[InstCombine] Signed saturation tests. NFC
[llvm-complete.git] / utils / TableGen / DFAEmitter.cpp
blobdd3db7c150ba686d46b6337bf636f61079b0efba
1 //===- DFAEmitter.cpp - Finite state automaton emitter --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This class can produce a generic deterministic finite state automaton (DFA),
10 // given a set of possible states and transitions.
12 // The input transitions can be nondeterministic - this class will produce the
13 // deterministic equivalent state machine.
15 // The generated code can run the DFA and produce an accepted / not accepted
16 // state and also produce, given a sequence of transitions that results in an
17 // accepted state, the sequence of intermediate states. This is useful if the
18 // initial automaton was nondeterministic - it allows mapping back from the DFA
19 // to the NFA.
21 //===----------------------------------------------------------------------===//
22 #define DEBUG_TYPE "dfa-emitter"
24 #include "DFAEmitter.h"
25 #include "CodeGenTarget.h"
26 #include "SequenceToOffsetTable.h"
27 #include "TableGenBackends.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/UniqueVector.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/TableGen/Record.h"
34 #include "llvm/TableGen/TableGenBackend.h"
35 #include <cassert>
36 #include <cstdint>
37 #include <map>
38 #include <set>
39 #include <string>
40 #include <vector>
42 using namespace llvm;
44 //===----------------------------------------------------------------------===//
45 // DfaEmitter implementation. This is independent of the GenAutomaton backend.
46 //===----------------------------------------------------------------------===//
48 void DfaEmitter::addTransition(state_type From, state_type To, action_type A) {
49 Actions.insert(A);
50 NfaStates.insert(From);
51 NfaStates.insert(To);
52 NfaTransitions[{From, A}].push_back(To);
53 ++NumNfaTransitions;
56 void DfaEmitter::visitDfaState(DfaState DS) {
57 // For every possible action...
58 auto FromId = DfaStates.idFor(DS);
59 for (action_type A : Actions) {
60 DfaState NewStates;
61 DfaTransitionInfo TI;
62 // For every represented state, word pair in the original NFA...
63 for (state_type &FromState : DS) {
64 // If this action is possible from this state add the transitioned-to
65 // states to NewStates.
66 auto I = NfaTransitions.find({FromState, A});
67 if (I == NfaTransitions.end())
68 continue;
69 for (state_type &ToState : I->second) {
70 NewStates.push_back(ToState);
71 TI.emplace_back(FromState, ToState);
74 if (NewStates.empty())
75 continue;
76 // Sort and unique.
77 sort(NewStates);
78 NewStates.erase(std::unique(NewStates.begin(), NewStates.end()),
79 NewStates.end());
80 sort(TI);
81 TI.erase(std::unique(TI.begin(), TI.end()), TI.end());
82 unsigned ToId = DfaStates.insert(NewStates);
83 DfaTransitions.emplace(std::make_pair(FromId, A), std::make_pair(ToId, TI));
87 void DfaEmitter::constructDfa() {
88 DfaState Initial(1, /*NFA initial state=*/0);
89 DfaStates.insert(Initial);
91 // Note that UniqueVector starts indices at 1, not zero.
92 unsigned DfaStateId = 1;
93 while (DfaStateId <= DfaStates.size())
94 visitDfaState(DfaStates[DfaStateId++]);
97 void DfaEmitter::emit(StringRef Name, raw_ostream &OS) {
98 constructDfa();
100 OS << "// Input NFA has " << NfaStates.size() << " states with "
101 << NumNfaTransitions << " transitions.\n";
102 OS << "// Generated DFA has " << DfaStates.size() << " states with "
103 << DfaTransitions.size() << " transitions.\n\n";
105 // Implementation note: We don't bake a simple std::pair<> here as it requires
106 // significantly more effort to parse. A simple test with a large array of
107 // struct-pairs (N=100000) took clang-10 6s to parse. The same array of
108 // std::pair<uint64_t, uint64_t> took 242s. Instead we allow the user to
109 // define the pair type.
111 // FIXME: It may make sense to emit these as ULEB sequences instead of
112 // pairs of uint64_t.
113 OS << "// A zero-terminated sequence of NFA state transitions. Every DFA\n";
114 OS << "// transition implies a set of NFA transitions. These are referred\n";
115 OS << "// to by index in " << Name << "Transitions[].\n";
117 SequenceToOffsetTable<DfaTransitionInfo> Table;
118 std::map<DfaTransitionInfo, unsigned> EmittedIndices;
119 for (auto &T : DfaTransitions)
120 Table.add(T.second.second);
121 Table.layout();
122 OS << "std::array<NfaStatePair, " << Table.size() << "> " << Name
123 << "TransitionInfo = {{\n";
124 Table.emit(
126 [](raw_ostream &OS, std::pair<uint64_t, uint64_t> P) {
127 OS << "{" << P.first << ", " << P.second << "}";
129 "{0ULL, 0ULL}");
131 OS << "}};\n\n";
133 OS << "// A transition in the generated " << Name << " DFA.\n";
134 OS << "struct " << Name << "Transition {\n";
135 OS << " unsigned FromDfaState; // The transitioned-from DFA state.\n";
136 OS << " ";
137 printActionType(OS);
138 OS << " Action; // The input symbol that causes this transition.\n";
139 OS << " unsigned ToDfaState; // The transitioned-to DFA state.\n";
140 OS << " unsigned InfoIdx; // Start index into " << Name
141 << "TransitionInfo.\n";
142 OS << "};\n\n";
144 OS << "// A table of DFA transitions, ordered by {FromDfaState, Action}.\n";
145 OS << "// The initial state is 1, not zero.\n";
146 OS << "std::array<" << Name << "Transition, " << DfaTransitions.size() << "> "
147 << Name << "Transitions = {{\n";
148 for (auto &KV : DfaTransitions) {
149 dfa_state_type From = KV.first.first;
150 dfa_state_type To = KV.second.first;
151 action_type A = KV.first.second;
152 unsigned InfoIdx = Table.get(KV.second.second);
153 OS << " {" << From << ", ";
154 printActionValue(A, OS);
155 OS << ", " << To << ", " << InfoIdx << "},\n";
157 OS << "\n}};\n\n";
160 void DfaEmitter::printActionType(raw_ostream &OS) { OS << "uint64_t"; }
162 void DfaEmitter::printActionValue(action_type A, raw_ostream &OS) { OS << A; }
164 //===----------------------------------------------------------------------===//
165 // AutomatonEmitter implementation
166 //===----------------------------------------------------------------------===//
168 namespace {
169 // FIXME: This entire discriminated union could be removed with c++17:
170 // using Action = std::variant<Record *, unsigned, std::string>;
171 struct Action {
172 Record *R = nullptr;
173 unsigned I = 0;
174 std::string S = nullptr;
176 Action() = default;
177 Action(Record *R, unsigned I, std::string S) : R(R), I(I), S(S) {}
179 void print(raw_ostream &OS) const {
180 if (R)
181 OS << R->getName();
182 else if (!S.empty())
183 OS << '"' << S << '"';
184 else
185 OS << I;
187 bool operator<(const Action &Other) const {
188 return std::make_tuple(R, I, S) <
189 std::make_tuple(Other.R, Other.I, Other.S);
193 using ActionTuple = std::vector<Action>;
194 class Automaton;
196 class Transition {
197 uint64_t NewState;
198 // The tuple of actions that causes this transition.
199 ActionTuple Actions;
200 // The types of the actions; this is the same across all transitions.
201 SmallVector<std::string, 4> Types;
203 public:
204 Transition(Record *R, Automaton *Parent);
205 const ActionTuple &getActions() { return Actions; }
206 SmallVector<std::string, 4> getTypes() { return Types; }
208 bool canTransitionFrom(uint64_t State);
209 uint64_t transitionFrom(uint64_t State);
212 class Automaton {
213 RecordKeeper &Records;
214 Record *R;
215 std::vector<Transition> Transitions;
216 /// All possible action tuples, uniqued.
217 UniqueVector<ActionTuple> Actions;
218 /// The fields within each Transition object to find the action symbols.
219 std::vector<StringRef> ActionSymbolFields;
221 public:
222 Automaton(RecordKeeper &Records, Record *R);
223 void emit(raw_ostream &OS);
225 ArrayRef<StringRef> getActionSymbolFields() { return ActionSymbolFields; }
226 /// If the type of action A has been overridden (there exists a field
227 /// "TypeOf_A") return that, otherwise return the empty string.
228 StringRef getActionSymbolType(StringRef A);
231 class AutomatonEmitter {
232 RecordKeeper &Records;
234 public:
235 AutomatonEmitter(RecordKeeper &R) : Records(R) {}
236 void run(raw_ostream &OS);
239 /// A DfaEmitter implementation that can print our variant action type.
240 class CustomDfaEmitter : public DfaEmitter {
241 const UniqueVector<ActionTuple> &Actions;
242 std::string TypeName;
244 public:
245 CustomDfaEmitter(const UniqueVector<ActionTuple> &Actions, StringRef TypeName)
246 : Actions(Actions), TypeName(TypeName) {}
248 void printActionType(raw_ostream &OS) override;
249 void printActionValue(action_type A, raw_ostream &OS) override;
251 } // namespace
253 void AutomatonEmitter::run(raw_ostream &OS) {
254 for (Record *R : Records.getAllDerivedDefinitions("GenericAutomaton")) {
255 Automaton A(Records, R);
256 OS << "#ifdef GET_" << R->getName() << "_DECL\n";
257 A.emit(OS);
258 OS << "#endif // GET_" << R->getName() << "_DECL\n";
262 Automaton::Automaton(RecordKeeper &Records, Record *R)
263 : Records(Records), R(R) {
264 LLVM_DEBUG(dbgs() << "Emitting automaton for " << R->getName() << "\n");
265 ActionSymbolFields = R->getValueAsListOfStrings("SymbolFields");
268 void Automaton::emit(raw_ostream &OS) {
269 StringRef TransitionClass = R->getValueAsString("TransitionClass");
270 for (Record *T : Records.getAllDerivedDefinitions(TransitionClass)) {
271 assert(T->isSubClassOf("Transition"));
272 Transitions.emplace_back(T, this);
273 Actions.insert(Transitions.back().getActions());
276 LLVM_DEBUG(dbgs() << " Action alphabet cardinality: " << Actions.size()
277 << "\n");
278 LLVM_DEBUG(dbgs() << " Each state has " << Transitions.size()
279 << " potential transitions.\n");
281 StringRef Name = R->getName();
283 CustomDfaEmitter Emitter(Actions, std::string(Name) + "Action");
284 // Starting from the initial state, build up a list of possible states and
285 // transitions.
286 std::deque<uint64_t> Worklist(1, 0);
287 std::set<uint64_t> SeenStates;
288 unsigned NumTransitions = 0;
289 SeenStates.insert(Worklist.front());
290 while (!Worklist.empty()) {
291 uint64_t State = Worklist.front();
292 Worklist.pop_front();
293 for (Transition &T : Transitions) {
294 if (!T.canTransitionFrom(State))
295 continue;
296 uint64_t NewState = T.transitionFrom(State);
297 if (SeenStates.emplace(NewState).second)
298 Worklist.emplace_back(NewState);
299 ++NumTransitions;
300 Emitter.addTransition(State, NewState, Actions.idFor(T.getActions()));
303 LLVM_DEBUG(dbgs() << " NFA automaton has " << SeenStates.size()
304 << " states with " << NumTransitions << " transitions.\n");
306 const auto &ActionTypes = Transitions.back().getTypes();
307 OS << "// The type of an action in the " << Name << " automaton.\n";
308 if (ActionTypes.size() == 1) {
309 OS << "using " << Name << "Action = " << ActionTypes[0] << ";\n";
310 } else {
311 OS << "using " << Name << "Action = std::tuple<" << join(ActionTypes, ", ")
312 << ">;\n";
314 OS << "\n";
316 Emitter.emit(Name, OS);
319 StringRef Automaton::getActionSymbolType(StringRef A) {
320 Twine Ty = "TypeOf_" + A;
321 if (!R->getValue(Ty.str()))
322 return "";
323 return R->getValueAsString(Ty.str());
326 Transition::Transition(Record *R, Automaton *Parent) {
327 BitsInit *NewStateInit = R->getValueAsBitsInit("NewState");
328 NewState = 0;
329 assert(NewStateInit->getNumBits() <= sizeof(uint64_t) * 8 &&
330 "State cannot be represented in 64 bits!");
331 for (unsigned I = 0; I < NewStateInit->getNumBits(); ++I) {
332 if (auto *Bit = dyn_cast<BitInit>(NewStateInit->getBit(I))) {
333 if (Bit->getValue())
334 NewState |= 1ULL << I;
338 for (StringRef A : Parent->getActionSymbolFields()) {
339 RecordVal *SymbolV = R->getValue(A);
340 if (auto *Ty = dyn_cast<RecordRecTy>(SymbolV->getType())) {
341 Actions.emplace_back(R->getValueAsDef(A), 0, "");
342 Types.emplace_back(Ty->getAsString());
343 } else if (isa<IntRecTy>(SymbolV->getType())) {
344 Actions.emplace_back(nullptr, R->getValueAsInt(A), "");
345 Types.emplace_back("unsigned");
346 } else if (isa<StringRecTy>(SymbolV->getType()) ||
347 isa<CodeRecTy>(SymbolV->getType())) {
348 Actions.emplace_back(nullptr, 0, R->getValueAsString(A));
349 Types.emplace_back("std::string");
350 } else {
351 report_fatal_error("Unhandled symbol type!");
354 StringRef TypeOverride = Parent->getActionSymbolType(A);
355 if (!TypeOverride.empty())
356 Types.back() = TypeOverride;
360 bool Transition::canTransitionFrom(uint64_t State) {
361 if ((State & NewState) == 0)
362 // The bits we want to set are not set;
363 return true;
364 return false;
367 uint64_t Transition::transitionFrom(uint64_t State) {
368 return State | NewState;
371 void CustomDfaEmitter::printActionType(raw_ostream &OS) { OS << TypeName; }
373 void CustomDfaEmitter::printActionValue(action_type A, raw_ostream &OS) {
374 const ActionTuple &AT = Actions[A];
375 if (AT.size() > 1)
376 OS << "std::make_tuple(";
377 bool First = true;
378 for (const auto &SingleAction : AT) {
379 if (!First)
380 OS << ", ";
381 First = false;
382 SingleAction.print(OS);
384 if (AT.size() > 1)
385 OS << ")";
388 namespace llvm {
390 void EmitAutomata(RecordKeeper &RK, raw_ostream &OS) {
391 AutomatonEmitter(RK).run(OS);
394 } // namespace llvm