[llvm-objcopy] [COFF] Test absolute symbols wrt --strip-unneeded and --discard-all...
[llvm-complete.git] / lib / Analysis / IVDescriptors.cpp
blobaaebc4a481ec5db351a12432f313a44356774859
1 //===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file "describes" induction and recurrence variables.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/IVDescriptors.h"
15 #include "llvm/ADT/ScopeExit.h"
16 #include "llvm/Analysis/AliasAnalysis.h"
17 #include "llvm/Analysis/BasicAliasAnalysis.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/MustExecute.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
25 #include "llvm/Analysis/ScalarEvolutionExpander.h"
26 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/DomTreeUpdater.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/IR/ValueHandle.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/KnownBits.h"
39 using namespace llvm;
40 using namespace llvm::PatternMatch;
42 #define DEBUG_TYPE "iv-descriptors"
44 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
45 SmallPtrSetImpl<Instruction *> &Set) {
46 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
47 if (!Set.count(dyn_cast<Instruction>(*Use)))
48 return false;
49 return true;
52 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) {
53 switch (Kind) {
54 default:
55 break;
56 case RK_IntegerAdd:
57 case RK_IntegerMult:
58 case RK_IntegerOr:
59 case RK_IntegerAnd:
60 case RK_IntegerXor:
61 case RK_IntegerMinMax:
62 return true;
64 return false;
67 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) {
68 return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind);
71 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) {
72 switch (Kind) {
73 default:
74 break;
75 case RK_IntegerAdd:
76 case RK_IntegerMult:
77 case RK_FloatAdd:
78 case RK_FloatMult:
79 return true;
81 return false;
84 /// Determines if Phi may have been type-promoted. If Phi has a single user
85 /// that ANDs the Phi with a type mask, return the user. RT is updated to
86 /// account for the narrower bit width represented by the mask, and the AND
87 /// instruction is added to CI.
88 static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT,
89 SmallPtrSetImpl<Instruction *> &Visited,
90 SmallPtrSetImpl<Instruction *> &CI) {
91 if (!Phi->hasOneUse())
92 return Phi;
94 const APInt *M = nullptr;
95 Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
97 // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
98 // with a new integer type of the corresponding bit width.
99 if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) {
100 int32_t Bits = (*M + 1).exactLogBase2();
101 if (Bits > 0) {
102 RT = IntegerType::get(Phi->getContext(), Bits);
103 Visited.insert(Phi);
104 CI.insert(J);
105 return J;
108 return Phi;
111 /// Compute the minimal bit width needed to represent a reduction whose exit
112 /// instruction is given by Exit.
113 static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit,
114 DemandedBits *DB,
115 AssumptionCache *AC,
116 DominatorTree *DT) {
117 bool IsSigned = false;
118 const DataLayout &DL = Exit->getModule()->getDataLayout();
119 uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType());
121 if (DB) {
122 // Use the demanded bits analysis to determine the bits that are live out
123 // of the exit instruction, rounding up to the nearest power of two. If the
124 // use of demanded bits results in a smaller bit width, we know the value
125 // must be positive (i.e., IsSigned = false), because if this were not the
126 // case, the sign bit would have been demanded.
127 auto Mask = DB->getDemandedBits(Exit);
128 MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros();
131 if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) {
132 // If demanded bits wasn't able to limit the bit width, we can try to use
133 // value tracking instead. This can be the case, for example, if the value
134 // may be negative.
135 auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT);
136 auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType());
137 MaxBitWidth = NumTypeBits - NumSignBits;
138 KnownBits Bits = computeKnownBits(Exit, DL);
139 if (!Bits.isNonNegative()) {
140 // If the value is not known to be non-negative, we set IsSigned to true,
141 // meaning that we will use sext instructions instead of zext
142 // instructions to restore the original type.
143 IsSigned = true;
144 if (!Bits.isNegative())
145 // If the value is not known to be negative, we don't known what the
146 // upper bit is, and therefore, we don't know what kind of extend we
147 // will need. In this case, just increase the bit width by one bit and
148 // use sext.
149 ++MaxBitWidth;
152 if (!isPowerOf2_64(MaxBitWidth))
153 MaxBitWidth = NextPowerOf2(MaxBitWidth);
155 return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth),
156 IsSigned);
159 /// Collect cast instructions that can be ignored in the vectorizer's cost
160 /// model, given a reduction exit value and the minimal type in which the
161 /// reduction can be represented.
162 static void collectCastsToIgnore(Loop *TheLoop, Instruction *Exit,
163 Type *RecurrenceType,
164 SmallPtrSetImpl<Instruction *> &Casts) {
166 SmallVector<Instruction *, 8> Worklist;
167 SmallPtrSet<Instruction *, 8> Visited;
168 Worklist.push_back(Exit);
170 while (!Worklist.empty()) {
171 Instruction *Val = Worklist.pop_back_val();
172 Visited.insert(Val);
173 if (auto *Cast = dyn_cast<CastInst>(Val))
174 if (Cast->getSrcTy() == RecurrenceType) {
175 // If the source type of a cast instruction is equal to the recurrence
176 // type, it will be eliminated, and should be ignored in the vectorizer
177 // cost model.
178 Casts.insert(Cast);
179 continue;
182 // Add all operands to the work list if they are loop-varying values that
183 // we haven't yet visited.
184 for (Value *O : cast<User>(Val)->operands())
185 if (auto *I = dyn_cast<Instruction>(O))
186 if (TheLoop->contains(I) && !Visited.count(I))
187 Worklist.push_back(I);
191 bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
192 Loop *TheLoop, bool HasFunNoNaNAttr,
193 RecurrenceDescriptor &RedDes,
194 DemandedBits *DB,
195 AssumptionCache *AC,
196 DominatorTree *DT) {
197 if (Phi->getNumIncomingValues() != 2)
198 return false;
200 // Reduction variables are only found in the loop header block.
201 if (Phi->getParent() != TheLoop->getHeader())
202 return false;
204 // Obtain the reduction start value from the value that comes from the loop
205 // preheader.
206 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
208 // ExitInstruction is the single value which is used outside the loop.
209 // We only allow for a single reduction value to be used outside the loop.
210 // This includes users of the reduction, variables (which form a cycle
211 // which ends in the phi node).
212 Instruction *ExitInstruction = nullptr;
213 // Indicates that we found a reduction operation in our scan.
214 bool FoundReduxOp = false;
216 // We start with the PHI node and scan for all of the users of this
217 // instruction. All users must be instructions that can be used as reduction
218 // variables (such as ADD). We must have a single out-of-block user. The cycle
219 // must include the original PHI.
220 bool FoundStartPHI = false;
222 // To recognize min/max patterns formed by a icmp select sequence, we store
223 // the number of instruction we saw from the recognized min/max pattern,
224 // to make sure we only see exactly the two instructions.
225 unsigned NumCmpSelectPatternInst = 0;
226 InstDesc ReduxDesc(false, nullptr);
228 // Data used for determining if the recurrence has been type-promoted.
229 Type *RecurrenceType = Phi->getType();
230 SmallPtrSet<Instruction *, 4> CastInsts;
231 Instruction *Start = Phi;
232 bool IsSigned = false;
234 SmallPtrSet<Instruction *, 8> VisitedInsts;
235 SmallVector<Instruction *, 8> Worklist;
237 // Return early if the recurrence kind does not match the type of Phi. If the
238 // recurrence kind is arithmetic, we attempt to look through AND operations
239 // resulting from the type promotion performed by InstCombine. Vector
240 // operations are not limited to the legal integer widths, so we may be able
241 // to evaluate the reduction in the narrower width.
242 if (RecurrenceType->isFloatingPointTy()) {
243 if (!isFloatingPointRecurrenceKind(Kind))
244 return false;
245 } else {
246 if (!isIntegerRecurrenceKind(Kind))
247 return false;
248 if (isArithmeticRecurrenceKind(Kind))
249 Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
252 Worklist.push_back(Start);
253 VisitedInsts.insert(Start);
255 // A value in the reduction can be used:
256 // - By the reduction:
257 // - Reduction operation:
258 // - One use of reduction value (safe).
259 // - Multiple use of reduction value (not safe).
260 // - PHI:
261 // - All uses of the PHI must be the reduction (safe).
262 // - Otherwise, not safe.
263 // - By instructions outside of the loop (safe).
264 // * One value may have several outside users, but all outside
265 // uses must be of the same value.
266 // - By an instruction that is not part of the reduction (not safe).
267 // This is either:
268 // * An instruction type other than PHI or the reduction operation.
269 // * A PHI in the header other than the initial PHI.
270 while (!Worklist.empty()) {
271 Instruction *Cur = Worklist.back();
272 Worklist.pop_back();
274 // No Users.
275 // If the instruction has no users then this is a broken chain and can't be
276 // a reduction variable.
277 if (Cur->use_empty())
278 return false;
280 bool IsAPhi = isa<PHINode>(Cur);
282 // A header PHI use other than the original PHI.
283 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
284 return false;
286 // Reductions of instructions such as Div, and Sub is only possible if the
287 // LHS is the reduction variable.
288 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
289 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
290 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
291 return false;
293 // Any reduction instruction must be of one of the allowed kinds. We ignore
294 // the starting value (the Phi or an AND instruction if the Phi has been
295 // type-promoted).
296 if (Cur != Start) {
297 ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
298 if (!ReduxDesc.isRecurrence())
299 return false;
302 bool IsASelect = isa<SelectInst>(Cur);
304 // A conditional reduction operation must only have 2 or less uses in
305 // VisitedInsts.
306 if (IsASelect && (Kind == RK_FloatAdd || Kind == RK_FloatMult) &&
307 hasMultipleUsesOf(Cur, VisitedInsts, 2))
308 return false;
310 // A reduction operation must only have one use of the reduction value.
311 if (!IsAPhi && !IsASelect && Kind != RK_IntegerMinMax &&
312 Kind != RK_FloatMinMax && hasMultipleUsesOf(Cur, VisitedInsts, 1))
313 return false;
315 // All inputs to a PHI node must be a reduction value.
316 if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
317 return false;
319 if (Kind == RK_IntegerMinMax &&
320 (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
321 ++NumCmpSelectPatternInst;
322 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
323 ++NumCmpSelectPatternInst;
325 // Check whether we found a reduction operator.
326 FoundReduxOp |= !IsAPhi && Cur != Start;
328 // Process users of current instruction. Push non-PHI nodes after PHI nodes
329 // onto the stack. This way we are going to have seen all inputs to PHI
330 // nodes once we get to them.
331 SmallVector<Instruction *, 8> NonPHIs;
332 SmallVector<Instruction *, 8> PHIs;
333 for (User *U : Cur->users()) {
334 Instruction *UI = cast<Instruction>(U);
336 // Check if we found the exit user.
337 BasicBlock *Parent = UI->getParent();
338 if (!TheLoop->contains(Parent)) {
339 // If we already know this instruction is used externally, move on to
340 // the next user.
341 if (ExitInstruction == Cur)
342 continue;
344 // Exit if you find multiple values used outside or if the header phi
345 // node is being used. In this case the user uses the value of the
346 // previous iteration, in which case we would loose "VF-1" iterations of
347 // the reduction operation if we vectorize.
348 if (ExitInstruction != nullptr || Cur == Phi)
349 return false;
351 // The instruction used by an outside user must be the last instruction
352 // before we feed back to the reduction phi. Otherwise, we loose VF-1
353 // operations on the value.
354 if (!is_contained(Phi->operands(), Cur))
355 return false;
357 ExitInstruction = Cur;
358 continue;
361 // Process instructions only once (termination). Each reduction cycle
362 // value must only be used once, except by phi nodes and min/max
363 // reductions which are represented as a cmp followed by a select.
364 InstDesc IgnoredVal(false, nullptr);
365 if (VisitedInsts.insert(UI).second) {
366 if (isa<PHINode>(UI))
367 PHIs.push_back(UI);
368 else
369 NonPHIs.push_back(UI);
370 } else if (!isa<PHINode>(UI) &&
371 ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
372 !isa<SelectInst>(UI)) ||
373 (!isConditionalRdxPattern(Kind, UI).isRecurrence() &&
374 !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence())))
375 return false;
377 // Remember that we completed the cycle.
378 if (UI == Phi)
379 FoundStartPHI = true;
381 Worklist.append(PHIs.begin(), PHIs.end());
382 Worklist.append(NonPHIs.begin(), NonPHIs.end());
385 // This means we have seen one but not the other instruction of the
386 // pattern or more than just a select and cmp.
387 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
388 NumCmpSelectPatternInst != 2)
389 return false;
391 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
392 return false;
394 if (Start != Phi) {
395 // If the starting value is not the same as the phi node, we speculatively
396 // looked through an 'and' instruction when evaluating a potential
397 // arithmetic reduction to determine if it may have been type-promoted.
399 // We now compute the minimal bit width that is required to represent the
400 // reduction. If this is the same width that was indicated by the 'and', we
401 // can represent the reduction in the smaller type. The 'and' instruction
402 // will be eliminated since it will essentially be a cast instruction that
403 // can be ignore in the cost model. If we compute a different type than we
404 // did when evaluating the 'and', the 'and' will not be eliminated, and we
405 // will end up with different kinds of operations in the recurrence
406 // expression (e.g., RK_IntegerAND, RK_IntegerADD). We give up if this is
407 // the case.
409 // The vectorizer relies on InstCombine to perform the actual
410 // type-shrinking. It does this by inserting instructions to truncate the
411 // exit value of the reduction to the width indicated by RecurrenceType and
412 // then extend this value back to the original width. If IsSigned is false,
413 // a 'zext' instruction will be generated; otherwise, a 'sext' will be
414 // used.
416 // TODO: We should not rely on InstCombine to rewrite the reduction in the
417 // smaller type. We should just generate a correctly typed expression
418 // to begin with.
419 Type *ComputedType;
420 std::tie(ComputedType, IsSigned) =
421 computeRecurrenceType(ExitInstruction, DB, AC, DT);
422 if (ComputedType != RecurrenceType)
423 return false;
425 // The recurrence expression will be represented in a narrower type. If
426 // there are any cast instructions that will be unnecessary, collect them
427 // in CastInsts. Note that the 'and' instruction was already included in
428 // this list.
430 // TODO: A better way to represent this may be to tag in some way all the
431 // instructions that are a part of the reduction. The vectorizer cost
432 // model could then apply the recurrence type to these instructions,
433 // without needing a white list of instructions to ignore.
434 collectCastsToIgnore(TheLoop, ExitInstruction, RecurrenceType, CastInsts);
437 // We found a reduction var if we have reached the original phi node and we
438 // only have a single instruction with out-of-loop users.
440 // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
441 // is saved as part of the RecurrenceDescriptor.
443 // Save the description of this reduction variable.
444 RecurrenceDescriptor RD(
445 RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(),
446 ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts);
447 RedDes = RD;
449 return true;
452 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
453 /// pattern corresponding to a min(X, Y) or max(X, Y).
454 RecurrenceDescriptor::InstDesc
455 RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) {
457 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
458 "Expect a select instruction");
459 Instruction *Cmp = nullptr;
460 SelectInst *Select = nullptr;
462 // We must handle the select(cmp()) as a single instruction. Advance to the
463 // select.
464 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
465 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
466 return InstDesc(false, I);
467 return InstDesc(Select, Prev.getMinMaxKind());
470 // Only handle single use cases for now.
471 if (!(Select = dyn_cast<SelectInst>(I)))
472 return InstDesc(false, I);
473 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
474 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
475 return InstDesc(false, I);
476 if (!Cmp->hasOneUse())
477 return InstDesc(false, I);
479 Value *CmpLeft;
480 Value *CmpRight;
482 // Look for a min/max pattern.
483 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
484 return InstDesc(Select, MRK_UIntMin);
485 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
486 return InstDesc(Select, MRK_UIntMax);
487 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
488 return InstDesc(Select, MRK_SIntMax);
489 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
490 return InstDesc(Select, MRK_SIntMin);
491 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
492 return InstDesc(Select, MRK_FloatMin);
493 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
494 return InstDesc(Select, MRK_FloatMax);
495 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
496 return InstDesc(Select, MRK_FloatMin);
497 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
498 return InstDesc(Select, MRK_FloatMax);
500 return InstDesc(false, I);
503 /// Returns true if the select instruction has users in the compare-and-add
504 /// reduction pattern below. The select instruction argument is the last one
505 /// in the sequence.
507 /// %sum.1 = phi ...
508 /// ...
509 /// %cmp = fcmp pred %0, %CFP
510 /// %add = fadd %0, %sum.1
511 /// %sum.2 = select %cmp, %add, %sum.1
512 RecurrenceDescriptor::InstDesc
513 RecurrenceDescriptor::isConditionalRdxPattern(
514 RecurrenceKind Kind, Instruction *I) {
515 SelectInst *SI = dyn_cast<SelectInst>(I);
516 if (!SI)
517 return InstDesc(false, I);
519 CmpInst *CI = dyn_cast<CmpInst>(SI->getCondition());
520 // Only handle single use cases for now.
521 if (!CI || !CI->hasOneUse())
522 return InstDesc(false, I);
524 Value *TrueVal = SI->getTrueValue();
525 Value *FalseVal = SI->getFalseValue();
526 // Handle only when either of operands of select instruction is a PHI
527 // node for now.
528 if ((isa<PHINode>(*TrueVal) && isa<PHINode>(*FalseVal)) ||
529 (!isa<PHINode>(*TrueVal) && !isa<PHINode>(*FalseVal)))
530 return InstDesc(false, I);
532 Instruction *I1 =
533 isa<PHINode>(*TrueVal) ? dyn_cast<Instruction>(FalseVal)
534 : dyn_cast<Instruction>(TrueVal);
535 if (!I1 || !I1->isBinaryOp())
536 return InstDesc(false, I);
538 Value *Op1, *Op2;
539 if ((m_FAdd(m_Value(Op1), m_Value(Op2)).match(I1) ||
540 m_FSub(m_Value(Op1), m_Value(Op2)).match(I1)) &&
541 I1->isFast())
542 return InstDesc(Kind == RK_FloatAdd, SI);
544 if (m_FMul(m_Value(Op1), m_Value(Op2)).match(I1) && (I1->isFast()))
545 return InstDesc(Kind == RK_FloatMult, SI);
547 return InstDesc(false, I);
550 RecurrenceDescriptor::InstDesc
551 RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
552 InstDesc &Prev, bool HasFunNoNaNAttr) {
553 bool FP = I->getType()->isFloatingPointTy();
554 Instruction *UAI = Prev.getUnsafeAlgebraInst();
555 if (!UAI && FP && !I->isFast())
556 UAI = I; // Found an unsafe (unvectorizable) algebra instruction.
558 switch (I->getOpcode()) {
559 default:
560 return InstDesc(false, I);
561 case Instruction::PHI:
562 return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst());
563 case Instruction::Sub:
564 case Instruction::Add:
565 return InstDesc(Kind == RK_IntegerAdd, I);
566 case Instruction::Mul:
567 return InstDesc(Kind == RK_IntegerMult, I);
568 case Instruction::And:
569 return InstDesc(Kind == RK_IntegerAnd, I);
570 case Instruction::Or:
571 return InstDesc(Kind == RK_IntegerOr, I);
572 case Instruction::Xor:
573 return InstDesc(Kind == RK_IntegerXor, I);
574 case Instruction::FMul:
575 return InstDesc(Kind == RK_FloatMult, I, UAI);
576 case Instruction::FSub:
577 case Instruction::FAdd:
578 return InstDesc(Kind == RK_FloatAdd, I, UAI);
579 case Instruction::Select:
580 if (Kind == RK_FloatAdd || Kind == RK_FloatMult)
581 return isConditionalRdxPattern(Kind, I);
582 LLVM_FALLTHROUGH;
583 case Instruction::FCmp:
584 case Instruction::ICmp:
585 if (Kind != RK_IntegerMinMax &&
586 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
587 return InstDesc(false, I);
588 return isMinMaxSelectCmpPattern(I, Prev);
592 bool RecurrenceDescriptor::hasMultipleUsesOf(
593 Instruction *I, SmallPtrSetImpl<Instruction *> &Insts,
594 unsigned MaxNumUses) {
595 unsigned NumUses = 0;
596 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
597 ++Use) {
598 if (Insts.count(dyn_cast<Instruction>(*Use)))
599 ++NumUses;
600 if (NumUses > MaxNumUses)
601 return true;
604 return false;
606 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
607 RecurrenceDescriptor &RedDes,
608 DemandedBits *DB, AssumptionCache *AC,
609 DominatorTree *DT) {
611 BasicBlock *Header = TheLoop->getHeader();
612 Function &F = *Header->getParent();
613 bool HasFunNoNaNAttr =
614 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
616 if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
617 AC, DT)) {
618 LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
619 return true;
621 if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes, DB,
622 AC, DT)) {
623 LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
624 return true;
626 if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes, DB,
627 AC, DT)) {
628 LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
629 return true;
631 if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
632 AC, DT)) {
633 LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
634 return true;
636 if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes, DB,
637 AC, DT)) {
638 LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
639 return true;
641 if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, RedDes,
642 DB, AC, DT)) {
643 LLVM_DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
644 return true;
646 if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes, DB,
647 AC, DT)) {
648 LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
649 return true;
651 if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
652 AC, DT)) {
653 LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
654 return true;
656 if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes, DB,
657 AC, DT)) {
658 LLVM_DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi
659 << "\n");
660 return true;
662 // Not a reduction of known type.
663 return false;
666 bool RecurrenceDescriptor::isFirstOrderRecurrence(
667 PHINode *Phi, Loop *TheLoop,
668 DenseMap<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) {
670 // Ensure the phi node is in the loop header and has two incoming values.
671 if (Phi->getParent() != TheLoop->getHeader() ||
672 Phi->getNumIncomingValues() != 2)
673 return false;
675 // Ensure the loop has a preheader and a single latch block. The loop
676 // vectorizer will need the latch to set up the next iteration of the loop.
677 auto *Preheader = TheLoop->getLoopPreheader();
678 auto *Latch = TheLoop->getLoopLatch();
679 if (!Preheader || !Latch)
680 return false;
682 // Ensure the phi node's incoming blocks are the loop preheader and latch.
683 if (Phi->getBasicBlockIndex(Preheader) < 0 ||
684 Phi->getBasicBlockIndex(Latch) < 0)
685 return false;
687 // Get the previous value. The previous value comes from the latch edge while
688 // the initial value comes form the preheader edge.
689 auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
690 if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) ||
691 SinkAfter.count(Previous)) // Cannot rely on dominance due to motion.
692 return false;
694 // Ensure every user of the phi node is dominated by the previous value.
695 // The dominance requirement ensures the loop vectorizer will not need to
696 // vectorize the initial value prior to the first iteration of the loop.
697 // TODO: Consider extending this sinking to handle other kinds of instructions
698 // and expressions, beyond sinking a single cast past Previous.
699 if (Phi->hasOneUse()) {
700 auto *I = Phi->user_back();
701 if (I->isCast() && (I->getParent() == Phi->getParent()) && I->hasOneUse() &&
702 DT->dominates(Previous, I->user_back())) {
703 if (!DT->dominates(Previous, I)) // Otherwise we're good w/o sinking.
704 SinkAfter[I] = Previous;
705 return true;
709 for (User *U : Phi->users())
710 if (auto *I = dyn_cast<Instruction>(U)) {
711 if (!DT->dominates(Previous, I))
712 return false;
715 return true;
718 /// This function returns the identity element (or neutral element) for
719 /// the operation K.
720 Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K,
721 Type *Tp) {
722 switch (K) {
723 case RK_IntegerXor:
724 case RK_IntegerAdd:
725 case RK_IntegerOr:
726 // Adding, Xoring, Oring zero to a number does not change it.
727 return ConstantInt::get(Tp, 0);
728 case RK_IntegerMult:
729 // Multiplying a number by 1 does not change it.
730 return ConstantInt::get(Tp, 1);
731 case RK_IntegerAnd:
732 // AND-ing a number with an all-1 value does not change it.
733 return ConstantInt::get(Tp, -1, true);
734 case RK_FloatMult:
735 // Multiplying a number by 1 does not change it.
736 return ConstantFP::get(Tp, 1.0L);
737 case RK_FloatAdd:
738 // Adding zero to a number does not change it.
739 return ConstantFP::get(Tp, 0.0L);
740 default:
741 llvm_unreachable("Unknown recurrence kind");
745 /// This function translates the recurrence kind to an LLVM binary operator.
746 unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) {
747 switch (Kind) {
748 case RK_IntegerAdd:
749 return Instruction::Add;
750 case RK_IntegerMult:
751 return Instruction::Mul;
752 case RK_IntegerOr:
753 return Instruction::Or;
754 case RK_IntegerAnd:
755 return Instruction::And;
756 case RK_IntegerXor:
757 return Instruction::Xor;
758 case RK_FloatMult:
759 return Instruction::FMul;
760 case RK_FloatAdd:
761 return Instruction::FAdd;
762 case RK_IntegerMinMax:
763 return Instruction::ICmp;
764 case RK_FloatMinMax:
765 return Instruction::FCmp;
766 default:
767 llvm_unreachable("Unknown recurrence operation");
771 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
772 const SCEV *Step, BinaryOperator *BOp,
773 SmallVectorImpl<Instruction *> *Casts)
774 : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
775 assert(IK != IK_NoInduction && "Not an induction");
777 // Start value type should match the induction kind and the value
778 // itself should not be null.
779 assert(StartValue && "StartValue is null");
780 assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
781 "StartValue is not a pointer for pointer induction");
782 assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
783 "StartValue is not an integer for integer induction");
785 // Check the Step Value. It should be non-zero integer value.
786 assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
787 "Step value is zero");
789 assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
790 "Step value should be constant for pointer induction");
791 assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
792 "StepValue is not an integer");
794 assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
795 "StepValue is not FP for FpInduction");
796 assert((IK != IK_FpInduction ||
797 (InductionBinOp &&
798 (InductionBinOp->getOpcode() == Instruction::FAdd ||
799 InductionBinOp->getOpcode() == Instruction::FSub))) &&
800 "Binary opcode should be specified for FP induction");
802 if (Casts) {
803 for (auto &Inst : *Casts) {
804 RedundantCasts.push_back(Inst);
809 int InductionDescriptor::getConsecutiveDirection() const {
810 ConstantInt *ConstStep = getConstIntStepValue();
811 if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne()))
812 return ConstStep->getSExtValue();
813 return 0;
816 ConstantInt *InductionDescriptor::getConstIntStepValue() const {
817 if (isa<SCEVConstant>(Step))
818 return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
819 return nullptr;
822 bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
823 ScalarEvolution *SE,
824 InductionDescriptor &D) {
826 // Here we only handle FP induction variables.
827 assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
829 if (TheLoop->getHeader() != Phi->getParent())
830 return false;
832 // The loop may have multiple entrances or multiple exits; we can analyze
833 // this phi if it has a unique entry value and a unique backedge value.
834 if (Phi->getNumIncomingValues() != 2)
835 return false;
836 Value *BEValue = nullptr, *StartValue = nullptr;
837 if (TheLoop->contains(Phi->getIncomingBlock(0))) {
838 BEValue = Phi->getIncomingValue(0);
839 StartValue = Phi->getIncomingValue(1);
840 } else {
841 assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
842 "Unexpected Phi node in the loop");
843 BEValue = Phi->getIncomingValue(1);
844 StartValue = Phi->getIncomingValue(0);
847 BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
848 if (!BOp)
849 return false;
851 Value *Addend = nullptr;
852 if (BOp->getOpcode() == Instruction::FAdd) {
853 if (BOp->getOperand(0) == Phi)
854 Addend = BOp->getOperand(1);
855 else if (BOp->getOperand(1) == Phi)
856 Addend = BOp->getOperand(0);
857 } else if (BOp->getOpcode() == Instruction::FSub)
858 if (BOp->getOperand(0) == Phi)
859 Addend = BOp->getOperand(1);
861 if (!Addend)
862 return false;
864 // The addend should be loop invariant
865 if (auto *I = dyn_cast<Instruction>(Addend))
866 if (TheLoop->contains(I))
867 return false;
869 // FP Step has unknown SCEV
870 const SCEV *Step = SE->getUnknown(Addend);
871 D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
872 return true;
875 /// This function is called when we suspect that the update-chain of a phi node
876 /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts,
877 /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime
878 /// predicate P under which the SCEV expression for the phi can be the
879 /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the
880 /// cast instructions that are involved in the update-chain of this induction.
881 /// A caller that adds the required runtime predicate can be free to drop these
882 /// cast instructions, and compute the phi using \p AR (instead of some scev
883 /// expression with casts).
885 /// For example, without a predicate the scev expression can take the following
886 /// form:
887 /// (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy)
889 /// It corresponds to the following IR sequence:
890 /// %for.body:
891 /// %x = phi i64 [ 0, %ph ], [ %add, %for.body ]
892 /// %casted_phi = "ExtTrunc i64 %x"
893 /// %add = add i64 %casted_phi, %step
895 /// where %x is given in \p PN,
896 /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate,
897 /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of
898 /// several forms, for example, such as:
899 /// ExtTrunc1: %casted_phi = and %x, 2^n-1
900 /// or:
901 /// ExtTrunc2: %t = shl %x, m
902 /// %casted_phi = ashr %t, m
904 /// If we are able to find such sequence, we return the instructions
905 /// we found, namely %casted_phi and the instructions on its use-def chain up
906 /// to the phi (not including the phi).
907 static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE,
908 const SCEVUnknown *PhiScev,
909 const SCEVAddRecExpr *AR,
910 SmallVectorImpl<Instruction *> &CastInsts) {
912 assert(CastInsts.empty() && "CastInsts is expected to be empty.");
913 auto *PN = cast<PHINode>(PhiScev->getValue());
914 assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression");
915 const Loop *L = AR->getLoop();
917 // Find any cast instructions that participate in the def-use chain of
918 // PhiScev in the loop.
919 // FORNOW/TODO: We currently expect the def-use chain to include only
920 // two-operand instructions, where one of the operands is an invariant.
921 // createAddRecFromPHIWithCasts() currently does not support anything more
922 // involved than that, so we keep the search simple. This can be
923 // extended/generalized as needed.
925 auto getDef = [&](const Value *Val) -> Value * {
926 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val);
927 if (!BinOp)
928 return nullptr;
929 Value *Op0 = BinOp->getOperand(0);
930 Value *Op1 = BinOp->getOperand(1);
931 Value *Def = nullptr;
932 if (L->isLoopInvariant(Op0))
933 Def = Op1;
934 else if (L->isLoopInvariant(Op1))
935 Def = Op0;
936 return Def;
939 // Look for the instruction that defines the induction via the
940 // loop backedge.
941 BasicBlock *Latch = L->getLoopLatch();
942 if (!Latch)
943 return false;
944 Value *Val = PN->getIncomingValueForBlock(Latch);
945 if (!Val)
946 return false;
948 // Follow the def-use chain until the induction phi is reached.
949 // If on the way we encounter a Value that has the same SCEV Expr as the
950 // phi node, we can consider the instructions we visit from that point
951 // as part of the cast-sequence that can be ignored.
952 bool InCastSequence = false;
953 auto *Inst = dyn_cast<Instruction>(Val);
954 while (Val != PN) {
955 // If we encountered a phi node other than PN, or if we left the loop,
956 // we bail out.
957 if (!Inst || !L->contains(Inst)) {
958 return false;
960 auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val));
961 if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR))
962 InCastSequence = true;
963 if (InCastSequence) {
964 // Only the last instruction in the cast sequence is expected to have
965 // uses outside the induction def-use chain.
966 if (!CastInsts.empty())
967 if (!Inst->hasOneUse())
968 return false;
969 CastInsts.push_back(Inst);
971 Val = getDef(Val);
972 if (!Val)
973 return false;
974 Inst = dyn_cast<Instruction>(Val);
977 return InCastSequence;
980 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
981 PredicatedScalarEvolution &PSE,
982 InductionDescriptor &D, bool Assume) {
983 Type *PhiTy = Phi->getType();
985 // Handle integer and pointer inductions variables.
986 // Now we handle also FP induction but not trying to make a
987 // recurrent expression from the PHI node in-place.
989 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() &&
990 !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
991 return false;
993 if (PhiTy->isFloatingPointTy())
994 return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
996 const SCEV *PhiScev = PSE.getSCEV(Phi);
997 const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
999 // We need this expression to be an AddRecExpr.
1000 if (Assume && !AR)
1001 AR = PSE.getAsAddRec(Phi);
1003 if (!AR) {
1004 LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1005 return false;
1008 // Record any Cast instructions that participate in the induction update
1009 const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev);
1010 // If we started from an UnknownSCEV, and managed to build an addRecurrence
1011 // only after enabling Assume with PSCEV, this means we may have encountered
1012 // cast instructions that required adding a runtime check in order to
1013 // guarantee the correctness of the AddRecurence respresentation of the
1014 // induction.
1015 if (PhiScev != AR && SymbolicPhi) {
1016 SmallVector<Instruction *, 2> Casts;
1017 if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts))
1018 return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts);
1021 return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
1024 bool InductionDescriptor::isInductionPHI(
1025 PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE,
1026 InductionDescriptor &D, const SCEV *Expr,
1027 SmallVectorImpl<Instruction *> *CastsToIgnore) {
1028 Type *PhiTy = Phi->getType();
1029 // We only handle integer and pointer inductions variables.
1030 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
1031 return false;
1033 // Check that the PHI is consecutive.
1034 const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
1035 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1037 if (!AR) {
1038 LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1039 return false;
1042 if (AR->getLoop() != TheLoop) {
1043 // FIXME: We should treat this as a uniform. Unfortunately, we
1044 // don't currently know how to handled uniform PHIs.
1045 LLVM_DEBUG(
1046 dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
1047 return false;
1050 Value *StartValue =
1051 Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
1052 const SCEV *Step = AR->getStepRecurrence(*SE);
1053 // Calculate the pointer stride and check if it is consecutive.
1054 // The stride may be a constant or a loop invariant integer value.
1055 const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
1056 if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
1057 return false;
1059 if (PhiTy->isIntegerTy()) {
1060 D = InductionDescriptor(StartValue, IK_IntInduction, Step, /*BOp=*/nullptr,
1061 CastsToIgnore);
1062 return true;
1065 assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
1066 // Pointer induction should be a constant.
1067 if (!ConstStep)
1068 return false;
1070 ConstantInt *CV = ConstStep->getValue();
1071 Type *PointerElementType = PhiTy->getPointerElementType();
1072 // The pointer stride cannot be determined if the pointer element type is not
1073 // sized.
1074 if (!PointerElementType->isSized())
1075 return false;
1077 const DataLayout &DL = Phi->getModule()->getDataLayout();
1078 int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
1079 if (!Size)
1080 return false;
1082 int64_t CVSize = CV->getSExtValue();
1083 if (CVSize % Size)
1084 return false;
1085 auto *StepValue =
1086 SE->getConstant(CV->getType(), CVSize / Size, true /* signed */);
1087 D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue);
1088 return true;