOWN;
260 /// Add new basic block for slow div and rem operations and put it before
261 /// SuccessorBB.
262 QuotRemWithBB FastDivInsertionTask::createSlowBB(BasicBlock *SuccessorBB) {
263 QuotRemWithBB DivRemPair;
264 DivRemPair.BB = BasicBlock::Create(MainBB->getParent()->getContext(), "",
265 MainBB->getParent(), SuccessorBB);
266 IRBuilder<> Builder(DivRemPair.BB, DivRemPair.BB->begin());
268 Value *Dividend = SlowDivOrRem->getOperand(0);
269 Value *Divisor = SlowDivOrRem->getOperand(1);
271 if (isSignedOp()) {
272 DivRemPair.Quotient = Builder.CreateSDiv(Dividend, Divisor);
273 DivRemPair.Remainder = Builder.CreateSRem(Dividend, Divisor);
274 } else {
275 DivRemPair.Quotient = Builder.CreateUDiv(Dividend, Divisor);
276 DivRemPair.Remainder = Builder.CreateURem(Dividend, Divisor);
279 Builder.CreateBr(SuccessorBB);
280 return DivRemPair;
283 /// Add new basic block for fast div and rem operations and put it before
284 /// SuccessorBB.
285 QuotRemWithBB FastDivInsertionTask::createFastBB(BasicBlock *SuccessorBB) {
286 QuotRemWithBB DivRemPair;
287 DivRemPair.BB = BasicBlock::Create(MainBB->getParent()->getContext(), "",
288 MainBB->getParent(), SuccessorBB);
289 IRBuilder<> Builder(DivRemPair.BB, DivRemPair.BB->begin());
291 Value *Dividend = SlowDivOrRem->getOperand(0);
292 Value *Divisor = SlowDivOrRem->getOperand(1);
293 Value *ShortDivisorV =
294 Builder.CreateCast(Instruction::Trunc, Divisor, BypassType);
295 Value *ShortDividendV =
296 Builder.CreateCast(Instruction::Trunc, Dividend, BypassType);
298 // udiv/urem because this optimization only handles positive numbers.
299 Value *ShortQV = Builder.CreateUDiv(ShortDividendV, ShortDivisorV);
300 Value *ShortRV = Builder.CreateURem(ShortDividendV, ShortDivisorV);
301 DivRemPair.Quotient =
302 Builder.CreateCast(Instruction::ZExt, ShortQV, getSlowType());
303 DivRemPair.Remainder =
304 Builder.CreateCast(Instruction::ZExt, ShortRV, getSlowType());
305 Builder.CreateBr(SuccessorBB);
307 return DivRemPair;
310 /// Creates Phi nodes for result of Div and Rem.
311 QuotRemPair FastDivInsertionTask::createDivRemPhiNodes(QuotRemWithBB &LHS,
312 QuotRemWithBB &RHS,
313 BasicBlock *PhiBB) {
314 IRBuilder<> Builder(PhiBB, PhiBB->begin());
315 PHINode *QuoPhi = Builder.CreatePHI(getSlowType(), 2);
316 QuoPhi->addIncoming(LHS.Quotient, LHS.BB);
317 QuoPhi->addIncoming(RHS.Quotient, RHS.BB);
318 PHINode *RemPhi = Builder.CreatePHI(getSlowType(), 2);
319 RemPhi->addIncoming(LHS.Remainder, LHS.BB);
320 RemPhi->addIncoming(RHS.Remainder, RHS.BB);
321 return QuotRemPair(QuoPhi, RemPhi);
324 /// Creates a runtime check to test whether both the divisor and dividend fit
325 /// into BypassType. The check is inserted at the end of MainBB. True return
326 /// value means that the operands fit. Either of the operands may be NULL if it
327 /// doesn't need a runtime check.
328 Value *FastDivInsertionTask::insertOperandRuntimeCheck(Value *Op1, Value *Op2) {
329 assert((Op1 || Op2) && "Nothing to check");
330 IRBuilder<> Builder(MainBB, MainBB->end());
332 Value *OrV;
333 if (Op1 && Op2)
334 OrV = Builder.CreateOr(Op1, Op2);
335 else
336 OrV = Op1 ? Op1 : Op2;
338 // BitMask is inverted to check if the operands are
339 // larger than the bypass type
340 uint64_t BitMask = ~BypassType->getBitMask();
341 Value *AndV = Builder.CreateAnd(OrV, BitMask);
343 // Compare operand values
344 Value *ZeroV = ConstantInt::getSigned(getSlowType(), 0);
345 return Builder.CreateICmpEQ(AndV, ZeroV);
348 /// Substitutes the div/rem instruction with code that checks the value of the
349 /// operands and uses a shorter-faster div/rem instruction when possible.
350 Optional<QuotRemPair> FastDivInsertionTask::insertFastDivAndRem() {
351 Value *Dividend = SlowDivOrRem->getOperand(0);
352 Value *Divisor = SlowDivOrRem->getOperand(1);
354 VisitedSetTy SetL;
355 ValueRange DividendRange = getValueRange(Dividend, SetL);
356 if (DividendRange == VALRNG_LIKELY_LONG)
357 return None;
359 VisitedSetTy SetR;
360 ValueRange DivisorRange = getValueRange(Divisor, SetR);
361 if (DivisorRange == VALRNG_LIKELY_LONG)
362 return None;
364 bool DividendShort = (DividendRange == VALRNG_KNOWN_SHORT);
365 bool DivisorShort = (DivisorRange == VALRNG_KNOWN_SHORT);
367 if (DividendShort && DivisorShort) {
368 // If both operands are known to be short then just replace the long
369 // division with a short one in-place. Since we're not introducing control
370 // flow in this case, narrowing the division is always a win, even if the
371 // divisor is a constant (and will later get replaced by a multiplication).
373 IRBuilder<> Builder(SlowDivOrRem);
374 Value *TruncDividend = Builder.CreateTrunc(Dividend, BypassType);
375 Value *TruncDivisor = Builder.CreateTrunc(Divisor, BypassType);
376 Value *TruncDiv = Builder.CreateUDiv(TruncDividend, TruncDivisor);
377 Value *TruncRem = Builder.CreateURem(TruncDividend, TruncDivisor);
378 Value *ExtDiv = Builder.CreateZExt(TruncDiv, getSlowType());
379 Value *ExtRem = Builder.CreateZExt(TruncRem, getSlowType());
380 return QuotRemPair(ExtDiv, ExtRem);
383 if (isa<ConstantInt>(Divisor)) {
384 // If the divisor is not a constant, DAGCombiner will convert it to a
385 // multiplication by a magic constant. It isn't clear if it is worth
386 // introducing control flow to get a narrower multiply.
387 return None;
390 // After Constant Hoisting pass, long constants may be represented as
391 // bitcast instructions. As a result, some constants may look like an
392 // instruction at first, and an additional check is necessary to find out if
393 // an operand is actually a constant.
394 if (auto *BCI = dyn_cast<BitCastInst>(Divisor))
395 if (BCI->getParent() == SlowDivOrRem->getParent() &&
396 isa<ConstantInt>(BCI->getOperand(0)))
397 return None;
399 if (DividendShort && !isSignedOp()) {
400 // If the division is unsigned and Dividend is known to be short, then
401 // either
402 // 1) Divisor is less or equal to Dividend, and the result can be computed
403 // with a short division.
404 // 2) Divisor is greater than Dividend. In this case, no division is needed
405 // at all: The quotient is 0 and the remainder is equal to Dividend.
407 // So instead of checking at runtime whether Divisor fits into BypassType,
408 // we emit a runtime check to differentiate between these two cases. This
409 // lets us entirely avoid a long div.
411 // Split the basic block before the div/rem.
412 BasicBlock *SuccessorBB = MainBB->splitBasicBlock(SlowDivOrRem);
413 // Remove the unconditional branch from MainBB to SuccessorBB.
414 MainBB->getInstList().back().eraseFromParent();
415 QuotRemWithBB Long;
416 Long.BB = MainBB;
417 Long.Quotient = ConstantInt::get(getSlowType(), 0);
418 Long.Remainder = Dividend;
419 QuotRemWithBB Fast = createFastBB(SuccessorBB);
420 QuotRemPair Result = createDivRemPhiNodes(Fast, Long, SuccessorBB);
421 IRBuilder<> Builder(MainBB, MainBB->end());
422 Value *CmpV = Builder.CreateICmpUGE(Dividend, Divisor);
423 Builder.CreateCondBr(CmpV, Fast.BB, SuccessorBB);
424 return Result;
425 } else {
426 // General case. Create both slow and fast div/rem pairs and choose one of
427 // them at runtime.
429 // Split the basic block before the div/rem.
430 BasicBlock *SuccessorBB = MainBB->splitBasicBlock(SlowDivOrRem);
431 // Remove the unconditional branch from MainBB to SuccessorBB.
432 MainBB->getInstList().back().eraseFromParent();
433 QuotRemWithBB Fast = createFastBB(SuccessorBB);
434 QuotRemWithBB Slow = createSlowBB(SuccessorBB);
435 QuotRemPair Result = createDivRemPhiNodes(Fast, Slow, SuccessorBB);
436 Value *CmpV = insertOperandRuntimeCheck(DividendShort ? nullptr : Dividend,
437 DivisorShort ? nullptr : Divisor);
438 IRBuilder<> Builder(MainBB, MainBB->end());
439 Builder.CreateCondBr(CmpV, Fast.BB, Slow.BB);
440 return Result;
444 /// This optimization identifies DIV/REM instructions in a BB that can be
445 /// profitably bypassed and carried out with a shorter, faster divide.
446 bool llvm::bypassSlowDivision(BasicBlock *BB,
447 const BypassWidthsTy &BypassWidths) {
448 DivCacheTy PerBBDivCache;
450 bool MadeChange = false;
451 Instruction *Next = &*BB->begin();
452 while (Next != nullptr) {
453 // We may add instructions immediately after I, but we want to skip over
454 // them.
455 Instruction *I = Next;
456 Next = Next->getNextNode();
458 // Ignore dead code to save time and avoid bugs.
459 if (I->hasNUses(0))
460 continue;
462 FastDivInsertionTask Task(I, BypassWidths);
463 if (Value *Replacement = Task.getReplacement(PerBBDivCache)) {
464 I->replaceAllUsesWith(Replacement);
465 I->eraseFromParent();
466 MadeChange = true;
470 // Above we eagerly create divs and rems, as pairs, so that we can efficiently
471 // create divrem machine instructions. Now erase any unused divs / rems so we
472 // don't leave extra instructions sitting around.
473 for (auto &KV : PerBBDivCache)
474 for (Value *V : {KV.second.Quotient, KV.second.Remainder})
475 RecursivelyDeleteTriviallyDeadInstructions(V);
477 return MadeChange;