[ARM] MVE spill vector test. NFC
[llvm-complete.git] / docs / XRayExample.rst
blob5acf90f95fb2c352f53e9893aeca377bd8f5367b
1 ===================
2 Debugging with XRay
3 ===================
5 This document shows an example of how you would go about analyzing applications
6 built with XRay instrumentation. Here we will attempt to debug ``llc``
7 compiling some sample LLVM IR generated by Clang.
9 .. contents::
10   :local:
12 Building with XRay
13 ------------------
15 To debug an application with XRay instrumentation, we need to build it with a
16 Clang that supports the ``-fxray-instrument`` option. See `XRay <XRay.html>`_
17 for more technical details of how XRay works for background information.
19 In our example, we need to add ``-fxray-instrument`` to the list of flags
20 passed to Clang when building a binary. Note that we need to link with Clang as
21 well to get the XRay runtime linked in appropriately. For building ``llc`` with
22 XRay, we do something similar below for our LLVM build:
26   $ mkdir -p llvm-build && cd llvm-build
27   # Assume that the LLVM sources are at ../llvm
28   $ cmake -GNinja ../llvm -DCMAKE_BUILD_TYPE=Release \
29       -DCMAKE_C_FLAGS_RELEASE="-fxray-instrument" -DCMAKE_CXX_FLAGS="-fxray-instrument" \
30   # Once this finishes, we should build llc
31   $ ninja llc
34 To verify that we have an XRay instrumented binary, we can use ``objdump`` to
35 look for the ``xray_instr_map`` section.
39   $ objdump -h -j xray_instr_map ./bin/llc
40   ./bin/llc:     file format elf64-x86-64
41   
42   Sections:
43   Idx Name          Size      VMA               LMA               File off  Algn
44    14 xray_instr_map 00002fc0  00000000041516c6  00000000041516c6  03d516c6  2**0
45                     CONTENTS, ALLOC, LOAD, READONLY, DATA
47 Getting Traces
48 --------------
50 By default, XRay does not write out the trace files or patch the application
51 before main starts. If we run ``llc`` it should work like a normally built
52 binary. If we want to get a full trace of the application's operations (of the
53 functions we do end up instrumenting with XRay) then we need to enable XRay
54 at application start. To do this, XRay checks the ``XRAY_OPTIONS`` environment
55 variable.
59   # The following doesn't create an XRay trace by default.
60   $ ./bin/llc input.ll
62   # We need to set the XRAY_OPTIONS to enable some features.
63   $ XRAY_OPTIONS="patch_premain=true xray_mode=xray-basic verbosity=1" ./bin/llc input.ll
64   ==69819==XRay: Log file in 'xray-log.llc.m35qPB'
66 At this point we now have an XRay trace we can start analysing.
68 The ``llvm-xray`` Tool
69 ----------------------
71 Having a trace then allows us to do basic accounting of the functions that were
72 instrumented, and how much time we're spending in parts of the code. To make
73 sense of this data, we use the ``llvm-xray`` tool which has a few subcommands
74 to help us understand our trace.
76 One of the things we can do is to get an accounting of the functions that have
77 been instrumented. We can see an example accounting with ``llvm-xray account``:
81   $ llvm-xray account xray-log.llc.m35qPB -top=10 -sort=sum -sortorder=dsc -instr_map ./bin/llc
82   Functions with latencies: 29
83      funcid      count [      min,       med,       90p,       99p,       max]       sum  function
84         187        360 [ 0.000000,  0.000001,  0.000014,  0.000032,  0.000075]  0.001596  LLLexer.cpp:446:0: llvm::LLLexer::LexIdentifier()
85          85        130 [ 0.000000,  0.000000,  0.000018,  0.000023,  0.000156]  0.000799  X86ISelDAGToDAG.cpp:1984:0: (anonymous namespace)::X86DAGToDAGISel::Select(llvm::SDNode*)
86         138        130 [ 0.000000,  0.000000,  0.000017,  0.000155,  0.000155]  0.000774  SelectionDAGISel.cpp:2963:0: llvm::SelectionDAGISel::SelectCodeCommon(llvm::SDNode*, unsigned char const*, unsigned int)
87         188        103 [ 0.000000,  0.000000,  0.000003,  0.000123,  0.000214]  0.000737  LLParser.cpp:2692:0: llvm::LLParser::ParseValID(llvm::ValID&, llvm::LLParser::PerFunctionState*)
88          88          1 [ 0.000562,  0.000562,  0.000562,  0.000562,  0.000562]  0.000562  X86ISelLowering.cpp:83:0: llvm::X86TargetLowering::X86TargetLowering(llvm::X86TargetMachine const&, llvm::X86Subtarget const&)
89         125        102 [ 0.000001,  0.000003,  0.000010,  0.000017,  0.000049]  0.000471  Verifier.cpp:3714:0: (anonymous namespace)::Verifier::visitInstruction(llvm::Instruction&)
90          90          8 [ 0.000023,  0.000035,  0.000106,  0.000106,  0.000106]  0.000342  X86ISelLowering.cpp:3363:0: llvm::X86TargetLowering::LowerCall(llvm::TargetLowering::CallLoweringInfo&, llvm::SmallVectorImpl<llvm::SDValue>&) const
91         124         32 [ 0.000003,  0.000007,  0.000016,  0.000041,  0.000041]  0.000310  Verifier.cpp:1967:0: (anonymous namespace)::Verifier::visitFunction(llvm::Function const&)
92         123          1 [ 0.000302,  0.000302,  0.000302,  0.000302,  0.000302]  0.000302  LLVMContextImpl.cpp:54:0: llvm::LLVMContextImpl::~LLVMContextImpl()
93         139         46 [ 0.000000,  0.000002,  0.000006,  0.000008,  0.000019]  0.000138  TargetLowering.cpp:506:0: llvm::TargetLowering::SimplifyDemandedBits(llvm::SDValue, llvm::APInt const&, llvm::APInt&, llvm::APInt&, llvm::TargetLowering::TargetLoweringOpt&, unsigned int, bool) const
95 This shows us that for our input file, ``llc`` spent the most cumulative time
96 in the lexer (a total of 1 millisecond). If we wanted for example to work with
97 this data in a spreadsheet, we can output the results as CSV using the
98 ``-format=csv`` option to the command for further analysis.
100 If we want to get a textual representation of the raw trace we can use the
101 ``llvm-xray convert`` tool to get YAML output. The first few lines of that
102 output for an example trace would look like the following:
106   $ llvm-xray convert -f yaml -symbolize -instr_map=./bin/llc xray-log.llc.m35qPB
107   ---
108   header:          
109     version:         1
110     type:            0
111     constant-tsc:    true
112     nonstop-tsc:     true
113     cycle-frequency: 2601000000
114   records:         
115     - { type: 0, func-id: 110, function: __cxx_global_var_init.8, cpu: 37, thread: 69819, kind: function-enter, tsc: 5434426023268520 }
116     - { type: 0, func-id: 110, function: __cxx_global_var_init.8, cpu: 37, thread: 69819, kind: function-exit, tsc: 5434426023523052 }
117     - { type: 0, func-id: 164, function: __cxx_global_var_init, cpu: 37, thread: 69819, kind: function-enter, tsc: 5434426029925386 }
118     - { type: 0, func-id: 164, function: __cxx_global_var_init, cpu: 37, thread: 69819, kind: function-exit, tsc: 5434426030031128 }
119     - { type: 0, func-id: 142, function: '(anonymous namespace)::CommandLineParser::ParseCommandLineOptions(int, char const* const*, llvm::StringRef, llvm::raw_ostream*)', cpu: 37, thread: 69819, kind: function-enter, tsc: 5434426046951388 }
120     - { type: 0, func-id: 142, function: '(anonymous namespace)::CommandLineParser::ParseCommandLineOptions(int, char const* const*, llvm::StringRef, llvm::raw_ostream*)', cpu: 37, thread: 69819, kind: function-exit, tsc: 5434426047282020 }
121     - { type: 0, func-id: 187, function: 'llvm::LLLexer::LexIdentifier()', cpu: 37, thread: 69819, kind: function-enter, tsc: 5434426047857332 }
122     - { type: 0, func-id: 187, function: 'llvm::LLLexer::LexIdentifier()', cpu: 37, thread: 69819, kind: function-exit, tsc: 5434426047984152 }
123     - { type: 0, func-id: 187, function: 'llvm::LLLexer::LexIdentifier()', cpu: 37, thread: 69819, kind: function-enter, tsc: 5434426048036584 }
124     - { type: 0, func-id: 187, function: 'llvm::LLLexer::LexIdentifier()', cpu: 37, thread: 69819, kind: function-exit, tsc: 5434426048042292 }
125     - { type: 0, func-id: 187, function: 'llvm::LLLexer::LexIdentifier()', cpu: 37, thread: 69819, kind: function-enter, tsc: 5434426048055056 }
126     - { type: 0, func-id: 187, function: 'llvm::LLLexer::LexIdentifier()', cpu: 37, thread: 69819, kind: function-exit, tsc: 5434426048067316 }
128 Controlling Fidelity
129 --------------------
131 So far in our examples, we haven't been getting full coverage of the functions
132 we have in the binary. To get that, we need to modify the compiler flags so
133 that we can instrument more (if not all) the functions we have in the binary.
134 We have two options for doing that, and we explore both of these below.
136 Instruction Threshold
137 `````````````````````
139 The first "blunt" way of doing this is by setting the minimum threshold for
140 function bodies to 1. We can do that with the
141 ``-fxray-instruction-threshold=N`` flag when building our binary. We rebuild
142 ``llc`` with this option and observe the results:
146   $ rm CMakeCache.txt
147   $ cmake -GNinja ../llvm -DCMAKE_BUILD_TYPE=Release \
148       -DCMAKE_C_FLAGS_RELEASE="-fxray-instrument -fxray-instruction-threshold=1" \
149       -DCMAKE_CXX_FLAGS="-fxray-instrument -fxray-instruction-threshold=1"
150   $ ninja llc
151   $ XRAY_OPTIONS="patch_premain=true" ./bin/llc input.ll
152   ==69819==XRay: Log file in 'xray-log.llc.5rqxkU'
154   $ llvm-xray account xray-log.llc.5rqxkU -top=10 -sort=sum -sortorder=dsc -instr_map ./bin/llc
155   Functions with latencies: 36652
156    funcid      count [      min,       med,       90p,       99p,       max]       sum  function    
157        75          1 [ 0.672368,  0.672368,  0.672368,  0.672368,  0.672368]  0.672368  llc.cpp:271:0: main
158        78          1 [ 0.626455,  0.626455,  0.626455,  0.626455,  0.626455]  0.626455  llc.cpp:381:0: compileModule(char**, llvm::LLVMContext&)
159    139617          1 [ 0.472618,  0.472618,  0.472618,  0.472618,  0.472618]  0.472618  LegacyPassManager.cpp:1723:0: llvm::legacy::PassManager::run(llvm::Module&)
160    139610          1 [ 0.472618,  0.472618,  0.472618,  0.472618,  0.472618]  0.472618  LegacyPassManager.cpp:1681:0: llvm::legacy::PassManagerImpl::run(llvm::Module&)
161    139612          1 [ 0.470948,  0.470948,  0.470948,  0.470948,  0.470948]  0.470948  LegacyPassManager.cpp:1564:0: (anonymous namespace)::MPPassManager::runOnModule(llvm::Module&)
162    139607          2 [ 0.147345,  0.315994,  0.315994,  0.315994,  0.315994]  0.463340  LegacyPassManager.cpp:1530:0: llvm::FPPassManager::runOnModule(llvm::Module&)
163    139605         21 [ 0.000002,  0.000002,  0.102593,  0.213336,  0.213336]  0.463331  LegacyPassManager.cpp:1491:0: llvm::FPPassManager::runOnFunction(llvm::Function&)
164    139563      26096 [ 0.000002,  0.000002,  0.000037,  0.000063,  0.000215]  0.225708  LegacyPassManager.cpp:1083:0: llvm::PMDataManager::findAnalysisPass(void const*, bool)
165    108055        188 [ 0.000002,  0.000120,  0.001375,  0.004523,  0.062624]  0.159279  MachineFunctionPass.cpp:38:0: llvm::MachineFunctionPass::runOnFunction(llvm::Function&)
166     62635         22 [ 0.000041,  0.000046,  0.000050,  0.126744,  0.126744]  0.127715  X86TargetMachine.cpp:242:0: llvm::X86TargetMachine::getSubtargetImpl(llvm::Function const&) const
169 Instrumentation Attributes
170 ``````````````````````````
172 The other way is to use configuration files for selecting which functions
173 should always be instrumented by the compiler. This gives us a way of ensuring
174 that certain functions are either always or never instrumented by not having to
175 add the attribute to the source.
177 To use this feature, you can define one file for the functions to always
178 instrument, and another for functions to never instrument. The format of these
179 files are exactly the same as the SanitizerLists files that control similar
180 things for the sanitizer implementations. For example:
184   # xray-attr-list.txt
185   # always instrument functions that match the following filters:
186   [always]
187   fun:main
189   # never instrument functions that match the following filters:
190   [never]
191   fun:__cxx_*
193 Given the file above we can re-build by providing it to the
194 ``-fxray-attr-list=`` flag to clang. You can have multiple files, each defining
195 different sets of attribute sets, to be combined into a single list by clang.
197 The XRay stack tool
198 -------------------
200 Given a trace, and optionally an instrumentation map, the ``llvm-xray stack``
201 command can be used to analyze a call stack graph constructed from the function
202 call timeline.
204 The way to use the command is to output the top stacks by call count and time spent.
208   $ llvm-xray stack xray-log.llc.5rqxkU -instr_map ./bin/llc
210   Unique Stacks: 3069
211   Top 10 Stacks by leaf sum:
213   Sum: 9633790
214   lvl   function                                                            count              sum
215   #0    main                                                                    1         58421550
216   #1    compileModule(char**, llvm::LLVMContext&)                               1         51440360
217   #2    llvm::legacy::PassManagerImpl::run(llvm::Module&)                       1         40535375
218   #3    llvm::FPPassManager::runOnModule(llvm::Module&)                         2         39337525
219   #4    llvm::FPPassManager::runOnFunction(llvm::Function&)                     6         39331465
220   #5    llvm::PMDataManager::verifyPreservedAnalysis(llvm::Pass*)             399         16628590
221   #6    llvm::PMTopLevelManager::findAnalysisPass(void const*)               4584         15155600
222   #7    llvm::PMDataManager::findAnalysisPass(void const*, bool)            32088          9633790
224   ..etc..
226 In the default mode, identical stacks on different threads are independently
227 aggregated. In a multithreaded program, you may end up having identical call
228 stacks fill your list of top calls.
230 To address this, you may specify the ``-aggregate-threads`` or
231 ``-per-thread-stacks`` flags. ``-per-thread-stacks`` treats the thread id as an
232 implicit root in each call stack tree, while ``-aggregate-threads`` combines
233 identical stacks from all threads.
235 Flame Graph Generation
236 ----------------------
238 The ``llvm-xray stack`` tool may also be used to generate flamegraphs for
239 visualizing your instrumented invocations. The tool does not generate the graphs
240 themselves, but instead generates a format that can be used with Brendan Gregg's
241 FlameGraph tool, currently available on `github
242 <https://github.com/brendangregg/FlameGraph>`_.
244 To generate output for a flamegraph, a few more options are necessary.
246 - ``-all-stacks`` - Emits all of the stacks.
247 - ``-stack-format`` - Choose the flamegraph output format 'flame'.
248 - ``-aggregation-type`` - Choose the metric to graph.
250 You may pipe the command output directly to the flamegraph tool to obtain an
251 svg file.
255   $llvm-xray stack xray-log.llc.5rqxkU -instr_map ./bin/llc -stack-format=flame -aggregation-type=time -all-stacks | \
256   /path/to/FlameGraph/flamegraph.pl > flamegraph.svg
258 If you open the svg in a browser, mouse events allow exploring the call stacks.
260 Chrome Trace Viewer Visualization
261 ---------------------------------
263 We can also generate a trace which can be loaded by the Chrome Trace Viewer
264 from the same generated trace:
268   $ llvm-xray convert -symbolize -instr_map=./bin/llc \
269     -output-format=trace_event xray-log.llc.5rqxkU \
270       | gzip > llc-trace.txt.gz
272 From a Chrome browser, navigating to ``chrome:///tracing`` allows us to load
273 the ``sample-trace.txt.gz`` file to visualize the execution trace.
275 Further Exploration
276 -------------------
278 The ``llvm-xray`` tool has a few other subcommands that are in various stages
279 of being developed. One interesting subcommand that can highlight a few
280 interesting things is the ``graph`` subcommand. Given for example the following
281 toy program that we build with XRay instrumentation, we can see how the
282 generated graph may be a helpful indicator of where time is being spent for the
283 application.
285 .. code-block:: c++
287   // sample.cc
288   #include <iostream>
289   #include <thread>
291   [[clang::xray_always_instrument]] void f() {
292     std::cerr << '.';
293   }
295   [[clang::xray_always_instrument]] void g() {
296     for (int i = 0; i < 1 << 10; ++i) {
297       std::cerr << '-';
298     }
299   }
301   int main(int argc, char* argv[]) {
302     std::thread t1([] {
303       for (int i = 0; i < 1 << 10; ++i)
304         f();
305     });
306     std::thread t2([] {
307       g();
308     });
309     t1.join();
310     t2.join();
311     std::cerr << '\n';
312   }
314 We then build the above with XRay instrumentation:
318   $ clang++ -o sample -O3 sample.cc -std=c++11 -fxray-instrument -fxray-instruction-threshold=1
319   $ XRAY_OPTIONS="patch_premain=true xray_mode=xray-basic" ./sample
321 We can then explore the graph rendering of the trace generated by this sample
322 application. We assume you have the graphviz toosl available in your system,
323 including both ``unflatten`` and ``dot``. If you prefer rendering or exploring
324 the graph using another tool, then that should be feasible as well. ``llvm-xray
325 graph`` will create DOT format graphs which should be usable in most graph
326 rendering applications. One example invocation of the ``llvm-xray graph``
327 command should yield some interesting insights to the workings of C++
328 applications:
332   $ llvm-xray graph xray-log.sample.* -m sample -color-edges=sum -edge-label=sum \
333       | unflatten -f -l10 | dot -Tsvg -o sample.svg
336 Next Steps
337 ----------
339 If you have some interesting analyses you'd like to implement as part of the
340 llvm-xray tool, please feel free to propose them on the llvm-dev@ mailing list.
341 The following are some ideas to inspire you in getting involved and potentially
342 making things better.
344   - Implement a query/filtering library that allows for finding patterns in the
345     XRay traces.
346   - Collecting function call stacks and how often they're encountered in the
347     XRay trace.