[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / test / Transforms / InstSimplify / shift-knownbits.ll
blob63b9b76fd22f77b75cfc0581d67f09aaf7f375b5
1 ; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
2 ; RUN: opt < %s -instsimplify -S | FileCheck %s
4 ; If any bits of the shift amount are known to make it exceed or equal
5 ; the number of bits in the type, the shift causes undefined behavior.
7 define i32 @shl_amount_is_known_bogus(i32 %a, i32 %b) {
8 ; CHECK-LABEL: @shl_amount_is_known_bogus(
9 ; CHECK-NEXT:    ret i32 undef
11   %or = or i32 %b, 32
12   %shl = shl i32 %a, %or
13   ret i32 %shl
16 ; Check some weird types and the other shift ops.
18 define i31 @lshr_amount_is_known_bogus(i31 %a, i31 %b) {
19 ; CHECK-LABEL: @lshr_amount_is_known_bogus(
20 ; CHECK-NEXT:    ret i31 undef
22   %or = or i31 %b, 31
23   %shr = lshr i31 %a, %or
24   ret i31 %shr
27 define i33 @ashr_amount_is_known_bogus(i33 %a, i33 %b) {
28 ; CHECK-LABEL: @ashr_amount_is_known_bogus(
29 ; CHECK-NEXT:    ret i33 undef
31   %or = or i33 %b, 33
32   %shr = ashr i33 %a, %or
33   ret i33 %shr
37 ; If all valid bits of the shift amount are known 0, there's no shift.
38 ; It doesn't matter if high bits are set because that would be undefined.
39 ; Therefore, the only possible valid result of these shifts is %a.
41 define i16 @ashr_amount_is_zero(i16 %a, i16 %b) {
42 ; CHECK-LABEL: @ashr_amount_is_zero(
43 ; CHECK-NEXT:    ret i16 %a
45   %and = and i16 %b, 65520 ; 0xfff0
46   %shr = ashr i16 %a, %and
47   ret i16 %shr
50 define i300 @lshr_amount_is_zero(i300 %a, i300 %b) {
51 ; CHECK-LABEL: @lshr_amount_is_zero(
52 ; CHECK-NEXT:    ret i300 %a
54   %and = and i300 %b, 2048
55   %shr = lshr i300 %a, %and
56   ret i300 %shr
59 define i9 @shl_amount_is_zero(i9 %a, i9 %b) {
60 ; CHECK-LABEL: @shl_amount_is_zero(
61 ; CHECK-NEXT:    ret i9 %a
63   %and = and i9 %b, 496 ; 0x1f0
64   %shl = shl i9 %a, %and
65   ret i9 %shl
69 ; Verify that we've calculated the log2 boundary of valid bits correctly for a weird type.
71 define i9 @shl_amount_is_not_known_zero(i9 %a, i9 %b) {
72 ; CHECK-LABEL: @shl_amount_is_not_known_zero(
73 ; CHECK-NEXT:    [[AND:%.*]] = and i9 %b, -8
74 ; CHECK-NEXT:    [[SHL:%.*]] = shl i9 %a, [[AND]]
75 ; CHECK-NEXT:    ret i9 [[SHL]]
77   %and = and i9 %b, 504 ; 0x1f8
78   %shl = shl i9 %a, %and
79   ret i9 %shl
83 ; For vectors, we need all scalar elements to meet the requirements to optimize.
85 define <2 x i32> @ashr_vector_bogus(<2 x i32> %a, <2 x i32> %b) {
86 ; CHECK-LABEL: @ashr_vector_bogus(
87 ; CHECK-NEXT:    ret <2 x i32> undef
89   %or = or <2 x i32> %b, <i32 32, i32 32>
90   %shr = ashr <2 x i32> %a, %or
91   ret <2 x i32> %shr
94 ; FIXME: This is undef, but computeKnownBits doesn't handle the union.
95 define <2 x i32> @shl_vector_bogus(<2 x i32> %a, <2 x i32> %b) {
96 ; CHECK-LABEL: @shl_vector_bogus(
97 ; CHECK-NEXT:    [[OR:%.*]] = or <2 x i32> %b, <i32 32, i32 64>
98 ; CHECK-NEXT:    [[SHL:%.*]] = shl <2 x i32> %a, [[OR]]
99 ; CHECK-NEXT:    ret <2 x i32> [[SHL]]
101   %or = or <2 x i32> %b, <i32 32, i32 64>
102   %shl = shl <2 x i32> %a, %or
103   ret <2 x i32> %shl
106 define <2 x i32> @lshr_vector_zero(<2 x i32> %a, <2 x i32> %b) {
107 ; CHECK-LABEL: @lshr_vector_zero(
108 ; CHECK-NEXT:    ret <2 x i32> %a
110   %and = and <2 x i32> %b, <i32 64, i32 256>
111   %shr = lshr <2 x i32> %a, %and
112   ret <2 x i32> %shr
115 ; Make sure that weird vector types work too.
116 define <2 x i15> @shl_vector_zero(<2 x i15> %a, <2 x i15> %b) {
117 ; CHECK-LABEL: @shl_vector_zero(
118 ; CHECK-NEXT:    ret <2 x i15> %a
120   %and = and <2 x i15> %b, <i15 1024, i15 1024>
121   %shl = shl <2 x i15> %a, %and
122   ret <2 x i15> %shl
125 define <2 x i32> @shl_vector_for_real(<2 x i32> %a, <2 x i32> %b) {
126 ; CHECK-LABEL: @shl_vector_for_real(
127 ; CHECK-NEXT:    [[AND:%.*]] = and <2 x i32> %b, <i32 3, i32 3>
128 ; CHECK-NEXT:    [[SHL:%.*]] = shl <2 x i32> %a, [[AND]]
129 ; CHECK-NEXT:    ret <2 x i32> [[SHL]]
131   %and = and <2 x i32> %b, <i32 3, i32 3> ; a necessary mask op
132   %shl = shl <2 x i32> %a, %and
133   ret <2 x i32> %shl
137 ; We calculate the valid bits of the shift using log2, and log2 of 1 (the type width) is 0.
138 ; That should be ok. Either the shift amount is 0 or invalid (1), so we can always return %a.
140 define i1 @shl_i1(i1 %a, i1 %b) {
141 ; CHECK-LABEL: @shl_i1(
142 ; CHECK-NEXT:    ret i1 %a
144   %shl = shl i1 %a, %b
145   ret i1 %shl
148 ; Simplify count leading/trailing zeros to zero if all valid bits are shifted out.
150 declare i32 @llvm.cttz.i32(i32, i1) nounwind readnone
151 declare i32 @llvm.ctlz.i32(i32, i1) nounwind readnone
152 declare <2 x i8> @llvm.cttz.v2i8(<2 x i8>, i1) nounwind readnone
153 declare <2 x i8> @llvm.ctlz.v2i8(<2 x i8>, i1) nounwind readnone
155 define i32 @lshr_ctlz_zero_is_undef(i32 %x) {
156 ; CHECK-LABEL: @lshr_ctlz_zero_is_undef(
157 ; CHECK-NEXT:    ret i32 0
159   %ct = call i32 @llvm.ctlz.i32(i32 %x, i1 true)
160   %sh = lshr i32 %ct, 5
161   ret i32 %sh
164 define i32 @lshr_cttz_zero_is_undef(i32 %x) {
165 ; CHECK-LABEL: @lshr_cttz_zero_is_undef(
166 ; CHECK-NEXT:    ret i32 0
168   %ct = call i32 @llvm.cttz.i32(i32 %x, i1 true)
169   %sh = lshr i32 %ct, 5
170   ret i32 %sh
173 define <2 x i8> @lshr_ctlz_zero_is_undef_splat_vec(<2 x i8> %x) {
174 ; CHECK-LABEL: @lshr_ctlz_zero_is_undef_splat_vec(
175 ; CHECK-NEXT:    ret <2 x i8> zeroinitializer
177   %ct = call <2 x i8> @llvm.ctlz.v2i8(<2 x i8> %x, i1 true)
178   %sh = lshr <2 x i8> %ct, <i8 3, i8 3>
179   ret <2 x i8> %sh
182 define <2 x i8> @lshr_cttz_zero_is_undef_splat_vec(<2 x i8> %x) {
183 ; CHECK-LABEL: @lshr_cttz_zero_is_undef_splat_vec(
184 ; CHECK-NEXT:    ret <2 x i8> zeroinitializer
186   %ct = call <2 x i8> @llvm.cttz.v2i8(<2 x i8> %x, i1 true)
187   %sh = lshr <2 x i8> %ct, <i8 3, i8 3>
188   ret <2 x i8> %sh