[llvm-objcopy] [COFF] Test absolute symbols wrt --strip-unneeded and --discard-all...
[llvm-complete.git] / lib / Analysis / TargetTransformInfo.cpp
blob79fe6dc7d87cb26dc4fa2b5989fbf3a6493f434c
1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
10 #include "llvm/Analysis/TargetTransformInfo.h"
11 #include "llvm/Analysis/TargetTransformInfoImpl.h"
12 #include "llvm/IR/CallSite.h"
13 #include "llvm/IR/DataLayout.h"
14 #include "llvm/IR/Instruction.h"
15 #include "llvm/IR/Instructions.h"
16 #include "llvm/IR/IntrinsicInst.h"
17 #include "llvm/IR/Module.h"
18 #include "llvm/IR/Operator.h"
19 #include "llvm/IR/PatternMatch.h"
20 #include "llvm/Support/CommandLine.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include <utility>
24 using namespace llvm;
25 using namespace PatternMatch;
27 #define DEBUG_TYPE "tti"
29 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
30 cl::Hidden,
31 cl::desc("Recognize reduction patterns."));
33 namespace {
34 /// No-op implementation of the TTI interface using the utility base
35 /// classes.
36 ///
37 /// This is used when no target specific information is available.
38 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> {
39 explicit NoTTIImpl(const DataLayout &DL)
40 : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {}
44 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL)
45 : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {}
47 TargetTransformInfo::~TargetTransformInfo() {}
49 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg)
50 : TTIImpl(std::move(Arg.TTIImpl)) {}
52 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) {
53 TTIImpl = std::move(RHS.TTIImpl);
54 return *this;
57 int TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty,
58 Type *OpTy) const {
59 int Cost = TTIImpl->getOperationCost(Opcode, Ty, OpTy);
60 assert(Cost >= 0 && "TTI should not produce negative costs!");
61 return Cost;
64 int TargetTransformInfo::getCallCost(FunctionType *FTy, int NumArgs) const {
65 int Cost = TTIImpl->getCallCost(FTy, NumArgs);
66 assert(Cost >= 0 && "TTI should not produce negative costs!");
67 return Cost;
70 int TargetTransformInfo::getCallCost(const Function *F,
71 ArrayRef<const Value *> Arguments) const {
72 int Cost = TTIImpl->getCallCost(F, Arguments);
73 assert(Cost >= 0 && "TTI should not produce negative costs!");
74 return Cost;
77 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const {
78 return TTIImpl->getInliningThresholdMultiplier();
81 int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr,
82 ArrayRef<const Value *> Operands) const {
83 return TTIImpl->getGEPCost(PointeeType, Ptr, Operands);
86 int TargetTransformInfo::getExtCost(const Instruction *I,
87 const Value *Src) const {
88 return TTIImpl->getExtCost(I, Src);
91 int TargetTransformInfo::getIntrinsicCost(
92 Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments) const {
93 int Cost = TTIImpl->getIntrinsicCost(IID, RetTy, Arguments);
94 assert(Cost >= 0 && "TTI should not produce negative costs!");
95 return Cost;
98 unsigned
99 TargetTransformInfo::getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
100 unsigned &JTSize) const {
101 return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize);
104 int TargetTransformInfo::getUserCost(const User *U,
105 ArrayRef<const Value *> Operands) const {
106 int Cost = TTIImpl->getUserCost(U, Operands);
107 assert(Cost >= 0 && "TTI should not produce negative costs!");
108 return Cost;
111 bool TargetTransformInfo::hasBranchDivergence() const {
112 return TTIImpl->hasBranchDivergence();
115 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const {
116 return TTIImpl->isSourceOfDivergence(V);
119 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const {
120 return TTIImpl->isAlwaysUniform(V);
123 unsigned TargetTransformInfo::getFlatAddressSpace() const {
124 return TTIImpl->getFlatAddressSpace();
127 bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
128 return TTIImpl->isLoweredToCall(F);
131 void TargetTransformInfo::getUnrollingPreferences(
132 Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const {
133 return TTIImpl->getUnrollingPreferences(L, SE, UP);
136 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
137 return TTIImpl->isLegalAddImmediate(Imm);
140 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
141 return TTIImpl->isLegalICmpImmediate(Imm);
144 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
145 int64_t BaseOffset,
146 bool HasBaseReg,
147 int64_t Scale,
148 unsigned AddrSpace,
149 Instruction *I) const {
150 return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
151 Scale, AddrSpace, I);
154 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const {
155 return TTIImpl->isLSRCostLess(C1, C2);
158 bool TargetTransformInfo::canMacroFuseCmp() const {
159 return TTIImpl->canMacroFuseCmp();
162 bool TargetTransformInfo::shouldFavorPostInc() const {
163 return TTIImpl->shouldFavorPostInc();
166 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType) const {
167 return TTIImpl->isLegalMaskedStore(DataType);
170 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType) const {
171 return TTIImpl->isLegalMaskedLoad(DataType);
174 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType) const {
175 return TTIImpl->isLegalMaskedGather(DataType);
178 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType) const {
179 return TTIImpl->isLegalMaskedScatter(DataType);
182 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const {
183 return TTIImpl->hasDivRemOp(DataType, IsSigned);
186 bool TargetTransformInfo::hasVolatileVariant(Instruction *I,
187 unsigned AddrSpace) const {
188 return TTIImpl->hasVolatileVariant(I, AddrSpace);
191 bool TargetTransformInfo::prefersVectorizedAddressing() const {
192 return TTIImpl->prefersVectorizedAddressing();
195 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
196 int64_t BaseOffset,
197 bool HasBaseReg,
198 int64_t Scale,
199 unsigned AddrSpace) const {
200 int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg,
201 Scale, AddrSpace);
202 assert(Cost >= 0 && "TTI should not produce negative costs!");
203 return Cost;
206 bool TargetTransformInfo::LSRWithInstrQueries() const {
207 return TTIImpl->LSRWithInstrQueries();
210 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
211 return TTIImpl->isTruncateFree(Ty1, Ty2);
214 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const {
215 return TTIImpl->isProfitableToHoist(I);
218 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); }
220 bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
221 return TTIImpl->isTypeLegal(Ty);
224 unsigned TargetTransformInfo::getJumpBufAlignment() const {
225 return TTIImpl->getJumpBufAlignment();
228 unsigned TargetTransformInfo::getJumpBufSize() const {
229 return TTIImpl->getJumpBufSize();
232 bool TargetTransformInfo::shouldBuildLookupTables() const {
233 return TTIImpl->shouldBuildLookupTables();
235 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(Constant *C) const {
236 return TTIImpl->shouldBuildLookupTablesForConstant(C);
239 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const {
240 return TTIImpl->useColdCCForColdCall(F);
243 unsigned TargetTransformInfo::
244 getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const {
245 return TTIImpl->getScalarizationOverhead(Ty, Insert, Extract);
248 unsigned TargetTransformInfo::
249 getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
250 unsigned VF) const {
251 return TTIImpl->getOperandsScalarizationOverhead(Args, VF);
254 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const {
255 return TTIImpl->supportsEfficientVectorElementLoadStore();
258 bool TargetTransformInfo::enableAggressiveInterleaving(bool LoopHasReductions) const {
259 return TTIImpl->enableAggressiveInterleaving(LoopHasReductions);
262 const TargetTransformInfo::MemCmpExpansionOptions *
263 TargetTransformInfo::enableMemCmpExpansion(bool IsZeroCmp) const {
264 return TTIImpl->enableMemCmpExpansion(IsZeroCmp);
267 bool TargetTransformInfo::enableInterleavedAccessVectorization() const {
268 return TTIImpl->enableInterleavedAccessVectorization();
271 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const {
272 return TTIImpl->enableMaskedInterleavedAccessVectorization();
275 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const {
276 return TTIImpl->isFPVectorizationPotentiallyUnsafe();
279 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context,
280 unsigned BitWidth,
281 unsigned AddressSpace,
282 unsigned Alignment,
283 bool *Fast) const {
284 return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace,
285 Alignment, Fast);
288 TargetTransformInfo::PopcntSupportKind
289 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
290 return TTIImpl->getPopcntSupport(IntTyWidthInBit);
293 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const {
294 return TTIImpl->haveFastSqrt(Ty);
297 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const {
298 return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty);
301 int TargetTransformInfo::getFPOpCost(Type *Ty) const {
302 int Cost = TTIImpl->getFPOpCost(Ty);
303 assert(Cost >= 0 && "TTI should not produce negative costs!");
304 return Cost;
307 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
308 const APInt &Imm,
309 Type *Ty) const {
310 int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty);
311 assert(Cost >= 0 && "TTI should not produce negative costs!");
312 return Cost;
315 int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const {
316 int Cost = TTIImpl->getIntImmCost(Imm, Ty);
317 assert(Cost >= 0 && "TTI should not produce negative costs!");
318 return Cost;
321 int TargetTransformInfo::getIntImmCost(unsigned Opcode, unsigned Idx,
322 const APInt &Imm, Type *Ty) const {
323 int Cost = TTIImpl->getIntImmCost(Opcode, Idx, Imm, Ty);
324 assert(Cost >= 0 && "TTI should not produce negative costs!");
325 return Cost;
328 int TargetTransformInfo::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
329 const APInt &Imm, Type *Ty) const {
330 int Cost = TTIImpl->getIntImmCost(IID, Idx, Imm, Ty);
331 assert(Cost >= 0 && "TTI should not produce negative costs!");
332 return Cost;
335 unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const {
336 return TTIImpl->getNumberOfRegisters(Vector);
339 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const {
340 return TTIImpl->getRegisterBitWidth(Vector);
343 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const {
344 return TTIImpl->getMinVectorRegisterBitWidth();
347 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const {
348 return TTIImpl->shouldMaximizeVectorBandwidth(OptSize);
351 unsigned TargetTransformInfo::getMinimumVF(unsigned ElemWidth) const {
352 return TTIImpl->getMinimumVF(ElemWidth);
355 bool TargetTransformInfo::shouldConsiderAddressTypePromotion(
356 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const {
357 return TTIImpl->shouldConsiderAddressTypePromotion(
358 I, AllowPromotionWithoutCommonHeader);
361 unsigned TargetTransformInfo::getCacheLineSize() const {
362 return TTIImpl->getCacheLineSize();
365 llvm::Optional<unsigned> TargetTransformInfo::getCacheSize(CacheLevel Level)
366 const {
367 return TTIImpl->getCacheSize(Level);
370 llvm::Optional<unsigned> TargetTransformInfo::getCacheAssociativity(
371 CacheLevel Level) const {
372 return TTIImpl->getCacheAssociativity(Level);
375 unsigned TargetTransformInfo::getPrefetchDistance() const {
376 return TTIImpl->getPrefetchDistance();
379 unsigned TargetTransformInfo::getMinPrefetchStride() const {
380 return TTIImpl->getMinPrefetchStride();
383 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const {
384 return TTIImpl->getMaxPrefetchIterationsAhead();
387 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const {
388 return TTIImpl->getMaxInterleaveFactor(VF);
391 TargetTransformInfo::OperandValueKind
392 TargetTransformInfo::getOperandInfo(Value *V, OperandValueProperties &OpProps) {
393 OperandValueKind OpInfo = OK_AnyValue;
394 OpProps = OP_None;
396 if (auto *CI = dyn_cast<ConstantInt>(V)) {
397 if (CI->getValue().isPowerOf2())
398 OpProps = OP_PowerOf2;
399 return OK_UniformConstantValue;
402 // A broadcast shuffle creates a uniform value.
403 // TODO: Add support for non-zero index broadcasts.
404 // TODO: Add support for different source vector width.
405 if (auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V))
406 if (ShuffleInst->isZeroEltSplat())
407 OpInfo = OK_UniformValue;
409 const Value *Splat = getSplatValue(V);
411 // Check for a splat of a constant or for a non uniform vector of constants
412 // and check if the constant(s) are all powers of two.
413 if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
414 OpInfo = OK_NonUniformConstantValue;
415 if (Splat) {
416 OpInfo = OK_UniformConstantValue;
417 if (auto *CI = dyn_cast<ConstantInt>(Splat))
418 if (CI->getValue().isPowerOf2())
419 OpProps = OP_PowerOf2;
420 } else if (auto *CDS = dyn_cast<ConstantDataSequential>(V)) {
421 OpProps = OP_PowerOf2;
422 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
423 if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I)))
424 if (CI->getValue().isPowerOf2())
425 continue;
426 OpProps = OP_None;
427 break;
432 // Check for a splat of a uniform value. This is not loop aware, so return
433 // true only for the obviously uniform cases (argument, globalvalue)
434 if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat)))
435 OpInfo = OK_UniformValue;
437 return OpInfo;
440 int TargetTransformInfo::getArithmeticInstrCost(
441 unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
442 OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo,
443 OperandValueProperties Opd2PropInfo,
444 ArrayRef<const Value *> Args) const {
445 int Cost = TTIImpl->getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
446 Opd1PropInfo, Opd2PropInfo, Args);
447 assert(Cost >= 0 && "TTI should not produce negative costs!");
448 return Cost;
451 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Ty, int Index,
452 Type *SubTp) const {
453 int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp);
454 assert(Cost >= 0 && "TTI should not produce negative costs!");
455 return Cost;
458 int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst,
459 Type *Src, const Instruction *I) const {
460 assert ((I == nullptr || I->getOpcode() == Opcode) &&
461 "Opcode should reflect passed instruction.");
462 int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, I);
463 assert(Cost >= 0 && "TTI should not produce negative costs!");
464 return Cost;
467 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst,
468 VectorType *VecTy,
469 unsigned Index) const {
470 int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
471 assert(Cost >= 0 && "TTI should not produce negative costs!");
472 return Cost;
475 int TargetTransformInfo::getCFInstrCost(unsigned Opcode) const {
476 int Cost = TTIImpl->getCFInstrCost(Opcode);
477 assert(Cost >= 0 && "TTI should not produce negative costs!");
478 return Cost;
481 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
482 Type *CondTy, const Instruction *I) const {
483 assert ((I == nullptr || I->getOpcode() == Opcode) &&
484 "Opcode should reflect passed instruction.");
485 int Cost = TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
486 assert(Cost >= 0 && "TTI should not produce negative costs!");
487 return Cost;
490 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val,
491 unsigned Index) const {
492 int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index);
493 assert(Cost >= 0 && "TTI should not produce negative costs!");
494 return Cost;
497 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src,
498 unsigned Alignment,
499 unsigned AddressSpace,
500 const Instruction *I) const {
501 assert ((I == nullptr || I->getOpcode() == Opcode) &&
502 "Opcode should reflect passed instruction.");
503 int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
504 assert(Cost >= 0 && "TTI should not produce negative costs!");
505 return Cost;
508 int TargetTransformInfo::getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
509 unsigned Alignment,
510 unsigned AddressSpace) const {
511 int Cost =
512 TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
513 assert(Cost >= 0 && "TTI should not produce negative costs!");
514 return Cost;
517 int TargetTransformInfo::getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
518 Value *Ptr, bool VariableMask,
519 unsigned Alignment) const {
520 int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
521 Alignment);
522 assert(Cost >= 0 && "TTI should not produce negative costs!");
523 return Cost;
526 int TargetTransformInfo::getInterleavedMemoryOpCost(
527 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
528 unsigned Alignment, unsigned AddressSpace, bool UseMaskForCond,
529 bool UseMaskForGaps) const {
530 int Cost = TTIImpl->getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
531 Alignment, AddressSpace,
532 UseMaskForCond,
533 UseMaskForGaps);
534 assert(Cost >= 0 && "TTI should not produce negative costs!");
535 return Cost;
538 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
539 ArrayRef<Type *> Tys, FastMathFlags FMF,
540 unsigned ScalarizationCostPassed) const {
541 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Tys, FMF,
542 ScalarizationCostPassed);
543 assert(Cost >= 0 && "TTI should not produce negative costs!");
544 return Cost;
547 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
548 ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) const {
549 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
550 assert(Cost >= 0 && "TTI should not produce negative costs!");
551 return Cost;
554 int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy,
555 ArrayRef<Type *> Tys) const {
556 int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys);
557 assert(Cost >= 0 && "TTI should not produce negative costs!");
558 return Cost;
561 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
562 return TTIImpl->getNumberOfParts(Tp);
565 int TargetTransformInfo::getAddressComputationCost(Type *Tp,
566 ScalarEvolution *SE,
567 const SCEV *Ptr) const {
568 int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr);
569 assert(Cost >= 0 && "TTI should not produce negative costs!");
570 return Cost;
573 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode, Type *Ty,
574 bool IsPairwiseForm) const {
575 int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm);
576 assert(Cost >= 0 && "TTI should not produce negative costs!");
577 return Cost;
580 int TargetTransformInfo::getMinMaxReductionCost(Type *Ty, Type *CondTy,
581 bool IsPairwiseForm,
582 bool IsUnsigned) const {
583 int Cost =
584 TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned);
585 assert(Cost >= 0 && "TTI should not produce negative costs!");
586 return Cost;
589 unsigned
590 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const {
591 return TTIImpl->getCostOfKeepingLiveOverCall(Tys);
594 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst,
595 MemIntrinsicInfo &Info) const {
596 return TTIImpl->getTgtMemIntrinsic(Inst, Info);
599 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const {
600 return TTIImpl->getAtomicMemIntrinsicMaxElementSize();
603 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic(
604 IntrinsicInst *Inst, Type *ExpectedType) const {
605 return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
608 Type *TargetTransformInfo::getMemcpyLoopLoweringType(LLVMContext &Context,
609 Value *Length,
610 unsigned SrcAlign,
611 unsigned DestAlign) const {
612 return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAlign,
613 DestAlign);
616 void TargetTransformInfo::getMemcpyLoopResidualLoweringType(
617 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
618 unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const {
619 TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
620 SrcAlign, DestAlign);
623 bool TargetTransformInfo::areInlineCompatible(const Function *Caller,
624 const Function *Callee) const {
625 return TTIImpl->areInlineCompatible(Caller, Callee);
628 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode,
629 Type *Ty) const {
630 return TTIImpl->isIndexedLoadLegal(Mode, Ty);
633 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode,
634 Type *Ty) const {
635 return TTIImpl->isIndexedStoreLegal(Mode, Ty);
638 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const {
639 return TTIImpl->getLoadStoreVecRegBitWidth(AS);
642 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const {
643 return TTIImpl->isLegalToVectorizeLoad(LI);
646 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const {
647 return TTIImpl->isLegalToVectorizeStore(SI);
650 bool TargetTransformInfo::isLegalToVectorizeLoadChain(
651 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const {
652 return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
653 AddrSpace);
656 bool TargetTransformInfo::isLegalToVectorizeStoreChain(
657 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const {
658 return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
659 AddrSpace);
662 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF,
663 unsigned LoadSize,
664 unsigned ChainSizeInBytes,
665 VectorType *VecTy) const {
666 return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
669 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF,
670 unsigned StoreSize,
671 unsigned ChainSizeInBytes,
672 VectorType *VecTy) const {
673 return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
676 bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode,
677 Type *Ty, ReductionFlags Flags) const {
678 return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags);
681 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const {
682 return TTIImpl->shouldExpandReduction(II);
685 int TargetTransformInfo::getInstructionLatency(const Instruction *I) const {
686 return TTIImpl->getInstructionLatency(I);
689 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft,
690 unsigned Level) {
691 // We don't need a shuffle if we just want to have element 0 in position 0 of
692 // the vector.
693 if (!SI && Level == 0 && IsLeft)
694 return true;
695 else if (!SI)
696 return false;
698 SmallVector<int, 32> Mask(SI->getType()->getVectorNumElements(), -1);
700 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether
701 // we look at the left or right side.
702 for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2)
703 Mask[i] = val;
705 SmallVector<int, 16> ActualMask = SI->getShuffleMask();
706 return Mask == ActualMask;
709 namespace {
710 /// Kind of the reduction data.
711 enum ReductionKind {
712 RK_None, /// Not a reduction.
713 RK_Arithmetic, /// Binary reduction data.
714 RK_MinMax, /// Min/max reduction data.
715 RK_UnsignedMinMax, /// Unsigned min/max reduction data.
717 /// Contains opcode + LHS/RHS parts of the reduction operations.
718 struct ReductionData {
719 ReductionData() = delete;
720 ReductionData(ReductionKind Kind, unsigned Opcode, Value *LHS, Value *RHS)
721 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) {
722 assert(Kind != RK_None && "expected binary or min/max reduction only.");
724 unsigned Opcode = 0;
725 Value *LHS = nullptr;
726 Value *RHS = nullptr;
727 ReductionKind Kind = RK_None;
728 bool hasSameData(ReductionData &RD) const {
729 return Kind == RD.Kind && Opcode == RD.Opcode;
732 } // namespace
734 static Optional<ReductionData> getReductionData(Instruction *I) {
735 Value *L, *R;
736 if (m_BinOp(m_Value(L), m_Value(R)).match(I))
737 return ReductionData(RK_Arithmetic, I->getOpcode(), L, R);
738 if (auto *SI = dyn_cast<SelectInst>(I)) {
739 if (m_SMin(m_Value(L), m_Value(R)).match(SI) ||
740 m_SMax(m_Value(L), m_Value(R)).match(SI) ||
741 m_OrdFMin(m_Value(L), m_Value(R)).match(SI) ||
742 m_OrdFMax(m_Value(L), m_Value(R)).match(SI) ||
743 m_UnordFMin(m_Value(L), m_Value(R)).match(SI) ||
744 m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) {
745 auto *CI = cast<CmpInst>(SI->getCondition());
746 return ReductionData(RK_MinMax, CI->getOpcode(), L, R);
748 if (m_UMin(m_Value(L), m_Value(R)).match(SI) ||
749 m_UMax(m_Value(L), m_Value(R)).match(SI)) {
750 auto *CI = cast<CmpInst>(SI->getCondition());
751 return ReductionData(RK_UnsignedMinMax, CI->getOpcode(), L, R);
754 return llvm::None;
757 static ReductionKind matchPairwiseReductionAtLevel(Instruction *I,
758 unsigned Level,
759 unsigned NumLevels) {
760 // Match one level of pairwise operations.
761 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
762 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
763 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
764 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
765 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
766 if (!I)
767 return RK_None;
769 assert(I->getType()->isVectorTy() && "Expecting a vector type");
771 Optional<ReductionData> RD = getReductionData(I);
772 if (!RD)
773 return RK_None;
775 ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS);
776 if (!LS && Level)
777 return RK_None;
778 ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS);
779 if (!RS && Level)
780 return RK_None;
782 // On level 0 we can omit one shufflevector instruction.
783 if (!Level && !RS && !LS)
784 return RK_None;
786 // Shuffle inputs must match.
787 Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr;
788 Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr;
789 Value *NextLevelOp = nullptr;
790 if (NextLevelOpR && NextLevelOpL) {
791 // If we have two shuffles their operands must match.
792 if (NextLevelOpL != NextLevelOpR)
793 return RK_None;
795 NextLevelOp = NextLevelOpL;
796 } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) {
797 // On the first level we can omit the shufflevector <0, undef,...>. So the
798 // input to the other shufflevector <1, undef> must match with one of the
799 // inputs to the current binary operation.
800 // Example:
801 // %NextLevelOpL = shufflevector %R, <1, undef ...>
802 // %BinOp = fadd %NextLevelOpL, %R
803 if (NextLevelOpL && NextLevelOpL != RD->RHS)
804 return RK_None;
805 else if (NextLevelOpR && NextLevelOpR != RD->LHS)
806 return RK_None;
808 NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS;
809 } else
810 return RK_None;
812 // Check that the next levels binary operation exists and matches with the
813 // current one.
814 if (Level + 1 != NumLevels) {
815 Optional<ReductionData> NextLevelRD =
816 getReductionData(cast<Instruction>(NextLevelOp));
817 if (!NextLevelRD || !RD->hasSameData(*NextLevelRD))
818 return RK_None;
821 // Shuffle mask for pairwise operation must match.
822 if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) {
823 if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level))
824 return RK_None;
825 } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) {
826 if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level))
827 return RK_None;
828 } else {
829 return RK_None;
832 if (++Level == NumLevels)
833 return RD->Kind;
835 // Match next level.
836 return matchPairwiseReductionAtLevel(cast<Instruction>(NextLevelOp), Level,
837 NumLevels);
840 static ReductionKind matchPairwiseReduction(const ExtractElementInst *ReduxRoot,
841 unsigned &Opcode, Type *&Ty) {
842 if (!EnableReduxCost)
843 return RK_None;
845 // Need to extract the first element.
846 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
847 unsigned Idx = ~0u;
848 if (CI)
849 Idx = CI->getZExtValue();
850 if (Idx != 0)
851 return RK_None;
853 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
854 if (!RdxStart)
855 return RK_None;
856 Optional<ReductionData> RD = getReductionData(RdxStart);
857 if (!RD)
858 return RK_None;
860 Type *VecTy = RdxStart->getType();
861 unsigned NumVecElems = VecTy->getVectorNumElements();
862 if (!isPowerOf2_32(NumVecElems))
863 return RK_None;
865 // We look for a sequence of shuffle,shuffle,add triples like the following
866 // that builds a pairwise reduction tree.
868 // (X0, X1, X2, X3)
869 // (X0 + X1, X2 + X3, undef, undef)
870 // ((X0 + X1) + (X2 + X3), undef, undef, undef)
872 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
873 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
874 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
875 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
876 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
877 // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
878 // <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef>
879 // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
880 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
881 // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1
882 // %r = extractelement <4 x float> %bin.rdx8, i32 0
883 if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) ==
884 RK_None)
885 return RK_None;
887 Opcode = RD->Opcode;
888 Ty = VecTy;
890 return RD->Kind;
893 static std::pair<Value *, ShuffleVectorInst *>
894 getShuffleAndOtherOprd(Value *L, Value *R) {
895 ShuffleVectorInst *S = nullptr;
897 if ((S = dyn_cast<ShuffleVectorInst>(L)))
898 return std::make_pair(R, S);
900 S = dyn_cast<ShuffleVectorInst>(R);
901 return std::make_pair(L, S);
904 static ReductionKind
905 matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot,
906 unsigned &Opcode, Type *&Ty) {
907 if (!EnableReduxCost)
908 return RK_None;
910 // Need to extract the first element.
911 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
912 unsigned Idx = ~0u;
913 if (CI)
914 Idx = CI->getZExtValue();
915 if (Idx != 0)
916 return RK_None;
918 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
919 if (!RdxStart)
920 return RK_None;
921 Optional<ReductionData> RD = getReductionData(RdxStart);
922 if (!RD)
923 return RK_None;
925 Type *VecTy = ReduxRoot->getOperand(0)->getType();
926 unsigned NumVecElems = VecTy->getVectorNumElements();
927 if (!isPowerOf2_32(NumVecElems))
928 return RK_None;
930 // We look for a sequence of shuffles and adds like the following matching one
931 // fadd, shuffle vector pair at a time.
933 // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef,
934 // <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
935 // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf
936 // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef,
937 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
938 // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7
939 // %r = extractelement <4 x float> %bin.rdx8, i32 0
941 unsigned MaskStart = 1;
942 Instruction *RdxOp = RdxStart;
943 SmallVector<int, 32> ShuffleMask(NumVecElems, 0);
944 unsigned NumVecElemsRemain = NumVecElems;
945 while (NumVecElemsRemain - 1) {
946 // Check for the right reduction operation.
947 if (!RdxOp)
948 return RK_None;
949 Optional<ReductionData> RDLevel = getReductionData(RdxOp);
950 if (!RDLevel || !RDLevel->hasSameData(*RD))
951 return RK_None;
953 Value *NextRdxOp;
954 ShuffleVectorInst *Shuffle;
955 std::tie(NextRdxOp, Shuffle) =
956 getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS);
958 // Check the current reduction operation and the shuffle use the same value.
959 if (Shuffle == nullptr)
960 return RK_None;
961 if (Shuffle->getOperand(0) != NextRdxOp)
962 return RK_None;
964 // Check that shuffle masks matches.
965 for (unsigned j = 0; j != MaskStart; ++j)
966 ShuffleMask[j] = MaskStart + j;
967 // Fill the rest of the mask with -1 for undef.
968 std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1);
970 SmallVector<int, 16> Mask = Shuffle->getShuffleMask();
971 if (ShuffleMask != Mask)
972 return RK_None;
974 RdxOp = dyn_cast<Instruction>(NextRdxOp);
975 NumVecElemsRemain /= 2;
976 MaskStart *= 2;
979 Opcode = RD->Opcode;
980 Ty = VecTy;
981 return RD->Kind;
984 int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const {
985 switch (I->getOpcode()) {
986 case Instruction::GetElementPtr:
987 return getUserCost(I);
989 case Instruction::Ret:
990 case Instruction::PHI:
991 case Instruction::Br: {
992 return getCFInstrCost(I->getOpcode());
994 case Instruction::Add:
995 case Instruction::FAdd:
996 case Instruction::Sub:
997 case Instruction::FSub:
998 case Instruction::Mul:
999 case Instruction::FMul:
1000 case Instruction::UDiv:
1001 case Instruction::SDiv:
1002 case Instruction::FDiv:
1003 case Instruction::URem:
1004 case Instruction::SRem:
1005 case Instruction::FRem:
1006 case Instruction::Shl:
1007 case Instruction::LShr:
1008 case Instruction::AShr:
1009 case Instruction::And:
1010 case Instruction::Or:
1011 case Instruction::Xor: {
1012 TargetTransformInfo::OperandValueKind Op1VK, Op2VK;
1013 TargetTransformInfo::OperandValueProperties Op1VP, Op2VP;
1014 Op1VK = getOperandInfo(I->getOperand(0), Op1VP);
1015 Op2VK = getOperandInfo(I->getOperand(1), Op2VP);
1016 SmallVector<const Value *, 2> Operands(I->operand_values());
1017 return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, Op2VK,
1018 Op1VP, Op2VP, Operands);
1020 case Instruction::Select: {
1021 const SelectInst *SI = cast<SelectInst>(I);
1022 Type *CondTy = SI->getCondition()->getType();
1023 return getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy, I);
1025 case Instruction::ICmp:
1026 case Instruction::FCmp: {
1027 Type *ValTy = I->getOperand(0)->getType();
1028 return getCmpSelInstrCost(I->getOpcode(), ValTy, I->getType(), I);
1030 case Instruction::Store: {
1031 const StoreInst *SI = cast<StoreInst>(I);
1032 Type *ValTy = SI->getValueOperand()->getType();
1033 return getMemoryOpCost(I->getOpcode(), ValTy,
1034 SI->getAlignment(),
1035 SI->getPointerAddressSpace(), I);
1037 case Instruction::Load: {
1038 const LoadInst *LI = cast<LoadInst>(I);
1039 return getMemoryOpCost(I->getOpcode(), I->getType(),
1040 LI->getAlignment(),
1041 LI->getPointerAddressSpace(), I);
1043 case Instruction::ZExt:
1044 case Instruction::SExt:
1045 case Instruction::FPToUI:
1046 case Instruction::FPToSI:
1047 case Instruction::FPExt:
1048 case Instruction::PtrToInt:
1049 case Instruction::IntToPtr:
1050 case Instruction::SIToFP:
1051 case Instruction::UIToFP:
1052 case Instruction::Trunc:
1053 case Instruction::FPTrunc:
1054 case Instruction::BitCast:
1055 case Instruction::AddrSpaceCast: {
1056 Type *SrcTy = I->getOperand(0)->getType();
1057 return getCastInstrCost(I->getOpcode(), I->getType(), SrcTy, I);
1059 case Instruction::ExtractElement: {
1060 const ExtractElementInst * EEI = cast<ExtractElementInst>(I);
1061 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1062 unsigned Idx = -1;
1063 if (CI)
1064 Idx = CI->getZExtValue();
1066 // Try to match a reduction sequence (series of shufflevector and vector
1067 // adds followed by a extractelement).
1068 unsigned ReduxOpCode;
1069 Type *ReduxType;
1071 switch (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType)) {
1072 case RK_Arithmetic:
1073 return getArithmeticReductionCost(ReduxOpCode, ReduxType,
1074 /*IsPairwiseForm=*/false);
1075 case RK_MinMax:
1076 return getMinMaxReductionCost(
1077 ReduxType, CmpInst::makeCmpResultType(ReduxType),
1078 /*IsPairwiseForm=*/false, /*IsUnsigned=*/false);
1079 case RK_UnsignedMinMax:
1080 return getMinMaxReductionCost(
1081 ReduxType, CmpInst::makeCmpResultType(ReduxType),
1082 /*IsPairwiseForm=*/false, /*IsUnsigned=*/true);
1083 case RK_None:
1084 break;
1087 switch (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType)) {
1088 case RK_Arithmetic:
1089 return getArithmeticReductionCost(ReduxOpCode, ReduxType,
1090 /*IsPairwiseForm=*/true);
1091 case RK_MinMax:
1092 return getMinMaxReductionCost(
1093 ReduxType, CmpInst::makeCmpResultType(ReduxType),
1094 /*IsPairwiseForm=*/true, /*IsUnsigned=*/false);
1095 case RK_UnsignedMinMax:
1096 return getMinMaxReductionCost(
1097 ReduxType, CmpInst::makeCmpResultType(ReduxType),
1098 /*IsPairwiseForm=*/true, /*IsUnsigned=*/true);
1099 case RK_None:
1100 break;
1103 return getVectorInstrCost(I->getOpcode(),
1104 EEI->getOperand(0)->getType(), Idx);
1106 case Instruction::InsertElement: {
1107 const InsertElementInst * IE = cast<InsertElementInst>(I);
1108 ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2));
1109 unsigned Idx = -1;
1110 if (CI)
1111 Idx = CI->getZExtValue();
1112 return getVectorInstrCost(I->getOpcode(),
1113 IE->getType(), Idx);
1115 case Instruction::ShuffleVector: {
1116 const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
1117 Type *Ty = Shuffle->getType();
1118 Type *SrcTy = Shuffle->getOperand(0)->getType();
1120 // TODO: Identify and add costs for insert subvector, etc.
1121 int SubIndex;
1122 if (Shuffle->isExtractSubvectorMask(SubIndex))
1123 return TTIImpl->getShuffleCost(SK_ExtractSubvector, SrcTy, SubIndex, Ty);
1125 if (Shuffle->changesLength())
1126 return -1;
1128 if (Shuffle->isIdentity())
1129 return 0;
1131 if (Shuffle->isReverse())
1132 return TTIImpl->getShuffleCost(SK_Reverse, Ty, 0, nullptr);
1134 if (Shuffle->isSelect())
1135 return TTIImpl->getShuffleCost(SK_Select, Ty, 0, nullptr);
1137 if (Shuffle->isTranspose())
1138 return TTIImpl->getShuffleCost(SK_Transpose, Ty, 0, nullptr);
1140 if (Shuffle->isZeroEltSplat())
1141 return TTIImpl->getShuffleCost(SK_Broadcast, Ty, 0, nullptr);
1143 if (Shuffle->isSingleSource())
1144 return TTIImpl->getShuffleCost(SK_PermuteSingleSrc, Ty, 0, nullptr);
1146 return TTIImpl->getShuffleCost(SK_PermuteTwoSrc, Ty, 0, nullptr);
1148 case Instruction::Call:
1149 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1150 SmallVector<Value *, 4> Args(II->arg_operands());
1152 FastMathFlags FMF;
1153 if (auto *FPMO = dyn_cast<FPMathOperator>(II))
1154 FMF = FPMO->getFastMathFlags();
1156 return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(),
1157 Args, FMF);
1159 return -1;
1160 default:
1161 // We don't have any information on this instruction.
1162 return -1;
1166 TargetTransformInfo::Concept::~Concept() {}
1168 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {}
1170 TargetIRAnalysis::TargetIRAnalysis(
1171 std::function<Result(const Function &)> TTICallback)
1172 : TTICallback(std::move(TTICallback)) {}
1174 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F,
1175 FunctionAnalysisManager &) {
1176 return TTICallback(F);
1179 AnalysisKey TargetIRAnalysis::Key;
1181 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) {
1182 return Result(F.getParent()->getDataLayout());
1185 // Register the basic pass.
1186 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti",
1187 "Target Transform Information", false, true)
1188 char TargetTransformInfoWrapperPass::ID = 0;
1190 void TargetTransformInfoWrapperPass::anchor() {}
1192 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass()
1193 : ImmutablePass(ID) {
1194 initializeTargetTransformInfoWrapperPassPass(
1195 *PassRegistry::getPassRegistry());
1198 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass(
1199 TargetIRAnalysis TIRA)
1200 : ImmutablePass(ID), TIRA(std::move(TIRA)) {
1201 initializeTargetTransformInfoWrapperPassPass(
1202 *PassRegistry::getPassRegistry());
1205 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) {
1206 FunctionAnalysisManager DummyFAM;
1207 TTI = TIRA.run(F, DummyFAM);
1208 return *TTI;
1211 ImmutablePass *
1212 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) {
1213 return new TargetTransformInfoWrapperPass(std::move(TIRA));