[llvm-objcopy] [COFF] Test absolute symbols wrt --strip-unneeded and --discard-all...
[llvm-complete.git] / lib / Analysis / BlockFrequencyInfoImpl.cpp
blob08ebcc47a807b18faad1d7101b13a62028dfa9b0
1 //===- BlockFrequencyImplInfo.cpp - Block Frequency Info Implementation ---===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Loops should be simplified before this analysis.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/GraphTraits.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/SCCIterator.h"
20 #include "llvm/Config/llvm-config.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/Support/BlockFrequency.h"
23 #include "llvm/Support/BranchProbability.h"
24 #include "llvm/Support/Compiler.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/ScaledNumber.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include <algorithm>
30 #include <cassert>
31 #include <cstddef>
32 #include <cstdint>
33 #include <iterator>
34 #include <list>
35 #include <numeric>
36 #include <utility>
37 #include <vector>
39 using namespace llvm;
40 using namespace llvm::bfi_detail;
42 #define DEBUG_TYPE "block-freq"
44 ScaledNumber<uint64_t> BlockMass::toScaled() const {
45 if (isFull())
46 return ScaledNumber<uint64_t>(1, 0);
47 return ScaledNumber<uint64_t>(getMass() + 1, -64);
50 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
51 LLVM_DUMP_METHOD void BlockMass::dump() const { print(dbgs()); }
52 #endif
54 static char getHexDigit(int N) {
55 assert(N < 16);
56 if (N < 10)
57 return '0' + N;
58 return 'a' + N - 10;
61 raw_ostream &BlockMass::print(raw_ostream &OS) const {
62 for (int Digits = 0; Digits < 16; ++Digits)
63 OS << getHexDigit(Mass >> (60 - Digits * 4) & 0xf);
64 return OS;
67 namespace {
69 using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
70 using Distribution = BlockFrequencyInfoImplBase::Distribution;
71 using WeightList = BlockFrequencyInfoImplBase::Distribution::WeightList;
72 using Scaled64 = BlockFrequencyInfoImplBase::Scaled64;
73 using LoopData = BlockFrequencyInfoImplBase::LoopData;
74 using Weight = BlockFrequencyInfoImplBase::Weight;
75 using FrequencyData = BlockFrequencyInfoImplBase::FrequencyData;
77 /// Dithering mass distributer.
78 ///
79 /// This class splits up a single mass into portions by weight, dithering to
80 /// spread out error. No mass is lost. The dithering precision depends on the
81 /// precision of the product of \a BlockMass and \a BranchProbability.
82 ///
83 /// The distribution algorithm follows.
84 ///
85 /// 1. Initialize by saving the sum of the weights in \a RemWeight and the
86 /// mass to distribute in \a RemMass.
87 ///
88 /// 2. For each portion:
89 ///
90 /// 1. Construct a branch probability, P, as the portion's weight divided
91 /// by the current value of \a RemWeight.
92 /// 2. Calculate the portion's mass as \a RemMass times P.
93 /// 3. Update \a RemWeight and \a RemMass at each portion by subtracting
94 /// the current portion's weight and mass.
95 struct DitheringDistributer {
96 uint32_t RemWeight;
97 BlockMass RemMass;
99 DitheringDistributer(Distribution &Dist, const BlockMass &Mass);
101 BlockMass takeMass(uint32_t Weight);
104 } // end anonymous namespace
106 DitheringDistributer::DitheringDistributer(Distribution &Dist,
107 const BlockMass &Mass) {
108 Dist.normalize();
109 RemWeight = Dist.Total;
110 RemMass = Mass;
113 BlockMass DitheringDistributer::takeMass(uint32_t Weight) {
114 assert(Weight && "invalid weight");
115 assert(Weight <= RemWeight);
116 BlockMass Mass = RemMass * BranchProbability(Weight, RemWeight);
118 // Decrement totals (dither).
119 RemWeight -= Weight;
120 RemMass -= Mass;
121 return Mass;
124 void Distribution::add(const BlockNode &Node, uint64_t Amount,
125 Weight::DistType Type) {
126 assert(Amount && "invalid weight of 0");
127 uint64_t NewTotal = Total + Amount;
129 // Check for overflow. It should be impossible to overflow twice.
130 bool IsOverflow = NewTotal < Total;
131 assert(!(DidOverflow && IsOverflow) && "unexpected repeated overflow");
132 DidOverflow |= IsOverflow;
134 // Update the total.
135 Total = NewTotal;
137 // Save the weight.
138 Weights.push_back(Weight(Type, Node, Amount));
141 static void combineWeight(Weight &W, const Weight &OtherW) {
142 assert(OtherW.TargetNode.isValid());
143 if (!W.Amount) {
144 W = OtherW;
145 return;
147 assert(W.Type == OtherW.Type);
148 assert(W.TargetNode == OtherW.TargetNode);
149 assert(OtherW.Amount && "Expected non-zero weight");
150 if (W.Amount > W.Amount + OtherW.Amount)
151 // Saturate on overflow.
152 W.Amount = UINT64_MAX;
153 else
154 W.Amount += OtherW.Amount;
157 static void combineWeightsBySorting(WeightList &Weights) {
158 // Sort so edges to the same node are adjacent.
159 llvm::sort(Weights, [](const Weight &L, const Weight &R) {
160 return L.TargetNode < R.TargetNode;
163 // Combine adjacent edges.
164 WeightList::iterator O = Weights.begin();
165 for (WeightList::const_iterator I = O, L = O, E = Weights.end(); I != E;
166 ++O, (I = L)) {
167 *O = *I;
169 // Find the adjacent weights to the same node.
170 for (++L; L != E && I->TargetNode == L->TargetNode; ++L)
171 combineWeight(*O, *L);
174 // Erase extra entries.
175 Weights.erase(O, Weights.end());
178 static void combineWeightsByHashing(WeightList &Weights) {
179 // Collect weights into a DenseMap.
180 using HashTable = DenseMap<BlockNode::IndexType, Weight>;
182 HashTable Combined(NextPowerOf2(2 * Weights.size()));
183 for (const Weight &W : Weights)
184 combineWeight(Combined[W.TargetNode.Index], W);
186 // Check whether anything changed.
187 if (Weights.size() == Combined.size())
188 return;
190 // Fill in the new weights.
191 Weights.clear();
192 Weights.reserve(Combined.size());
193 for (const auto &I : Combined)
194 Weights.push_back(I.second);
197 static void combineWeights(WeightList &Weights) {
198 // Use a hash table for many successors to keep this linear.
199 if (Weights.size() > 128) {
200 combineWeightsByHashing(Weights);
201 return;
204 combineWeightsBySorting(Weights);
207 static uint64_t shiftRightAndRound(uint64_t N, int Shift) {
208 assert(Shift >= 0);
209 assert(Shift < 64);
210 if (!Shift)
211 return N;
212 return (N >> Shift) + (UINT64_C(1) & N >> (Shift - 1));
215 void Distribution::normalize() {
216 // Early exit for termination nodes.
217 if (Weights.empty())
218 return;
220 // Only bother if there are multiple successors.
221 if (Weights.size() > 1)
222 combineWeights(Weights);
224 // Early exit when combined into a single successor.
225 if (Weights.size() == 1) {
226 Total = 1;
227 Weights.front().Amount = 1;
228 return;
231 // Determine how much to shift right so that the total fits into 32-bits.
233 // If we shift at all, shift by 1 extra. Otherwise, the lower limit of 1
234 // for each weight can cause a 32-bit overflow.
235 int Shift = 0;
236 if (DidOverflow)
237 Shift = 33;
238 else if (Total > UINT32_MAX)
239 Shift = 33 - countLeadingZeros(Total);
241 // Early exit if nothing needs to be scaled.
242 if (!Shift) {
243 // If we didn't overflow then combineWeights() shouldn't have changed the
244 // sum of the weights, but let's double-check.
245 assert(Total == std::accumulate(Weights.begin(), Weights.end(), UINT64_C(0),
246 [](uint64_t Sum, const Weight &W) {
247 return Sum + W.Amount;
248 }) &&
249 "Expected total to be correct");
250 return;
253 // Recompute the total through accumulation (rather than shifting it) so that
254 // it's accurate after shifting and any changes combineWeights() made above.
255 Total = 0;
257 // Sum the weights to each node and shift right if necessary.
258 for (Weight &W : Weights) {
259 // Scale down below UINT32_MAX. Since Shift is larger than necessary, we
260 // can round here without concern about overflow.
261 assert(W.TargetNode.isValid());
262 W.Amount = std::max(UINT64_C(1), shiftRightAndRound(W.Amount, Shift));
263 assert(W.Amount <= UINT32_MAX);
265 // Update the total.
266 Total += W.Amount;
268 assert(Total <= UINT32_MAX);
271 void BlockFrequencyInfoImplBase::clear() {
272 // Swap with a default-constructed std::vector, since std::vector<>::clear()
273 // does not actually clear heap storage.
274 std::vector<FrequencyData>().swap(Freqs);
275 IsIrrLoopHeader.clear();
276 std::vector<WorkingData>().swap(Working);
277 Loops.clear();
280 /// Clear all memory not needed downstream.
282 /// Releases all memory not used downstream. In particular, saves Freqs.
283 static void cleanup(BlockFrequencyInfoImplBase &BFI) {
284 std::vector<FrequencyData> SavedFreqs(std::move(BFI.Freqs));
285 SparseBitVector<> SavedIsIrrLoopHeader(std::move(BFI.IsIrrLoopHeader));
286 BFI.clear();
287 BFI.Freqs = std::move(SavedFreqs);
288 BFI.IsIrrLoopHeader = std::move(SavedIsIrrLoopHeader);
291 bool BlockFrequencyInfoImplBase::addToDist(Distribution &Dist,
292 const LoopData *OuterLoop,
293 const BlockNode &Pred,
294 const BlockNode &Succ,
295 uint64_t Weight) {
296 if (!Weight)
297 Weight = 1;
299 auto isLoopHeader = [&OuterLoop](const BlockNode &Node) {
300 return OuterLoop && OuterLoop->isHeader(Node);
303 BlockNode Resolved = Working[Succ.Index].getResolvedNode();
305 #ifndef NDEBUG
306 auto debugSuccessor = [&](const char *Type) {
307 dbgs() << " =>"
308 << " [" << Type << "] weight = " << Weight;
309 if (!isLoopHeader(Resolved))
310 dbgs() << ", succ = " << getBlockName(Succ);
311 if (Resolved != Succ)
312 dbgs() << ", resolved = " << getBlockName(Resolved);
313 dbgs() << "\n";
315 (void)debugSuccessor;
316 #endif
318 if (isLoopHeader(Resolved)) {
319 LLVM_DEBUG(debugSuccessor("backedge"));
320 Dist.addBackedge(Resolved, Weight);
321 return true;
324 if (Working[Resolved.Index].getContainingLoop() != OuterLoop) {
325 LLVM_DEBUG(debugSuccessor(" exit "));
326 Dist.addExit(Resolved, Weight);
327 return true;
330 if (Resolved < Pred) {
331 if (!isLoopHeader(Pred)) {
332 // If OuterLoop is an irreducible loop, we can't actually handle this.
333 assert((!OuterLoop || !OuterLoop->isIrreducible()) &&
334 "unhandled irreducible control flow");
336 // Irreducible backedge. Abort.
337 LLVM_DEBUG(debugSuccessor("abort!!!"));
338 return false;
341 // If "Pred" is a loop header, then this isn't really a backedge; rather,
342 // OuterLoop must be irreducible. These false backedges can come only from
343 // secondary loop headers.
344 assert(OuterLoop && OuterLoop->isIrreducible() && !isLoopHeader(Resolved) &&
345 "unhandled irreducible control flow");
348 LLVM_DEBUG(debugSuccessor(" local "));
349 Dist.addLocal(Resolved, Weight);
350 return true;
353 bool BlockFrequencyInfoImplBase::addLoopSuccessorsToDist(
354 const LoopData *OuterLoop, LoopData &Loop, Distribution &Dist) {
355 // Copy the exit map into Dist.
356 for (const auto &I : Loop.Exits)
357 if (!addToDist(Dist, OuterLoop, Loop.getHeader(), I.first,
358 I.second.getMass()))
359 // Irreducible backedge.
360 return false;
362 return true;
365 /// Compute the loop scale for a loop.
366 void BlockFrequencyInfoImplBase::computeLoopScale(LoopData &Loop) {
367 // Compute loop scale.
368 LLVM_DEBUG(dbgs() << "compute-loop-scale: " << getLoopName(Loop) << "\n");
370 // Infinite loops need special handling. If we give the back edge an infinite
371 // mass, they may saturate all the other scales in the function down to 1,
372 // making all the other region temperatures look exactly the same. Choose an
373 // arbitrary scale to avoid these issues.
375 // FIXME: An alternate way would be to select a symbolic scale which is later
376 // replaced to be the maximum of all computed scales plus 1. This would
377 // appropriately describe the loop as having a large scale, without skewing
378 // the final frequency computation.
379 const Scaled64 InfiniteLoopScale(1, 12);
381 // LoopScale == 1 / ExitMass
382 // ExitMass == HeadMass - BackedgeMass
383 BlockMass TotalBackedgeMass;
384 for (auto &Mass : Loop.BackedgeMass)
385 TotalBackedgeMass += Mass;
386 BlockMass ExitMass = BlockMass::getFull() - TotalBackedgeMass;
388 // Block scale stores the inverse of the scale. If this is an infinite loop,
389 // its exit mass will be zero. In this case, use an arbitrary scale for the
390 // loop scale.
391 Loop.Scale =
392 ExitMass.isEmpty() ? InfiniteLoopScale : ExitMass.toScaled().inverse();
394 LLVM_DEBUG(dbgs() << " - exit-mass = " << ExitMass << " ("
395 << BlockMass::getFull() << " - " << TotalBackedgeMass
396 << ")\n"
397 << " - scale = " << Loop.Scale << "\n");
400 /// Package up a loop.
401 void BlockFrequencyInfoImplBase::packageLoop(LoopData &Loop) {
402 LLVM_DEBUG(dbgs() << "packaging-loop: " << getLoopName(Loop) << "\n");
404 // Clear the subloop exits to prevent quadratic memory usage.
405 for (const BlockNode &M : Loop.Nodes) {
406 if (auto *Loop = Working[M.Index].getPackagedLoop())
407 Loop->Exits.clear();
408 LLVM_DEBUG(dbgs() << " - node: " << getBlockName(M.Index) << "\n");
410 Loop.IsPackaged = true;
413 #ifndef NDEBUG
414 static void debugAssign(const BlockFrequencyInfoImplBase &BFI,
415 const DitheringDistributer &D, const BlockNode &T,
416 const BlockMass &M, const char *Desc) {
417 dbgs() << " => assign " << M << " (" << D.RemMass << ")";
418 if (Desc)
419 dbgs() << " [" << Desc << "]";
420 if (T.isValid())
421 dbgs() << " to " << BFI.getBlockName(T);
422 dbgs() << "\n";
424 #endif
426 void BlockFrequencyInfoImplBase::distributeMass(const BlockNode &Source,
427 LoopData *OuterLoop,
428 Distribution &Dist) {
429 BlockMass Mass = Working[Source.Index].getMass();
430 LLVM_DEBUG(dbgs() << " => mass: " << Mass << "\n");
432 // Distribute mass to successors as laid out in Dist.
433 DitheringDistributer D(Dist, Mass);
435 for (const Weight &W : Dist.Weights) {
436 // Check for a local edge (non-backedge and non-exit).
437 BlockMass Taken = D.takeMass(W.Amount);
438 if (W.Type == Weight::Local) {
439 Working[W.TargetNode.Index].getMass() += Taken;
440 LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr));
441 continue;
444 // Backedges and exits only make sense if we're processing a loop.
445 assert(OuterLoop && "backedge or exit outside of loop");
447 // Check for a backedge.
448 if (W.Type == Weight::Backedge) {
449 OuterLoop->BackedgeMass[OuterLoop->getHeaderIndex(W.TargetNode)] += Taken;
450 LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, "back"));
451 continue;
454 // This must be an exit.
455 assert(W.Type == Weight::Exit);
456 OuterLoop->Exits.push_back(std::make_pair(W.TargetNode, Taken));
457 LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, "exit"));
461 static void convertFloatingToInteger(BlockFrequencyInfoImplBase &BFI,
462 const Scaled64 &Min, const Scaled64 &Max) {
463 // Scale the Factor to a size that creates integers. Ideally, integers would
464 // be scaled so that Max == UINT64_MAX so that they can be best
465 // differentiated. However, in the presence of large frequency values, small
466 // frequencies are scaled down to 1, making it impossible to differentiate
467 // small, unequal numbers. When the spread between Min and Max frequencies
468 // fits well within MaxBits, we make the scale be at least 8.
469 const unsigned MaxBits = 64;
470 const unsigned SpreadBits = (Max / Min).lg();
471 Scaled64 ScalingFactor;
472 if (SpreadBits <= MaxBits - 3) {
473 // If the values are small enough, make the scaling factor at least 8 to
474 // allow distinguishing small values.
475 ScalingFactor = Min.inverse();
476 ScalingFactor <<= 3;
477 } else {
478 // If the values need more than MaxBits to be represented, saturate small
479 // frequency values down to 1 by using a scaling factor that benefits large
480 // frequency values.
481 ScalingFactor = Scaled64(1, MaxBits) / Max;
484 // Translate the floats to integers.
485 LLVM_DEBUG(dbgs() << "float-to-int: min = " << Min << ", max = " << Max
486 << ", factor = " << ScalingFactor << "\n");
487 for (size_t Index = 0; Index < BFI.Freqs.size(); ++Index) {
488 Scaled64 Scaled = BFI.Freqs[Index].Scaled * ScalingFactor;
489 BFI.Freqs[Index].Integer = std::max(UINT64_C(1), Scaled.toInt<uint64_t>());
490 LLVM_DEBUG(dbgs() << " - " << BFI.getBlockName(Index) << ": float = "
491 << BFI.Freqs[Index].Scaled << ", scaled = " << Scaled
492 << ", int = " << BFI.Freqs[Index].Integer << "\n");
496 /// Unwrap a loop package.
498 /// Visits all the members of a loop, adjusting their BlockData according to
499 /// the loop's pseudo-node.
500 static void unwrapLoop(BlockFrequencyInfoImplBase &BFI, LoopData &Loop) {
501 LLVM_DEBUG(dbgs() << "unwrap-loop-package: " << BFI.getLoopName(Loop)
502 << ": mass = " << Loop.Mass << ", scale = " << Loop.Scale
503 << "\n");
504 Loop.Scale *= Loop.Mass.toScaled();
505 Loop.IsPackaged = false;
506 LLVM_DEBUG(dbgs() << " => combined-scale = " << Loop.Scale << "\n");
508 // Propagate the head scale through the loop. Since members are visited in
509 // RPO, the head scale will be updated by the loop scale first, and then the
510 // final head scale will be used for updated the rest of the members.
511 for (const BlockNode &N : Loop.Nodes) {
512 const auto &Working = BFI.Working[N.Index];
513 Scaled64 &F = Working.isAPackage() ? Working.getPackagedLoop()->Scale
514 : BFI.Freqs[N.Index].Scaled;
515 Scaled64 New = Loop.Scale * F;
516 LLVM_DEBUG(dbgs() << " - " << BFI.getBlockName(N) << ": " << F << " => "
517 << New << "\n");
518 F = New;
522 void BlockFrequencyInfoImplBase::unwrapLoops() {
523 // Set initial frequencies from loop-local masses.
524 for (size_t Index = 0; Index < Working.size(); ++Index)
525 Freqs[Index].Scaled = Working[Index].Mass.toScaled();
527 for (LoopData &Loop : Loops)
528 unwrapLoop(*this, Loop);
531 void BlockFrequencyInfoImplBase::finalizeMetrics() {
532 // Unwrap loop packages in reverse post-order, tracking min and max
533 // frequencies.
534 auto Min = Scaled64::getLargest();
535 auto Max = Scaled64::getZero();
536 for (size_t Index = 0; Index < Working.size(); ++Index) {
537 // Update min/max scale.
538 Min = std::min(Min, Freqs[Index].Scaled);
539 Max = std::max(Max, Freqs[Index].Scaled);
542 // Convert to integers.
543 convertFloatingToInteger(*this, Min, Max);
545 // Clean up data structures.
546 cleanup(*this);
548 // Print out the final stats.
549 LLVM_DEBUG(dump());
552 BlockFrequency
553 BlockFrequencyInfoImplBase::getBlockFreq(const BlockNode &Node) const {
554 if (!Node.isValid())
555 return 0;
556 return Freqs[Node.Index].Integer;
559 Optional<uint64_t>
560 BlockFrequencyInfoImplBase::getBlockProfileCount(const Function &F,
561 const BlockNode &Node) const {
562 return getProfileCountFromFreq(F, getBlockFreq(Node).getFrequency());
565 Optional<uint64_t>
566 BlockFrequencyInfoImplBase::getProfileCountFromFreq(const Function &F,
567 uint64_t Freq) const {
568 auto EntryCount = F.getEntryCount();
569 if (!EntryCount)
570 return None;
571 // Use 128 bit APInt to do the arithmetic to avoid overflow.
572 APInt BlockCount(128, EntryCount.getCount());
573 APInt BlockFreq(128, Freq);
574 APInt EntryFreq(128, getEntryFreq());
575 BlockCount *= BlockFreq;
576 // Rounded division of BlockCount by EntryFreq. Since EntryFreq is unsigned
577 // lshr by 1 gives EntryFreq/2.
578 BlockCount = (BlockCount + EntryFreq.lshr(1)).udiv(EntryFreq);
579 return BlockCount.getLimitedValue();
582 bool
583 BlockFrequencyInfoImplBase::isIrrLoopHeader(const BlockNode &Node) {
584 if (!Node.isValid())
585 return false;
586 return IsIrrLoopHeader.test(Node.Index);
589 Scaled64
590 BlockFrequencyInfoImplBase::getFloatingBlockFreq(const BlockNode &Node) const {
591 if (!Node.isValid())
592 return Scaled64::getZero();
593 return Freqs[Node.Index].Scaled;
596 void BlockFrequencyInfoImplBase::setBlockFreq(const BlockNode &Node,
597 uint64_t Freq) {
598 assert(Node.isValid() && "Expected valid node");
599 assert(Node.Index < Freqs.size() && "Expected legal index");
600 Freqs[Node.Index].Integer = Freq;
603 std::string
604 BlockFrequencyInfoImplBase::getBlockName(const BlockNode &Node) const {
605 return {};
608 std::string
609 BlockFrequencyInfoImplBase::getLoopName(const LoopData &Loop) const {
610 return getBlockName(Loop.getHeader()) + (Loop.isIrreducible() ? "**" : "*");
613 raw_ostream &
614 BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
615 const BlockNode &Node) const {
616 return OS << getFloatingBlockFreq(Node);
619 raw_ostream &
620 BlockFrequencyInfoImplBase::printBlockFreq(raw_ostream &OS,
621 const BlockFrequency &Freq) const {
622 Scaled64 Block(Freq.getFrequency(), 0);
623 Scaled64 Entry(getEntryFreq(), 0);
625 return OS << Block / Entry;
628 void IrreducibleGraph::addNodesInLoop(const BFIBase::LoopData &OuterLoop) {
629 Start = OuterLoop.getHeader();
630 Nodes.reserve(OuterLoop.Nodes.size());
631 for (auto N : OuterLoop.Nodes)
632 addNode(N);
633 indexNodes();
636 void IrreducibleGraph::addNodesInFunction() {
637 Start = 0;
638 for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
639 if (!BFI.Working[Index].isPackaged())
640 addNode(Index);
641 indexNodes();
644 void IrreducibleGraph::indexNodes() {
645 for (auto &I : Nodes)
646 Lookup[I.Node.Index] = &I;
649 void IrreducibleGraph::addEdge(IrrNode &Irr, const BlockNode &Succ,
650 const BFIBase::LoopData *OuterLoop) {
651 if (OuterLoop && OuterLoop->isHeader(Succ))
652 return;
653 auto L = Lookup.find(Succ.Index);
654 if (L == Lookup.end())
655 return;
656 IrrNode &SuccIrr = *L->second;
657 Irr.Edges.push_back(&SuccIrr);
658 SuccIrr.Edges.push_front(&Irr);
659 ++SuccIrr.NumIn;
662 namespace llvm {
664 template <> struct GraphTraits<IrreducibleGraph> {
665 using GraphT = bfi_detail::IrreducibleGraph;
666 using NodeRef = const GraphT::IrrNode *;
667 using ChildIteratorType = GraphT::IrrNode::iterator;
669 static NodeRef getEntryNode(const GraphT &G) { return G.StartIrr; }
670 static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
671 static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
674 } // end namespace llvm
676 /// Find extra irreducible headers.
678 /// Find entry blocks and other blocks with backedges, which exist when \c G
679 /// contains irreducible sub-SCCs.
680 static void findIrreducibleHeaders(
681 const BlockFrequencyInfoImplBase &BFI,
682 const IrreducibleGraph &G,
683 const std::vector<const IrreducibleGraph::IrrNode *> &SCC,
684 LoopData::NodeList &Headers, LoopData::NodeList &Others) {
685 // Map from nodes in the SCC to whether it's an entry block.
686 SmallDenseMap<const IrreducibleGraph::IrrNode *, bool, 8> InSCC;
688 // InSCC also acts the set of nodes in the graph. Seed it.
689 for (const auto *I : SCC)
690 InSCC[I] = false;
692 for (auto I = InSCC.begin(), E = InSCC.end(); I != E; ++I) {
693 auto &Irr = *I->first;
694 for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) {
695 if (InSCC.count(P))
696 continue;
698 // This is an entry block.
699 I->second = true;
700 Headers.push_back(Irr.Node);
701 LLVM_DEBUG(dbgs() << " => entry = " << BFI.getBlockName(Irr.Node)
702 << "\n");
703 break;
706 assert(Headers.size() >= 2 &&
707 "Expected irreducible CFG; -loop-info is likely invalid");
708 if (Headers.size() == InSCC.size()) {
709 // Every block is a header.
710 llvm::sort(Headers);
711 return;
714 // Look for extra headers from irreducible sub-SCCs.
715 for (const auto &I : InSCC) {
716 // Entry blocks are already headers.
717 if (I.second)
718 continue;
720 auto &Irr = *I.first;
721 for (const auto *P : make_range(Irr.pred_begin(), Irr.pred_end())) {
722 // Skip forward edges.
723 if (P->Node < Irr.Node)
724 continue;
726 // Skip predecessors from entry blocks. These can have inverted
727 // ordering.
728 if (InSCC.lookup(P))
729 continue;
731 // Store the extra header.
732 Headers.push_back(Irr.Node);
733 LLVM_DEBUG(dbgs() << " => extra = " << BFI.getBlockName(Irr.Node)
734 << "\n");
735 break;
737 if (Headers.back() == Irr.Node)
738 // Added this as a header.
739 continue;
741 // This is not a header.
742 Others.push_back(Irr.Node);
743 LLVM_DEBUG(dbgs() << " => other = " << BFI.getBlockName(Irr.Node) << "\n");
745 llvm::sort(Headers);
746 llvm::sort(Others);
749 static void createIrreducibleLoop(
750 BlockFrequencyInfoImplBase &BFI, const IrreducibleGraph &G,
751 LoopData *OuterLoop, std::list<LoopData>::iterator Insert,
752 const std::vector<const IrreducibleGraph::IrrNode *> &SCC) {
753 // Translate the SCC into RPO.
754 LLVM_DEBUG(dbgs() << " - found-scc\n");
756 LoopData::NodeList Headers;
757 LoopData::NodeList Others;
758 findIrreducibleHeaders(BFI, G, SCC, Headers, Others);
760 auto Loop = BFI.Loops.emplace(Insert, OuterLoop, Headers.begin(),
761 Headers.end(), Others.begin(), Others.end());
763 // Update loop hierarchy.
764 for (const auto &N : Loop->Nodes)
765 if (BFI.Working[N.Index].isLoopHeader())
766 BFI.Working[N.Index].Loop->Parent = &*Loop;
767 else
768 BFI.Working[N.Index].Loop = &*Loop;
771 iterator_range<std::list<LoopData>::iterator>
772 BlockFrequencyInfoImplBase::analyzeIrreducible(
773 const IrreducibleGraph &G, LoopData *OuterLoop,
774 std::list<LoopData>::iterator Insert) {
775 assert((OuterLoop == nullptr) == (Insert == Loops.begin()));
776 auto Prev = OuterLoop ? std::prev(Insert) : Loops.end();
778 for (auto I = scc_begin(G); !I.isAtEnd(); ++I) {
779 if (I->size() < 2)
780 continue;
782 // Translate the SCC into RPO.
783 createIrreducibleLoop(*this, G, OuterLoop, Insert, *I);
786 if (OuterLoop)
787 return make_range(std::next(Prev), Insert);
788 return make_range(Loops.begin(), Insert);
791 void
792 BlockFrequencyInfoImplBase::updateLoopWithIrreducible(LoopData &OuterLoop) {
793 OuterLoop.Exits.clear();
794 for (auto &Mass : OuterLoop.BackedgeMass)
795 Mass = BlockMass::getEmpty();
796 auto O = OuterLoop.Nodes.begin() + 1;
797 for (auto I = O, E = OuterLoop.Nodes.end(); I != E; ++I)
798 if (!Working[I->Index].isPackaged())
799 *O++ = *I;
800 OuterLoop.Nodes.erase(O, OuterLoop.Nodes.end());
803 void BlockFrequencyInfoImplBase::adjustLoopHeaderMass(LoopData &Loop) {
804 assert(Loop.isIrreducible() && "this only makes sense on irreducible loops");
806 // Since the loop has more than one header block, the mass flowing back into
807 // each header will be different. Adjust the mass in each header loop to
808 // reflect the masses flowing through back edges.
810 // To do this, we distribute the initial mass using the backedge masses
811 // as weights for the distribution.
812 BlockMass LoopMass = BlockMass::getFull();
813 Distribution Dist;
815 LLVM_DEBUG(dbgs() << "adjust-loop-header-mass:\n");
816 for (uint32_t H = 0; H < Loop.NumHeaders; ++H) {
817 auto &HeaderNode = Loop.Nodes[H];
818 auto &BackedgeMass = Loop.BackedgeMass[Loop.getHeaderIndex(HeaderNode)];
819 LLVM_DEBUG(dbgs() << " - Add back edge mass for node "
820 << getBlockName(HeaderNode) << ": " << BackedgeMass
821 << "\n");
822 if (BackedgeMass.getMass() > 0)
823 Dist.addLocal(HeaderNode, BackedgeMass.getMass());
824 else
825 LLVM_DEBUG(dbgs() << " Nothing added. Back edge mass is zero\n");
828 DitheringDistributer D(Dist, LoopMass);
830 LLVM_DEBUG(dbgs() << " Distribute loop mass " << LoopMass
831 << " to headers using above weights\n");
832 for (const Weight &W : Dist.Weights) {
833 BlockMass Taken = D.takeMass(W.Amount);
834 assert(W.Type == Weight::Local && "all weights should be local");
835 Working[W.TargetNode.Index].getMass() = Taken;
836 LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr));
840 void BlockFrequencyInfoImplBase::distributeIrrLoopHeaderMass(Distribution &Dist) {
841 BlockMass LoopMass = BlockMass::getFull();
842 DitheringDistributer D(Dist, LoopMass);
843 for (const Weight &W : Dist.Weights) {
844 BlockMass Taken = D.takeMass(W.Amount);
845 assert(W.Type == Weight::Local && "all weights should be local");
846 Working[W.TargetNode.Index].getMass() = Taken;
847 LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr));