[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / unittests / ExecutionEngine / MCJIT / MCJITTestBase.h
blobe0c4b07a71b08f5541d6cb4f75cd6f30e342a2b5
1 //===- MCJITTestBase.h - Common base class for MCJIT Unit tests -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This class implements common functionality required by the MCJIT unit tests,
10 // as well as logic to skip tests on unsupported architectures and operating
11 // systems.
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_UNITTESTS_EXECUTIONENGINE_MCJIT_MCJITTESTBASE_H
16 #define LLVM_UNITTESTS_EXECUTIONENGINE_MCJIT_MCJITTESTBASE_H
18 #include "MCJITTestAPICommon.h"
19 #include "llvm/Config/config.h"
20 #include "llvm/ExecutionEngine/ExecutionEngine.h"
21 #include "llvm/ExecutionEngine/SectionMemoryManager.h"
22 #include "llvm/IR/Function.h"
23 #include "llvm/IR/IRBuilder.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/IR/Type.h"
27 #include "llvm/Support/CodeGen.h"
29 namespace llvm {
31 /// Helper class that can build very simple Modules
32 class TrivialModuleBuilder {
33 protected:
34 LLVMContext Context;
35 IRBuilder<> Builder;
36 std::string BuilderTriple;
38 TrivialModuleBuilder(const std::string &Triple)
39 : Builder(Context), BuilderTriple(Triple) {}
41 Module *createEmptyModule(StringRef Name = StringRef()) {
42 Module * M = new Module(Name, Context);
43 M->setTargetTriple(Triple::normalize(BuilderTriple));
44 return M;
47 Function *startFunction(Module *M, FunctionType *FT, StringRef Name) {
48 Function *Result =
49 Function::Create(FT, GlobalValue::ExternalLinkage, Name, M);
51 BasicBlock *BB = BasicBlock::Create(Context, Name, Result);
52 Builder.SetInsertPoint(BB);
54 return Result;
57 void endFunctionWithRet(Function *Func, Value *RetValue) {
58 Builder.CreateRet(RetValue);
61 // Inserts a simple function that invokes Callee and takes the same arguments:
62 // int Caller(...) { return Callee(...); }
63 Function *insertSimpleCallFunction(Module *M, Function *Callee) {
64 Function *Result = startFunction(M, Callee->getFunctionType(), "caller");
66 SmallVector<Value*, 1> CallArgs;
68 for (Argument &A : Result->args())
69 CallArgs.push_back(&A);
71 Value *ReturnCode = Builder.CreateCall(Callee, CallArgs);
72 Builder.CreateRet(ReturnCode);
73 return Result;
76 // Inserts a function named 'main' that returns a uint32_t:
77 // int32_t main() { return X; }
78 // where X is given by returnCode
79 Function *insertMainFunction(Module *M, uint32_t returnCode) {
80 Function *Result = startFunction(
81 M, FunctionType::get(Type::getInt32Ty(Context), {}, false), "main");
83 Value *ReturnVal = ConstantInt::get(Context, APInt(32, returnCode));
84 endFunctionWithRet(Result, ReturnVal);
86 return Result;
89 // Inserts a function
90 // int32_t add(int32_t a, int32_t b) { return a + b; }
91 // in the current module and returns a pointer to it.
92 Function *insertAddFunction(Module *M, StringRef Name = "add") {
93 Function *Result = startFunction(
95 FunctionType::get(
96 Type::getInt32Ty(Context),
97 {Type::getInt32Ty(Context), Type::getInt32Ty(Context)}, false),
98 Name);
100 Function::arg_iterator args = Result->arg_begin();
101 Value *Arg1 = &*args;
102 Value *Arg2 = &*++args;
103 Value *AddResult = Builder.CreateAdd(Arg1, Arg2);
105 endFunctionWithRet(Result, AddResult);
107 return Result;
110 // Inserts a declaration to a function defined elsewhere
111 Function *insertExternalReferenceToFunction(Module *M, FunctionType *FTy,
112 StringRef Name) {
113 Function *Result =
114 Function::Create(FTy, GlobalValue::ExternalLinkage, Name, M);
115 return Result;
118 // Inserts an declaration to a function defined elsewhere
119 Function *insertExternalReferenceToFunction(Module *M, Function *Func) {
120 Function *Result = Function::Create(Func->getFunctionType(),
121 GlobalValue::ExternalLinkage,
122 Func->getName(), M);
123 return Result;
126 // Inserts a global variable of type int32
127 // FIXME: make this a template function to support any type
128 GlobalVariable *insertGlobalInt32(Module *M,
129 StringRef name,
130 int32_t InitialValue) {
131 Type *GlobalTy = Type::getInt32Ty(Context);
132 Constant *IV = ConstantInt::get(Context, APInt(32, InitialValue));
133 GlobalVariable *Global = new GlobalVariable(*M,
134 GlobalTy,
135 false,
136 GlobalValue::ExternalLinkage,
138 name);
139 return Global;
142 // Inserts a function
143 // int32_t recursive_add(int32_t num) {
144 // if (num == 0) {
145 // return num;
146 // } else {
147 // int32_t recursive_param = num - 1;
148 // return num + Helper(recursive_param);
149 // }
150 // }
151 // NOTE: if Helper is left as the default parameter, Helper == recursive_add.
152 Function *insertAccumulateFunction(Module *M,
153 Function *Helper = nullptr,
154 StringRef Name = "accumulate") {
155 Function *Result =
156 startFunction(M,
157 FunctionType::get(Type::getInt32Ty(Context),
158 {Type::getInt32Ty(Context)}, false),
159 Name);
160 if (!Helper)
161 Helper = Result;
163 BasicBlock *BaseCase = BasicBlock::Create(Context, "", Result);
164 BasicBlock *RecursiveCase = BasicBlock::Create(Context, "", Result);
166 // if (num == 0)
167 Value *Param = &*Result->arg_begin();
168 Value *Zero = ConstantInt::get(Context, APInt(32, 0));
169 Builder.CreateCondBr(Builder.CreateICmpEQ(Param, Zero),
170 BaseCase, RecursiveCase);
172 // return num;
173 Builder.SetInsertPoint(BaseCase);
174 Builder.CreateRet(Param);
176 // int32_t recursive_param = num - 1;
177 // return Helper(recursive_param);
178 Builder.SetInsertPoint(RecursiveCase);
179 Value *One = ConstantInt::get(Context, APInt(32, 1));
180 Value *RecursiveParam = Builder.CreateSub(Param, One);
181 Value *RecursiveReturn = Builder.CreateCall(Helper, RecursiveParam);
182 Value *Accumulator = Builder.CreateAdd(Param, RecursiveReturn);
183 Builder.CreateRet(Accumulator);
185 return Result;
188 // Populates Modules A and B:
189 // Module A { Extern FB1, Function FA which calls FB1 },
190 // Module B { Extern FA, Function FB1, Function FB2 which calls FA },
191 void createCrossModuleRecursiveCase(std::unique_ptr<Module> &A, Function *&FA,
192 std::unique_ptr<Module> &B,
193 Function *&FB1, Function *&FB2) {
194 // Define FB1 in B.
195 B.reset(createEmptyModule("B"));
196 FB1 = insertAccumulateFunction(B.get(), nullptr, "FB1");
198 // Declare FB1 in A (as an external).
199 A.reset(createEmptyModule("A"));
200 Function *FB1Extern = insertExternalReferenceToFunction(A.get(), FB1);
202 // Define FA in A (with a call to FB1).
203 FA = insertAccumulateFunction(A.get(), FB1Extern, "FA");
205 // Declare FA in B (as an external)
206 Function *FAExtern = insertExternalReferenceToFunction(B.get(), FA);
208 // Define FB2 in B (with a call to FA)
209 FB2 = insertAccumulateFunction(B.get(), FAExtern, "FB2");
212 // Module A { Function FA },
213 // Module B { Extern FA, Function FB which calls FA },
214 // Module C { Extern FB, Function FC which calls FB },
215 void
216 createThreeModuleChainedCallsCase(std::unique_ptr<Module> &A, Function *&FA,
217 std::unique_ptr<Module> &B, Function *&FB,
218 std::unique_ptr<Module> &C, Function *&FC) {
219 A.reset(createEmptyModule("A"));
220 FA = insertAddFunction(A.get());
222 B.reset(createEmptyModule("B"));
223 Function *FAExtern_in_B = insertExternalReferenceToFunction(B.get(), FA);
224 FB = insertSimpleCallFunction(B.get(), FAExtern_in_B);
226 C.reset(createEmptyModule("C"));
227 Function *FBExtern_in_C = insertExternalReferenceToFunction(C.get(), FB);
228 FC = insertSimpleCallFunction(C.get(), FBExtern_in_C);
231 // Module A { Function FA },
232 // Populates Modules A and B:
233 // Module B { Function FB }
234 void createTwoModuleCase(std::unique_ptr<Module> &A, Function *&FA,
235 std::unique_ptr<Module> &B, Function *&FB) {
236 A.reset(createEmptyModule("A"));
237 FA = insertAddFunction(A.get());
239 B.reset(createEmptyModule("B"));
240 FB = insertAddFunction(B.get());
243 // Module A { Function FA },
244 // Module B { Extern FA, Function FB which calls FA }
245 void createTwoModuleExternCase(std::unique_ptr<Module> &A, Function *&FA,
246 std::unique_ptr<Module> &B, Function *&FB) {
247 A.reset(createEmptyModule("A"));
248 FA = insertAddFunction(A.get());
250 B.reset(createEmptyModule("B"));
251 Function *FAExtern_in_B = insertExternalReferenceToFunction(B.get(), FA);
252 FB = insertSimpleCallFunction(B.get(), FAExtern_in_B);
255 // Module A { Function FA },
256 // Module B { Extern FA, Function FB which calls FA },
257 // Module C { Extern FB, Function FC which calls FA },
258 void createThreeModuleCase(std::unique_ptr<Module> &A, Function *&FA,
259 std::unique_ptr<Module> &B, Function *&FB,
260 std::unique_ptr<Module> &C, Function *&FC) {
261 A.reset(createEmptyModule("A"));
262 FA = insertAddFunction(A.get());
264 B.reset(createEmptyModule("B"));
265 Function *FAExtern_in_B = insertExternalReferenceToFunction(B.get(), FA);
266 FB = insertSimpleCallFunction(B.get(), FAExtern_in_B);
268 C.reset(createEmptyModule("C"));
269 Function *FAExtern_in_C = insertExternalReferenceToFunction(C.get(), FA);
270 FC = insertSimpleCallFunction(C.get(), FAExtern_in_C);
274 class MCJITTestBase : public MCJITTestAPICommon, public TrivialModuleBuilder {
275 protected:
276 MCJITTestBase()
277 : TrivialModuleBuilder(HostTriple), OptLevel(CodeGenOpt::None),
278 CodeModel(CodeModel::Small), MArch(""), MM(new SectionMemoryManager) {
279 // The architectures below are known to be compatible with MCJIT as they
280 // are copied from test/ExecutionEngine/MCJIT/lit.local.cfg and should be
281 // kept in sync.
282 SupportedArchs.push_back(Triple::aarch64);
283 SupportedArchs.push_back(Triple::arm);
284 SupportedArchs.push_back(Triple::mips);
285 SupportedArchs.push_back(Triple::mipsel);
286 SupportedArchs.push_back(Triple::mips64);
287 SupportedArchs.push_back(Triple::mips64el);
288 SupportedArchs.push_back(Triple::x86);
289 SupportedArchs.push_back(Triple::x86_64);
291 // Some architectures have sub-architectures in which tests will fail, like
292 // ARM. These two vectors will define if they do have sub-archs (to avoid
293 // extra work for those who don't), and if so, if they are listed to work
294 HasSubArchs.push_back(Triple::arm);
295 SupportedSubArchs.push_back("armv6");
296 SupportedSubArchs.push_back("armv7");
298 UnsupportedEnvironments.push_back(Triple::Cygnus);
301 void createJIT(std::unique_ptr<Module> M) {
303 // Due to the EngineBuilder constructor, it is required to have a Module
304 // in order to construct an ExecutionEngine (i.e. MCJIT)
305 assert(M != 0 && "a non-null Module must be provided to create MCJIT");
307 EngineBuilder EB(std::move(M));
308 std::string Error;
309 TheJIT.reset(EB.setEngineKind(EngineKind::JIT)
310 .setMCJITMemoryManager(std::move(MM))
311 .setErrorStr(&Error)
312 .setOptLevel(CodeGenOpt::None)
313 .setMArch(MArch)
314 .setMCPU(sys::getHostCPUName())
315 //.setMAttrs(MAttrs)
316 .create());
317 // At this point, we cannot modify the module any more.
318 assert(TheJIT.get() != NULL && "error creating MCJIT with EngineBuilder");
321 CodeGenOpt::Level OptLevel;
322 CodeModel::Model CodeModel;
323 StringRef MArch;
324 SmallVector<std::string, 1> MAttrs;
325 std::unique_ptr<ExecutionEngine> TheJIT;
326 std::unique_ptr<RTDyldMemoryManager> MM;
328 std::unique_ptr<Module> M;
331 } // namespace llvm
333 #endif // LLVM_UNITTESTS_EXECUTIONENGINE_MCJIT_MCJITTESTBASE_H