[llvm-objcopy] [COFF] Test absolute symbols wrt --strip-unneeded and --discard-all...
[llvm-complete.git] / lib / CodeGen / MachineCSE.cpp
blob6ee8571c28aab6453aa7570081cb44473958b520
1 //===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs global common subexpression elimination on machine
11 // instructions using a scoped hash table based value numbering scheme. It
12 // must be run while the machine function is still in SSA form.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/ScopedHashTable.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineDominators.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/Passes.h"
31 #include "llvm/CodeGen/TargetInstrInfo.h"
32 #include "llvm/CodeGen/TargetOpcodes.h"
33 #include "llvm/CodeGen/TargetRegisterInfo.h"
34 #include "llvm/CodeGen/TargetSubtargetInfo.h"
35 #include "llvm/MC/MCInstrDesc.h"
36 #include "llvm/MC/MCRegisterInfo.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Allocator.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/RecyclingAllocator.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <cassert>
43 #include <iterator>
44 #include <utility>
45 #include <vector>
47 using namespace llvm;
49 #define DEBUG_TYPE "machine-cse"
51 STATISTIC(NumCoalesces, "Number of copies coalesced");
52 STATISTIC(NumCSEs, "Number of common subexpression eliminated");
53 STATISTIC(NumPhysCSEs,
54 "Number of physreg referencing common subexpr eliminated");
55 STATISTIC(NumCrossBBCSEs,
56 "Number of cross-MBB physreg referencing CS eliminated");
57 STATISTIC(NumCommutes, "Number of copies coalesced after commuting");
59 namespace {
61 class MachineCSE : public MachineFunctionPass {
62 const TargetInstrInfo *TII;
63 const TargetRegisterInfo *TRI;
64 AliasAnalysis *AA;
65 MachineDominatorTree *DT;
66 MachineRegisterInfo *MRI;
68 public:
69 static char ID; // Pass identification
71 MachineCSE() : MachineFunctionPass(ID) {
72 initializeMachineCSEPass(*PassRegistry::getPassRegistry());
75 bool runOnMachineFunction(MachineFunction &MF) override;
77 void getAnalysisUsage(AnalysisUsage &AU) const override {
78 AU.setPreservesCFG();
79 MachineFunctionPass::getAnalysisUsage(AU);
80 AU.addRequired<AAResultsWrapperPass>();
81 AU.addPreservedID(MachineLoopInfoID);
82 AU.addRequired<MachineDominatorTree>();
83 AU.addPreserved<MachineDominatorTree>();
86 void releaseMemory() override {
87 ScopeMap.clear();
88 Exps.clear();
91 private:
92 using AllocatorTy = RecyclingAllocator<BumpPtrAllocator,
93 ScopedHashTableVal<MachineInstr *, unsigned>>;
94 using ScopedHTType =
95 ScopedHashTable<MachineInstr *, unsigned, MachineInstrExpressionTrait,
96 AllocatorTy>;
97 using ScopeType = ScopedHTType::ScopeTy;
99 unsigned LookAheadLimit = 0;
100 DenseMap<MachineBasicBlock *, ScopeType *> ScopeMap;
101 ScopedHTType VNT;
102 SmallVector<MachineInstr *, 64> Exps;
103 unsigned CurrVN = 0;
105 bool PerformTrivialCopyPropagation(MachineInstr *MI,
106 MachineBasicBlock *MBB);
107 bool isPhysDefTriviallyDead(unsigned Reg,
108 MachineBasicBlock::const_iterator I,
109 MachineBasicBlock::const_iterator E) const;
110 bool hasLivePhysRegDefUses(const MachineInstr *MI,
111 const MachineBasicBlock *MBB,
112 SmallSet<unsigned,8> &PhysRefs,
113 SmallVectorImpl<unsigned> &PhysDefs,
114 bool &PhysUseDef) const;
115 bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
116 SmallSet<unsigned,8> &PhysRefs,
117 SmallVectorImpl<unsigned> &PhysDefs,
118 bool &NonLocal) const;
119 bool isCSECandidate(MachineInstr *MI);
120 bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
121 MachineInstr *CSMI, MachineInstr *MI);
122 void EnterScope(MachineBasicBlock *MBB);
123 void ExitScope(MachineBasicBlock *MBB);
124 bool ProcessBlock(MachineBasicBlock *MBB);
125 void ExitScopeIfDone(MachineDomTreeNode *Node,
126 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren);
127 bool PerformCSE(MachineDomTreeNode *Node);
130 } // end anonymous namespace
132 char MachineCSE::ID = 0;
134 char &llvm::MachineCSEID = MachineCSE::ID;
136 INITIALIZE_PASS_BEGIN(MachineCSE, DEBUG_TYPE,
137 "Machine Common Subexpression Elimination", false, false)
138 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
139 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
140 INITIALIZE_PASS_END(MachineCSE, DEBUG_TYPE,
141 "Machine Common Subexpression Elimination", false, false)
143 /// The source register of a COPY machine instruction can be propagated to all
144 /// its users, and this propagation could increase the probability of finding
145 /// common subexpressions. If the COPY has only one user, the COPY itself can
146 /// be removed.
147 bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI,
148 MachineBasicBlock *MBB) {
149 bool Changed = false;
150 for (MachineOperand &MO : MI->operands()) {
151 if (!MO.isReg() || !MO.isUse())
152 continue;
153 unsigned Reg = MO.getReg();
154 if (!TargetRegisterInfo::isVirtualRegister(Reg))
155 continue;
156 bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg);
157 MachineInstr *DefMI = MRI->getVRegDef(Reg);
158 if (!DefMI->isCopy())
159 continue;
160 unsigned SrcReg = DefMI->getOperand(1).getReg();
161 if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
162 continue;
163 if (DefMI->getOperand(0).getSubReg())
164 continue;
165 // FIXME: We should trivially coalesce subregister copies to expose CSE
166 // opportunities on instructions with truncated operands (see
167 // cse-add-with-overflow.ll). This can be done here as follows:
168 // if (SrcSubReg)
169 // RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC,
170 // SrcSubReg);
171 // MO.substVirtReg(SrcReg, SrcSubReg, *TRI);
173 // The 2-addr pass has been updated to handle coalesced subregs. However,
174 // some machine-specific code still can't handle it.
175 // To handle it properly we also need a way find a constrained subregister
176 // class given a super-reg class and subreg index.
177 if (DefMI->getOperand(1).getSubReg())
178 continue;
179 if (!MRI->constrainRegAttrs(SrcReg, Reg))
180 continue;
181 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
182 LLVM_DEBUG(dbgs() << "*** to: " << *MI);
184 // Update matching debug values.
185 DefMI->changeDebugValuesDefReg(SrcReg);
187 // Propagate SrcReg of copies to MI.
188 MO.setReg(SrcReg);
189 MRI->clearKillFlags(SrcReg);
190 // Coalesce single use copies.
191 if (OnlyOneUse) {
192 DefMI->eraseFromParent();
193 ++NumCoalesces;
195 Changed = true;
198 return Changed;
201 bool
202 MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
203 MachineBasicBlock::const_iterator I,
204 MachineBasicBlock::const_iterator E) const {
205 unsigned LookAheadLeft = LookAheadLimit;
206 while (LookAheadLeft) {
207 // Skip over dbg_value's.
208 I = skipDebugInstructionsForward(I, E);
210 if (I == E)
211 // Reached end of block, we don't know if register is dead or not.
212 return false;
214 bool SeenDef = false;
215 for (const MachineOperand &MO : I->operands()) {
216 if (MO.isRegMask() && MO.clobbersPhysReg(Reg))
217 SeenDef = true;
218 if (!MO.isReg() || !MO.getReg())
219 continue;
220 if (!TRI->regsOverlap(MO.getReg(), Reg))
221 continue;
222 if (MO.isUse())
223 // Found a use!
224 return false;
225 SeenDef = true;
227 if (SeenDef)
228 // See a def of Reg (or an alias) before encountering any use, it's
229 // trivially dead.
230 return true;
232 --LookAheadLeft;
233 ++I;
235 return false;
238 static bool isCallerPreservedOrConstPhysReg(unsigned Reg,
239 const MachineFunction &MF,
240 const TargetRegisterInfo &TRI) {
241 // MachineRegisterInfo::isConstantPhysReg directly called by
242 // MachineRegisterInfo::isCallerPreservedOrConstPhysReg expects the
243 // reserved registers to be frozen. That doesn't cause a problem post-ISel as
244 // most (if not all) targets freeze reserved registers right after ISel.
246 // It does cause issues mid-GlobalISel, however, hence the additional
247 // reservedRegsFrozen check.
248 const MachineRegisterInfo &MRI = MF.getRegInfo();
249 return TRI.isCallerPreservedPhysReg(Reg, MF) ||
250 (MRI.reservedRegsFrozen() && MRI.isConstantPhysReg(Reg));
253 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write
254 /// physical registers (except for dead defs of physical registers). It also
255 /// returns the physical register def by reference if it's the only one and the
256 /// instruction does not uses a physical register.
257 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI,
258 const MachineBasicBlock *MBB,
259 SmallSet<unsigned,8> &PhysRefs,
260 SmallVectorImpl<unsigned> &PhysDefs,
261 bool &PhysUseDef) const{
262 // First, add all uses to PhysRefs.
263 for (const MachineOperand &MO : MI->operands()) {
264 if (!MO.isReg() || MO.isDef())
265 continue;
266 unsigned Reg = MO.getReg();
267 if (!Reg)
268 continue;
269 if (TargetRegisterInfo::isVirtualRegister(Reg))
270 continue;
271 // Reading either caller preserved or constant physregs is ok.
272 if (!isCallerPreservedOrConstPhysReg(Reg, *MI->getMF(), *TRI))
273 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
274 PhysRefs.insert(*AI);
277 // Next, collect all defs into PhysDefs. If any is already in PhysRefs
278 // (which currently contains only uses), set the PhysUseDef flag.
279 PhysUseDef = false;
280 MachineBasicBlock::const_iterator I = MI; I = std::next(I);
281 for (const MachineOperand &MO : MI->operands()) {
282 if (!MO.isReg() || !MO.isDef())
283 continue;
284 unsigned Reg = MO.getReg();
285 if (!Reg)
286 continue;
287 if (TargetRegisterInfo::isVirtualRegister(Reg))
288 continue;
289 // Check against PhysRefs even if the def is "dead".
290 if (PhysRefs.count(Reg))
291 PhysUseDef = true;
292 // If the def is dead, it's ok. But the def may not marked "dead". That's
293 // common since this pass is run before livevariables. We can scan
294 // forward a few instructions and check if it is obviously dead.
295 if (!MO.isDead() && !isPhysDefTriviallyDead(Reg, I, MBB->end()))
296 PhysDefs.push_back(Reg);
299 // Finally, add all defs to PhysRefs as well.
300 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i)
301 for (MCRegAliasIterator AI(PhysDefs[i], TRI, true); AI.isValid(); ++AI)
302 PhysRefs.insert(*AI);
304 return !PhysRefs.empty();
307 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
308 SmallSet<unsigned,8> &PhysRefs,
309 SmallVectorImpl<unsigned> &PhysDefs,
310 bool &NonLocal) const {
311 // For now conservatively returns false if the common subexpression is
312 // not in the same basic block as the given instruction. The only exception
313 // is if the common subexpression is in the sole predecessor block.
314 const MachineBasicBlock *MBB = MI->getParent();
315 const MachineBasicBlock *CSMBB = CSMI->getParent();
317 bool CrossMBB = false;
318 if (CSMBB != MBB) {
319 if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB)
320 return false;
322 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
323 if (MRI->isAllocatable(PhysDefs[i]) || MRI->isReserved(PhysDefs[i]))
324 // Avoid extending live range of physical registers if they are
325 //allocatable or reserved.
326 return false;
328 CrossMBB = true;
330 MachineBasicBlock::const_iterator I = CSMI; I = std::next(I);
331 MachineBasicBlock::const_iterator E = MI;
332 MachineBasicBlock::const_iterator EE = CSMBB->end();
333 unsigned LookAheadLeft = LookAheadLimit;
334 while (LookAheadLeft) {
335 // Skip over dbg_value's.
336 while (I != E && I != EE && I->isDebugInstr())
337 ++I;
339 if (I == EE) {
340 assert(CrossMBB && "Reaching end-of-MBB without finding MI?");
341 (void)CrossMBB;
342 CrossMBB = false;
343 NonLocal = true;
344 I = MBB->begin();
345 EE = MBB->end();
346 continue;
349 if (I == E)
350 return true;
352 for (const MachineOperand &MO : I->operands()) {
353 // RegMasks go on instructions like calls that clobber lots of physregs.
354 // Don't attempt to CSE across such an instruction.
355 if (MO.isRegMask())
356 return false;
357 if (!MO.isReg() || !MO.isDef())
358 continue;
359 unsigned MOReg = MO.getReg();
360 if (TargetRegisterInfo::isVirtualRegister(MOReg))
361 continue;
362 if (PhysRefs.count(MOReg))
363 return false;
366 --LookAheadLeft;
367 ++I;
370 return false;
373 bool MachineCSE::isCSECandidate(MachineInstr *MI) {
374 if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() ||
375 MI->isInlineAsm() || MI->isDebugInstr())
376 return false;
378 // Ignore copies.
379 if (MI->isCopyLike())
380 return false;
382 // Ignore stuff that we obviously can't move.
383 if (MI->mayStore() || MI->isCall() || MI->isTerminator() ||
384 MI->hasUnmodeledSideEffects())
385 return false;
387 if (MI->mayLoad()) {
388 // Okay, this instruction does a load. As a refinement, we allow the target
389 // to decide whether the loaded value is actually a constant. If so, we can
390 // actually use it as a load.
391 if (!MI->isDereferenceableInvariantLoad(AA))
392 // FIXME: we should be able to hoist loads with no other side effects if
393 // there are no other instructions which can change memory in this loop.
394 // This is a trivial form of alias analysis.
395 return false;
398 // Ignore stack guard loads, otherwise the register that holds CSEed value may
399 // be spilled and get loaded back with corrupted data.
400 if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD)
401 return false;
403 return true;
406 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
407 /// common expression that defines Reg.
408 bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
409 MachineInstr *CSMI, MachineInstr *MI) {
410 // FIXME: Heuristics that works around the lack the live range splitting.
412 // If CSReg is used at all uses of Reg, CSE should not increase register
413 // pressure of CSReg.
414 bool MayIncreasePressure = true;
415 if (TargetRegisterInfo::isVirtualRegister(CSReg) &&
416 TargetRegisterInfo::isVirtualRegister(Reg)) {
417 MayIncreasePressure = false;
418 SmallPtrSet<MachineInstr*, 8> CSUses;
419 for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
420 CSUses.insert(&MI);
422 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
423 if (!CSUses.count(&MI)) {
424 MayIncreasePressure = true;
425 break;
429 if (!MayIncreasePressure) return true;
431 // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
432 // an immediate predecessor. We don't want to increase register pressure and
433 // end up causing other computation to be spilled.
434 if (TII->isAsCheapAsAMove(*MI)) {
435 MachineBasicBlock *CSBB = CSMI->getParent();
436 MachineBasicBlock *BB = MI->getParent();
437 if (CSBB != BB && !CSBB->isSuccessor(BB))
438 return false;
441 // Heuristics #2: If the expression doesn't not use a vr and the only use
442 // of the redundant computation are copies, do not cse.
443 bool HasVRegUse = false;
444 for (const MachineOperand &MO : MI->operands()) {
445 if (MO.isReg() && MO.isUse() &&
446 TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
447 HasVRegUse = true;
448 break;
451 if (!HasVRegUse) {
452 bool HasNonCopyUse = false;
453 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
454 // Ignore copies.
455 if (!MI.isCopyLike()) {
456 HasNonCopyUse = true;
457 break;
460 if (!HasNonCopyUse)
461 return false;
464 // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
465 // it unless the defined value is already used in the BB of the new use.
466 bool HasPHI = false;
467 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(CSReg)) {
468 HasPHI |= UseMI.isPHI();
469 if (UseMI.getParent() == MI->getParent())
470 return true;
473 return !HasPHI;
476 void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
477 LLVM_DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
478 ScopeType *Scope = new ScopeType(VNT);
479 ScopeMap[MBB] = Scope;
482 void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
483 LLVM_DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
484 DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
485 assert(SI != ScopeMap.end());
486 delete SI->second;
487 ScopeMap.erase(SI);
490 bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) {
491 bool Changed = false;
493 SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
494 SmallVector<unsigned, 2> ImplicitDefsToUpdate;
495 SmallVector<unsigned, 2> ImplicitDefs;
496 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
497 MachineInstr *MI = &*I;
498 ++I;
500 if (!isCSECandidate(MI))
501 continue;
503 bool FoundCSE = VNT.count(MI);
504 if (!FoundCSE) {
505 // Using trivial copy propagation to find more CSE opportunities.
506 if (PerformTrivialCopyPropagation(MI, MBB)) {
507 Changed = true;
509 // After coalescing MI itself may become a copy.
510 if (MI->isCopyLike())
511 continue;
513 // Try again to see if CSE is possible.
514 FoundCSE = VNT.count(MI);
518 // Commute commutable instructions.
519 bool Commuted = false;
520 if (!FoundCSE && MI->isCommutable()) {
521 if (MachineInstr *NewMI = TII->commuteInstruction(*MI)) {
522 Commuted = true;
523 FoundCSE = VNT.count(NewMI);
524 if (NewMI != MI) {
525 // New instruction. It doesn't need to be kept.
526 NewMI->eraseFromParent();
527 Changed = true;
528 } else if (!FoundCSE)
529 // MI was changed but it didn't help, commute it back!
530 (void)TII->commuteInstruction(*MI);
534 // If the instruction defines physical registers and the values *may* be
535 // used, then it's not safe to replace it with a common subexpression.
536 // It's also not safe if the instruction uses physical registers.
537 bool CrossMBBPhysDef = false;
538 SmallSet<unsigned, 8> PhysRefs;
539 SmallVector<unsigned, 2> PhysDefs;
540 bool PhysUseDef = false;
541 if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs,
542 PhysDefs, PhysUseDef)) {
543 FoundCSE = false;
545 // ... Unless the CS is local or is in the sole predecessor block
546 // and it also defines the physical register which is not clobbered
547 // in between and the physical register uses were not clobbered.
548 // This can never be the case if the instruction both uses and
549 // defines the same physical register, which was detected above.
550 if (!PhysUseDef) {
551 unsigned CSVN = VNT.lookup(MI);
552 MachineInstr *CSMI = Exps[CSVN];
553 if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef))
554 FoundCSE = true;
558 if (!FoundCSE) {
559 VNT.insert(MI, CurrVN++);
560 Exps.push_back(MI);
561 continue;
564 // Found a common subexpression, eliminate it.
565 unsigned CSVN = VNT.lookup(MI);
566 MachineInstr *CSMI = Exps[CSVN];
567 LLVM_DEBUG(dbgs() << "Examining: " << *MI);
568 LLVM_DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
570 // Check if it's profitable to perform this CSE.
571 bool DoCSE = true;
572 unsigned NumDefs = MI->getNumDefs();
574 for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
575 MachineOperand &MO = MI->getOperand(i);
576 if (!MO.isReg() || !MO.isDef())
577 continue;
578 unsigned OldReg = MO.getReg();
579 unsigned NewReg = CSMI->getOperand(i).getReg();
581 // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
582 // we should make sure it is not dead at CSMI.
583 if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead())
584 ImplicitDefsToUpdate.push_back(i);
586 // Keep track of implicit defs of CSMI and MI, to clear possibly
587 // made-redundant kill flags.
588 if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg)
589 ImplicitDefs.push_back(OldReg);
591 if (OldReg == NewReg) {
592 --NumDefs;
593 continue;
596 assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
597 TargetRegisterInfo::isVirtualRegister(NewReg) &&
598 "Do not CSE physical register defs!");
600 if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) {
601 LLVM_DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
602 DoCSE = false;
603 break;
606 // Don't perform CSE if the result of the new instruction cannot exist
607 // within the constraints (register class, bank, or low-level type) of
608 // the old instruction.
609 if (!MRI->constrainRegAttrs(NewReg, OldReg)) {
610 LLVM_DEBUG(
611 dbgs() << "*** Not the same register constraints, avoid CSE!\n");
612 DoCSE = false;
613 break;
616 CSEPairs.push_back(std::make_pair(OldReg, NewReg));
617 --NumDefs;
620 // Actually perform the elimination.
621 if (DoCSE) {
622 for (std::pair<unsigned, unsigned> &CSEPair : CSEPairs) {
623 unsigned OldReg = CSEPair.first;
624 unsigned NewReg = CSEPair.second;
625 // OldReg may have been unused but is used now, clear the Dead flag
626 MachineInstr *Def = MRI->getUniqueVRegDef(NewReg);
627 assert(Def != nullptr && "CSEd register has no unique definition?");
628 Def->clearRegisterDeads(NewReg);
629 // Replace with NewReg and clear kill flags which may be wrong now.
630 MRI->replaceRegWith(OldReg, NewReg);
631 MRI->clearKillFlags(NewReg);
634 // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
635 // we should make sure it is not dead at CSMI.
636 for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate)
637 CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false);
639 // Go through implicit defs of CSMI and MI, and clear the kill flags on
640 // their uses in all the instructions between CSMI and MI.
641 // We might have made some of the kill flags redundant, consider:
642 // subs ... implicit-def %nzcv <- CSMI
643 // csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore
644 // subs ... implicit-def %nzcv <- MI, to be eliminated
645 // csinc ... implicit killed %nzcv
646 // Since we eliminated MI, and reused a register imp-def'd by CSMI
647 // (here %nzcv), that register, if it was killed before MI, should have
648 // that kill flag removed, because it's lifetime was extended.
649 if (CSMI->getParent() == MI->getParent()) {
650 for (MachineBasicBlock::iterator II = CSMI, IE = MI; II != IE; ++II)
651 for (auto ImplicitDef : ImplicitDefs)
652 if (MachineOperand *MO = II->findRegisterUseOperand(
653 ImplicitDef, /*isKill=*/true, TRI))
654 MO->setIsKill(false);
655 } else {
656 // If the instructions aren't in the same BB, bail out and clear the
657 // kill flag on all uses of the imp-def'd register.
658 for (auto ImplicitDef : ImplicitDefs)
659 MRI->clearKillFlags(ImplicitDef);
662 if (CrossMBBPhysDef) {
663 // Add physical register defs now coming in from a predecessor to MBB
664 // livein list.
665 while (!PhysDefs.empty()) {
666 unsigned LiveIn = PhysDefs.pop_back_val();
667 if (!MBB->isLiveIn(LiveIn))
668 MBB->addLiveIn(LiveIn);
670 ++NumCrossBBCSEs;
673 MI->eraseFromParent();
674 ++NumCSEs;
675 if (!PhysRefs.empty())
676 ++NumPhysCSEs;
677 if (Commuted)
678 ++NumCommutes;
679 Changed = true;
680 } else {
681 VNT.insert(MI, CurrVN++);
682 Exps.push_back(MI);
684 CSEPairs.clear();
685 ImplicitDefsToUpdate.clear();
686 ImplicitDefs.clear();
689 return Changed;
692 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
693 /// dominator tree node if its a leaf or all of its children are done. Walk
694 /// up the dominator tree to destroy ancestors which are now done.
695 void
696 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
697 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) {
698 if (OpenChildren[Node])
699 return;
701 // Pop scope.
702 ExitScope(Node->getBlock());
704 // Now traverse upwards to pop ancestors whose offsprings are all done.
705 while (MachineDomTreeNode *Parent = Node->getIDom()) {
706 unsigned Left = --OpenChildren[Parent];
707 if (Left != 0)
708 break;
709 ExitScope(Parent->getBlock());
710 Node = Parent;
714 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
715 SmallVector<MachineDomTreeNode*, 32> Scopes;
716 SmallVector<MachineDomTreeNode*, 8> WorkList;
717 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
719 CurrVN = 0;
721 // Perform a DFS walk to determine the order of visit.
722 WorkList.push_back(Node);
723 do {
724 Node = WorkList.pop_back_val();
725 Scopes.push_back(Node);
726 const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
727 OpenChildren[Node] = Children.size();
728 for (MachineDomTreeNode *Child : Children)
729 WorkList.push_back(Child);
730 } while (!WorkList.empty());
732 // Now perform CSE.
733 bool Changed = false;
734 for (MachineDomTreeNode *Node : Scopes) {
735 MachineBasicBlock *MBB = Node->getBlock();
736 EnterScope(MBB);
737 Changed |= ProcessBlock(MBB);
738 // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
739 ExitScopeIfDone(Node, OpenChildren);
742 return Changed;
745 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
746 if (skipFunction(MF.getFunction()))
747 return false;
749 TII = MF.getSubtarget().getInstrInfo();
750 TRI = MF.getSubtarget().getRegisterInfo();
751 MRI = &MF.getRegInfo();
752 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
753 DT = &getAnalysis<MachineDominatorTree>();
754 LookAheadLimit = TII->getMachineCSELookAheadLimit();
755 return PerformCSE(DT->getRootNode());