[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / lib / Transforms / Utils / SSAUpdater.cpp
blobbffdd115d940cdce5aff51d4f7b76b6ac9cbd1b7
1 //===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SSAUpdater class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Transforms/Utils/SSAUpdater.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/TinyPtrVector.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/IR/BasicBlock.h"
20 #include "llvm/IR/CFG.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DebugLoc.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/IR/Use.h"
27 #include "llvm/IR/Value.h"
28 #include "llvm/IR/ValueHandle.h"
29 #include "llvm/Support/Casting.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Transforms/Utils/SSAUpdaterImpl.h"
33 #include <cassert>
34 #include <utility>
36 using namespace llvm;
38 #define DEBUG_TYPE "ssaupdater"
40 using AvailableValsTy = DenseMap<BasicBlock *, Value *>;
42 static AvailableValsTy &getAvailableVals(void *AV) {
43 return *static_cast<AvailableValsTy*>(AV);
46 SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode *> *NewPHI)
47 : InsertedPHIs(NewPHI) {}
49 SSAUpdater::~SSAUpdater() {
50 delete static_cast<AvailableValsTy*>(AV);
53 void SSAUpdater::Initialize(Type *Ty, StringRef Name) {
54 if (!AV)
55 AV = new AvailableValsTy();
56 else
57 getAvailableVals(AV).clear();
58 ProtoType = Ty;
59 ProtoName = Name;
62 bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const {
63 return getAvailableVals(AV).count(BB);
66 Value *SSAUpdater::FindValueForBlock(BasicBlock *BB) const {
67 AvailableValsTy::iterator AVI = getAvailableVals(AV).find(BB);
68 return (AVI != getAvailableVals(AV).end()) ? AVI->second : nullptr;
71 void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) {
72 assert(ProtoType && "Need to initialize SSAUpdater");
73 assert(ProtoType == V->getType() &&
74 "All rewritten values must have the same type");
75 getAvailableVals(AV)[BB] = V;
78 static bool IsEquivalentPHI(PHINode *PHI,
79 SmallDenseMap<BasicBlock *, Value *, 8> &ValueMapping) {
80 unsigned PHINumValues = PHI->getNumIncomingValues();
81 if (PHINumValues != ValueMapping.size())
82 return false;
84 // Scan the phi to see if it matches.
85 for (unsigned i = 0, e = PHINumValues; i != e; ++i)
86 if (ValueMapping[PHI->getIncomingBlock(i)] !=
87 PHI->getIncomingValue(i)) {
88 return false;
91 return true;
94 Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) {
95 Value *Res = GetValueAtEndOfBlockInternal(BB);
96 return Res;
99 Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) {
100 // If there is no definition of the renamed variable in this block, just use
101 // GetValueAtEndOfBlock to do our work.
102 if (!HasValueForBlock(BB))
103 return GetValueAtEndOfBlock(BB);
105 // Otherwise, we have the hard case. Get the live-in values for each
106 // predecessor.
107 SmallVector<std::pair<BasicBlock *, Value *>, 8> PredValues;
108 Value *SingularValue = nullptr;
110 // We can get our predecessor info by walking the pred_iterator list, but it
111 // is relatively slow. If we already have PHI nodes in this block, walk one
112 // of them to get the predecessor list instead.
113 if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
114 for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) {
115 BasicBlock *PredBB = SomePhi->getIncomingBlock(i);
116 Value *PredVal = GetValueAtEndOfBlock(PredBB);
117 PredValues.push_back(std::make_pair(PredBB, PredVal));
119 // Compute SingularValue.
120 if (i == 0)
121 SingularValue = PredVal;
122 else if (PredVal != SingularValue)
123 SingularValue = nullptr;
125 } else {
126 bool isFirstPred = true;
127 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
128 BasicBlock *PredBB = *PI;
129 Value *PredVal = GetValueAtEndOfBlock(PredBB);
130 PredValues.push_back(std::make_pair(PredBB, PredVal));
132 // Compute SingularValue.
133 if (isFirstPred) {
134 SingularValue = PredVal;
135 isFirstPred = false;
136 } else if (PredVal != SingularValue)
137 SingularValue = nullptr;
141 // If there are no predecessors, just return undef.
142 if (PredValues.empty())
143 return UndefValue::get(ProtoType);
145 // Otherwise, if all the merged values are the same, just use it.
146 if (SingularValue)
147 return SingularValue;
149 // Otherwise, we do need a PHI: check to see if we already have one available
150 // in this block that produces the right value.
151 if (isa<PHINode>(BB->begin())) {
152 SmallDenseMap<BasicBlock *, Value *, 8> ValueMapping(PredValues.begin(),
153 PredValues.end());
154 for (PHINode &SomePHI : BB->phis()) {
155 if (IsEquivalentPHI(&SomePHI, ValueMapping))
156 return &SomePHI;
160 // Ok, we have no way out, insert a new one now.
161 PHINode *InsertedPHI = PHINode::Create(ProtoType, PredValues.size(),
162 ProtoName, &BB->front());
164 // Fill in all the predecessors of the PHI.
165 for (const auto &PredValue : PredValues)
166 InsertedPHI->addIncoming(PredValue.second, PredValue.first);
168 // See if the PHI node can be merged to a single value. This can happen in
169 // loop cases when we get a PHI of itself and one other value.
170 if (Value *V =
171 SimplifyInstruction(InsertedPHI, BB->getModule()->getDataLayout())) {
172 InsertedPHI->eraseFromParent();
173 return V;
176 // Set the DebugLoc of the inserted PHI, if available.
177 DebugLoc DL;
178 if (const Instruction *I = BB->getFirstNonPHI())
179 DL = I->getDebugLoc();
180 InsertedPHI->setDebugLoc(DL);
182 // If the client wants to know about all new instructions, tell it.
183 if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI);
185 LLVM_DEBUG(dbgs() << " Inserted PHI: " << *InsertedPHI << "\n");
186 return InsertedPHI;
189 void SSAUpdater::RewriteUse(Use &U) {
190 Instruction *User = cast<Instruction>(U.getUser());
192 Value *V;
193 if (PHINode *UserPN = dyn_cast<PHINode>(User))
194 V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
195 else
196 V = GetValueInMiddleOfBlock(User->getParent());
198 // Notify that users of the existing value that it is being replaced.
199 Value *OldVal = U.get();
200 if (OldVal != V && OldVal->hasValueHandle())
201 ValueHandleBase::ValueIsRAUWd(OldVal, V);
203 U.set(V);
206 void SSAUpdater::RewriteUseAfterInsertions(Use &U) {
207 Instruction *User = cast<Instruction>(U.getUser());
209 Value *V;
210 if (PHINode *UserPN = dyn_cast<PHINode>(User))
211 V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U));
212 else
213 V = GetValueAtEndOfBlock(User->getParent());
215 U.set(V);
218 namespace llvm {
220 template<>
221 class SSAUpdaterTraits<SSAUpdater> {
222 public:
223 using BlkT = BasicBlock;
224 using ValT = Value *;
225 using PhiT = PHINode;
226 using BlkSucc_iterator = succ_iterator;
228 static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); }
229 static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); }
231 class PHI_iterator {
232 private:
233 PHINode *PHI;
234 unsigned idx;
236 public:
237 explicit PHI_iterator(PHINode *P) // begin iterator
238 : PHI(P), idx(0) {}
239 PHI_iterator(PHINode *P, bool) // end iterator
240 : PHI(P), idx(PHI->getNumIncomingValues()) {}
242 PHI_iterator &operator++() { ++idx; return *this; }
243 bool operator==(const PHI_iterator& x) const { return idx == x.idx; }
244 bool operator!=(const PHI_iterator& x) const { return !operator==(x); }
246 Value *getIncomingValue() { return PHI->getIncomingValue(idx); }
247 BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); }
250 static PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); }
251 static PHI_iterator PHI_end(PhiT *PHI) {
252 return PHI_iterator(PHI, true);
255 /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds
256 /// vector, set Info->NumPreds, and allocate space in Info->Preds.
257 static void FindPredecessorBlocks(BasicBlock *BB,
258 SmallVectorImpl<BasicBlock *> *Preds) {
259 // We can get our predecessor info by walking the pred_iterator list,
260 // but it is relatively slow. If we already have PHI nodes in this
261 // block, walk one of them to get the predecessor list instead.
262 if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) {
263 Preds->append(SomePhi->block_begin(), SomePhi->block_end());
264 } else {
265 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
266 Preds->push_back(*PI);
270 /// GetUndefVal - Get an undefined value of the same type as the value
271 /// being handled.
272 static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) {
273 return UndefValue::get(Updater->ProtoType);
276 /// CreateEmptyPHI - Create a new PHI instruction in the specified block.
277 /// Reserve space for the operands but do not fill them in yet.
278 static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds,
279 SSAUpdater *Updater) {
280 PHINode *PHI = PHINode::Create(Updater->ProtoType, NumPreds,
281 Updater->ProtoName, &BB->front());
282 return PHI;
285 /// AddPHIOperand - Add the specified value as an operand of the PHI for
286 /// the specified predecessor block.
287 static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) {
288 PHI->addIncoming(Val, Pred);
291 /// InstrIsPHI - Check if an instruction is a PHI.
293 static PHINode *InstrIsPHI(Instruction *I) {
294 return dyn_cast<PHINode>(I);
297 /// ValueIsPHI - Check if a value is a PHI.
298 static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) {
299 return dyn_cast<PHINode>(Val);
302 /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source
303 /// operands, i.e., it was just added.
304 static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) {
305 PHINode *PHI = ValueIsPHI(Val, Updater);
306 if (PHI && PHI->getNumIncomingValues() == 0)
307 return PHI;
308 return nullptr;
311 /// GetPHIValue - For the specified PHI instruction, return the value
312 /// that it defines.
313 static Value *GetPHIValue(PHINode *PHI) {
314 return PHI;
318 } // end namespace llvm
320 /// Check to see if AvailableVals has an entry for the specified BB and if so,
321 /// return it. If not, construct SSA form by first calculating the required
322 /// placement of PHIs and then inserting new PHIs where needed.
323 Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
324 AvailableValsTy &AvailableVals = getAvailableVals(AV);
325 if (Value *V = AvailableVals[BB])
326 return V;
328 SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
329 return Impl.GetValue(BB);
332 //===----------------------------------------------------------------------===//
333 // LoadAndStorePromoter Implementation
334 //===----------------------------------------------------------------------===//
336 LoadAndStorePromoter::
337 LoadAndStorePromoter(ArrayRef<const Instruction *> Insts,
338 SSAUpdater &S, StringRef BaseName) : SSA(S) {
339 if (Insts.empty()) return;
341 const Value *SomeVal;
342 if (const LoadInst *LI = dyn_cast<LoadInst>(Insts[0]))
343 SomeVal = LI;
344 else
345 SomeVal = cast<StoreInst>(Insts[0])->getOperand(0);
347 if (BaseName.empty())
348 BaseName = SomeVal->getName();
349 SSA.Initialize(SomeVal->getType(), BaseName);
352 void LoadAndStorePromoter::run(const SmallVectorImpl<Instruction *> &Insts) {
353 // First step: bucket up uses of the alloca by the block they occur in.
354 // This is important because we have to handle multiple defs/uses in a block
355 // ourselves: SSAUpdater is purely for cross-block references.
356 DenseMap<BasicBlock *, TinyPtrVector<Instruction *>> UsesByBlock;
358 for (Instruction *User : Insts)
359 UsesByBlock[User->getParent()].push_back(User);
361 // Okay, now we can iterate over all the blocks in the function with uses,
362 // processing them. Keep track of which loads are loading a live-in value.
363 // Walk the uses in the use-list order to be determinstic.
364 SmallVector<LoadInst *, 32> LiveInLoads;
365 DenseMap<Value *, Value *> ReplacedLoads;
367 for (Instruction *User : Insts) {
368 BasicBlock *BB = User->getParent();
369 TinyPtrVector<Instruction *> &BlockUses = UsesByBlock[BB];
371 // If this block has already been processed, ignore this repeat use.
372 if (BlockUses.empty()) continue;
374 // Okay, this is the first use in the block. If this block just has a
375 // single user in it, we can rewrite it trivially.
376 if (BlockUses.size() == 1) {
377 // If it is a store, it is a trivial def of the value in the block.
378 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
379 updateDebugInfo(SI);
380 SSA.AddAvailableValue(BB, SI->getOperand(0));
381 } else
382 // Otherwise it is a load, queue it to rewrite as a live-in load.
383 LiveInLoads.push_back(cast<LoadInst>(User));
384 BlockUses.clear();
385 continue;
388 // Otherwise, check to see if this block is all loads.
389 bool HasStore = false;
390 for (Instruction *I : BlockUses) {
391 if (isa<StoreInst>(I)) {
392 HasStore = true;
393 break;
397 // If so, we can queue them all as live in loads. We don't have an
398 // efficient way to tell which on is first in the block and don't want to
399 // scan large blocks, so just add all loads as live ins.
400 if (!HasStore) {
401 for (Instruction *I : BlockUses)
402 LiveInLoads.push_back(cast<LoadInst>(I));
403 BlockUses.clear();
404 continue;
407 // Otherwise, we have mixed loads and stores (or just a bunch of stores).
408 // Since SSAUpdater is purely for cross-block values, we need to determine
409 // the order of these instructions in the block. If the first use in the
410 // block is a load, then it uses the live in value. The last store defines
411 // the live out value. We handle this by doing a linear scan of the block.
412 Value *StoredValue = nullptr;
413 for (Instruction &I : *BB) {
414 if (LoadInst *L = dyn_cast<LoadInst>(&I)) {
415 // If this is a load from an unrelated pointer, ignore it.
416 if (!isInstInList(L, Insts)) continue;
418 // If we haven't seen a store yet, this is a live in use, otherwise
419 // use the stored value.
420 if (StoredValue) {
421 replaceLoadWithValue(L, StoredValue);
422 L->replaceAllUsesWith(StoredValue);
423 ReplacedLoads[L] = StoredValue;
424 } else {
425 LiveInLoads.push_back(L);
427 continue;
430 if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
431 // If this is a store to an unrelated pointer, ignore it.
432 if (!isInstInList(SI, Insts)) continue;
433 updateDebugInfo(SI);
435 // Remember that this is the active value in the block.
436 StoredValue = SI->getOperand(0);
440 // The last stored value that happened is the live-out for the block.
441 assert(StoredValue && "Already checked that there is a store in block");
442 SSA.AddAvailableValue(BB, StoredValue);
443 BlockUses.clear();
446 // Okay, now we rewrite all loads that use live-in values in the loop,
447 // inserting PHI nodes as necessary.
448 for (LoadInst *ALoad : LiveInLoads) {
449 Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent());
450 replaceLoadWithValue(ALoad, NewVal);
452 // Avoid assertions in unreachable code.
453 if (NewVal == ALoad) NewVal = UndefValue::get(NewVal->getType());
454 ALoad->replaceAllUsesWith(NewVal);
455 ReplacedLoads[ALoad] = NewVal;
458 // Allow the client to do stuff before we start nuking things.
459 doExtraRewritesBeforeFinalDeletion();
461 // Now that everything is rewritten, delete the old instructions from the
462 // function. They should all be dead now.
463 for (Instruction *User : Insts) {
464 // If this is a load that still has uses, then the load must have been added
465 // as a live value in the SSAUpdate data structure for a block (e.g. because
466 // the loaded value was stored later). In this case, we need to recursively
467 // propagate the updates until we get to the real value.
468 if (!User->use_empty()) {
469 Value *NewVal = ReplacedLoads[User];
470 assert(NewVal && "not a replaced load?");
472 // Propagate down to the ultimate replacee. The intermediately loads
473 // could theoretically already have been deleted, so we don't want to
474 // dereference the Value*'s.
475 DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal);
476 while (RLI != ReplacedLoads.end()) {
477 NewVal = RLI->second;
478 RLI = ReplacedLoads.find(NewVal);
481 replaceLoadWithValue(cast<LoadInst>(User), NewVal);
482 User->replaceAllUsesWith(NewVal);
485 instructionDeleted(User);
486 User->eraseFromParent();
490 bool
491 LoadAndStorePromoter::isInstInList(Instruction *I,
492 const SmallVectorImpl<Instruction *> &Insts)
493 const {
494 return is_contained(Insts, I);