[yaml2obj][obj2yaml] - Do not create a symbol table by default.
[llvm-complete.git] / lib / Analysis / MustExecute.cpp
blob44527773115d3de929525c9e9d58b1caa4bed2e8
1 //===- MustExecute.cpp - Printer for isGuaranteedToExecute ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Analysis/MustExecute.h"
10 #include "llvm/ADT/PostOrderIterator.h"
11 #include "llvm/Analysis/CFG.h"
12 #include "llvm/Analysis/InstructionSimplify.h"
13 #include "llvm/Analysis/LoopInfo.h"
14 #include "llvm/Analysis/Passes.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/IR/AssemblyAnnotationWriter.h"
17 #include "llvm/IR/DataLayout.h"
18 #include "llvm/IR/InstIterator.h"
19 #include "llvm/IR/LLVMContext.h"
20 #include "llvm/IR/Module.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/Support/FormattedStream.h"
23 #include "llvm/Support/raw_ostream.h"
25 using namespace llvm;
27 #define DEBUG_TYPE "must-execute"
29 const DenseMap<BasicBlock *, ColorVector> &
30 LoopSafetyInfo::getBlockColors() const {
31 return BlockColors;
34 void LoopSafetyInfo::copyColors(BasicBlock *New, BasicBlock *Old) {
35 ColorVector &ColorsForNewBlock = BlockColors[New];
36 ColorVector &ColorsForOldBlock = BlockColors[Old];
37 ColorsForNewBlock = ColorsForOldBlock;
40 bool SimpleLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const {
41 (void)BB;
42 return anyBlockMayThrow();
45 bool SimpleLoopSafetyInfo::anyBlockMayThrow() const {
46 return MayThrow;
49 void SimpleLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) {
50 assert(CurLoop != nullptr && "CurLoop can't be null");
51 BasicBlock *Header = CurLoop->getHeader();
52 // Iterate over header and compute safety info.
53 HeaderMayThrow = !isGuaranteedToTransferExecutionToSuccessor(Header);
54 MayThrow = HeaderMayThrow;
55 // Iterate over loop instructions and compute safety info.
56 // Skip header as it has been computed and stored in HeaderMayThrow.
57 // The first block in loopinfo.Blocks is guaranteed to be the header.
58 assert(Header == *CurLoop->getBlocks().begin() &&
59 "First block must be header");
60 for (Loop::block_iterator BB = std::next(CurLoop->block_begin()),
61 BBE = CurLoop->block_end();
62 (BB != BBE) && !MayThrow; ++BB)
63 MayThrow |= !isGuaranteedToTransferExecutionToSuccessor(*BB);
65 computeBlockColors(CurLoop);
68 bool ICFLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const {
69 return ICF.hasICF(BB);
72 bool ICFLoopSafetyInfo::anyBlockMayThrow() const {
73 return MayThrow;
76 void ICFLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) {
77 assert(CurLoop != nullptr && "CurLoop can't be null");
78 ICF.clear();
79 MW.clear();
80 MayThrow = false;
81 // Figure out the fact that at least one block may throw.
82 for (auto &BB : CurLoop->blocks())
83 if (ICF.hasICF(&*BB)) {
84 MayThrow = true;
85 break;
87 computeBlockColors(CurLoop);
90 void ICFLoopSafetyInfo::insertInstructionTo(const Instruction *Inst,
91 const BasicBlock *BB) {
92 ICF.insertInstructionTo(Inst, BB);
93 MW.insertInstructionTo(Inst, BB);
96 void ICFLoopSafetyInfo::removeInstruction(const Instruction *Inst) {
97 ICF.removeInstruction(Inst);
98 MW.removeInstruction(Inst);
101 void LoopSafetyInfo::computeBlockColors(const Loop *CurLoop) {
102 // Compute funclet colors if we might sink/hoist in a function with a funclet
103 // personality routine.
104 Function *Fn = CurLoop->getHeader()->getParent();
105 if (Fn->hasPersonalityFn())
106 if (Constant *PersonalityFn = Fn->getPersonalityFn())
107 if (isScopedEHPersonality(classifyEHPersonality(PersonalityFn)))
108 BlockColors = colorEHFunclets(*Fn);
111 /// Return true if we can prove that the given ExitBlock is not reached on the
112 /// first iteration of the given loop. That is, the backedge of the loop must
113 /// be executed before the ExitBlock is executed in any dynamic execution trace.
114 static bool CanProveNotTakenFirstIteration(const BasicBlock *ExitBlock,
115 const DominatorTree *DT,
116 const Loop *CurLoop) {
117 auto *CondExitBlock = ExitBlock->getSinglePredecessor();
118 if (!CondExitBlock)
119 // expect unique exits
120 return false;
121 assert(CurLoop->contains(CondExitBlock) && "meaning of exit block");
122 auto *BI = dyn_cast<BranchInst>(CondExitBlock->getTerminator());
123 if (!BI || !BI->isConditional())
124 return false;
125 // If condition is constant and false leads to ExitBlock then we always
126 // execute the true branch.
127 if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition()))
128 return BI->getSuccessor(Cond->getZExtValue() ? 1 : 0) == ExitBlock;
129 auto *Cond = dyn_cast<CmpInst>(BI->getCondition());
130 if (!Cond)
131 return false;
132 // todo: this would be a lot more powerful if we used scev, but all the
133 // plumbing is currently missing to pass a pointer in from the pass
134 // Check for cmp (phi [x, preheader] ...), y where (pred x, y is known
135 auto *LHS = dyn_cast<PHINode>(Cond->getOperand(0));
136 auto *RHS = Cond->getOperand(1);
137 if (!LHS || LHS->getParent() != CurLoop->getHeader())
138 return false;
139 auto DL = ExitBlock->getModule()->getDataLayout();
140 auto *IVStart = LHS->getIncomingValueForBlock(CurLoop->getLoopPreheader());
141 auto *SimpleValOrNull = SimplifyCmpInst(Cond->getPredicate(),
142 IVStart, RHS,
143 {DL, /*TLI*/ nullptr,
144 DT, /*AC*/ nullptr, BI});
145 auto *SimpleCst = dyn_cast_or_null<Constant>(SimpleValOrNull);
146 if (!SimpleCst)
147 return false;
148 if (ExitBlock == BI->getSuccessor(0))
149 return SimpleCst->isZeroValue();
150 assert(ExitBlock == BI->getSuccessor(1) && "implied by above");
151 return SimpleCst->isAllOnesValue();
154 /// Collect all blocks from \p CurLoop which lie on all possible paths from
155 /// the header of \p CurLoop (inclusive) to BB (exclusive) into the set
156 /// \p Predecessors. If \p BB is the header, \p Predecessors will be empty.
157 static void collectTransitivePredecessors(
158 const Loop *CurLoop, const BasicBlock *BB,
159 SmallPtrSetImpl<const BasicBlock *> &Predecessors) {
160 assert(Predecessors.empty() && "Garbage in predecessors set?");
161 assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
162 if (BB == CurLoop->getHeader())
163 return;
164 SmallVector<const BasicBlock *, 4> WorkList;
165 for (auto *Pred : predecessors(BB)) {
166 Predecessors.insert(Pred);
167 WorkList.push_back(Pred);
169 while (!WorkList.empty()) {
170 auto *Pred = WorkList.pop_back_val();
171 assert(CurLoop->contains(Pred) && "Should only reach loop blocks!");
172 // We are not interested in backedges and we don't want to leave loop.
173 if (Pred == CurLoop->getHeader())
174 continue;
175 // TODO: If BB lies in an inner loop of CurLoop, this will traverse over all
176 // blocks of this inner loop, even those that are always executed AFTER the
177 // BB. It may make our analysis more conservative than it could be, see test
178 // @nested and @nested_no_throw in test/Analysis/MustExecute/loop-header.ll.
179 // We can ignore backedge of all loops containing BB to get a sligtly more
180 // optimistic result.
181 for (auto *PredPred : predecessors(Pred))
182 if (Predecessors.insert(PredPred).second)
183 WorkList.push_back(PredPred);
187 bool LoopSafetyInfo::allLoopPathsLeadToBlock(const Loop *CurLoop,
188 const BasicBlock *BB,
189 const DominatorTree *DT) const {
190 assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
192 // Fast path: header is always reached once the loop is entered.
193 if (BB == CurLoop->getHeader())
194 return true;
196 // Collect all transitive predecessors of BB in the same loop. This set will
197 // be a subset of the blocks within the loop.
198 SmallPtrSet<const BasicBlock *, 4> Predecessors;
199 collectTransitivePredecessors(CurLoop, BB, Predecessors);
201 // Make sure that all successors of, all predecessors of BB which are not
202 // dominated by BB, are either:
203 // 1) BB,
204 // 2) Also predecessors of BB,
205 // 3) Exit blocks which are not taken on 1st iteration.
206 // Memoize blocks we've already checked.
207 SmallPtrSet<const BasicBlock *, 4> CheckedSuccessors;
208 for (auto *Pred : Predecessors) {
209 // Predecessor block may throw, so it has a side exit.
210 if (blockMayThrow(Pred))
211 return false;
213 // BB dominates Pred, so if Pred runs, BB must run.
214 // This is true when Pred is a loop latch.
215 if (DT->dominates(BB, Pred))
216 continue;
218 for (auto *Succ : successors(Pred))
219 if (CheckedSuccessors.insert(Succ).second &&
220 Succ != BB && !Predecessors.count(Succ))
221 // By discharging conditions that are not executed on the 1st iteration,
222 // we guarantee that *at least* on the first iteration all paths from
223 // header that *may* execute will lead us to the block of interest. So
224 // that if we had virtually peeled one iteration away, in this peeled
225 // iteration the set of predecessors would contain only paths from
226 // header to BB without any exiting edges that may execute.
228 // TODO: We only do it for exiting edges currently. We could use the
229 // same function to skip some of the edges within the loop if we know
230 // that they will not be taken on the 1st iteration.
232 // TODO: If we somehow know the number of iterations in loop, the same
233 // check may be done for any arbitrary N-th iteration as long as N is
234 // not greater than minimum number of iterations in this loop.
235 if (CurLoop->contains(Succ) ||
236 !CanProveNotTakenFirstIteration(Succ, DT, CurLoop))
237 return false;
240 // All predecessors can only lead us to BB.
241 return true;
244 /// Returns true if the instruction in a loop is guaranteed to execute at least
245 /// once.
246 bool SimpleLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst,
247 const DominatorTree *DT,
248 const Loop *CurLoop) const {
249 // If the instruction is in the header block for the loop (which is very
250 // common), it is always guaranteed to dominate the exit blocks. Since this
251 // is a common case, and can save some work, check it now.
252 if (Inst.getParent() == CurLoop->getHeader())
253 // If there's a throw in the header block, we can't guarantee we'll reach
254 // Inst unless we can prove that Inst comes before the potential implicit
255 // exit. At the moment, we use a (cheap) hack for the common case where
256 // the instruction of interest is the first one in the block.
257 return !HeaderMayThrow ||
258 Inst.getParent()->getFirstNonPHIOrDbg() == &Inst;
260 // If there is a path from header to exit or latch that doesn't lead to our
261 // instruction's block, return false.
262 return allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT);
265 bool ICFLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst,
266 const DominatorTree *DT,
267 const Loop *CurLoop) const {
268 return !ICF.isDominatedByICFIFromSameBlock(&Inst) &&
269 allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT);
272 bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const BasicBlock *BB,
273 const Loop *CurLoop) const {
274 assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
276 // Fast path: there are no instructions before header.
277 if (BB == CurLoop->getHeader())
278 return true;
280 // Collect all transitive predecessors of BB in the same loop. This set will
281 // be a subset of the blocks within the loop.
282 SmallPtrSet<const BasicBlock *, 4> Predecessors;
283 collectTransitivePredecessors(CurLoop, BB, Predecessors);
284 // Find if there any instruction in either predecessor that could write
285 // to memory.
286 for (auto *Pred : Predecessors)
287 if (MW.mayWriteToMemory(Pred))
288 return false;
289 return true;
292 bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const Instruction &I,
293 const Loop *CurLoop) const {
294 auto *BB = I.getParent();
295 assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
296 return !MW.isDominatedByMemoryWriteFromSameBlock(&I) &&
297 doesNotWriteMemoryBefore(BB, CurLoop);
300 namespace {
301 struct MustExecutePrinter : public FunctionPass {
303 static char ID; // Pass identification, replacement for typeid
304 MustExecutePrinter() : FunctionPass(ID) {
305 initializeMustExecutePrinterPass(*PassRegistry::getPassRegistry());
307 void getAnalysisUsage(AnalysisUsage &AU) const override {
308 AU.setPreservesAll();
309 AU.addRequired<DominatorTreeWrapperPass>();
310 AU.addRequired<LoopInfoWrapperPass>();
312 bool runOnFunction(Function &F) override;
314 struct MustBeExecutedContextPrinter : public ModulePass {
315 static char ID;
317 MustBeExecutedContextPrinter() : ModulePass(ID) {
318 initializeMustBeExecutedContextPrinterPass(*PassRegistry::getPassRegistry());
320 void getAnalysisUsage(AnalysisUsage &AU) const override {
321 AU.setPreservesAll();
323 bool runOnModule(Module &M) override;
327 char MustExecutePrinter::ID = 0;
328 INITIALIZE_PASS_BEGIN(MustExecutePrinter, "print-mustexecute",
329 "Instructions which execute on loop entry", false, true)
330 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
331 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
332 INITIALIZE_PASS_END(MustExecutePrinter, "print-mustexecute",
333 "Instructions which execute on loop entry", false, true)
335 FunctionPass *llvm::createMustExecutePrinter() {
336 return new MustExecutePrinter();
339 char MustBeExecutedContextPrinter::ID = 0;
340 INITIALIZE_PASS_BEGIN(
341 MustBeExecutedContextPrinter, "print-must-be-executed-contexts",
342 "print the must-be-executed-contexed for all instructions", false, true)
343 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
344 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
345 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
346 INITIALIZE_PASS_END(MustBeExecutedContextPrinter,
347 "print-must-be-executed-contexts",
348 "print the must-be-executed-contexed for all instructions",
349 false, true)
351 ModulePass *llvm::createMustBeExecutedContextPrinter() {
352 return new MustBeExecutedContextPrinter();
355 bool MustBeExecutedContextPrinter::runOnModule(Module &M) {
356 MustBeExecutedContextExplorer Explorer(true);
357 for (Function &F : M) {
358 for (Instruction &I : instructions(F)) {
359 dbgs() << "-- Explore context of: " << I << "\n";
360 for (const Instruction *CI : Explorer.range(&I))
361 dbgs() << " [F: " << CI->getFunction()->getName() << "] " << *CI
362 << "\n";
366 return false;
369 static bool isMustExecuteIn(const Instruction &I, Loop *L, DominatorTree *DT) {
370 // TODO: merge these two routines. For the moment, we display the best
371 // result obtained by *either* implementation. This is a bit unfair since no
372 // caller actually gets the full power at the moment.
373 SimpleLoopSafetyInfo LSI;
374 LSI.computeLoopSafetyInfo(L);
375 return LSI.isGuaranteedToExecute(I, DT, L) ||
376 isGuaranteedToExecuteForEveryIteration(&I, L);
379 namespace {
380 /// An assembly annotator class to print must execute information in
381 /// comments.
382 class MustExecuteAnnotatedWriter : public AssemblyAnnotationWriter {
383 DenseMap<const Value*, SmallVector<Loop*, 4> > MustExec;
385 public:
386 MustExecuteAnnotatedWriter(const Function &F,
387 DominatorTree &DT, LoopInfo &LI) {
388 for (auto &I: instructions(F)) {
389 Loop *L = LI.getLoopFor(I.getParent());
390 while (L) {
391 if (isMustExecuteIn(I, L, &DT)) {
392 MustExec[&I].push_back(L);
394 L = L->getParentLoop();
398 MustExecuteAnnotatedWriter(const Module &M,
399 DominatorTree &DT, LoopInfo &LI) {
400 for (auto &F : M)
401 for (auto &I: instructions(F)) {
402 Loop *L = LI.getLoopFor(I.getParent());
403 while (L) {
404 if (isMustExecuteIn(I, L, &DT)) {
405 MustExec[&I].push_back(L);
407 L = L->getParentLoop();
413 void printInfoComment(const Value &V, formatted_raw_ostream &OS) override {
414 if (!MustExec.count(&V))
415 return;
417 const auto &Loops = MustExec.lookup(&V);
418 const auto NumLoops = Loops.size();
419 if (NumLoops > 1)
420 OS << " ; (mustexec in " << NumLoops << " loops: ";
421 else
422 OS << " ; (mustexec in: ";
424 bool first = true;
425 for (const Loop *L : Loops) {
426 if (!first)
427 OS << ", ";
428 first = false;
429 OS << L->getHeader()->getName();
431 OS << ")";
434 } // namespace
436 bool MustExecutePrinter::runOnFunction(Function &F) {
437 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
438 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
440 MustExecuteAnnotatedWriter Writer(F, DT, LI);
441 F.print(dbgs(), &Writer);
443 return false;
446 const Instruction *
447 MustBeExecutedContextExplorer::getMustBeExecutedNextInstruction(
448 MustBeExecutedIterator &It, const Instruction *PP) {
449 if (!PP)
450 return PP;
451 LLVM_DEBUG(dbgs() << "Find next instruction for " << *PP << "\n");
453 // If we explore only inside a given basic block we stop at terminators.
454 if (!ExploreInterBlock && PP->isTerminator()) {
455 LLVM_DEBUG(dbgs() << "\tReached terminator in intra-block mode, done\n");
456 return nullptr;
459 // If we do not traverse the call graph we check if we can make progress in
460 // the current function. First, check if the instruction is guaranteed to
461 // transfer execution to the successor.
462 bool TransfersExecution = isGuaranteedToTransferExecutionToSuccessor(PP);
463 if (!TransfersExecution)
464 return nullptr;
466 // If this is not a terminator we know that there is a single instruction
467 // after this one that is executed next if control is transfered. If not,
468 // we can try to go back to a call site we entered earlier. If none exists, we
469 // do not know any instruction that has to be executd next.
470 if (!PP->isTerminator()) {
471 const Instruction *NextPP = PP->getNextNode();
472 LLVM_DEBUG(dbgs() << "\tIntermediate instruction does transfer control\n");
473 return NextPP;
476 // Finally, we have to handle terminators, trivial ones first.
477 assert(PP->isTerminator() && "Expected a terminator!");
479 // A terminator without a successor is not handled yet.
480 if (PP->getNumSuccessors() == 0) {
481 LLVM_DEBUG(dbgs() << "\tUnhandled terminator\n");
482 return nullptr;
485 // A terminator with a single successor, we will continue at the beginning of
486 // that one.
487 if (PP->getNumSuccessors() == 1) {
488 LLVM_DEBUG(
489 dbgs() << "\tUnconditional terminator, continue with successor\n");
490 return &PP->getSuccessor(0)->front();
493 LLVM_DEBUG(dbgs() << "\tNo join point found\n");
494 return nullptr;
497 MustBeExecutedIterator::MustBeExecutedIterator(
498 MustBeExecutedContextExplorer &Explorer, const Instruction *I)
499 : Explorer(Explorer), CurInst(I) {
500 reset(I);
503 void MustBeExecutedIterator::reset(const Instruction *I) {
504 CurInst = I;
505 Visited.clear();
506 Visited.insert(I);
509 const Instruction *MustBeExecutedIterator::advance() {
510 assert(CurInst && "Cannot advance an end iterator!");
511 const Instruction *Next =
512 Explorer.getMustBeExecutedNextInstruction(*this, CurInst);
513 if (Next && !Visited.insert(Next).second)
514 Next = nullptr;
515 return Next;