1 //===- BlockFrequencyImplInfo.cpp - Block Frequency Info Implementation ---===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // Loops should be simplified before this analysis.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/GraphTraits.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/SCCIterator.h"
20 #include "llvm/Config/llvm-config.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/Support/BlockFrequency.h"
23 #include "llvm/Support/BranchProbability.h"
24 #include "llvm/Support/Compiler.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/ScaledNumber.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
40 using namespace llvm::bfi_detail
;
42 #define DEBUG_TYPE "block-freq"
44 ScaledNumber
<uint64_t> BlockMass::toScaled() const {
46 return ScaledNumber
<uint64_t>(1, 0);
47 return ScaledNumber
<uint64_t>(getMass() + 1, -64);
50 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
51 LLVM_DUMP_METHOD
void BlockMass::dump() const { print(dbgs()); }
54 static char getHexDigit(int N
) {
61 raw_ostream
&BlockMass::print(raw_ostream
&OS
) const {
62 for (int Digits
= 0; Digits
< 16; ++Digits
)
63 OS
<< getHexDigit(Mass
>> (60 - Digits
* 4) & 0xf);
69 using BlockNode
= BlockFrequencyInfoImplBase::BlockNode
;
70 using Distribution
= BlockFrequencyInfoImplBase::Distribution
;
71 using WeightList
= BlockFrequencyInfoImplBase::Distribution::WeightList
;
72 using Scaled64
= BlockFrequencyInfoImplBase::Scaled64
;
73 using LoopData
= BlockFrequencyInfoImplBase::LoopData
;
74 using Weight
= BlockFrequencyInfoImplBase::Weight
;
75 using FrequencyData
= BlockFrequencyInfoImplBase::FrequencyData
;
77 /// Dithering mass distributer.
79 /// This class splits up a single mass into portions by weight, dithering to
80 /// spread out error. No mass is lost. The dithering precision depends on the
81 /// precision of the product of \a BlockMass and \a BranchProbability.
83 /// The distribution algorithm follows.
85 /// 1. Initialize by saving the sum of the weights in \a RemWeight and the
86 /// mass to distribute in \a RemMass.
88 /// 2. For each portion:
90 /// 1. Construct a branch probability, P, as the portion's weight divided
91 /// by the current value of \a RemWeight.
92 /// 2. Calculate the portion's mass as \a RemMass times P.
93 /// 3. Update \a RemWeight and \a RemMass at each portion by subtracting
94 /// the current portion's weight and mass.
95 struct DitheringDistributer
{
99 DitheringDistributer(Distribution
&Dist
, const BlockMass
&Mass
);
101 BlockMass
takeMass(uint32_t Weight
);
104 } // end anonymous namespace
106 DitheringDistributer::DitheringDistributer(Distribution
&Dist
,
107 const BlockMass
&Mass
) {
109 RemWeight
= Dist
.Total
;
113 BlockMass
DitheringDistributer::takeMass(uint32_t Weight
) {
114 assert(Weight
&& "invalid weight");
115 assert(Weight
<= RemWeight
);
116 BlockMass Mass
= RemMass
* BranchProbability(Weight
, RemWeight
);
118 // Decrement totals (dither).
124 void Distribution::add(const BlockNode
&Node
, uint64_t Amount
,
125 Weight::DistType Type
) {
126 assert(Amount
&& "invalid weight of 0");
127 uint64_t NewTotal
= Total
+ Amount
;
129 // Check for overflow. It should be impossible to overflow twice.
130 bool IsOverflow
= NewTotal
< Total
;
131 assert(!(DidOverflow
&& IsOverflow
) && "unexpected repeated overflow");
132 DidOverflow
|= IsOverflow
;
138 Weights
.push_back(Weight(Type
, Node
, Amount
));
141 static void combineWeight(Weight
&W
, const Weight
&OtherW
) {
142 assert(OtherW
.TargetNode
.isValid());
147 assert(W
.Type
== OtherW
.Type
);
148 assert(W
.TargetNode
== OtherW
.TargetNode
);
149 assert(OtherW
.Amount
&& "Expected non-zero weight");
150 if (W
.Amount
> W
.Amount
+ OtherW
.Amount
)
151 // Saturate on overflow.
152 W
.Amount
= UINT64_MAX
;
154 W
.Amount
+= OtherW
.Amount
;
157 static void combineWeightsBySorting(WeightList
&Weights
) {
158 // Sort so edges to the same node are adjacent.
159 llvm::sort(Weights
, [](const Weight
&L
, const Weight
&R
) {
160 return L
.TargetNode
< R
.TargetNode
;
163 // Combine adjacent edges.
164 WeightList::iterator O
= Weights
.begin();
165 for (WeightList::const_iterator I
= O
, L
= O
, E
= Weights
.end(); I
!= E
;
169 // Find the adjacent weights to the same node.
170 for (++L
; L
!= E
&& I
->TargetNode
== L
->TargetNode
; ++L
)
171 combineWeight(*O
, *L
);
174 // Erase extra entries.
175 Weights
.erase(O
, Weights
.end());
178 static void combineWeightsByHashing(WeightList
&Weights
) {
179 // Collect weights into a DenseMap.
180 using HashTable
= DenseMap
<BlockNode::IndexType
, Weight
>;
182 HashTable
Combined(NextPowerOf2(2 * Weights
.size()));
183 for (const Weight
&W
: Weights
)
184 combineWeight(Combined
[W
.TargetNode
.Index
], W
);
186 // Check whether anything changed.
187 if (Weights
.size() == Combined
.size())
190 // Fill in the new weights.
192 Weights
.reserve(Combined
.size());
193 for (const auto &I
: Combined
)
194 Weights
.push_back(I
.second
);
197 static void combineWeights(WeightList
&Weights
) {
198 // Use a hash table for many successors to keep this linear.
199 if (Weights
.size() > 128) {
200 combineWeightsByHashing(Weights
);
204 combineWeightsBySorting(Weights
);
207 static uint64_t shiftRightAndRound(uint64_t N
, int Shift
) {
212 return (N
>> Shift
) + (UINT64_C(1) & N
>> (Shift
- 1));
215 void Distribution::normalize() {
216 // Early exit for termination nodes.
220 // Only bother if there are multiple successors.
221 if (Weights
.size() > 1)
222 combineWeights(Weights
);
224 // Early exit when combined into a single successor.
225 if (Weights
.size() == 1) {
227 Weights
.front().Amount
= 1;
231 // Determine how much to shift right so that the total fits into 32-bits.
233 // If we shift at all, shift by 1 extra. Otherwise, the lower limit of 1
234 // for each weight can cause a 32-bit overflow.
238 else if (Total
> UINT32_MAX
)
239 Shift
= 33 - countLeadingZeros(Total
);
241 // Early exit if nothing needs to be scaled.
243 // If we didn't overflow then combineWeights() shouldn't have changed the
244 // sum of the weights, but let's double-check.
245 assert(Total
== std::accumulate(Weights
.begin(), Weights
.end(), UINT64_C(0),
246 [](uint64_t Sum
, const Weight
&W
) {
247 return Sum
+ W
.Amount
;
249 "Expected total to be correct");
253 // Recompute the total through accumulation (rather than shifting it) so that
254 // it's accurate after shifting and any changes combineWeights() made above.
257 // Sum the weights to each node and shift right if necessary.
258 for (Weight
&W
: Weights
) {
259 // Scale down below UINT32_MAX. Since Shift is larger than necessary, we
260 // can round here without concern about overflow.
261 assert(W
.TargetNode
.isValid());
262 W
.Amount
= std::max(UINT64_C(1), shiftRightAndRound(W
.Amount
, Shift
));
263 assert(W
.Amount
<= UINT32_MAX
);
268 assert(Total
<= UINT32_MAX
);
271 void BlockFrequencyInfoImplBase::clear() {
272 // Swap with a default-constructed std::vector, since std::vector<>::clear()
273 // does not actually clear heap storage.
274 std::vector
<FrequencyData
>().swap(Freqs
);
275 IsIrrLoopHeader
.clear();
276 std::vector
<WorkingData
>().swap(Working
);
280 /// Clear all memory not needed downstream.
282 /// Releases all memory not used downstream. In particular, saves Freqs.
283 static void cleanup(BlockFrequencyInfoImplBase
&BFI
) {
284 std::vector
<FrequencyData
> SavedFreqs(std::move(BFI
.Freqs
));
285 SparseBitVector
<> SavedIsIrrLoopHeader(std::move(BFI
.IsIrrLoopHeader
));
287 BFI
.Freqs
= std::move(SavedFreqs
);
288 BFI
.IsIrrLoopHeader
= std::move(SavedIsIrrLoopHeader
);
291 bool BlockFrequencyInfoImplBase::addToDist(Distribution
&Dist
,
292 const LoopData
*OuterLoop
,
293 const BlockNode
&Pred
,
294 const BlockNode
&Succ
,
299 auto isLoopHeader
= [&OuterLoop
](const BlockNode
&Node
) {
300 return OuterLoop
&& OuterLoop
->isHeader(Node
);
303 BlockNode Resolved
= Working
[Succ
.Index
].getResolvedNode();
306 auto debugSuccessor
= [&](const char *Type
) {
308 << " [" << Type
<< "] weight = " << Weight
;
309 if (!isLoopHeader(Resolved
))
310 dbgs() << ", succ = " << getBlockName(Succ
);
311 if (Resolved
!= Succ
)
312 dbgs() << ", resolved = " << getBlockName(Resolved
);
315 (void)debugSuccessor
;
318 if (isLoopHeader(Resolved
)) {
319 LLVM_DEBUG(debugSuccessor("backedge"));
320 Dist
.addBackedge(Resolved
, Weight
);
324 if (Working
[Resolved
.Index
].getContainingLoop() != OuterLoop
) {
325 LLVM_DEBUG(debugSuccessor(" exit "));
326 Dist
.addExit(Resolved
, Weight
);
330 if (Resolved
< Pred
) {
331 if (!isLoopHeader(Pred
)) {
332 // If OuterLoop is an irreducible loop, we can't actually handle this.
333 assert((!OuterLoop
|| !OuterLoop
->isIrreducible()) &&
334 "unhandled irreducible control flow");
336 // Irreducible backedge. Abort.
337 LLVM_DEBUG(debugSuccessor("abort!!!"));
341 // If "Pred" is a loop header, then this isn't really a backedge; rather,
342 // OuterLoop must be irreducible. These false backedges can come only from
343 // secondary loop headers.
344 assert(OuterLoop
&& OuterLoop
->isIrreducible() && !isLoopHeader(Resolved
) &&
345 "unhandled irreducible control flow");
348 LLVM_DEBUG(debugSuccessor(" local "));
349 Dist
.addLocal(Resolved
, Weight
);
353 bool BlockFrequencyInfoImplBase::addLoopSuccessorsToDist(
354 const LoopData
*OuterLoop
, LoopData
&Loop
, Distribution
&Dist
) {
355 // Copy the exit map into Dist.
356 for (const auto &I
: Loop
.Exits
)
357 if (!addToDist(Dist
, OuterLoop
, Loop
.getHeader(), I
.first
,
359 // Irreducible backedge.
365 /// Compute the loop scale for a loop.
366 void BlockFrequencyInfoImplBase::computeLoopScale(LoopData
&Loop
) {
367 // Compute loop scale.
368 LLVM_DEBUG(dbgs() << "compute-loop-scale: " << getLoopName(Loop
) << "\n");
370 // Infinite loops need special handling. If we give the back edge an infinite
371 // mass, they may saturate all the other scales in the function down to 1,
372 // making all the other region temperatures look exactly the same. Choose an
373 // arbitrary scale to avoid these issues.
375 // FIXME: An alternate way would be to select a symbolic scale which is later
376 // replaced to be the maximum of all computed scales plus 1. This would
377 // appropriately describe the loop as having a large scale, without skewing
378 // the final frequency computation.
379 const Scaled64
InfiniteLoopScale(1, 12);
381 // LoopScale == 1 / ExitMass
382 // ExitMass == HeadMass - BackedgeMass
383 BlockMass TotalBackedgeMass
;
384 for (auto &Mass
: Loop
.BackedgeMass
)
385 TotalBackedgeMass
+= Mass
;
386 BlockMass ExitMass
= BlockMass::getFull() - TotalBackedgeMass
;
388 // Block scale stores the inverse of the scale. If this is an infinite loop,
389 // its exit mass will be zero. In this case, use an arbitrary scale for the
392 ExitMass
.isEmpty() ? InfiniteLoopScale
: ExitMass
.toScaled().inverse();
394 LLVM_DEBUG(dbgs() << " - exit-mass = " << ExitMass
<< " ("
395 << BlockMass::getFull() << " - " << TotalBackedgeMass
397 << " - scale = " << Loop
.Scale
<< "\n");
400 /// Package up a loop.
401 void BlockFrequencyInfoImplBase::packageLoop(LoopData
&Loop
) {
402 LLVM_DEBUG(dbgs() << "packaging-loop: " << getLoopName(Loop
) << "\n");
404 // Clear the subloop exits to prevent quadratic memory usage.
405 for (const BlockNode
&M
: Loop
.Nodes
) {
406 if (auto *Loop
= Working
[M
.Index
].getPackagedLoop())
408 LLVM_DEBUG(dbgs() << " - node: " << getBlockName(M
.Index
) << "\n");
410 Loop
.IsPackaged
= true;
414 static void debugAssign(const BlockFrequencyInfoImplBase
&BFI
,
415 const DitheringDistributer
&D
, const BlockNode
&T
,
416 const BlockMass
&M
, const char *Desc
) {
417 dbgs() << " => assign " << M
<< " (" << D
.RemMass
<< ")";
419 dbgs() << " [" << Desc
<< "]";
421 dbgs() << " to " << BFI
.getBlockName(T
);
426 void BlockFrequencyInfoImplBase::distributeMass(const BlockNode
&Source
,
428 Distribution
&Dist
) {
429 BlockMass Mass
= Working
[Source
.Index
].getMass();
430 LLVM_DEBUG(dbgs() << " => mass: " << Mass
<< "\n");
432 // Distribute mass to successors as laid out in Dist.
433 DitheringDistributer
D(Dist
, Mass
);
435 for (const Weight
&W
: Dist
.Weights
) {
436 // Check for a local edge (non-backedge and non-exit).
437 BlockMass Taken
= D
.takeMass(W
.Amount
);
438 if (W
.Type
== Weight::Local
) {
439 Working
[W
.TargetNode
.Index
].getMass() += Taken
;
440 LLVM_DEBUG(debugAssign(*this, D
, W
.TargetNode
, Taken
, nullptr));
444 // Backedges and exits only make sense if we're processing a loop.
445 assert(OuterLoop
&& "backedge or exit outside of loop");
447 // Check for a backedge.
448 if (W
.Type
== Weight::Backedge
) {
449 OuterLoop
->BackedgeMass
[OuterLoop
->getHeaderIndex(W
.TargetNode
)] += Taken
;
450 LLVM_DEBUG(debugAssign(*this, D
, W
.TargetNode
, Taken
, "back"));
454 // This must be an exit.
455 assert(W
.Type
== Weight::Exit
);
456 OuterLoop
->Exits
.push_back(std::make_pair(W
.TargetNode
, Taken
));
457 LLVM_DEBUG(debugAssign(*this, D
, W
.TargetNode
, Taken
, "exit"));
461 static void convertFloatingToInteger(BlockFrequencyInfoImplBase
&BFI
,
462 const Scaled64
&Min
, const Scaled64
&Max
) {
463 // Scale the Factor to a size that creates integers. Ideally, integers would
464 // be scaled so that Max == UINT64_MAX so that they can be best
465 // differentiated. However, in the presence of large frequency values, small
466 // frequencies are scaled down to 1, making it impossible to differentiate
467 // small, unequal numbers. When the spread between Min and Max frequencies
468 // fits well within MaxBits, we make the scale be at least 8.
469 const unsigned MaxBits
= 64;
470 const unsigned SpreadBits
= (Max
/ Min
).lg();
471 Scaled64 ScalingFactor
;
472 if (SpreadBits
<= MaxBits
- 3) {
473 // If the values are small enough, make the scaling factor at least 8 to
474 // allow distinguishing small values.
475 ScalingFactor
= Min
.inverse();
478 // If the values need more than MaxBits to be represented, saturate small
479 // frequency values down to 1 by using a scaling factor that benefits large
481 ScalingFactor
= Scaled64(1, MaxBits
) / Max
;
484 // Translate the floats to integers.
485 LLVM_DEBUG(dbgs() << "float-to-int: min = " << Min
<< ", max = " << Max
486 << ", factor = " << ScalingFactor
<< "\n");
487 for (size_t Index
= 0; Index
< BFI
.Freqs
.size(); ++Index
) {
488 Scaled64 Scaled
= BFI
.Freqs
[Index
].Scaled
* ScalingFactor
;
489 BFI
.Freqs
[Index
].Integer
= std::max(UINT64_C(1), Scaled
.toInt
<uint64_t>());
490 LLVM_DEBUG(dbgs() << " - " << BFI
.getBlockName(Index
) << ": float = "
491 << BFI
.Freqs
[Index
].Scaled
<< ", scaled = " << Scaled
492 << ", int = " << BFI
.Freqs
[Index
].Integer
<< "\n");
496 /// Unwrap a loop package.
498 /// Visits all the members of a loop, adjusting their BlockData according to
499 /// the loop's pseudo-node.
500 static void unwrapLoop(BlockFrequencyInfoImplBase
&BFI
, LoopData
&Loop
) {
501 LLVM_DEBUG(dbgs() << "unwrap-loop-package: " << BFI
.getLoopName(Loop
)
502 << ": mass = " << Loop
.Mass
<< ", scale = " << Loop
.Scale
504 Loop
.Scale
*= Loop
.Mass
.toScaled();
505 Loop
.IsPackaged
= false;
506 LLVM_DEBUG(dbgs() << " => combined-scale = " << Loop
.Scale
<< "\n");
508 // Propagate the head scale through the loop. Since members are visited in
509 // RPO, the head scale will be updated by the loop scale first, and then the
510 // final head scale will be used for updated the rest of the members.
511 for (const BlockNode
&N
: Loop
.Nodes
) {
512 const auto &Working
= BFI
.Working
[N
.Index
];
513 Scaled64
&F
= Working
.isAPackage() ? Working
.getPackagedLoop()->Scale
514 : BFI
.Freqs
[N
.Index
].Scaled
;
515 Scaled64 New
= Loop
.Scale
* F
;
516 LLVM_DEBUG(dbgs() << " - " << BFI
.getBlockName(N
) << ": " << F
<< " => "
522 void BlockFrequencyInfoImplBase::unwrapLoops() {
523 // Set initial frequencies from loop-local masses.
524 for (size_t Index
= 0; Index
< Working
.size(); ++Index
)
525 Freqs
[Index
].Scaled
= Working
[Index
].Mass
.toScaled();
527 for (LoopData
&Loop
: Loops
)
528 unwrapLoop(*this, Loop
);
531 void BlockFrequencyInfoImplBase::finalizeMetrics() {
532 // Unwrap loop packages in reverse post-order, tracking min and max
534 auto Min
= Scaled64::getLargest();
535 auto Max
= Scaled64::getZero();
536 for (size_t Index
= 0; Index
< Working
.size(); ++Index
) {
537 // Update min/max scale.
538 Min
= std::min(Min
, Freqs
[Index
].Scaled
);
539 Max
= std::max(Max
, Freqs
[Index
].Scaled
);
542 // Convert to integers.
543 convertFloatingToInteger(*this, Min
, Max
);
545 // Clean up data structures.
548 // Print out the final stats.
553 BlockFrequencyInfoImplBase::getBlockFreq(const BlockNode
&Node
) const {
556 return Freqs
[Node
.Index
].Integer
;
560 BlockFrequencyInfoImplBase::getBlockProfileCount(const Function
&F
,
561 const BlockNode
&Node
) const {
562 return getProfileCountFromFreq(F
, getBlockFreq(Node
).getFrequency());
566 BlockFrequencyInfoImplBase::getProfileCountFromFreq(const Function
&F
,
567 uint64_t Freq
) const {
568 auto EntryCount
= F
.getEntryCount();
571 // Use 128 bit APInt to do the arithmetic to avoid overflow.
572 APInt
BlockCount(128, EntryCount
.getCount());
573 APInt
BlockFreq(128, Freq
);
574 APInt
EntryFreq(128, getEntryFreq());
575 BlockCount
*= BlockFreq
;
576 // Rounded division of BlockCount by EntryFreq. Since EntryFreq is unsigned
577 // lshr by 1 gives EntryFreq/2.
578 BlockCount
= (BlockCount
+ EntryFreq
.lshr(1)).udiv(EntryFreq
);
579 return BlockCount
.getLimitedValue();
583 BlockFrequencyInfoImplBase::isIrrLoopHeader(const BlockNode
&Node
) {
586 return IsIrrLoopHeader
.test(Node
.Index
);
590 BlockFrequencyInfoImplBase::getFloatingBlockFreq(const BlockNode
&Node
) const {
592 return Scaled64::getZero();
593 return Freqs
[Node
.Index
].Scaled
;
596 void BlockFrequencyInfoImplBase::setBlockFreq(const BlockNode
&Node
,
598 assert(Node
.isValid() && "Expected valid node");
599 assert(Node
.Index
< Freqs
.size() && "Expected legal index");
600 Freqs
[Node
.Index
].Integer
= Freq
;
604 BlockFrequencyInfoImplBase::getBlockName(const BlockNode
&Node
) const {
609 BlockFrequencyInfoImplBase::getLoopName(const LoopData
&Loop
) const {
610 return getBlockName(Loop
.getHeader()) + (Loop
.isIrreducible() ? "**" : "*");
614 BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream
&OS
,
615 const BlockNode
&Node
) const {
616 return OS
<< getFloatingBlockFreq(Node
);
620 BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream
&OS
,
621 const BlockFrequency
&Freq
) const {
622 Scaled64
Block(Freq
.getFrequency(), 0);
623 Scaled64
Entry(getEntryFreq(), 0);
625 return OS
<< Block
/ Entry
;
628 void IrreducibleGraph::addNodesInLoop(const BFIBase::LoopData
&OuterLoop
) {
629 Start
= OuterLoop
.getHeader();
630 Nodes
.reserve(OuterLoop
.Nodes
.size());
631 for (auto N
: OuterLoop
.Nodes
)
636 void IrreducibleGraph::addNodesInFunction() {
638 for (uint32_t Index
= 0; Index
< BFI
.Working
.size(); ++Index
)
639 if (!BFI
.Working
[Index
].isPackaged())
644 void IrreducibleGraph::indexNodes() {
645 for (auto &I
: Nodes
)
646 Lookup
[I
.Node
.Index
] = &I
;
649 void IrreducibleGraph::addEdge(IrrNode
&Irr
, const BlockNode
&Succ
,
650 const BFIBase::LoopData
*OuterLoop
) {
651 if (OuterLoop
&& OuterLoop
->isHeader(Succ
))
653 auto L
= Lookup
.find(Succ
.Index
);
654 if (L
== Lookup
.end())
656 IrrNode
&SuccIrr
= *L
->second
;
657 Irr
.Edges
.push_back(&SuccIrr
);
658 SuccIrr
.Edges
.push_front(&Irr
);
664 template <> struct GraphTraits
<IrreducibleGraph
> {
665 using GraphT
= bfi_detail::IrreducibleGraph
;
666 using NodeRef
= const GraphT::IrrNode
*;
667 using ChildIteratorType
= GraphT::IrrNode::iterator
;
669 static NodeRef
getEntryNode(const GraphT
&G
) { return G
.StartIrr
; }
670 static ChildIteratorType
child_begin(NodeRef N
) { return N
->succ_begin(); }
671 static ChildIteratorType
child_end(NodeRef N
) { return N
->succ_end(); }
674 } // end namespace llvm
676 /// Find extra irreducible headers.
678 /// Find entry blocks and other blocks with backedges, which exist when \c G
679 /// contains irreducible sub-SCCs.
680 static void findIrreducibleHeaders(
681 const BlockFrequencyInfoImplBase
&BFI
,
682 const IrreducibleGraph
&G
,
683 const std::vector
<const IrreducibleGraph::IrrNode
*> &SCC
,
684 LoopData::NodeList
&Headers
, LoopData::NodeList
&Others
) {
685 // Map from nodes in the SCC to whether it's an entry block.
686 SmallDenseMap
<const IrreducibleGraph::IrrNode
*, bool, 8> InSCC
;
688 // InSCC also acts the set of nodes in the graph. Seed it.
689 for (const auto *I
: SCC
)
692 for (auto I
= InSCC
.begin(), E
= InSCC
.end(); I
!= E
; ++I
) {
693 auto &Irr
= *I
->first
;
694 for (const auto *P
: make_range(Irr
.pred_begin(), Irr
.pred_end())) {
698 // This is an entry block.
700 Headers
.push_back(Irr
.Node
);
701 LLVM_DEBUG(dbgs() << " => entry = " << BFI
.getBlockName(Irr
.Node
)
706 assert(Headers
.size() >= 2 &&
707 "Expected irreducible CFG; -loop-info is likely invalid");
708 if (Headers
.size() == InSCC
.size()) {
709 // Every block is a header.
714 // Look for extra headers from irreducible sub-SCCs.
715 for (const auto &I
: InSCC
) {
716 // Entry blocks are already headers.
720 auto &Irr
= *I
.first
;
721 for (const auto *P
: make_range(Irr
.pred_begin(), Irr
.pred_end())) {
722 // Skip forward edges.
723 if (P
->Node
< Irr
.Node
)
726 // Skip predecessors from entry blocks. These can have inverted
731 // Store the extra header.
732 Headers
.push_back(Irr
.Node
);
733 LLVM_DEBUG(dbgs() << " => extra = " << BFI
.getBlockName(Irr
.Node
)
737 if (Headers
.back() == Irr
.Node
)
738 // Added this as a header.
741 // This is not a header.
742 Others
.push_back(Irr
.Node
);
743 LLVM_DEBUG(dbgs() << " => other = " << BFI
.getBlockName(Irr
.Node
) << "\n");
749 static void createIrreducibleLoop(
750 BlockFrequencyInfoImplBase
&BFI
, const IrreducibleGraph
&G
,
751 LoopData
*OuterLoop
, std::list
<LoopData
>::iterator Insert
,
752 const std::vector
<const IrreducibleGraph::IrrNode
*> &SCC
) {
753 // Translate the SCC into RPO.
754 LLVM_DEBUG(dbgs() << " - found-scc\n");
756 LoopData::NodeList Headers
;
757 LoopData::NodeList Others
;
758 findIrreducibleHeaders(BFI
, G
, SCC
, Headers
, Others
);
760 auto Loop
= BFI
.Loops
.emplace(Insert
, OuterLoop
, Headers
.begin(),
761 Headers
.end(), Others
.begin(), Others
.end());
763 // Update loop hierarchy.
764 for (const auto &N
: Loop
->Nodes
)
765 if (BFI
.Working
[N
.Index
].isLoopHeader())
766 BFI
.Working
[N
.Index
].Loop
->Parent
= &*Loop
;
768 BFI
.Working
[N
.Index
].Loop
= &*Loop
;
771 iterator_range
<std::list
<LoopData
>::iterator
>
772 BlockFrequencyInfoImplBase::analyzeIrreducible(
773 const IrreducibleGraph
&G
, LoopData
*OuterLoop
,
774 std::list
<LoopData
>::iterator Insert
) {
775 assert((OuterLoop
== nullptr) == (Insert
== Loops
.begin()));
776 auto Prev
= OuterLoop
? std::prev(Insert
) : Loops
.end();
778 for (auto I
= scc_begin(G
); !I
.isAtEnd(); ++I
) {
782 // Translate the SCC into RPO.
783 createIrreducibleLoop(*this, G
, OuterLoop
, Insert
, *I
);
787 return make_range(std::next(Prev
), Insert
);
788 return make_range(Loops
.begin(), Insert
);
792 BlockFrequencyInfoImplBase::updateLoopWithIrreducible(LoopData
&OuterLoop
) {
793 OuterLoop
.Exits
.clear();
794 for (auto &Mass
: OuterLoop
.BackedgeMass
)
795 Mass
= BlockMass::getEmpty();
796 auto O
= OuterLoop
.Nodes
.begin() + 1;
797 for (auto I
= O
, E
= OuterLoop
.Nodes
.end(); I
!= E
; ++I
)
798 if (!Working
[I
->Index
].isPackaged())
800 OuterLoop
.Nodes
.erase(O
, OuterLoop
.Nodes
.end());
803 void BlockFrequencyInfoImplBase::adjustLoopHeaderMass(LoopData
&Loop
) {
804 assert(Loop
.isIrreducible() && "this only makes sense on irreducible loops");
806 // Since the loop has more than one header block, the mass flowing back into
807 // each header will be different. Adjust the mass in each header loop to
808 // reflect the masses flowing through back edges.
810 // To do this, we distribute the initial mass using the backedge masses
811 // as weights for the distribution.
812 BlockMass LoopMass
= BlockMass::getFull();
815 LLVM_DEBUG(dbgs() << "adjust-loop-header-mass:\n");
816 for (uint32_t H
= 0; H
< Loop
.NumHeaders
; ++H
) {
817 auto &HeaderNode
= Loop
.Nodes
[H
];
818 auto &BackedgeMass
= Loop
.BackedgeMass
[Loop
.getHeaderIndex(HeaderNode
)];
819 LLVM_DEBUG(dbgs() << " - Add back edge mass for node "
820 << getBlockName(HeaderNode
) << ": " << BackedgeMass
822 if (BackedgeMass
.getMass() > 0)
823 Dist
.addLocal(HeaderNode
, BackedgeMass
.getMass());
825 LLVM_DEBUG(dbgs() << " Nothing added. Back edge mass is zero\n");
828 DitheringDistributer
D(Dist
, LoopMass
);
830 LLVM_DEBUG(dbgs() << " Distribute loop mass " << LoopMass
831 << " to headers using above weights\n");
832 for (const Weight
&W
: Dist
.Weights
) {
833 BlockMass Taken
= D
.takeMass(W
.Amount
);
834 assert(W
.Type
== Weight::Local
&& "all weights should be local");
835 Working
[W
.TargetNode
.Index
].getMass() = Taken
;
836 LLVM_DEBUG(debugAssign(*this, D
, W
.TargetNode
, Taken
, nullptr));
840 void BlockFrequencyInfoImplBase::distributeIrrLoopHeaderMass(Distribution
&Dist
) {
841 BlockMass LoopMass
= BlockMass::getFull();
842 DitheringDistributer
D(Dist
, LoopMass
);
843 for (const Weight
&W
: Dist
.Weights
) {
844 BlockMass Taken
= D
.takeMass(W
.Amount
);
845 assert(W
.Type
== Weight::Local
&& "all weights should be local");
846 Working
[W
.TargetNode
.Index
].getMass() = Taken
;
847 LLVM_DEBUG(debugAssign(*this, D
, W
.TargetNode
, Taken
, nullptr));