[llvm-objcopy] [COFF] Test absolute symbols wrt --strip-unneeded and --discard-all...
[llvm-complete.git] / lib / CodeGen / LiveInterval.cpp
blob2340b6abd87c8f44e92799f17ece00b91111d663
1 //===- LiveInterval.cpp - Live Interval Representation --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LiveRange and LiveInterval classes. Given some
11 // numbering of each the machine instructions an interval [i, j) is said to be a
12 // live range for register v if there is no instruction with number j' >= j
13 // such that v is live at j' and there is no instruction with number i' < i such
14 // that v is live at i'. In this implementation ranges can have holes,
15 // i.e. a range might look like [1,20), [50,65), [1000,1001). Each
16 // individual segment is represented as an instance of LiveRange::Segment,
17 // and the whole range is represented as an instance of LiveRange.
19 //===----------------------------------------------------------------------===//
21 #include "llvm/CodeGen/LiveInterval.h"
22 #include "LiveRangeUtils.h"
23 #include "RegisterCoalescer.h"
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/iterator_range.h"
29 #include "llvm/CodeGen/LiveIntervals.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineInstr.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/SlotIndexes.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/Config/llvm-config.h"
37 #include "llvm/MC/LaneBitmask.h"
38 #include "llvm/Support/Compiler.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include <algorithm>
42 #include <cassert>
43 #include <cstddef>
44 #include <iterator>
45 #include <utility>
47 using namespace llvm;
49 namespace {
51 //===----------------------------------------------------------------------===//
52 // Implementation of various methods necessary for calculation of live ranges.
53 // The implementation of the methods abstracts from the concrete type of the
54 // segment collection.
56 // Implementation of the class follows the Template design pattern. The base
57 // class contains generic algorithms that call collection-specific methods,
58 // which are provided in concrete subclasses. In order to avoid virtual calls
59 // these methods are provided by means of C++ template instantiation.
60 // The base class calls the methods of the subclass through method impl(),
61 // which casts 'this' pointer to the type of the subclass.
63 //===----------------------------------------------------------------------===//
65 template <typename ImplT, typename IteratorT, typename CollectionT>
66 class CalcLiveRangeUtilBase {
67 protected:
68 LiveRange *LR;
70 protected:
71 CalcLiveRangeUtilBase(LiveRange *LR) : LR(LR) {}
73 public:
74 using Segment = LiveRange::Segment;
75 using iterator = IteratorT;
77 /// A counterpart of LiveRange::createDeadDef: Make sure the range has a
78 /// value defined at @p Def.
79 /// If @p ForVNI is null, and there is no value defined at @p Def, a new
80 /// value will be allocated using @p VNInfoAllocator.
81 /// If @p ForVNI is null, the return value is the value defined at @p Def,
82 /// either a pre-existing one, or the one newly created.
83 /// If @p ForVNI is not null, then @p Def should be the location where
84 /// @p ForVNI is defined. If the range does not have a value defined at
85 /// @p Def, the value @p ForVNI will be used instead of allocating a new
86 /// one. If the range already has a value defined at @p Def, it must be
87 /// same as @p ForVNI. In either case, @p ForVNI will be the return value.
88 VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator *VNInfoAllocator,
89 VNInfo *ForVNI) {
90 assert(!Def.isDead() && "Cannot define a value at the dead slot");
91 assert((!ForVNI || ForVNI->def == Def) &&
92 "If ForVNI is specified, it must match Def");
93 iterator I = impl().find(Def);
94 if (I == segments().end()) {
95 VNInfo *VNI = ForVNI ? ForVNI : LR->getNextValue(Def, *VNInfoAllocator);
96 impl().insertAtEnd(Segment(Def, Def.getDeadSlot(), VNI));
97 return VNI;
100 Segment *S = segmentAt(I);
101 if (SlotIndex::isSameInstr(Def, S->start)) {
102 assert((!ForVNI || ForVNI == S->valno) && "Value number mismatch");
103 assert(S->valno->def == S->start && "Inconsistent existing value def");
105 // It is possible to have both normal and early-clobber defs of the same
106 // register on an instruction. It doesn't make a lot of sense, but it is
107 // possible to specify in inline assembly.
109 // Just convert everything to early-clobber.
110 Def = std::min(Def, S->start);
111 if (Def != S->start)
112 S->start = S->valno->def = Def;
113 return S->valno;
115 assert(SlotIndex::isEarlierInstr(Def, S->start) && "Already live at def");
116 VNInfo *VNI = ForVNI ? ForVNI : LR->getNextValue(Def, *VNInfoAllocator);
117 segments().insert(I, Segment(Def, Def.getDeadSlot(), VNI));
118 return VNI;
121 VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Use) {
122 if (segments().empty())
123 return nullptr;
124 iterator I =
125 impl().findInsertPos(Segment(Use.getPrevSlot(), Use, nullptr));
126 if (I == segments().begin())
127 return nullptr;
128 --I;
129 if (I->end <= StartIdx)
130 return nullptr;
131 if (I->end < Use)
132 extendSegmentEndTo(I, Use);
133 return I->valno;
136 std::pair<VNInfo*,bool> extendInBlock(ArrayRef<SlotIndex> Undefs,
137 SlotIndex StartIdx, SlotIndex Use) {
138 if (segments().empty())
139 return std::make_pair(nullptr, false);
140 SlotIndex BeforeUse = Use.getPrevSlot();
141 iterator I = impl().findInsertPos(Segment(BeforeUse, Use, nullptr));
142 if (I == segments().begin())
143 return std::make_pair(nullptr, LR->isUndefIn(Undefs, StartIdx, BeforeUse));
144 --I;
145 if (I->end <= StartIdx)
146 return std::make_pair(nullptr, LR->isUndefIn(Undefs, StartIdx, BeforeUse));
147 if (I->end < Use) {
148 if (LR->isUndefIn(Undefs, I->end, BeforeUse))
149 return std::make_pair(nullptr, true);
150 extendSegmentEndTo(I, Use);
152 return std::make_pair(I->valno, false);
155 /// This method is used when we want to extend the segment specified
156 /// by I to end at the specified endpoint. To do this, we should
157 /// merge and eliminate all segments that this will overlap
158 /// with. The iterator is not invalidated.
159 void extendSegmentEndTo(iterator I, SlotIndex NewEnd) {
160 assert(I != segments().end() && "Not a valid segment!");
161 Segment *S = segmentAt(I);
162 VNInfo *ValNo = I->valno;
164 // Search for the first segment that we can't merge with.
165 iterator MergeTo = std::next(I);
166 for (; MergeTo != segments().end() && NewEnd >= MergeTo->end; ++MergeTo)
167 assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
169 // If NewEnd was in the middle of a segment, make sure to get its endpoint.
170 S->end = std::max(NewEnd, std::prev(MergeTo)->end);
172 // If the newly formed segment now touches the segment after it and if they
173 // have the same value number, merge the two segments into one segment.
174 if (MergeTo != segments().end() && MergeTo->start <= I->end &&
175 MergeTo->valno == ValNo) {
176 S->end = MergeTo->end;
177 ++MergeTo;
180 // Erase any dead segments.
181 segments().erase(std::next(I), MergeTo);
184 /// This method is used when we want to extend the segment specified
185 /// by I to start at the specified endpoint. To do this, we should
186 /// merge and eliminate all segments that this will overlap with.
187 iterator extendSegmentStartTo(iterator I, SlotIndex NewStart) {
188 assert(I != segments().end() && "Not a valid segment!");
189 Segment *S = segmentAt(I);
190 VNInfo *ValNo = I->valno;
192 // Search for the first segment that we can't merge with.
193 iterator MergeTo = I;
194 do {
195 if (MergeTo == segments().begin()) {
196 S->start = NewStart;
197 segments().erase(MergeTo, I);
198 return I;
200 assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
201 --MergeTo;
202 } while (NewStart <= MergeTo->start);
204 // If we start in the middle of another segment, just delete a range and
205 // extend that segment.
206 if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) {
207 segmentAt(MergeTo)->end = S->end;
208 } else {
209 // Otherwise, extend the segment right after.
210 ++MergeTo;
211 Segment *MergeToSeg = segmentAt(MergeTo);
212 MergeToSeg->start = NewStart;
213 MergeToSeg->end = S->end;
216 segments().erase(std::next(MergeTo), std::next(I));
217 return MergeTo;
220 iterator addSegment(Segment S) {
221 SlotIndex Start = S.start, End = S.end;
222 iterator I = impl().findInsertPos(S);
224 // If the inserted segment starts in the middle or right at the end of
225 // another segment, just extend that segment to contain the segment of S.
226 if (I != segments().begin()) {
227 iterator B = std::prev(I);
228 if (S.valno == B->valno) {
229 if (B->start <= Start && B->end >= Start) {
230 extendSegmentEndTo(B, End);
231 return B;
233 } else {
234 // Check to make sure that we are not overlapping two live segments with
235 // different valno's.
236 assert(B->end <= Start &&
237 "Cannot overlap two segments with differing ValID's"
238 " (did you def the same reg twice in a MachineInstr?)");
242 // Otherwise, if this segment ends in the middle of, or right next
243 // to, another segment, merge it into that segment.
244 if (I != segments().end()) {
245 if (S.valno == I->valno) {
246 if (I->start <= End) {
247 I = extendSegmentStartTo(I, Start);
249 // If S is a complete superset of a segment, we may need to grow its
250 // endpoint as well.
251 if (End > I->end)
252 extendSegmentEndTo(I, End);
253 return I;
255 } else {
256 // Check to make sure that we are not overlapping two live segments with
257 // different valno's.
258 assert(I->start >= End &&
259 "Cannot overlap two segments with differing ValID's");
263 // Otherwise, this is just a new segment that doesn't interact with
264 // anything.
265 // Insert it.
266 return segments().insert(I, S);
269 private:
270 ImplT &impl() { return *static_cast<ImplT *>(this); }
272 CollectionT &segments() { return impl().segmentsColl(); }
274 Segment *segmentAt(iterator I) { return const_cast<Segment *>(&(*I)); }
277 //===----------------------------------------------------------------------===//
278 // Instantiation of the methods for calculation of live ranges
279 // based on a segment vector.
280 //===----------------------------------------------------------------------===//
282 class CalcLiveRangeUtilVector;
283 using CalcLiveRangeUtilVectorBase =
284 CalcLiveRangeUtilBase<CalcLiveRangeUtilVector, LiveRange::iterator,
285 LiveRange::Segments>;
287 class CalcLiveRangeUtilVector : public CalcLiveRangeUtilVectorBase {
288 public:
289 CalcLiveRangeUtilVector(LiveRange *LR) : CalcLiveRangeUtilVectorBase(LR) {}
291 private:
292 friend CalcLiveRangeUtilVectorBase;
294 LiveRange::Segments &segmentsColl() { return LR->segments; }
296 void insertAtEnd(const Segment &S) { LR->segments.push_back(S); }
298 iterator find(SlotIndex Pos) { return LR->find(Pos); }
300 iterator findInsertPos(Segment S) {
301 return std::upper_bound(LR->begin(), LR->end(), S.start);
305 //===----------------------------------------------------------------------===//
306 // Instantiation of the methods for calculation of live ranges
307 // based on a segment set.
308 //===----------------------------------------------------------------------===//
310 class CalcLiveRangeUtilSet;
311 using CalcLiveRangeUtilSetBase =
312 CalcLiveRangeUtilBase<CalcLiveRangeUtilSet, LiveRange::SegmentSet::iterator,
313 LiveRange::SegmentSet>;
315 class CalcLiveRangeUtilSet : public CalcLiveRangeUtilSetBase {
316 public:
317 CalcLiveRangeUtilSet(LiveRange *LR) : CalcLiveRangeUtilSetBase(LR) {}
319 private:
320 friend CalcLiveRangeUtilSetBase;
322 LiveRange::SegmentSet &segmentsColl() { return *LR->segmentSet; }
324 void insertAtEnd(const Segment &S) {
325 LR->segmentSet->insert(LR->segmentSet->end(), S);
328 iterator find(SlotIndex Pos) {
329 iterator I =
330 LR->segmentSet->upper_bound(Segment(Pos, Pos.getNextSlot(), nullptr));
331 if (I == LR->segmentSet->begin())
332 return I;
333 iterator PrevI = std::prev(I);
334 if (Pos < (*PrevI).end)
335 return PrevI;
336 return I;
339 iterator findInsertPos(Segment S) {
340 iterator I = LR->segmentSet->upper_bound(S);
341 if (I != LR->segmentSet->end() && !(S.start < *I))
342 ++I;
343 return I;
347 } // end anonymous namespace
349 //===----------------------------------------------------------------------===//
350 // LiveRange methods
351 //===----------------------------------------------------------------------===//
353 LiveRange::iterator LiveRange::find(SlotIndex Pos) {
354 // This algorithm is basically std::upper_bound.
355 // Unfortunately, std::upper_bound cannot be used with mixed types until we
356 // adopt C++0x. Many libraries can do it, but not all.
357 if (empty() || Pos >= endIndex())
358 return end();
359 iterator I = begin();
360 size_t Len = size();
361 do {
362 size_t Mid = Len >> 1;
363 if (Pos < I[Mid].end) {
364 Len = Mid;
365 } else {
366 I += Mid + 1;
367 Len -= Mid + 1;
369 } while (Len);
370 return I;
373 VNInfo *LiveRange::createDeadDef(SlotIndex Def, VNInfo::Allocator &VNIAlloc) {
374 // Use the segment set, if it is available.
375 if (segmentSet != nullptr)
376 return CalcLiveRangeUtilSet(this).createDeadDef(Def, &VNIAlloc, nullptr);
377 // Otherwise use the segment vector.
378 return CalcLiveRangeUtilVector(this).createDeadDef(Def, &VNIAlloc, nullptr);
381 VNInfo *LiveRange::createDeadDef(VNInfo *VNI) {
382 // Use the segment set, if it is available.
383 if (segmentSet != nullptr)
384 return CalcLiveRangeUtilSet(this).createDeadDef(VNI->def, nullptr, VNI);
385 // Otherwise use the segment vector.
386 return CalcLiveRangeUtilVector(this).createDeadDef(VNI->def, nullptr, VNI);
389 // overlaps - Return true if the intersection of the two live ranges is
390 // not empty.
392 // An example for overlaps():
394 // 0: A = ...
395 // 4: B = ...
396 // 8: C = A + B ;; last use of A
398 // The live ranges should look like:
400 // A = [3, 11)
401 // B = [7, x)
402 // C = [11, y)
404 // A->overlaps(C) should return false since we want to be able to join
405 // A and C.
407 bool LiveRange::overlapsFrom(const LiveRange& other,
408 const_iterator StartPos) const {
409 assert(!empty() && "empty range");
410 const_iterator i = begin();
411 const_iterator ie = end();
412 const_iterator j = StartPos;
413 const_iterator je = other.end();
415 assert((StartPos->start <= i->start || StartPos == other.begin()) &&
416 StartPos != other.end() && "Bogus start position hint!");
418 if (i->start < j->start) {
419 i = std::upper_bound(i, ie, j->start);
420 if (i != begin()) --i;
421 } else if (j->start < i->start) {
422 ++StartPos;
423 if (StartPos != other.end() && StartPos->start <= i->start) {
424 assert(StartPos < other.end() && i < end());
425 j = std::upper_bound(j, je, i->start);
426 if (j != other.begin()) --j;
428 } else {
429 return true;
432 if (j == je) return false;
434 while (i != ie) {
435 if (i->start > j->start) {
436 std::swap(i, j);
437 std::swap(ie, je);
440 if (i->end > j->start)
441 return true;
442 ++i;
445 return false;
448 bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP,
449 const SlotIndexes &Indexes) const {
450 assert(!empty() && "empty range");
451 if (Other.empty())
452 return false;
454 // Use binary searches to find initial positions.
455 const_iterator I = find(Other.beginIndex());
456 const_iterator IE = end();
457 if (I == IE)
458 return false;
459 const_iterator J = Other.find(I->start);
460 const_iterator JE = Other.end();
461 if (J == JE)
462 return false;
464 while (true) {
465 // J has just been advanced to satisfy:
466 assert(J->end >= I->start);
467 // Check for an overlap.
468 if (J->start < I->end) {
469 // I and J are overlapping. Find the later start.
470 SlotIndex Def = std::max(I->start, J->start);
471 // Allow the overlap if Def is a coalescable copy.
472 if (Def.isBlock() ||
473 !CP.isCoalescable(Indexes.getInstructionFromIndex(Def)))
474 return true;
476 // Advance the iterator that ends first to check for more overlaps.
477 if (J->end > I->end) {
478 std::swap(I, J);
479 std::swap(IE, JE);
481 // Advance J until J->end >= I->start.
483 if (++J == JE)
484 return false;
485 while (J->end < I->start);
489 /// overlaps - Return true if the live range overlaps an interval specified
490 /// by [Start, End).
491 bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const {
492 assert(Start < End && "Invalid range");
493 const_iterator I = std::lower_bound(begin(), end(), End);
494 return I != begin() && (--I)->end > Start;
497 bool LiveRange::covers(const LiveRange &Other) const {
498 if (empty())
499 return Other.empty();
501 const_iterator I = begin();
502 for (const Segment &O : Other.segments) {
503 I = advanceTo(I, O.start);
504 if (I == end() || I->start > O.start)
505 return false;
507 // Check adjacent live segments and see if we can get behind O.end.
508 while (I->end < O.end) {
509 const_iterator Last = I;
510 // Get next segment and abort if it was not adjacent.
511 ++I;
512 if (I == end() || Last->end != I->start)
513 return false;
516 return true;
519 /// ValNo is dead, remove it. If it is the largest value number, just nuke it
520 /// (and any other deleted values neighboring it), otherwise mark it as ~1U so
521 /// it can be nuked later.
522 void LiveRange::markValNoForDeletion(VNInfo *ValNo) {
523 if (ValNo->id == getNumValNums()-1) {
524 do {
525 valnos.pop_back();
526 } while (!valnos.empty() && valnos.back()->isUnused());
527 } else {
528 ValNo->markUnused();
532 /// RenumberValues - Renumber all values in order of appearance and delete the
533 /// remaining unused values.
534 void LiveRange::RenumberValues() {
535 SmallPtrSet<VNInfo*, 8> Seen;
536 valnos.clear();
537 for (const Segment &S : segments) {
538 VNInfo *VNI = S.valno;
539 if (!Seen.insert(VNI).second)
540 continue;
541 assert(!VNI->isUnused() && "Unused valno used by live segment");
542 VNI->id = (unsigned)valnos.size();
543 valnos.push_back(VNI);
547 void LiveRange::addSegmentToSet(Segment S) {
548 CalcLiveRangeUtilSet(this).addSegment(S);
551 LiveRange::iterator LiveRange::addSegment(Segment S) {
552 // Use the segment set, if it is available.
553 if (segmentSet != nullptr) {
554 addSegmentToSet(S);
555 return end();
557 // Otherwise use the segment vector.
558 return CalcLiveRangeUtilVector(this).addSegment(S);
561 void LiveRange::append(const Segment S) {
562 // Check that the segment belongs to the back of the list.
563 assert(segments.empty() || segments.back().end <= S.start);
564 segments.push_back(S);
567 std::pair<VNInfo*,bool> LiveRange::extendInBlock(ArrayRef<SlotIndex> Undefs,
568 SlotIndex StartIdx, SlotIndex Kill) {
569 // Use the segment set, if it is available.
570 if (segmentSet != nullptr)
571 return CalcLiveRangeUtilSet(this).extendInBlock(Undefs, StartIdx, Kill);
572 // Otherwise use the segment vector.
573 return CalcLiveRangeUtilVector(this).extendInBlock(Undefs, StartIdx, Kill);
576 VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) {
577 // Use the segment set, if it is available.
578 if (segmentSet != nullptr)
579 return CalcLiveRangeUtilSet(this).extendInBlock(StartIdx, Kill);
580 // Otherwise use the segment vector.
581 return CalcLiveRangeUtilVector(this).extendInBlock(StartIdx, Kill);
584 /// Remove the specified segment from this range. Note that the segment must
585 /// be in a single Segment in its entirety.
586 void LiveRange::removeSegment(SlotIndex Start, SlotIndex End,
587 bool RemoveDeadValNo) {
588 // Find the Segment containing this span.
589 iterator I = find(Start);
590 assert(I != end() && "Segment is not in range!");
591 assert(I->containsInterval(Start, End)
592 && "Segment is not entirely in range!");
594 // If the span we are removing is at the start of the Segment, adjust it.
595 VNInfo *ValNo = I->valno;
596 if (I->start == Start) {
597 if (I->end == End) {
598 if (RemoveDeadValNo) {
599 // Check if val# is dead.
600 bool isDead = true;
601 for (const_iterator II = begin(), EE = end(); II != EE; ++II)
602 if (II != I && II->valno == ValNo) {
603 isDead = false;
604 break;
606 if (isDead) {
607 // Now that ValNo is dead, remove it.
608 markValNoForDeletion(ValNo);
612 segments.erase(I); // Removed the whole Segment.
613 } else
614 I->start = End;
615 return;
618 // Otherwise if the span we are removing is at the end of the Segment,
619 // adjust the other way.
620 if (I->end == End) {
621 I->end = Start;
622 return;
625 // Otherwise, we are splitting the Segment into two pieces.
626 SlotIndex OldEnd = I->end;
627 I->end = Start; // Trim the old segment.
629 // Insert the new one.
630 segments.insert(std::next(I), Segment(End, OldEnd, ValNo));
633 /// removeValNo - Remove all the segments defined by the specified value#.
634 /// Also remove the value# from value# list.
635 void LiveRange::removeValNo(VNInfo *ValNo) {
636 if (empty()) return;
637 segments.erase(remove_if(*this, [ValNo](const Segment &S) {
638 return S.valno == ValNo;
639 }), end());
640 // Now that ValNo is dead, remove it.
641 markValNoForDeletion(ValNo);
644 void LiveRange::join(LiveRange &Other,
645 const int *LHSValNoAssignments,
646 const int *RHSValNoAssignments,
647 SmallVectorImpl<VNInfo *> &NewVNInfo) {
648 verify();
650 // Determine if any of our values are mapped. This is uncommon, so we want
651 // to avoid the range scan if not.
652 bool MustMapCurValNos = false;
653 unsigned NumVals = getNumValNums();
654 unsigned NumNewVals = NewVNInfo.size();
655 for (unsigned i = 0; i != NumVals; ++i) {
656 unsigned LHSValID = LHSValNoAssignments[i];
657 if (i != LHSValID ||
658 (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) {
659 MustMapCurValNos = true;
660 break;
664 // If we have to apply a mapping to our base range assignment, rewrite it now.
665 if (MustMapCurValNos && !empty()) {
666 // Map the first live range.
668 iterator OutIt = begin();
669 OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]];
670 for (iterator I = std::next(OutIt), E = end(); I != E; ++I) {
671 VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]];
672 assert(nextValNo && "Huh?");
674 // If this live range has the same value # as its immediate predecessor,
675 // and if they are neighbors, remove one Segment. This happens when we
676 // have [0,4:0)[4,7:1) and map 0/1 onto the same value #.
677 if (OutIt->valno == nextValNo && OutIt->end == I->start) {
678 OutIt->end = I->end;
679 } else {
680 // Didn't merge. Move OutIt to the next segment,
681 ++OutIt;
682 OutIt->valno = nextValNo;
683 if (OutIt != I) {
684 OutIt->start = I->start;
685 OutIt->end = I->end;
689 // If we merge some segments, chop off the end.
690 ++OutIt;
691 segments.erase(OutIt, end());
694 // Rewrite Other values before changing the VNInfo ids.
695 // This can leave Other in an invalid state because we're not coalescing
696 // touching segments that now have identical values. That's OK since Other is
697 // not supposed to be valid after calling join();
698 for (Segment &S : Other.segments)
699 S.valno = NewVNInfo[RHSValNoAssignments[S.valno->id]];
701 // Update val# info. Renumber them and make sure they all belong to this
702 // LiveRange now. Also remove dead val#'s.
703 unsigned NumValNos = 0;
704 for (unsigned i = 0; i < NumNewVals; ++i) {
705 VNInfo *VNI = NewVNInfo[i];
706 if (VNI) {
707 if (NumValNos >= NumVals)
708 valnos.push_back(VNI);
709 else
710 valnos[NumValNos] = VNI;
711 VNI->id = NumValNos++; // Renumber val#.
714 if (NumNewVals < NumVals)
715 valnos.resize(NumNewVals); // shrinkify
717 // Okay, now insert the RHS live segments into the LHS.
718 LiveRangeUpdater Updater(this);
719 for (Segment &S : Other.segments)
720 Updater.add(S);
723 /// Merge all of the segments in RHS into this live range as the specified
724 /// value number. The segments in RHS are allowed to overlap with segments in
725 /// the current range, but only if the overlapping segments have the
726 /// specified value number.
727 void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS,
728 VNInfo *LHSValNo) {
729 LiveRangeUpdater Updater(this);
730 for (const Segment &S : RHS.segments)
731 Updater.add(S.start, S.end, LHSValNo);
734 /// MergeValueInAsValue - Merge all of the live segments of a specific val#
735 /// in RHS into this live range as the specified value number.
736 /// The segments in RHS are allowed to overlap with segments in the
737 /// current range, it will replace the value numbers of the overlaped
738 /// segments with the specified value number.
739 void LiveRange::MergeValueInAsValue(const LiveRange &RHS,
740 const VNInfo *RHSValNo,
741 VNInfo *LHSValNo) {
742 LiveRangeUpdater Updater(this);
743 for (const Segment &S : RHS.segments)
744 if (S.valno == RHSValNo)
745 Updater.add(S.start, S.end, LHSValNo);
748 /// MergeValueNumberInto - This method is called when two value nubmers
749 /// are found to be equivalent. This eliminates V1, replacing all
750 /// segments with the V1 value number with the V2 value number. This can
751 /// cause merging of V1/V2 values numbers and compaction of the value space.
752 VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) {
753 assert(V1 != V2 && "Identical value#'s are always equivalent!");
755 // This code actually merges the (numerically) larger value number into the
756 // smaller value number, which is likely to allow us to compactify the value
757 // space. The only thing we have to be careful of is to preserve the
758 // instruction that defines the result value.
760 // Make sure V2 is smaller than V1.
761 if (V1->id < V2->id) {
762 V1->copyFrom(*V2);
763 std::swap(V1, V2);
766 // Merge V1 segments into V2.
767 for (iterator I = begin(); I != end(); ) {
768 iterator S = I++;
769 if (S->valno != V1) continue; // Not a V1 Segment.
771 // Okay, we found a V1 live range. If it had a previous, touching, V2 live
772 // range, extend it.
773 if (S != begin()) {
774 iterator Prev = S-1;
775 if (Prev->valno == V2 && Prev->end == S->start) {
776 Prev->end = S->end;
778 // Erase this live-range.
779 segments.erase(S);
780 I = Prev+1;
781 S = Prev;
785 // Okay, now we have a V1 or V2 live range that is maximally merged forward.
786 // Ensure that it is a V2 live-range.
787 S->valno = V2;
789 // If we can merge it into later V2 segments, do so now. We ignore any
790 // following V1 segments, as they will be merged in subsequent iterations
791 // of the loop.
792 if (I != end()) {
793 if (I->start == S->end && I->valno == V2) {
794 S->end = I->end;
795 segments.erase(I);
796 I = S+1;
801 // Now that V1 is dead, remove it.
802 markValNoForDeletion(V1);
804 return V2;
807 void LiveRange::flushSegmentSet() {
808 assert(segmentSet != nullptr && "segment set must have been created");
809 assert(
810 segments.empty() &&
811 "segment set can be used only initially before switching to the array");
812 segments.append(segmentSet->begin(), segmentSet->end());
813 segmentSet = nullptr;
814 verify();
817 bool LiveRange::isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const {
818 ArrayRef<SlotIndex>::iterator SlotI = Slots.begin();
819 ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
821 // If there are no regmask slots, we have nothing to search.
822 if (SlotI == SlotE)
823 return false;
825 // Start our search at the first segment that ends after the first slot.
826 const_iterator SegmentI = find(*SlotI);
827 const_iterator SegmentE = end();
829 // If there are no segments that end after the first slot, we're done.
830 if (SegmentI == SegmentE)
831 return false;
833 // Look for each slot in the live range.
834 for ( ; SlotI != SlotE; ++SlotI) {
835 // Go to the next segment that ends after the current slot.
836 // The slot may be within a hole in the range.
837 SegmentI = advanceTo(SegmentI, *SlotI);
838 if (SegmentI == SegmentE)
839 return false;
841 // If this segment contains the slot, we're done.
842 if (SegmentI->contains(*SlotI))
843 return true;
844 // Otherwise, look for the next slot.
847 // We didn't find a segment containing any of the slots.
848 return false;
851 void LiveInterval::freeSubRange(SubRange *S) {
852 S->~SubRange();
853 // Memory was allocated with BumpPtr allocator and is not freed here.
856 void LiveInterval::removeEmptySubRanges() {
857 SubRange **NextPtr = &SubRanges;
858 SubRange *I = *NextPtr;
859 while (I != nullptr) {
860 if (!I->empty()) {
861 NextPtr = &I->Next;
862 I = *NextPtr;
863 continue;
865 // Skip empty subranges until we find the first nonempty one.
866 do {
867 SubRange *Next = I->Next;
868 freeSubRange(I);
869 I = Next;
870 } while (I != nullptr && I->empty());
871 *NextPtr = I;
875 void LiveInterval::clearSubRanges() {
876 for (SubRange *I = SubRanges, *Next; I != nullptr; I = Next) {
877 Next = I->Next;
878 freeSubRange(I);
880 SubRanges = nullptr;
883 void LiveInterval::refineSubRanges(BumpPtrAllocator &Allocator,
884 LaneBitmask LaneMask, std::function<void(LiveInterval::SubRange&)> Apply) {
885 LaneBitmask ToApply = LaneMask;
886 for (SubRange &SR : subranges()) {
887 LaneBitmask SRMask = SR.LaneMask;
888 LaneBitmask Matching = SRMask & LaneMask;
889 if (Matching.none())
890 continue;
892 SubRange *MatchingRange;
893 if (SRMask == Matching) {
894 // The subrange fits (it does not cover bits outside \p LaneMask).
895 MatchingRange = &SR;
896 } else {
897 // We have to split the subrange into a matching and non-matching part.
898 // Reduce lanemask of existing lane to non-matching part.
899 SR.LaneMask = SRMask & ~Matching;
900 // Create a new subrange for the matching part
901 MatchingRange = createSubRangeFrom(Allocator, Matching, SR);
903 Apply(*MatchingRange);
904 ToApply &= ~Matching;
906 // Create a new subrange if there are uncovered bits left.
907 if (ToApply.any()) {
908 SubRange *NewRange = createSubRange(Allocator, ToApply);
909 Apply(*NewRange);
913 unsigned LiveInterval::getSize() const {
914 unsigned Sum = 0;
915 for (const Segment &S : segments)
916 Sum += S.start.distance(S.end);
917 return Sum;
920 void LiveInterval::computeSubRangeUndefs(SmallVectorImpl<SlotIndex> &Undefs,
921 LaneBitmask LaneMask,
922 const MachineRegisterInfo &MRI,
923 const SlotIndexes &Indexes) const {
924 assert(TargetRegisterInfo::isVirtualRegister(reg));
925 LaneBitmask VRegMask = MRI.getMaxLaneMaskForVReg(reg);
926 assert((VRegMask & LaneMask).any());
927 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
928 for (const MachineOperand &MO : MRI.def_operands(reg)) {
929 if (!MO.isUndef())
930 continue;
931 unsigned SubReg = MO.getSubReg();
932 assert(SubReg != 0 && "Undef should only be set on subreg defs");
933 LaneBitmask DefMask = TRI.getSubRegIndexLaneMask(SubReg);
934 LaneBitmask UndefMask = VRegMask & ~DefMask;
935 if ((UndefMask & LaneMask).any()) {
936 const MachineInstr &MI = *MO.getParent();
937 bool EarlyClobber = MO.isEarlyClobber();
938 SlotIndex Pos = Indexes.getInstructionIndex(MI).getRegSlot(EarlyClobber);
939 Undefs.push_back(Pos);
944 raw_ostream& llvm::operator<<(raw_ostream& OS, const LiveRange::Segment &S) {
945 return OS << '[' << S.start << ',' << S.end << ':' << S.valno->id << ')';
948 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
949 LLVM_DUMP_METHOD void LiveRange::Segment::dump() const {
950 dbgs() << *this << '\n';
952 #endif
954 void LiveRange::print(raw_ostream &OS) const {
955 if (empty())
956 OS << "EMPTY";
957 else {
958 for (const Segment &S : segments) {
959 OS << S;
960 assert(S.valno == getValNumInfo(S.valno->id) && "Bad VNInfo");
964 // Print value number info.
965 if (getNumValNums()) {
966 OS << " ";
967 unsigned vnum = 0;
968 for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e;
969 ++i, ++vnum) {
970 const VNInfo *vni = *i;
971 if (vnum) OS << ' ';
972 OS << vnum << '@';
973 if (vni->isUnused()) {
974 OS << 'x';
975 } else {
976 OS << vni->def;
977 if (vni->isPHIDef())
978 OS << "-phi";
984 void LiveInterval::SubRange::print(raw_ostream &OS) const {
985 OS << " L" << PrintLaneMask(LaneMask) << ' '
986 << static_cast<const LiveRange&>(*this);
989 void LiveInterval::print(raw_ostream &OS) const {
990 OS << printReg(reg) << ' ';
991 super::print(OS);
992 // Print subranges
993 for (const SubRange &SR : subranges())
994 OS << SR;
995 OS << " weight:" << weight;
998 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
999 LLVM_DUMP_METHOD void LiveRange::dump() const {
1000 dbgs() << *this << '\n';
1003 LLVM_DUMP_METHOD void LiveInterval::SubRange::dump() const {
1004 dbgs() << *this << '\n';
1007 LLVM_DUMP_METHOD void LiveInterval::dump() const {
1008 dbgs() << *this << '\n';
1010 #endif
1012 #ifndef NDEBUG
1013 void LiveRange::verify() const {
1014 for (const_iterator I = begin(), E = end(); I != E; ++I) {
1015 assert(I->start.isValid());
1016 assert(I->end.isValid());
1017 assert(I->start < I->end);
1018 assert(I->valno != nullptr);
1019 assert(I->valno->id < valnos.size());
1020 assert(I->valno == valnos[I->valno->id]);
1021 if (std::next(I) != E) {
1022 assert(I->end <= std::next(I)->start);
1023 if (I->end == std::next(I)->start)
1024 assert(I->valno != std::next(I)->valno);
1029 void LiveInterval::verify(const MachineRegisterInfo *MRI) const {
1030 super::verify();
1032 // Make sure SubRanges are fine and LaneMasks are disjunct.
1033 LaneBitmask Mask;
1034 LaneBitmask MaxMask = MRI != nullptr ? MRI->getMaxLaneMaskForVReg(reg)
1035 : LaneBitmask::getAll();
1036 for (const SubRange &SR : subranges()) {
1037 // Subrange lanemask should be disjunct to any previous subrange masks.
1038 assert((Mask & SR.LaneMask).none());
1039 Mask |= SR.LaneMask;
1041 // subrange mask should not contained in maximum lane mask for the vreg.
1042 assert((Mask & ~MaxMask).none());
1043 // empty subranges must be removed.
1044 assert(!SR.empty());
1046 SR.verify();
1047 // Main liverange should cover subrange.
1048 assert(covers(SR));
1051 #endif
1053 //===----------------------------------------------------------------------===//
1054 // LiveRangeUpdater class
1055 //===----------------------------------------------------------------------===//
1057 // The LiveRangeUpdater class always maintains these invariants:
1059 // - When LastStart is invalid, Spills is empty and the iterators are invalid.
1060 // This is the initial state, and the state created by flush().
1061 // In this state, isDirty() returns false.
1063 // Otherwise, segments are kept in three separate areas:
1065 // 1. [begin; WriteI) at the front of LR.
1066 // 2. [ReadI; end) at the back of LR.
1067 // 3. Spills.
1069 // - LR.begin() <= WriteI <= ReadI <= LR.end().
1070 // - Segments in all three areas are fully ordered and coalesced.
1071 // - Segments in area 1 precede and can't coalesce with segments in area 2.
1072 // - Segments in Spills precede and can't coalesce with segments in area 2.
1073 // - No coalescing is possible between segments in Spills and segments in area
1074 // 1, and there are no overlapping segments.
1076 // The segments in Spills are not ordered with respect to the segments in area
1077 // 1. They need to be merged.
1079 // When they exist, Spills.back().start <= LastStart,
1080 // and WriteI[-1].start <= LastStart.
1082 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1083 void LiveRangeUpdater::print(raw_ostream &OS) const {
1084 if (!isDirty()) {
1085 if (LR)
1086 OS << "Clean updater: " << *LR << '\n';
1087 else
1088 OS << "Null updater.\n";
1089 return;
1091 assert(LR && "Can't have null LR in dirty updater.");
1092 OS << " updater with gap = " << (ReadI - WriteI)
1093 << ", last start = " << LastStart
1094 << ":\n Area 1:";
1095 for (const auto &S : make_range(LR->begin(), WriteI))
1096 OS << ' ' << S;
1097 OS << "\n Spills:";
1098 for (unsigned I = 0, E = Spills.size(); I != E; ++I)
1099 OS << ' ' << Spills[I];
1100 OS << "\n Area 2:";
1101 for (const auto &S : make_range(ReadI, LR->end()))
1102 OS << ' ' << S;
1103 OS << '\n';
1106 LLVM_DUMP_METHOD void LiveRangeUpdater::dump() const {
1107 print(errs());
1109 #endif
1111 // Determine if A and B should be coalesced.
1112 static inline bool coalescable(const LiveRange::Segment &A,
1113 const LiveRange::Segment &B) {
1114 assert(A.start <= B.start && "Unordered live segments.");
1115 if (A.end == B.start)
1116 return A.valno == B.valno;
1117 if (A.end < B.start)
1118 return false;
1119 assert(A.valno == B.valno && "Cannot overlap different values");
1120 return true;
1123 void LiveRangeUpdater::add(LiveRange::Segment Seg) {
1124 assert(LR && "Cannot add to a null destination");
1126 // Fall back to the regular add method if the live range
1127 // is using the segment set instead of the segment vector.
1128 if (LR->segmentSet != nullptr) {
1129 LR->addSegmentToSet(Seg);
1130 return;
1133 // Flush the state if Start moves backwards.
1134 if (!LastStart.isValid() || LastStart > Seg.start) {
1135 if (isDirty())
1136 flush();
1137 // This brings us to an uninitialized state. Reinitialize.
1138 assert(Spills.empty() && "Leftover spilled segments");
1139 WriteI = ReadI = LR->begin();
1142 // Remember start for next time.
1143 LastStart = Seg.start;
1145 // Advance ReadI until it ends after Seg.start.
1146 LiveRange::iterator E = LR->end();
1147 if (ReadI != E && ReadI->end <= Seg.start) {
1148 // First try to close the gap between WriteI and ReadI with spills.
1149 if (ReadI != WriteI)
1150 mergeSpills();
1151 // Then advance ReadI.
1152 if (ReadI == WriteI)
1153 ReadI = WriteI = LR->find(Seg.start);
1154 else
1155 while (ReadI != E && ReadI->end <= Seg.start)
1156 *WriteI++ = *ReadI++;
1159 assert(ReadI == E || ReadI->end > Seg.start);
1161 // Check if the ReadI segment begins early.
1162 if (ReadI != E && ReadI->start <= Seg.start) {
1163 assert(ReadI->valno == Seg.valno && "Cannot overlap different values");
1164 // Bail if Seg is completely contained in ReadI.
1165 if (ReadI->end >= Seg.end)
1166 return;
1167 // Coalesce into Seg.
1168 Seg.start = ReadI->start;
1169 ++ReadI;
1172 // Coalesce as much as possible from ReadI into Seg.
1173 while (ReadI != E && coalescable(Seg, *ReadI)) {
1174 Seg.end = std::max(Seg.end, ReadI->end);
1175 ++ReadI;
1178 // Try coalescing Spills.back() into Seg.
1179 if (!Spills.empty() && coalescable(Spills.back(), Seg)) {
1180 Seg.start = Spills.back().start;
1181 Seg.end = std::max(Spills.back().end, Seg.end);
1182 Spills.pop_back();
1185 // Try coalescing Seg into WriteI[-1].
1186 if (WriteI != LR->begin() && coalescable(WriteI[-1], Seg)) {
1187 WriteI[-1].end = std::max(WriteI[-1].end, Seg.end);
1188 return;
1191 // Seg doesn't coalesce with anything, and needs to be inserted somewhere.
1192 if (WriteI != ReadI) {
1193 *WriteI++ = Seg;
1194 return;
1197 // Finally, append to LR or Spills.
1198 if (WriteI == E) {
1199 LR->segments.push_back(Seg);
1200 WriteI = ReadI = LR->end();
1201 } else
1202 Spills.push_back(Seg);
1205 // Merge as many spilled segments as possible into the gap between WriteI
1206 // and ReadI. Advance WriteI to reflect the inserted instructions.
1207 void LiveRangeUpdater::mergeSpills() {
1208 // Perform a backwards merge of Spills and [SpillI;WriteI).
1209 size_t GapSize = ReadI - WriteI;
1210 size_t NumMoved = std::min(Spills.size(), GapSize);
1211 LiveRange::iterator Src = WriteI;
1212 LiveRange::iterator Dst = Src + NumMoved;
1213 LiveRange::iterator SpillSrc = Spills.end();
1214 LiveRange::iterator B = LR->begin();
1216 // This is the new WriteI position after merging spills.
1217 WriteI = Dst;
1219 // Now merge Src and Spills backwards.
1220 while (Src != Dst) {
1221 if (Src != B && Src[-1].start > SpillSrc[-1].start)
1222 *--Dst = *--Src;
1223 else
1224 *--Dst = *--SpillSrc;
1226 assert(NumMoved == size_t(Spills.end() - SpillSrc));
1227 Spills.erase(SpillSrc, Spills.end());
1230 void LiveRangeUpdater::flush() {
1231 if (!isDirty())
1232 return;
1233 // Clear the dirty state.
1234 LastStart = SlotIndex();
1236 assert(LR && "Cannot add to a null destination");
1238 // Nothing to merge?
1239 if (Spills.empty()) {
1240 LR->segments.erase(WriteI, ReadI);
1241 LR->verify();
1242 return;
1245 // Resize the WriteI - ReadI gap to match Spills.
1246 size_t GapSize = ReadI - WriteI;
1247 if (GapSize < Spills.size()) {
1248 // The gap is too small. Make some room.
1249 size_t WritePos = WriteI - LR->begin();
1250 LR->segments.insert(ReadI, Spills.size() - GapSize, LiveRange::Segment());
1251 // This also invalidated ReadI, but it is recomputed below.
1252 WriteI = LR->begin() + WritePos;
1253 } else {
1254 // Shrink the gap if necessary.
1255 LR->segments.erase(WriteI + Spills.size(), ReadI);
1257 ReadI = WriteI + Spills.size();
1258 mergeSpills();
1259 LR->verify();
1262 unsigned ConnectedVNInfoEqClasses::Classify(const LiveRange &LR) {
1263 // Create initial equivalence classes.
1264 EqClass.clear();
1265 EqClass.grow(LR.getNumValNums());
1267 const VNInfo *used = nullptr, *unused = nullptr;
1269 // Determine connections.
1270 for (const VNInfo *VNI : LR.valnos) {
1271 // Group all unused values into one class.
1272 if (VNI->isUnused()) {
1273 if (unused)
1274 EqClass.join(unused->id, VNI->id);
1275 unused = VNI;
1276 continue;
1278 used = VNI;
1279 if (VNI->isPHIDef()) {
1280 const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
1281 assert(MBB && "Phi-def has no defining MBB");
1282 // Connect to values live out of predecessors.
1283 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
1284 PE = MBB->pred_end(); PI != PE; ++PI)
1285 if (const VNInfo *PVNI = LR.getVNInfoBefore(LIS.getMBBEndIdx(*PI)))
1286 EqClass.join(VNI->id, PVNI->id);
1287 } else {
1288 // Normal value defined by an instruction. Check for two-addr redef.
1289 // FIXME: This could be coincidental. Should we really check for a tied
1290 // operand constraint?
1291 // Note that VNI->def may be a use slot for an early clobber def.
1292 if (const VNInfo *UVNI = LR.getVNInfoBefore(VNI->def))
1293 EqClass.join(VNI->id, UVNI->id);
1297 // Lump all the unused values in with the last used value.
1298 if (used && unused)
1299 EqClass.join(used->id, unused->id);
1301 EqClass.compress();
1302 return EqClass.getNumClasses();
1305 void ConnectedVNInfoEqClasses::Distribute(LiveInterval &LI, LiveInterval *LIV[],
1306 MachineRegisterInfo &MRI) {
1307 // Rewrite instructions.
1308 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg),
1309 RE = MRI.reg_end(); RI != RE;) {
1310 MachineOperand &MO = *RI;
1311 MachineInstr *MI = RI->getParent();
1312 ++RI;
1313 const VNInfo *VNI;
1314 if (MI->isDebugValue()) {
1315 // DBG_VALUE instructions don't have slot indexes, so get the index of
1316 // the instruction before them. The value is defined there too.
1317 SlotIndex Idx = LIS.getSlotIndexes()->getIndexBefore(*MI);
1318 VNI = LI.Query(Idx).valueOut();
1319 } else {
1320 SlotIndex Idx = LIS.getInstructionIndex(*MI);
1321 LiveQueryResult LRQ = LI.Query(Idx);
1322 VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined();
1324 // In the case of an <undef> use that isn't tied to any def, VNI will be
1325 // NULL. If the use is tied to a def, VNI will be the defined value.
1326 if (!VNI)
1327 continue;
1328 if (unsigned EqClass = getEqClass(VNI))
1329 MO.setReg(LIV[EqClass-1]->reg);
1332 // Distribute subregister liveranges.
1333 if (LI.hasSubRanges()) {
1334 unsigned NumComponents = EqClass.getNumClasses();
1335 SmallVector<unsigned, 8> VNIMapping;
1336 SmallVector<LiveInterval::SubRange*, 8> SubRanges;
1337 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
1338 for (LiveInterval::SubRange &SR : LI.subranges()) {
1339 // Create new subranges in the split intervals and construct a mapping
1340 // for the VNInfos in the subrange.
1341 unsigned NumValNos = SR.valnos.size();
1342 VNIMapping.clear();
1343 VNIMapping.reserve(NumValNos);
1344 SubRanges.clear();
1345 SubRanges.resize(NumComponents-1, nullptr);
1346 for (unsigned I = 0; I < NumValNos; ++I) {
1347 const VNInfo &VNI = *SR.valnos[I];
1348 unsigned ComponentNum;
1349 if (VNI.isUnused()) {
1350 ComponentNum = 0;
1351 } else {
1352 const VNInfo *MainRangeVNI = LI.getVNInfoAt(VNI.def);
1353 assert(MainRangeVNI != nullptr
1354 && "SubRange def must have corresponding main range def");
1355 ComponentNum = getEqClass(MainRangeVNI);
1356 if (ComponentNum > 0 && SubRanges[ComponentNum-1] == nullptr) {
1357 SubRanges[ComponentNum-1]
1358 = LIV[ComponentNum-1]->createSubRange(Allocator, SR.LaneMask);
1361 VNIMapping.push_back(ComponentNum);
1363 DistributeRange(SR, SubRanges.data(), VNIMapping);
1365 LI.removeEmptySubRanges();
1368 // Distribute main liverange.
1369 DistributeRange(LI, LIV, EqClass);