[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / lib / Transforms / Utils / LoopUtils.cpp
blobb4d7f35d2d9a4b42cac40deae3b67249d44bf9e8
1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines common loop utility functions.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Transforms/Utils/LoopUtils.h"
14 #include "llvm/ADT/ScopeExit.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/Analysis/BasicAliasAnalysis.h"
17 #include "llvm/Analysis/DomTreeUpdater.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/MemorySSA.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/Analysis/MustExecute.h"
25 #include "llvm/Analysis/ScalarEvolution.h"
26 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
27 #include "llvm/Analysis/ScalarEvolutionExpander.h"
28 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/DIBuilder.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Module.h"
36 #include "llvm/IR/PatternMatch.h"
37 #include "llvm/IR/ValueHandle.h"
38 #include "llvm/Pass.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/KnownBits.h"
41 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
43 using namespace llvm;
44 using namespace llvm::PatternMatch;
46 #define DEBUG_TYPE "loop-utils"
48 static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
49 static const char *LLVMLoopDisableLICM = "llvm.licm.disable";
51 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
52 MemorySSAUpdater *MSSAU,
53 bool PreserveLCSSA) {
54 bool Changed = false;
56 // We re-use a vector for the in-loop predecesosrs.
57 SmallVector<BasicBlock *, 4> InLoopPredecessors;
59 auto RewriteExit = [&](BasicBlock *BB) {
60 assert(InLoopPredecessors.empty() &&
61 "Must start with an empty predecessors list!");
62 auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
64 // See if there are any non-loop predecessors of this exit block and
65 // keep track of the in-loop predecessors.
66 bool IsDedicatedExit = true;
67 for (auto *PredBB : predecessors(BB))
68 if (L->contains(PredBB)) {
69 if (isa<IndirectBrInst>(PredBB->getTerminator()))
70 // We cannot rewrite exiting edges from an indirectbr.
71 return false;
72 if (isa<CallBrInst>(PredBB->getTerminator()))
73 // We cannot rewrite exiting edges from a callbr.
74 return false;
76 InLoopPredecessors.push_back(PredBB);
77 } else {
78 IsDedicatedExit = false;
81 assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
83 // Nothing to do if this is already a dedicated exit.
84 if (IsDedicatedExit)
85 return false;
87 auto *NewExitBB = SplitBlockPredecessors(
88 BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);
90 if (!NewExitBB)
91 LLVM_DEBUG(
92 dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
93 << *L << "\n");
94 else
95 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
96 << NewExitBB->getName() << "\n");
97 return true;
100 // Walk the exit blocks directly rather than building up a data structure for
101 // them, but only visit each one once.
102 SmallPtrSet<BasicBlock *, 4> Visited;
103 for (auto *BB : L->blocks())
104 for (auto *SuccBB : successors(BB)) {
105 // We're looking for exit blocks so skip in-loop successors.
106 if (L->contains(SuccBB))
107 continue;
109 // Visit each exit block exactly once.
110 if (!Visited.insert(SuccBB).second)
111 continue;
113 Changed |= RewriteExit(SuccBB);
116 return Changed;
119 /// Returns the instructions that use values defined in the loop.
120 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
121 SmallVector<Instruction *, 8> UsedOutside;
123 for (auto *Block : L->getBlocks())
124 // FIXME: I believe that this could use copy_if if the Inst reference could
125 // be adapted into a pointer.
126 for (auto &Inst : *Block) {
127 auto Users = Inst.users();
128 if (any_of(Users, [&](User *U) {
129 auto *Use = cast<Instruction>(U);
130 return !L->contains(Use->getParent());
132 UsedOutside.push_back(&Inst);
135 return UsedOutside;
138 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
139 // By definition, all loop passes need the LoopInfo analysis and the
140 // Dominator tree it depends on. Because they all participate in the loop
141 // pass manager, they must also preserve these.
142 AU.addRequired<DominatorTreeWrapperPass>();
143 AU.addPreserved<DominatorTreeWrapperPass>();
144 AU.addRequired<LoopInfoWrapperPass>();
145 AU.addPreserved<LoopInfoWrapperPass>();
147 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
148 // here because users shouldn't directly get them from this header.
149 extern char &LoopSimplifyID;
150 extern char &LCSSAID;
151 AU.addRequiredID(LoopSimplifyID);
152 AU.addPreservedID(LoopSimplifyID);
153 AU.addRequiredID(LCSSAID);
154 AU.addPreservedID(LCSSAID);
155 // This is used in the LPPassManager to perform LCSSA verification on passes
156 // which preserve lcssa form
157 AU.addRequired<LCSSAVerificationPass>();
158 AU.addPreserved<LCSSAVerificationPass>();
160 // Loop passes are designed to run inside of a loop pass manager which means
161 // that any function analyses they require must be required by the first loop
162 // pass in the manager (so that it is computed before the loop pass manager
163 // runs) and preserved by all loop pasess in the manager. To make this
164 // reasonably robust, the set needed for most loop passes is maintained here.
165 // If your loop pass requires an analysis not listed here, you will need to
166 // carefully audit the loop pass manager nesting structure that results.
167 AU.addRequired<AAResultsWrapperPass>();
168 AU.addPreserved<AAResultsWrapperPass>();
169 AU.addPreserved<BasicAAWrapperPass>();
170 AU.addPreserved<GlobalsAAWrapperPass>();
171 AU.addPreserved<SCEVAAWrapperPass>();
172 AU.addRequired<ScalarEvolutionWrapperPass>();
173 AU.addPreserved<ScalarEvolutionWrapperPass>();
174 // FIXME: When all loop passes preserve MemorySSA, it can be required and
175 // preserved here instead of the individual handling in each pass.
178 /// Manually defined generic "LoopPass" dependency initialization. This is used
179 /// to initialize the exact set of passes from above in \c
180 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
181 /// with:
183 /// INITIALIZE_PASS_DEPENDENCY(LoopPass)
185 /// As-if "LoopPass" were a pass.
186 void llvm::initializeLoopPassPass(PassRegistry &Registry) {
187 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
188 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
189 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
190 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
191 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
192 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
193 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
194 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
195 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
196 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
199 /// Create MDNode for input string.
200 static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
201 LLVMContext &Context = TheLoop->getHeader()->getContext();
202 Metadata *MDs[] = {
203 MDString::get(Context, Name),
204 ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
205 return MDNode::get(Context, MDs);
208 /// Set input string into loop metadata by keeping other values intact.
209 /// If the string is already in loop metadata update value if it is
210 /// different.
211 void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD,
212 unsigned V) {
213 SmallVector<Metadata *, 4> MDs(1);
214 // If the loop already has metadata, retain it.
215 MDNode *LoopID = TheLoop->getLoopID();
216 if (LoopID) {
217 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
218 MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
219 // If it is of form key = value, try to parse it.
220 if (Node->getNumOperands() == 2) {
221 MDString *S = dyn_cast<MDString>(Node->getOperand(0));
222 if (S && S->getString().equals(StringMD)) {
223 ConstantInt *IntMD =
224 mdconst::extract_or_null<ConstantInt>(Node->getOperand(1));
225 if (IntMD && IntMD->getSExtValue() == V)
226 // It is already in place. Do nothing.
227 return;
228 // We need to update the value, so just skip it here and it will
229 // be added after copying other existed nodes.
230 continue;
233 MDs.push_back(Node);
236 // Add new metadata.
237 MDs.push_back(createStringMetadata(TheLoop, StringMD, V));
238 // Replace current metadata node with new one.
239 LLVMContext &Context = TheLoop->getHeader()->getContext();
240 MDNode *NewLoopID = MDNode::get(Context, MDs);
241 // Set operand 0 to refer to the loop id itself.
242 NewLoopID->replaceOperandWith(0, NewLoopID);
243 TheLoop->setLoopID(NewLoopID);
246 /// Find string metadata for loop
248 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
249 /// operand or null otherwise. If the string metadata is not found return
250 /// Optional's not-a-value.
251 Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop,
252 StringRef Name) {
253 MDNode *MD = findOptionMDForLoop(TheLoop, Name);
254 if (!MD)
255 return None;
256 switch (MD->getNumOperands()) {
257 case 1:
258 return nullptr;
259 case 2:
260 return &MD->getOperand(1);
261 default:
262 llvm_unreachable("loop metadata has 0 or 1 operand");
266 static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop,
267 StringRef Name) {
268 MDNode *MD = findOptionMDForLoop(TheLoop, Name);
269 if (!MD)
270 return None;
271 switch (MD->getNumOperands()) {
272 case 1:
273 // When the value is absent it is interpreted as 'attribute set'.
274 return true;
275 case 2:
276 if (ConstantInt *IntMD =
277 mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get()))
278 return IntMD->getZExtValue();
279 return true;
281 llvm_unreachable("unexpected number of options");
284 static bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) {
285 return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false);
288 llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop,
289 StringRef Name) {
290 const MDOperand *AttrMD =
291 findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr);
292 if (!AttrMD)
293 return None;
295 ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get());
296 if (!IntMD)
297 return None;
299 return IntMD->getSExtValue();
302 Optional<MDNode *> llvm::makeFollowupLoopID(
303 MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
304 const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
305 if (!OrigLoopID) {
306 if (AlwaysNew)
307 return nullptr;
308 return None;
311 assert(OrigLoopID->getOperand(0) == OrigLoopID);
313 bool InheritAllAttrs = !InheritOptionsExceptPrefix;
314 bool InheritSomeAttrs =
315 InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
316 SmallVector<Metadata *, 8> MDs;
317 MDs.push_back(nullptr);
319 bool Changed = false;
320 if (InheritAllAttrs || InheritSomeAttrs) {
321 for (const MDOperand &Existing : drop_begin(OrigLoopID->operands(), 1)) {
322 MDNode *Op = cast<MDNode>(Existing.get());
324 auto InheritThisAttribute = [InheritSomeAttrs,
325 InheritOptionsExceptPrefix](MDNode *Op) {
326 if (!InheritSomeAttrs)
327 return false;
329 // Skip malformatted attribute metadata nodes.
330 if (Op->getNumOperands() == 0)
331 return true;
332 Metadata *NameMD = Op->getOperand(0).get();
333 if (!isa<MDString>(NameMD))
334 return true;
335 StringRef AttrName = cast<MDString>(NameMD)->getString();
337 // Do not inherit excluded attributes.
338 return !AttrName.startswith(InheritOptionsExceptPrefix);
341 if (InheritThisAttribute(Op))
342 MDs.push_back(Op);
343 else
344 Changed = true;
346 } else {
347 // Modified if we dropped at least one attribute.
348 Changed = OrigLoopID->getNumOperands() > 1;
351 bool HasAnyFollowup = false;
352 for (StringRef OptionName : FollowupOptions) {
353 MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
354 if (!FollowupNode)
355 continue;
357 HasAnyFollowup = true;
358 for (const MDOperand &Option : drop_begin(FollowupNode->operands(), 1)) {
359 MDs.push_back(Option.get());
360 Changed = true;
364 // Attributes of the followup loop not specified explicity, so signal to the
365 // transformation pass to add suitable attributes.
366 if (!AlwaysNew && !HasAnyFollowup)
367 return None;
369 // If no attributes were added or remove, the previous loop Id can be reused.
370 if (!AlwaysNew && !Changed)
371 return OrigLoopID;
373 // No attributes is equivalent to having no !llvm.loop metadata at all.
374 if (MDs.size() == 1)
375 return nullptr;
377 // Build the new loop ID.
378 MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
379 FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
380 return FollowupLoopID;
383 bool llvm::hasDisableAllTransformsHint(const Loop *L) {
384 return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
387 bool llvm::hasDisableLICMTransformsHint(const Loop *L) {
388 return getBooleanLoopAttribute(L, LLVMLoopDisableLICM);
391 TransformationMode llvm::hasUnrollTransformation(Loop *L) {
392 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
393 return TM_SuppressedByUser;
395 Optional<int> Count =
396 getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
397 if (Count.hasValue())
398 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
400 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
401 return TM_ForcedByUser;
403 if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
404 return TM_ForcedByUser;
406 if (hasDisableAllTransformsHint(L))
407 return TM_Disable;
409 return TM_Unspecified;
412 TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) {
413 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
414 return TM_SuppressedByUser;
416 Optional<int> Count =
417 getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
418 if (Count.hasValue())
419 return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
421 if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
422 return TM_ForcedByUser;
424 if (hasDisableAllTransformsHint(L))
425 return TM_Disable;
427 return TM_Unspecified;
430 TransformationMode llvm::hasVectorizeTransformation(Loop *L) {
431 Optional<bool> Enable =
432 getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
434 if (Enable == false)
435 return TM_SuppressedByUser;
437 Optional<int> VectorizeWidth =
438 getOptionalIntLoopAttribute(L, "llvm.loop.vectorize.width");
439 Optional<int> InterleaveCount =
440 getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
442 // 'Forcing' vector width and interleave count to one effectively disables
443 // this tranformation.
444 if (Enable == true && VectorizeWidth == 1 && InterleaveCount == 1)
445 return TM_SuppressedByUser;
447 if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
448 return TM_Disable;
450 if (Enable == true)
451 return TM_ForcedByUser;
453 if (VectorizeWidth == 1 && InterleaveCount == 1)
454 return TM_Disable;
456 if (VectorizeWidth > 1 || InterleaveCount > 1)
457 return TM_Enable;
459 if (hasDisableAllTransformsHint(L))
460 return TM_Disable;
462 return TM_Unspecified;
465 TransformationMode llvm::hasDistributeTransformation(Loop *L) {
466 if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
467 return TM_ForcedByUser;
469 if (hasDisableAllTransformsHint(L))
470 return TM_Disable;
472 return TM_Unspecified;
475 TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) {
476 if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
477 return TM_SuppressedByUser;
479 if (hasDisableAllTransformsHint(L))
480 return TM_Disable;
482 return TM_Unspecified;
485 /// Does a BFS from a given node to all of its children inside a given loop.
486 /// The returned vector of nodes includes the starting point.
487 SmallVector<DomTreeNode *, 16>
488 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
489 SmallVector<DomTreeNode *, 16> Worklist;
490 auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
491 // Only include subregions in the top level loop.
492 BasicBlock *BB = DTN->getBlock();
493 if (CurLoop->contains(BB))
494 Worklist.push_back(DTN);
497 AddRegionToWorklist(N);
499 for (size_t I = 0; I < Worklist.size(); I++)
500 for (DomTreeNode *Child : Worklist[I]->getChildren())
501 AddRegionToWorklist(Child);
503 return Worklist;
506 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr,
507 ScalarEvolution *SE = nullptr,
508 LoopInfo *LI = nullptr) {
509 assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
510 auto *Preheader = L->getLoopPreheader();
511 assert(Preheader && "Preheader should exist!");
513 // Now that we know the removal is safe, remove the loop by changing the
514 // branch from the preheader to go to the single exit block.
516 // Because we're deleting a large chunk of code at once, the sequence in which
517 // we remove things is very important to avoid invalidation issues.
519 // Tell ScalarEvolution that the loop is deleted. Do this before
520 // deleting the loop so that ScalarEvolution can look at the loop
521 // to determine what it needs to clean up.
522 if (SE)
523 SE->forgetLoop(L);
525 auto *ExitBlock = L->getUniqueExitBlock();
526 assert(ExitBlock && "Should have a unique exit block!");
527 assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
529 auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
530 assert(OldBr && "Preheader must end with a branch");
531 assert(OldBr->isUnconditional() && "Preheader must have a single successor");
532 // Connect the preheader to the exit block. Keep the old edge to the header
533 // around to perform the dominator tree update in two separate steps
534 // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
535 // preheader -> header.
538 // 0. Preheader 1. Preheader 2. Preheader
539 // | | | |
540 // V | V |
541 // Header <--\ | Header <--\ | Header <--\
542 // | | | | | | | | | | |
543 // | V | | | V | | | V |
544 // | Body --/ | | Body --/ | | Body --/
545 // V V V V V
546 // Exit Exit Exit
548 // By doing this is two separate steps we can perform the dominator tree
549 // update without using the batch update API.
551 // Even when the loop is never executed, we cannot remove the edge from the
552 // source block to the exit block. Consider the case where the unexecuted loop
553 // branches back to an outer loop. If we deleted the loop and removed the edge
554 // coming to this inner loop, this will break the outer loop structure (by
555 // deleting the backedge of the outer loop). If the outer loop is indeed a
556 // non-loop, it will be deleted in a future iteration of loop deletion pass.
557 IRBuilder<> Builder(OldBr);
558 Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
559 // Remove the old branch. The conditional branch becomes a new terminator.
560 OldBr->eraseFromParent();
562 // Rewrite phis in the exit block to get their inputs from the Preheader
563 // instead of the exiting block.
564 for (PHINode &P : ExitBlock->phis()) {
565 // Set the zero'th element of Phi to be from the preheader and remove all
566 // other incoming values. Given the loop has dedicated exits, all other
567 // incoming values must be from the exiting blocks.
568 int PredIndex = 0;
569 P.setIncomingBlock(PredIndex, Preheader);
570 // Removes all incoming values from all other exiting blocks (including
571 // duplicate values from an exiting block).
572 // Nuke all entries except the zero'th entry which is the preheader entry.
573 // NOTE! We need to remove Incoming Values in the reverse order as done
574 // below, to keep the indices valid for deletion (removeIncomingValues
575 // updates getNumIncomingValues and shifts all values down into the operand
576 // being deleted).
577 for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
578 P.removeIncomingValue(e - i, false);
580 assert((P.getNumIncomingValues() == 1 &&
581 P.getIncomingBlock(PredIndex) == Preheader) &&
582 "Should have exactly one value and that's from the preheader!");
585 // Disconnect the loop body by branching directly to its exit.
586 Builder.SetInsertPoint(Preheader->getTerminator());
587 Builder.CreateBr(ExitBlock);
588 // Remove the old branch.
589 Preheader->getTerminator()->eraseFromParent();
591 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
592 if (DT) {
593 // Update the dominator tree by informing it about the new edge from the
594 // preheader to the exit and the removed edge.
595 DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock},
596 {DominatorTree::Delete, Preheader, L->getHeader()}});
599 // Use a map to unique and a vector to guarantee deterministic ordering.
600 llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet;
601 llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
603 // Given LCSSA form is satisfied, we should not have users of instructions
604 // within the dead loop outside of the loop. However, LCSSA doesn't take
605 // unreachable uses into account. We handle them here.
606 // We could do it after drop all references (in this case all users in the
607 // loop will be already eliminated and we have less work to do but according
608 // to API doc of User::dropAllReferences only valid operation after dropping
609 // references, is deletion. So let's substitute all usages of
610 // instruction from the loop with undef value of corresponding type first.
611 for (auto *Block : L->blocks())
612 for (Instruction &I : *Block) {
613 auto *Undef = UndefValue::get(I.getType());
614 for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) {
615 Use &U = *UI;
616 ++UI;
617 if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
618 if (L->contains(Usr->getParent()))
619 continue;
620 // If we have a DT then we can check that uses outside a loop only in
621 // unreachable block.
622 if (DT)
623 assert(!DT->isReachableFromEntry(U) &&
624 "Unexpected user in reachable block");
625 U.set(Undef);
627 auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
628 if (!DVI)
629 continue;
630 auto Key = DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()});
631 if (Key != DeadDebugSet.end())
632 continue;
633 DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()});
634 DeadDebugInst.push_back(DVI);
637 // After the loop has been deleted all the values defined and modified
638 // inside the loop are going to be unavailable.
639 // Since debug values in the loop have been deleted, inserting an undef
640 // dbg.value truncates the range of any dbg.value before the loop where the
641 // loop used to be. This is particularly important for constant values.
642 DIBuilder DIB(*ExitBlock->getModule());
643 Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI();
644 assert(InsertDbgValueBefore &&
645 "There should be a non-PHI instruction in exit block, else these "
646 "instructions will have no parent.");
647 for (auto *DVI : DeadDebugInst)
648 DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()),
649 DVI->getVariable(), DVI->getExpression(),
650 DVI->getDebugLoc(), InsertDbgValueBefore);
652 // Remove the block from the reference counting scheme, so that we can
653 // delete it freely later.
654 for (auto *Block : L->blocks())
655 Block->dropAllReferences();
657 if (LI) {
658 // Erase the instructions and the blocks without having to worry
659 // about ordering because we already dropped the references.
660 // NOTE: This iteration is safe because erasing the block does not remove
661 // its entry from the loop's block list. We do that in the next section.
662 for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
663 LpI != LpE; ++LpI)
664 (*LpI)->eraseFromParent();
666 // Finally, the blocks from loopinfo. This has to happen late because
667 // otherwise our loop iterators won't work.
669 SmallPtrSet<BasicBlock *, 8> blocks;
670 blocks.insert(L->block_begin(), L->block_end());
671 for (BasicBlock *BB : blocks)
672 LI->removeBlock(BB);
674 // The last step is to update LoopInfo now that we've eliminated this loop.
675 LI->erase(L);
679 Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) {
680 // Support loops with an exiting latch and other existing exists only
681 // deoptimize.
683 // Get the branch weights for the loop's backedge.
684 BasicBlock *Latch = L->getLoopLatch();
685 if (!Latch)
686 return None;
687 BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
688 if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
689 return None;
691 assert((LatchBR->getSuccessor(0) == L->getHeader() ||
692 LatchBR->getSuccessor(1) == L->getHeader()) &&
693 "At least one edge out of the latch must go to the header");
695 SmallVector<BasicBlock *, 4> ExitBlocks;
696 L->getUniqueNonLatchExitBlocks(ExitBlocks);
697 if (any_of(ExitBlocks, [](const BasicBlock *EB) {
698 return !EB->getTerminatingDeoptimizeCall();
700 return None;
702 // To estimate the number of times the loop body was executed, we want to
703 // know the number of times the backedge was taken, vs. the number of times
704 // we exited the loop.
705 uint64_t TrueVal, FalseVal;
706 if (!LatchBR->extractProfMetadata(TrueVal, FalseVal))
707 return None;
709 if (!TrueVal || !FalseVal)
710 return 0;
712 // Divide the count of the backedge by the count of the edge exiting the loop,
713 // rounding to nearest.
714 if (LatchBR->getSuccessor(0) == L->getHeader())
715 return (TrueVal + (FalseVal / 2)) / FalseVal;
716 else
717 return (FalseVal + (TrueVal / 2)) / TrueVal;
720 bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
721 ScalarEvolution &SE) {
722 Loop *OuterL = InnerLoop->getParentLoop();
723 if (!OuterL)
724 return true;
726 // Get the backedge taken count for the inner loop
727 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
728 const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
729 if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
730 !InnerLoopBECountSC->getType()->isIntegerTy())
731 return false;
733 // Get whether count is invariant to the outer loop
734 ScalarEvolution::LoopDisposition LD =
735 SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
736 if (LD != ScalarEvolution::LoopInvariant)
737 return false;
739 return true;
742 Value *llvm::createMinMaxOp(IRBuilder<> &Builder,
743 RecurrenceDescriptor::MinMaxRecurrenceKind RK,
744 Value *Left, Value *Right) {
745 CmpInst::Predicate P = CmpInst::ICMP_NE;
746 switch (RK) {
747 default:
748 llvm_unreachable("Unknown min/max recurrence kind");
749 case RecurrenceDescriptor::MRK_UIntMin:
750 P = CmpInst::ICMP_ULT;
751 break;
752 case RecurrenceDescriptor::MRK_UIntMax:
753 P = CmpInst::ICMP_UGT;
754 break;
755 case RecurrenceDescriptor::MRK_SIntMin:
756 P = CmpInst::ICMP_SLT;
757 break;
758 case RecurrenceDescriptor::MRK_SIntMax:
759 P = CmpInst::ICMP_SGT;
760 break;
761 case RecurrenceDescriptor::MRK_FloatMin:
762 P = CmpInst::FCMP_OLT;
763 break;
764 case RecurrenceDescriptor::MRK_FloatMax:
765 P = CmpInst::FCMP_OGT;
766 break;
769 // We only match FP sequences that are 'fast', so we can unconditionally
770 // set it on any generated instructions.
771 IRBuilder<>::FastMathFlagGuard FMFG(Builder);
772 FastMathFlags FMF;
773 FMF.setFast();
774 Builder.setFastMathFlags(FMF);
776 Value *Cmp;
777 if (RK == RecurrenceDescriptor::MRK_FloatMin ||
778 RK == RecurrenceDescriptor::MRK_FloatMax)
779 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
780 else
781 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
783 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
784 return Select;
787 // Helper to generate an ordered reduction.
788 Value *
789 llvm::getOrderedReduction(IRBuilder<> &Builder, Value *Acc, Value *Src,
790 unsigned Op,
791 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
792 ArrayRef<Value *> RedOps) {
793 unsigned VF = Src->getType()->getVectorNumElements();
795 // Extract and apply reduction ops in ascending order:
796 // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
797 Value *Result = Acc;
798 for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
799 Value *Ext =
800 Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
802 if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
803 Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
804 "bin.rdx");
805 } else {
806 assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
807 "Invalid min/max");
808 Result = createMinMaxOp(Builder, MinMaxKind, Result, Ext);
811 if (!RedOps.empty())
812 propagateIRFlags(Result, RedOps);
815 return Result;
818 // Helper to generate a log2 shuffle reduction.
819 Value *
820 llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op,
821 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
822 ArrayRef<Value *> RedOps) {
823 unsigned VF = Src->getType()->getVectorNumElements();
824 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
825 // and vector ops, reducing the set of values being computed by half each
826 // round.
827 assert(isPowerOf2_32(VF) &&
828 "Reduction emission only supported for pow2 vectors!");
829 Value *TmpVec = Src;
830 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr);
831 for (unsigned i = VF; i != 1; i >>= 1) {
832 // Move the upper half of the vector to the lower half.
833 for (unsigned j = 0; j != i / 2; ++j)
834 ShuffleMask[j] = Builder.getInt32(i / 2 + j);
836 // Fill the rest of the mask with undef.
837 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(),
838 UndefValue::get(Builder.getInt32Ty()));
840 Value *Shuf = Builder.CreateShuffleVector(
841 TmpVec, UndefValue::get(TmpVec->getType()),
842 ConstantVector::get(ShuffleMask), "rdx.shuf");
844 if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
845 // The builder propagates its fast-math-flags setting.
846 TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
847 "bin.rdx");
848 } else {
849 assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
850 "Invalid min/max");
851 TmpVec = createMinMaxOp(Builder, MinMaxKind, TmpVec, Shuf);
853 if (!RedOps.empty())
854 propagateIRFlags(TmpVec, RedOps);
856 // The result is in the first element of the vector.
857 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
860 /// Create a simple vector reduction specified by an opcode and some
861 /// flags (if generating min/max reductions).
862 Value *llvm::createSimpleTargetReduction(
863 IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode,
864 Value *Src, TargetTransformInfo::ReductionFlags Flags,
865 ArrayRef<Value *> RedOps) {
866 assert(isa<VectorType>(Src->getType()) && "Type must be a vector");
868 std::function<Value *()> BuildFunc;
869 using RD = RecurrenceDescriptor;
870 RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;
872 switch (Opcode) {
873 case Instruction::Add:
874 BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
875 break;
876 case Instruction::Mul:
877 BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
878 break;
879 case Instruction::And:
880 BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
881 break;
882 case Instruction::Or:
883 BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
884 break;
885 case Instruction::Xor:
886 BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
887 break;
888 case Instruction::FAdd:
889 BuildFunc = [&]() {
890 auto Rdx = Builder.CreateFAddReduce(
891 Constant::getNullValue(Src->getType()->getVectorElementType()), Src);
892 return Rdx;
894 break;
895 case Instruction::FMul:
896 BuildFunc = [&]() {
897 Type *Ty = Src->getType()->getVectorElementType();
898 auto Rdx = Builder.CreateFMulReduce(ConstantFP::get(Ty, 1.0), Src);
899 return Rdx;
901 break;
902 case Instruction::ICmp:
903 if (Flags.IsMaxOp) {
904 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax;
905 BuildFunc = [&]() {
906 return Builder.CreateIntMaxReduce(Src, Flags.IsSigned);
908 } else {
909 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin;
910 BuildFunc = [&]() {
911 return Builder.CreateIntMinReduce(Src, Flags.IsSigned);
914 break;
915 case Instruction::FCmp:
916 if (Flags.IsMaxOp) {
917 MinMaxKind = RD::MRK_FloatMax;
918 BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); };
919 } else {
920 MinMaxKind = RD::MRK_FloatMin;
921 BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); };
923 break;
924 default:
925 llvm_unreachable("Unhandled opcode");
926 break;
928 if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags))
929 return BuildFunc();
930 return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps);
933 /// Create a vector reduction using a given recurrence descriptor.
934 Value *llvm::createTargetReduction(IRBuilder<> &B,
935 const TargetTransformInfo *TTI,
936 RecurrenceDescriptor &Desc, Value *Src,
937 bool NoNaN) {
938 // TODO: Support in-order reductions based on the recurrence descriptor.
939 using RD = RecurrenceDescriptor;
940 RD::RecurrenceKind RecKind = Desc.getRecurrenceKind();
941 TargetTransformInfo::ReductionFlags Flags;
942 Flags.NoNaN = NoNaN;
944 // All ops in the reduction inherit fast-math-flags from the recurrence
945 // descriptor.
946 IRBuilder<>::FastMathFlagGuard FMFGuard(B);
947 B.setFastMathFlags(Desc.getFastMathFlags());
949 switch (RecKind) {
950 case RD::RK_FloatAdd:
951 return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags);
952 case RD::RK_FloatMult:
953 return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags);
954 case RD::RK_IntegerAdd:
955 return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags);
956 case RD::RK_IntegerMult:
957 return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags);
958 case RD::RK_IntegerAnd:
959 return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags);
960 case RD::RK_IntegerOr:
961 return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags);
962 case RD::RK_IntegerXor:
963 return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags);
964 case RD::RK_IntegerMinMax: {
965 RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind();
966 Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax);
967 Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin);
968 return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags);
970 case RD::RK_FloatMinMax: {
971 Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax;
972 return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags);
974 default:
975 llvm_unreachable("Unhandled RecKind");
979 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
980 auto *VecOp = dyn_cast<Instruction>(I);
981 if (!VecOp)
982 return;
983 auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
984 : dyn_cast<Instruction>(OpValue);
985 if (!Intersection)
986 return;
987 const unsigned Opcode = Intersection->getOpcode();
988 VecOp->copyIRFlags(Intersection);
989 for (auto *V : VL) {
990 auto *Instr = dyn_cast<Instruction>(V);
991 if (!Instr)
992 continue;
993 if (OpValue == nullptr || Opcode == Instr->getOpcode())
994 VecOp->andIRFlags(V);
998 bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
999 ScalarEvolution &SE) {
1000 const SCEV *Zero = SE.getZero(S->getType());
1001 return SE.isAvailableAtLoopEntry(S, L) &&
1002 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
1005 bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
1006 ScalarEvolution &SE) {
1007 const SCEV *Zero = SE.getZero(S->getType());
1008 return SE.isAvailableAtLoopEntry(S, L) &&
1009 SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
1012 bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1013 bool Signed) {
1014 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1015 APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
1016 APInt::getMinValue(BitWidth);
1017 auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1018 return SE.isAvailableAtLoopEntry(S, L) &&
1019 SE.isLoopEntryGuardedByCond(L, Predicate, S,
1020 SE.getConstant(Min));
1023 bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
1024 bool Signed) {
1025 unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
1026 APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
1027 APInt::getMaxValue(BitWidth);
1028 auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1029 return SE.isAvailableAtLoopEntry(S, L) &&
1030 SE.isLoopEntryGuardedByCond(L, Predicate, S,
1031 SE.getConstant(Max));