[yaml2obj][obj2yaml] - Do not create a symbol table by default.
[llvm-complete.git] / docs / tutorial / BuildingAJIT2.rst
blob1f818d945664953daa4cc84ae63b31ac5e5a356a
1 =====================================================================
2 Building a JIT: Adding Optimizations -- An introduction to ORC Layers
3 =====================================================================
5 .. contents::
6    :local:
8 **This tutorial is under active development. It is incomplete and details may
9 change frequently.** Nonetheless we invite you to try it out as it stands, and
10 we welcome any feedback.
12 Chapter 2 Introduction
13 ======================
15 **Warning: This tutorial is currently being updated to account for ORC API
16 changes. Only Chapters 1 and 2 are up-to-date.**
18 **Example code from Chapters 3 to 5 will compile and run, but has not been
19 updated**
21 Welcome to Chapter 2 of the "Building an ORC-based JIT in LLVM" tutorial. In
22 `Chapter 1 <BuildingAJIT1.html>`_ of this series we examined a basic JIT
23 class, KaleidoscopeJIT, that could take LLVM IR modules as input and produce
24 executable code in memory. KaleidoscopeJIT was able to do this with relatively
25 little code by composing two off-the-shelf *ORC layers*: IRCompileLayer and
26 ObjectLinkingLayer, to do much of the heavy lifting.
28 In this layer we'll learn more about the ORC layer concept by using a new layer,
29 IRTransformLayer, to add IR optimization support to KaleidoscopeJIT.
31 Optimizing Modules using the IRTransformLayer
32 =============================================
34 In `Chapter 4 <LangImpl04.html>`_ of the "Implementing a language with LLVM"
35 tutorial series the llvm *FunctionPassManager* is introduced as a means for
36 optimizing LLVM IR. Interested readers may read that chapter for details, but
37 in short: to optimize a Module we create an llvm::FunctionPassManager
38 instance, configure it with a set of optimizations, then run the PassManager on
39 a Module to mutate it into a (hopefully) more optimized but semantically
40 equivalent form. In the original tutorial series the FunctionPassManager was
41 created outside the KaleidoscopeJIT and modules were optimized before being
42 added to it. In this Chapter we will make optimization a phase of our JIT
43 instead. For now this will provide us a motivation to learn more about ORC
44 layers, but in the long term making optimization part of our JIT will yield an
45 important benefit: When we begin lazily compiling code (i.e. deferring
46 compilation of each function until the first time it's run) having
47 optimization managed by our JIT will allow us to optimize lazily too, rather
48 than having to do all our optimization up-front.
50 To add optimization support to our JIT we will take the KaleidoscopeJIT from
51 Chapter 1 and compose an ORC *IRTransformLayer* on top. We will look at how the
52 IRTransformLayer works in more detail below, but the interface is simple: the
53 constructor for this layer takes a reference to the execution session and the
54 layer below (as all layers do) plus an *IR optimization function* that it will
55 apply to each Module that is added via addModule:
57 .. code-block:: c++
59   class KaleidoscopeJIT {
60   private:
61     ExecutionSession ES;
62     RTDyldObjectLinkingLayer ObjectLayer;
63     IRCompileLayer CompileLayer;
64     IRTransformLayer TransformLayer;
66     DataLayout DL;
67     MangleAndInterner Mangle;
68     ThreadSafeContext Ctx;
70   public:
72     KaleidoscopeJIT(JITTargetMachineBuilder JTMB, DataLayout DL)
73         : ObjectLayer(ES,
74                       []() { return std::make_unique<SectionMemoryManager>(); }),
75           CompileLayer(ES, ObjectLayer, ConcurrentIRCompiler(std::move(JTMB))),
76           TransformLayer(ES, CompileLayer, optimizeModule),
77           DL(std::move(DL)), Mangle(ES, this->DL),
78           Ctx(std::make_unique<LLVMContext>()) {
79       ES.getMainJITDylib().setGenerator(
80           cantFail(DynamicLibrarySearchGenerator::GetForCurrentProcess(DL)));
81     }
83 Our extended KaleidoscopeJIT class starts out the same as it did in Chapter 1,
84 but after the CompileLayer we introduce a new member, TransformLayer, which sits
85 on top of our CompileLayer. We initialize our OptimizeLayer with a reference to
86 the ExecutionSession and output layer (standard practice for layers), along with
87 a *transform function*. For our transform function we supply our classes
88 optimizeModule static method.
90 .. code-block:: c++
92   // ...
93   return cantFail(OptimizeLayer.addModule(std::move(M),
94                                           std::move(Resolver)));
95   // ...
97 Next we need to update our addModule method to replace the call to
98 ``CompileLayer::add`` with a call to ``OptimizeLayer::add`` instead.
100 .. code-block:: c++
102   static Expected<ThreadSafeModule>
103   optimizeModule(ThreadSafeModule M, const MaterializationResponsibility &R) {
104     // Create a function pass manager.
105     auto FPM = std::make_unique<legacy::FunctionPassManager>(M.get());
107     // Add some optimizations.
108     FPM->add(createInstructionCombiningPass());
109     FPM->add(createReassociatePass());
110     FPM->add(createGVNPass());
111     FPM->add(createCFGSimplificationPass());
112     FPM->doInitialization();
114     // Run the optimizations over all functions in the module being added to
115     // the JIT.
116     for (auto &F : *M)
117       FPM->run(F);
119     return M;
120   }
122 At the bottom of our JIT we add a private method to do the actual optimization:
123 *optimizeModule*. This function takes the module to be transformed as input (as
124 a ThreadSafeModule) along with a reference to a reference to a new class:
125 ``MaterializationResponsibility``. The MaterializationResponsibility argument
126 can be used to query JIT state for the module being transformed, such as the set
127 of definitions in the module that JIT'd code is actively trying to call/access.
128 For now we will ignore this argument and use a standard optimization
129 pipeline. To do this we set up a FunctionPassManager, add some passes to it, run
130 it over every function in the module, and then return the mutated module. The
131 specific optimizations are the same ones used in `Chapter 4 <LangImpl04.html>`_
132 of the "Implementing a language with LLVM" tutorial series. Readers may visit
133 that chapter for a more in-depth discussion of these, and of IR optimization in
134 general.
136 And that's it in terms of changes to KaleidoscopeJIT: When a module is added via
137 addModule the OptimizeLayer will call our optimizeModule function before passing
138 the transformed module on to the CompileLayer below. Of course, we could have
139 called optimizeModule directly in our addModule function and not gone to the
140 bother of using the IRTransformLayer, but doing so gives us another opportunity
141 to see how layers compose. It also provides a neat entry point to the *layer*
142 concept itself, because IRTransformLayer is one of the simplest layers that
143 can be implemented.
145 .. code-block:: c++
147   // From IRTransformLayer.h:
148   class IRTransformLayer : public IRLayer {
149   public:
150     using TransformFunction = std::function<Expected<ThreadSafeModule>(
151         ThreadSafeModule, const MaterializationResponsibility &R)>;
153     IRTransformLayer(ExecutionSession &ES, IRLayer &BaseLayer,
154                      TransformFunction Transform = identityTransform);
156     void setTransform(TransformFunction Transform) {
157       this->Transform = std::move(Transform);
158     }
160     static ThreadSafeModule
161     identityTransform(ThreadSafeModule TSM,
162                       const MaterializationResponsibility &R) {
163       return TSM;
164     }
166     void emit(MaterializationResponsibility R, ThreadSafeModule TSM) override;
168   private:
169     IRLayer &BaseLayer;
170     TransformFunction Transform;
171   };
173   // From IRTransfomrLayer.cpp:
175   IRTransformLayer::IRTransformLayer(ExecutionSession &ES,
176                                      IRLayer &BaseLayer,
177                                      TransformFunction Transform)
178       : IRLayer(ES), BaseLayer(BaseLayer), Transform(std::move(Transform)) {}
180   void IRTransformLayer::emit(MaterializationResponsibility R,
181                               ThreadSafeModule TSM) {
182     assert(TSM.getModule() && "Module must not be null");
184     if (auto TransformedTSM = Transform(std::move(TSM), R))
185       BaseLayer.emit(std::move(R), std::move(*TransformedTSM));
186     else {
187       R.failMaterialization();
188       getExecutionSession().reportError(TransformedTSM.takeError());
189     }
190   }
192 This is the whole definition of IRTransformLayer, from
193 ``llvm/include/llvm/ExecutionEngine/Orc/IRTransformLayer.h`` and
194 ``llvm/lib/ExecutionEngine/Orc/IRTransformLayer.cpp``.  This class is concerned
195 with two very simple jobs: (1) Running every IR Module that is emitted via this
196 layer through the transform function object, and (2) implementing the ORC
197 ``IRLayer`` interface (which itself conforms to the general ORC Layer concept,
198 more on that below). Most of the class is straightforward: a typedef for the
199 transform function, a constructor to initialize the members, a setter for the
200 transform function value, and a default no-op transform. The most important
201 method is ``emit`` as this is half of our IRLayer interface. The emit method
202 applies our transform to each module that it is called on and, if the transform
203 succeeds, passes the transformed module to the base layer. If the transform
204 fails, our emit function calls
205 ``MaterializationResponsibility::failMaterialization`` (this JIT clients who
206 may be waiting on other threads know that the code they were waiting for has
207 failed to compile) and logs the error with the execution session before bailing
208 out.
210 The other half of the IRLayer interface we inherit unmodified from the IRLayer
211 class:
213 .. code-block:: c++
215   Error IRLayer::add(JITDylib &JD, ThreadSafeModule TSM, VModuleKey K) {
216     return JD.define(std::make_unique<BasicIRLayerMaterializationUnit>(
217         *this, std::move(K), std::move(TSM)));
218   }
220 This code, from ``llvm/lib/ExecutionEngine/Orc/Layer.cpp``, adds a
221 ThreadSafeModule to a given JITDylib by wrapping it up in a
222 ``MaterializationUnit`` (in this case a ``BasicIRLayerMaterializationUnit``).
223 Most layers that derived from IRLayer can rely on this default implementation
224 of the ``add`` method.
226 These two operations, ``add`` and ``emit``, together constitute the layer
227 concept: A layer is a way to wrap a portion of a compiler pipeline (in this case
228 the "opt" phase of an LLVM compiler) whose API is is opaque to ORC in an
229 interface that allows ORC to invoke it when needed. The add method takes an
230 module in some input program representation (in this case an LLVM IR module) and
231 stores it in the target JITDylib, arranging for it to be passed back to the
232 Layer's emit method when any symbol defined by that module is requested. Layers
233 can compose neatly by calling the 'emit' method of a base layer to complete
234 their work. For example, in this tutorial our IRTransformLayer calls through to
235 our IRCompileLayer to compile the transformed IR, and our IRCompileLayer in turn
236 calls our ObjectLayer to link the object file produced by our compiler.
239 So far we have learned how to optimize and compile our LLVM IR, but we have not
240 focused on when compilation happens. Our current REPL is eager: Each function
241 definition is optimized and compiled as soon as it is referenced by any other
242 code, regardless of whether it is ever called at runtime. In the next chapter we
243 will introduce fully lazy compilation, in which functions are not compiled until
244 they are first called at run-time. At this point the trade-offs get much more
245 interesting: the lazier we are, the quicker we can start executing the first
246 function, but the more often we will have to pause to compile newly encountered
247 functions. If we only code-gen lazily, but optimize eagerly, we will have a
248 longer startup time (as everything is optimized) but relatively short pauses as
249 each function just passes through code-gen. If we both optimize and code-gen
250 lazily we can start executing the first function more quickly, but we will have
251 longer pauses as each function has to be both optimized and code-gen'd when it
252 is first executed. Things become even more interesting if we consider
253 interproceedural optimizations like inlining, which must be performed eagerly.
254 These are complex trade-offs, and there is no one-size-fits all solution to
255 them, but by providing composable layers we leave the decisions to the person
256 implementing the JIT, and make it easy for them to experiment with different
257 configurations.
259 `Next: Adding Per-function Lazy Compilation <BuildingAJIT3.html>`_
261 Full Code Listing
262 =================
264 Here is the complete code listing for our running example with an
265 IRTransformLayer added to enable optimization. To build this example, use:
267 .. code-block:: bash
269     # Compile
270     clang++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core orcjit native` -O3 -o toy
271     # Run
272     ./toy
274 Here is the code:
276 .. literalinclude:: ../../examples/Kaleidoscope/BuildingAJIT/Chapter2/KaleidoscopeJIT.h
277    :language: c++