[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / lib / Transforms / Utils / SimplifyCFG.cpp
blob3a5e3293ed4f7a0db54d97b5d61f616401db944d
1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Peephole optimize the CFG.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetOperations.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/EHPersonalities.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/MemorySSA.h"
29 #include "llvm/Analysis/MemorySSAUpdater.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CFG.h"
35 #include "llvm/IR/CallSite.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/ConstantRange.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalValue.h"
43 #include "llvm/IR/GlobalVariable.h"
44 #include "llvm/IR/IRBuilder.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/MDBuilder.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/NoFolder.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/PatternMatch.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/KnownBits.h"
66 #include "llvm/Support/MathExtras.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include "llvm/Transforms/Utils/ValueMapper.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <climits>
74 #include <cstddef>
75 #include <cstdint>
76 #include <iterator>
77 #include <map>
78 #include <set>
79 #include <tuple>
80 #include <utility>
81 #include <vector>
83 using namespace llvm;
84 using namespace PatternMatch;
86 #define DEBUG_TYPE "simplifycfg"
88 // Chosen as 2 so as to be cheap, but still to have enough power to fold
89 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
90 // To catch this, we need to fold a compare and a select, hence '2' being the
91 // minimum reasonable default.
92 static cl::opt<unsigned> PHINodeFoldingThreshold(
93 "phi-node-folding-threshold", cl::Hidden, cl::init(2),
94 cl::desc(
95 "Control the amount of phi node folding to perform (default = 2)"));
97 static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
98 "two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
99 cl::desc("Control the maximal total instruction cost that we are willing "
100 "to speculatively execute to fold a 2-entry PHI node into a "
101 "select (default = 4)"));
103 static cl::opt<bool> DupRet(
104 "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
105 cl::desc("Duplicate return instructions into unconditional branches"));
107 static cl::opt<bool>
108 SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
109 cl::desc("Sink common instructions down to the end block"));
111 static cl::opt<bool> HoistCondStores(
112 "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
113 cl::desc("Hoist conditional stores if an unconditional store precedes"));
115 static cl::opt<bool> MergeCondStores(
116 "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
117 cl::desc("Hoist conditional stores even if an unconditional store does not "
118 "precede - hoist multiple conditional stores into a single "
119 "predicated store"));
121 static cl::opt<bool> MergeCondStoresAggressively(
122 "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
123 cl::desc("When merging conditional stores, do so even if the resultant "
124 "basic blocks are unlikely to be if-converted as a result"));
126 static cl::opt<bool> SpeculateOneExpensiveInst(
127 "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
128 cl::desc("Allow exactly one expensive instruction to be speculatively "
129 "executed"));
131 static cl::opt<unsigned> MaxSpeculationDepth(
132 "max-speculation-depth", cl::Hidden, cl::init(10),
133 cl::desc("Limit maximum recursion depth when calculating costs of "
134 "speculatively executed instructions"));
136 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
137 STATISTIC(NumLinearMaps,
138 "Number of switch instructions turned into linear mapping");
139 STATISTIC(NumLookupTables,
140 "Number of switch instructions turned into lookup tables");
141 STATISTIC(
142 NumLookupTablesHoles,
143 "Number of switch instructions turned into lookup tables (holes checked)");
144 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
145 STATISTIC(NumSinkCommons,
146 "Number of common instructions sunk down to the end block");
147 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
149 namespace {
151 // The first field contains the value that the switch produces when a certain
152 // case group is selected, and the second field is a vector containing the
153 // cases composing the case group.
154 using SwitchCaseResultVectorTy =
155 SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
157 // The first field contains the phi node that generates a result of the switch
158 // and the second field contains the value generated for a certain case in the
159 // switch for that PHI.
160 using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
162 /// ValueEqualityComparisonCase - Represents a case of a switch.
163 struct ValueEqualityComparisonCase {
164 ConstantInt *Value;
165 BasicBlock *Dest;
167 ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
168 : Value(Value), Dest(Dest) {}
170 bool operator<(ValueEqualityComparisonCase RHS) const {
171 // Comparing pointers is ok as we only rely on the order for uniquing.
172 return Value < RHS.Value;
175 bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
178 class SimplifyCFGOpt {
179 const TargetTransformInfo &TTI;
180 const DataLayout &DL;
181 SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
182 const SimplifyCFGOptions &Options;
183 bool Resimplify;
185 Value *isValueEqualityComparison(Instruction *TI);
186 BasicBlock *GetValueEqualityComparisonCases(
187 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
188 bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
189 BasicBlock *Pred,
190 IRBuilder<> &Builder);
191 bool FoldValueComparisonIntoPredecessors(Instruction *TI,
192 IRBuilder<> &Builder);
194 bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
195 bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
196 bool SimplifySingleResume(ResumeInst *RI);
197 bool SimplifyCommonResume(ResumeInst *RI);
198 bool SimplifyCleanupReturn(CleanupReturnInst *RI);
199 bool SimplifyUnreachable(UnreachableInst *UI);
200 bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
201 bool SimplifyIndirectBr(IndirectBrInst *IBI);
202 bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
203 bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
205 bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
206 IRBuilder<> &Builder);
208 public:
209 SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
210 SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
211 const SimplifyCFGOptions &Opts)
212 : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {}
214 bool run(BasicBlock *BB);
215 bool simplifyOnce(BasicBlock *BB);
217 // Helper to set Resimplify and return change indication.
218 bool requestResimplify() {
219 Resimplify = true;
220 return true;
224 } // end anonymous namespace
226 /// Return true if it is safe to merge these two
227 /// terminator instructions together.
228 static bool
229 SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
230 SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
231 if (SI1 == SI2)
232 return false; // Can't merge with self!
234 // It is not safe to merge these two switch instructions if they have a common
235 // successor, and if that successor has a PHI node, and if *that* PHI node has
236 // conflicting incoming values from the two switch blocks.
237 BasicBlock *SI1BB = SI1->getParent();
238 BasicBlock *SI2BB = SI2->getParent();
240 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
241 bool Fail = false;
242 for (BasicBlock *Succ : successors(SI2BB))
243 if (SI1Succs.count(Succ))
244 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
245 PHINode *PN = cast<PHINode>(BBI);
246 if (PN->getIncomingValueForBlock(SI1BB) !=
247 PN->getIncomingValueForBlock(SI2BB)) {
248 if (FailBlocks)
249 FailBlocks->insert(Succ);
250 Fail = true;
254 return !Fail;
257 /// Return true if it is safe and profitable to merge these two terminator
258 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
259 /// store all PHI nodes in common successors.
260 static bool
261 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
262 Instruction *Cond,
263 SmallVectorImpl<PHINode *> &PhiNodes) {
264 if (SI1 == SI2)
265 return false; // Can't merge with self!
266 assert(SI1->isUnconditional() && SI2->isConditional());
268 // We fold the unconditional branch if we can easily update all PHI nodes in
269 // common successors:
270 // 1> We have a constant incoming value for the conditional branch;
271 // 2> We have "Cond" as the incoming value for the unconditional branch;
272 // 3> SI2->getCondition() and Cond have same operands.
273 CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
274 if (!Ci2)
275 return false;
276 if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
277 Cond->getOperand(1) == Ci2->getOperand(1)) &&
278 !(Cond->getOperand(0) == Ci2->getOperand(1) &&
279 Cond->getOperand(1) == Ci2->getOperand(0)))
280 return false;
282 BasicBlock *SI1BB = SI1->getParent();
283 BasicBlock *SI2BB = SI2->getParent();
284 SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
285 for (BasicBlock *Succ : successors(SI2BB))
286 if (SI1Succs.count(Succ))
287 for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
288 PHINode *PN = cast<PHINode>(BBI);
289 if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
290 !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
291 return false;
292 PhiNodes.push_back(PN);
294 return true;
297 /// Update PHI nodes in Succ to indicate that there will now be entries in it
298 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
299 /// will be the same as those coming in from ExistPred, an existing predecessor
300 /// of Succ.
301 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
302 BasicBlock *ExistPred,
303 MemorySSAUpdater *MSSAU = nullptr) {
304 for (PHINode &PN : Succ->phis())
305 PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
306 if (MSSAU)
307 if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
308 MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
311 /// Compute an abstract "cost" of speculating the given instruction,
312 /// which is assumed to be safe to speculate. TCC_Free means cheap,
313 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
314 /// expensive.
315 static unsigned ComputeSpeculationCost(const User *I,
316 const TargetTransformInfo &TTI) {
317 assert(isSafeToSpeculativelyExecute(I) &&
318 "Instruction is not safe to speculatively execute!");
319 return TTI.getUserCost(I);
322 /// If we have a merge point of an "if condition" as accepted above,
323 /// return true if the specified value dominates the block. We
324 /// don't handle the true generality of domination here, just a special case
325 /// which works well enough for us.
327 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
328 /// see if V (which must be an instruction) and its recursive operands
329 /// that do not dominate BB have a combined cost lower than CostRemaining and
330 /// are non-trapping. If both are true, the instruction is inserted into the
331 /// set and true is returned.
333 /// The cost for most non-trapping instructions is defined as 1 except for
334 /// Select whose cost is 2.
336 /// After this function returns, CostRemaining is decreased by the cost of
337 /// V plus its non-dominating operands. If that cost is greater than
338 /// CostRemaining, false is returned and CostRemaining is undefined.
339 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
340 SmallPtrSetImpl<Instruction *> &AggressiveInsts,
341 int &BudgetRemaining,
342 const TargetTransformInfo &TTI,
343 unsigned Depth = 0) {
344 // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
345 // so limit the recursion depth.
346 // TODO: While this recursion limit does prevent pathological behavior, it
347 // would be better to track visited instructions to avoid cycles.
348 if (Depth == MaxSpeculationDepth)
349 return false;
351 Instruction *I = dyn_cast<Instruction>(V);
352 if (!I) {
353 // Non-instructions all dominate instructions, but not all constantexprs
354 // can be executed unconditionally.
355 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
356 if (C->canTrap())
357 return false;
358 return true;
360 BasicBlock *PBB = I->getParent();
362 // We don't want to allow weird loops that might have the "if condition" in
363 // the bottom of this block.
364 if (PBB == BB)
365 return false;
367 // If this instruction is defined in a block that contains an unconditional
368 // branch to BB, then it must be in the 'conditional' part of the "if
369 // statement". If not, it definitely dominates the region.
370 BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
371 if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
372 return true;
374 // If we have seen this instruction before, don't count it again.
375 if (AggressiveInsts.count(I))
376 return true;
378 // Okay, it looks like the instruction IS in the "condition". Check to
379 // see if it's a cheap instruction to unconditionally compute, and if it
380 // only uses stuff defined outside of the condition. If so, hoist it out.
381 if (!isSafeToSpeculativelyExecute(I))
382 return false;
384 BudgetRemaining -= ComputeSpeculationCost(I, TTI);
386 // Allow exactly one instruction to be speculated regardless of its cost
387 // (as long as it is safe to do so).
388 // This is intended to flatten the CFG even if the instruction is a division
389 // or other expensive operation. The speculation of an expensive instruction
390 // is expected to be undone in CodeGenPrepare if the speculation has not
391 // enabled further IR optimizations.
392 if (BudgetRemaining < 0 &&
393 (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0))
394 return false;
396 // Okay, we can only really hoist these out if their operands do
397 // not take us over the cost threshold.
398 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
399 if (!DominatesMergePoint(*i, BB, AggressiveInsts, BudgetRemaining, TTI,
400 Depth + 1))
401 return false;
402 // Okay, it's safe to do this! Remember this instruction.
403 AggressiveInsts.insert(I);
404 return true;
407 /// Extract ConstantInt from value, looking through IntToPtr
408 /// and PointerNullValue. Return NULL if value is not a constant int.
409 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
410 // Normal constant int.
411 ConstantInt *CI = dyn_cast<ConstantInt>(V);
412 if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
413 return CI;
415 // This is some kind of pointer constant. Turn it into a pointer-sized
416 // ConstantInt if possible.
417 IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
419 // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
420 if (isa<ConstantPointerNull>(V))
421 return ConstantInt::get(PtrTy, 0);
423 // IntToPtr const int.
424 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
425 if (CE->getOpcode() == Instruction::IntToPtr)
426 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
427 // The constant is very likely to have the right type already.
428 if (CI->getType() == PtrTy)
429 return CI;
430 else
431 return cast<ConstantInt>(
432 ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
434 return nullptr;
437 namespace {
439 /// Given a chain of or (||) or and (&&) comparison of a value against a
440 /// constant, this will try to recover the information required for a switch
441 /// structure.
442 /// It will depth-first traverse the chain of comparison, seeking for patterns
443 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
444 /// representing the different cases for the switch.
445 /// Note that if the chain is composed of '||' it will build the set of elements
446 /// that matches the comparisons (i.e. any of this value validate the chain)
447 /// while for a chain of '&&' it will build the set elements that make the test
448 /// fail.
449 struct ConstantComparesGatherer {
450 const DataLayout &DL;
452 /// Value found for the switch comparison
453 Value *CompValue = nullptr;
455 /// Extra clause to be checked before the switch
456 Value *Extra = nullptr;
458 /// Set of integers to match in switch
459 SmallVector<ConstantInt *, 8> Vals;
461 /// Number of comparisons matched in the and/or chain
462 unsigned UsedICmps = 0;
464 /// Construct and compute the result for the comparison instruction Cond
465 ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
466 gather(Cond);
469 ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
470 ConstantComparesGatherer &
471 operator=(const ConstantComparesGatherer &) = delete;
473 private:
474 /// Try to set the current value used for the comparison, it succeeds only if
475 /// it wasn't set before or if the new value is the same as the old one
476 bool setValueOnce(Value *NewVal) {
477 if (CompValue && CompValue != NewVal)
478 return false;
479 CompValue = NewVal;
480 return (CompValue != nullptr);
483 /// Try to match Instruction "I" as a comparison against a constant and
484 /// populates the array Vals with the set of values that match (or do not
485 /// match depending on isEQ).
486 /// Return false on failure. On success, the Value the comparison matched
487 /// against is placed in CompValue.
488 /// If CompValue is already set, the function is expected to fail if a match
489 /// is found but the value compared to is different.
490 bool matchInstruction(Instruction *I, bool isEQ) {
491 // If this is an icmp against a constant, handle this as one of the cases.
492 ICmpInst *ICI;
493 ConstantInt *C;
494 if (!((ICI = dyn_cast<ICmpInst>(I)) &&
495 (C = GetConstantInt(I->getOperand(1), DL)))) {
496 return false;
499 Value *RHSVal;
500 const APInt *RHSC;
502 // Pattern match a special case
503 // (x & ~2^z) == y --> x == y || x == y|2^z
504 // This undoes a transformation done by instcombine to fuse 2 compares.
505 if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
506 // It's a little bit hard to see why the following transformations are
507 // correct. Here is a CVC3 program to verify them for 64-bit values:
510 ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
511 x : BITVECTOR(64);
512 y : BITVECTOR(64);
513 z : BITVECTOR(64);
514 mask : BITVECTOR(64) = BVSHL(ONE, z);
515 QUERY( (y & ~mask = y) =>
516 ((x & ~mask = y) <=> (x = y OR x = (y | mask)))
518 QUERY( (y | mask = y) =>
519 ((x | mask = y) <=> (x = y OR x = (y & ~mask)))
523 // Please note that each pattern must be a dual implication (<--> or
524 // iff). One directional implication can create spurious matches. If the
525 // implication is only one-way, an unsatisfiable condition on the left
526 // side can imply a satisfiable condition on the right side. Dual
527 // implication ensures that satisfiable conditions are transformed to
528 // other satisfiable conditions and unsatisfiable conditions are
529 // transformed to other unsatisfiable conditions.
531 // Here is a concrete example of a unsatisfiable condition on the left
532 // implying a satisfiable condition on the right:
534 // mask = (1 << z)
535 // (x & ~mask) == y --> (x == y || x == (y | mask))
537 // Substituting y = 3, z = 0 yields:
538 // (x & -2) == 3 --> (x == 3 || x == 2)
540 // Pattern match a special case:
542 QUERY( (y & ~mask = y) =>
543 ((x & ~mask = y) <=> (x = y OR x = (y | mask)))
546 if (match(ICI->getOperand(0),
547 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
548 APInt Mask = ~*RHSC;
549 if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
550 // If we already have a value for the switch, it has to match!
551 if (!setValueOnce(RHSVal))
552 return false;
554 Vals.push_back(C);
555 Vals.push_back(
556 ConstantInt::get(C->getContext(),
557 C->getValue() | Mask));
558 UsedICmps++;
559 return true;
563 // Pattern match a special case:
565 QUERY( (y | mask = y) =>
566 ((x | mask = y) <=> (x = y OR x = (y & ~mask)))
569 if (match(ICI->getOperand(0),
570 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
571 APInt Mask = *RHSC;
572 if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
573 // If we already have a value for the switch, it has to match!
574 if (!setValueOnce(RHSVal))
575 return false;
577 Vals.push_back(C);
578 Vals.push_back(ConstantInt::get(C->getContext(),
579 C->getValue() & ~Mask));
580 UsedICmps++;
581 return true;
585 // If we already have a value for the switch, it has to match!
586 if (!setValueOnce(ICI->getOperand(0)))
587 return false;
589 UsedICmps++;
590 Vals.push_back(C);
591 return ICI->getOperand(0);
594 // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
595 ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
596 ICI->getPredicate(), C->getValue());
598 // Shift the range if the compare is fed by an add. This is the range
599 // compare idiom as emitted by instcombine.
600 Value *CandidateVal = I->getOperand(0);
601 if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
602 Span = Span.subtract(*RHSC);
603 CandidateVal = RHSVal;
606 // If this is an and/!= check, then we are looking to build the set of
607 // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
608 // x != 0 && x != 1.
609 if (!isEQ)
610 Span = Span.inverse();
612 // If there are a ton of values, we don't want to make a ginormous switch.
613 if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
614 return false;
617 // If we already have a value for the switch, it has to match!
618 if (!setValueOnce(CandidateVal))
619 return false;
621 // Add all values from the range to the set
622 for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
623 Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
625 UsedICmps++;
626 return true;
629 /// Given a potentially 'or'd or 'and'd together collection of icmp
630 /// eq/ne/lt/gt instructions that compare a value against a constant, extract
631 /// the value being compared, and stick the list constants into the Vals
632 /// vector.
633 /// One "Extra" case is allowed to differ from the other.
634 void gather(Value *V) {
635 bool isEQ = (cast<Instruction>(V)->getOpcode() == Instruction::Or);
637 // Keep a stack (SmallVector for efficiency) for depth-first traversal
638 SmallVector<Value *, 8> DFT;
639 SmallPtrSet<Value *, 8> Visited;
641 // Initialize
642 Visited.insert(V);
643 DFT.push_back(V);
645 while (!DFT.empty()) {
646 V = DFT.pop_back_val();
648 if (Instruction *I = dyn_cast<Instruction>(V)) {
649 // If it is a || (or && depending on isEQ), process the operands.
650 if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
651 if (Visited.insert(I->getOperand(1)).second)
652 DFT.push_back(I->getOperand(1));
653 if (Visited.insert(I->getOperand(0)).second)
654 DFT.push_back(I->getOperand(0));
655 continue;
658 // Try to match the current instruction
659 if (matchInstruction(I, isEQ))
660 // Match succeed, continue the loop
661 continue;
664 // One element of the sequence of || (or &&) could not be match as a
665 // comparison against the same value as the others.
666 // We allow only one "Extra" case to be checked before the switch
667 if (!Extra) {
668 Extra = V;
669 continue;
671 // Failed to parse a proper sequence, abort now
672 CompValue = nullptr;
673 break;
678 } // end anonymous namespace
680 static void EraseTerminatorAndDCECond(Instruction *TI,
681 MemorySSAUpdater *MSSAU = nullptr) {
682 Instruction *Cond = nullptr;
683 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
684 Cond = dyn_cast<Instruction>(SI->getCondition());
685 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
686 if (BI->isConditional())
687 Cond = dyn_cast<Instruction>(BI->getCondition());
688 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
689 Cond = dyn_cast<Instruction>(IBI->getAddress());
692 TI->eraseFromParent();
693 if (Cond)
694 RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
697 /// Return true if the specified terminator checks
698 /// to see if a value is equal to constant integer value.
699 Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
700 Value *CV = nullptr;
701 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
702 // Do not permit merging of large switch instructions into their
703 // predecessors unless there is only one predecessor.
704 if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
705 CV = SI->getCondition();
706 } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
707 if (BI->isConditional() && BI->getCondition()->hasOneUse())
708 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
709 if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
710 CV = ICI->getOperand(0);
713 // Unwrap any lossless ptrtoint cast.
714 if (CV) {
715 if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
716 Value *Ptr = PTII->getPointerOperand();
717 if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
718 CV = Ptr;
721 return CV;
724 /// Given a value comparison instruction,
725 /// decode all of the 'cases' that it represents and return the 'default' block.
726 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
727 Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
728 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
729 Cases.reserve(SI->getNumCases());
730 for (auto Case : SI->cases())
731 Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
732 Case.getCaseSuccessor()));
733 return SI->getDefaultDest();
736 BranchInst *BI = cast<BranchInst>(TI);
737 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
738 BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
739 Cases.push_back(ValueEqualityComparisonCase(
740 GetConstantInt(ICI->getOperand(1), DL), Succ));
741 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
744 /// Given a vector of bb/value pairs, remove any entries
745 /// in the list that match the specified block.
746 static void
747 EliminateBlockCases(BasicBlock *BB,
748 std::vector<ValueEqualityComparisonCase> &Cases) {
749 Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
752 /// Return true if there are any keys in C1 that exist in C2 as well.
753 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
754 std::vector<ValueEqualityComparisonCase> &C2) {
755 std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
757 // Make V1 be smaller than V2.
758 if (V1->size() > V2->size())
759 std::swap(V1, V2);
761 if (V1->empty())
762 return false;
763 if (V1->size() == 1) {
764 // Just scan V2.
765 ConstantInt *TheVal = (*V1)[0].Value;
766 for (unsigned i = 0, e = V2->size(); i != e; ++i)
767 if (TheVal == (*V2)[i].Value)
768 return true;
771 // Otherwise, just sort both lists and compare element by element.
772 array_pod_sort(V1->begin(), V1->end());
773 array_pod_sort(V2->begin(), V2->end());
774 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
775 while (i1 != e1 && i2 != e2) {
776 if ((*V1)[i1].Value == (*V2)[i2].Value)
777 return true;
778 if ((*V1)[i1].Value < (*V2)[i2].Value)
779 ++i1;
780 else
781 ++i2;
783 return false;
786 // Set branch weights on SwitchInst. This sets the metadata if there is at
787 // least one non-zero weight.
788 static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
789 // Check that there is at least one non-zero weight. Otherwise, pass
790 // nullptr to setMetadata which will erase the existing metadata.
791 MDNode *N = nullptr;
792 if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
793 N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
794 SI->setMetadata(LLVMContext::MD_prof, N);
797 // Similar to the above, but for branch and select instructions that take
798 // exactly 2 weights.
799 static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
800 uint32_t FalseWeight) {
801 assert(isa<BranchInst>(I) || isa<SelectInst>(I));
802 // Check that there is at least one non-zero weight. Otherwise, pass
803 // nullptr to setMetadata which will erase the existing metadata.
804 MDNode *N = nullptr;
805 if (TrueWeight || FalseWeight)
806 N = MDBuilder(I->getParent()->getContext())
807 .createBranchWeights(TrueWeight, FalseWeight);
808 I->setMetadata(LLVMContext::MD_prof, N);
811 /// If TI is known to be a terminator instruction and its block is known to
812 /// only have a single predecessor block, check to see if that predecessor is
813 /// also a value comparison with the same value, and if that comparison
814 /// determines the outcome of this comparison. If so, simplify TI. This does a
815 /// very limited form of jump threading.
816 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
817 Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
818 Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
819 if (!PredVal)
820 return false; // Not a value comparison in predecessor.
822 Value *ThisVal = isValueEqualityComparison(TI);
823 assert(ThisVal && "This isn't a value comparison!!");
824 if (ThisVal != PredVal)
825 return false; // Different predicates.
827 // TODO: Preserve branch weight metadata, similarly to how
828 // FoldValueComparisonIntoPredecessors preserves it.
830 // Find out information about when control will move from Pred to TI's block.
831 std::vector<ValueEqualityComparisonCase> PredCases;
832 BasicBlock *PredDef =
833 GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
834 EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
836 // Find information about how control leaves this block.
837 std::vector<ValueEqualityComparisonCase> ThisCases;
838 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
839 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
841 // If TI's block is the default block from Pred's comparison, potentially
842 // simplify TI based on this knowledge.
843 if (PredDef == TI->getParent()) {
844 // If we are here, we know that the value is none of those cases listed in
845 // PredCases. If there are any cases in ThisCases that are in PredCases, we
846 // can simplify TI.
847 if (!ValuesOverlap(PredCases, ThisCases))
848 return false;
850 if (isa<BranchInst>(TI)) {
851 // Okay, one of the successors of this condbr is dead. Convert it to a
852 // uncond br.
853 assert(ThisCases.size() == 1 && "Branch can only have one case!");
854 // Insert the new branch.
855 Instruction *NI = Builder.CreateBr(ThisDef);
856 (void)NI;
858 // Remove PHI node entries for the dead edge.
859 ThisCases[0].Dest->removePredecessor(TI->getParent());
861 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
862 << "Through successor TI: " << *TI << "Leaving: " << *NI
863 << "\n");
865 EraseTerminatorAndDCECond(TI);
866 return true;
869 SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
870 // Okay, TI has cases that are statically dead, prune them away.
871 SmallPtrSet<Constant *, 16> DeadCases;
872 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
873 DeadCases.insert(PredCases[i].Value);
875 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
876 << "Through successor TI: " << *TI);
878 for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
879 --i;
880 if (DeadCases.count(i->getCaseValue())) {
881 i->getCaseSuccessor()->removePredecessor(TI->getParent());
882 SI.removeCase(i);
885 LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
886 return true;
889 // Otherwise, TI's block must correspond to some matched value. Find out
890 // which value (or set of values) this is.
891 ConstantInt *TIV = nullptr;
892 BasicBlock *TIBB = TI->getParent();
893 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
894 if (PredCases[i].Dest == TIBB) {
895 if (TIV)
896 return false; // Cannot handle multiple values coming to this block.
897 TIV = PredCases[i].Value;
899 assert(TIV && "No edge from pred to succ?");
901 // Okay, we found the one constant that our value can be if we get into TI's
902 // BB. Find out which successor will unconditionally be branched to.
903 BasicBlock *TheRealDest = nullptr;
904 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
905 if (ThisCases[i].Value == TIV) {
906 TheRealDest = ThisCases[i].Dest;
907 break;
910 // If not handled by any explicit cases, it is handled by the default case.
911 if (!TheRealDest)
912 TheRealDest = ThisDef;
914 // Remove PHI node entries for dead edges.
915 BasicBlock *CheckEdge = TheRealDest;
916 for (BasicBlock *Succ : successors(TIBB))
917 if (Succ != CheckEdge)
918 Succ->removePredecessor(TIBB);
919 else
920 CheckEdge = nullptr;
922 // Insert the new branch.
923 Instruction *NI = Builder.CreateBr(TheRealDest);
924 (void)NI;
926 LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
927 << "Through successor TI: " << *TI << "Leaving: " << *NI
928 << "\n");
930 EraseTerminatorAndDCECond(TI);
931 return true;
934 namespace {
936 /// This class implements a stable ordering of constant
937 /// integers that does not depend on their address. This is important for
938 /// applications that sort ConstantInt's to ensure uniqueness.
939 struct ConstantIntOrdering {
940 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
941 return LHS->getValue().ult(RHS->getValue());
945 } // end anonymous namespace
947 static int ConstantIntSortPredicate(ConstantInt *const *P1,
948 ConstantInt *const *P2) {
949 const ConstantInt *LHS = *P1;
950 const ConstantInt *RHS = *P2;
951 if (LHS == RHS)
952 return 0;
953 return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
956 static inline bool HasBranchWeights(const Instruction *I) {
957 MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
958 if (ProfMD && ProfMD->getOperand(0))
959 if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
960 return MDS->getString().equals("branch_weights");
962 return false;
965 /// Get Weights of a given terminator, the default weight is at the front
966 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
967 /// metadata.
968 static void GetBranchWeights(Instruction *TI,
969 SmallVectorImpl<uint64_t> &Weights) {
970 MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
971 assert(MD);
972 for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
973 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
974 Weights.push_back(CI->getValue().getZExtValue());
977 // If TI is a conditional eq, the default case is the false case,
978 // and the corresponding branch-weight data is at index 2. We swap the
979 // default weight to be the first entry.
980 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
981 assert(Weights.size() == 2);
982 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
983 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
984 std::swap(Weights.front(), Weights.back());
988 /// Keep halving the weights until all can fit in uint32_t.
989 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
990 uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
991 if (Max > UINT_MAX) {
992 unsigned Offset = 32 - countLeadingZeros(Max);
993 for (uint64_t &I : Weights)
994 I >>= Offset;
998 /// The specified terminator is a value equality comparison instruction
999 /// (either a switch or a branch on "X == c").
1000 /// See if any of the predecessors of the terminator block are value comparisons
1001 /// on the same value. If so, and if safe to do so, fold them together.
1002 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
1003 IRBuilder<> &Builder) {
1004 BasicBlock *BB = TI->getParent();
1005 Value *CV = isValueEqualityComparison(TI); // CondVal
1006 assert(CV && "Not a comparison?");
1007 bool Changed = false;
1009 SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
1010 while (!Preds.empty()) {
1011 BasicBlock *Pred = Preds.pop_back_val();
1013 // See if the predecessor is a comparison with the same value.
1014 Instruction *PTI = Pred->getTerminator();
1015 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
1017 if (PCV == CV && TI != PTI) {
1018 SmallSetVector<BasicBlock*, 4> FailBlocks;
1019 if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1020 for (auto *Succ : FailBlocks) {
1021 if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split"))
1022 return false;
1026 // Figure out which 'cases' to copy from SI to PSI.
1027 std::vector<ValueEqualityComparisonCase> BBCases;
1028 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1030 std::vector<ValueEqualityComparisonCase> PredCases;
1031 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1033 // Based on whether the default edge from PTI goes to BB or not, fill in
1034 // PredCases and PredDefault with the new switch cases we would like to
1035 // build.
1036 SmallVector<BasicBlock *, 8> NewSuccessors;
1038 // Update the branch weight metadata along the way
1039 SmallVector<uint64_t, 8> Weights;
1040 bool PredHasWeights = HasBranchWeights(PTI);
1041 bool SuccHasWeights = HasBranchWeights(TI);
1043 if (PredHasWeights) {
1044 GetBranchWeights(PTI, Weights);
1045 // branch-weight metadata is inconsistent here.
1046 if (Weights.size() != 1 + PredCases.size())
1047 PredHasWeights = SuccHasWeights = false;
1048 } else if (SuccHasWeights)
1049 // If there are no predecessor weights but there are successor weights,
1050 // populate Weights with 1, which will later be scaled to the sum of
1051 // successor's weights
1052 Weights.assign(1 + PredCases.size(), 1);
1054 SmallVector<uint64_t, 8> SuccWeights;
1055 if (SuccHasWeights) {
1056 GetBranchWeights(TI, SuccWeights);
1057 // branch-weight metadata is inconsistent here.
1058 if (SuccWeights.size() != 1 + BBCases.size())
1059 PredHasWeights = SuccHasWeights = false;
1060 } else if (PredHasWeights)
1061 SuccWeights.assign(1 + BBCases.size(), 1);
1063 if (PredDefault == BB) {
1064 // If this is the default destination from PTI, only the edges in TI
1065 // that don't occur in PTI, or that branch to BB will be activated.
1066 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1067 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1068 if (PredCases[i].Dest != BB)
1069 PTIHandled.insert(PredCases[i].Value);
1070 else {
1071 // The default destination is BB, we don't need explicit targets.
1072 std::swap(PredCases[i], PredCases.back());
1074 if (PredHasWeights || SuccHasWeights) {
1075 // Increase weight for the default case.
1076 Weights[0] += Weights[i + 1];
1077 std::swap(Weights[i + 1], Weights.back());
1078 Weights.pop_back();
1081 PredCases.pop_back();
1082 --i;
1083 --e;
1086 // Reconstruct the new switch statement we will be building.
1087 if (PredDefault != BBDefault) {
1088 PredDefault->removePredecessor(Pred);
1089 PredDefault = BBDefault;
1090 NewSuccessors.push_back(BBDefault);
1093 unsigned CasesFromPred = Weights.size();
1094 uint64_t ValidTotalSuccWeight = 0;
1095 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1096 if (!PTIHandled.count(BBCases[i].Value) &&
1097 BBCases[i].Dest != BBDefault) {
1098 PredCases.push_back(BBCases[i]);
1099 NewSuccessors.push_back(BBCases[i].Dest);
1100 if (SuccHasWeights || PredHasWeights) {
1101 // The default weight is at index 0, so weight for the ith case
1102 // should be at index i+1. Scale the cases from successor by
1103 // PredDefaultWeight (Weights[0]).
1104 Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1105 ValidTotalSuccWeight += SuccWeights[i + 1];
1109 if (SuccHasWeights || PredHasWeights) {
1110 ValidTotalSuccWeight += SuccWeights[0];
1111 // Scale the cases from predecessor by ValidTotalSuccWeight.
1112 for (unsigned i = 1; i < CasesFromPred; ++i)
1113 Weights[i] *= ValidTotalSuccWeight;
1114 // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1115 Weights[0] *= SuccWeights[0];
1117 } else {
1118 // If this is not the default destination from PSI, only the edges
1119 // in SI that occur in PSI with a destination of BB will be
1120 // activated.
1121 std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1122 std::map<ConstantInt *, uint64_t> WeightsForHandled;
1123 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1124 if (PredCases[i].Dest == BB) {
1125 PTIHandled.insert(PredCases[i].Value);
1127 if (PredHasWeights || SuccHasWeights) {
1128 WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1129 std::swap(Weights[i + 1], Weights.back());
1130 Weights.pop_back();
1133 std::swap(PredCases[i], PredCases.back());
1134 PredCases.pop_back();
1135 --i;
1136 --e;
1139 // Okay, now we know which constants were sent to BB from the
1140 // predecessor. Figure out where they will all go now.
1141 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1142 if (PTIHandled.count(BBCases[i].Value)) {
1143 // If this is one we are capable of getting...
1144 if (PredHasWeights || SuccHasWeights)
1145 Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1146 PredCases.push_back(BBCases[i]);
1147 NewSuccessors.push_back(BBCases[i].Dest);
1148 PTIHandled.erase(
1149 BBCases[i].Value); // This constant is taken care of
1152 // If there are any constants vectored to BB that TI doesn't handle,
1153 // they must go to the default destination of TI.
1154 for (ConstantInt *I : PTIHandled) {
1155 if (PredHasWeights || SuccHasWeights)
1156 Weights.push_back(WeightsForHandled[I]);
1157 PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1158 NewSuccessors.push_back(BBDefault);
1162 // Okay, at this point, we know which new successor Pred will get. Make
1163 // sure we update the number of entries in the PHI nodes for these
1164 // successors.
1165 for (BasicBlock *NewSuccessor : NewSuccessors)
1166 AddPredecessorToBlock(NewSuccessor, Pred, BB);
1168 Builder.SetInsertPoint(PTI);
1169 // Convert pointer to int before we switch.
1170 if (CV->getType()->isPointerTy()) {
1171 CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1172 "magicptr");
1175 // Now that the successors are updated, create the new Switch instruction.
1176 SwitchInst *NewSI =
1177 Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1178 NewSI->setDebugLoc(PTI->getDebugLoc());
1179 for (ValueEqualityComparisonCase &V : PredCases)
1180 NewSI->addCase(V.Value, V.Dest);
1182 if (PredHasWeights || SuccHasWeights) {
1183 // Halve the weights if any of them cannot fit in an uint32_t
1184 FitWeights(Weights);
1186 SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1188 setBranchWeights(NewSI, MDWeights);
1191 EraseTerminatorAndDCECond(PTI);
1193 // Okay, last check. If BB is still a successor of PSI, then we must
1194 // have an infinite loop case. If so, add an infinitely looping block
1195 // to handle the case to preserve the behavior of the code.
1196 BasicBlock *InfLoopBlock = nullptr;
1197 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1198 if (NewSI->getSuccessor(i) == BB) {
1199 if (!InfLoopBlock) {
1200 // Insert it at the end of the function, because it's either code,
1201 // or it won't matter if it's hot. :)
1202 InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1203 BB->getParent());
1204 BranchInst::Create(InfLoopBlock, InfLoopBlock);
1206 NewSI->setSuccessor(i, InfLoopBlock);
1209 Changed = true;
1212 return Changed;
1215 // If we would need to insert a select that uses the value of this invoke
1216 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1217 // can't hoist the invoke, as there is nowhere to put the select in this case.
1218 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1219 Instruction *I1, Instruction *I2) {
1220 for (BasicBlock *Succ : successors(BB1)) {
1221 for (const PHINode &PN : Succ->phis()) {
1222 Value *BB1V = PN.getIncomingValueForBlock(BB1);
1223 Value *BB2V = PN.getIncomingValueForBlock(BB2);
1224 if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1225 return false;
1229 return true;
1232 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1234 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1235 /// in the two blocks up into the branch block. The caller of this function
1236 /// guarantees that BI's block dominates BB1 and BB2.
1237 static bool HoistThenElseCodeToIf(BranchInst *BI,
1238 const TargetTransformInfo &TTI) {
1239 // This does very trivial matching, with limited scanning, to find identical
1240 // instructions in the two blocks. In particular, we don't want to get into
1241 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
1242 // such, we currently just scan for obviously identical instructions in an
1243 // identical order.
1244 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1245 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1247 BasicBlock::iterator BB1_Itr = BB1->begin();
1248 BasicBlock::iterator BB2_Itr = BB2->begin();
1250 Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1251 // Skip debug info if it is not identical.
1252 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1253 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1254 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1255 while (isa<DbgInfoIntrinsic>(I1))
1256 I1 = &*BB1_Itr++;
1257 while (isa<DbgInfoIntrinsic>(I2))
1258 I2 = &*BB2_Itr++;
1260 // FIXME: Can we define a safety predicate for CallBr?
1261 if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1262 (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
1263 isa<CallBrInst>(I1))
1264 return false;
1266 BasicBlock *BIParent = BI->getParent();
1268 bool Changed = false;
1269 do {
1270 // If we are hoisting the terminator instruction, don't move one (making a
1271 // broken BB), instead clone it, and remove BI.
1272 if (I1->isTerminator())
1273 goto HoistTerminator;
1275 // If we're going to hoist a call, make sure that the two instructions we're
1276 // commoning/hoisting are both marked with musttail, or neither of them is
1277 // marked as such. Otherwise, we might end up in a situation where we hoist
1278 // from a block where the terminator is a `ret` to a block where the terminator
1279 // is a `br`, and `musttail` calls expect to be followed by a return.
1280 auto *C1 = dyn_cast<CallInst>(I1);
1281 auto *C2 = dyn_cast<CallInst>(I2);
1282 if (C1 && C2)
1283 if (C1->isMustTailCall() != C2->isMustTailCall())
1284 return Changed;
1286 if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1287 return Changed;
1289 if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
1290 assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
1291 // The debug location is an integral part of a debug info intrinsic
1292 // and can't be separated from it or replaced. Instead of attempting
1293 // to merge locations, simply hoist both copies of the intrinsic.
1294 BIParent->getInstList().splice(BI->getIterator(),
1295 BB1->getInstList(), I1);
1296 BIParent->getInstList().splice(BI->getIterator(),
1297 BB2->getInstList(), I2);
1298 Changed = true;
1299 } else {
1300 // For a normal instruction, we just move one to right before the branch,
1301 // then replace all uses of the other with the first. Finally, we remove
1302 // the now redundant second instruction.
1303 BIParent->getInstList().splice(BI->getIterator(),
1304 BB1->getInstList(), I1);
1305 if (!I2->use_empty())
1306 I2->replaceAllUsesWith(I1);
1307 I1->andIRFlags(I2);
1308 unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1309 LLVMContext::MD_range,
1310 LLVMContext::MD_fpmath,
1311 LLVMContext::MD_invariant_load,
1312 LLVMContext::MD_nonnull,
1313 LLVMContext::MD_invariant_group,
1314 LLVMContext::MD_align,
1315 LLVMContext::MD_dereferenceable,
1316 LLVMContext::MD_dereferenceable_or_null,
1317 LLVMContext::MD_mem_parallel_loop_access,
1318 LLVMContext::MD_access_group,
1319 LLVMContext::MD_preserve_access_index};
1320 combineMetadata(I1, I2, KnownIDs, true);
1322 // I1 and I2 are being combined into a single instruction. Its debug
1323 // location is the merged locations of the original instructions.
1324 I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1326 I2->eraseFromParent();
1327 Changed = true;
1330 I1 = &*BB1_Itr++;
1331 I2 = &*BB2_Itr++;
1332 // Skip debug info if it is not identical.
1333 DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1334 DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1335 if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1336 while (isa<DbgInfoIntrinsic>(I1))
1337 I1 = &*BB1_Itr++;
1338 while (isa<DbgInfoIntrinsic>(I2))
1339 I2 = &*BB2_Itr++;
1341 } while (I1->isIdenticalToWhenDefined(I2));
1343 return true;
1345 HoistTerminator:
1346 // It may not be possible to hoist an invoke.
1347 // FIXME: Can we define a safety predicate for CallBr?
1348 if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1349 return Changed;
1351 // TODO: callbr hoisting currently disabled pending further study.
1352 if (isa<CallBrInst>(I1))
1353 return Changed;
1355 for (BasicBlock *Succ : successors(BB1)) {
1356 for (PHINode &PN : Succ->phis()) {
1357 Value *BB1V = PN.getIncomingValueForBlock(BB1);
1358 Value *BB2V = PN.getIncomingValueForBlock(BB2);
1359 if (BB1V == BB2V)
1360 continue;
1362 // Check for passingValueIsAlwaysUndefined here because we would rather
1363 // eliminate undefined control flow then converting it to a select.
1364 if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
1365 passingValueIsAlwaysUndefined(BB2V, &PN))
1366 return Changed;
1368 if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1369 return Changed;
1370 if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1371 return Changed;
1375 // Okay, it is safe to hoist the terminator.
1376 Instruction *NT = I1->clone();
1377 BIParent->getInstList().insert(BI->getIterator(), NT);
1378 if (!NT->getType()->isVoidTy()) {
1379 I1->replaceAllUsesWith(NT);
1380 I2->replaceAllUsesWith(NT);
1381 NT->takeName(I1);
1384 // Ensure terminator gets a debug location, even an unknown one, in case
1385 // it involves inlinable calls.
1386 NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
1388 // PHIs created below will adopt NT's merged DebugLoc.
1389 IRBuilder<NoFolder> Builder(NT);
1391 // Hoisting one of the terminators from our successor is a great thing.
1392 // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1393 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
1394 // nodes, so we insert select instruction to compute the final result.
1395 std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1396 for (BasicBlock *Succ : successors(BB1)) {
1397 for (PHINode &PN : Succ->phis()) {
1398 Value *BB1V = PN.getIncomingValueForBlock(BB1);
1399 Value *BB2V = PN.getIncomingValueForBlock(BB2);
1400 if (BB1V == BB2V)
1401 continue;
1403 // These values do not agree. Insert a select instruction before NT
1404 // that determines the right value.
1405 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1406 if (!SI)
1407 SI = cast<SelectInst>(
1408 Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1409 BB1V->getName() + "." + BB2V->getName(), BI));
1411 // Make the PHI node use the select for all incoming values for BB1/BB2
1412 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1413 if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
1414 PN.setIncomingValue(i, SI);
1418 // Update any PHI nodes in our new successors.
1419 for (BasicBlock *Succ : successors(BB1))
1420 AddPredecessorToBlock(Succ, BIParent, BB1);
1422 EraseTerminatorAndDCECond(BI);
1423 return true;
1426 // Check lifetime markers.
1427 static bool isLifeTimeMarker(const Instruction *I) {
1428 if (auto II = dyn_cast<IntrinsicInst>(I)) {
1429 switch (II->getIntrinsicID()) {
1430 default:
1431 break;
1432 case Intrinsic::lifetime_start:
1433 case Intrinsic::lifetime_end:
1434 return true;
1437 return false;
1440 // All instructions in Insts belong to different blocks that all unconditionally
1441 // branch to a common successor. Analyze each instruction and return true if it
1442 // would be possible to sink them into their successor, creating one common
1443 // instruction instead. For every value that would be required to be provided by
1444 // PHI node (because an operand varies in each input block), add to PHIOperands.
1445 static bool canSinkInstructions(
1446 ArrayRef<Instruction *> Insts,
1447 DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1448 // Prune out obviously bad instructions to move. Each instruction must have
1449 // exactly zero or one use, and we check later that use is by a single, common
1450 // PHI instruction in the successor.
1451 bool HasUse = !Insts.front()->user_empty();
1452 for (auto *I : Insts) {
1453 // These instructions may change or break semantics if moved.
1454 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1455 I->getType()->isTokenTy())
1456 return false;
1458 // Conservatively return false if I is an inline-asm instruction. Sinking
1459 // and merging inline-asm instructions can potentially create arguments
1460 // that cannot satisfy the inline-asm constraints.
1461 if (const auto *C = dyn_cast<CallBase>(I))
1462 if (C->isInlineAsm())
1463 return false;
1465 // Each instruction must have zero or one use.
1466 if (HasUse && !I->hasOneUse())
1467 return false;
1468 if (!HasUse && !I->user_empty())
1469 return false;
1472 const Instruction *I0 = Insts.front();
1473 for (auto *I : Insts)
1474 if (!I->isSameOperationAs(I0))
1475 return false;
1477 // All instructions in Insts are known to be the same opcode. If they have a
1478 // use, check that the only user is a PHI or in the same block as the
1479 // instruction, because if a user is in the same block as an instruction we're
1480 // contemplating sinking, it must already be determined to be sinkable.
1481 if (HasUse) {
1482 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1483 auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1484 if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1485 auto *U = cast<Instruction>(*I->user_begin());
1486 return (PNUse &&
1487 PNUse->getParent() == Succ &&
1488 PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1489 U->getParent() == I->getParent();
1491 return false;
1494 // Because SROA can't handle speculating stores of selects, try not to sink
1495 // loads, stores or lifetime markers of allocas when we'd have to create a
1496 // PHI for the address operand. Also, because it is likely that loads or
1497 // stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
1498 // them.
1499 // This can cause code churn which can have unintended consequences down
1500 // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1501 // FIXME: This is a workaround for a deficiency in SROA - see
1502 // https://llvm.org/bugs/show_bug.cgi?id=30188
1503 if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1504 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1506 return false;
1507 if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1508 return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
1510 return false;
1511 if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
1512 return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
1514 return false;
1516 for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1517 if (I0->getOperand(OI)->getType()->isTokenTy())
1518 // Don't touch any operand of token type.
1519 return false;
1521 auto SameAsI0 = [&I0, OI](const Instruction *I) {
1522 assert(I->getNumOperands() == I0->getNumOperands());
1523 return I->getOperand(OI) == I0->getOperand(OI);
1525 if (!all_of(Insts, SameAsI0)) {
1526 if (!canReplaceOperandWithVariable(I0, OI))
1527 // We can't create a PHI from this GEP.
1528 return false;
1529 // Don't create indirect calls! The called value is the final operand.
1530 if (isa<CallBase>(I0) && OI == OE - 1) {
1531 // FIXME: if the call was *already* indirect, we should do this.
1532 return false;
1534 for (auto *I : Insts)
1535 PHIOperands[I].push_back(I->getOperand(OI));
1538 return true;
1541 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1542 // instruction of every block in Blocks to their common successor, commoning
1543 // into one instruction.
1544 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1545 auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1547 // canSinkLastInstruction returning true guarantees that every block has at
1548 // least one non-terminator instruction.
1549 SmallVector<Instruction*,4> Insts;
1550 for (auto *BB : Blocks) {
1551 Instruction *I = BB->getTerminator();
1552 do {
1553 I = I->getPrevNode();
1554 } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1555 if (!isa<DbgInfoIntrinsic>(I))
1556 Insts.push_back(I);
1559 // The only checking we need to do now is that all users of all instructions
1560 // are the same PHI node. canSinkLastInstruction should have checked this but
1561 // it is slightly over-aggressive - it gets confused by commutative instructions
1562 // so double-check it here.
1563 Instruction *I0 = Insts.front();
1564 if (!I0->user_empty()) {
1565 auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1566 if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1567 auto *U = cast<Instruction>(*I->user_begin());
1568 return U == PNUse;
1570 return false;
1573 // We don't need to do any more checking here; canSinkLastInstruction should
1574 // have done it all for us.
1575 SmallVector<Value*, 4> NewOperands;
1576 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1577 // This check is different to that in canSinkLastInstruction. There, we
1578 // cared about the global view once simplifycfg (and instcombine) have
1579 // completed - it takes into account PHIs that become trivially
1580 // simplifiable. However here we need a more local view; if an operand
1581 // differs we create a PHI and rely on instcombine to clean up the very
1582 // small mess we may make.
1583 bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1584 return I->getOperand(O) != I0->getOperand(O);
1586 if (!NeedPHI) {
1587 NewOperands.push_back(I0->getOperand(O));
1588 continue;
1591 // Create a new PHI in the successor block and populate it.
1592 auto *Op = I0->getOperand(O);
1593 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1594 auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1595 Op->getName() + ".sink", &BBEnd->front());
1596 for (auto *I : Insts)
1597 PN->addIncoming(I->getOperand(O), I->getParent());
1598 NewOperands.push_back(PN);
1601 // Arbitrarily use I0 as the new "common" instruction; remap its operands
1602 // and move it to the start of the successor block.
1603 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1604 I0->getOperandUse(O).set(NewOperands[O]);
1605 I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1607 // Update metadata and IR flags, and merge debug locations.
1608 for (auto *I : Insts)
1609 if (I != I0) {
1610 // The debug location for the "common" instruction is the merged locations
1611 // of all the commoned instructions. We start with the original location
1612 // of the "common" instruction and iteratively merge each location in the
1613 // loop below.
1614 // This is an N-way merge, which will be inefficient if I0 is a CallInst.
1615 // However, as N-way merge for CallInst is rare, so we use simplified API
1616 // instead of using complex API for N-way merge.
1617 I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
1618 combineMetadataForCSE(I0, I, true);
1619 I0->andIRFlags(I);
1622 if (!I0->user_empty()) {
1623 // canSinkLastInstruction checked that all instructions were used by
1624 // one and only one PHI node. Find that now, RAUW it to our common
1625 // instruction and nuke it.
1626 auto *PN = cast<PHINode>(*I0->user_begin());
1627 PN->replaceAllUsesWith(I0);
1628 PN->eraseFromParent();
1631 // Finally nuke all instructions apart from the common instruction.
1632 for (auto *I : Insts)
1633 if (I != I0)
1634 I->eraseFromParent();
1636 return true;
1639 namespace {
1641 // LockstepReverseIterator - Iterates through instructions
1642 // in a set of blocks in reverse order from the first non-terminator.
1643 // For example (assume all blocks have size n):
1644 // LockstepReverseIterator I([B1, B2, B3]);
1645 // *I-- = [B1[n], B2[n], B3[n]];
1646 // *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1647 // *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1648 // ...
1649 class LockstepReverseIterator {
1650 ArrayRef<BasicBlock*> Blocks;
1651 SmallVector<Instruction*,4> Insts;
1652 bool Fail;
1654 public:
1655 LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
1656 reset();
1659 void reset() {
1660 Fail = false;
1661 Insts.clear();
1662 for (auto *BB : Blocks) {
1663 Instruction *Inst = BB->getTerminator();
1664 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1665 Inst = Inst->getPrevNode();
1666 if (!Inst) {
1667 // Block wasn't big enough.
1668 Fail = true;
1669 return;
1671 Insts.push_back(Inst);
1675 bool isValid() const {
1676 return !Fail;
1679 void operator--() {
1680 if (Fail)
1681 return;
1682 for (auto *&Inst : Insts) {
1683 for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1684 Inst = Inst->getPrevNode();
1685 // Already at beginning of block.
1686 if (!Inst) {
1687 Fail = true;
1688 return;
1693 ArrayRef<Instruction*> operator * () const {
1694 return Insts;
1698 } // end anonymous namespace
1700 /// Check whether BB's predecessors end with unconditional branches. If it is
1701 /// true, sink any common code from the predecessors to BB.
1702 /// We also allow one predecessor to end with conditional branch (but no more
1703 /// than one).
1704 static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) {
1705 // We support two situations:
1706 // (1) all incoming arcs are unconditional
1707 // (2) one incoming arc is conditional
1709 // (2) is very common in switch defaults and
1710 // else-if patterns;
1712 // if (a) f(1);
1713 // else if (b) f(2);
1715 // produces:
1717 // [if]
1718 // / \
1719 // [f(1)] [if]
1720 // | | \
1721 // | | |
1722 // | [f(2)]|
1723 // \ | /
1724 // [ end ]
1726 // [end] has two unconditional predecessor arcs and one conditional. The
1727 // conditional refers to the implicit empty 'else' arc. This conditional
1728 // arc can also be caused by an empty default block in a switch.
1730 // In this case, we attempt to sink code from all *unconditional* arcs.
1731 // If we can sink instructions from these arcs (determined during the scan
1732 // phase below) we insert a common successor for all unconditional arcs and
1733 // connect that to [end], to enable sinking:
1735 // [if]
1736 // / \
1737 // [x(1)] [if]
1738 // | | \
1739 // | | \
1740 // | [x(2)] |
1741 // \ / |
1742 // [sink.split] |
1743 // \ /
1744 // [ end ]
1746 SmallVector<BasicBlock*,4> UnconditionalPreds;
1747 Instruction *Cond = nullptr;
1748 for (auto *B : predecessors(BB)) {
1749 auto *T = B->getTerminator();
1750 if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1751 UnconditionalPreds.push_back(B);
1752 else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1753 Cond = T;
1754 else
1755 return false;
1757 if (UnconditionalPreds.size() < 2)
1758 return false;
1760 bool Changed = false;
1761 // We take a two-step approach to tail sinking. First we scan from the end of
1762 // each block upwards in lockstep. If the n'th instruction from the end of each
1763 // block can be sunk, those instructions are added to ValuesToSink and we
1764 // carry on. If we can sink an instruction but need to PHI-merge some operands
1765 // (because they're not identical in each instruction) we add these to
1766 // PHIOperands.
1767 unsigned ScanIdx = 0;
1768 SmallPtrSet<Value*,4> InstructionsToSink;
1769 DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1770 LockstepReverseIterator LRI(UnconditionalPreds);
1771 while (LRI.isValid() &&
1772 canSinkInstructions(*LRI, PHIOperands)) {
1773 LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
1774 << "\n");
1775 InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1776 ++ScanIdx;
1777 --LRI;
1780 auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1781 unsigned NumPHIdValues = 0;
1782 for (auto *I : *LRI)
1783 for (auto *V : PHIOperands[I])
1784 if (InstructionsToSink.count(V) == 0)
1785 ++NumPHIdValues;
1786 LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1787 unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1788 if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1789 NumPHIInsts++;
1791 return NumPHIInsts <= 1;
1794 if (ScanIdx > 0 && Cond) {
1795 // Check if we would actually sink anything first! This mutates the CFG and
1796 // adds an extra block. The goal in doing this is to allow instructions that
1797 // couldn't be sunk before to be sunk - obviously, speculatable instructions
1798 // (such as trunc, add) can be sunk and predicated already. So we check that
1799 // we're going to sink at least one non-speculatable instruction.
1800 LRI.reset();
1801 unsigned Idx = 0;
1802 bool Profitable = false;
1803 while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1804 if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1805 Profitable = true;
1806 break;
1808 --LRI;
1809 ++Idx;
1811 if (!Profitable)
1812 return false;
1814 LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
1815 // We have a conditional edge and we're going to sink some instructions.
1816 // Insert a new block postdominating all blocks we're going to sink from.
1817 if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split"))
1818 // Edges couldn't be split.
1819 return false;
1820 Changed = true;
1823 // Now that we've analyzed all potential sinking candidates, perform the
1824 // actual sink. We iteratively sink the last non-terminator of the source
1825 // blocks into their common successor unless doing so would require too
1826 // many PHI instructions to be generated (currently only one PHI is allowed
1827 // per sunk instruction).
1829 // We can use InstructionsToSink to discount values needing PHI-merging that will
1830 // actually be sunk in a later iteration. This allows us to be more
1831 // aggressive in what we sink. This does allow a false positive where we
1832 // sink presuming a later value will also be sunk, but stop half way through
1833 // and never actually sink it which means we produce more PHIs than intended.
1834 // This is unlikely in practice though.
1835 for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) {
1836 LLVM_DEBUG(dbgs() << "SINK: Sink: "
1837 << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1838 << "\n");
1840 // Because we've sunk every instruction in turn, the current instruction to
1841 // sink is always at index 0.
1842 LRI.reset();
1843 if (!ProfitableToSinkInstruction(LRI)) {
1844 // Too many PHIs would be created.
1845 LLVM_DEBUG(
1846 dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1847 break;
1850 if (!sinkLastInstruction(UnconditionalPreds))
1851 return Changed;
1852 NumSinkCommons++;
1853 Changed = true;
1855 return Changed;
1858 /// Determine if we can hoist sink a sole store instruction out of a
1859 /// conditional block.
1861 /// We are looking for code like the following:
1862 /// BrBB:
1863 /// store i32 %add, i32* %arrayidx2
1864 /// ... // No other stores or function calls (we could be calling a memory
1865 /// ... // function).
1866 /// %cmp = icmp ult %x, %y
1867 /// br i1 %cmp, label %EndBB, label %ThenBB
1868 /// ThenBB:
1869 /// store i32 %add5, i32* %arrayidx2
1870 /// br label EndBB
1871 /// EndBB:
1872 /// ...
1873 /// We are going to transform this into:
1874 /// BrBB:
1875 /// store i32 %add, i32* %arrayidx2
1876 /// ... //
1877 /// %cmp = icmp ult %x, %y
1878 /// %add.add5 = select i1 %cmp, i32 %add, %add5
1879 /// store i32 %add.add5, i32* %arrayidx2
1880 /// ...
1882 /// \return The pointer to the value of the previous store if the store can be
1883 /// hoisted into the predecessor block. 0 otherwise.
1884 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1885 BasicBlock *StoreBB, BasicBlock *EndBB) {
1886 StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1887 if (!StoreToHoist)
1888 return nullptr;
1890 // Volatile or atomic.
1891 if (!StoreToHoist->isSimple())
1892 return nullptr;
1894 Value *StorePtr = StoreToHoist->getPointerOperand();
1896 // Look for a store to the same pointer in BrBB.
1897 unsigned MaxNumInstToLookAt = 9;
1898 for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) {
1899 if (!MaxNumInstToLookAt)
1900 break;
1901 --MaxNumInstToLookAt;
1903 // Could be calling an instruction that affects memory like free().
1904 if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
1905 return nullptr;
1907 if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
1908 // Found the previous store make sure it stores to the same location.
1909 if (SI->getPointerOperand() == StorePtr)
1910 // Found the previous store, return its value operand.
1911 return SI->getValueOperand();
1912 return nullptr; // Unknown store.
1916 return nullptr;
1919 /// Speculate a conditional basic block flattening the CFG.
1921 /// Note that this is a very risky transform currently. Speculating
1922 /// instructions like this is most often not desirable. Instead, there is an MI
1923 /// pass which can do it with full awareness of the resource constraints.
1924 /// However, some cases are "obvious" and we should do directly. An example of
1925 /// this is speculating a single, reasonably cheap instruction.
1927 /// There is only one distinct advantage to flattening the CFG at the IR level:
1928 /// it makes very common but simplistic optimizations such as are common in
1929 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1930 /// modeling their effects with easier to reason about SSA value graphs.
1933 /// An illustration of this transform is turning this IR:
1934 /// \code
1935 /// BB:
1936 /// %cmp = icmp ult %x, %y
1937 /// br i1 %cmp, label %EndBB, label %ThenBB
1938 /// ThenBB:
1939 /// %sub = sub %x, %y
1940 /// br label BB2
1941 /// EndBB:
1942 /// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1943 /// ...
1944 /// \endcode
1946 /// Into this IR:
1947 /// \code
1948 /// BB:
1949 /// %cmp = icmp ult %x, %y
1950 /// %sub = sub %x, %y
1951 /// %cond = select i1 %cmp, 0, %sub
1952 /// ...
1953 /// \endcode
1955 /// \returns true if the conditional block is removed.
1956 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1957 const TargetTransformInfo &TTI) {
1958 // Be conservative for now. FP select instruction can often be expensive.
1959 Value *BrCond = BI->getCondition();
1960 if (isa<FCmpInst>(BrCond))
1961 return false;
1963 BasicBlock *BB = BI->getParent();
1964 BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1966 // If ThenBB is actually on the false edge of the conditional branch, remember
1967 // to swap the select operands later.
1968 bool Invert = false;
1969 if (ThenBB != BI->getSuccessor(0)) {
1970 assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1971 Invert = true;
1973 assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1975 // Keep a count of how many times instructions are used within ThenBB when
1976 // they are candidates for sinking into ThenBB. Specifically:
1977 // - They are defined in BB, and
1978 // - They have no side effects, and
1979 // - All of their uses are in ThenBB.
1980 SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1982 SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
1984 unsigned SpeculatedInstructions = 0;
1985 Value *SpeculatedStoreValue = nullptr;
1986 StoreInst *SpeculatedStore = nullptr;
1987 for (BasicBlock::iterator BBI = ThenBB->begin(),
1988 BBE = std::prev(ThenBB->end());
1989 BBI != BBE; ++BBI) {
1990 Instruction *I = &*BBI;
1991 // Skip debug info.
1992 if (isa<DbgInfoIntrinsic>(I)) {
1993 SpeculatedDbgIntrinsics.push_back(I);
1994 continue;
1997 // Only speculatively execute a single instruction (not counting the
1998 // terminator) for now.
1999 ++SpeculatedInstructions;
2000 if (SpeculatedInstructions > 1)
2001 return false;
2003 // Don't hoist the instruction if it's unsafe or expensive.
2004 if (!isSafeToSpeculativelyExecute(I) &&
2005 !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
2006 I, BB, ThenBB, EndBB))))
2007 return false;
2008 if (!SpeculatedStoreValue &&
2009 ComputeSpeculationCost(I, TTI) >
2010 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
2011 return false;
2013 // Store the store speculation candidate.
2014 if (SpeculatedStoreValue)
2015 SpeculatedStore = cast<StoreInst>(I);
2017 // Do not hoist the instruction if any of its operands are defined but not
2018 // used in BB. The transformation will prevent the operand from
2019 // being sunk into the use block.
2020 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
2021 Instruction *OpI = dyn_cast<Instruction>(*i);
2022 if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2023 continue; // Not a candidate for sinking.
2025 ++SinkCandidateUseCounts[OpI];
2029 // Consider any sink candidates which are only used in ThenBB as costs for
2030 // speculation. Note, while we iterate over a DenseMap here, we are summing
2031 // and so iteration order isn't significant.
2032 for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2033 I = SinkCandidateUseCounts.begin(),
2034 E = SinkCandidateUseCounts.end();
2035 I != E; ++I)
2036 if (I->first->hasNUses(I->second)) {
2037 ++SpeculatedInstructions;
2038 if (SpeculatedInstructions > 1)
2039 return false;
2042 // Check that the PHI nodes can be converted to selects.
2043 bool HaveRewritablePHIs = false;
2044 for (PHINode &PN : EndBB->phis()) {
2045 Value *OrigV = PN.getIncomingValueForBlock(BB);
2046 Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
2048 // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2049 // Skip PHIs which are trivial.
2050 if (ThenV == OrigV)
2051 continue;
2053 // Don't convert to selects if we could remove undefined behavior instead.
2054 if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
2055 passingValueIsAlwaysUndefined(ThenV, &PN))
2056 return false;
2058 HaveRewritablePHIs = true;
2059 ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2060 ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2061 if (!OrigCE && !ThenCE)
2062 continue; // Known safe and cheap.
2064 if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2065 (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2066 return false;
2067 unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2068 unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2069 unsigned MaxCost =
2070 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2071 if (OrigCost + ThenCost > MaxCost)
2072 return false;
2074 // Account for the cost of an unfolded ConstantExpr which could end up
2075 // getting expanded into Instructions.
2076 // FIXME: This doesn't account for how many operations are combined in the
2077 // constant expression.
2078 ++SpeculatedInstructions;
2079 if (SpeculatedInstructions > 1)
2080 return false;
2083 // If there are no PHIs to process, bail early. This helps ensure idempotence
2084 // as well.
2085 if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
2086 return false;
2088 // If we get here, we can hoist the instruction and if-convert.
2089 LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2091 // Insert a select of the value of the speculated store.
2092 if (SpeculatedStoreValue) {
2093 IRBuilder<NoFolder> Builder(BI);
2094 Value *TrueV = SpeculatedStore->getValueOperand();
2095 Value *FalseV = SpeculatedStoreValue;
2096 if (Invert)
2097 std::swap(TrueV, FalseV);
2098 Value *S = Builder.CreateSelect(
2099 BrCond, TrueV, FalseV, "spec.store.select", BI);
2100 SpeculatedStore->setOperand(0, S);
2101 SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
2102 SpeculatedStore->getDebugLoc());
2105 // Metadata can be dependent on the condition we are hoisting above.
2106 // Conservatively strip all metadata on the instruction.
2107 for (auto &I : *ThenBB)
2108 I.dropUnknownNonDebugMetadata();
2110 // Hoist the instructions.
2111 BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2112 ThenBB->begin(), std::prev(ThenBB->end()));
2114 // Insert selects and rewrite the PHI operands.
2115 IRBuilder<NoFolder> Builder(BI);
2116 for (PHINode &PN : EndBB->phis()) {
2117 unsigned OrigI = PN.getBasicBlockIndex(BB);
2118 unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
2119 Value *OrigV = PN.getIncomingValue(OrigI);
2120 Value *ThenV = PN.getIncomingValue(ThenI);
2122 // Skip PHIs which are trivial.
2123 if (OrigV == ThenV)
2124 continue;
2126 // Create a select whose true value is the speculatively executed value and
2127 // false value is the preexisting value. Swap them if the branch
2128 // destinations were inverted.
2129 Value *TrueV = ThenV, *FalseV = OrigV;
2130 if (Invert)
2131 std::swap(TrueV, FalseV);
2132 Value *V = Builder.CreateSelect(
2133 BrCond, TrueV, FalseV, "spec.select", BI);
2134 PN.setIncomingValue(OrigI, V);
2135 PN.setIncomingValue(ThenI, V);
2138 // Remove speculated dbg intrinsics.
2139 // FIXME: Is it possible to do this in a more elegant way? Moving/merging the
2140 // dbg value for the different flows and inserting it after the select.
2141 for (Instruction *I : SpeculatedDbgIntrinsics)
2142 I->eraseFromParent();
2144 ++NumSpeculations;
2145 return true;
2148 /// Return true if we can thread a branch across this block.
2149 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2150 unsigned Size = 0;
2152 for (Instruction &I : BB->instructionsWithoutDebug()) {
2153 if (Size > 10)
2154 return false; // Don't clone large BB's.
2155 ++Size;
2157 // We can only support instructions that do not define values that are
2158 // live outside of the current basic block.
2159 for (User *U : I.users()) {
2160 Instruction *UI = cast<Instruction>(U);
2161 if (UI->getParent() != BB || isa<PHINode>(UI))
2162 return false;
2165 // Looks ok, continue checking.
2168 return true;
2171 /// If we have a conditional branch on a PHI node value that is defined in the
2172 /// same block as the branch and if any PHI entries are constants, thread edges
2173 /// corresponding to that entry to be branches to their ultimate destination.
2174 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL,
2175 AssumptionCache *AC) {
2176 BasicBlock *BB = BI->getParent();
2177 PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2178 // NOTE: we currently cannot transform this case if the PHI node is used
2179 // outside of the block.
2180 if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2181 return false;
2183 // Degenerate case of a single entry PHI.
2184 if (PN->getNumIncomingValues() == 1) {
2185 FoldSingleEntryPHINodes(PN->getParent());
2186 return true;
2189 // Now we know that this block has multiple preds and two succs.
2190 if (!BlockIsSimpleEnoughToThreadThrough(BB))
2191 return false;
2193 // Can't fold blocks that contain noduplicate or convergent calls.
2194 if (any_of(*BB, [](const Instruction &I) {
2195 const CallInst *CI = dyn_cast<CallInst>(&I);
2196 return CI && (CI->cannotDuplicate() || CI->isConvergent());
2198 return false;
2200 // Okay, this is a simple enough basic block. See if any phi values are
2201 // constants.
2202 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2203 ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2204 if (!CB || !CB->getType()->isIntegerTy(1))
2205 continue;
2207 // Okay, we now know that all edges from PredBB should be revectored to
2208 // branch to RealDest.
2209 BasicBlock *PredBB = PN->getIncomingBlock(i);
2210 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2212 if (RealDest == BB)
2213 continue; // Skip self loops.
2214 // Skip if the predecessor's terminator is an indirect branch.
2215 if (isa<IndirectBrInst>(PredBB->getTerminator()))
2216 continue;
2218 // The dest block might have PHI nodes, other predecessors and other
2219 // difficult cases. Instead of being smart about this, just insert a new
2220 // block that jumps to the destination block, effectively splitting
2221 // the edge we are about to create.
2222 BasicBlock *EdgeBB =
2223 BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2224 RealDest->getParent(), RealDest);
2225 BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
2226 CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
2228 // Update PHI nodes.
2229 AddPredecessorToBlock(RealDest, EdgeBB, BB);
2231 // BB may have instructions that are being threaded over. Clone these
2232 // instructions into EdgeBB. We know that there will be no uses of the
2233 // cloned instructions outside of EdgeBB.
2234 BasicBlock::iterator InsertPt = EdgeBB->begin();
2235 DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2236 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2237 if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2238 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2239 continue;
2241 // Clone the instruction.
2242 Instruction *N = BBI->clone();
2243 if (BBI->hasName())
2244 N->setName(BBI->getName() + ".c");
2246 // Update operands due to translation.
2247 for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2248 DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2249 if (PI != TranslateMap.end())
2250 *i = PI->second;
2253 // Check for trivial simplification.
2254 if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
2255 if (!BBI->use_empty())
2256 TranslateMap[&*BBI] = V;
2257 if (!N->mayHaveSideEffects()) {
2258 N->deleteValue(); // Instruction folded away, don't need actual inst
2259 N = nullptr;
2261 } else {
2262 if (!BBI->use_empty())
2263 TranslateMap[&*BBI] = N;
2265 // Insert the new instruction into its new home.
2266 if (N)
2267 EdgeBB->getInstList().insert(InsertPt, N);
2269 // Register the new instruction with the assumption cache if necessary.
2270 if (auto *II = dyn_cast_or_null<IntrinsicInst>(N))
2271 if (II->getIntrinsicID() == Intrinsic::assume)
2272 AC->registerAssumption(II);
2275 // Loop over all of the edges from PredBB to BB, changing them to branch
2276 // to EdgeBB instead.
2277 Instruction *PredBBTI = PredBB->getTerminator();
2278 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2279 if (PredBBTI->getSuccessor(i) == BB) {
2280 BB->removePredecessor(PredBB);
2281 PredBBTI->setSuccessor(i, EdgeBB);
2284 // Recurse, simplifying any other constants.
2285 return FoldCondBranchOnPHI(BI, DL, AC) || true;
2288 return false;
2291 /// Given a BB that starts with the specified two-entry PHI node,
2292 /// see if we can eliminate it.
2293 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2294 const DataLayout &DL) {
2295 // Ok, this is a two entry PHI node. Check to see if this is a simple "if
2296 // statement", which has a very simple dominance structure. Basically, we
2297 // are trying to find the condition that is being branched on, which
2298 // subsequently causes this merge to happen. We really want control
2299 // dependence information for this check, but simplifycfg can't keep it up
2300 // to date, and this catches most of the cases we care about anyway.
2301 BasicBlock *BB = PN->getParent();
2302 const Function *Fn = BB->getParent();
2303 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
2304 return false;
2306 BasicBlock *IfTrue, *IfFalse;
2307 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2308 if (!IfCond ||
2309 // Don't bother if the branch will be constant folded trivially.
2310 isa<ConstantInt>(IfCond))
2311 return false;
2313 // Okay, we found that we can merge this two-entry phi node into a select.
2314 // Doing so would require us to fold *all* two entry phi nodes in this block.
2315 // At some point this becomes non-profitable (particularly if the target
2316 // doesn't support cmov's). Only do this transformation if there are two or
2317 // fewer PHI nodes in this block.
2318 unsigned NumPhis = 0;
2319 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2320 if (NumPhis > 2)
2321 return false;
2323 // Loop over the PHI's seeing if we can promote them all to select
2324 // instructions. While we are at it, keep track of the instructions
2325 // that need to be moved to the dominating block.
2326 SmallPtrSet<Instruction *, 4> AggressiveInsts;
2327 int BudgetRemaining =
2328 TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2330 for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2331 PHINode *PN = cast<PHINode>(II++);
2332 if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
2333 PN->replaceAllUsesWith(V);
2334 PN->eraseFromParent();
2335 continue;
2338 if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
2339 BudgetRemaining, TTI) ||
2340 !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
2341 BudgetRemaining, TTI))
2342 return false;
2345 // If we folded the first phi, PN dangles at this point. Refresh it. If
2346 // we ran out of PHIs then we simplified them all.
2347 PN = dyn_cast<PHINode>(BB->begin());
2348 if (!PN)
2349 return true;
2351 // Return true if at least one of these is a 'not', and another is either
2352 // a 'not' too, or a constant.
2353 auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
2354 if (!match(V0, m_Not(m_Value())))
2355 std::swap(V0, V1);
2356 auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
2357 return match(V0, m_Not(m_Value())) && match(V1, Invertible);
2360 // Don't fold i1 branches on PHIs which contain binary operators, unless one
2361 // of the incoming values is an 'not' and another one is freely invertible.
2362 // These can often be turned into switches and other things.
2363 if (PN->getType()->isIntegerTy(1) &&
2364 (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2365 isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2366 isa<BinaryOperator>(IfCond)) &&
2367 !CanHoistNotFromBothValues(PN->getIncomingValue(0),
2368 PN->getIncomingValue(1)))
2369 return false;
2371 // If all PHI nodes are promotable, check to make sure that all instructions
2372 // in the predecessor blocks can be promoted as well. If not, we won't be able
2373 // to get rid of the control flow, so it's not worth promoting to select
2374 // instructions.
2375 BasicBlock *DomBlock = nullptr;
2376 BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2377 BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2378 if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2379 IfBlock1 = nullptr;
2380 } else {
2381 DomBlock = *pred_begin(IfBlock1);
2382 for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I)
2383 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2384 // This is not an aggressive instruction that we can promote.
2385 // Because of this, we won't be able to get rid of the control flow, so
2386 // the xform is not worth it.
2387 return false;
2391 if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2392 IfBlock2 = nullptr;
2393 } else {
2394 DomBlock = *pred_begin(IfBlock2);
2395 for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I)
2396 if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2397 // This is not an aggressive instruction that we can promote.
2398 // Because of this, we won't be able to get rid of the control flow, so
2399 // the xform is not worth it.
2400 return false;
2403 assert(DomBlock && "Failed to find root DomBlock");
2405 LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond
2406 << " T: " << IfTrue->getName()
2407 << " F: " << IfFalse->getName() << "\n");
2409 // If we can still promote the PHI nodes after this gauntlet of tests,
2410 // do all of the PHI's now.
2411 Instruction *InsertPt = DomBlock->getTerminator();
2412 IRBuilder<NoFolder> Builder(InsertPt);
2414 // Move all 'aggressive' instructions, which are defined in the
2415 // conditional parts of the if's up to the dominating block.
2416 if (IfBlock1)
2417 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1);
2418 if (IfBlock2)
2419 hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2);
2421 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2422 // Change the PHI node into a select instruction.
2423 Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2424 Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2426 Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2427 PN->replaceAllUsesWith(Sel);
2428 Sel->takeName(PN);
2429 PN->eraseFromParent();
2432 // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2433 // has been flattened. Change DomBlock to jump directly to our new block to
2434 // avoid other simplifycfg's kicking in on the diamond.
2435 Instruction *OldTI = DomBlock->getTerminator();
2436 Builder.SetInsertPoint(OldTI);
2437 Builder.CreateBr(BB);
2438 OldTI->eraseFromParent();
2439 return true;
2442 /// If we found a conditional branch that goes to two returning blocks,
2443 /// try to merge them together into one return,
2444 /// introducing a select if the return values disagree.
2445 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
2446 IRBuilder<> &Builder) {
2447 assert(BI->isConditional() && "Must be a conditional branch");
2448 BasicBlock *TrueSucc = BI->getSuccessor(0);
2449 BasicBlock *FalseSucc = BI->getSuccessor(1);
2450 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2451 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2453 // Check to ensure both blocks are empty (just a return) or optionally empty
2454 // with PHI nodes. If there are other instructions, merging would cause extra
2455 // computation on one path or the other.
2456 if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2457 return false;
2458 if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2459 return false;
2461 Builder.SetInsertPoint(BI);
2462 // Okay, we found a branch that is going to two return nodes. If
2463 // there is no return value for this function, just change the
2464 // branch into a return.
2465 if (FalseRet->getNumOperands() == 0) {
2466 TrueSucc->removePredecessor(BI->getParent());
2467 FalseSucc->removePredecessor(BI->getParent());
2468 Builder.CreateRetVoid();
2469 EraseTerminatorAndDCECond(BI);
2470 return true;
2473 // Otherwise, figure out what the true and false return values are
2474 // so we can insert a new select instruction.
2475 Value *TrueValue = TrueRet->getReturnValue();
2476 Value *FalseValue = FalseRet->getReturnValue();
2478 // Unwrap any PHI nodes in the return blocks.
2479 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2480 if (TVPN->getParent() == TrueSucc)
2481 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2482 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2483 if (FVPN->getParent() == FalseSucc)
2484 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2486 // In order for this transformation to be safe, we must be able to
2487 // unconditionally execute both operands to the return. This is
2488 // normally the case, but we could have a potentially-trapping
2489 // constant expression that prevents this transformation from being
2490 // safe.
2491 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2492 if (TCV->canTrap())
2493 return false;
2494 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2495 if (FCV->canTrap())
2496 return false;
2498 // Okay, we collected all the mapped values and checked them for sanity, and
2499 // defined to really do this transformation. First, update the CFG.
2500 TrueSucc->removePredecessor(BI->getParent());
2501 FalseSucc->removePredecessor(BI->getParent());
2503 // Insert select instructions where needed.
2504 Value *BrCond = BI->getCondition();
2505 if (TrueValue) {
2506 // Insert a select if the results differ.
2507 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2508 } else if (isa<UndefValue>(TrueValue)) {
2509 TrueValue = FalseValue;
2510 } else {
2511 TrueValue =
2512 Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2516 Value *RI =
2517 !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2519 (void)RI;
2521 LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2522 << "\n " << *BI << "NewRet = " << *RI << "TRUEBLOCK: "
2523 << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
2525 EraseTerminatorAndDCECond(BI);
2527 return true;
2530 /// Return true if the given instruction is available
2531 /// in its predecessor block. If yes, the instruction will be removed.
2532 static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) {
2533 if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2534 return false;
2535 for (Instruction &I : *PB) {
2536 Instruction *PBI = &I;
2537 // Check whether Inst and PBI generate the same value.
2538 if (Inst->isIdenticalTo(PBI)) {
2539 Inst->replaceAllUsesWith(PBI);
2540 Inst->eraseFromParent();
2541 return true;
2544 return false;
2547 /// Return true if either PBI or BI has branch weight available, and store
2548 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2549 /// not have branch weight, use 1:1 as its weight.
2550 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2551 uint64_t &PredTrueWeight,
2552 uint64_t &PredFalseWeight,
2553 uint64_t &SuccTrueWeight,
2554 uint64_t &SuccFalseWeight) {
2555 bool PredHasWeights =
2556 PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2557 bool SuccHasWeights =
2558 BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2559 if (PredHasWeights || SuccHasWeights) {
2560 if (!PredHasWeights)
2561 PredTrueWeight = PredFalseWeight = 1;
2562 if (!SuccHasWeights)
2563 SuccTrueWeight = SuccFalseWeight = 1;
2564 return true;
2565 } else {
2566 return false;
2570 /// If this basic block is simple enough, and if a predecessor branches to us
2571 /// and one of our successors, fold the block into the predecessor and use
2572 /// logical operations to pick the right destination.
2573 bool llvm::FoldBranchToCommonDest(BranchInst *BI, MemorySSAUpdater *MSSAU,
2574 unsigned BonusInstThreshold) {
2575 BasicBlock *BB = BI->getParent();
2577 const unsigned PredCount = pred_size(BB);
2579 Instruction *Cond = nullptr;
2580 if (BI->isConditional())
2581 Cond = dyn_cast<Instruction>(BI->getCondition());
2582 else {
2583 // For unconditional branch, check for a simple CFG pattern, where
2584 // BB has a single predecessor and BB's successor is also its predecessor's
2585 // successor. If such pattern exists, check for CSE between BB and its
2586 // predecessor.
2587 if (BasicBlock *PB = BB->getSinglePredecessor())
2588 if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2589 if (PBI->isConditional() &&
2590 (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2591 BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2592 for (auto I = BB->instructionsWithoutDebug().begin(),
2593 E = BB->instructionsWithoutDebug().end();
2594 I != E;) {
2595 Instruction *Curr = &*I++;
2596 if (isa<CmpInst>(Curr)) {
2597 Cond = Curr;
2598 break;
2600 // Quit if we can't remove this instruction.
2601 if (!tryCSEWithPredecessor(Curr, PB))
2602 return false;
2606 if (!Cond)
2607 return false;
2610 if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2611 Cond->getParent() != BB || !Cond->hasOneUse())
2612 return false;
2614 // Make sure the instruction after the condition is the cond branch.
2615 BasicBlock::iterator CondIt = ++Cond->getIterator();
2617 // Ignore dbg intrinsics.
2618 while (isa<DbgInfoIntrinsic>(CondIt))
2619 ++CondIt;
2621 if (&*CondIt != BI)
2622 return false;
2624 // Only allow this transformation if computing the condition doesn't involve
2625 // too many instructions and these involved instructions can be executed
2626 // unconditionally. We denote all involved instructions except the condition
2627 // as "bonus instructions", and only allow this transformation when the
2628 // number of the bonus instructions we'll need to create when cloning into
2629 // each predecessor does not exceed a certain threshold.
2630 unsigned NumBonusInsts = 0;
2631 for (auto I = BB->begin(); Cond != &*I; ++I) {
2632 // Ignore dbg intrinsics.
2633 if (isa<DbgInfoIntrinsic>(I))
2634 continue;
2635 if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2636 return false;
2637 // I has only one use and can be executed unconditionally.
2638 Instruction *User = dyn_cast<Instruction>(I->user_back());
2639 if (User == nullptr || User->getParent() != BB)
2640 return false;
2641 // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2642 // to use any other instruction, User must be an instruction between next(I)
2643 // and Cond.
2645 // Account for the cost of duplicating this instruction into each
2646 // predecessor.
2647 NumBonusInsts += PredCount;
2648 // Early exits once we reach the limit.
2649 if (NumBonusInsts > BonusInstThreshold)
2650 return false;
2653 // Cond is known to be a compare or binary operator. Check to make sure that
2654 // neither operand is a potentially-trapping constant expression.
2655 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2656 if (CE->canTrap())
2657 return false;
2658 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2659 if (CE->canTrap())
2660 return false;
2662 // Finally, don't infinitely unroll conditional loops.
2663 BasicBlock *TrueDest = BI->getSuccessor(0);
2664 BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2665 if (TrueDest == BB || FalseDest == BB)
2666 return false;
2668 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2669 BasicBlock *PredBlock = *PI;
2670 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2672 // Check that we have two conditional branches. If there is a PHI node in
2673 // the common successor, verify that the same value flows in from both
2674 // blocks.
2675 SmallVector<PHINode *, 4> PHIs;
2676 if (!PBI || PBI->isUnconditional() ||
2677 (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2678 (!BI->isConditional() &&
2679 !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2680 continue;
2682 // Determine if the two branches share a common destination.
2683 Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2684 bool InvertPredCond = false;
2686 if (BI->isConditional()) {
2687 if (PBI->getSuccessor(0) == TrueDest) {
2688 Opc = Instruction::Or;
2689 } else if (PBI->getSuccessor(1) == FalseDest) {
2690 Opc = Instruction::And;
2691 } else if (PBI->getSuccessor(0) == FalseDest) {
2692 Opc = Instruction::And;
2693 InvertPredCond = true;
2694 } else if (PBI->getSuccessor(1) == TrueDest) {
2695 Opc = Instruction::Or;
2696 InvertPredCond = true;
2697 } else {
2698 continue;
2700 } else {
2701 if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2702 continue;
2705 LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2706 IRBuilder<> Builder(PBI);
2708 // If we need to invert the condition in the pred block to match, do so now.
2709 if (InvertPredCond) {
2710 Value *NewCond = PBI->getCondition();
2712 if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2713 CmpInst *CI = cast<CmpInst>(NewCond);
2714 CI->setPredicate(CI->getInversePredicate());
2715 } else {
2716 NewCond =
2717 Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2720 PBI->setCondition(NewCond);
2721 PBI->swapSuccessors();
2724 // If we have bonus instructions, clone them into the predecessor block.
2725 // Note that there may be multiple predecessor blocks, so we cannot move
2726 // bonus instructions to a predecessor block.
2727 ValueToValueMapTy VMap; // maps original values to cloned values
2728 // We already make sure Cond is the last instruction before BI. Therefore,
2729 // all instructions before Cond other than DbgInfoIntrinsic are bonus
2730 // instructions.
2731 for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2732 if (isa<DbgInfoIntrinsic>(BonusInst))
2733 continue;
2734 Instruction *NewBonusInst = BonusInst->clone();
2735 RemapInstruction(NewBonusInst, VMap,
2736 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2737 VMap[&*BonusInst] = NewBonusInst;
2739 // If we moved a load, we cannot any longer claim any knowledge about
2740 // its potential value. The previous information might have been valid
2741 // only given the branch precondition.
2742 // For an analogous reason, we must also drop all the metadata whose
2743 // semantics we don't understand.
2744 NewBonusInst->dropUnknownNonDebugMetadata();
2746 PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2747 NewBonusInst->takeName(&*BonusInst);
2748 BonusInst->setName(BonusInst->getName() + ".old");
2751 // Clone Cond into the predecessor basic block, and or/and the
2752 // two conditions together.
2753 Instruction *CondInPred = Cond->clone();
2754 RemapInstruction(CondInPred, VMap,
2755 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2756 PredBlock->getInstList().insert(PBI->getIterator(), CondInPred);
2757 CondInPred->takeName(Cond);
2758 Cond->setName(CondInPred->getName() + ".old");
2760 if (BI->isConditional()) {
2761 Instruction *NewCond = cast<Instruction>(
2762 Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond"));
2763 PBI->setCondition(NewCond);
2765 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2766 bool HasWeights =
2767 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2768 SuccTrueWeight, SuccFalseWeight);
2769 SmallVector<uint64_t, 8> NewWeights;
2771 if (PBI->getSuccessor(0) == BB) {
2772 if (HasWeights) {
2773 // PBI: br i1 %x, BB, FalseDest
2774 // BI: br i1 %y, TrueDest, FalseDest
2775 // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2776 NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2777 // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2778 // TrueWeight for PBI * FalseWeight for BI.
2779 // We assume that total weights of a BranchInst can fit into 32 bits.
2780 // Therefore, we will not have overflow using 64-bit arithmetic.
2781 NewWeights.push_back(PredFalseWeight *
2782 (SuccFalseWeight + SuccTrueWeight) +
2783 PredTrueWeight * SuccFalseWeight);
2785 AddPredecessorToBlock(TrueDest, PredBlock, BB, MSSAU);
2786 PBI->setSuccessor(0, TrueDest);
2788 if (PBI->getSuccessor(1) == BB) {
2789 if (HasWeights) {
2790 // PBI: br i1 %x, TrueDest, BB
2791 // BI: br i1 %y, TrueDest, FalseDest
2792 // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2793 // FalseWeight for PBI * TrueWeight for BI.
2794 NewWeights.push_back(PredTrueWeight *
2795 (SuccFalseWeight + SuccTrueWeight) +
2796 PredFalseWeight * SuccTrueWeight);
2797 // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2798 NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2800 AddPredecessorToBlock(FalseDest, PredBlock, BB, MSSAU);
2801 PBI->setSuccessor(1, FalseDest);
2803 if (NewWeights.size() == 2) {
2804 // Halve the weights if any of them cannot fit in an uint32_t
2805 FitWeights(NewWeights);
2807 SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
2808 NewWeights.end());
2809 setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
2810 } else
2811 PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2812 } else {
2813 // Update PHI nodes in the common successors.
2814 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2815 ConstantInt *PBI_C = cast<ConstantInt>(
2816 PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2817 assert(PBI_C->getType()->isIntegerTy(1));
2818 Instruction *MergedCond = nullptr;
2819 if (PBI->getSuccessor(0) == TrueDest) {
2820 // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2821 // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2822 // is false: !PBI_Cond and BI_Value
2823 Instruction *NotCond = cast<Instruction>(
2824 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2825 MergedCond = cast<Instruction>(
2826 Builder.CreateBinOp(Instruction::And, NotCond, CondInPred,
2827 "and.cond"));
2828 if (PBI_C->isOne())
2829 MergedCond = cast<Instruction>(Builder.CreateBinOp(
2830 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
2831 } else {
2832 // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2833 // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2834 // is false: PBI_Cond and BI_Value
2835 MergedCond = cast<Instruction>(Builder.CreateBinOp(
2836 Instruction::And, PBI->getCondition(), CondInPred, "and.cond"));
2837 if (PBI_C->isOne()) {
2838 Instruction *NotCond = cast<Instruction>(
2839 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2840 MergedCond = cast<Instruction>(Builder.CreateBinOp(
2841 Instruction::Or, NotCond, MergedCond, "or.cond"));
2844 // Update PHI Node.
2845 PHIs[i]->setIncomingValueForBlock(PBI->getParent(), MergedCond);
2848 // PBI is changed to branch to TrueDest below. Remove itself from
2849 // potential phis from all other successors.
2850 if (MSSAU)
2851 MSSAU->changeCondBranchToUnconditionalTo(PBI, TrueDest);
2853 // Change PBI from Conditional to Unconditional.
2854 BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2855 EraseTerminatorAndDCECond(PBI, MSSAU);
2856 PBI = New_PBI;
2859 // If BI was a loop latch, it may have had associated loop metadata.
2860 // We need to copy it to the new latch, that is, PBI.
2861 if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
2862 PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
2864 // TODO: If BB is reachable from all paths through PredBlock, then we
2865 // could replace PBI's branch probabilities with BI's.
2867 // Copy any debug value intrinsics into the end of PredBlock.
2868 for (Instruction &I : *BB)
2869 if (isa<DbgInfoIntrinsic>(I))
2870 I.clone()->insertBefore(PBI);
2872 return true;
2874 return false;
2877 // If there is only one store in BB1 and BB2, return it, otherwise return
2878 // nullptr.
2879 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2880 StoreInst *S = nullptr;
2881 for (auto *BB : {BB1, BB2}) {
2882 if (!BB)
2883 continue;
2884 for (auto &I : *BB)
2885 if (auto *SI = dyn_cast<StoreInst>(&I)) {
2886 if (S)
2887 // Multiple stores seen.
2888 return nullptr;
2889 else
2890 S = SI;
2893 return S;
2896 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2897 Value *AlternativeV = nullptr) {
2898 // PHI is going to be a PHI node that allows the value V that is defined in
2899 // BB to be referenced in BB's only successor.
2901 // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2902 // doesn't matter to us what the other operand is (it'll never get used). We
2903 // could just create a new PHI with an undef incoming value, but that could
2904 // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2905 // other PHI. So here we directly look for some PHI in BB's successor with V
2906 // as an incoming operand. If we find one, we use it, else we create a new
2907 // one.
2909 // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2910 // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2911 // where OtherBB is the single other predecessor of BB's only successor.
2912 PHINode *PHI = nullptr;
2913 BasicBlock *Succ = BB->getSingleSuccessor();
2915 for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2916 if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2917 PHI = cast<PHINode>(I);
2918 if (!AlternativeV)
2919 break;
2921 assert(Succ->hasNPredecessors(2));
2922 auto PredI = pred_begin(Succ);
2923 BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2924 if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2925 break;
2926 PHI = nullptr;
2928 if (PHI)
2929 return PHI;
2931 // If V is not an instruction defined in BB, just return it.
2932 if (!AlternativeV &&
2933 (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2934 return V;
2936 PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2937 PHI->addIncoming(V, BB);
2938 for (BasicBlock *PredBB : predecessors(Succ))
2939 if (PredBB != BB)
2940 PHI->addIncoming(
2941 AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
2942 return PHI;
2945 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2946 BasicBlock *QTB, BasicBlock *QFB,
2947 BasicBlock *PostBB, Value *Address,
2948 bool InvertPCond, bool InvertQCond,
2949 const DataLayout &DL,
2950 const TargetTransformInfo &TTI) {
2951 // For every pointer, there must be exactly two stores, one coming from
2952 // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2953 // store (to any address) in PTB,PFB or QTB,QFB.
2954 // FIXME: We could relax this restriction with a bit more work and performance
2955 // testing.
2956 StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2957 StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2958 if (!PStore || !QStore)
2959 return false;
2961 // Now check the stores are compatible.
2962 if (!QStore->isUnordered() || !PStore->isUnordered())
2963 return false;
2965 // Check that sinking the store won't cause program behavior changes. Sinking
2966 // the store out of the Q blocks won't change any behavior as we're sinking
2967 // from a block to its unconditional successor. But we're moving a store from
2968 // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2969 // So we need to check that there are no aliasing loads or stores in
2970 // QBI, QTB and QFB. We also need to check there are no conflicting memory
2971 // operations between PStore and the end of its parent block.
2973 // The ideal way to do this is to query AliasAnalysis, but we don't
2974 // preserve AA currently so that is dangerous. Be super safe and just
2975 // check there are no other memory operations at all.
2976 for (auto &I : *QFB->getSinglePredecessor())
2977 if (I.mayReadOrWriteMemory())
2978 return false;
2979 for (auto &I : *QFB)
2980 if (&I != QStore && I.mayReadOrWriteMemory())
2981 return false;
2982 if (QTB)
2983 for (auto &I : *QTB)
2984 if (&I != QStore && I.mayReadOrWriteMemory())
2985 return false;
2986 for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
2987 I != E; ++I)
2988 if (&*I != PStore && I->mayReadOrWriteMemory())
2989 return false;
2991 // If we're not in aggressive mode, we only optimize if we have some
2992 // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2993 auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
2994 if (!BB)
2995 return true;
2996 // Heuristic: if the block can be if-converted/phi-folded and the
2997 // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2998 // thread this store.
2999 int BudgetRemaining =
3000 PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
3001 for (auto &I : BB->instructionsWithoutDebug()) {
3002 // Consider terminator instruction to be free.
3003 if (I.isTerminator())
3004 continue;
3005 // If this is one the stores that we want to speculate out of this BB,
3006 // then don't count it's cost, consider it to be free.
3007 if (auto *S = dyn_cast<StoreInst>(&I))
3008 if (llvm::find(FreeStores, S))
3009 continue;
3010 // Else, we have a white-list of instructions that we are ak speculating.
3011 if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
3012 return false; // Not in white-list - not worthwhile folding.
3013 // And finally, if this is a non-free instruction that we are okay
3014 // speculating, ensure that we consider the speculation budget.
3015 BudgetRemaining -= TTI.getUserCost(&I);
3016 if (BudgetRemaining < 0)
3017 return false; // Eagerly refuse to fold as soon as we're out of budget.
3019 assert(BudgetRemaining >= 0 &&
3020 "When we run out of budget we will eagerly return from within the "
3021 "per-instruction loop.");
3022 return true;
3025 const SmallVector<StoreInst *, 2> FreeStores = {PStore, QStore};
3026 if (!MergeCondStoresAggressively &&
3027 (!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
3028 !IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
3029 return false;
3031 // If PostBB has more than two predecessors, we need to split it so we can
3032 // sink the store.
3033 if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
3034 // We know that QFB's only successor is PostBB. And QFB has a single
3035 // predecessor. If QTB exists, then its only successor is also PostBB.
3036 // If QTB does not exist, then QFB's only predecessor has a conditional
3037 // branch to QFB and PostBB.
3038 BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
3039 BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred},
3040 "condstore.split");
3041 if (!NewBB)
3042 return false;
3043 PostBB = NewBB;
3046 // OK, we're going to sink the stores to PostBB. The store has to be
3047 // conditional though, so first create the predicate.
3048 Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
3049 ->getCondition();
3050 Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
3051 ->getCondition();
3053 Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
3054 PStore->getParent());
3055 Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
3056 QStore->getParent(), PPHI);
3058 IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
3060 Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3061 Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3063 if (InvertPCond)
3064 PPred = QB.CreateNot(PPred);
3065 if (InvertQCond)
3066 QPred = QB.CreateNot(QPred);
3067 Value *CombinedPred = QB.CreateOr(PPred, QPred);
3069 auto *T =
3070 SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
3071 QB.SetInsertPoint(T);
3072 StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3073 AAMDNodes AAMD;
3074 PStore->getAAMetadata(AAMD, /*Merge=*/false);
3075 PStore->getAAMetadata(AAMD, /*Merge=*/true);
3076 SI->setAAMetadata(AAMD);
3077 unsigned PAlignment = PStore->getAlignment();
3078 unsigned QAlignment = QStore->getAlignment();
3079 unsigned TypeAlignment =
3080 DL.getABITypeAlignment(SI->getValueOperand()->getType());
3081 unsigned MinAlignment;
3082 unsigned MaxAlignment;
3083 std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment);
3084 // Choose the minimum alignment. If we could prove both stores execute, we
3085 // could use biggest one. In this case, though, we only know that one of the
3086 // stores executes. And we don't know it's safe to take the alignment from a
3087 // store that doesn't execute.
3088 if (MinAlignment != 0) {
3089 // Choose the minimum of all non-zero alignments.
3090 SI->setAlignment(Align(MinAlignment));
3091 } else if (MaxAlignment != 0) {
3092 // Choose the minimal alignment between the non-zero alignment and the ABI
3093 // default alignment for the type of the stored value.
3094 SI->setAlignment(Align(std::min(MaxAlignment, TypeAlignment)));
3095 } else {
3096 // If both alignments are zero, use ABI default alignment for the type of
3097 // the stored value.
3098 SI->setAlignment(Align(TypeAlignment));
3101 QStore->eraseFromParent();
3102 PStore->eraseFromParent();
3104 return true;
3107 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
3108 const DataLayout &DL,
3109 const TargetTransformInfo &TTI) {
3110 // The intention here is to find diamonds or triangles (see below) where each
3111 // conditional block contains a store to the same address. Both of these
3112 // stores are conditional, so they can't be unconditionally sunk. But it may
3113 // be profitable to speculatively sink the stores into one merged store at the
3114 // end, and predicate the merged store on the union of the two conditions of
3115 // PBI and QBI.
3117 // This can reduce the number of stores executed if both of the conditions are
3118 // true, and can allow the blocks to become small enough to be if-converted.
3119 // This optimization will also chain, so that ladders of test-and-set
3120 // sequences can be if-converted away.
3122 // We only deal with simple diamonds or triangles:
3124 // PBI or PBI or a combination of the two
3125 // / \ | \
3126 // PTB PFB | PFB
3127 // \ / | /
3128 // QBI QBI
3129 // / \ | \
3130 // QTB QFB | QFB
3131 // \ / | /
3132 // PostBB PostBB
3134 // We model triangles as a type of diamond with a nullptr "true" block.
3135 // Triangles are canonicalized so that the fallthrough edge is represented by
3136 // a true condition, as in the diagram above.
3137 BasicBlock *PTB = PBI->getSuccessor(0);
3138 BasicBlock *PFB = PBI->getSuccessor(1);
3139 BasicBlock *QTB = QBI->getSuccessor(0);
3140 BasicBlock *QFB = QBI->getSuccessor(1);
3141 BasicBlock *PostBB = QFB->getSingleSuccessor();
3143 // Make sure we have a good guess for PostBB. If QTB's only successor is
3144 // QFB, then QFB is a better PostBB.
3145 if (QTB->getSingleSuccessor() == QFB)
3146 PostBB = QFB;
3148 // If we couldn't find a good PostBB, stop.
3149 if (!PostBB)
3150 return false;
3152 bool InvertPCond = false, InvertQCond = false;
3153 // Canonicalize fallthroughs to the true branches.
3154 if (PFB == QBI->getParent()) {
3155 std::swap(PFB, PTB);
3156 InvertPCond = true;
3158 if (QFB == PostBB) {
3159 std::swap(QFB, QTB);
3160 InvertQCond = true;
3163 // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3164 // and QFB may not. Model fallthroughs as a nullptr block.
3165 if (PTB == QBI->getParent())
3166 PTB = nullptr;
3167 if (QTB == PostBB)
3168 QTB = nullptr;
3170 // Legality bailouts. We must have at least the non-fallthrough blocks and
3171 // the post-dominating block, and the non-fallthroughs must only have one
3172 // predecessor.
3173 auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3174 return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3176 if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3177 !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3178 return false;
3179 if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3180 (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3181 return false;
3182 if (!QBI->getParent()->hasNUses(2))
3183 return false;
3185 // OK, this is a sequence of two diamonds or triangles.
3186 // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3187 SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3188 for (auto *BB : {PTB, PFB}) {
3189 if (!BB)
3190 continue;
3191 for (auto &I : *BB)
3192 if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3193 PStoreAddresses.insert(SI->getPointerOperand());
3195 for (auto *BB : {QTB, QFB}) {
3196 if (!BB)
3197 continue;
3198 for (auto &I : *BB)
3199 if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3200 QStoreAddresses.insert(SI->getPointerOperand());
3203 set_intersect(PStoreAddresses, QStoreAddresses);
3204 // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3205 // clear what it contains.
3206 auto &CommonAddresses = PStoreAddresses;
3208 bool Changed = false;
3209 for (auto *Address : CommonAddresses)
3210 Changed |= mergeConditionalStoreToAddress(
3211 PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL, TTI);
3212 return Changed;
3215 /// If we have a conditional branch as a predecessor of another block,
3216 /// this function tries to simplify it. We know
3217 /// that PBI and BI are both conditional branches, and BI is in one of the
3218 /// successor blocks of PBI - PBI branches to BI.
3219 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3220 const DataLayout &DL,
3221 const TargetTransformInfo &TTI) {
3222 assert(PBI->isConditional() && BI->isConditional());
3223 BasicBlock *BB = BI->getParent();
3225 // If this block ends with a branch instruction, and if there is a
3226 // predecessor that ends on a branch of the same condition, make
3227 // this conditional branch redundant.
3228 if (PBI->getCondition() == BI->getCondition() &&
3229 PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3230 // Okay, the outcome of this conditional branch is statically
3231 // knowable. If this block had a single pred, handle specially.
3232 if (BB->getSinglePredecessor()) {
3233 // Turn this into a branch on constant.
3234 bool CondIsTrue = PBI->getSuccessor(0) == BB;
3235 BI->setCondition(
3236 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3237 return true; // Nuke the branch on constant.
3240 // Otherwise, if there are multiple predecessors, insert a PHI that merges
3241 // in the constant and simplify the block result. Subsequent passes of
3242 // simplifycfg will thread the block.
3243 if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3244 pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3245 PHINode *NewPN = PHINode::Create(
3246 Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3247 BI->getCondition()->getName() + ".pr", &BB->front());
3248 // Okay, we're going to insert the PHI node. Since PBI is not the only
3249 // predecessor, compute the PHI'd conditional value for all of the preds.
3250 // Any predecessor where the condition is not computable we keep symbolic.
3251 for (pred_iterator PI = PB; PI != PE; ++PI) {
3252 BasicBlock *P = *PI;
3253 if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3254 PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3255 PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3256 bool CondIsTrue = PBI->getSuccessor(0) == BB;
3257 NewPN->addIncoming(
3258 ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3260 } else {
3261 NewPN->addIncoming(BI->getCondition(), P);
3265 BI->setCondition(NewPN);
3266 return true;
3270 if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3271 if (CE->canTrap())
3272 return false;
3274 // If both branches are conditional and both contain stores to the same
3275 // address, remove the stores from the conditionals and create a conditional
3276 // merged store at the end.
3277 if (MergeCondStores && mergeConditionalStores(PBI, BI, DL, TTI))
3278 return true;
3280 // If this is a conditional branch in an empty block, and if any
3281 // predecessors are a conditional branch to one of our destinations,
3282 // fold the conditions into logical ops and one cond br.
3284 // Ignore dbg intrinsics.
3285 if (&*BB->instructionsWithoutDebug().begin() != BI)
3286 return false;
3288 int PBIOp, BIOp;
3289 if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3290 PBIOp = 0;
3291 BIOp = 0;
3292 } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3293 PBIOp = 0;
3294 BIOp = 1;
3295 } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3296 PBIOp = 1;
3297 BIOp = 0;
3298 } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3299 PBIOp = 1;
3300 BIOp = 1;
3301 } else {
3302 return false;
3305 // Check to make sure that the other destination of this branch
3306 // isn't BB itself. If so, this is an infinite loop that will
3307 // keep getting unwound.
3308 if (PBI->getSuccessor(PBIOp) == BB)
3309 return false;
3311 // Do not perform this transformation if it would require
3312 // insertion of a large number of select instructions. For targets
3313 // without predication/cmovs, this is a big pessimization.
3315 // Also do not perform this transformation if any phi node in the common
3316 // destination block can trap when reached by BB or PBB (PR17073). In that
3317 // case, it would be unsafe to hoist the operation into a select instruction.
3319 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3320 unsigned NumPhis = 0;
3321 for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3322 ++II, ++NumPhis) {
3323 if (NumPhis > 2) // Disable this xform.
3324 return false;
3326 PHINode *PN = cast<PHINode>(II);
3327 Value *BIV = PN->getIncomingValueForBlock(BB);
3328 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3329 if (CE->canTrap())
3330 return false;
3332 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3333 Value *PBIV = PN->getIncomingValue(PBBIdx);
3334 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3335 if (CE->canTrap())
3336 return false;
3339 // Finally, if everything is ok, fold the branches to logical ops.
3340 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3342 LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3343 << "AND: " << *BI->getParent());
3345 // If OtherDest *is* BB, then BB is a basic block with a single conditional
3346 // branch in it, where one edge (OtherDest) goes back to itself but the other
3347 // exits. We don't *know* that the program avoids the infinite loop
3348 // (even though that seems likely). If we do this xform naively, we'll end up
3349 // recursively unpeeling the loop. Since we know that (after the xform is
3350 // done) that the block *is* infinite if reached, we just make it an obviously
3351 // infinite loop with no cond branch.
3352 if (OtherDest == BB) {
3353 // Insert it at the end of the function, because it's either code,
3354 // or it won't matter if it's hot. :)
3355 BasicBlock *InfLoopBlock =
3356 BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3357 BranchInst::Create(InfLoopBlock, InfLoopBlock);
3358 OtherDest = InfLoopBlock;
3361 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3363 // BI may have other predecessors. Because of this, we leave
3364 // it alone, but modify PBI.
3366 // Make sure we get to CommonDest on True&True directions.
3367 Value *PBICond = PBI->getCondition();
3368 IRBuilder<NoFolder> Builder(PBI);
3369 if (PBIOp)
3370 PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3372 Value *BICond = BI->getCondition();
3373 if (BIOp)
3374 BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3376 // Merge the conditions.
3377 Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3379 // Modify PBI to branch on the new condition to the new dests.
3380 PBI->setCondition(Cond);
3381 PBI->setSuccessor(0, CommonDest);
3382 PBI->setSuccessor(1, OtherDest);
3384 // Update branch weight for PBI.
3385 uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3386 uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3387 bool HasWeights =
3388 extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3389 SuccTrueWeight, SuccFalseWeight);
3390 if (HasWeights) {
3391 PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3392 PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3393 SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3394 SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3395 // The weight to CommonDest should be PredCommon * SuccTotal +
3396 // PredOther * SuccCommon.
3397 // The weight to OtherDest should be PredOther * SuccOther.
3398 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3399 PredOther * SuccCommon,
3400 PredOther * SuccOther};
3401 // Halve the weights if any of them cannot fit in an uint32_t
3402 FitWeights(NewWeights);
3404 setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
3407 // OtherDest may have phi nodes. If so, add an entry from PBI's
3408 // block that are identical to the entries for BI's block.
3409 AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3411 // We know that the CommonDest already had an edge from PBI to
3412 // it. If it has PHIs though, the PHIs may have different
3413 // entries for BB and PBI's BB. If so, insert a select to make
3414 // them agree.
3415 for (PHINode &PN : CommonDest->phis()) {
3416 Value *BIV = PN.getIncomingValueForBlock(BB);
3417 unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
3418 Value *PBIV = PN.getIncomingValue(PBBIdx);
3419 if (BIV != PBIV) {
3420 // Insert a select in PBI to pick the right value.
3421 SelectInst *NV = cast<SelectInst>(
3422 Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3423 PN.setIncomingValue(PBBIdx, NV);
3424 // Although the select has the same condition as PBI, the original branch
3425 // weights for PBI do not apply to the new select because the select's
3426 // 'logical' edges are incoming edges of the phi that is eliminated, not
3427 // the outgoing edges of PBI.
3428 if (HasWeights) {
3429 uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3430 uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3431 uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3432 uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3433 // The weight to PredCommonDest should be PredCommon * SuccTotal.
3434 // The weight to PredOtherDest should be PredOther * SuccCommon.
3435 uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3436 PredOther * SuccCommon};
3438 FitWeights(NewWeights);
3440 setBranchWeights(NV, NewWeights[0], NewWeights[1]);
3445 LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3446 LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
3448 // This basic block is probably dead. We know it has at least
3449 // one fewer predecessor.
3450 return true;
3453 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3454 // true or to FalseBB if Cond is false.
3455 // Takes care of updating the successors and removing the old terminator.
3456 // Also makes sure not to introduce new successors by assuming that edges to
3457 // non-successor TrueBBs and FalseBBs aren't reachable.
3458 static bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
3459 BasicBlock *TrueBB, BasicBlock *FalseBB,
3460 uint32_t TrueWeight,
3461 uint32_t FalseWeight) {
3462 // Remove any superfluous successor edges from the CFG.
3463 // First, figure out which successors to preserve.
3464 // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3465 // successor.
3466 BasicBlock *KeepEdge1 = TrueBB;
3467 BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3469 // Then remove the rest.
3470 for (BasicBlock *Succ : successors(OldTerm)) {
3471 // Make sure only to keep exactly one copy of each edge.
3472 if (Succ == KeepEdge1)
3473 KeepEdge1 = nullptr;
3474 else if (Succ == KeepEdge2)
3475 KeepEdge2 = nullptr;
3476 else
3477 Succ->removePredecessor(OldTerm->getParent(),
3478 /*KeepOneInputPHIs=*/true);
3481 IRBuilder<> Builder(OldTerm);
3482 Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3484 // Insert an appropriate new terminator.
3485 if (!KeepEdge1 && !KeepEdge2) {
3486 if (TrueBB == FalseBB)
3487 // We were only looking for one successor, and it was present.
3488 // Create an unconditional branch to it.
3489 Builder.CreateBr(TrueBB);
3490 else {
3491 // We found both of the successors we were looking for.
3492 // Create a conditional branch sharing the condition of the select.
3493 BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3494 if (TrueWeight != FalseWeight)
3495 setBranchWeights(NewBI, TrueWeight, FalseWeight);
3497 } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3498 // Neither of the selected blocks were successors, so this
3499 // terminator must be unreachable.
3500 new UnreachableInst(OldTerm->getContext(), OldTerm);
3501 } else {
3502 // One of the selected values was a successor, but the other wasn't.
3503 // Insert an unconditional branch to the one that was found;
3504 // the edge to the one that wasn't must be unreachable.
3505 if (!KeepEdge1)
3506 // Only TrueBB was found.
3507 Builder.CreateBr(TrueBB);
3508 else
3509 // Only FalseBB was found.
3510 Builder.CreateBr(FalseBB);
3513 EraseTerminatorAndDCECond(OldTerm);
3514 return true;
3517 // Replaces
3518 // (switch (select cond, X, Y)) on constant X, Y
3519 // with a branch - conditional if X and Y lead to distinct BBs,
3520 // unconditional otherwise.
3521 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
3522 // Check for constant integer values in the select.
3523 ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3524 ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3525 if (!TrueVal || !FalseVal)
3526 return false;
3528 // Find the relevant condition and destinations.
3529 Value *Condition = Select->getCondition();
3530 BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3531 BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3533 // Get weight for TrueBB and FalseBB.
3534 uint32_t TrueWeight = 0, FalseWeight = 0;
3535 SmallVector<uint64_t, 8> Weights;
3536 bool HasWeights = HasBranchWeights(SI);
3537 if (HasWeights) {
3538 GetBranchWeights(SI, Weights);
3539 if (Weights.size() == 1 + SI->getNumCases()) {
3540 TrueWeight =
3541 (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3542 FalseWeight =
3543 (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3547 // Perform the actual simplification.
3548 return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3549 FalseWeight);
3552 // Replaces
3553 // (indirectbr (select cond, blockaddress(@fn, BlockA),
3554 // blockaddress(@fn, BlockB)))
3555 // with
3556 // (br cond, BlockA, BlockB).
3557 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
3558 // Check that both operands of the select are block addresses.
3559 BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3560 BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3561 if (!TBA || !FBA)
3562 return false;
3564 // Extract the actual blocks.
3565 BasicBlock *TrueBB = TBA->getBasicBlock();
3566 BasicBlock *FalseBB = FBA->getBasicBlock();
3568 // Perform the actual simplification.
3569 return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3573 /// This is called when we find an icmp instruction
3574 /// (a seteq/setne with a constant) as the only instruction in a
3575 /// block that ends with an uncond branch. We are looking for a very specific
3576 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In
3577 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3578 /// default value goes to an uncond block with a seteq in it, we get something
3579 /// like:
3581 /// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ]
3582 /// DEFAULT:
3583 /// %tmp = icmp eq i8 %A, 92
3584 /// br label %end
3585 /// end:
3586 /// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3588 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3589 /// the PHI, merging the third icmp into the switch.
3590 bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
3591 ICmpInst *ICI, IRBuilder<> &Builder) {
3592 BasicBlock *BB = ICI->getParent();
3594 // If the block has any PHIs in it or the icmp has multiple uses, it is too
3595 // complex.
3596 if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3597 return false;
3599 Value *V = ICI->getOperand(0);
3600 ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3602 // The pattern we're looking for is where our only predecessor is a switch on
3603 // 'V' and this block is the default case for the switch. In this case we can
3604 // fold the compared value into the switch to simplify things.
3605 BasicBlock *Pred = BB->getSinglePredecessor();
3606 if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3607 return false;
3609 SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3610 if (SI->getCondition() != V)
3611 return false;
3613 // If BB is reachable on a non-default case, then we simply know the value of
3614 // V in this block. Substitute it and constant fold the icmp instruction
3615 // away.
3616 if (SI->getDefaultDest() != BB) {
3617 ConstantInt *VVal = SI->findCaseDest(BB);
3618 assert(VVal && "Should have a unique destination value");
3619 ICI->setOperand(0, VVal);
3621 if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
3622 ICI->replaceAllUsesWith(V);
3623 ICI->eraseFromParent();
3625 // BB is now empty, so it is likely to simplify away.
3626 return requestResimplify();
3629 // Ok, the block is reachable from the default dest. If the constant we're
3630 // comparing exists in one of the other edges, then we can constant fold ICI
3631 // and zap it.
3632 if (SI->findCaseValue(Cst) != SI->case_default()) {
3633 Value *V;
3634 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3635 V = ConstantInt::getFalse(BB->getContext());
3636 else
3637 V = ConstantInt::getTrue(BB->getContext());
3639 ICI->replaceAllUsesWith(V);
3640 ICI->eraseFromParent();
3641 // BB is now empty, so it is likely to simplify away.
3642 return requestResimplify();
3645 // The use of the icmp has to be in the 'end' block, by the only PHI node in
3646 // the block.
3647 BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3648 PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3649 if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3650 isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3651 return false;
3653 // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3654 // true in the PHI.
3655 Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3656 Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3658 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3659 std::swap(DefaultCst, NewCst);
3661 // Replace ICI (which is used by the PHI for the default value) with true or
3662 // false depending on if it is EQ or NE.
3663 ICI->replaceAllUsesWith(DefaultCst);
3664 ICI->eraseFromParent();
3666 // Okay, the switch goes to this block on a default value. Add an edge from
3667 // the switch to the merge point on the compared value.
3668 BasicBlock *NewBB =
3669 BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3671 SwitchInstProfUpdateWrapper SIW(*SI);
3672 auto W0 = SIW.getSuccessorWeight(0);
3673 SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
3674 if (W0) {
3675 NewW = ((uint64_t(*W0) + 1) >> 1);
3676 SIW.setSuccessorWeight(0, *NewW);
3678 SIW.addCase(Cst, NewBB, NewW);
3681 // NewBB branches to the phi block, add the uncond branch and the phi entry.
3682 Builder.SetInsertPoint(NewBB);
3683 Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3684 Builder.CreateBr(SuccBlock);
3685 PHIUse->addIncoming(NewCst, NewBB);
3686 return true;
3689 /// The specified branch is a conditional branch.
3690 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3691 /// fold it into a switch instruction if so.
3692 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3693 const DataLayout &DL) {
3694 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3695 if (!Cond)
3696 return false;
3698 // Change br (X == 0 | X == 1), T, F into a switch instruction.
3699 // If this is a bunch of seteq's or'd together, or if it's a bunch of
3700 // 'setne's and'ed together, collect them.
3702 // Try to gather values from a chain of and/or to be turned into a switch
3703 ConstantComparesGatherer ConstantCompare(Cond, DL);
3704 // Unpack the result
3705 SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3706 Value *CompVal = ConstantCompare.CompValue;
3707 unsigned UsedICmps = ConstantCompare.UsedICmps;
3708 Value *ExtraCase = ConstantCompare.Extra;
3710 // If we didn't have a multiply compared value, fail.
3711 if (!CompVal)
3712 return false;
3714 // Avoid turning single icmps into a switch.
3715 if (UsedICmps <= 1)
3716 return false;
3718 bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3720 // There might be duplicate constants in the list, which the switch
3721 // instruction can't handle, remove them now.
3722 array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3723 Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3725 // If Extra was used, we require at least two switch values to do the
3726 // transformation. A switch with one value is just a conditional branch.
3727 if (ExtraCase && Values.size() < 2)
3728 return false;
3730 // TODO: Preserve branch weight metadata, similarly to how
3731 // FoldValueComparisonIntoPredecessors preserves it.
3733 // Figure out which block is which destination.
3734 BasicBlock *DefaultBB = BI->getSuccessor(1);
3735 BasicBlock *EdgeBB = BI->getSuccessor(0);
3736 if (!TrueWhenEqual)
3737 std::swap(DefaultBB, EdgeBB);
3739 BasicBlock *BB = BI->getParent();
3741 // MSAN does not like undefs as branch condition which can be introduced
3742 // with "explicit branch".
3743 if (ExtraCase && BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
3744 return false;
3746 LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3747 << " cases into SWITCH. BB is:\n"
3748 << *BB);
3750 // If there are any extra values that couldn't be folded into the switch
3751 // then we evaluate them with an explicit branch first. Split the block
3752 // right before the condbr to handle it.
3753 if (ExtraCase) {
3754 BasicBlock *NewBB =
3755 BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3756 // Remove the uncond branch added to the old block.
3757 Instruction *OldTI = BB->getTerminator();
3758 Builder.SetInsertPoint(OldTI);
3760 if (TrueWhenEqual)
3761 Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3762 else
3763 Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3765 OldTI->eraseFromParent();
3767 // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3768 // for the edge we just added.
3769 AddPredecessorToBlock(EdgeBB, BB, NewBB);
3771 LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase
3772 << "\nEXTRABB = " << *BB);
3773 BB = NewBB;
3776 Builder.SetInsertPoint(BI);
3777 // Convert pointer to int before we switch.
3778 if (CompVal->getType()->isPointerTy()) {
3779 CompVal = Builder.CreatePtrToInt(
3780 CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3783 // Create the new switch instruction now.
3784 SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3786 // Add all of the 'cases' to the switch instruction.
3787 for (unsigned i = 0, e = Values.size(); i != e; ++i)
3788 New->addCase(Values[i], EdgeBB);
3790 // We added edges from PI to the EdgeBB. As such, if there were any
3791 // PHI nodes in EdgeBB, they need entries to be added corresponding to
3792 // the number of edges added.
3793 for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
3794 PHINode *PN = cast<PHINode>(BBI);
3795 Value *InVal = PN->getIncomingValueForBlock(BB);
3796 for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
3797 PN->addIncoming(InVal, BB);
3800 // Erase the old branch instruction.
3801 EraseTerminatorAndDCECond(BI);
3803 LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n');
3804 return true;
3807 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3808 if (isa<PHINode>(RI->getValue()))
3809 return SimplifyCommonResume(RI);
3810 else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3811 RI->getValue() == RI->getParent()->getFirstNonPHI())
3812 // The resume must unwind the exception that caused control to branch here.
3813 return SimplifySingleResume(RI);
3815 return false;
3818 // Simplify resume that is shared by several landing pads (phi of landing pad).
3819 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
3820 BasicBlock *BB = RI->getParent();
3822 // Check that there are no other instructions except for debug intrinsics
3823 // between the phi of landing pads (RI->getValue()) and resume instruction.
3824 BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3825 E = RI->getIterator();
3826 while (++I != E)
3827 if (!isa<DbgInfoIntrinsic>(I))
3828 return false;
3830 SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
3831 auto *PhiLPInst = cast<PHINode>(RI->getValue());
3833 // Check incoming blocks to see if any of them are trivial.
3834 for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
3835 Idx++) {
3836 auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3837 auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3839 // If the block has other successors, we can not delete it because
3840 // it has other dependents.
3841 if (IncomingBB->getUniqueSuccessor() != BB)
3842 continue;
3844 auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3845 // Not the landing pad that caused the control to branch here.
3846 if (IncomingValue != LandingPad)
3847 continue;
3849 bool isTrivial = true;
3851 I = IncomingBB->getFirstNonPHI()->getIterator();
3852 E = IncomingBB->getTerminator()->getIterator();
3853 while (++I != E)
3854 if (!isa<DbgInfoIntrinsic>(I)) {
3855 isTrivial = false;
3856 break;
3859 if (isTrivial)
3860 TrivialUnwindBlocks.insert(IncomingBB);
3863 // If no trivial unwind blocks, don't do any simplifications.
3864 if (TrivialUnwindBlocks.empty())
3865 return false;
3867 // Turn all invokes that unwind here into calls.
3868 for (auto *TrivialBB : TrivialUnwindBlocks) {
3869 // Blocks that will be simplified should be removed from the phi node.
3870 // Note there could be multiple edges to the resume block, and we need
3871 // to remove them all.
3872 while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3873 BB->removePredecessor(TrivialBB, true);
3875 for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3876 PI != PE;) {
3877 BasicBlock *Pred = *PI++;
3878 removeUnwindEdge(Pred);
3881 // In each SimplifyCFG run, only the current processed block can be erased.
3882 // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3883 // of erasing TrivialBB, we only remove the branch to the common resume
3884 // block so that we can later erase the resume block since it has no
3885 // predecessors.
3886 TrivialBB->getTerminator()->eraseFromParent();
3887 new UnreachableInst(RI->getContext(), TrivialBB);
3890 // Delete the resume block if all its predecessors have been removed.
3891 if (pred_empty(BB))
3892 BB->eraseFromParent();
3894 return !TrivialUnwindBlocks.empty();
3897 // Simplify resume that is only used by a single (non-phi) landing pad.
3898 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
3899 BasicBlock *BB = RI->getParent();
3900 auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
3901 assert(RI->getValue() == LPInst &&
3902 "Resume must unwind the exception that caused control to here");
3904 // Check that there are no other instructions except for debug intrinsics.
3905 BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3906 while (++I != E)
3907 if (!isa<DbgInfoIntrinsic>(I))
3908 return false;
3910 // Turn all invokes that unwind here into calls and delete the basic block.
3911 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3912 BasicBlock *Pred = *PI++;
3913 removeUnwindEdge(Pred);
3916 // The landingpad is now unreachable. Zap it.
3917 if (LoopHeaders)
3918 LoopHeaders->erase(BB);
3919 BB->eraseFromParent();
3920 return true;
3923 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
3924 // If this is a trivial cleanup pad that executes no instructions, it can be
3925 // eliminated. If the cleanup pad continues to the caller, any predecessor
3926 // that is an EH pad will be updated to continue to the caller and any
3927 // predecessor that terminates with an invoke instruction will have its invoke
3928 // instruction converted to a call instruction. If the cleanup pad being
3929 // simplified does not continue to the caller, each predecessor will be
3930 // updated to continue to the unwind destination of the cleanup pad being
3931 // simplified.
3932 BasicBlock *BB = RI->getParent();
3933 CleanupPadInst *CPInst = RI->getCleanupPad();
3934 if (CPInst->getParent() != BB)
3935 // This isn't an empty cleanup.
3936 return false;
3938 // We cannot kill the pad if it has multiple uses. This typically arises
3939 // from unreachable basic blocks.
3940 if (!CPInst->hasOneUse())
3941 return false;
3943 // Check that there are no other instructions except for benign intrinsics.
3944 BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
3945 while (++I != E) {
3946 auto *II = dyn_cast<IntrinsicInst>(I);
3947 if (!II)
3948 return false;
3950 Intrinsic::ID IntrinsicID = II->getIntrinsicID();
3951 switch (IntrinsicID) {
3952 case Intrinsic::dbg_declare:
3953 case Intrinsic::dbg_value:
3954 case Intrinsic::dbg_label:
3955 case Intrinsic::lifetime_end:
3956 break;
3957 default:
3958 return false;
3962 // If the cleanup return we are simplifying unwinds to the caller, this will
3963 // set UnwindDest to nullptr.
3964 BasicBlock *UnwindDest = RI->getUnwindDest();
3965 Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
3967 // We're about to remove BB from the control flow. Before we do, sink any
3968 // PHINodes into the unwind destination. Doing this before changing the
3969 // control flow avoids some potentially slow checks, since we can currently
3970 // be certain that UnwindDest and BB have no common predecessors (since they
3971 // are both EH pads).
3972 if (UnwindDest) {
3973 // First, go through the PHI nodes in UnwindDest and update any nodes that
3974 // reference the block we are removing
3975 for (BasicBlock::iterator I = UnwindDest->begin(),
3976 IE = DestEHPad->getIterator();
3977 I != IE; ++I) {
3978 PHINode *DestPN = cast<PHINode>(I);
3980 int Idx = DestPN->getBasicBlockIndex(BB);
3981 // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3982 assert(Idx != -1);
3983 // This PHI node has an incoming value that corresponds to a control
3984 // path through the cleanup pad we are removing. If the incoming
3985 // value is in the cleanup pad, it must be a PHINode (because we
3986 // verified above that the block is otherwise empty). Otherwise, the
3987 // value is either a constant or a value that dominates the cleanup
3988 // pad being removed.
3990 // Because BB and UnwindDest are both EH pads, all of their
3991 // predecessors must unwind to these blocks, and since no instruction
3992 // can have multiple unwind destinations, there will be no overlap in
3993 // incoming blocks between SrcPN and DestPN.
3994 Value *SrcVal = DestPN->getIncomingValue(Idx);
3995 PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
3997 // Remove the entry for the block we are deleting.
3998 DestPN->removeIncomingValue(Idx, false);
4000 if (SrcPN && SrcPN->getParent() == BB) {
4001 // If the incoming value was a PHI node in the cleanup pad we are
4002 // removing, we need to merge that PHI node's incoming values into
4003 // DestPN.
4004 for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
4005 SrcIdx != SrcE; ++SrcIdx) {
4006 DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
4007 SrcPN->getIncomingBlock(SrcIdx));
4009 } else {
4010 // Otherwise, the incoming value came from above BB and
4011 // so we can just reuse it. We must associate all of BB's
4012 // predecessors with this value.
4013 for (auto *pred : predecessors(BB)) {
4014 DestPN->addIncoming(SrcVal, pred);
4019 // Sink any remaining PHI nodes directly into UnwindDest.
4020 Instruction *InsertPt = DestEHPad;
4021 for (BasicBlock::iterator I = BB->begin(),
4022 IE = BB->getFirstNonPHI()->getIterator();
4023 I != IE;) {
4024 // The iterator must be incremented here because the instructions are
4025 // being moved to another block.
4026 PHINode *PN = cast<PHINode>(I++);
4027 if (PN->use_empty())
4028 // If the PHI node has no uses, just leave it. It will be erased
4029 // when we erase BB below.
4030 continue;
4032 // Otherwise, sink this PHI node into UnwindDest.
4033 // Any predecessors to UnwindDest which are not already represented
4034 // must be back edges which inherit the value from the path through
4035 // BB. In this case, the PHI value must reference itself.
4036 for (auto *pred : predecessors(UnwindDest))
4037 if (pred != BB)
4038 PN->addIncoming(PN, pred);
4039 PN->moveBefore(InsertPt);
4043 for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
4044 // The iterator must be updated here because we are removing this pred.
4045 BasicBlock *PredBB = *PI++;
4046 if (UnwindDest == nullptr) {
4047 removeUnwindEdge(PredBB);
4048 } else {
4049 Instruction *TI = PredBB->getTerminator();
4050 TI->replaceUsesOfWith(BB, UnwindDest);
4054 // The cleanup pad is now unreachable. Zap it.
4055 BB->eraseFromParent();
4056 return true;
4059 // Try to merge two cleanuppads together.
4060 static bool mergeCleanupPad(CleanupReturnInst *RI) {
4061 // Skip any cleanuprets which unwind to caller, there is nothing to merge
4062 // with.
4063 BasicBlock *UnwindDest = RI->getUnwindDest();
4064 if (!UnwindDest)
4065 return false;
4067 // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
4068 // be safe to merge without code duplication.
4069 if (UnwindDest->getSinglePredecessor() != RI->getParent())
4070 return false;
4072 // Verify that our cleanuppad's unwind destination is another cleanuppad.
4073 auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
4074 if (!SuccessorCleanupPad)
4075 return false;
4077 CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
4078 // Replace any uses of the successor cleanupad with the predecessor pad
4079 // The only cleanuppad uses should be this cleanupret, it's cleanupret and
4080 // funclet bundle operands.
4081 SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4082 // Remove the old cleanuppad.
4083 SuccessorCleanupPad->eraseFromParent();
4084 // Now, we simply replace the cleanupret with a branch to the unwind
4085 // destination.
4086 BranchInst::Create(UnwindDest, RI->getParent());
4087 RI->eraseFromParent();
4089 return true;
4092 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
4093 // It is possible to transiantly have an undef cleanuppad operand because we
4094 // have deleted some, but not all, dead blocks.
4095 // Eventually, this block will be deleted.
4096 if (isa<UndefValue>(RI->getOperand(0)))
4097 return false;
4099 if (mergeCleanupPad(RI))
4100 return true;
4102 if (removeEmptyCleanup(RI))
4103 return true;
4105 return false;
4108 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4109 BasicBlock *BB = RI->getParent();
4110 if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4111 return false;
4113 // Find predecessors that end with branches.
4114 SmallVector<BasicBlock *, 8> UncondBranchPreds;
4115 SmallVector<BranchInst *, 8> CondBranchPreds;
4116 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4117 BasicBlock *P = *PI;
4118 Instruction *PTI = P->getTerminator();
4119 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4120 if (BI->isUnconditional())
4121 UncondBranchPreds.push_back(P);
4122 else
4123 CondBranchPreds.push_back(BI);
4127 // If we found some, do the transformation!
4128 if (!UncondBranchPreds.empty() && DupRet) {
4129 while (!UncondBranchPreds.empty()) {
4130 BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4131 LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
4132 << "INTO UNCOND BRANCH PRED: " << *Pred);
4133 (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
4136 // If we eliminated all predecessors of the block, delete the block now.
4137 if (pred_empty(BB)) {
4138 // We know there are no successors, so just nuke the block.
4139 if (LoopHeaders)
4140 LoopHeaders->erase(BB);
4141 BB->eraseFromParent();
4144 return true;
4147 // Check out all of the conditional branches going to this return
4148 // instruction. If any of them just select between returns, change the
4149 // branch itself into a select/return pair.
4150 while (!CondBranchPreds.empty()) {
4151 BranchInst *BI = CondBranchPreds.pop_back_val();
4153 // Check to see if the non-BB successor is also a return block.
4154 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4155 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4156 SimplifyCondBranchToTwoReturns(BI, Builder))
4157 return true;
4159 return false;
4162 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
4163 BasicBlock *BB = UI->getParent();
4165 bool Changed = false;
4167 // If there are any instructions immediately before the unreachable that can
4168 // be removed, do so.
4169 while (UI->getIterator() != BB->begin()) {
4170 BasicBlock::iterator BBI = UI->getIterator();
4171 --BBI;
4172 // Do not delete instructions that can have side effects which might cause
4173 // the unreachable to not be reachable; specifically, calls and volatile
4174 // operations may have this effect.
4175 if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4176 break;
4178 if (BBI->mayHaveSideEffects()) {
4179 if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4180 if (SI->isVolatile())
4181 break;
4182 } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4183 if (LI->isVolatile())
4184 break;
4185 } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4186 if (RMWI->isVolatile())
4187 break;
4188 } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4189 if (CXI->isVolatile())
4190 break;
4191 } else if (isa<CatchPadInst>(BBI)) {
4192 // A catchpad may invoke exception object constructors and such, which
4193 // in some languages can be arbitrary code, so be conservative by
4194 // default.
4195 // For CoreCLR, it just involves a type test, so can be removed.
4196 if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4197 EHPersonality::CoreCLR)
4198 break;
4199 } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4200 !isa<LandingPadInst>(BBI)) {
4201 break;
4203 // Note that deleting LandingPad's here is in fact okay, although it
4204 // involves a bit of subtle reasoning. If this inst is a LandingPad,
4205 // all the predecessors of this block will be the unwind edges of Invokes,
4206 // and we can therefore guarantee this block will be erased.
4209 // Delete this instruction (any uses are guaranteed to be dead)
4210 if (!BBI->use_empty())
4211 BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4212 BBI->eraseFromParent();
4213 Changed = true;
4216 // If the unreachable instruction is the first in the block, take a gander
4217 // at all of the predecessors of this instruction, and simplify them.
4218 if (&BB->front() != UI)
4219 return Changed;
4221 SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4222 for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4223 Instruction *TI = Preds[i]->getTerminator();
4224 IRBuilder<> Builder(TI);
4225 if (auto *BI = dyn_cast<BranchInst>(TI)) {
4226 if (BI->isUnconditional()) {
4227 assert(BI->getSuccessor(0) == BB && "Incorrect CFG");
4228 new UnreachableInst(TI->getContext(), TI);
4229 TI->eraseFromParent();
4230 Changed = true;
4231 } else {
4232 Value* Cond = BI->getCondition();
4233 if (BI->getSuccessor(0) == BB) {
4234 Builder.CreateAssumption(Builder.CreateNot(Cond));
4235 Builder.CreateBr(BI->getSuccessor(1));
4236 } else {
4237 assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
4238 Builder.CreateAssumption(Cond);
4239 Builder.CreateBr(BI->getSuccessor(0));
4241 EraseTerminatorAndDCECond(BI);
4242 Changed = true;
4244 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4245 SwitchInstProfUpdateWrapper SU(*SI);
4246 for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
4247 if (i->getCaseSuccessor() != BB) {
4248 ++i;
4249 continue;
4251 BB->removePredecessor(SU->getParent());
4252 i = SU.removeCase(i);
4253 e = SU->case_end();
4254 Changed = true;
4256 } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4257 if (II->getUnwindDest() == BB) {
4258 removeUnwindEdge(TI->getParent());
4259 Changed = true;
4261 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4262 if (CSI->getUnwindDest() == BB) {
4263 removeUnwindEdge(TI->getParent());
4264 Changed = true;
4265 continue;
4268 for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4269 E = CSI->handler_end();
4270 I != E; ++I) {
4271 if (*I == BB) {
4272 CSI->removeHandler(I);
4273 --I;
4274 --E;
4275 Changed = true;
4278 if (CSI->getNumHandlers() == 0) {
4279 BasicBlock *CatchSwitchBB = CSI->getParent();
4280 if (CSI->hasUnwindDest()) {
4281 // Redirect preds to the unwind dest
4282 CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
4283 } else {
4284 // Rewrite all preds to unwind to caller (or from invoke to call).
4285 SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
4286 for (BasicBlock *EHPred : EHPreds)
4287 removeUnwindEdge(EHPred);
4289 // The catchswitch is no longer reachable.
4290 new UnreachableInst(CSI->getContext(), CSI);
4291 CSI->eraseFromParent();
4292 Changed = true;
4294 } else if (isa<CleanupReturnInst>(TI)) {
4295 new UnreachableInst(TI->getContext(), TI);
4296 TI->eraseFromParent();
4297 Changed = true;
4301 // If this block is now dead, remove it.
4302 if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4303 // We know there are no successors, so just nuke the block.
4304 if (LoopHeaders)
4305 LoopHeaders->erase(BB);
4306 BB->eraseFromParent();
4307 return true;
4310 return Changed;
4313 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4314 assert(Cases.size() >= 1);
4316 array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4317 for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4318 if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4319 return false;
4321 return true;
4324 static void createUnreachableSwitchDefault(SwitchInst *Switch) {
4325 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4326 BasicBlock *NewDefaultBlock =
4327 SplitBlockPredecessors(Switch->getDefaultDest(), Switch->getParent(), "");
4328 Switch->setDefaultDest(&*NewDefaultBlock);
4329 SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front());
4330 auto *NewTerminator = NewDefaultBlock->getTerminator();
4331 new UnreachableInst(Switch->getContext(), NewTerminator);
4332 EraseTerminatorAndDCECond(NewTerminator);
4335 /// Turn a switch with two reachable destinations into an integer range
4336 /// comparison and branch.
4337 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
4338 assert(SI->getNumCases() > 1 && "Degenerate switch?");
4340 bool HasDefault =
4341 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4343 // Partition the cases into two sets with different destinations.
4344 BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4345 BasicBlock *DestB = nullptr;
4346 SmallVector<ConstantInt *, 16> CasesA;
4347 SmallVector<ConstantInt *, 16> CasesB;
4349 for (auto Case : SI->cases()) {
4350 BasicBlock *Dest = Case.getCaseSuccessor();
4351 if (!DestA)
4352 DestA = Dest;
4353 if (Dest == DestA) {
4354 CasesA.push_back(Case.getCaseValue());
4355 continue;
4357 if (!DestB)
4358 DestB = Dest;
4359 if (Dest == DestB) {
4360 CasesB.push_back(Case.getCaseValue());
4361 continue;
4363 return false; // More than two destinations.
4366 assert(DestA && DestB &&
4367 "Single-destination switch should have been folded.");
4368 assert(DestA != DestB);
4369 assert(DestB != SI->getDefaultDest());
4370 assert(!CasesB.empty() && "There must be non-default cases.");
4371 assert(!CasesA.empty() || HasDefault);
4373 // Figure out if one of the sets of cases form a contiguous range.
4374 SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4375 BasicBlock *ContiguousDest = nullptr;
4376 BasicBlock *OtherDest = nullptr;
4377 if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4378 ContiguousCases = &CasesA;
4379 ContiguousDest = DestA;
4380 OtherDest = DestB;
4381 } else if (CasesAreContiguous(CasesB)) {
4382 ContiguousCases = &CasesB;
4383 ContiguousDest = DestB;
4384 OtherDest = DestA;
4385 } else
4386 return false;
4388 // Start building the compare and branch.
4390 Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4391 Constant *NumCases =
4392 ConstantInt::get(Offset->getType(), ContiguousCases->size());
4394 Value *Sub = SI->getCondition();
4395 if (!Offset->isNullValue())
4396 Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4398 Value *Cmp;
4399 // If NumCases overflowed, then all possible values jump to the successor.
4400 if (NumCases->isNullValue() && !ContiguousCases->empty())
4401 Cmp = ConstantInt::getTrue(SI->getContext());
4402 else
4403 Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4404 BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4406 // Update weight for the newly-created conditional branch.
4407 if (HasBranchWeights(SI)) {
4408 SmallVector<uint64_t, 8> Weights;
4409 GetBranchWeights(SI, Weights);
4410 if (Weights.size() == 1 + SI->getNumCases()) {
4411 uint64_t TrueWeight = 0;
4412 uint64_t FalseWeight = 0;
4413 for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4414 if (SI->getSuccessor(I) == ContiguousDest)
4415 TrueWeight += Weights[I];
4416 else
4417 FalseWeight += Weights[I];
4419 while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4420 TrueWeight /= 2;
4421 FalseWeight /= 2;
4423 setBranchWeights(NewBI, TrueWeight, FalseWeight);
4427 // Prune obsolete incoming values off the successors' PHI nodes.
4428 for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4429 unsigned PreviousEdges = ContiguousCases->size();
4430 if (ContiguousDest == SI->getDefaultDest())
4431 ++PreviousEdges;
4432 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4433 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4435 for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4436 unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4437 if (OtherDest == SI->getDefaultDest())
4438 ++PreviousEdges;
4439 for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4440 cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4443 // Clean up the default block - it may have phis or other instructions before
4444 // the unreachable terminator.
4445 if (!HasDefault)
4446 createUnreachableSwitchDefault(SI);
4448 // Drop the switch.
4449 SI->eraseFromParent();
4451 return true;
4454 /// Compute masked bits for the condition of a switch
4455 /// and use it to remove dead cases.
4456 static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4457 const DataLayout &DL) {
4458 Value *Cond = SI->getCondition();
4459 unsigned Bits = Cond->getType()->getIntegerBitWidth();
4460 KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
4462 // We can also eliminate cases by determining that their values are outside of
4463 // the limited range of the condition based on how many significant (non-sign)
4464 // bits are in the condition value.
4465 unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4466 unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4468 // Gather dead cases.
4469 SmallVector<ConstantInt *, 8> DeadCases;
4470 for (auto &Case : SI->cases()) {
4471 const APInt &CaseVal = Case.getCaseValue()->getValue();
4472 if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
4473 (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4474 DeadCases.push_back(Case.getCaseValue());
4475 LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
4476 << " is dead.\n");
4480 // If we can prove that the cases must cover all possible values, the
4481 // default destination becomes dead and we can remove it. If we know some
4482 // of the bits in the value, we can use that to more precisely compute the
4483 // number of possible unique case values.
4484 bool HasDefault =
4485 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4486 const unsigned NumUnknownBits =
4487 Bits - (Known.Zero | Known.One).countPopulation();
4488 assert(NumUnknownBits <= Bits);
4489 if (HasDefault && DeadCases.empty() &&
4490 NumUnknownBits < 64 /* avoid overflow */ &&
4491 SI->getNumCases() == (1ULL << NumUnknownBits)) {
4492 createUnreachableSwitchDefault(SI);
4493 return true;
4496 if (DeadCases.empty())
4497 return false;
4499 SwitchInstProfUpdateWrapper SIW(*SI);
4500 for (ConstantInt *DeadCase : DeadCases) {
4501 SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4502 assert(CaseI != SI->case_default() &&
4503 "Case was not found. Probably mistake in DeadCases forming.");
4504 // Prune unused values from PHI nodes.
4505 CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4506 SIW.removeCase(CaseI);
4509 return true;
4512 /// If BB would be eligible for simplification by
4513 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4514 /// by an unconditional branch), look at the phi node for BB in the successor
4515 /// block and see if the incoming value is equal to CaseValue. If so, return
4516 /// the phi node, and set PhiIndex to BB's index in the phi node.
4517 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4518 BasicBlock *BB, int *PhiIndex) {
4519 if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4520 return nullptr; // BB must be empty to be a candidate for simplification.
4521 if (!BB->getSinglePredecessor())
4522 return nullptr; // BB must be dominated by the switch.
4524 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4525 if (!Branch || !Branch->isUnconditional())
4526 return nullptr; // Terminator must be unconditional branch.
4528 BasicBlock *Succ = Branch->getSuccessor(0);
4530 for (PHINode &PHI : Succ->phis()) {
4531 int Idx = PHI.getBasicBlockIndex(BB);
4532 assert(Idx >= 0 && "PHI has no entry for predecessor?");
4534 Value *InValue = PHI.getIncomingValue(Idx);
4535 if (InValue != CaseValue)
4536 continue;
4538 *PhiIndex = Idx;
4539 return &PHI;
4542 return nullptr;
4545 /// Try to forward the condition of a switch instruction to a phi node
4546 /// dominated by the switch, if that would mean that some of the destination
4547 /// blocks of the switch can be folded away. Return true if a change is made.
4548 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4549 using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
4551 ForwardingNodesMap ForwardingNodes;
4552 BasicBlock *SwitchBlock = SI->getParent();
4553 bool Changed = false;
4554 for (auto &Case : SI->cases()) {
4555 ConstantInt *CaseValue = Case.getCaseValue();
4556 BasicBlock *CaseDest = Case.getCaseSuccessor();
4558 // Replace phi operands in successor blocks that are using the constant case
4559 // value rather than the switch condition variable:
4560 // switchbb:
4561 // switch i32 %x, label %default [
4562 // i32 17, label %succ
4563 // ...
4564 // succ:
4565 // %r = phi i32 ... [ 17, %switchbb ] ...
4566 // -->
4567 // %r = phi i32 ... [ %x, %switchbb ] ...
4569 for (PHINode &Phi : CaseDest->phis()) {
4570 // This only works if there is exactly 1 incoming edge from the switch to
4571 // a phi. If there is >1, that means multiple cases of the switch map to 1
4572 // value in the phi, and that phi value is not the switch condition. Thus,
4573 // this transform would not make sense (the phi would be invalid because
4574 // a phi can't have different incoming values from the same block).
4575 int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
4576 if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
4577 count(Phi.blocks(), SwitchBlock) == 1) {
4578 Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
4579 Changed = true;
4583 // Collect phi nodes that are indirectly using this switch's case constants.
4584 int PhiIdx;
4585 if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
4586 ForwardingNodes[Phi].push_back(PhiIdx);
4589 for (auto &ForwardingNode : ForwardingNodes) {
4590 PHINode *Phi = ForwardingNode.first;
4591 SmallVectorImpl<int> &Indexes = ForwardingNode.second;
4592 if (Indexes.size() < 2)
4593 continue;
4595 for (int Index : Indexes)
4596 Phi->setIncomingValue(Index, SI->getCondition());
4597 Changed = true;
4600 return Changed;
4603 /// Return true if the backend will be able to handle
4604 /// initializing an array of constants like C.
4605 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4606 if (C->isThreadDependent())
4607 return false;
4608 if (C->isDLLImportDependent())
4609 return false;
4611 if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4612 !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4613 !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4614 return false;
4616 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
4617 if (!CE->isGEPWithNoNotionalOverIndexing())
4618 return false;
4619 if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
4620 return false;
4623 if (!TTI.shouldBuildLookupTablesForConstant(C))
4624 return false;
4626 return true;
4629 /// If V is a Constant, return it. Otherwise, try to look up
4630 /// its constant value in ConstantPool, returning 0 if it's not there.
4631 static Constant *
4632 LookupConstant(Value *V,
4633 const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4634 if (Constant *C = dyn_cast<Constant>(V))
4635 return C;
4636 return ConstantPool.lookup(V);
4639 /// Try to fold instruction I into a constant. This works for
4640 /// simple instructions such as binary operations where both operands are
4641 /// constant or can be replaced by constants from the ConstantPool. Returns the
4642 /// resulting constant on success, 0 otherwise.
4643 static Constant *
4644 ConstantFold(Instruction *I, const DataLayout &DL,
4645 const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4646 if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4647 Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4648 if (!A)
4649 return nullptr;
4650 if (A->isAllOnesValue())
4651 return LookupConstant(Select->getTrueValue(), ConstantPool);
4652 if (A->isNullValue())
4653 return LookupConstant(Select->getFalseValue(), ConstantPool);
4654 return nullptr;
4657 SmallVector<Constant *, 4> COps;
4658 for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4659 if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4660 COps.push_back(A);
4661 else
4662 return nullptr;
4665 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4666 return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4667 COps[1], DL);
4670 return ConstantFoldInstOperands(I, COps, DL);
4673 /// Try to determine the resulting constant values in phi nodes
4674 /// at the common destination basic block, *CommonDest, for one of the case
4675 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4676 /// case), of a switch instruction SI.
4677 static bool
4678 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4679 BasicBlock **CommonDest,
4680 SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4681 const DataLayout &DL, const TargetTransformInfo &TTI) {
4682 // The block from which we enter the common destination.
4683 BasicBlock *Pred = SI->getParent();
4685 // If CaseDest is empty except for some side-effect free instructions through
4686 // which we can constant-propagate the CaseVal, continue to its successor.
4687 SmallDenseMap<Value *, Constant *> ConstantPool;
4688 ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4689 for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
4690 if (I.isTerminator()) {
4691 // If the terminator is a simple branch, continue to the next block.
4692 if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
4693 return false;
4694 Pred = CaseDest;
4695 CaseDest = I.getSuccessor(0);
4696 } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
4697 // Instruction is side-effect free and constant.
4699 // If the instruction has uses outside this block or a phi node slot for
4700 // the block, it is not safe to bypass the instruction since it would then
4701 // no longer dominate all its uses.
4702 for (auto &Use : I.uses()) {
4703 User *User = Use.getUser();
4704 if (Instruction *I = dyn_cast<Instruction>(User))
4705 if (I->getParent() == CaseDest)
4706 continue;
4707 if (PHINode *Phi = dyn_cast<PHINode>(User))
4708 if (Phi->getIncomingBlock(Use) == CaseDest)
4709 continue;
4710 return false;
4713 ConstantPool.insert(std::make_pair(&I, C));
4714 } else {
4715 break;
4719 // If we did not have a CommonDest before, use the current one.
4720 if (!*CommonDest)
4721 *CommonDest = CaseDest;
4722 // If the destination isn't the common one, abort.
4723 if (CaseDest != *CommonDest)
4724 return false;
4726 // Get the values for this case from phi nodes in the destination block.
4727 for (PHINode &PHI : (*CommonDest)->phis()) {
4728 int Idx = PHI.getBasicBlockIndex(Pred);
4729 if (Idx == -1)
4730 continue;
4732 Constant *ConstVal =
4733 LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
4734 if (!ConstVal)
4735 return false;
4737 // Be conservative about which kinds of constants we support.
4738 if (!ValidLookupTableConstant(ConstVal, TTI))
4739 return false;
4741 Res.push_back(std::make_pair(&PHI, ConstVal));
4744 return Res.size() > 0;
4747 // Helper function used to add CaseVal to the list of cases that generate
4748 // Result. Returns the updated number of cases that generate this result.
4749 static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
4750 SwitchCaseResultVectorTy &UniqueResults,
4751 Constant *Result) {
4752 for (auto &I : UniqueResults) {
4753 if (I.first == Result) {
4754 I.second.push_back(CaseVal);
4755 return I.second.size();
4758 UniqueResults.push_back(
4759 std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
4760 return 1;
4763 // Helper function that initializes a map containing
4764 // results for the PHI node of the common destination block for a switch
4765 // instruction. Returns false if multiple PHI nodes have been found or if
4766 // there is not a common destination block for the switch.
4767 static bool
4768 InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
4769 SwitchCaseResultVectorTy &UniqueResults,
4770 Constant *&DefaultResult, const DataLayout &DL,
4771 const TargetTransformInfo &TTI,
4772 uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
4773 for (auto &I : SI->cases()) {
4774 ConstantInt *CaseVal = I.getCaseValue();
4776 // Resulting value at phi nodes for this case value.
4777 SwitchCaseResultsTy Results;
4778 if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4779 DL, TTI))
4780 return false;
4782 // Only one value per case is permitted.
4783 if (Results.size() > 1)
4784 return false;
4786 // Add the case->result mapping to UniqueResults.
4787 const uintptr_t NumCasesForResult =
4788 MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4790 // Early out if there are too many cases for this result.
4791 if (NumCasesForResult > MaxCasesPerResult)
4792 return false;
4794 // Early out if there are too many unique results.
4795 if (UniqueResults.size() > MaxUniqueResults)
4796 return false;
4798 // Check the PHI consistency.
4799 if (!PHI)
4800 PHI = Results[0].first;
4801 else if (PHI != Results[0].first)
4802 return false;
4804 // Find the default result value.
4805 SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4806 BasicBlock *DefaultDest = SI->getDefaultDest();
4807 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4808 DL, TTI);
4809 // If the default value is not found abort unless the default destination
4810 // is unreachable.
4811 DefaultResult =
4812 DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4813 if ((!DefaultResult &&
4814 !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4815 return false;
4817 return true;
4820 // Helper function that checks if it is possible to transform a switch with only
4821 // two cases (or two cases + default) that produces a result into a select.
4822 // Example:
4823 // switch (a) {
4824 // case 10: %0 = icmp eq i32 %a, 10
4825 // return 10; %1 = select i1 %0, i32 10, i32 4
4826 // case 20: ----> %2 = icmp eq i32 %a, 20
4827 // return 2; %3 = select i1 %2, i32 2, i32 %1
4828 // default:
4829 // return 4;
4830 // }
4831 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4832 Constant *DefaultResult, Value *Condition,
4833 IRBuilder<> &Builder) {
4834 assert(ResultVector.size() == 2 &&
4835 "We should have exactly two unique results at this point");
4836 // If we are selecting between only two cases transform into a simple
4837 // select or a two-way select if default is possible.
4838 if (ResultVector[0].second.size() == 1 &&
4839 ResultVector[1].second.size() == 1) {
4840 ConstantInt *const FirstCase = ResultVector[0].second[0];
4841 ConstantInt *const SecondCase = ResultVector[1].second[0];
4843 bool DefaultCanTrigger = DefaultResult;
4844 Value *SelectValue = ResultVector[1].first;
4845 if (DefaultCanTrigger) {
4846 Value *const ValueCompare =
4847 Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4848 SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4849 DefaultResult, "switch.select");
4851 Value *const ValueCompare =
4852 Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4853 return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
4854 SelectValue, "switch.select");
4857 return nullptr;
4860 // Helper function to cleanup a switch instruction that has been converted into
4861 // a select, fixing up PHI nodes and basic blocks.
4862 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4863 Value *SelectValue,
4864 IRBuilder<> &Builder) {
4865 BasicBlock *SelectBB = SI->getParent();
4866 while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4867 PHI->removeIncomingValue(SelectBB);
4868 PHI->addIncoming(SelectValue, SelectBB);
4870 Builder.CreateBr(PHI->getParent());
4872 // Remove the switch.
4873 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4874 BasicBlock *Succ = SI->getSuccessor(i);
4876 if (Succ == PHI->getParent())
4877 continue;
4878 Succ->removePredecessor(SelectBB);
4880 SI->eraseFromParent();
4883 /// If the switch is only used to initialize one or more
4884 /// phi nodes in a common successor block with only two different
4885 /// constant values, replace the switch with select.
4886 static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4887 const DataLayout &DL,
4888 const TargetTransformInfo &TTI) {
4889 Value *const Cond = SI->getCondition();
4890 PHINode *PHI = nullptr;
4891 BasicBlock *CommonDest = nullptr;
4892 Constant *DefaultResult;
4893 SwitchCaseResultVectorTy UniqueResults;
4894 // Collect all the cases that will deliver the same value from the switch.
4895 if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4896 DL, TTI, 2, 1))
4897 return false;
4898 // Selects choose between maximum two values.
4899 if (UniqueResults.size() != 2)
4900 return false;
4901 assert(PHI != nullptr && "PHI for value select not found");
4903 Builder.SetInsertPoint(SI);
4904 Value *SelectValue =
4905 ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
4906 if (SelectValue) {
4907 RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4908 return true;
4910 // The switch couldn't be converted into a select.
4911 return false;
4914 namespace {
4916 /// This class represents a lookup table that can be used to replace a switch.
4917 class SwitchLookupTable {
4918 public:
4919 /// Create a lookup table to use as a switch replacement with the contents
4920 /// of Values, using DefaultValue to fill any holes in the table.
4921 SwitchLookupTable(
4922 Module &M, uint64_t TableSize, ConstantInt *Offset,
4923 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4924 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
4926 /// Build instructions with Builder to retrieve the value at
4927 /// the position given by Index in the lookup table.
4928 Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4930 /// Return true if a table with TableSize elements of
4931 /// type ElementType would fit in a target-legal register.
4932 static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4933 Type *ElementType);
4935 private:
4936 // Depending on the contents of the table, it can be represented in
4937 // different ways.
4938 enum {
4939 // For tables where each element contains the same value, we just have to
4940 // store that single value and return it for each lookup.
4941 SingleValueKind,
4943 // For tables where there is a linear relationship between table index
4944 // and values. We calculate the result with a simple multiplication
4945 // and addition instead of a table lookup.
4946 LinearMapKind,
4948 // For small tables with integer elements, we can pack them into a bitmap
4949 // that fits into a target-legal register. Values are retrieved by
4950 // shift and mask operations.
4951 BitMapKind,
4953 // The table is stored as an array of values. Values are retrieved by load
4954 // instructions from the table.
4955 ArrayKind
4956 } Kind;
4958 // For SingleValueKind, this is the single value.
4959 Constant *SingleValue = nullptr;
4961 // For BitMapKind, this is the bitmap.
4962 ConstantInt *BitMap = nullptr;
4963 IntegerType *BitMapElementTy = nullptr;
4965 // For LinearMapKind, these are the constants used to derive the value.
4966 ConstantInt *LinearOffset = nullptr;
4967 ConstantInt *LinearMultiplier = nullptr;
4969 // For ArrayKind, this is the array.
4970 GlobalVariable *Array = nullptr;
4973 } // end anonymous namespace
4975 SwitchLookupTable::SwitchLookupTable(
4976 Module &M, uint64_t TableSize, ConstantInt *Offset,
4977 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4978 Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
4979 assert(Values.size() && "Can't build lookup table without values!");
4980 assert(TableSize >= Values.size() && "Can't fit values in table!");
4982 // If all values in the table are equal, this is that value.
4983 SingleValue = Values.begin()->second;
4985 Type *ValueType = Values.begin()->second->getType();
4987 // Build up the table contents.
4988 SmallVector<Constant *, 64> TableContents(TableSize);
4989 for (size_t I = 0, E = Values.size(); I != E; ++I) {
4990 ConstantInt *CaseVal = Values[I].first;
4991 Constant *CaseRes = Values[I].second;
4992 assert(CaseRes->getType() == ValueType);
4994 uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
4995 TableContents[Idx] = CaseRes;
4997 if (CaseRes != SingleValue)
4998 SingleValue = nullptr;
5001 // Fill in any holes in the table with the default result.
5002 if (Values.size() < TableSize) {
5003 assert(DefaultValue &&
5004 "Need a default value to fill the lookup table holes.");
5005 assert(DefaultValue->getType() == ValueType);
5006 for (uint64_t I = 0; I < TableSize; ++I) {
5007 if (!TableContents[I])
5008 TableContents[I] = DefaultValue;
5011 if (DefaultValue != SingleValue)
5012 SingleValue = nullptr;
5015 // If each element in the table contains the same value, we only need to store
5016 // that single value.
5017 if (SingleValue) {
5018 Kind = SingleValueKind;
5019 return;
5022 // Check if we can derive the value with a linear transformation from the
5023 // table index.
5024 if (isa<IntegerType>(ValueType)) {
5025 bool LinearMappingPossible = true;
5026 APInt PrevVal;
5027 APInt DistToPrev;
5028 assert(TableSize >= 2 && "Should be a SingleValue table.");
5029 // Check if there is the same distance between two consecutive values.
5030 for (uint64_t I = 0; I < TableSize; ++I) {
5031 ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
5032 if (!ConstVal) {
5033 // This is an undef. We could deal with it, but undefs in lookup tables
5034 // are very seldom. It's probably not worth the additional complexity.
5035 LinearMappingPossible = false;
5036 break;
5038 const APInt &Val = ConstVal->getValue();
5039 if (I != 0) {
5040 APInt Dist = Val - PrevVal;
5041 if (I == 1) {
5042 DistToPrev = Dist;
5043 } else if (Dist != DistToPrev) {
5044 LinearMappingPossible = false;
5045 break;
5048 PrevVal = Val;
5050 if (LinearMappingPossible) {
5051 LinearOffset = cast<ConstantInt>(TableContents[0]);
5052 LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
5053 Kind = LinearMapKind;
5054 ++NumLinearMaps;
5055 return;
5059 // If the type is integer and the table fits in a register, build a bitmap.
5060 if (WouldFitInRegister(DL, TableSize, ValueType)) {
5061 IntegerType *IT = cast<IntegerType>(ValueType);
5062 APInt TableInt(TableSize * IT->getBitWidth(), 0);
5063 for (uint64_t I = TableSize; I > 0; --I) {
5064 TableInt <<= IT->getBitWidth();
5065 // Insert values into the bitmap. Undef values are set to zero.
5066 if (!isa<UndefValue>(TableContents[I - 1])) {
5067 ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
5068 TableInt |= Val->getValue().zext(TableInt.getBitWidth());
5071 BitMap = ConstantInt::get(M.getContext(), TableInt);
5072 BitMapElementTy = IT;
5073 Kind = BitMapKind;
5074 ++NumBitMaps;
5075 return;
5078 // Store the table in an array.
5079 ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
5080 Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
5082 Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
5083 GlobalVariable::PrivateLinkage, Initializer,
5084 "switch.table." + FuncName);
5085 Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
5086 // Set the alignment to that of an array items. We will be only loading one
5087 // value out of it.
5088 Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
5089 Kind = ArrayKind;
5092 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
5093 switch (Kind) {
5094 case SingleValueKind:
5095 return SingleValue;
5096 case LinearMapKind: {
5097 // Derive the result value from the input value.
5098 Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
5099 false, "switch.idx.cast");
5100 if (!LinearMultiplier->isOne())
5101 Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5102 if (!LinearOffset->isZero())
5103 Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5104 return Result;
5106 case BitMapKind: {
5107 // Type of the bitmap (e.g. i59).
5108 IntegerType *MapTy = BitMap->getType();
5110 // Cast Index to the same type as the bitmap.
5111 // Note: The Index is <= the number of elements in the table, so
5112 // truncating it to the width of the bitmask is safe.
5113 Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5115 // Multiply the shift amount by the element width.
5116 ShiftAmt = Builder.CreateMul(
5117 ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5118 "switch.shiftamt");
5120 // Shift down.
5121 Value *DownShifted =
5122 Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5123 // Mask off.
5124 return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5126 case ArrayKind: {
5127 // Make sure the table index will not overflow when treated as signed.
5128 IntegerType *IT = cast<IntegerType>(Index->getType());
5129 uint64_t TableSize =
5130 Array->getInitializer()->getType()->getArrayNumElements();
5131 if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5132 Index = Builder.CreateZExt(
5133 Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5134 "switch.tableidx.zext");
5136 Value *GEPIndices[] = {Builder.getInt32(0), Index};
5137 Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5138 GEPIndices, "switch.gep");
5139 return Builder.CreateLoad(
5140 cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
5141 "switch.load");
5144 llvm_unreachable("Unknown lookup table kind!");
5147 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5148 uint64_t TableSize,
5149 Type *ElementType) {
5150 auto *IT = dyn_cast<IntegerType>(ElementType);
5151 if (!IT)
5152 return false;
5153 // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5154 // are <= 15, we could try to narrow the type.
5156 // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5157 if (TableSize >= UINT_MAX / IT->getBitWidth())
5158 return false;
5159 return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5162 /// Determine whether a lookup table should be built for this switch, based on
5163 /// the number of cases, size of the table, and the types of the results.
5164 static bool
5165 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5166 const TargetTransformInfo &TTI, const DataLayout &DL,
5167 const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5168 if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5169 return false; // TableSize overflowed, or mul below might overflow.
5171 bool AllTablesFitInRegister = true;
5172 bool HasIllegalType = false;
5173 for (const auto &I : ResultTypes) {
5174 Type *Ty = I.second;
5176 // Saturate this flag to true.
5177 HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5179 // Saturate this flag to false.
5180 AllTablesFitInRegister =
5181 AllTablesFitInRegister &&
5182 SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5184 // If both flags saturate, we're done. NOTE: This *only* works with
5185 // saturating flags, and all flags have to saturate first due to the
5186 // non-deterministic behavior of iterating over a dense map.
5187 if (HasIllegalType && !AllTablesFitInRegister)
5188 break;
5191 // If each table would fit in a register, we should build it anyway.
5192 if (AllTablesFitInRegister)
5193 return true;
5195 // Don't build a table that doesn't fit in-register if it has illegal types.
5196 if (HasIllegalType)
5197 return false;
5199 // The table density should be at least 40%. This is the same criterion as for
5200 // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5201 // FIXME: Find the best cut-off.
5202 return SI->getNumCases() * 10 >= TableSize * 4;
5205 /// Try to reuse the switch table index compare. Following pattern:
5206 /// \code
5207 /// if (idx < tablesize)
5208 /// r = table[idx]; // table does not contain default_value
5209 /// else
5210 /// r = default_value;
5211 /// if (r != default_value)
5212 /// ...
5213 /// \endcode
5214 /// Is optimized to:
5215 /// \code
5216 /// cond = idx < tablesize;
5217 /// if (cond)
5218 /// r = table[idx];
5219 /// else
5220 /// r = default_value;
5221 /// if (cond)
5222 /// ...
5223 /// \endcode
5224 /// Jump threading will then eliminate the second if(cond).
5225 static void reuseTableCompare(
5226 User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5227 Constant *DefaultValue,
5228 const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5229 ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5230 if (!CmpInst)
5231 return;
5233 // We require that the compare is in the same block as the phi so that jump
5234 // threading can do its work afterwards.
5235 if (CmpInst->getParent() != PhiBlock)
5236 return;
5238 Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5239 if (!CmpOp1)
5240 return;
5242 Value *RangeCmp = RangeCheckBranch->getCondition();
5243 Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5244 Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5246 // Check if the compare with the default value is constant true or false.
5247 Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5248 DefaultValue, CmpOp1, true);
5249 if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5250 return;
5252 // Check if the compare with the case values is distinct from the default
5253 // compare result.
5254 for (auto ValuePair : Values) {
5255 Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5256 ValuePair.second, CmpOp1, true);
5257 if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
5258 return;
5259 assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5260 "Expect true or false as compare result.");
5263 // Check if the branch instruction dominates the phi node. It's a simple
5264 // dominance check, but sufficient for our needs.
5265 // Although this check is invariant in the calling loops, it's better to do it
5266 // at this late stage. Practically we do it at most once for a switch.
5267 BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5268 for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5269 BasicBlock *Pred = *PI;
5270 if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5271 return;
5274 if (DefaultConst == FalseConst) {
5275 // The compare yields the same result. We can replace it.
5276 CmpInst->replaceAllUsesWith(RangeCmp);
5277 ++NumTableCmpReuses;
5278 } else {
5279 // The compare yields the same result, just inverted. We can replace it.
5280 Value *InvertedTableCmp = BinaryOperator::CreateXor(
5281 RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5282 RangeCheckBranch);
5283 CmpInst->replaceAllUsesWith(InvertedTableCmp);
5284 ++NumTableCmpReuses;
5288 /// If the switch is only used to initialize one or more phi nodes in a common
5289 /// successor block with different constant values, replace the switch with
5290 /// lookup tables.
5291 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5292 const DataLayout &DL,
5293 const TargetTransformInfo &TTI) {
5294 assert(SI->getNumCases() > 1 && "Degenerate switch?");
5296 Function *Fn = SI->getParent()->getParent();
5297 // Only build lookup table when we have a target that supports it or the
5298 // attribute is not set.
5299 if (!TTI.shouldBuildLookupTables() ||
5300 (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true"))
5301 return false;
5303 // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5304 // split off a dense part and build a lookup table for that.
5306 // FIXME: This creates arrays of GEPs to constant strings, which means each
5307 // GEP needs a runtime relocation in PIC code. We should just build one big
5308 // string and lookup indices into that.
5310 // Ignore switches with less than three cases. Lookup tables will not make
5311 // them faster, so we don't analyze them.
5312 if (SI->getNumCases() < 3)
5313 return false;
5315 // Figure out the corresponding result for each case value and phi node in the
5316 // common destination, as well as the min and max case values.
5317 assert(!SI->cases().empty());
5318 SwitchInst::CaseIt CI = SI->case_begin();
5319 ConstantInt *MinCaseVal = CI->getCaseValue();
5320 ConstantInt *MaxCaseVal = CI->getCaseValue();
5322 BasicBlock *CommonDest = nullptr;
5324 using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
5325 SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5327 SmallDenseMap<PHINode *, Constant *> DefaultResults;
5328 SmallDenseMap<PHINode *, Type *> ResultTypes;
5329 SmallVector<PHINode *, 4> PHIs;
5331 for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5332 ConstantInt *CaseVal = CI->getCaseValue();
5333 if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5334 MinCaseVal = CaseVal;
5335 if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5336 MaxCaseVal = CaseVal;
5338 // Resulting value at phi nodes for this case value.
5339 using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
5340 ResultsTy Results;
5341 if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5342 Results, DL, TTI))
5343 return false;
5345 // Append the result from this case to the list for each phi.
5346 for (const auto &I : Results) {
5347 PHINode *PHI = I.first;
5348 Constant *Value = I.second;
5349 if (!ResultLists.count(PHI))
5350 PHIs.push_back(PHI);
5351 ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5355 // Keep track of the result types.
5356 for (PHINode *PHI : PHIs) {
5357 ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5360 uint64_t NumResults = ResultLists[PHIs[0]].size();
5361 APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5362 uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5363 bool TableHasHoles = (NumResults < TableSize);
5365 // If the table has holes, we need a constant result for the default case
5366 // or a bitmask that fits in a register.
5367 SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5368 bool HasDefaultResults =
5369 GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5370 DefaultResultsList, DL, TTI);
5372 bool NeedMask = (TableHasHoles && !HasDefaultResults);
5373 if (NeedMask) {
5374 // As an extra penalty for the validity test we require more cases.
5375 if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5376 return false;
5377 if (!DL.fitsInLegalInteger(TableSize))
5378 return false;
5381 for (const auto &I : DefaultResultsList) {
5382 PHINode *PHI = I.first;
5383 Constant *Result = I.second;
5384 DefaultResults[PHI] = Result;
5387 if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5388 return false;
5390 // Create the BB that does the lookups.
5391 Module &Mod = *CommonDest->getParent()->getParent();
5392 BasicBlock *LookupBB = BasicBlock::Create(
5393 Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5395 // Compute the table index value.
5396 Builder.SetInsertPoint(SI);
5397 Value *TableIndex;
5398 if (MinCaseVal->isNullValue())
5399 TableIndex = SI->getCondition();
5400 else
5401 TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
5402 "switch.tableidx");
5404 // Compute the maximum table size representable by the integer type we are
5405 // switching upon.
5406 unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5407 uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5408 assert(MaxTableSize >= TableSize &&
5409 "It is impossible for a switch to have more entries than the max "
5410 "representable value of its input integer type's size.");
5412 // If the default destination is unreachable, or if the lookup table covers
5413 // all values of the conditional variable, branch directly to the lookup table
5414 // BB. Otherwise, check that the condition is within the case range.
5415 const bool DefaultIsReachable =
5416 !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5417 const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5418 BranchInst *RangeCheckBranch = nullptr;
5420 if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5421 Builder.CreateBr(LookupBB);
5422 // Note: We call removeProdecessor later since we need to be able to get the
5423 // PHI value for the default case in case we're using a bit mask.
5424 } else {
5425 Value *Cmp = Builder.CreateICmpULT(
5426 TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5427 RangeCheckBranch =
5428 Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5431 // Populate the BB that does the lookups.
5432 Builder.SetInsertPoint(LookupBB);
5434 if (NeedMask) {
5435 // Before doing the lookup, we do the hole check. The LookupBB is therefore
5436 // re-purposed to do the hole check, and we create a new LookupBB.
5437 BasicBlock *MaskBB = LookupBB;
5438 MaskBB->setName("switch.hole_check");
5439 LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5440 CommonDest->getParent(), CommonDest);
5442 // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
5443 // unnecessary illegal types.
5444 uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5445 APInt MaskInt(TableSizePowOf2, 0);
5446 APInt One(TableSizePowOf2, 1);
5447 // Build bitmask; fill in a 1 bit for every case.
5448 const ResultListTy &ResultList = ResultLists[PHIs[0]];
5449 for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5450 uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5451 .getLimitedValue();
5452 MaskInt |= One << Idx;
5454 ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5456 // Get the TableIndex'th bit of the bitmask.
5457 // If this bit is 0 (meaning hole) jump to the default destination,
5458 // else continue with table lookup.
5459 IntegerType *MapTy = TableMask->getType();
5460 Value *MaskIndex =
5461 Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5462 Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5463 Value *LoBit = Builder.CreateTrunc(
5464 Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5465 Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5467 Builder.SetInsertPoint(LookupBB);
5468 AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5471 if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5472 // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
5473 // do not delete PHINodes here.
5474 SI->getDefaultDest()->removePredecessor(SI->getParent(),
5475 /*KeepOneInputPHIs=*/true);
5478 bool ReturnedEarly = false;
5479 for (PHINode *PHI : PHIs) {
5480 const ResultListTy &ResultList = ResultLists[PHI];
5482 // If using a bitmask, use any value to fill the lookup table holes.
5483 Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5484 StringRef FuncName = Fn->getName();
5485 SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
5486 FuncName);
5488 Value *Result = Table.BuildLookup(TableIndex, Builder);
5490 // If the result is used to return immediately from the function, we want to
5491 // do that right here.
5492 if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5493 PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5494 Builder.CreateRet(Result);
5495 ReturnedEarly = true;
5496 break;
5499 // Do a small peephole optimization: re-use the switch table compare if
5500 // possible.
5501 if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5502 BasicBlock *PhiBlock = PHI->getParent();
5503 // Search for compare instructions which use the phi.
5504 for (auto *User : PHI->users()) {
5505 reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5509 PHI->addIncoming(Result, LookupBB);
5512 if (!ReturnedEarly)
5513 Builder.CreateBr(CommonDest);
5515 // Remove the switch.
5516 for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5517 BasicBlock *Succ = SI->getSuccessor(i);
5519 if (Succ == SI->getDefaultDest())
5520 continue;
5521 Succ->removePredecessor(SI->getParent());
5523 SI->eraseFromParent();
5525 ++NumLookupTables;
5526 if (NeedMask)
5527 ++NumLookupTablesHoles;
5528 return true;
5531 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5532 // See also SelectionDAGBuilder::isDense(), which this function was based on.
5533 uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5534 uint64_t Range = Diff + 1;
5535 uint64_t NumCases = Values.size();
5536 // 40% is the default density for building a jump table in optsize/minsize mode.
5537 uint64_t MinDensity = 40;
5539 return NumCases * 100 >= Range * MinDensity;
5542 /// Try to transform a switch that has "holes" in it to a contiguous sequence
5543 /// of cases.
5545 /// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5546 /// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5548 /// This converts a sparse switch into a dense switch which allows better
5549 /// lowering and could also allow transforming into a lookup table.
5550 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5551 const DataLayout &DL,
5552 const TargetTransformInfo &TTI) {
5553 auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5554 if (CondTy->getIntegerBitWidth() > 64 ||
5555 !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5556 return false;
5557 // Only bother with this optimization if there are more than 3 switch cases;
5558 // SDAG will only bother creating jump tables for 4 or more cases.
5559 if (SI->getNumCases() < 4)
5560 return false;
5562 // This transform is agnostic to the signedness of the input or case values. We
5563 // can treat the case values as signed or unsigned. We can optimize more common
5564 // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5565 // as signed.
5566 SmallVector<int64_t,4> Values;
5567 for (auto &C : SI->cases())
5568 Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5569 llvm::sort(Values);
5571 // If the switch is already dense, there's nothing useful to do here.
5572 if (isSwitchDense(Values))
5573 return false;
5575 // First, transform the values such that they start at zero and ascend.
5576 int64_t Base = Values[0];
5577 for (auto &V : Values)
5578 V -= (uint64_t)(Base);
5580 // Now we have signed numbers that have been shifted so that, given enough
5581 // precision, there are no negative values. Since the rest of the transform
5582 // is bitwise only, we switch now to an unsigned representation.
5584 // This transform can be done speculatively because it is so cheap - it
5585 // results in a single rotate operation being inserted.
5586 // FIXME: It's possible that optimizing a switch on powers of two might also
5587 // be beneficial - flag values are often powers of two and we could use a CLZ
5588 // as the key function.
5590 // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
5591 // one element and LLVM disallows duplicate cases, Shift is guaranteed to be
5592 // less than 64.
5593 unsigned Shift = 64;
5594 for (auto &V : Values)
5595 Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
5596 assert(Shift < 64);
5597 if (Shift > 0)
5598 for (auto &V : Values)
5599 V = (int64_t)((uint64_t)V >> Shift);
5601 if (!isSwitchDense(Values))
5602 // Transform didn't create a dense switch.
5603 return false;
5605 // The obvious transform is to shift the switch condition right and emit a
5606 // check that the condition actually cleanly divided by GCD, i.e.
5607 // C & (1 << Shift - 1) == 0
5608 // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5610 // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5611 // shift and puts the shifted-off bits in the uppermost bits. If any of these
5612 // are nonzero then the switch condition will be very large and will hit the
5613 // default case.
5615 auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5616 Builder.SetInsertPoint(SI);
5617 auto *ShiftC = ConstantInt::get(Ty, Shift);
5618 auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5619 auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5620 auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5621 auto *Rot = Builder.CreateOr(LShr, Shl);
5622 SI->replaceUsesOfWith(SI->getCondition(), Rot);
5624 for (auto Case : SI->cases()) {
5625 auto *Orig = Case.getCaseValue();
5626 auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5627 Case.setValue(
5628 cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5630 return true;
5633 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5634 BasicBlock *BB = SI->getParent();
5636 if (isValueEqualityComparison(SI)) {
5637 // If we only have one predecessor, and if it is a branch on this value,
5638 // see if that predecessor totally determines the outcome of this switch.
5639 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5640 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5641 return requestResimplify();
5643 Value *Cond = SI->getCondition();
5644 if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5645 if (SimplifySwitchOnSelect(SI, Select))
5646 return requestResimplify();
5648 // If the block only contains the switch, see if we can fold the block
5649 // away into any preds.
5650 if (SI == &*BB->instructionsWithoutDebug().begin())
5651 if (FoldValueComparisonIntoPredecessors(SI, Builder))
5652 return requestResimplify();
5655 // Try to transform the switch into an icmp and a branch.
5656 if (TurnSwitchRangeIntoICmp(SI, Builder))
5657 return requestResimplify();
5659 // Remove unreachable cases.
5660 if (eliminateDeadSwitchCases(SI, Options.AC, DL))
5661 return requestResimplify();
5663 if (switchToSelect(SI, Builder, DL, TTI))
5664 return requestResimplify();
5666 if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
5667 return requestResimplify();
5669 // The conversion from switch to lookup tables results in difficult-to-analyze
5670 // code and makes pruning branches much harder. This is a problem if the
5671 // switch expression itself can still be restricted as a result of inlining or
5672 // CVP. Therefore, only apply this transformation during late stages of the
5673 // optimisation pipeline.
5674 if (Options.ConvertSwitchToLookupTable &&
5675 SwitchToLookupTable(SI, Builder, DL, TTI))
5676 return requestResimplify();
5678 if (ReduceSwitchRange(SI, Builder, DL, TTI))
5679 return requestResimplify();
5681 return false;
5684 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
5685 BasicBlock *BB = IBI->getParent();
5686 bool Changed = false;
5688 // Eliminate redundant destinations.
5689 SmallPtrSet<Value *, 8> Succs;
5690 for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5691 BasicBlock *Dest = IBI->getDestination(i);
5692 if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5693 Dest->removePredecessor(BB);
5694 IBI->removeDestination(i);
5695 --i;
5696 --e;
5697 Changed = true;
5701 if (IBI->getNumDestinations() == 0) {
5702 // If the indirectbr has no successors, change it to unreachable.
5703 new UnreachableInst(IBI->getContext(), IBI);
5704 EraseTerminatorAndDCECond(IBI);
5705 return true;
5708 if (IBI->getNumDestinations() == 1) {
5709 // If the indirectbr has one successor, change it to a direct branch.
5710 BranchInst::Create(IBI->getDestination(0), IBI);
5711 EraseTerminatorAndDCECond(IBI);
5712 return true;
5715 if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5716 if (SimplifyIndirectBrOnSelect(IBI, SI))
5717 return requestResimplify();
5719 return Changed;
5722 /// Given an block with only a single landing pad and a unconditional branch
5723 /// try to find another basic block which this one can be merged with. This
5724 /// handles cases where we have multiple invokes with unique landing pads, but
5725 /// a shared handler.
5727 /// We specifically choose to not worry about merging non-empty blocks
5728 /// here. That is a PRE/scheduling problem and is best solved elsewhere. In
5729 /// practice, the optimizer produces empty landing pad blocks quite frequently
5730 /// when dealing with exception dense code. (see: instcombine, gvn, if-else
5731 /// sinking in this file)
5733 /// This is primarily a code size optimization. We need to avoid performing
5734 /// any transform which might inhibit optimization (such as our ability to
5735 /// specialize a particular handler via tail commoning). We do this by not
5736 /// merging any blocks which require us to introduce a phi. Since the same
5737 /// values are flowing through both blocks, we don't lose any ability to
5738 /// specialize. If anything, we make such specialization more likely.
5740 /// TODO - This transformation could remove entries from a phi in the target
5741 /// block when the inputs in the phi are the same for the two blocks being
5742 /// merged. In some cases, this could result in removal of the PHI entirely.
5743 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5744 BasicBlock *BB) {
5745 auto Succ = BB->getUniqueSuccessor();
5746 assert(Succ);
5747 // If there's a phi in the successor block, we'd likely have to introduce
5748 // a phi into the merged landing pad block.
5749 if (isa<PHINode>(*Succ->begin()))
5750 return false;
5752 for (BasicBlock *OtherPred : predecessors(Succ)) {
5753 if (BB == OtherPred)
5754 continue;
5755 BasicBlock::iterator I = OtherPred->begin();
5756 LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5757 if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5758 continue;
5759 for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5761 BranchInst *BI2 = dyn_cast<BranchInst>(I);
5762 if (!BI2 || !BI2->isIdenticalTo(BI))
5763 continue;
5765 // We've found an identical block. Update our predecessors to take that
5766 // path instead and make ourselves dead.
5767 SmallPtrSet<BasicBlock *, 16> Preds;
5768 Preds.insert(pred_begin(BB), pred_end(BB));
5769 for (BasicBlock *Pred : Preds) {
5770 InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5771 assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
5772 "unexpected successor");
5773 II->setUnwindDest(OtherPred);
5776 // The debug info in OtherPred doesn't cover the merged control flow that
5777 // used to go through BB. We need to delete it or update it.
5778 for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
5779 Instruction &Inst = *I;
5780 I++;
5781 if (isa<DbgInfoIntrinsic>(Inst))
5782 Inst.eraseFromParent();
5785 SmallPtrSet<BasicBlock *, 16> Succs;
5786 Succs.insert(succ_begin(BB), succ_end(BB));
5787 for (BasicBlock *Succ : Succs) {
5788 Succ->removePredecessor(BB);
5791 IRBuilder<> Builder(BI);
5792 Builder.CreateUnreachable();
5793 BI->eraseFromParent();
5794 return true;
5796 return false;
5799 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
5800 IRBuilder<> &Builder) {
5801 BasicBlock *BB = BI->getParent();
5802 BasicBlock *Succ = BI->getSuccessor(0);
5804 // If the Terminator is the only non-phi instruction, simplify the block.
5805 // If LoopHeader is provided, check if the block or its successor is a loop
5806 // header. (This is for early invocations before loop simplify and
5807 // vectorization to keep canonical loop forms for nested loops. These blocks
5808 // can be eliminated when the pass is invoked later in the back-end.)
5809 // Note that if BB has only one predecessor then we do not introduce new
5810 // backedge, so we can eliminate BB.
5811 bool NeedCanonicalLoop =
5812 Options.NeedCanonicalLoop &&
5813 (LoopHeaders && BB->hasNPredecessorsOrMore(2) &&
5814 (LoopHeaders->count(BB) || LoopHeaders->count(Succ)));
5815 BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5816 if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5817 !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB))
5818 return true;
5820 // If the only instruction in the block is a seteq/setne comparison against a
5821 // constant, try to simplify the block.
5822 if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5823 if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5824 for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5826 if (I->isTerminator() &&
5827 tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
5828 return true;
5831 // See if we can merge an empty landing pad block with another which is
5832 // equivalent.
5833 if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5834 for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5836 if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
5837 return true;
5840 // If this basic block is ONLY a compare and a branch, and if a predecessor
5841 // branches to us and our successor, fold the comparison into the
5842 // predecessor and use logical operations to update the incoming value
5843 // for PHI nodes in common successor.
5844 if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold))
5845 return requestResimplify();
5846 return false;
5849 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5850 BasicBlock *PredPred = nullptr;
5851 for (auto *P : predecessors(BB)) {
5852 BasicBlock *PPred = P->getSinglePredecessor();
5853 if (!PPred || (PredPred && PredPred != PPred))
5854 return nullptr;
5855 PredPred = PPred;
5857 return PredPred;
5860 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5861 BasicBlock *BB = BI->getParent();
5862 const Function *Fn = BB->getParent();
5863 if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing))
5864 return false;
5866 // Conditional branch
5867 if (isValueEqualityComparison(BI)) {
5868 // If we only have one predecessor, and if it is a branch on this value,
5869 // see if that predecessor totally determines the outcome of this
5870 // switch.
5871 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5872 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5873 return requestResimplify();
5875 // This block must be empty, except for the setcond inst, if it exists.
5876 // Ignore dbg intrinsics.
5877 auto I = BB->instructionsWithoutDebug().begin();
5878 if (&*I == BI) {
5879 if (FoldValueComparisonIntoPredecessors(BI, Builder))
5880 return requestResimplify();
5881 } else if (&*I == cast<Instruction>(BI->getCondition())) {
5882 ++I;
5883 if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5884 return requestResimplify();
5888 // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5889 if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5890 return true;
5892 // If this basic block has dominating predecessor blocks and the dominating
5893 // blocks' conditions imply BI's condition, we know the direction of BI.
5894 Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
5895 if (Imp) {
5896 // Turn this into a branch on constant.
5897 auto *OldCond = BI->getCondition();
5898 ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
5899 : ConstantInt::getFalse(BB->getContext());
5900 BI->setCondition(TorF);
5901 RecursivelyDeleteTriviallyDeadInstructions(OldCond);
5902 return requestResimplify();
5905 // If this basic block is ONLY a compare and a branch, and if a predecessor
5906 // branches to us and one of our successors, fold the comparison into the
5907 // predecessor and use logical operations to pick the right destination.
5908 if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold))
5909 return requestResimplify();
5911 // We have a conditional branch to two blocks that are only reachable
5912 // from BI. We know that the condbr dominates the two blocks, so see if
5913 // there is any identical code in the "then" and "else" blocks. If so, we
5914 // can hoist it up to the branching block.
5915 if (BI->getSuccessor(0)->getSinglePredecessor()) {
5916 if (BI->getSuccessor(1)->getSinglePredecessor()) {
5917 if (HoistThenElseCodeToIf(BI, TTI))
5918 return requestResimplify();
5919 } else {
5920 // If Successor #1 has multiple preds, we may be able to conditionally
5921 // execute Successor #0 if it branches to Successor #1.
5922 Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
5923 if (Succ0TI->getNumSuccessors() == 1 &&
5924 Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
5925 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
5926 return requestResimplify();
5928 } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
5929 // If Successor #0 has multiple preds, we may be able to conditionally
5930 // execute Successor #1 if it branches to Successor #0.
5931 Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
5932 if (Succ1TI->getNumSuccessors() == 1 &&
5933 Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
5934 if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
5935 return requestResimplify();
5938 // If this is a branch on a phi node in the current block, thread control
5939 // through this block if any PHI node entries are constants.
5940 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
5941 if (PN->getParent() == BI->getParent())
5942 if (FoldCondBranchOnPHI(BI, DL, Options.AC))
5943 return requestResimplify();
5945 // Scan predecessor blocks for conditional branches.
5946 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
5947 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
5948 if (PBI != BI && PBI->isConditional())
5949 if (SimplifyCondBranchToCondBranch(PBI, BI, DL, TTI))
5950 return requestResimplify();
5952 // Look for diamond patterns.
5953 if (MergeCondStores)
5954 if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
5955 if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
5956 if (PBI != BI && PBI->isConditional())
5957 if (mergeConditionalStores(PBI, BI, DL, TTI))
5958 return requestResimplify();
5960 return false;
5963 /// Check if passing a value to an instruction will cause undefined behavior.
5964 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
5965 Constant *C = dyn_cast<Constant>(V);
5966 if (!C)
5967 return false;
5969 if (I->use_empty())
5970 return false;
5972 if (C->isNullValue() || isa<UndefValue>(C)) {
5973 // Only look at the first use, avoid hurting compile time with long uselists
5974 User *Use = *I->user_begin();
5976 // Now make sure that there are no instructions in between that can alter
5977 // control flow (eg. calls)
5978 for (BasicBlock::iterator
5979 i = ++BasicBlock::iterator(I),
5980 UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
5981 i != UI; ++i)
5982 if (i == I->getParent()->end() || i->mayHaveSideEffects())
5983 return false;
5985 // Look through GEPs. A load from a GEP derived from NULL is still undefined
5986 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
5987 if (GEP->getPointerOperand() == I)
5988 return passingValueIsAlwaysUndefined(V, GEP);
5990 // Look through bitcasts.
5991 if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
5992 return passingValueIsAlwaysUndefined(V, BC);
5994 // Load from null is undefined.
5995 if (LoadInst *LI = dyn_cast<LoadInst>(Use))
5996 if (!LI->isVolatile())
5997 return !NullPointerIsDefined(LI->getFunction(),
5998 LI->getPointerAddressSpace());
6000 // Store to null is undefined.
6001 if (StoreInst *SI = dyn_cast<StoreInst>(Use))
6002 if (!SI->isVolatile())
6003 return (!NullPointerIsDefined(SI->getFunction(),
6004 SI->getPointerAddressSpace())) &&
6005 SI->getPointerOperand() == I;
6007 // A call to null is undefined.
6008 if (auto CS = CallSite(Use))
6009 return !NullPointerIsDefined(CS->getFunction()) &&
6010 CS.getCalledValue() == I;
6012 return false;
6015 /// If BB has an incoming value that will always trigger undefined behavior
6016 /// (eg. null pointer dereference), remove the branch leading here.
6017 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
6018 for (PHINode &PHI : BB->phis())
6019 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
6020 if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
6021 Instruction *T = PHI.getIncomingBlock(i)->getTerminator();
6022 IRBuilder<> Builder(T);
6023 if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
6024 BB->removePredecessor(PHI.getIncomingBlock(i));
6025 // Turn uncoditional branches into unreachables and remove the dead
6026 // destination from conditional branches.
6027 if (BI->isUnconditional())
6028 Builder.CreateUnreachable();
6029 else
6030 Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
6031 : BI->getSuccessor(0));
6032 BI->eraseFromParent();
6033 return true;
6035 // TODO: SwitchInst.
6038 return false;
6041 bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
6042 bool Changed = false;
6044 assert(BB && BB->getParent() && "Block not embedded in function!");
6045 assert(BB->getTerminator() && "Degenerate basic block encountered!");
6047 // Remove basic blocks that have no predecessors (except the entry block)...
6048 // or that just have themself as a predecessor. These are unreachable.
6049 if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
6050 BB->getSinglePredecessor() == BB) {
6051 LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
6052 DeleteDeadBlock(BB);
6053 return true;
6056 // Check to see if we can constant propagate this terminator instruction
6057 // away...
6058 Changed |= ConstantFoldTerminator(BB, true);
6060 // Check for and eliminate duplicate PHI nodes in this block.
6061 Changed |= EliminateDuplicatePHINodes(BB);
6063 // Check for and remove branches that will always cause undefined behavior.
6064 Changed |= removeUndefIntroducingPredecessor(BB);
6066 // Merge basic blocks into their predecessor if there is only one distinct
6067 // pred, and if there is only one distinct successor of the predecessor, and
6068 // if there are no PHI nodes.
6069 if (MergeBlockIntoPredecessor(BB))
6070 return true;
6072 if (SinkCommon && Options.SinkCommonInsts)
6073 Changed |= SinkCommonCodeFromPredecessors(BB);
6075 IRBuilder<> Builder(BB);
6077 // If there is a trivial two-entry PHI node in this basic block, and we can
6078 // eliminate it, do so now.
6079 if (auto *PN = dyn_cast<PHINode>(BB->begin()))
6080 if (PN->getNumIncomingValues() == 2)
6081 Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
6083 Builder.SetInsertPoint(BB->getTerminator());
6084 if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
6085 if (BI->isUnconditional()) {
6086 if (SimplifyUncondBranch(BI, Builder))
6087 return true;
6088 } else {
6089 if (SimplifyCondBranch(BI, Builder))
6090 return true;
6092 } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
6093 if (SimplifyReturn(RI, Builder))
6094 return true;
6095 } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
6096 if (SimplifyResume(RI, Builder))
6097 return true;
6098 } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
6099 if (SimplifyCleanupReturn(RI))
6100 return true;
6101 } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
6102 if (SimplifySwitch(SI, Builder))
6103 return true;
6104 } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) {
6105 if (SimplifyUnreachable(UI))
6106 return true;
6107 } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) {
6108 if (SimplifyIndirectBr(IBI))
6109 return true;
6112 return Changed;
6115 bool SimplifyCFGOpt::run(BasicBlock *BB) {
6116 bool Changed = false;
6118 // Repeated simplify BB as long as resimplification is requested.
6119 do {
6120 Resimplify = false;
6122 // Perform one round of simplifcation. Resimplify flag will be set if
6123 // another iteration is requested.
6124 Changed |= simplifyOnce(BB);
6125 } while (Resimplify);
6127 return Changed;
6130 bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6131 const SimplifyCFGOptions &Options,
6132 SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
6133 return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders,
6134 Options)
6135 .run(BB);