[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / lib / Transforms / Utils / LoopRotationUtils.cpp
blob889ea5ca997078561856c3f7084aa7050722bc53
1 //===----------------- LoopRotationUtils.cpp -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides utilities to convert a loop into a loop with bottom test.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Transforms/Utils/LoopRotationUtils.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/Analysis/AssumptionCache.h"
17 #include "llvm/Analysis/BasicAliasAnalysis.h"
18 #include "llvm/Analysis/CodeMetrics.h"
19 #include "llvm/Analysis/DomTreeUpdater.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/Analysis/LoopPass.h"
23 #include "llvm/Analysis/MemorySSA.h"
24 #include "llvm/Analysis/MemorySSAUpdater.h"
25 #include "llvm/Analysis/ScalarEvolution.h"
26 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/CFG.h"
30 #include "llvm/IR/DebugInfoMetadata.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
39 #include "llvm/Transforms/Utils/Local.h"
40 #include "llvm/Transforms/Utils/LoopUtils.h"
41 #include "llvm/Transforms/Utils/SSAUpdater.h"
42 #include "llvm/Transforms/Utils/ValueMapper.h"
43 using namespace llvm;
45 #define DEBUG_TYPE "loop-rotate"
47 STATISTIC(NumRotated, "Number of loops rotated");
49 namespace {
50 /// A simple loop rotation transformation.
51 class LoopRotate {
52 const unsigned MaxHeaderSize;
53 LoopInfo *LI;
54 const TargetTransformInfo *TTI;
55 AssumptionCache *AC;
56 DominatorTree *DT;
57 ScalarEvolution *SE;
58 MemorySSAUpdater *MSSAU;
59 const SimplifyQuery &SQ;
60 bool RotationOnly;
61 bool IsUtilMode;
63 public:
64 LoopRotate(unsigned MaxHeaderSize, LoopInfo *LI,
65 const TargetTransformInfo *TTI, AssumptionCache *AC,
66 DominatorTree *DT, ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
67 const SimplifyQuery &SQ, bool RotationOnly, bool IsUtilMode)
68 : MaxHeaderSize(MaxHeaderSize), LI(LI), TTI(TTI), AC(AC), DT(DT), SE(SE),
69 MSSAU(MSSAU), SQ(SQ), RotationOnly(RotationOnly),
70 IsUtilMode(IsUtilMode) {}
71 bool processLoop(Loop *L);
73 private:
74 bool rotateLoop(Loop *L, bool SimplifiedLatch);
75 bool simplifyLoopLatch(Loop *L);
77 } // end anonymous namespace
79 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
80 /// old header into the preheader. If there were uses of the values produced by
81 /// these instruction that were outside of the loop, we have to insert PHI nodes
82 /// to merge the two values. Do this now.
83 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
84 BasicBlock *OrigPreheader,
85 ValueToValueMapTy &ValueMap,
86 SmallVectorImpl<PHINode*> *InsertedPHIs) {
87 // Remove PHI node entries that are no longer live.
88 BasicBlock::iterator I, E = OrigHeader->end();
89 for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
90 PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
92 // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
93 // as necessary.
94 SSAUpdater SSA(InsertedPHIs);
95 for (I = OrigHeader->begin(); I != E; ++I) {
96 Value *OrigHeaderVal = &*I;
98 // If there are no uses of the value (e.g. because it returns void), there
99 // is nothing to rewrite.
100 if (OrigHeaderVal->use_empty())
101 continue;
103 Value *OrigPreHeaderVal = ValueMap.lookup(OrigHeaderVal);
105 // The value now exits in two versions: the initial value in the preheader
106 // and the loop "next" value in the original header.
107 SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
108 SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
109 SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
111 // Visit each use of the OrigHeader instruction.
112 for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
113 UE = OrigHeaderVal->use_end();
114 UI != UE;) {
115 // Grab the use before incrementing the iterator.
116 Use &U = *UI;
118 // Increment the iterator before removing the use from the list.
119 ++UI;
121 // SSAUpdater can't handle a non-PHI use in the same block as an
122 // earlier def. We can easily handle those cases manually.
123 Instruction *UserInst = cast<Instruction>(U.getUser());
124 if (!isa<PHINode>(UserInst)) {
125 BasicBlock *UserBB = UserInst->getParent();
127 // The original users in the OrigHeader are already using the
128 // original definitions.
129 if (UserBB == OrigHeader)
130 continue;
132 // Users in the OrigPreHeader need to use the value to which the
133 // original definitions are mapped.
134 if (UserBB == OrigPreheader) {
135 U = OrigPreHeaderVal;
136 continue;
140 // Anything else can be handled by SSAUpdater.
141 SSA.RewriteUse(U);
144 // Replace MetadataAsValue(ValueAsMetadata(OrigHeaderVal)) uses in debug
145 // intrinsics.
146 SmallVector<DbgValueInst *, 1> DbgValues;
147 llvm::findDbgValues(DbgValues, OrigHeaderVal);
148 for (auto &DbgValue : DbgValues) {
149 // The original users in the OrigHeader are already using the original
150 // definitions.
151 BasicBlock *UserBB = DbgValue->getParent();
152 if (UserBB == OrigHeader)
153 continue;
155 // Users in the OrigPreHeader need to use the value to which the
156 // original definitions are mapped and anything else can be handled by
157 // the SSAUpdater. To avoid adding PHINodes, check if the value is
158 // available in UserBB, if not substitute undef.
159 Value *NewVal;
160 if (UserBB == OrigPreheader)
161 NewVal = OrigPreHeaderVal;
162 else if (SSA.HasValueForBlock(UserBB))
163 NewVal = SSA.GetValueInMiddleOfBlock(UserBB);
164 else
165 NewVal = UndefValue::get(OrigHeaderVal->getType());
166 DbgValue->setOperand(0,
167 MetadataAsValue::get(OrigHeaderVal->getContext(),
168 ValueAsMetadata::get(NewVal)));
173 // Look for a phi which is only used outside the loop (via a LCSSA phi)
174 // in the exit from the header. This means that rotating the loop can
175 // remove the phi.
176 static bool shouldRotateLoopExitingLatch(Loop *L) {
177 BasicBlock *Header = L->getHeader();
178 BasicBlock *HeaderExit = Header->getTerminator()->getSuccessor(0);
179 if (L->contains(HeaderExit))
180 HeaderExit = Header->getTerminator()->getSuccessor(1);
182 for (auto &Phi : Header->phis()) {
183 // Look for uses of this phi in the loop/via exits other than the header.
184 if (llvm::any_of(Phi.users(), [HeaderExit](const User *U) {
185 return cast<Instruction>(U)->getParent() != HeaderExit;
187 continue;
188 return true;
191 return false;
194 /// Rotate loop LP. Return true if the loop is rotated.
196 /// \param SimplifiedLatch is true if the latch was just folded into the final
197 /// loop exit. In this case we may want to rotate even though the new latch is
198 /// now an exiting branch. This rotation would have happened had the latch not
199 /// been simplified. However, if SimplifiedLatch is false, then we avoid
200 /// rotating loops in which the latch exits to avoid excessive or endless
201 /// rotation. LoopRotate should be repeatable and converge to a canonical
202 /// form. This property is satisfied because simplifying the loop latch can only
203 /// happen once across multiple invocations of the LoopRotate pass.
204 bool LoopRotate::rotateLoop(Loop *L, bool SimplifiedLatch) {
205 // If the loop has only one block then there is not much to rotate.
206 if (L->getBlocks().size() == 1)
207 return false;
209 BasicBlock *OrigHeader = L->getHeader();
210 BasicBlock *OrigLatch = L->getLoopLatch();
212 BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
213 if (!BI || BI->isUnconditional())
214 return false;
216 // If the loop header is not one of the loop exiting blocks then
217 // either this loop is already rotated or it is not
218 // suitable for loop rotation transformations.
219 if (!L->isLoopExiting(OrigHeader))
220 return false;
222 // If the loop latch already contains a branch that leaves the loop then the
223 // loop is already rotated.
224 if (!OrigLatch)
225 return false;
227 // Rotate if either the loop latch does *not* exit the loop, or if the loop
228 // latch was just simplified. Or if we think it will be profitable.
229 if (L->isLoopExiting(OrigLatch) && !SimplifiedLatch && IsUtilMode == false &&
230 !shouldRotateLoopExitingLatch(L))
231 return false;
233 // Check size of original header and reject loop if it is very big or we can't
234 // duplicate blocks inside it.
236 SmallPtrSet<const Value *, 32> EphValues;
237 CodeMetrics::collectEphemeralValues(L, AC, EphValues);
239 CodeMetrics Metrics;
240 Metrics.analyzeBasicBlock(OrigHeader, *TTI, EphValues);
241 if (Metrics.notDuplicatable) {
242 LLVM_DEBUG(
243 dbgs() << "LoopRotation: NOT rotating - contains non-duplicatable"
244 << " instructions: ";
245 L->dump());
246 return false;
248 if (Metrics.convergent) {
249 LLVM_DEBUG(dbgs() << "LoopRotation: NOT rotating - contains convergent "
250 "instructions: ";
251 L->dump());
252 return false;
254 if (Metrics.NumInsts > MaxHeaderSize)
255 return false;
258 // Now, this loop is suitable for rotation.
259 BasicBlock *OrigPreheader = L->getLoopPreheader();
261 // If the loop could not be converted to canonical form, it must have an
262 // indirectbr in it, just give up.
263 if (!OrigPreheader || !L->hasDedicatedExits())
264 return false;
266 // Anything ScalarEvolution may know about this loop or the PHI nodes
267 // in its header will soon be invalidated. We should also invalidate
268 // all outer loops because insertion and deletion of blocks that happens
269 // during the rotation may violate invariants related to backedge taken
270 // infos in them.
271 if (SE)
272 SE->forgetTopmostLoop(L);
274 LLVM_DEBUG(dbgs() << "LoopRotation: rotating "; L->dump());
275 if (MSSAU && VerifyMemorySSA)
276 MSSAU->getMemorySSA()->verifyMemorySSA();
278 // Find new Loop header. NewHeader is a Header's one and only successor
279 // that is inside loop. Header's other successor is outside the
280 // loop. Otherwise loop is not suitable for rotation.
281 BasicBlock *Exit = BI->getSuccessor(0);
282 BasicBlock *NewHeader = BI->getSuccessor(1);
283 if (L->contains(Exit))
284 std::swap(Exit, NewHeader);
285 assert(NewHeader && "Unable to determine new loop header");
286 assert(L->contains(NewHeader) && !L->contains(Exit) &&
287 "Unable to determine loop header and exit blocks");
289 // This code assumes that the new header has exactly one predecessor.
290 // Remove any single-entry PHI nodes in it.
291 assert(NewHeader->getSinglePredecessor() &&
292 "New header doesn't have one pred!");
293 FoldSingleEntryPHINodes(NewHeader);
295 // Begin by walking OrigHeader and populating ValueMap with an entry for
296 // each Instruction.
297 BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
298 ValueToValueMapTy ValueMap, ValueMapMSSA;
300 // For PHI nodes, the value available in OldPreHeader is just the
301 // incoming value from OldPreHeader.
302 for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
303 ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader);
305 // For the rest of the instructions, either hoist to the OrigPreheader if
306 // possible or create a clone in the OldPreHeader if not.
307 Instruction *LoopEntryBranch = OrigPreheader->getTerminator();
309 // Record all debug intrinsics preceding LoopEntryBranch to avoid duplication.
310 using DbgIntrinsicHash =
311 std::pair<std::pair<Value *, DILocalVariable *>, DIExpression *>;
312 auto makeHash = [](DbgVariableIntrinsic *D) -> DbgIntrinsicHash {
313 return {{D->getVariableLocation(), D->getVariable()}, D->getExpression()};
315 SmallDenseSet<DbgIntrinsicHash, 8> DbgIntrinsics;
316 for (auto I = std::next(OrigPreheader->rbegin()), E = OrigPreheader->rend();
317 I != E; ++I) {
318 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&*I))
319 DbgIntrinsics.insert(makeHash(DII));
320 else
321 break;
324 while (I != E) {
325 Instruction *Inst = &*I++;
327 // If the instruction's operands are invariant and it doesn't read or write
328 // memory, then it is safe to hoist. Doing this doesn't change the order of
329 // execution in the preheader, but does prevent the instruction from
330 // executing in each iteration of the loop. This means it is safe to hoist
331 // something that might trap, but isn't safe to hoist something that reads
332 // memory (without proving that the loop doesn't write).
333 if (L->hasLoopInvariantOperands(Inst) && !Inst->mayReadFromMemory() &&
334 !Inst->mayWriteToMemory() && !Inst->isTerminator() &&
335 !isa<DbgInfoIntrinsic>(Inst) && !isa<AllocaInst>(Inst)) {
336 Inst->moveBefore(LoopEntryBranch);
337 continue;
340 // Otherwise, create a duplicate of the instruction.
341 Instruction *C = Inst->clone();
343 // Eagerly remap the operands of the instruction.
344 RemapInstruction(C, ValueMap,
345 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
347 // Avoid inserting the same intrinsic twice.
348 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(C))
349 if (DbgIntrinsics.count(makeHash(DII))) {
350 C->deleteValue();
351 continue;
354 // With the operands remapped, see if the instruction constant folds or is
355 // otherwise simplifyable. This commonly occurs because the entry from PHI
356 // nodes allows icmps and other instructions to fold.
357 Value *V = SimplifyInstruction(C, SQ);
358 if (V && LI->replacementPreservesLCSSAForm(C, V)) {
359 // If so, then delete the temporary instruction and stick the folded value
360 // in the map.
361 ValueMap[Inst] = V;
362 if (!C->mayHaveSideEffects()) {
363 C->deleteValue();
364 C = nullptr;
366 } else {
367 ValueMap[Inst] = C;
369 if (C) {
370 // Otherwise, stick the new instruction into the new block!
371 C->setName(Inst->getName());
372 C->insertBefore(LoopEntryBranch);
374 if (auto *II = dyn_cast<IntrinsicInst>(C))
375 if (II->getIntrinsicID() == Intrinsic::assume)
376 AC->registerAssumption(II);
377 // MemorySSA cares whether the cloned instruction was inserted or not, and
378 // not whether it can be remapped to a simplified value.
379 ValueMapMSSA[Inst] = C;
383 // Along with all the other instructions, we just cloned OrigHeader's
384 // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
385 // successors by duplicating their incoming values for OrigHeader.
386 for (BasicBlock *SuccBB : successors(OrigHeader))
387 for (BasicBlock::iterator BI = SuccBB->begin();
388 PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
389 PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
391 // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
392 // OrigPreHeader's old terminator (the original branch into the loop), and
393 // remove the corresponding incoming values from the PHI nodes in OrigHeader.
394 LoopEntryBranch->eraseFromParent();
396 // Update MemorySSA before the rewrite call below changes the 1:1
397 // instruction:cloned_instruction_or_value mapping.
398 if (MSSAU) {
399 ValueMapMSSA[OrigHeader] = OrigPreheader;
400 MSSAU->updateForClonedBlockIntoPred(OrigHeader, OrigPreheader,
401 ValueMapMSSA);
404 SmallVector<PHINode*, 2> InsertedPHIs;
405 // If there were any uses of instructions in the duplicated block outside the
406 // loop, update them, inserting PHI nodes as required
407 RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap,
408 &InsertedPHIs);
410 // Attach dbg.value intrinsics to the new phis if that phi uses a value that
411 // previously had debug metadata attached. This keeps the debug info
412 // up-to-date in the loop body.
413 if (!InsertedPHIs.empty())
414 insertDebugValuesForPHIs(OrigHeader, InsertedPHIs);
416 // NewHeader is now the header of the loop.
417 L->moveToHeader(NewHeader);
418 assert(L->getHeader() == NewHeader && "Latch block is our new header");
420 // Inform DT about changes to the CFG.
421 if (DT) {
422 // The OrigPreheader branches to the NewHeader and Exit now. Then, inform
423 // the DT about the removed edge to the OrigHeader (that got removed).
424 SmallVector<DominatorTree::UpdateType, 3> Updates;
425 Updates.push_back({DominatorTree::Insert, OrigPreheader, Exit});
426 Updates.push_back({DominatorTree::Insert, OrigPreheader, NewHeader});
427 Updates.push_back({DominatorTree::Delete, OrigPreheader, OrigHeader});
428 DT->applyUpdates(Updates);
430 if (MSSAU) {
431 MSSAU->applyUpdates(Updates, *DT);
432 if (VerifyMemorySSA)
433 MSSAU->getMemorySSA()->verifyMemorySSA();
437 // At this point, we've finished our major CFG changes. As part of cloning
438 // the loop into the preheader we've simplified instructions and the
439 // duplicated conditional branch may now be branching on a constant. If it is
440 // branching on a constant and if that constant means that we enter the loop,
441 // then we fold away the cond branch to an uncond branch. This simplifies the
442 // loop in cases important for nested loops, and it also means we don't have
443 // to split as many edges.
444 BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
445 assert(PHBI->isConditional() && "Should be clone of BI condbr!");
446 if (!isa<ConstantInt>(PHBI->getCondition()) ||
447 PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero()) !=
448 NewHeader) {
449 // The conditional branch can't be folded, handle the general case.
450 // Split edges as necessary to preserve LoopSimplify form.
452 // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
453 // thus is not a preheader anymore.
454 // Split the edge to form a real preheader.
455 BasicBlock *NewPH = SplitCriticalEdge(
456 OrigPreheader, NewHeader,
457 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
458 NewPH->setName(NewHeader->getName() + ".lr.ph");
460 // Preserve canonical loop form, which means that 'Exit' should have only
461 // one predecessor. Note that Exit could be an exit block for multiple
462 // nested loops, causing both of the edges to now be critical and need to
463 // be split.
464 SmallVector<BasicBlock *, 4> ExitPreds(pred_begin(Exit), pred_end(Exit));
465 bool SplitLatchEdge = false;
466 for (BasicBlock *ExitPred : ExitPreds) {
467 // We only need to split loop exit edges.
468 Loop *PredLoop = LI->getLoopFor(ExitPred);
469 if (!PredLoop || PredLoop->contains(Exit) ||
470 ExitPred->getTerminator()->isIndirectTerminator())
471 continue;
472 SplitLatchEdge |= L->getLoopLatch() == ExitPred;
473 BasicBlock *ExitSplit = SplitCriticalEdge(
474 ExitPred, Exit,
475 CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA());
476 ExitSplit->moveBefore(Exit);
478 assert(SplitLatchEdge &&
479 "Despite splitting all preds, failed to split latch exit?");
480 } else {
481 // We can fold the conditional branch in the preheader, this makes things
482 // simpler. The first step is to remove the extra edge to the Exit block.
483 Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
484 BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
485 NewBI->setDebugLoc(PHBI->getDebugLoc());
486 PHBI->eraseFromParent();
488 // With our CFG finalized, update DomTree if it is available.
489 if (DT) DT->deleteEdge(OrigPreheader, Exit);
491 // Update MSSA too, if available.
492 if (MSSAU)
493 MSSAU->removeEdge(OrigPreheader, Exit);
496 assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
497 assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
499 if (MSSAU && VerifyMemorySSA)
500 MSSAU->getMemorySSA()->verifyMemorySSA();
502 // Now that the CFG and DomTree are in a consistent state again, try to merge
503 // the OrigHeader block into OrigLatch. This will succeed if they are
504 // connected by an unconditional branch. This is just a cleanup so the
505 // emitted code isn't too gross in this common case.
506 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
507 MergeBlockIntoPredecessor(OrigHeader, &DTU, LI, MSSAU);
509 if (MSSAU && VerifyMemorySSA)
510 MSSAU->getMemorySSA()->verifyMemorySSA();
512 LLVM_DEBUG(dbgs() << "LoopRotation: into "; L->dump());
514 ++NumRotated;
515 return true;
518 /// Determine whether the instructions in this range may be safely and cheaply
519 /// speculated. This is not an important enough situation to develop complex
520 /// heuristics. We handle a single arithmetic instruction along with any type
521 /// conversions.
522 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
523 BasicBlock::iterator End, Loop *L) {
524 bool seenIncrement = false;
525 bool MultiExitLoop = false;
527 if (!L->getExitingBlock())
528 MultiExitLoop = true;
530 for (BasicBlock::iterator I = Begin; I != End; ++I) {
532 if (!isSafeToSpeculativelyExecute(&*I))
533 return false;
535 if (isa<DbgInfoIntrinsic>(I))
536 continue;
538 switch (I->getOpcode()) {
539 default:
540 return false;
541 case Instruction::GetElementPtr:
542 // GEPs are cheap if all indices are constant.
543 if (!cast<GEPOperator>(I)->hasAllConstantIndices())
544 return false;
545 // fall-thru to increment case
546 LLVM_FALLTHROUGH;
547 case Instruction::Add:
548 case Instruction::Sub:
549 case Instruction::And:
550 case Instruction::Or:
551 case Instruction::Xor:
552 case Instruction::Shl:
553 case Instruction::LShr:
554 case Instruction::AShr: {
555 Value *IVOpnd =
556 !isa<Constant>(I->getOperand(0))
557 ? I->getOperand(0)
558 : !isa<Constant>(I->getOperand(1)) ? I->getOperand(1) : nullptr;
559 if (!IVOpnd)
560 return false;
562 // If increment operand is used outside of the loop, this speculation
563 // could cause extra live range interference.
564 if (MultiExitLoop) {
565 for (User *UseI : IVOpnd->users()) {
566 auto *UserInst = cast<Instruction>(UseI);
567 if (!L->contains(UserInst))
568 return false;
572 if (seenIncrement)
573 return false;
574 seenIncrement = true;
575 break;
577 case Instruction::Trunc:
578 case Instruction::ZExt:
579 case Instruction::SExt:
580 // ignore type conversions
581 break;
584 return true;
587 /// Fold the loop tail into the loop exit by speculating the loop tail
588 /// instructions. Typically, this is a single post-increment. In the case of a
589 /// simple 2-block loop, hoisting the increment can be much better than
590 /// duplicating the entire loop header. In the case of loops with early exits,
591 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in
592 /// canonical form so downstream passes can handle it.
594 /// I don't believe this invalidates SCEV.
595 bool LoopRotate::simplifyLoopLatch(Loop *L) {
596 BasicBlock *Latch = L->getLoopLatch();
597 if (!Latch || Latch->hasAddressTaken())
598 return false;
600 BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
601 if (!Jmp || !Jmp->isUnconditional())
602 return false;
604 BasicBlock *LastExit = Latch->getSinglePredecessor();
605 if (!LastExit || !L->isLoopExiting(LastExit))
606 return false;
608 BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
609 if (!BI)
610 return false;
612 if (!shouldSpeculateInstrs(Latch->begin(), Jmp->getIterator(), L))
613 return false;
615 LLVM_DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
616 << LastExit->getName() << "\n");
618 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
619 MergeBlockIntoPredecessor(Latch, &DTU, LI, MSSAU, nullptr,
620 /*PredecessorWithTwoSuccessors=*/true);
622 if (MSSAU && VerifyMemorySSA)
623 MSSAU->getMemorySSA()->verifyMemorySSA();
625 return true;
628 /// Rotate \c L, and return true if any modification was made.
629 bool LoopRotate::processLoop(Loop *L) {
630 // Save the loop metadata.
631 MDNode *LoopMD = L->getLoopID();
633 bool SimplifiedLatch = false;
635 // Simplify the loop latch before attempting to rotate the header
636 // upward. Rotation may not be needed if the loop tail can be folded into the
637 // loop exit.
638 if (!RotationOnly)
639 SimplifiedLatch = simplifyLoopLatch(L);
641 bool MadeChange = rotateLoop(L, SimplifiedLatch);
642 assert((!MadeChange || L->isLoopExiting(L->getLoopLatch())) &&
643 "Loop latch should be exiting after loop-rotate.");
645 // Restore the loop metadata.
646 // NB! We presume LoopRotation DOESN'T ADD its own metadata.
647 if ((MadeChange || SimplifiedLatch) && LoopMD)
648 L->setLoopID(LoopMD);
650 return MadeChange || SimplifiedLatch;
654 /// The utility to convert a loop into a loop with bottom test.
655 bool llvm::LoopRotation(Loop *L, LoopInfo *LI, const TargetTransformInfo *TTI,
656 AssumptionCache *AC, DominatorTree *DT,
657 ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
658 const SimplifyQuery &SQ, bool RotationOnly = true,
659 unsigned Threshold = unsigned(-1),
660 bool IsUtilMode = true) {
661 if (MSSAU && VerifyMemorySSA)
662 MSSAU->getMemorySSA()->verifyMemorySSA();
663 LoopRotate LR(Threshold, LI, TTI, AC, DT, SE, MSSAU, SQ, RotationOnly,
664 IsUtilMode);
665 if (MSSAU && VerifyMemorySSA)
666 MSSAU->getMemorySSA()->verifyMemorySSA();
668 return LR.processLoop(L);