1 //===- LiveInterval.cpp - Live Interval Representation --------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the LiveRange and LiveInterval classes. Given some
11 // numbering of each the machine instructions an interval [i, j) is said to be a
12 // live range for register v if there is no instruction with number j' >= j
13 // such that v is live at j' and there is no instruction with number i' < i such
14 // that v is live at i'. In this implementation ranges can have holes,
15 // i.e. a range might look like [1,20), [50,65), [1000,1001). Each
16 // individual segment is represented as an instance of LiveRange::Segment,
17 // and the whole range is represented as an instance of LiveRange.
19 //===----------------------------------------------------------------------===//
21 #include "llvm/CodeGen/LiveInterval.h"
22 #include "LiveRangeUtils.h"
23 #include "RegisterCoalescer.h"
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/iterator_range.h"
29 #include "llvm/CodeGen/LiveIntervals.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineInstr.h"
32 #include "llvm/CodeGen/MachineOperand.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/SlotIndexes.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/Config/llvm-config.h"
37 #include "llvm/MC/LaneBitmask.h"
38 #include "llvm/Support/Compiler.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/raw_ostream.h"
51 //===----------------------------------------------------------------------===//
52 // Implementation of various methods necessary for calculation of live ranges.
53 // The implementation of the methods abstracts from the concrete type of the
54 // segment collection.
56 // Implementation of the class follows the Template design pattern. The base
57 // class contains generic algorithms that call collection-specific methods,
58 // which are provided in concrete subclasses. In order to avoid virtual calls
59 // these methods are provided by means of C++ template instantiation.
60 // The base class calls the methods of the subclass through method impl(),
61 // which casts 'this' pointer to the type of the subclass.
63 //===----------------------------------------------------------------------===//
65 template <typename ImplT
, typename IteratorT
, typename CollectionT
>
66 class CalcLiveRangeUtilBase
{
71 CalcLiveRangeUtilBase(LiveRange
*LR
) : LR(LR
) {}
74 using Segment
= LiveRange::Segment
;
75 using iterator
= IteratorT
;
77 /// A counterpart of LiveRange::createDeadDef: Make sure the range has a
78 /// value defined at @p Def.
79 /// If @p ForVNI is null, and there is no value defined at @p Def, a new
80 /// value will be allocated using @p VNInfoAllocator.
81 /// If @p ForVNI is null, the return value is the value defined at @p Def,
82 /// either a pre-existing one, or the one newly created.
83 /// If @p ForVNI is not null, then @p Def should be the location where
84 /// @p ForVNI is defined. If the range does not have a value defined at
85 /// @p Def, the value @p ForVNI will be used instead of allocating a new
86 /// one. If the range already has a value defined at @p Def, it must be
87 /// same as @p ForVNI. In either case, @p ForVNI will be the return value.
88 VNInfo
*createDeadDef(SlotIndex Def
, VNInfo::Allocator
*VNInfoAllocator
,
90 assert(!Def
.isDead() && "Cannot define a value at the dead slot");
91 assert((!ForVNI
|| ForVNI
->def
== Def
) &&
92 "If ForVNI is specified, it must match Def");
93 iterator I
= impl().find(Def
);
94 if (I
== segments().end()) {
95 VNInfo
*VNI
= ForVNI
? ForVNI
: LR
->getNextValue(Def
, *VNInfoAllocator
);
96 impl().insertAtEnd(Segment(Def
, Def
.getDeadSlot(), VNI
));
100 Segment
*S
= segmentAt(I
);
101 if (SlotIndex::isSameInstr(Def
, S
->start
)) {
102 assert((!ForVNI
|| ForVNI
== S
->valno
) && "Value number mismatch");
103 assert(S
->valno
->def
== S
->start
&& "Inconsistent existing value def");
105 // It is possible to have both normal and early-clobber defs of the same
106 // register on an instruction. It doesn't make a lot of sense, but it is
107 // possible to specify in inline assembly.
109 // Just convert everything to early-clobber.
110 Def
= std::min(Def
, S
->start
);
112 S
->start
= S
->valno
->def
= Def
;
115 assert(SlotIndex::isEarlierInstr(Def
, S
->start
) && "Already live at def");
116 VNInfo
*VNI
= ForVNI
? ForVNI
: LR
->getNextValue(Def
, *VNInfoAllocator
);
117 segments().insert(I
, Segment(Def
, Def
.getDeadSlot(), VNI
));
121 VNInfo
*extendInBlock(SlotIndex StartIdx
, SlotIndex Use
) {
122 if (segments().empty())
125 impl().findInsertPos(Segment(Use
.getPrevSlot(), Use
, nullptr));
126 if (I
== segments().begin())
129 if (I
->end
<= StartIdx
)
132 extendSegmentEndTo(I
, Use
);
136 std::pair
<VNInfo
*,bool> extendInBlock(ArrayRef
<SlotIndex
> Undefs
,
137 SlotIndex StartIdx
, SlotIndex Use
) {
138 if (segments().empty())
139 return std::make_pair(nullptr, false);
140 SlotIndex BeforeUse
= Use
.getPrevSlot();
141 iterator I
= impl().findInsertPos(Segment(BeforeUse
, Use
, nullptr));
142 if (I
== segments().begin())
143 return std::make_pair(nullptr, LR
->isUndefIn(Undefs
, StartIdx
, BeforeUse
));
145 if (I
->end
<= StartIdx
)
146 return std::make_pair(nullptr, LR
->isUndefIn(Undefs
, StartIdx
, BeforeUse
));
148 if (LR
->isUndefIn(Undefs
, I
->end
, BeforeUse
))
149 return std::make_pair(nullptr, true);
150 extendSegmentEndTo(I
, Use
);
152 return std::make_pair(I
->valno
, false);
155 /// This method is used when we want to extend the segment specified
156 /// by I to end at the specified endpoint. To do this, we should
157 /// merge and eliminate all segments that this will overlap
158 /// with. The iterator is not invalidated.
159 void extendSegmentEndTo(iterator I
, SlotIndex NewEnd
) {
160 assert(I
!= segments().end() && "Not a valid segment!");
161 Segment
*S
= segmentAt(I
);
162 VNInfo
*ValNo
= I
->valno
;
164 // Search for the first segment that we can't merge with.
165 iterator MergeTo
= std::next(I
);
166 for (; MergeTo
!= segments().end() && NewEnd
>= MergeTo
->end
; ++MergeTo
)
167 assert(MergeTo
->valno
== ValNo
&& "Cannot merge with differing values!");
169 // If NewEnd was in the middle of a segment, make sure to get its endpoint.
170 S
->end
= std::max(NewEnd
, std::prev(MergeTo
)->end
);
172 // If the newly formed segment now touches the segment after it and if they
173 // have the same value number, merge the two segments into one segment.
174 if (MergeTo
!= segments().end() && MergeTo
->start
<= I
->end
&&
175 MergeTo
->valno
== ValNo
) {
176 S
->end
= MergeTo
->end
;
180 // Erase any dead segments.
181 segments().erase(std::next(I
), MergeTo
);
184 /// This method is used when we want to extend the segment specified
185 /// by I to start at the specified endpoint. To do this, we should
186 /// merge and eliminate all segments that this will overlap with.
187 iterator
extendSegmentStartTo(iterator I
, SlotIndex NewStart
) {
188 assert(I
!= segments().end() && "Not a valid segment!");
189 Segment
*S
= segmentAt(I
);
190 VNInfo
*ValNo
= I
->valno
;
192 // Search for the first segment that we can't merge with.
193 iterator MergeTo
= I
;
195 if (MergeTo
== segments().begin()) {
197 segments().erase(MergeTo
, I
);
200 assert(MergeTo
->valno
== ValNo
&& "Cannot merge with differing values!");
202 } while (NewStart
<= MergeTo
->start
);
204 // If we start in the middle of another segment, just delete a range and
205 // extend that segment.
206 if (MergeTo
->end
>= NewStart
&& MergeTo
->valno
== ValNo
) {
207 segmentAt(MergeTo
)->end
= S
->end
;
209 // Otherwise, extend the segment right after.
211 Segment
*MergeToSeg
= segmentAt(MergeTo
);
212 MergeToSeg
->start
= NewStart
;
213 MergeToSeg
->end
= S
->end
;
216 segments().erase(std::next(MergeTo
), std::next(I
));
220 iterator
addSegment(Segment S
) {
221 SlotIndex Start
= S
.start
, End
= S
.end
;
222 iterator I
= impl().findInsertPos(S
);
224 // If the inserted segment starts in the middle or right at the end of
225 // another segment, just extend that segment to contain the segment of S.
226 if (I
!= segments().begin()) {
227 iterator B
= std::prev(I
);
228 if (S
.valno
== B
->valno
) {
229 if (B
->start
<= Start
&& B
->end
>= Start
) {
230 extendSegmentEndTo(B
, End
);
234 // Check to make sure that we are not overlapping two live segments with
235 // different valno's.
236 assert(B
->end
<= Start
&&
237 "Cannot overlap two segments with differing ValID's"
238 " (did you def the same reg twice in a MachineInstr?)");
242 // Otherwise, if this segment ends in the middle of, or right next
243 // to, another segment, merge it into that segment.
244 if (I
!= segments().end()) {
245 if (S
.valno
== I
->valno
) {
246 if (I
->start
<= End
) {
247 I
= extendSegmentStartTo(I
, Start
);
249 // If S is a complete superset of a segment, we may need to grow its
252 extendSegmentEndTo(I
, End
);
256 // Check to make sure that we are not overlapping two live segments with
257 // different valno's.
258 assert(I
->start
>= End
&&
259 "Cannot overlap two segments with differing ValID's");
263 // Otherwise, this is just a new segment that doesn't interact with
266 return segments().insert(I
, S
);
270 ImplT
&impl() { return *static_cast<ImplT
*>(this); }
272 CollectionT
&segments() { return impl().segmentsColl(); }
274 Segment
*segmentAt(iterator I
) { return const_cast<Segment
*>(&(*I
)); }
277 //===----------------------------------------------------------------------===//
278 // Instantiation of the methods for calculation of live ranges
279 // based on a segment vector.
280 //===----------------------------------------------------------------------===//
282 class CalcLiveRangeUtilVector
;
283 using CalcLiveRangeUtilVectorBase
=
284 CalcLiveRangeUtilBase
<CalcLiveRangeUtilVector
, LiveRange::iterator
,
285 LiveRange::Segments
>;
287 class CalcLiveRangeUtilVector
: public CalcLiveRangeUtilVectorBase
{
289 CalcLiveRangeUtilVector(LiveRange
*LR
) : CalcLiveRangeUtilVectorBase(LR
) {}
292 friend CalcLiveRangeUtilVectorBase
;
294 LiveRange::Segments
&segmentsColl() { return LR
->segments
; }
296 void insertAtEnd(const Segment
&S
) { LR
->segments
.push_back(S
); }
298 iterator
find(SlotIndex Pos
) { return LR
->find(Pos
); }
300 iterator
findInsertPos(Segment S
) {
301 return std::upper_bound(LR
->begin(), LR
->end(), S
.start
);
305 //===----------------------------------------------------------------------===//
306 // Instantiation of the methods for calculation of live ranges
307 // based on a segment set.
308 //===----------------------------------------------------------------------===//
310 class CalcLiveRangeUtilSet
;
311 using CalcLiveRangeUtilSetBase
=
312 CalcLiveRangeUtilBase
<CalcLiveRangeUtilSet
, LiveRange::SegmentSet::iterator
,
313 LiveRange::SegmentSet
>;
315 class CalcLiveRangeUtilSet
: public CalcLiveRangeUtilSetBase
{
317 CalcLiveRangeUtilSet(LiveRange
*LR
) : CalcLiveRangeUtilSetBase(LR
) {}
320 friend CalcLiveRangeUtilSetBase
;
322 LiveRange::SegmentSet
&segmentsColl() { return *LR
->segmentSet
; }
324 void insertAtEnd(const Segment
&S
) {
325 LR
->segmentSet
->insert(LR
->segmentSet
->end(), S
);
328 iterator
find(SlotIndex Pos
) {
330 LR
->segmentSet
->upper_bound(Segment(Pos
, Pos
.getNextSlot(), nullptr));
331 if (I
== LR
->segmentSet
->begin())
333 iterator PrevI
= std::prev(I
);
334 if (Pos
< (*PrevI
).end
)
339 iterator
findInsertPos(Segment S
) {
340 iterator I
= LR
->segmentSet
->upper_bound(S
);
341 if (I
!= LR
->segmentSet
->end() && !(S
.start
< *I
))
347 } // end anonymous namespace
349 //===----------------------------------------------------------------------===//
351 //===----------------------------------------------------------------------===//
353 LiveRange::iterator
LiveRange::find(SlotIndex Pos
) {
354 // This algorithm is basically std::upper_bound.
355 // Unfortunately, std::upper_bound cannot be used with mixed types until we
356 // adopt C++0x. Many libraries can do it, but not all.
357 if (empty() || Pos
>= endIndex())
359 iterator I
= begin();
362 size_t Mid
= Len
>> 1;
363 if (Pos
< I
[Mid
].end
) {
373 VNInfo
*LiveRange::createDeadDef(SlotIndex Def
, VNInfo::Allocator
&VNIAlloc
) {
374 // Use the segment set, if it is available.
375 if (segmentSet
!= nullptr)
376 return CalcLiveRangeUtilSet(this).createDeadDef(Def
, &VNIAlloc
, nullptr);
377 // Otherwise use the segment vector.
378 return CalcLiveRangeUtilVector(this).createDeadDef(Def
, &VNIAlloc
, nullptr);
381 VNInfo
*LiveRange::createDeadDef(VNInfo
*VNI
) {
382 // Use the segment set, if it is available.
383 if (segmentSet
!= nullptr)
384 return CalcLiveRangeUtilSet(this).createDeadDef(VNI
->def
, nullptr, VNI
);
385 // Otherwise use the segment vector.
386 return CalcLiveRangeUtilVector(this).createDeadDef(VNI
->def
, nullptr, VNI
);
389 // overlaps - Return true if the intersection of the two live ranges is
392 // An example for overlaps():
396 // 8: C = A + B ;; last use of A
398 // The live ranges should look like:
404 // A->overlaps(C) should return false since we want to be able to join
407 bool LiveRange::overlapsFrom(const LiveRange
& other
,
408 const_iterator StartPos
) const {
409 assert(!empty() && "empty range");
410 const_iterator i
= begin();
411 const_iterator ie
= end();
412 const_iterator j
= StartPos
;
413 const_iterator je
= other
.end();
415 assert((StartPos
->start
<= i
->start
|| StartPos
== other
.begin()) &&
416 StartPos
!= other
.end() && "Bogus start position hint!");
418 if (i
->start
< j
->start
) {
419 i
= std::upper_bound(i
, ie
, j
->start
);
420 if (i
!= begin()) --i
;
421 } else if (j
->start
< i
->start
) {
423 if (StartPos
!= other
.end() && StartPos
->start
<= i
->start
) {
424 assert(StartPos
< other
.end() && i
< end());
425 j
= std::upper_bound(j
, je
, i
->start
);
426 if (j
!= other
.begin()) --j
;
432 if (j
== je
) return false;
435 if (i
->start
> j
->start
) {
440 if (i
->end
> j
->start
)
448 bool LiveRange::overlaps(const LiveRange
&Other
, const CoalescerPair
&CP
,
449 const SlotIndexes
&Indexes
) const {
450 assert(!empty() && "empty range");
454 // Use binary searches to find initial positions.
455 const_iterator I
= find(Other
.beginIndex());
456 const_iterator IE
= end();
459 const_iterator J
= Other
.find(I
->start
);
460 const_iterator JE
= Other
.end();
465 // J has just been advanced to satisfy:
466 assert(J
->end
>= I
->start
);
467 // Check for an overlap.
468 if (J
->start
< I
->end
) {
469 // I and J are overlapping. Find the later start.
470 SlotIndex Def
= std::max(I
->start
, J
->start
);
471 // Allow the overlap if Def is a coalescable copy.
473 !CP
.isCoalescable(Indexes
.getInstructionFromIndex(Def
)))
476 // Advance the iterator that ends first to check for more overlaps.
477 if (J
->end
> I
->end
) {
481 // Advance J until J->end >= I->start.
485 while (J
->end
< I
->start
);
489 /// overlaps - Return true if the live range overlaps an interval specified
491 bool LiveRange::overlaps(SlotIndex Start
, SlotIndex End
) const {
492 assert(Start
< End
&& "Invalid range");
493 const_iterator I
= std::lower_bound(begin(), end(), End
);
494 return I
!= begin() && (--I
)->end
> Start
;
497 bool LiveRange::covers(const LiveRange
&Other
) const {
499 return Other
.empty();
501 const_iterator I
= begin();
502 for (const Segment
&O
: Other
.segments
) {
503 I
= advanceTo(I
, O
.start
);
504 if (I
== end() || I
->start
> O
.start
)
507 // Check adjacent live segments and see if we can get behind O.end.
508 while (I
->end
< O
.end
) {
509 const_iterator Last
= I
;
510 // Get next segment and abort if it was not adjacent.
512 if (I
== end() || Last
->end
!= I
->start
)
519 /// ValNo is dead, remove it. If it is the largest value number, just nuke it
520 /// (and any other deleted values neighboring it), otherwise mark it as ~1U so
521 /// it can be nuked later.
522 void LiveRange::markValNoForDeletion(VNInfo
*ValNo
) {
523 if (ValNo
->id
== getNumValNums()-1) {
526 } while (!valnos
.empty() && valnos
.back()->isUnused());
532 /// RenumberValues - Renumber all values in order of appearance and delete the
533 /// remaining unused values.
534 void LiveRange::RenumberValues() {
535 SmallPtrSet
<VNInfo
*, 8> Seen
;
537 for (const Segment
&S
: segments
) {
538 VNInfo
*VNI
= S
.valno
;
539 if (!Seen
.insert(VNI
).second
)
541 assert(!VNI
->isUnused() && "Unused valno used by live segment");
542 VNI
->id
= (unsigned)valnos
.size();
543 valnos
.push_back(VNI
);
547 void LiveRange::addSegmentToSet(Segment S
) {
548 CalcLiveRangeUtilSet(this).addSegment(S
);
551 LiveRange::iterator
LiveRange::addSegment(Segment S
) {
552 // Use the segment set, if it is available.
553 if (segmentSet
!= nullptr) {
557 // Otherwise use the segment vector.
558 return CalcLiveRangeUtilVector(this).addSegment(S
);
561 void LiveRange::append(const Segment S
) {
562 // Check that the segment belongs to the back of the list.
563 assert(segments
.empty() || segments
.back().end
<= S
.start
);
564 segments
.push_back(S
);
567 std::pair
<VNInfo
*,bool> LiveRange::extendInBlock(ArrayRef
<SlotIndex
> Undefs
,
568 SlotIndex StartIdx
, SlotIndex Kill
) {
569 // Use the segment set, if it is available.
570 if (segmentSet
!= nullptr)
571 return CalcLiveRangeUtilSet(this).extendInBlock(Undefs
, StartIdx
, Kill
);
572 // Otherwise use the segment vector.
573 return CalcLiveRangeUtilVector(this).extendInBlock(Undefs
, StartIdx
, Kill
);
576 VNInfo
*LiveRange::extendInBlock(SlotIndex StartIdx
, SlotIndex Kill
) {
577 // Use the segment set, if it is available.
578 if (segmentSet
!= nullptr)
579 return CalcLiveRangeUtilSet(this).extendInBlock(StartIdx
, Kill
);
580 // Otherwise use the segment vector.
581 return CalcLiveRangeUtilVector(this).extendInBlock(StartIdx
, Kill
);
584 /// Remove the specified segment from this range. Note that the segment must
585 /// be in a single Segment in its entirety.
586 void LiveRange::removeSegment(SlotIndex Start
, SlotIndex End
,
587 bool RemoveDeadValNo
) {
588 // Find the Segment containing this span.
589 iterator I
= find(Start
);
590 assert(I
!= end() && "Segment is not in range!");
591 assert(I
->containsInterval(Start
, End
)
592 && "Segment is not entirely in range!");
594 // If the span we are removing is at the start of the Segment, adjust it.
595 VNInfo
*ValNo
= I
->valno
;
596 if (I
->start
== Start
) {
598 if (RemoveDeadValNo
) {
599 // Check if val# is dead.
601 for (const_iterator II
= begin(), EE
= end(); II
!= EE
; ++II
)
602 if (II
!= I
&& II
->valno
== ValNo
) {
607 // Now that ValNo is dead, remove it.
608 markValNoForDeletion(ValNo
);
612 segments
.erase(I
); // Removed the whole Segment.
618 // Otherwise if the span we are removing is at the end of the Segment,
619 // adjust the other way.
625 // Otherwise, we are splitting the Segment into two pieces.
626 SlotIndex OldEnd
= I
->end
;
627 I
->end
= Start
; // Trim the old segment.
629 // Insert the new one.
630 segments
.insert(std::next(I
), Segment(End
, OldEnd
, ValNo
));
633 /// removeValNo - Remove all the segments defined by the specified value#.
634 /// Also remove the value# from value# list.
635 void LiveRange::removeValNo(VNInfo
*ValNo
) {
637 segments
.erase(remove_if(*this, [ValNo
](const Segment
&S
) {
638 return S
.valno
== ValNo
;
640 // Now that ValNo is dead, remove it.
641 markValNoForDeletion(ValNo
);
644 void LiveRange::join(LiveRange
&Other
,
645 const int *LHSValNoAssignments
,
646 const int *RHSValNoAssignments
,
647 SmallVectorImpl
<VNInfo
*> &NewVNInfo
) {
650 // Determine if any of our values are mapped. This is uncommon, so we want
651 // to avoid the range scan if not.
652 bool MustMapCurValNos
= false;
653 unsigned NumVals
= getNumValNums();
654 unsigned NumNewVals
= NewVNInfo
.size();
655 for (unsigned i
= 0; i
!= NumVals
; ++i
) {
656 unsigned LHSValID
= LHSValNoAssignments
[i
];
658 (NewVNInfo
[LHSValID
] && NewVNInfo
[LHSValID
] != getValNumInfo(i
))) {
659 MustMapCurValNos
= true;
664 // If we have to apply a mapping to our base range assignment, rewrite it now.
665 if (MustMapCurValNos
&& !empty()) {
666 // Map the first live range.
668 iterator OutIt
= begin();
669 OutIt
->valno
= NewVNInfo
[LHSValNoAssignments
[OutIt
->valno
->id
]];
670 for (iterator I
= std::next(OutIt
), E
= end(); I
!= E
; ++I
) {
671 VNInfo
* nextValNo
= NewVNInfo
[LHSValNoAssignments
[I
->valno
->id
]];
672 assert(nextValNo
&& "Huh?");
674 // If this live range has the same value # as its immediate predecessor,
675 // and if they are neighbors, remove one Segment. This happens when we
676 // have [0,4:0)[4,7:1) and map 0/1 onto the same value #.
677 if (OutIt
->valno
== nextValNo
&& OutIt
->end
== I
->start
) {
680 // Didn't merge. Move OutIt to the next segment,
682 OutIt
->valno
= nextValNo
;
684 OutIt
->start
= I
->start
;
689 // If we merge some segments, chop off the end.
691 segments
.erase(OutIt
, end());
694 // Rewrite Other values before changing the VNInfo ids.
695 // This can leave Other in an invalid state because we're not coalescing
696 // touching segments that now have identical values. That's OK since Other is
697 // not supposed to be valid after calling join();
698 for (Segment
&S
: Other
.segments
)
699 S
.valno
= NewVNInfo
[RHSValNoAssignments
[S
.valno
->id
]];
701 // Update val# info. Renumber them and make sure they all belong to this
702 // LiveRange now. Also remove dead val#'s.
703 unsigned NumValNos
= 0;
704 for (unsigned i
= 0; i
< NumNewVals
; ++i
) {
705 VNInfo
*VNI
= NewVNInfo
[i
];
707 if (NumValNos
>= NumVals
)
708 valnos
.push_back(VNI
);
710 valnos
[NumValNos
] = VNI
;
711 VNI
->id
= NumValNos
++; // Renumber val#.
714 if (NumNewVals
< NumVals
)
715 valnos
.resize(NumNewVals
); // shrinkify
717 // Okay, now insert the RHS live segments into the LHS.
718 LiveRangeUpdater
Updater(this);
719 for (Segment
&S
: Other
.segments
)
723 /// Merge all of the segments in RHS into this live range as the specified
724 /// value number. The segments in RHS are allowed to overlap with segments in
725 /// the current range, but only if the overlapping segments have the
726 /// specified value number.
727 void LiveRange::MergeSegmentsInAsValue(const LiveRange
&RHS
,
729 LiveRangeUpdater
Updater(this);
730 for (const Segment
&S
: RHS
.segments
)
731 Updater
.add(S
.start
, S
.end
, LHSValNo
);
734 /// MergeValueInAsValue - Merge all of the live segments of a specific val#
735 /// in RHS into this live range as the specified value number.
736 /// The segments in RHS are allowed to overlap with segments in the
737 /// current range, it will replace the value numbers of the overlaped
738 /// segments with the specified value number.
739 void LiveRange::MergeValueInAsValue(const LiveRange
&RHS
,
740 const VNInfo
*RHSValNo
,
742 LiveRangeUpdater
Updater(this);
743 for (const Segment
&S
: RHS
.segments
)
744 if (S
.valno
== RHSValNo
)
745 Updater
.add(S
.start
, S
.end
, LHSValNo
);
748 /// MergeValueNumberInto - This method is called when two value nubmers
749 /// are found to be equivalent. This eliminates V1, replacing all
750 /// segments with the V1 value number with the V2 value number. This can
751 /// cause merging of V1/V2 values numbers and compaction of the value space.
752 VNInfo
*LiveRange::MergeValueNumberInto(VNInfo
*V1
, VNInfo
*V2
) {
753 assert(V1
!= V2
&& "Identical value#'s are always equivalent!");
755 // This code actually merges the (numerically) larger value number into the
756 // smaller value number, which is likely to allow us to compactify the value
757 // space. The only thing we have to be careful of is to preserve the
758 // instruction that defines the result value.
760 // Make sure V2 is smaller than V1.
761 if (V1
->id
< V2
->id
) {
766 // Merge V1 segments into V2.
767 for (iterator I
= begin(); I
!= end(); ) {
769 if (S
->valno
!= V1
) continue; // Not a V1 Segment.
771 // Okay, we found a V1 live range. If it had a previous, touching, V2 live
775 if (Prev
->valno
== V2
&& Prev
->end
== S
->start
) {
778 // Erase this live-range.
785 // Okay, now we have a V1 or V2 live range that is maximally merged forward.
786 // Ensure that it is a V2 live-range.
789 // If we can merge it into later V2 segments, do so now. We ignore any
790 // following V1 segments, as they will be merged in subsequent iterations
793 if (I
->start
== S
->end
&& I
->valno
== V2
) {
801 // Now that V1 is dead, remove it.
802 markValNoForDeletion(V1
);
807 void LiveRange::flushSegmentSet() {
808 assert(segmentSet
!= nullptr && "segment set must have been created");
811 "segment set can be used only initially before switching to the array");
812 segments
.append(segmentSet
->begin(), segmentSet
->end());
813 segmentSet
= nullptr;
817 bool LiveRange::isLiveAtIndexes(ArrayRef
<SlotIndex
> Slots
) const {
818 ArrayRef
<SlotIndex
>::iterator SlotI
= Slots
.begin();
819 ArrayRef
<SlotIndex
>::iterator SlotE
= Slots
.end();
821 // If there are no regmask slots, we have nothing to search.
825 // Start our search at the first segment that ends after the first slot.
826 const_iterator SegmentI
= find(*SlotI
);
827 const_iterator SegmentE
= end();
829 // If there are no segments that end after the first slot, we're done.
830 if (SegmentI
== SegmentE
)
833 // Look for each slot in the live range.
834 for ( ; SlotI
!= SlotE
; ++SlotI
) {
835 // Go to the next segment that ends after the current slot.
836 // The slot may be within a hole in the range.
837 SegmentI
= advanceTo(SegmentI
, *SlotI
);
838 if (SegmentI
== SegmentE
)
841 // If this segment contains the slot, we're done.
842 if (SegmentI
->contains(*SlotI
))
844 // Otherwise, look for the next slot.
847 // We didn't find a segment containing any of the slots.
851 void LiveInterval::freeSubRange(SubRange
*S
) {
853 // Memory was allocated with BumpPtr allocator and is not freed here.
856 void LiveInterval::removeEmptySubRanges() {
857 SubRange
**NextPtr
= &SubRanges
;
858 SubRange
*I
= *NextPtr
;
859 while (I
!= nullptr) {
865 // Skip empty subranges until we find the first nonempty one.
867 SubRange
*Next
= I
->Next
;
870 } while (I
!= nullptr && I
->empty());
875 void LiveInterval::clearSubRanges() {
876 for (SubRange
*I
= SubRanges
, *Next
; I
!= nullptr; I
= Next
) {
883 void LiveInterval::refineSubRanges(BumpPtrAllocator
&Allocator
,
884 LaneBitmask LaneMask
, std::function
<void(LiveInterval::SubRange
&)> Apply
) {
885 LaneBitmask ToApply
= LaneMask
;
886 for (SubRange
&SR
: subranges()) {
887 LaneBitmask SRMask
= SR
.LaneMask
;
888 LaneBitmask Matching
= SRMask
& LaneMask
;
892 SubRange
*MatchingRange
;
893 if (SRMask
== Matching
) {
894 // The subrange fits (it does not cover bits outside \p LaneMask).
897 // We have to split the subrange into a matching and non-matching part.
898 // Reduce lanemask of existing lane to non-matching part.
899 SR
.LaneMask
= SRMask
& ~Matching
;
900 // Create a new subrange for the matching part
901 MatchingRange
= createSubRangeFrom(Allocator
, Matching
, SR
);
903 Apply(*MatchingRange
);
904 ToApply
&= ~Matching
;
906 // Create a new subrange if there are uncovered bits left.
908 SubRange
*NewRange
= createSubRange(Allocator
, ToApply
);
913 unsigned LiveInterval::getSize() const {
915 for (const Segment
&S
: segments
)
916 Sum
+= S
.start
.distance(S
.end
);
920 void LiveInterval::computeSubRangeUndefs(SmallVectorImpl
<SlotIndex
> &Undefs
,
921 LaneBitmask LaneMask
,
922 const MachineRegisterInfo
&MRI
,
923 const SlotIndexes
&Indexes
) const {
924 assert(TargetRegisterInfo::isVirtualRegister(reg
));
925 LaneBitmask VRegMask
= MRI
.getMaxLaneMaskForVReg(reg
);
926 assert((VRegMask
& LaneMask
).any());
927 const TargetRegisterInfo
&TRI
= *MRI
.getTargetRegisterInfo();
928 for (const MachineOperand
&MO
: MRI
.def_operands(reg
)) {
931 unsigned SubReg
= MO
.getSubReg();
932 assert(SubReg
!= 0 && "Undef should only be set on subreg defs");
933 LaneBitmask DefMask
= TRI
.getSubRegIndexLaneMask(SubReg
);
934 LaneBitmask UndefMask
= VRegMask
& ~DefMask
;
935 if ((UndefMask
& LaneMask
).any()) {
936 const MachineInstr
&MI
= *MO
.getParent();
937 bool EarlyClobber
= MO
.isEarlyClobber();
938 SlotIndex Pos
= Indexes
.getInstructionIndex(MI
).getRegSlot(EarlyClobber
);
939 Undefs
.push_back(Pos
);
944 raw_ostream
& llvm::operator<<(raw_ostream
& OS
, const LiveRange::Segment
&S
) {
945 return OS
<< '[' << S
.start
<< ',' << S
.end
<< ':' << S
.valno
->id
<< ')';
948 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
949 LLVM_DUMP_METHOD
void LiveRange::Segment::dump() const {
950 dbgs() << *this << '\n';
954 void LiveRange::print(raw_ostream
&OS
) const {
958 for (const Segment
&S
: segments
) {
960 assert(S
.valno
== getValNumInfo(S
.valno
->id
) && "Bad VNInfo");
964 // Print value number info.
965 if (getNumValNums()) {
968 for (const_vni_iterator i
= vni_begin(), e
= vni_end(); i
!= e
;
970 const VNInfo
*vni
= *i
;
973 if (vni
->isUnused()) {
984 void LiveInterval::SubRange::print(raw_ostream
&OS
) const {
985 OS
<< " L" << PrintLaneMask(LaneMask
) << ' '
986 << static_cast<const LiveRange
&>(*this);
989 void LiveInterval::print(raw_ostream
&OS
) const {
990 OS
<< printReg(reg
) << ' ';
993 for (const SubRange
&SR
: subranges())
995 OS
<< " weight:" << weight
;
998 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
999 LLVM_DUMP_METHOD
void LiveRange::dump() const {
1000 dbgs() << *this << '\n';
1003 LLVM_DUMP_METHOD
void LiveInterval::SubRange::dump() const {
1004 dbgs() << *this << '\n';
1007 LLVM_DUMP_METHOD
void LiveInterval::dump() const {
1008 dbgs() << *this << '\n';
1013 void LiveRange::verify() const {
1014 for (const_iterator I
= begin(), E
= end(); I
!= E
; ++I
) {
1015 assert(I
->start
.isValid());
1016 assert(I
->end
.isValid());
1017 assert(I
->start
< I
->end
);
1018 assert(I
->valno
!= nullptr);
1019 assert(I
->valno
->id
< valnos
.size());
1020 assert(I
->valno
== valnos
[I
->valno
->id
]);
1021 if (std::next(I
) != E
) {
1022 assert(I
->end
<= std::next(I
)->start
);
1023 if (I
->end
== std::next(I
)->start
)
1024 assert(I
->valno
!= std::next(I
)->valno
);
1029 void LiveInterval::verify(const MachineRegisterInfo
*MRI
) const {
1032 // Make sure SubRanges are fine and LaneMasks are disjunct.
1034 LaneBitmask MaxMask
= MRI
!= nullptr ? MRI
->getMaxLaneMaskForVReg(reg
)
1035 : LaneBitmask::getAll();
1036 for (const SubRange
&SR
: subranges()) {
1037 // Subrange lanemask should be disjunct to any previous subrange masks.
1038 assert((Mask
& SR
.LaneMask
).none());
1039 Mask
|= SR
.LaneMask
;
1041 // subrange mask should not contained in maximum lane mask for the vreg.
1042 assert((Mask
& ~MaxMask
).none());
1043 // empty subranges must be removed.
1044 assert(!SR
.empty());
1047 // Main liverange should cover subrange.
1053 //===----------------------------------------------------------------------===//
1054 // LiveRangeUpdater class
1055 //===----------------------------------------------------------------------===//
1057 // The LiveRangeUpdater class always maintains these invariants:
1059 // - When LastStart is invalid, Spills is empty and the iterators are invalid.
1060 // This is the initial state, and the state created by flush().
1061 // In this state, isDirty() returns false.
1063 // Otherwise, segments are kept in three separate areas:
1065 // 1. [begin; WriteI) at the front of LR.
1066 // 2. [ReadI; end) at the back of LR.
1069 // - LR.begin() <= WriteI <= ReadI <= LR.end().
1070 // - Segments in all three areas are fully ordered and coalesced.
1071 // - Segments in area 1 precede and can't coalesce with segments in area 2.
1072 // - Segments in Spills precede and can't coalesce with segments in area 2.
1073 // - No coalescing is possible between segments in Spills and segments in area
1074 // 1, and there are no overlapping segments.
1076 // The segments in Spills are not ordered with respect to the segments in area
1077 // 1. They need to be merged.
1079 // When they exist, Spills.back().start <= LastStart,
1080 // and WriteI[-1].start <= LastStart.
1082 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1083 void LiveRangeUpdater::print(raw_ostream
&OS
) const {
1086 OS
<< "Clean updater: " << *LR
<< '\n';
1088 OS
<< "Null updater.\n";
1091 assert(LR
&& "Can't have null LR in dirty updater.");
1092 OS
<< " updater with gap = " << (ReadI
- WriteI
)
1093 << ", last start = " << LastStart
1095 for (const auto &S
: make_range(LR
->begin(), WriteI
))
1098 for (unsigned I
= 0, E
= Spills
.size(); I
!= E
; ++I
)
1099 OS
<< ' ' << Spills
[I
];
1101 for (const auto &S
: make_range(ReadI
, LR
->end()))
1106 LLVM_DUMP_METHOD
void LiveRangeUpdater::dump() const {
1111 // Determine if A and B should be coalesced.
1112 static inline bool coalescable(const LiveRange::Segment
&A
,
1113 const LiveRange::Segment
&B
) {
1114 assert(A
.start
<= B
.start
&& "Unordered live segments.");
1115 if (A
.end
== B
.start
)
1116 return A
.valno
== B
.valno
;
1117 if (A
.end
< B
.start
)
1119 assert(A
.valno
== B
.valno
&& "Cannot overlap different values");
1123 void LiveRangeUpdater::add(LiveRange::Segment Seg
) {
1124 assert(LR
&& "Cannot add to a null destination");
1126 // Fall back to the regular add method if the live range
1127 // is using the segment set instead of the segment vector.
1128 if (LR
->segmentSet
!= nullptr) {
1129 LR
->addSegmentToSet(Seg
);
1133 // Flush the state if Start moves backwards.
1134 if (!LastStart
.isValid() || LastStart
> Seg
.start
) {
1137 // This brings us to an uninitialized state. Reinitialize.
1138 assert(Spills
.empty() && "Leftover spilled segments");
1139 WriteI
= ReadI
= LR
->begin();
1142 // Remember start for next time.
1143 LastStart
= Seg
.start
;
1145 // Advance ReadI until it ends after Seg.start.
1146 LiveRange::iterator E
= LR
->end();
1147 if (ReadI
!= E
&& ReadI
->end
<= Seg
.start
) {
1148 // First try to close the gap between WriteI and ReadI with spills.
1149 if (ReadI
!= WriteI
)
1151 // Then advance ReadI.
1152 if (ReadI
== WriteI
)
1153 ReadI
= WriteI
= LR
->find(Seg
.start
);
1155 while (ReadI
!= E
&& ReadI
->end
<= Seg
.start
)
1156 *WriteI
++ = *ReadI
++;
1159 assert(ReadI
== E
|| ReadI
->end
> Seg
.start
);
1161 // Check if the ReadI segment begins early.
1162 if (ReadI
!= E
&& ReadI
->start
<= Seg
.start
) {
1163 assert(ReadI
->valno
== Seg
.valno
&& "Cannot overlap different values");
1164 // Bail if Seg is completely contained in ReadI.
1165 if (ReadI
->end
>= Seg
.end
)
1167 // Coalesce into Seg.
1168 Seg
.start
= ReadI
->start
;
1172 // Coalesce as much as possible from ReadI into Seg.
1173 while (ReadI
!= E
&& coalescable(Seg
, *ReadI
)) {
1174 Seg
.end
= std::max(Seg
.end
, ReadI
->end
);
1178 // Try coalescing Spills.back() into Seg.
1179 if (!Spills
.empty() && coalescable(Spills
.back(), Seg
)) {
1180 Seg
.start
= Spills
.back().start
;
1181 Seg
.end
= std::max(Spills
.back().end
, Seg
.end
);
1185 // Try coalescing Seg into WriteI[-1].
1186 if (WriteI
!= LR
->begin() && coalescable(WriteI
[-1], Seg
)) {
1187 WriteI
[-1].end
= std::max(WriteI
[-1].end
, Seg
.end
);
1191 // Seg doesn't coalesce with anything, and needs to be inserted somewhere.
1192 if (WriteI
!= ReadI
) {
1197 // Finally, append to LR or Spills.
1199 LR
->segments
.push_back(Seg
);
1200 WriteI
= ReadI
= LR
->end();
1202 Spills
.push_back(Seg
);
1205 // Merge as many spilled segments as possible into the gap between WriteI
1206 // and ReadI. Advance WriteI to reflect the inserted instructions.
1207 void LiveRangeUpdater::mergeSpills() {
1208 // Perform a backwards merge of Spills and [SpillI;WriteI).
1209 size_t GapSize
= ReadI
- WriteI
;
1210 size_t NumMoved
= std::min(Spills
.size(), GapSize
);
1211 LiveRange::iterator Src
= WriteI
;
1212 LiveRange::iterator Dst
= Src
+ NumMoved
;
1213 LiveRange::iterator SpillSrc
= Spills
.end();
1214 LiveRange::iterator B
= LR
->begin();
1216 // This is the new WriteI position after merging spills.
1219 // Now merge Src and Spills backwards.
1220 while (Src
!= Dst
) {
1221 if (Src
!= B
&& Src
[-1].start
> SpillSrc
[-1].start
)
1224 *--Dst
= *--SpillSrc
;
1226 assert(NumMoved
== size_t(Spills
.end() - SpillSrc
));
1227 Spills
.erase(SpillSrc
, Spills
.end());
1230 void LiveRangeUpdater::flush() {
1233 // Clear the dirty state.
1234 LastStart
= SlotIndex();
1236 assert(LR
&& "Cannot add to a null destination");
1238 // Nothing to merge?
1239 if (Spills
.empty()) {
1240 LR
->segments
.erase(WriteI
, ReadI
);
1245 // Resize the WriteI - ReadI gap to match Spills.
1246 size_t GapSize
= ReadI
- WriteI
;
1247 if (GapSize
< Spills
.size()) {
1248 // The gap is too small. Make some room.
1249 size_t WritePos
= WriteI
- LR
->begin();
1250 LR
->segments
.insert(ReadI
, Spills
.size() - GapSize
, LiveRange::Segment());
1251 // This also invalidated ReadI, but it is recomputed below.
1252 WriteI
= LR
->begin() + WritePos
;
1254 // Shrink the gap if necessary.
1255 LR
->segments
.erase(WriteI
+ Spills
.size(), ReadI
);
1257 ReadI
= WriteI
+ Spills
.size();
1262 unsigned ConnectedVNInfoEqClasses::Classify(const LiveRange
&LR
) {
1263 // Create initial equivalence classes.
1265 EqClass
.grow(LR
.getNumValNums());
1267 const VNInfo
*used
= nullptr, *unused
= nullptr;
1269 // Determine connections.
1270 for (const VNInfo
*VNI
: LR
.valnos
) {
1271 // Group all unused values into one class.
1272 if (VNI
->isUnused()) {
1274 EqClass
.join(unused
->id
, VNI
->id
);
1279 if (VNI
->isPHIDef()) {
1280 const MachineBasicBlock
*MBB
= LIS
.getMBBFromIndex(VNI
->def
);
1281 assert(MBB
&& "Phi-def has no defining MBB");
1282 // Connect to values live out of predecessors.
1283 for (MachineBasicBlock::const_pred_iterator PI
= MBB
->pred_begin(),
1284 PE
= MBB
->pred_end(); PI
!= PE
; ++PI
)
1285 if (const VNInfo
*PVNI
= LR
.getVNInfoBefore(LIS
.getMBBEndIdx(*PI
)))
1286 EqClass
.join(VNI
->id
, PVNI
->id
);
1288 // Normal value defined by an instruction. Check for two-addr redef.
1289 // FIXME: This could be coincidental. Should we really check for a tied
1290 // operand constraint?
1291 // Note that VNI->def may be a use slot for an early clobber def.
1292 if (const VNInfo
*UVNI
= LR
.getVNInfoBefore(VNI
->def
))
1293 EqClass
.join(VNI
->id
, UVNI
->id
);
1297 // Lump all the unused values in with the last used value.
1299 EqClass
.join(used
->id
, unused
->id
);
1302 return EqClass
.getNumClasses();
1305 void ConnectedVNInfoEqClasses::Distribute(LiveInterval
&LI
, LiveInterval
*LIV
[],
1306 MachineRegisterInfo
&MRI
) {
1307 // Rewrite instructions.
1308 for (MachineRegisterInfo::reg_iterator RI
= MRI
.reg_begin(LI
.reg
),
1309 RE
= MRI
.reg_end(); RI
!= RE
;) {
1310 MachineOperand
&MO
= *RI
;
1311 MachineInstr
*MI
= RI
->getParent();
1314 if (MI
->isDebugValue()) {
1315 // DBG_VALUE instructions don't have slot indexes, so get the index of
1316 // the instruction before them. The value is defined there too.
1317 SlotIndex Idx
= LIS
.getSlotIndexes()->getIndexBefore(*MI
);
1318 VNI
= LI
.Query(Idx
).valueOut();
1320 SlotIndex Idx
= LIS
.getInstructionIndex(*MI
);
1321 LiveQueryResult LRQ
= LI
.Query(Idx
);
1322 VNI
= MO
.readsReg() ? LRQ
.valueIn() : LRQ
.valueDefined();
1324 // In the case of an <undef> use that isn't tied to any def, VNI will be
1325 // NULL. If the use is tied to a def, VNI will be the defined value.
1328 if (unsigned EqClass
= getEqClass(VNI
))
1329 MO
.setReg(LIV
[EqClass
-1]->reg
);
1332 // Distribute subregister liveranges.
1333 if (LI
.hasSubRanges()) {
1334 unsigned NumComponents
= EqClass
.getNumClasses();
1335 SmallVector
<unsigned, 8> VNIMapping
;
1336 SmallVector
<LiveInterval::SubRange
*, 8> SubRanges
;
1337 BumpPtrAllocator
&Allocator
= LIS
.getVNInfoAllocator();
1338 for (LiveInterval::SubRange
&SR
: LI
.subranges()) {
1339 // Create new subranges in the split intervals and construct a mapping
1340 // for the VNInfos in the subrange.
1341 unsigned NumValNos
= SR
.valnos
.size();
1343 VNIMapping
.reserve(NumValNos
);
1345 SubRanges
.resize(NumComponents
-1, nullptr);
1346 for (unsigned I
= 0; I
< NumValNos
; ++I
) {
1347 const VNInfo
&VNI
= *SR
.valnos
[I
];
1348 unsigned ComponentNum
;
1349 if (VNI
.isUnused()) {
1352 const VNInfo
*MainRangeVNI
= LI
.getVNInfoAt(VNI
.def
);
1353 assert(MainRangeVNI
!= nullptr
1354 && "SubRange def must have corresponding main range def");
1355 ComponentNum
= getEqClass(MainRangeVNI
);
1356 if (ComponentNum
> 0 && SubRanges
[ComponentNum
-1] == nullptr) {
1357 SubRanges
[ComponentNum
-1]
1358 = LIV
[ComponentNum
-1]->createSubRange(Allocator
, SR
.LaneMask
);
1361 VNIMapping
.push_back(ComponentNum
);
1363 DistributeRange(SR
, SubRanges
.data(), VNIMapping
);
1365 LI
.removeEmptySubRanges();
1368 // Distribute main liverange.
1369 DistributeRange(LI
, LIV
, EqClass
);