1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the Constant* classes.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/IR/Constants.h"
14 #include "ConstantFold.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringMap.h"
19 #include "llvm/IR/DerivedTypes.h"
20 #include "llvm/IR/GetElementPtrTypeIterator.h"
21 #include "llvm/IR/GlobalValue.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/Operator.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/ManagedStatic.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/raw_ostream.h"
35 //===----------------------------------------------------------------------===//
37 //===----------------------------------------------------------------------===//
39 bool Constant::isNegativeZeroValue() const {
40 // Floating point values have an explicit -0.0 value.
41 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(this))
42 return CFP
->isZero() && CFP
->isNegative();
44 // Equivalent for a vector of -0.0's.
45 if (const ConstantDataVector
*CV
= dyn_cast
<ConstantDataVector
>(this))
46 if (CV
->getElementType()->isFloatingPointTy() && CV
->isSplat())
47 if (CV
->getElementAsAPFloat(0).isNegZero())
50 if (const ConstantVector
*CV
= dyn_cast
<ConstantVector
>(this))
51 if (ConstantFP
*SplatCFP
= dyn_cast_or_null
<ConstantFP
>(CV
->getSplatValue()))
52 if (SplatCFP
&& SplatCFP
->isZero() && SplatCFP
->isNegative())
55 // We've already handled true FP case; any other FP vectors can't represent -0.0.
56 if (getType()->isFPOrFPVectorTy())
59 // Otherwise, just use +0.0.
63 // Return true iff this constant is positive zero (floating point), negative
64 // zero (floating point), or a null value.
65 bool Constant::isZeroValue() const {
66 // Floating point values have an explicit -0.0 value.
67 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(this))
70 // Equivalent for a vector of -0.0's.
71 if (const ConstantDataVector
*CV
= dyn_cast
<ConstantDataVector
>(this))
72 if (CV
->getElementType()->isFloatingPointTy() && CV
->isSplat())
73 if (CV
->getElementAsAPFloat(0).isZero())
76 if (const ConstantVector
*CV
= dyn_cast
<ConstantVector
>(this))
77 if (ConstantFP
*SplatCFP
= dyn_cast_or_null
<ConstantFP
>(CV
->getSplatValue()))
78 if (SplatCFP
&& SplatCFP
->isZero())
81 // Otherwise, just use +0.0.
85 bool Constant::isNullValue() const {
87 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(this))
91 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(this))
92 return CFP
->isZero() && !CFP
->isNegative();
94 // constant zero is zero for aggregates, cpnull is null for pointers, none for
96 return isa
<ConstantAggregateZero
>(this) || isa
<ConstantPointerNull
>(this) ||
97 isa
<ConstantTokenNone
>(this);
100 bool Constant::isAllOnesValue() const {
101 // Check for -1 integers
102 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(this))
103 return CI
->isMinusOne();
105 // Check for FP which are bitcasted from -1 integers
106 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(this))
107 return CFP
->getValueAPF().bitcastToAPInt().isAllOnesValue();
109 // Check for constant vectors which are splats of -1 values.
110 if (const ConstantVector
*CV
= dyn_cast
<ConstantVector
>(this))
111 if (Constant
*Splat
= CV
->getSplatValue())
112 return Splat
->isAllOnesValue();
114 // Check for constant vectors which are splats of -1 values.
115 if (const ConstantDataVector
*CV
= dyn_cast
<ConstantDataVector
>(this)) {
117 if (CV
->getElementType()->isFloatingPointTy())
118 return CV
->getElementAsAPFloat(0).bitcastToAPInt().isAllOnesValue();
119 return CV
->getElementAsAPInt(0).isAllOnesValue();
126 bool Constant::isOneValue() const {
127 // Check for 1 integers
128 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(this))
131 // Check for FP which are bitcasted from 1 integers
132 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(this))
133 return CFP
->getValueAPF().bitcastToAPInt().isOneValue();
135 // Check for constant vectors which are splats of 1 values.
136 if (const ConstantVector
*CV
= dyn_cast
<ConstantVector
>(this))
137 if (Constant
*Splat
= CV
->getSplatValue())
138 return Splat
->isOneValue();
140 // Check for constant vectors which are splats of 1 values.
141 if (const ConstantDataVector
*CV
= dyn_cast
<ConstantDataVector
>(this)) {
143 if (CV
->getElementType()->isFloatingPointTy())
144 return CV
->getElementAsAPFloat(0).bitcastToAPInt().isOneValue();
145 return CV
->getElementAsAPInt(0).isOneValue();
152 bool Constant::isMinSignedValue() const {
153 // Check for INT_MIN integers
154 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(this))
155 return CI
->isMinValue(/*isSigned=*/true);
157 // Check for FP which are bitcasted from INT_MIN integers
158 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(this))
159 return CFP
->getValueAPF().bitcastToAPInt().isMinSignedValue();
161 // Check for constant vectors which are splats of INT_MIN values.
162 if (const ConstantVector
*CV
= dyn_cast
<ConstantVector
>(this))
163 if (Constant
*Splat
= CV
->getSplatValue())
164 return Splat
->isMinSignedValue();
166 // Check for constant vectors which are splats of INT_MIN values.
167 if (const ConstantDataVector
*CV
= dyn_cast
<ConstantDataVector
>(this)) {
169 if (CV
->getElementType()->isFloatingPointTy())
170 return CV
->getElementAsAPFloat(0).bitcastToAPInt().isMinSignedValue();
171 return CV
->getElementAsAPInt(0).isMinSignedValue();
178 bool Constant::isNotMinSignedValue() const {
179 // Check for INT_MIN integers
180 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(this))
181 return !CI
->isMinValue(/*isSigned=*/true);
183 // Check for FP which are bitcasted from INT_MIN integers
184 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(this))
185 return !CFP
->getValueAPF().bitcastToAPInt().isMinSignedValue();
187 // Check that vectors don't contain INT_MIN
188 if (this->getType()->isVectorTy()) {
189 unsigned NumElts
= this->getType()->getVectorNumElements();
190 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
191 Constant
*Elt
= this->getAggregateElement(i
);
192 if (!Elt
|| !Elt
->isNotMinSignedValue())
198 // It *may* contain INT_MIN, we can't tell.
202 bool Constant::isFiniteNonZeroFP() const {
203 if (auto *CFP
= dyn_cast
<ConstantFP
>(this))
204 return CFP
->getValueAPF().isFiniteNonZero();
205 if (!getType()->isVectorTy())
207 for (unsigned i
= 0, e
= getType()->getVectorNumElements(); i
!= e
; ++i
) {
208 auto *CFP
= dyn_cast_or_null
<ConstantFP
>(this->getAggregateElement(i
));
209 if (!CFP
|| !CFP
->getValueAPF().isFiniteNonZero())
215 bool Constant::isNormalFP() const {
216 if (auto *CFP
= dyn_cast
<ConstantFP
>(this))
217 return CFP
->getValueAPF().isNormal();
218 if (!getType()->isVectorTy())
220 for (unsigned i
= 0, e
= getType()->getVectorNumElements(); i
!= e
; ++i
) {
221 auto *CFP
= dyn_cast_or_null
<ConstantFP
>(this->getAggregateElement(i
));
222 if (!CFP
|| !CFP
->getValueAPF().isNormal())
228 bool Constant::hasExactInverseFP() const {
229 if (auto *CFP
= dyn_cast
<ConstantFP
>(this))
230 return CFP
->getValueAPF().getExactInverse(nullptr);
231 if (!getType()->isVectorTy())
233 for (unsigned i
= 0, e
= getType()->getVectorNumElements(); i
!= e
; ++i
) {
234 auto *CFP
= dyn_cast_or_null
<ConstantFP
>(this->getAggregateElement(i
));
235 if (!CFP
|| !CFP
->getValueAPF().getExactInverse(nullptr))
241 bool Constant::isNaN() const {
242 if (auto *CFP
= dyn_cast
<ConstantFP
>(this))
244 if (!getType()->isVectorTy())
246 for (unsigned i
= 0, e
= getType()->getVectorNumElements(); i
!= e
; ++i
) {
247 auto *CFP
= dyn_cast_or_null
<ConstantFP
>(this->getAggregateElement(i
));
248 if (!CFP
|| !CFP
->isNaN())
254 bool Constant::isElementWiseEqual(Value
*Y
) const {
255 // Are they fully identical?
258 // They may still be identical element-wise (if they have `undef`s).
259 auto *Cy
= dyn_cast
<Constant
>(Y
);
262 return PatternMatch::match(ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_EQ
,
263 const_cast<Constant
*>(this),
265 PatternMatch::m_One());
268 bool Constant::containsUndefElement() const {
269 if (!getType()->isVectorTy())
271 for (unsigned i
= 0, e
= getType()->getVectorNumElements(); i
!= e
; ++i
)
272 if (isa
<UndefValue
>(getAggregateElement(i
)))
278 bool Constant::containsConstantExpression() const {
279 if (!getType()->isVectorTy())
281 for (unsigned i
= 0, e
= getType()->getVectorNumElements(); i
!= e
; ++i
)
282 if (isa
<ConstantExpr
>(getAggregateElement(i
)))
288 /// Constructor to create a '0' constant of arbitrary type.
289 Constant
*Constant::getNullValue(Type
*Ty
) {
290 switch (Ty
->getTypeID()) {
291 case Type::IntegerTyID
:
292 return ConstantInt::get(Ty
, 0);
294 return ConstantFP::get(Ty
->getContext(),
295 APFloat::getZero(APFloat::IEEEhalf()));
296 case Type::FloatTyID
:
297 return ConstantFP::get(Ty
->getContext(),
298 APFloat::getZero(APFloat::IEEEsingle()));
299 case Type::DoubleTyID
:
300 return ConstantFP::get(Ty
->getContext(),
301 APFloat::getZero(APFloat::IEEEdouble()));
302 case Type::X86_FP80TyID
:
303 return ConstantFP::get(Ty
->getContext(),
304 APFloat::getZero(APFloat::x87DoubleExtended()));
305 case Type::FP128TyID
:
306 return ConstantFP::get(Ty
->getContext(),
307 APFloat::getZero(APFloat::IEEEquad()));
308 case Type::PPC_FP128TyID
:
309 return ConstantFP::get(Ty
->getContext(),
310 APFloat(APFloat::PPCDoubleDouble(),
311 APInt::getNullValue(128)));
312 case Type::PointerTyID
:
313 return ConstantPointerNull::get(cast
<PointerType
>(Ty
));
314 case Type::StructTyID
:
315 case Type::ArrayTyID
:
316 case Type::VectorTyID
:
317 return ConstantAggregateZero::get(Ty
);
318 case Type::TokenTyID
:
319 return ConstantTokenNone::get(Ty
->getContext());
321 // Function, Label, or Opaque type?
322 llvm_unreachable("Cannot create a null constant of that type!");
326 Constant
*Constant::getIntegerValue(Type
*Ty
, const APInt
&V
) {
327 Type
*ScalarTy
= Ty
->getScalarType();
329 // Create the base integer constant.
330 Constant
*C
= ConstantInt::get(Ty
->getContext(), V
);
332 // Convert an integer to a pointer, if necessary.
333 if (PointerType
*PTy
= dyn_cast
<PointerType
>(ScalarTy
))
334 C
= ConstantExpr::getIntToPtr(C
, PTy
);
336 // Broadcast a scalar to a vector, if necessary.
337 if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
338 C
= ConstantVector::getSplat(VTy
->getNumElements(), C
);
343 Constant
*Constant::getAllOnesValue(Type
*Ty
) {
344 if (IntegerType
*ITy
= dyn_cast
<IntegerType
>(Ty
))
345 return ConstantInt::get(Ty
->getContext(),
346 APInt::getAllOnesValue(ITy
->getBitWidth()));
348 if (Ty
->isFloatingPointTy()) {
349 APFloat FL
= APFloat::getAllOnesValue(Ty
->getPrimitiveSizeInBits(),
350 !Ty
->isPPC_FP128Ty());
351 return ConstantFP::get(Ty
->getContext(), FL
);
354 VectorType
*VTy
= cast
<VectorType
>(Ty
);
355 return ConstantVector::getSplat(VTy
->getNumElements(),
356 getAllOnesValue(VTy
->getElementType()));
359 Constant
*Constant::getAggregateElement(unsigned Elt
) const {
360 if (const ConstantAggregate
*CC
= dyn_cast
<ConstantAggregate
>(this))
361 return Elt
< CC
->getNumOperands() ? CC
->getOperand(Elt
) : nullptr;
363 if (const ConstantAggregateZero
*CAZ
= dyn_cast
<ConstantAggregateZero
>(this))
364 return Elt
< CAZ
->getNumElements() ? CAZ
->getElementValue(Elt
) : nullptr;
366 if (const UndefValue
*UV
= dyn_cast
<UndefValue
>(this))
367 return Elt
< UV
->getNumElements() ? UV
->getElementValue(Elt
) : nullptr;
369 if (const ConstantDataSequential
*CDS
=dyn_cast
<ConstantDataSequential
>(this))
370 return Elt
< CDS
->getNumElements() ? CDS
->getElementAsConstant(Elt
)
375 Constant
*Constant::getAggregateElement(Constant
*Elt
) const {
376 assert(isa
<IntegerType
>(Elt
->getType()) && "Index must be an integer");
377 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Elt
)) {
378 // Check if the constant fits into an uint64_t.
379 if (CI
->getValue().getActiveBits() > 64)
381 return getAggregateElement(CI
->getZExtValue());
386 void Constant::destroyConstant() {
387 /// First call destroyConstantImpl on the subclass. This gives the subclass
388 /// a chance to remove the constant from any maps/pools it's contained in.
389 switch (getValueID()) {
391 llvm_unreachable("Not a constant!");
392 #define HANDLE_CONSTANT(Name) \
393 case Value::Name##Val: \
394 cast<Name>(this)->destroyConstantImpl(); \
396 #include "llvm/IR/Value.def"
399 // When a Constant is destroyed, there may be lingering
400 // references to the constant by other constants in the constant pool. These
401 // constants are implicitly dependent on the module that is being deleted,
402 // but they don't know that. Because we only find out when the CPV is
403 // deleted, we must now notify all of our users (that should only be
404 // Constants) that they are, in fact, invalid now and should be deleted.
406 while (!use_empty()) {
407 Value
*V
= user_back();
408 #ifndef NDEBUG // Only in -g mode...
409 if (!isa
<Constant
>(V
)) {
410 dbgs() << "While deleting: " << *this
411 << "\n\nUse still stuck around after Def is destroyed: " << *V
415 assert(isa
<Constant
>(V
) && "References remain to Constant being destroyed");
416 cast
<Constant
>(V
)->destroyConstant();
418 // The constant should remove itself from our use list...
419 assert((use_empty() || user_back() != V
) && "Constant not removed!");
422 // Value has no outstanding references it is safe to delete it now...
426 static bool canTrapImpl(const Constant
*C
,
427 SmallPtrSetImpl
<const ConstantExpr
*> &NonTrappingOps
) {
428 assert(C
->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
429 // The only thing that could possibly trap are constant exprs.
430 const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
);
434 // ConstantExpr traps if any operands can trap.
435 for (unsigned i
= 0, e
= C
->getNumOperands(); i
!= e
; ++i
) {
436 if (ConstantExpr
*Op
= dyn_cast
<ConstantExpr
>(CE
->getOperand(i
))) {
437 if (NonTrappingOps
.insert(Op
).second
&& canTrapImpl(Op
, NonTrappingOps
))
442 // Otherwise, only specific operations can trap.
443 switch (CE
->getOpcode()) {
446 case Instruction::UDiv
:
447 case Instruction::SDiv
:
448 case Instruction::URem
:
449 case Instruction::SRem
:
450 // Div and rem can trap if the RHS is not known to be non-zero.
451 if (!isa
<ConstantInt
>(CE
->getOperand(1)) ||CE
->getOperand(1)->isNullValue())
457 bool Constant::canTrap() const {
458 SmallPtrSet
<const ConstantExpr
*, 4> NonTrappingOps
;
459 return canTrapImpl(this, NonTrappingOps
);
462 /// Check if C contains a GlobalValue for which Predicate is true.
464 ConstHasGlobalValuePredicate(const Constant
*C
,
465 bool (*Predicate
)(const GlobalValue
*)) {
466 SmallPtrSet
<const Constant
*, 8> Visited
;
467 SmallVector
<const Constant
*, 8> WorkList
;
468 WorkList
.push_back(C
);
471 while (!WorkList
.empty()) {
472 const Constant
*WorkItem
= WorkList
.pop_back_val();
473 if (const auto *GV
= dyn_cast
<GlobalValue
>(WorkItem
))
476 for (const Value
*Op
: WorkItem
->operands()) {
477 const Constant
*ConstOp
= dyn_cast
<Constant
>(Op
);
480 if (Visited
.insert(ConstOp
).second
)
481 WorkList
.push_back(ConstOp
);
487 bool Constant::isThreadDependent() const {
488 auto DLLImportPredicate
= [](const GlobalValue
*GV
) {
489 return GV
->isThreadLocal();
491 return ConstHasGlobalValuePredicate(this, DLLImportPredicate
);
494 bool Constant::isDLLImportDependent() const {
495 auto DLLImportPredicate
= [](const GlobalValue
*GV
) {
496 return GV
->hasDLLImportStorageClass();
498 return ConstHasGlobalValuePredicate(this, DLLImportPredicate
);
501 bool Constant::isConstantUsed() const {
502 for (const User
*U
: users()) {
503 const Constant
*UC
= dyn_cast
<Constant
>(U
);
504 if (!UC
|| isa
<GlobalValue
>(UC
))
507 if (UC
->isConstantUsed())
513 bool Constant::needsRelocation() const {
514 if (isa
<GlobalValue
>(this))
515 return true; // Global reference.
517 if (const BlockAddress
*BA
= dyn_cast
<BlockAddress
>(this))
518 return BA
->getFunction()->needsRelocation();
520 if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(this)) {
521 if (CE
->getOpcode() == Instruction::Sub
) {
522 ConstantExpr
*LHS
= dyn_cast
<ConstantExpr
>(CE
->getOperand(0));
523 ConstantExpr
*RHS
= dyn_cast
<ConstantExpr
>(CE
->getOperand(1));
524 if (LHS
&& RHS
&& LHS
->getOpcode() == Instruction::PtrToInt
&&
525 RHS
->getOpcode() == Instruction::PtrToInt
) {
526 Constant
*LHSOp0
= LHS
->getOperand(0);
527 Constant
*RHSOp0
= RHS
->getOperand(0);
529 // While raw uses of blockaddress need to be relocated, differences
530 // between two of them don't when they are for labels in the same
531 // function. This is a common idiom when creating a table for the
532 // indirect goto extension, so we handle it efficiently here.
533 if (isa
<BlockAddress
>(LHSOp0
) && isa
<BlockAddress
>(RHSOp0
) &&
534 cast
<BlockAddress
>(LHSOp0
)->getFunction() ==
535 cast
<BlockAddress
>(RHSOp0
)->getFunction())
538 // Relative pointers do not need to be dynamically relocated.
539 if (auto *LHSGV
= dyn_cast
<GlobalValue
>(LHSOp0
->stripPointerCasts()))
540 if (auto *RHSGV
= dyn_cast
<GlobalValue
>(RHSOp0
->stripPointerCasts()))
541 if (LHSGV
->isDSOLocal() && RHSGV
->isDSOLocal())
548 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
549 Result
|= cast
<Constant
>(getOperand(i
))->needsRelocation();
554 /// If the specified constantexpr is dead, remove it. This involves recursively
555 /// eliminating any dead users of the constantexpr.
556 static bool removeDeadUsersOfConstant(const Constant
*C
) {
557 if (isa
<GlobalValue
>(C
)) return false; // Cannot remove this
559 while (!C
->use_empty()) {
560 const Constant
*User
= dyn_cast
<Constant
>(C
->user_back());
561 if (!User
) return false; // Non-constant usage;
562 if (!removeDeadUsersOfConstant(User
))
563 return false; // Constant wasn't dead
566 const_cast<Constant
*>(C
)->destroyConstant();
571 void Constant::removeDeadConstantUsers() const {
572 Value::const_user_iterator I
= user_begin(), E
= user_end();
573 Value::const_user_iterator LastNonDeadUser
= E
;
575 const Constant
*User
= dyn_cast
<Constant
>(*I
);
582 if (!removeDeadUsersOfConstant(User
)) {
583 // If the constant wasn't dead, remember that this was the last live use
584 // and move on to the next constant.
590 // If the constant was dead, then the iterator is invalidated.
591 if (LastNonDeadUser
== E
)
594 I
= std::next(LastNonDeadUser
);
600 //===----------------------------------------------------------------------===//
602 //===----------------------------------------------------------------------===//
604 ConstantInt::ConstantInt(IntegerType
*Ty
, const APInt
&V
)
605 : ConstantData(Ty
, ConstantIntVal
), Val(V
) {
606 assert(V
.getBitWidth() == Ty
->getBitWidth() && "Invalid constant for type");
609 ConstantInt
*ConstantInt::getTrue(LLVMContext
&Context
) {
610 LLVMContextImpl
*pImpl
= Context
.pImpl
;
611 if (!pImpl
->TheTrueVal
)
612 pImpl
->TheTrueVal
= ConstantInt::get(Type::getInt1Ty(Context
), 1);
613 return pImpl
->TheTrueVal
;
616 ConstantInt
*ConstantInt::getFalse(LLVMContext
&Context
) {
617 LLVMContextImpl
*pImpl
= Context
.pImpl
;
618 if (!pImpl
->TheFalseVal
)
619 pImpl
->TheFalseVal
= ConstantInt::get(Type::getInt1Ty(Context
), 0);
620 return pImpl
->TheFalseVal
;
623 Constant
*ConstantInt::getTrue(Type
*Ty
) {
624 assert(Ty
->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1.");
625 ConstantInt
*TrueC
= ConstantInt::getTrue(Ty
->getContext());
626 if (auto *VTy
= dyn_cast
<VectorType
>(Ty
))
627 return ConstantVector::getSplat(VTy
->getNumElements(), TrueC
);
631 Constant
*ConstantInt::getFalse(Type
*Ty
) {
632 assert(Ty
->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1.");
633 ConstantInt
*FalseC
= ConstantInt::getFalse(Ty
->getContext());
634 if (auto *VTy
= dyn_cast
<VectorType
>(Ty
))
635 return ConstantVector::getSplat(VTy
->getNumElements(), FalseC
);
639 // Get a ConstantInt from an APInt.
640 ConstantInt
*ConstantInt::get(LLVMContext
&Context
, const APInt
&V
) {
641 // get an existing value or the insertion position
642 LLVMContextImpl
*pImpl
= Context
.pImpl
;
643 std::unique_ptr
<ConstantInt
> &Slot
= pImpl
->IntConstants
[V
];
645 // Get the corresponding integer type for the bit width of the value.
646 IntegerType
*ITy
= IntegerType::get(Context
, V
.getBitWidth());
647 Slot
.reset(new ConstantInt(ITy
, V
));
649 assert(Slot
->getType() == IntegerType::get(Context
, V
.getBitWidth()));
653 Constant
*ConstantInt::get(Type
*Ty
, uint64_t V
, bool isSigned
) {
654 Constant
*C
= get(cast
<IntegerType
>(Ty
->getScalarType()), V
, isSigned
);
656 // For vectors, broadcast the value.
657 if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
658 return ConstantVector::getSplat(VTy
->getNumElements(), C
);
663 ConstantInt
*ConstantInt::get(IntegerType
*Ty
, uint64_t V
, bool isSigned
) {
664 return get(Ty
->getContext(), APInt(Ty
->getBitWidth(), V
, isSigned
));
667 ConstantInt
*ConstantInt::getSigned(IntegerType
*Ty
, int64_t V
) {
668 return get(Ty
, V
, true);
671 Constant
*ConstantInt::getSigned(Type
*Ty
, int64_t V
) {
672 return get(Ty
, V
, true);
675 Constant
*ConstantInt::get(Type
*Ty
, const APInt
& V
) {
676 ConstantInt
*C
= get(Ty
->getContext(), V
);
677 assert(C
->getType() == Ty
->getScalarType() &&
678 "ConstantInt type doesn't match the type implied by its value!");
680 // For vectors, broadcast the value.
681 if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
682 return ConstantVector::getSplat(VTy
->getNumElements(), C
);
687 ConstantInt
*ConstantInt::get(IntegerType
* Ty
, StringRef Str
, uint8_t radix
) {
688 return get(Ty
->getContext(), APInt(Ty
->getBitWidth(), Str
, radix
));
691 /// Remove the constant from the constant table.
692 void ConstantInt::destroyConstantImpl() {
693 llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!");
696 //===----------------------------------------------------------------------===//
698 //===----------------------------------------------------------------------===//
700 static const fltSemantics
*TypeToFloatSemantics(Type
*Ty
) {
702 return &APFloat::IEEEhalf();
704 return &APFloat::IEEEsingle();
705 if (Ty
->isDoubleTy())
706 return &APFloat::IEEEdouble();
707 if (Ty
->isX86_FP80Ty())
708 return &APFloat::x87DoubleExtended();
709 else if (Ty
->isFP128Ty())
710 return &APFloat::IEEEquad();
712 assert(Ty
->isPPC_FP128Ty() && "Unknown FP format");
713 return &APFloat::PPCDoubleDouble();
716 Constant
*ConstantFP::get(Type
*Ty
, double V
) {
717 LLVMContext
&Context
= Ty
->getContext();
721 FV
.convert(*TypeToFloatSemantics(Ty
->getScalarType()),
722 APFloat::rmNearestTiesToEven
, &ignored
);
723 Constant
*C
= get(Context
, FV
);
725 // For vectors, broadcast the value.
726 if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
727 return ConstantVector::getSplat(VTy
->getNumElements(), C
);
732 Constant
*ConstantFP::get(Type
*Ty
, const APFloat
&V
) {
733 ConstantFP
*C
= get(Ty
->getContext(), V
);
734 assert(C
->getType() == Ty
->getScalarType() &&
735 "ConstantFP type doesn't match the type implied by its value!");
737 // For vectors, broadcast the value.
738 if (auto *VTy
= dyn_cast
<VectorType
>(Ty
))
739 return ConstantVector::getSplat(VTy
->getNumElements(), C
);
744 Constant
*ConstantFP::get(Type
*Ty
, StringRef Str
) {
745 LLVMContext
&Context
= Ty
->getContext();
747 APFloat
FV(*TypeToFloatSemantics(Ty
->getScalarType()), Str
);
748 Constant
*C
= get(Context
, FV
);
750 // For vectors, broadcast the value.
751 if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
752 return ConstantVector::getSplat(VTy
->getNumElements(), C
);
757 Constant
*ConstantFP::getNaN(Type
*Ty
, bool Negative
, uint64_t Payload
) {
758 const fltSemantics
&Semantics
= *TypeToFloatSemantics(Ty
->getScalarType());
759 APFloat NaN
= APFloat::getNaN(Semantics
, Negative
, Payload
);
760 Constant
*C
= get(Ty
->getContext(), NaN
);
762 if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
763 return ConstantVector::getSplat(VTy
->getNumElements(), C
);
768 Constant
*ConstantFP::getQNaN(Type
*Ty
, bool Negative
, APInt
*Payload
) {
769 const fltSemantics
&Semantics
= *TypeToFloatSemantics(Ty
->getScalarType());
770 APFloat NaN
= APFloat::getQNaN(Semantics
, Negative
, Payload
);
771 Constant
*C
= get(Ty
->getContext(), NaN
);
773 if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
774 return ConstantVector::getSplat(VTy
->getNumElements(), C
);
779 Constant
*ConstantFP::getSNaN(Type
*Ty
, bool Negative
, APInt
*Payload
) {
780 const fltSemantics
&Semantics
= *TypeToFloatSemantics(Ty
->getScalarType());
781 APFloat NaN
= APFloat::getSNaN(Semantics
, Negative
, Payload
);
782 Constant
*C
= get(Ty
->getContext(), NaN
);
784 if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
785 return ConstantVector::getSplat(VTy
->getNumElements(), C
);
790 Constant
*ConstantFP::getNegativeZero(Type
*Ty
) {
791 const fltSemantics
&Semantics
= *TypeToFloatSemantics(Ty
->getScalarType());
792 APFloat NegZero
= APFloat::getZero(Semantics
, /*Negative=*/true);
793 Constant
*C
= get(Ty
->getContext(), NegZero
);
795 if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
796 return ConstantVector::getSplat(VTy
->getNumElements(), C
);
802 Constant
*ConstantFP::getZeroValueForNegation(Type
*Ty
) {
803 if (Ty
->isFPOrFPVectorTy())
804 return getNegativeZero(Ty
);
806 return Constant::getNullValue(Ty
);
810 // ConstantFP accessors.
811 ConstantFP
* ConstantFP::get(LLVMContext
&Context
, const APFloat
& V
) {
812 LLVMContextImpl
* pImpl
= Context
.pImpl
;
814 std::unique_ptr
<ConstantFP
> &Slot
= pImpl
->FPConstants
[V
];
818 if (&V
.getSemantics() == &APFloat::IEEEhalf())
819 Ty
= Type::getHalfTy(Context
);
820 else if (&V
.getSemantics() == &APFloat::IEEEsingle())
821 Ty
= Type::getFloatTy(Context
);
822 else if (&V
.getSemantics() == &APFloat::IEEEdouble())
823 Ty
= Type::getDoubleTy(Context
);
824 else if (&V
.getSemantics() == &APFloat::x87DoubleExtended())
825 Ty
= Type::getX86_FP80Ty(Context
);
826 else if (&V
.getSemantics() == &APFloat::IEEEquad())
827 Ty
= Type::getFP128Ty(Context
);
829 assert(&V
.getSemantics() == &APFloat::PPCDoubleDouble() &&
830 "Unknown FP format");
831 Ty
= Type::getPPC_FP128Ty(Context
);
833 Slot
.reset(new ConstantFP(Ty
, V
));
839 Constant
*ConstantFP::getInfinity(Type
*Ty
, bool Negative
) {
840 const fltSemantics
&Semantics
= *TypeToFloatSemantics(Ty
->getScalarType());
841 Constant
*C
= get(Ty
->getContext(), APFloat::getInf(Semantics
, Negative
));
843 if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
844 return ConstantVector::getSplat(VTy
->getNumElements(), C
);
849 ConstantFP::ConstantFP(Type
*Ty
, const APFloat
&V
)
850 : ConstantData(Ty
, ConstantFPVal
), Val(V
) {
851 assert(&V
.getSemantics() == TypeToFloatSemantics(Ty
) &&
855 bool ConstantFP::isExactlyValue(const APFloat
&V
) const {
856 return Val
.bitwiseIsEqual(V
);
859 /// Remove the constant from the constant table.
860 void ConstantFP::destroyConstantImpl() {
861 llvm_unreachable("You can't ConstantFP->destroyConstantImpl()!");
864 //===----------------------------------------------------------------------===//
865 // ConstantAggregateZero Implementation
866 //===----------------------------------------------------------------------===//
868 Constant
*ConstantAggregateZero::getSequentialElement() const {
869 return Constant::getNullValue(getType()->getSequentialElementType());
872 Constant
*ConstantAggregateZero::getStructElement(unsigned Elt
) const {
873 return Constant::getNullValue(getType()->getStructElementType(Elt
));
876 Constant
*ConstantAggregateZero::getElementValue(Constant
*C
) const {
877 if (isa
<SequentialType
>(getType()))
878 return getSequentialElement();
879 return getStructElement(cast
<ConstantInt
>(C
)->getZExtValue());
882 Constant
*ConstantAggregateZero::getElementValue(unsigned Idx
) const {
883 if (isa
<SequentialType
>(getType()))
884 return getSequentialElement();
885 return getStructElement(Idx
);
888 unsigned ConstantAggregateZero::getNumElements() const {
889 Type
*Ty
= getType();
890 if (auto *AT
= dyn_cast
<ArrayType
>(Ty
))
891 return AT
->getNumElements();
892 if (auto *VT
= dyn_cast
<VectorType
>(Ty
))
893 return VT
->getNumElements();
894 return Ty
->getStructNumElements();
897 //===----------------------------------------------------------------------===//
898 // UndefValue Implementation
899 //===----------------------------------------------------------------------===//
901 UndefValue
*UndefValue::getSequentialElement() const {
902 return UndefValue::get(getType()->getSequentialElementType());
905 UndefValue
*UndefValue::getStructElement(unsigned Elt
) const {
906 return UndefValue::get(getType()->getStructElementType(Elt
));
909 UndefValue
*UndefValue::getElementValue(Constant
*C
) const {
910 if (isa
<SequentialType
>(getType()))
911 return getSequentialElement();
912 return getStructElement(cast
<ConstantInt
>(C
)->getZExtValue());
915 UndefValue
*UndefValue::getElementValue(unsigned Idx
) const {
916 if (isa
<SequentialType
>(getType()))
917 return getSequentialElement();
918 return getStructElement(Idx
);
921 unsigned UndefValue::getNumElements() const {
922 Type
*Ty
= getType();
923 if (auto *ST
= dyn_cast
<SequentialType
>(Ty
))
924 return ST
->getNumElements();
925 return Ty
->getStructNumElements();
928 //===----------------------------------------------------------------------===//
929 // ConstantXXX Classes
930 //===----------------------------------------------------------------------===//
932 template <typename ItTy
, typename EltTy
>
933 static bool rangeOnlyContains(ItTy Start
, ItTy End
, EltTy Elt
) {
934 for (; Start
!= End
; ++Start
)
940 template <typename SequentialTy
, typename ElementTy
>
941 static Constant
*getIntSequenceIfElementsMatch(ArrayRef
<Constant
*> V
) {
942 assert(!V
.empty() && "Cannot get empty int sequence.");
944 SmallVector
<ElementTy
, 16> Elts
;
945 for (Constant
*C
: V
)
946 if (auto *CI
= dyn_cast
<ConstantInt
>(C
))
947 Elts
.push_back(CI
->getZExtValue());
950 return SequentialTy::get(V
[0]->getContext(), Elts
);
953 template <typename SequentialTy
, typename ElementTy
>
954 static Constant
*getFPSequenceIfElementsMatch(ArrayRef
<Constant
*> V
) {
955 assert(!V
.empty() && "Cannot get empty FP sequence.");
957 SmallVector
<ElementTy
, 16> Elts
;
958 for (Constant
*C
: V
)
959 if (auto *CFP
= dyn_cast
<ConstantFP
>(C
))
960 Elts
.push_back(CFP
->getValueAPF().bitcastToAPInt().getLimitedValue());
963 return SequentialTy::getFP(V
[0]->getContext(), Elts
);
966 template <typename SequenceTy
>
967 static Constant
*getSequenceIfElementsMatch(Constant
*C
,
968 ArrayRef
<Constant
*> V
) {
969 // We speculatively build the elements here even if it turns out that there is
970 // a constantexpr or something else weird, since it is so uncommon for that to
972 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(C
)) {
973 if (CI
->getType()->isIntegerTy(8))
974 return getIntSequenceIfElementsMatch
<SequenceTy
, uint8_t>(V
);
975 else if (CI
->getType()->isIntegerTy(16))
976 return getIntSequenceIfElementsMatch
<SequenceTy
, uint16_t>(V
);
977 else if (CI
->getType()->isIntegerTy(32))
978 return getIntSequenceIfElementsMatch
<SequenceTy
, uint32_t>(V
);
979 else if (CI
->getType()->isIntegerTy(64))
980 return getIntSequenceIfElementsMatch
<SequenceTy
, uint64_t>(V
);
981 } else if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(C
)) {
982 if (CFP
->getType()->isHalfTy())
983 return getFPSequenceIfElementsMatch
<SequenceTy
, uint16_t>(V
);
984 else if (CFP
->getType()->isFloatTy())
985 return getFPSequenceIfElementsMatch
<SequenceTy
, uint32_t>(V
);
986 else if (CFP
->getType()->isDoubleTy())
987 return getFPSequenceIfElementsMatch
<SequenceTy
, uint64_t>(V
);
993 ConstantAggregate::ConstantAggregate(CompositeType
*T
, ValueTy VT
,
994 ArrayRef
<Constant
*> V
)
995 : Constant(T
, VT
, OperandTraits
<ConstantAggregate
>::op_end(this) - V
.size(),
997 llvm::copy(V
, op_begin());
999 // Check that types match, unless this is an opaque struct.
1000 if (auto *ST
= dyn_cast
<StructType
>(T
))
1003 for (unsigned I
= 0, E
= V
.size(); I
!= E
; ++I
)
1004 assert(V
[I
]->getType() == T
->getTypeAtIndex(I
) &&
1005 "Initializer for composite element doesn't match!");
1008 ConstantArray::ConstantArray(ArrayType
*T
, ArrayRef
<Constant
*> V
)
1009 : ConstantAggregate(T
, ConstantArrayVal
, V
) {
1010 assert(V
.size() == T
->getNumElements() &&
1011 "Invalid initializer for constant array");
1014 Constant
*ConstantArray::get(ArrayType
*Ty
, ArrayRef
<Constant
*> V
) {
1015 if (Constant
*C
= getImpl(Ty
, V
))
1017 return Ty
->getContext().pImpl
->ArrayConstants
.getOrCreate(Ty
, V
);
1020 Constant
*ConstantArray::getImpl(ArrayType
*Ty
, ArrayRef
<Constant
*> V
) {
1021 // Empty arrays are canonicalized to ConstantAggregateZero.
1023 return ConstantAggregateZero::get(Ty
);
1025 for (unsigned i
= 0, e
= V
.size(); i
!= e
; ++i
) {
1026 assert(V
[i
]->getType() == Ty
->getElementType() &&
1027 "Wrong type in array element initializer");
1030 // If this is an all-zero array, return a ConstantAggregateZero object. If
1031 // all undef, return an UndefValue, if "all simple", then return a
1032 // ConstantDataArray.
1034 if (isa
<UndefValue
>(C
) && rangeOnlyContains(V
.begin(), V
.end(), C
))
1035 return UndefValue::get(Ty
);
1037 if (C
->isNullValue() && rangeOnlyContains(V
.begin(), V
.end(), C
))
1038 return ConstantAggregateZero::get(Ty
);
1040 // Check to see if all of the elements are ConstantFP or ConstantInt and if
1041 // the element type is compatible with ConstantDataVector. If so, use it.
1042 if (ConstantDataSequential::isElementTypeCompatible(C
->getType()))
1043 return getSequenceIfElementsMatch
<ConstantDataArray
>(C
, V
);
1045 // Otherwise, we really do want to create a ConstantArray.
1049 StructType
*ConstantStruct::getTypeForElements(LLVMContext
&Context
,
1050 ArrayRef
<Constant
*> V
,
1052 unsigned VecSize
= V
.size();
1053 SmallVector
<Type
*, 16> EltTypes(VecSize
);
1054 for (unsigned i
= 0; i
!= VecSize
; ++i
)
1055 EltTypes
[i
] = V
[i
]->getType();
1057 return StructType::get(Context
, EltTypes
, Packed
);
1061 StructType
*ConstantStruct::getTypeForElements(ArrayRef
<Constant
*> V
,
1063 assert(!V
.empty() &&
1064 "ConstantStruct::getTypeForElements cannot be called on empty list");
1065 return getTypeForElements(V
[0]->getContext(), V
, Packed
);
1068 ConstantStruct::ConstantStruct(StructType
*T
, ArrayRef
<Constant
*> V
)
1069 : ConstantAggregate(T
, ConstantStructVal
, V
) {
1070 assert((T
->isOpaque() || V
.size() == T
->getNumElements()) &&
1071 "Invalid initializer for constant struct");
1074 // ConstantStruct accessors.
1075 Constant
*ConstantStruct::get(StructType
*ST
, ArrayRef
<Constant
*> V
) {
1076 assert((ST
->isOpaque() || ST
->getNumElements() == V
.size()) &&
1077 "Incorrect # elements specified to ConstantStruct::get");
1079 // Create a ConstantAggregateZero value if all elements are zeros.
1081 bool isUndef
= false;
1084 isUndef
= isa
<UndefValue
>(V
[0]);
1085 isZero
= V
[0]->isNullValue();
1086 if (isUndef
|| isZero
) {
1087 for (unsigned i
= 0, e
= V
.size(); i
!= e
; ++i
) {
1088 if (!V
[i
]->isNullValue())
1090 if (!isa
<UndefValue
>(V
[i
]))
1096 return ConstantAggregateZero::get(ST
);
1098 return UndefValue::get(ST
);
1100 return ST
->getContext().pImpl
->StructConstants
.getOrCreate(ST
, V
);
1103 ConstantVector::ConstantVector(VectorType
*T
, ArrayRef
<Constant
*> V
)
1104 : ConstantAggregate(T
, ConstantVectorVal
, V
) {
1105 assert(V
.size() == T
->getNumElements() &&
1106 "Invalid initializer for constant vector");
1109 // ConstantVector accessors.
1110 Constant
*ConstantVector::get(ArrayRef
<Constant
*> V
) {
1111 if (Constant
*C
= getImpl(V
))
1113 VectorType
*Ty
= VectorType::get(V
.front()->getType(), V
.size());
1114 return Ty
->getContext().pImpl
->VectorConstants
.getOrCreate(Ty
, V
);
1117 Constant
*ConstantVector::getImpl(ArrayRef
<Constant
*> V
) {
1118 assert(!V
.empty() && "Vectors can't be empty");
1119 VectorType
*T
= VectorType::get(V
.front()->getType(), V
.size());
1121 // If this is an all-undef or all-zero vector, return a
1122 // ConstantAggregateZero or UndefValue.
1124 bool isZero
= C
->isNullValue();
1125 bool isUndef
= isa
<UndefValue
>(C
);
1127 if (isZero
|| isUndef
) {
1128 for (unsigned i
= 1, e
= V
.size(); i
!= e
; ++i
)
1130 isZero
= isUndef
= false;
1136 return ConstantAggregateZero::get(T
);
1138 return UndefValue::get(T
);
1140 // Check to see if all of the elements are ConstantFP or ConstantInt and if
1141 // the element type is compatible with ConstantDataVector. If so, use it.
1142 if (ConstantDataSequential::isElementTypeCompatible(C
->getType()))
1143 return getSequenceIfElementsMatch
<ConstantDataVector
>(C
, V
);
1145 // Otherwise, the element type isn't compatible with ConstantDataVector, or
1146 // the operand list contains a ConstantExpr or something else strange.
1150 Constant
*ConstantVector::getSplat(unsigned NumElts
, Constant
*V
) {
1151 // If this splat is compatible with ConstantDataVector, use it instead of
1153 if ((isa
<ConstantFP
>(V
) || isa
<ConstantInt
>(V
)) &&
1154 ConstantDataSequential::isElementTypeCompatible(V
->getType()))
1155 return ConstantDataVector::getSplat(NumElts
, V
);
1157 SmallVector
<Constant
*, 32> Elts(NumElts
, V
);
1161 ConstantTokenNone
*ConstantTokenNone::get(LLVMContext
&Context
) {
1162 LLVMContextImpl
*pImpl
= Context
.pImpl
;
1163 if (!pImpl
->TheNoneToken
)
1164 pImpl
->TheNoneToken
.reset(new ConstantTokenNone(Context
));
1165 return pImpl
->TheNoneToken
.get();
1168 /// Remove the constant from the constant table.
1169 void ConstantTokenNone::destroyConstantImpl() {
1170 llvm_unreachable("You can't ConstantTokenNone->destroyConstantImpl()!");
1173 // Utility function for determining if a ConstantExpr is a CastOp or not. This
1174 // can't be inline because we don't want to #include Instruction.h into
1176 bool ConstantExpr::isCast() const {
1177 return Instruction::isCast(getOpcode());
1180 bool ConstantExpr::isCompare() const {
1181 return getOpcode() == Instruction::ICmp
|| getOpcode() == Instruction::FCmp
;
1184 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
1185 if (getOpcode() != Instruction::GetElementPtr
) return false;
1187 gep_type_iterator GEPI
= gep_type_begin(this), E
= gep_type_end(this);
1188 User::const_op_iterator OI
= std::next(this->op_begin());
1190 // The remaining indices may be compile-time known integers within the bounds
1191 // of the corresponding notional static array types.
1192 for (; GEPI
!= E
; ++GEPI
, ++OI
) {
1193 if (isa
<UndefValue
>(*OI
))
1195 auto *CI
= dyn_cast
<ConstantInt
>(*OI
);
1196 if (!CI
|| (GEPI
.isBoundedSequential() &&
1197 (CI
->getValue().getActiveBits() > 64 ||
1198 CI
->getZExtValue() >= GEPI
.getSequentialNumElements())))
1202 // All the indices checked out.
1206 bool ConstantExpr::hasIndices() const {
1207 return getOpcode() == Instruction::ExtractValue
||
1208 getOpcode() == Instruction::InsertValue
;
1211 ArrayRef
<unsigned> ConstantExpr::getIndices() const {
1212 if (const ExtractValueConstantExpr
*EVCE
=
1213 dyn_cast
<ExtractValueConstantExpr
>(this))
1214 return EVCE
->Indices
;
1216 return cast
<InsertValueConstantExpr
>(this)->Indices
;
1219 unsigned ConstantExpr::getPredicate() const {
1220 return cast
<CompareConstantExpr
>(this)->predicate
;
1224 ConstantExpr::getWithOperandReplaced(unsigned OpNo
, Constant
*Op
) const {
1225 assert(Op
->getType() == getOperand(OpNo
)->getType() &&
1226 "Replacing operand with value of different type!");
1227 if (getOperand(OpNo
) == Op
)
1228 return const_cast<ConstantExpr
*>(this);
1230 SmallVector
<Constant
*, 8> NewOps
;
1231 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
1232 NewOps
.push_back(i
== OpNo
? Op
: getOperand(i
));
1234 return getWithOperands(NewOps
);
1237 Constant
*ConstantExpr::getWithOperands(ArrayRef
<Constant
*> Ops
, Type
*Ty
,
1238 bool OnlyIfReduced
, Type
*SrcTy
) const {
1239 assert(Ops
.size() == getNumOperands() && "Operand count mismatch!");
1241 // If no operands changed return self.
1242 if (Ty
== getType() && std::equal(Ops
.begin(), Ops
.end(), op_begin()))
1243 return const_cast<ConstantExpr
*>(this);
1245 Type
*OnlyIfReducedTy
= OnlyIfReduced
? Ty
: nullptr;
1246 switch (getOpcode()) {
1247 case Instruction::Trunc
:
1248 case Instruction::ZExt
:
1249 case Instruction::SExt
:
1250 case Instruction::FPTrunc
:
1251 case Instruction::FPExt
:
1252 case Instruction::UIToFP
:
1253 case Instruction::SIToFP
:
1254 case Instruction::FPToUI
:
1255 case Instruction::FPToSI
:
1256 case Instruction::PtrToInt
:
1257 case Instruction::IntToPtr
:
1258 case Instruction::BitCast
:
1259 case Instruction::AddrSpaceCast
:
1260 return ConstantExpr::getCast(getOpcode(), Ops
[0], Ty
, OnlyIfReduced
);
1261 case Instruction::Select
:
1262 return ConstantExpr::getSelect(Ops
[0], Ops
[1], Ops
[2], OnlyIfReducedTy
);
1263 case Instruction::InsertElement
:
1264 return ConstantExpr::getInsertElement(Ops
[0], Ops
[1], Ops
[2],
1266 case Instruction::ExtractElement
:
1267 return ConstantExpr::getExtractElement(Ops
[0], Ops
[1], OnlyIfReducedTy
);
1268 case Instruction::InsertValue
:
1269 return ConstantExpr::getInsertValue(Ops
[0], Ops
[1], getIndices(),
1271 case Instruction::ExtractValue
:
1272 return ConstantExpr::getExtractValue(Ops
[0], getIndices(), OnlyIfReducedTy
);
1273 case Instruction::ShuffleVector
:
1274 return ConstantExpr::getShuffleVector(Ops
[0], Ops
[1], Ops
[2],
1276 case Instruction::GetElementPtr
: {
1277 auto *GEPO
= cast
<GEPOperator
>(this);
1278 assert(SrcTy
|| (Ops
[0]->getType() == getOperand(0)->getType()));
1279 return ConstantExpr::getGetElementPtr(
1280 SrcTy
? SrcTy
: GEPO
->getSourceElementType(), Ops
[0], Ops
.slice(1),
1281 GEPO
->isInBounds(), GEPO
->getInRangeIndex(), OnlyIfReducedTy
);
1283 case Instruction::ICmp
:
1284 case Instruction::FCmp
:
1285 return ConstantExpr::getCompare(getPredicate(), Ops
[0], Ops
[1],
1288 assert(getNumOperands() == 2 && "Must be binary operator?");
1289 return ConstantExpr::get(getOpcode(), Ops
[0], Ops
[1], SubclassOptionalData
,
1295 //===----------------------------------------------------------------------===//
1296 // isValueValidForType implementations
1298 bool ConstantInt::isValueValidForType(Type
*Ty
, uint64_t Val
) {
1299 unsigned NumBits
= Ty
->getIntegerBitWidth(); // assert okay
1300 if (Ty
->isIntegerTy(1))
1301 return Val
== 0 || Val
== 1;
1302 return isUIntN(NumBits
, Val
);
1305 bool ConstantInt::isValueValidForType(Type
*Ty
, int64_t Val
) {
1306 unsigned NumBits
= Ty
->getIntegerBitWidth();
1307 if (Ty
->isIntegerTy(1))
1308 return Val
== 0 || Val
== 1 || Val
== -1;
1309 return isIntN(NumBits
, Val
);
1312 bool ConstantFP::isValueValidForType(Type
*Ty
, const APFloat
& Val
) {
1313 // convert modifies in place, so make a copy.
1314 APFloat Val2
= APFloat(Val
);
1316 switch (Ty
->getTypeID()) {
1318 return false; // These can't be represented as floating point!
1320 // FIXME rounding mode needs to be more flexible
1321 case Type::HalfTyID
: {
1322 if (&Val2
.getSemantics() == &APFloat::IEEEhalf())
1324 Val2
.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven
, &losesInfo
);
1327 case Type::FloatTyID
: {
1328 if (&Val2
.getSemantics() == &APFloat::IEEEsingle())
1330 Val2
.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven
, &losesInfo
);
1333 case Type::DoubleTyID
: {
1334 if (&Val2
.getSemantics() == &APFloat::IEEEhalf() ||
1335 &Val2
.getSemantics() == &APFloat::IEEEsingle() ||
1336 &Val2
.getSemantics() == &APFloat::IEEEdouble())
1338 Val2
.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven
, &losesInfo
);
1341 case Type::X86_FP80TyID
:
1342 return &Val2
.getSemantics() == &APFloat::IEEEhalf() ||
1343 &Val2
.getSemantics() == &APFloat::IEEEsingle() ||
1344 &Val2
.getSemantics() == &APFloat::IEEEdouble() ||
1345 &Val2
.getSemantics() == &APFloat::x87DoubleExtended();
1346 case Type::FP128TyID
:
1347 return &Val2
.getSemantics() == &APFloat::IEEEhalf() ||
1348 &Val2
.getSemantics() == &APFloat::IEEEsingle() ||
1349 &Val2
.getSemantics() == &APFloat::IEEEdouble() ||
1350 &Val2
.getSemantics() == &APFloat::IEEEquad();
1351 case Type::PPC_FP128TyID
:
1352 return &Val2
.getSemantics() == &APFloat::IEEEhalf() ||
1353 &Val2
.getSemantics() == &APFloat::IEEEsingle() ||
1354 &Val2
.getSemantics() == &APFloat::IEEEdouble() ||
1355 &Val2
.getSemantics() == &APFloat::PPCDoubleDouble();
1360 //===----------------------------------------------------------------------===//
1361 // Factory Function Implementation
1363 ConstantAggregateZero
*ConstantAggregateZero::get(Type
*Ty
) {
1364 assert((Ty
->isStructTy() || Ty
->isArrayTy() || Ty
->isVectorTy()) &&
1365 "Cannot create an aggregate zero of non-aggregate type!");
1367 std::unique_ptr
<ConstantAggregateZero
> &Entry
=
1368 Ty
->getContext().pImpl
->CAZConstants
[Ty
];
1370 Entry
.reset(new ConstantAggregateZero(Ty
));
1375 /// Remove the constant from the constant table.
1376 void ConstantAggregateZero::destroyConstantImpl() {
1377 getContext().pImpl
->CAZConstants
.erase(getType());
1380 /// Remove the constant from the constant table.
1381 void ConstantArray::destroyConstantImpl() {
1382 getType()->getContext().pImpl
->ArrayConstants
.remove(this);
1386 //---- ConstantStruct::get() implementation...
1389 /// Remove the constant from the constant table.
1390 void ConstantStruct::destroyConstantImpl() {
1391 getType()->getContext().pImpl
->StructConstants
.remove(this);
1394 /// Remove the constant from the constant table.
1395 void ConstantVector::destroyConstantImpl() {
1396 getType()->getContext().pImpl
->VectorConstants
.remove(this);
1399 Constant
*Constant::getSplatValue() const {
1400 assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1401 if (isa
<ConstantAggregateZero
>(this))
1402 return getNullValue(this->getType()->getVectorElementType());
1403 if (const ConstantDataVector
*CV
= dyn_cast
<ConstantDataVector
>(this))
1404 return CV
->getSplatValue();
1405 if (const ConstantVector
*CV
= dyn_cast
<ConstantVector
>(this))
1406 return CV
->getSplatValue();
1410 Constant
*ConstantVector::getSplatValue() const {
1411 // Check out first element.
1412 Constant
*Elt
= getOperand(0);
1413 // Then make sure all remaining elements point to the same value.
1414 for (unsigned I
= 1, E
= getNumOperands(); I
< E
; ++I
)
1415 if (getOperand(I
) != Elt
)
1420 const APInt
&Constant::getUniqueInteger() const {
1421 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(this))
1422 return CI
->getValue();
1423 assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1424 const Constant
*C
= this->getAggregateElement(0U);
1425 assert(C
&& isa
<ConstantInt
>(C
) && "Not a vector of numbers!");
1426 return cast
<ConstantInt
>(C
)->getValue();
1429 //---- ConstantPointerNull::get() implementation.
1432 ConstantPointerNull
*ConstantPointerNull::get(PointerType
*Ty
) {
1433 std::unique_ptr
<ConstantPointerNull
> &Entry
=
1434 Ty
->getContext().pImpl
->CPNConstants
[Ty
];
1436 Entry
.reset(new ConstantPointerNull(Ty
));
1441 /// Remove the constant from the constant table.
1442 void ConstantPointerNull::destroyConstantImpl() {
1443 getContext().pImpl
->CPNConstants
.erase(getType());
1446 UndefValue
*UndefValue::get(Type
*Ty
) {
1447 std::unique_ptr
<UndefValue
> &Entry
= Ty
->getContext().pImpl
->UVConstants
[Ty
];
1449 Entry
.reset(new UndefValue(Ty
));
1454 /// Remove the constant from the constant table.
1455 void UndefValue::destroyConstantImpl() {
1456 // Free the constant and any dangling references to it.
1457 getContext().pImpl
->UVConstants
.erase(getType());
1460 BlockAddress
*BlockAddress::get(BasicBlock
*BB
) {
1461 assert(BB
->getParent() && "Block must have a parent");
1462 return get(BB
->getParent(), BB
);
1465 BlockAddress
*BlockAddress::get(Function
*F
, BasicBlock
*BB
) {
1467 F
->getContext().pImpl
->BlockAddresses
[std::make_pair(F
, BB
)];
1469 BA
= new BlockAddress(F
, BB
);
1471 assert(BA
->getFunction() == F
&& "Basic block moved between functions");
1475 BlockAddress::BlockAddress(Function
*F
, BasicBlock
*BB
)
1476 : Constant(Type::getInt8PtrTy(F
->getContext()), Value::BlockAddressVal
,
1480 BB
->AdjustBlockAddressRefCount(1);
1483 BlockAddress
*BlockAddress::lookup(const BasicBlock
*BB
) {
1484 if (!BB
->hasAddressTaken())
1487 const Function
*F
= BB
->getParent();
1488 assert(F
&& "Block must have a parent");
1490 F
->getContext().pImpl
->BlockAddresses
.lookup(std::make_pair(F
, BB
));
1491 assert(BA
&& "Refcount and block address map disagree!");
1495 /// Remove the constant from the constant table.
1496 void BlockAddress::destroyConstantImpl() {
1497 getFunction()->getType()->getContext().pImpl
1498 ->BlockAddresses
.erase(std::make_pair(getFunction(), getBasicBlock()));
1499 getBasicBlock()->AdjustBlockAddressRefCount(-1);
1502 Value
*BlockAddress::handleOperandChangeImpl(Value
*From
, Value
*To
) {
1503 // This could be replacing either the Basic Block or the Function. In either
1504 // case, we have to remove the map entry.
1505 Function
*NewF
= getFunction();
1506 BasicBlock
*NewBB
= getBasicBlock();
1509 NewF
= cast
<Function
>(To
->stripPointerCasts());
1511 assert(From
== NewBB
&& "From does not match any operand");
1512 NewBB
= cast
<BasicBlock
>(To
);
1515 // See if the 'new' entry already exists, if not, just update this in place
1516 // and return early.
1517 BlockAddress
*&NewBA
=
1518 getContext().pImpl
->BlockAddresses
[std::make_pair(NewF
, NewBB
)];
1522 getBasicBlock()->AdjustBlockAddressRefCount(-1);
1524 // Remove the old entry, this can't cause the map to rehash (just a
1525 // tombstone will get added).
1526 getContext().pImpl
->BlockAddresses
.erase(std::make_pair(getFunction(),
1529 setOperand(0, NewF
);
1530 setOperand(1, NewBB
);
1531 getBasicBlock()->AdjustBlockAddressRefCount(1);
1533 // If we just want to keep the existing value, then return null.
1534 // Callers know that this means we shouldn't delete this value.
1538 //---- ConstantExpr::get() implementations.
1541 /// This is a utility function to handle folding of casts and lookup of the
1542 /// cast in the ExprConstants map. It is used by the various get* methods below.
1543 static Constant
*getFoldedCast(Instruction::CastOps opc
, Constant
*C
, Type
*Ty
,
1544 bool OnlyIfReduced
= false) {
1545 assert(Ty
->isFirstClassType() && "Cannot cast to an aggregate type!");
1546 // Fold a few common cases
1547 if (Constant
*FC
= ConstantFoldCastInstruction(opc
, C
, Ty
))
1553 LLVMContextImpl
*pImpl
= Ty
->getContext().pImpl
;
1555 // Look up the constant in the table first to ensure uniqueness.
1556 ConstantExprKeyType
Key(opc
, C
);
1558 return pImpl
->ExprConstants
.getOrCreate(Ty
, Key
);
1561 Constant
*ConstantExpr::getCast(unsigned oc
, Constant
*C
, Type
*Ty
,
1562 bool OnlyIfReduced
) {
1563 Instruction::CastOps opc
= Instruction::CastOps(oc
);
1564 assert(Instruction::isCast(opc
) && "opcode out of range");
1565 assert(C
&& Ty
&& "Null arguments to getCast");
1566 assert(CastInst::castIsValid(opc
, C
, Ty
) && "Invalid constantexpr cast!");
1570 llvm_unreachable("Invalid cast opcode");
1571 case Instruction::Trunc
:
1572 return getTrunc(C
, Ty
, OnlyIfReduced
);
1573 case Instruction::ZExt
:
1574 return getZExt(C
, Ty
, OnlyIfReduced
);
1575 case Instruction::SExt
:
1576 return getSExt(C
, Ty
, OnlyIfReduced
);
1577 case Instruction::FPTrunc
:
1578 return getFPTrunc(C
, Ty
, OnlyIfReduced
);
1579 case Instruction::FPExt
:
1580 return getFPExtend(C
, Ty
, OnlyIfReduced
);
1581 case Instruction::UIToFP
:
1582 return getUIToFP(C
, Ty
, OnlyIfReduced
);
1583 case Instruction::SIToFP
:
1584 return getSIToFP(C
, Ty
, OnlyIfReduced
);
1585 case Instruction::FPToUI
:
1586 return getFPToUI(C
, Ty
, OnlyIfReduced
);
1587 case Instruction::FPToSI
:
1588 return getFPToSI(C
, Ty
, OnlyIfReduced
);
1589 case Instruction::PtrToInt
:
1590 return getPtrToInt(C
, Ty
, OnlyIfReduced
);
1591 case Instruction::IntToPtr
:
1592 return getIntToPtr(C
, Ty
, OnlyIfReduced
);
1593 case Instruction::BitCast
:
1594 return getBitCast(C
, Ty
, OnlyIfReduced
);
1595 case Instruction::AddrSpaceCast
:
1596 return getAddrSpaceCast(C
, Ty
, OnlyIfReduced
);
1600 Constant
*ConstantExpr::getZExtOrBitCast(Constant
*C
, Type
*Ty
) {
1601 if (C
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
1602 return getBitCast(C
, Ty
);
1603 return getZExt(C
, Ty
);
1606 Constant
*ConstantExpr::getSExtOrBitCast(Constant
*C
, Type
*Ty
) {
1607 if (C
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
1608 return getBitCast(C
, Ty
);
1609 return getSExt(C
, Ty
);
1612 Constant
*ConstantExpr::getTruncOrBitCast(Constant
*C
, Type
*Ty
) {
1613 if (C
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
1614 return getBitCast(C
, Ty
);
1615 return getTrunc(C
, Ty
);
1618 Constant
*ConstantExpr::getPointerCast(Constant
*S
, Type
*Ty
) {
1619 assert(S
->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1620 assert((Ty
->isIntOrIntVectorTy() || Ty
->isPtrOrPtrVectorTy()) &&
1623 if (Ty
->isIntOrIntVectorTy())
1624 return getPtrToInt(S
, Ty
);
1626 unsigned SrcAS
= S
->getType()->getPointerAddressSpace();
1627 if (Ty
->isPtrOrPtrVectorTy() && SrcAS
!= Ty
->getPointerAddressSpace())
1628 return getAddrSpaceCast(S
, Ty
);
1630 return getBitCast(S
, Ty
);
1633 Constant
*ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant
*S
,
1635 assert(S
->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1636 assert(Ty
->isPtrOrPtrVectorTy() && "Invalid cast");
1638 if (S
->getType()->getPointerAddressSpace() != Ty
->getPointerAddressSpace())
1639 return getAddrSpaceCast(S
, Ty
);
1641 return getBitCast(S
, Ty
);
1644 Constant
*ConstantExpr::getIntegerCast(Constant
*C
, Type
*Ty
, bool isSigned
) {
1645 assert(C
->getType()->isIntOrIntVectorTy() &&
1646 Ty
->isIntOrIntVectorTy() && "Invalid cast");
1647 unsigned SrcBits
= C
->getType()->getScalarSizeInBits();
1648 unsigned DstBits
= Ty
->getScalarSizeInBits();
1649 Instruction::CastOps opcode
=
1650 (SrcBits
== DstBits
? Instruction::BitCast
:
1651 (SrcBits
> DstBits
? Instruction::Trunc
:
1652 (isSigned
? Instruction::SExt
: Instruction::ZExt
)));
1653 return getCast(opcode
, C
, Ty
);
1656 Constant
*ConstantExpr::getFPCast(Constant
*C
, Type
*Ty
) {
1657 assert(C
->getType()->isFPOrFPVectorTy() && Ty
->isFPOrFPVectorTy() &&
1659 unsigned SrcBits
= C
->getType()->getScalarSizeInBits();
1660 unsigned DstBits
= Ty
->getScalarSizeInBits();
1661 if (SrcBits
== DstBits
)
1662 return C
; // Avoid a useless cast
1663 Instruction::CastOps opcode
=
1664 (SrcBits
> DstBits
? Instruction::FPTrunc
: Instruction::FPExt
);
1665 return getCast(opcode
, C
, Ty
);
1668 Constant
*ConstantExpr::getTrunc(Constant
*C
, Type
*Ty
, bool OnlyIfReduced
) {
1670 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1671 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1673 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1674 assert(C
->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1675 assert(Ty
->isIntOrIntVectorTy() && "Trunc produces only integral");
1676 assert(C
->getType()->getScalarSizeInBits() > Ty
->getScalarSizeInBits()&&
1677 "SrcTy must be larger than DestTy for Trunc!");
1679 return getFoldedCast(Instruction::Trunc
, C
, Ty
, OnlyIfReduced
);
1682 Constant
*ConstantExpr::getSExt(Constant
*C
, Type
*Ty
, bool OnlyIfReduced
) {
1684 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1685 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1687 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1688 assert(C
->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1689 assert(Ty
->isIntOrIntVectorTy() && "SExt produces only integer");
1690 assert(C
->getType()->getScalarSizeInBits() < Ty
->getScalarSizeInBits()&&
1691 "SrcTy must be smaller than DestTy for SExt!");
1693 return getFoldedCast(Instruction::SExt
, C
, Ty
, OnlyIfReduced
);
1696 Constant
*ConstantExpr::getZExt(Constant
*C
, Type
*Ty
, bool OnlyIfReduced
) {
1698 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1699 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1701 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1702 assert(C
->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1703 assert(Ty
->isIntOrIntVectorTy() && "ZExt produces only integer");
1704 assert(C
->getType()->getScalarSizeInBits() < Ty
->getScalarSizeInBits()&&
1705 "SrcTy must be smaller than DestTy for ZExt!");
1707 return getFoldedCast(Instruction::ZExt
, C
, Ty
, OnlyIfReduced
);
1710 Constant
*ConstantExpr::getFPTrunc(Constant
*C
, Type
*Ty
, bool OnlyIfReduced
) {
1712 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1713 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1715 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1716 assert(C
->getType()->isFPOrFPVectorTy() && Ty
->isFPOrFPVectorTy() &&
1717 C
->getType()->getScalarSizeInBits() > Ty
->getScalarSizeInBits()&&
1718 "This is an illegal floating point truncation!");
1719 return getFoldedCast(Instruction::FPTrunc
, C
, Ty
, OnlyIfReduced
);
1722 Constant
*ConstantExpr::getFPExtend(Constant
*C
, Type
*Ty
, bool OnlyIfReduced
) {
1724 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1725 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1727 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1728 assert(C
->getType()->isFPOrFPVectorTy() && Ty
->isFPOrFPVectorTy() &&
1729 C
->getType()->getScalarSizeInBits() < Ty
->getScalarSizeInBits()&&
1730 "This is an illegal floating point extension!");
1731 return getFoldedCast(Instruction::FPExt
, C
, Ty
, OnlyIfReduced
);
1734 Constant
*ConstantExpr::getUIToFP(Constant
*C
, Type
*Ty
, bool OnlyIfReduced
) {
1736 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1737 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1739 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1740 assert(C
->getType()->isIntOrIntVectorTy() && Ty
->isFPOrFPVectorTy() &&
1741 "This is an illegal uint to floating point cast!");
1742 return getFoldedCast(Instruction::UIToFP
, C
, Ty
, OnlyIfReduced
);
1745 Constant
*ConstantExpr::getSIToFP(Constant
*C
, Type
*Ty
, bool OnlyIfReduced
) {
1747 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1748 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1750 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1751 assert(C
->getType()->isIntOrIntVectorTy() && Ty
->isFPOrFPVectorTy() &&
1752 "This is an illegal sint to floating point cast!");
1753 return getFoldedCast(Instruction::SIToFP
, C
, Ty
, OnlyIfReduced
);
1756 Constant
*ConstantExpr::getFPToUI(Constant
*C
, Type
*Ty
, bool OnlyIfReduced
) {
1758 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1759 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1761 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1762 assert(C
->getType()->isFPOrFPVectorTy() && Ty
->isIntOrIntVectorTy() &&
1763 "This is an illegal floating point to uint cast!");
1764 return getFoldedCast(Instruction::FPToUI
, C
, Ty
, OnlyIfReduced
);
1767 Constant
*ConstantExpr::getFPToSI(Constant
*C
, Type
*Ty
, bool OnlyIfReduced
) {
1769 bool fromVec
= C
->getType()->getTypeID() == Type::VectorTyID
;
1770 bool toVec
= Ty
->getTypeID() == Type::VectorTyID
;
1772 assert((fromVec
== toVec
) && "Cannot convert from scalar to/from vector");
1773 assert(C
->getType()->isFPOrFPVectorTy() && Ty
->isIntOrIntVectorTy() &&
1774 "This is an illegal floating point to sint cast!");
1775 return getFoldedCast(Instruction::FPToSI
, C
, Ty
, OnlyIfReduced
);
1778 Constant
*ConstantExpr::getPtrToInt(Constant
*C
, Type
*DstTy
,
1779 bool OnlyIfReduced
) {
1780 assert(C
->getType()->isPtrOrPtrVectorTy() &&
1781 "PtrToInt source must be pointer or pointer vector");
1782 assert(DstTy
->isIntOrIntVectorTy() &&
1783 "PtrToInt destination must be integer or integer vector");
1784 assert(isa
<VectorType
>(C
->getType()) == isa
<VectorType
>(DstTy
));
1785 if (isa
<VectorType
>(C
->getType()))
1786 assert(C
->getType()->getVectorNumElements()==DstTy
->getVectorNumElements()&&
1787 "Invalid cast between a different number of vector elements");
1788 return getFoldedCast(Instruction::PtrToInt
, C
, DstTy
, OnlyIfReduced
);
1791 Constant
*ConstantExpr::getIntToPtr(Constant
*C
, Type
*DstTy
,
1792 bool OnlyIfReduced
) {
1793 assert(C
->getType()->isIntOrIntVectorTy() &&
1794 "IntToPtr source must be integer or integer vector");
1795 assert(DstTy
->isPtrOrPtrVectorTy() &&
1796 "IntToPtr destination must be a pointer or pointer vector");
1797 assert(isa
<VectorType
>(C
->getType()) == isa
<VectorType
>(DstTy
));
1798 if (isa
<VectorType
>(C
->getType()))
1799 assert(C
->getType()->getVectorNumElements()==DstTy
->getVectorNumElements()&&
1800 "Invalid cast between a different number of vector elements");
1801 return getFoldedCast(Instruction::IntToPtr
, C
, DstTy
, OnlyIfReduced
);
1804 Constant
*ConstantExpr::getBitCast(Constant
*C
, Type
*DstTy
,
1805 bool OnlyIfReduced
) {
1806 assert(CastInst::castIsValid(Instruction::BitCast
, C
, DstTy
) &&
1807 "Invalid constantexpr bitcast!");
1809 // It is common to ask for a bitcast of a value to its own type, handle this
1811 if (C
->getType() == DstTy
) return C
;
1813 return getFoldedCast(Instruction::BitCast
, C
, DstTy
, OnlyIfReduced
);
1816 Constant
*ConstantExpr::getAddrSpaceCast(Constant
*C
, Type
*DstTy
,
1817 bool OnlyIfReduced
) {
1818 assert(CastInst::castIsValid(Instruction::AddrSpaceCast
, C
, DstTy
) &&
1819 "Invalid constantexpr addrspacecast!");
1821 // Canonicalize addrspacecasts between different pointer types by first
1822 // bitcasting the pointer type and then converting the address space.
1823 PointerType
*SrcScalarTy
= cast
<PointerType
>(C
->getType()->getScalarType());
1824 PointerType
*DstScalarTy
= cast
<PointerType
>(DstTy
->getScalarType());
1825 Type
*DstElemTy
= DstScalarTy
->getElementType();
1826 if (SrcScalarTy
->getElementType() != DstElemTy
) {
1827 Type
*MidTy
= PointerType::get(DstElemTy
, SrcScalarTy
->getAddressSpace());
1828 if (VectorType
*VT
= dyn_cast
<VectorType
>(DstTy
)) {
1829 // Handle vectors of pointers.
1830 MidTy
= VectorType::get(MidTy
, VT
->getNumElements());
1832 C
= getBitCast(C
, MidTy
);
1834 return getFoldedCast(Instruction::AddrSpaceCast
, C
, DstTy
, OnlyIfReduced
);
1837 Constant
*ConstantExpr::get(unsigned Opcode
, Constant
*C
, unsigned Flags
,
1838 Type
*OnlyIfReducedTy
) {
1839 // Check the operands for consistency first.
1840 assert(Instruction::isUnaryOp(Opcode
) &&
1841 "Invalid opcode in unary constant expression");
1845 case Instruction::FNeg
:
1846 assert(C
->getType()->isFPOrFPVectorTy() &&
1847 "Tried to create a floating-point operation on a "
1848 "non-floating-point type!");
1855 if (Constant
*FC
= ConstantFoldUnaryInstruction(Opcode
, C
))
1858 if (OnlyIfReducedTy
== C
->getType())
1861 Constant
*ArgVec
[] = { C
};
1862 ConstantExprKeyType
Key(Opcode
, ArgVec
, 0, Flags
);
1864 LLVMContextImpl
*pImpl
= C
->getContext().pImpl
;
1865 return pImpl
->ExprConstants
.getOrCreate(C
->getType(), Key
);
1868 Constant
*ConstantExpr::get(unsigned Opcode
, Constant
*C1
, Constant
*C2
,
1869 unsigned Flags
, Type
*OnlyIfReducedTy
) {
1870 // Check the operands for consistency first.
1871 assert(Instruction::isBinaryOp(Opcode
) &&
1872 "Invalid opcode in binary constant expression");
1873 assert(C1
->getType() == C2
->getType() &&
1874 "Operand types in binary constant expression should match");
1878 case Instruction::Add
:
1879 case Instruction::Sub
:
1880 case Instruction::Mul
:
1881 case Instruction::UDiv
:
1882 case Instruction::SDiv
:
1883 case Instruction::URem
:
1884 case Instruction::SRem
:
1885 assert(C1
->getType()->isIntOrIntVectorTy() &&
1886 "Tried to create an integer operation on a non-integer type!");
1888 case Instruction::FAdd
:
1889 case Instruction::FSub
:
1890 case Instruction::FMul
:
1891 case Instruction::FDiv
:
1892 case Instruction::FRem
:
1893 assert(C1
->getType()->isFPOrFPVectorTy() &&
1894 "Tried to create a floating-point operation on a "
1895 "non-floating-point type!");
1897 case Instruction::And
:
1898 case Instruction::Or
:
1899 case Instruction::Xor
:
1900 assert(C1
->getType()->isIntOrIntVectorTy() &&
1901 "Tried to create a logical operation on a non-integral type!");
1903 case Instruction::Shl
:
1904 case Instruction::LShr
:
1905 case Instruction::AShr
:
1906 assert(C1
->getType()->isIntOrIntVectorTy() &&
1907 "Tried to create a shift operation on a non-integer type!");
1914 if (Constant
*FC
= ConstantFoldBinaryInstruction(Opcode
, C1
, C2
))
1917 if (OnlyIfReducedTy
== C1
->getType())
1920 Constant
*ArgVec
[] = { C1
, C2
};
1921 ConstantExprKeyType
Key(Opcode
, ArgVec
, 0, Flags
);
1923 LLVMContextImpl
*pImpl
= C1
->getContext().pImpl
;
1924 return pImpl
->ExprConstants
.getOrCreate(C1
->getType(), Key
);
1927 Constant
*ConstantExpr::getSizeOf(Type
* Ty
) {
1928 // sizeof is implemented as: (i64) gep (Ty*)null, 1
1929 // Note that a non-inbounds gep is used, as null isn't within any object.
1930 Constant
*GEPIdx
= ConstantInt::get(Type::getInt32Ty(Ty
->getContext()), 1);
1931 Constant
*GEP
= getGetElementPtr(
1932 Ty
, Constant::getNullValue(PointerType::getUnqual(Ty
)), GEPIdx
);
1933 return getPtrToInt(GEP
,
1934 Type::getInt64Ty(Ty
->getContext()));
1937 Constant
*ConstantExpr::getAlignOf(Type
* Ty
) {
1938 // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
1939 // Note that a non-inbounds gep is used, as null isn't within any object.
1940 Type
*AligningTy
= StructType::get(Type::getInt1Ty(Ty
->getContext()), Ty
);
1941 Constant
*NullPtr
= Constant::getNullValue(AligningTy
->getPointerTo(0));
1942 Constant
*Zero
= ConstantInt::get(Type::getInt64Ty(Ty
->getContext()), 0);
1943 Constant
*One
= ConstantInt::get(Type::getInt32Ty(Ty
->getContext()), 1);
1944 Constant
*Indices
[2] = { Zero
, One
};
1945 Constant
*GEP
= getGetElementPtr(AligningTy
, NullPtr
, Indices
);
1946 return getPtrToInt(GEP
,
1947 Type::getInt64Ty(Ty
->getContext()));
1950 Constant
*ConstantExpr::getOffsetOf(StructType
* STy
, unsigned FieldNo
) {
1951 return getOffsetOf(STy
, ConstantInt::get(Type::getInt32Ty(STy
->getContext()),
1955 Constant
*ConstantExpr::getOffsetOf(Type
* Ty
, Constant
*FieldNo
) {
1956 // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1957 // Note that a non-inbounds gep is used, as null isn't within any object.
1958 Constant
*GEPIdx
[] = {
1959 ConstantInt::get(Type::getInt64Ty(Ty
->getContext()), 0),
1962 Constant
*GEP
= getGetElementPtr(
1963 Ty
, Constant::getNullValue(PointerType::getUnqual(Ty
)), GEPIdx
);
1964 return getPtrToInt(GEP
,
1965 Type::getInt64Ty(Ty
->getContext()));
1968 Constant
*ConstantExpr::getCompare(unsigned short Predicate
, Constant
*C1
,
1969 Constant
*C2
, bool OnlyIfReduced
) {
1970 assert(C1
->getType() == C2
->getType() && "Op types should be identical!");
1972 switch (Predicate
) {
1973 default: llvm_unreachable("Invalid CmpInst predicate");
1974 case CmpInst::FCMP_FALSE
: case CmpInst::FCMP_OEQ
: case CmpInst::FCMP_OGT
:
1975 case CmpInst::FCMP_OGE
: case CmpInst::FCMP_OLT
: case CmpInst::FCMP_OLE
:
1976 case CmpInst::FCMP_ONE
: case CmpInst::FCMP_ORD
: case CmpInst::FCMP_UNO
:
1977 case CmpInst::FCMP_UEQ
: case CmpInst::FCMP_UGT
: case CmpInst::FCMP_UGE
:
1978 case CmpInst::FCMP_ULT
: case CmpInst::FCMP_ULE
: case CmpInst::FCMP_UNE
:
1979 case CmpInst::FCMP_TRUE
:
1980 return getFCmp(Predicate
, C1
, C2
, OnlyIfReduced
);
1982 case CmpInst::ICMP_EQ
: case CmpInst::ICMP_NE
: case CmpInst::ICMP_UGT
:
1983 case CmpInst::ICMP_UGE
: case CmpInst::ICMP_ULT
: case CmpInst::ICMP_ULE
:
1984 case CmpInst::ICMP_SGT
: case CmpInst::ICMP_SGE
: case CmpInst::ICMP_SLT
:
1985 case CmpInst::ICMP_SLE
:
1986 return getICmp(Predicate
, C1
, C2
, OnlyIfReduced
);
1990 Constant
*ConstantExpr::getSelect(Constant
*C
, Constant
*V1
, Constant
*V2
,
1991 Type
*OnlyIfReducedTy
) {
1992 assert(!SelectInst::areInvalidOperands(C
, V1
, V2
)&&"Invalid select operands");
1994 if (Constant
*SC
= ConstantFoldSelectInstruction(C
, V1
, V2
))
1995 return SC
; // Fold common cases
1997 if (OnlyIfReducedTy
== V1
->getType())
2000 Constant
*ArgVec
[] = { C
, V1
, V2
};
2001 ConstantExprKeyType
Key(Instruction::Select
, ArgVec
);
2003 LLVMContextImpl
*pImpl
= C
->getContext().pImpl
;
2004 return pImpl
->ExprConstants
.getOrCreate(V1
->getType(), Key
);
2007 Constant
*ConstantExpr::getGetElementPtr(Type
*Ty
, Constant
*C
,
2008 ArrayRef
<Value
*> Idxs
, bool InBounds
,
2009 Optional
<unsigned> InRangeIndex
,
2010 Type
*OnlyIfReducedTy
) {
2012 Ty
= cast
<PointerType
>(C
->getType()->getScalarType())->getElementType();
2015 cast
<PointerType
>(C
->getType()->getScalarType())->getElementType());
2018 ConstantFoldGetElementPtr(Ty
, C
, InBounds
, InRangeIndex
, Idxs
))
2019 return FC
; // Fold a few common cases.
2021 // Get the result type of the getelementptr!
2022 Type
*DestTy
= GetElementPtrInst::getIndexedType(Ty
, Idxs
);
2023 assert(DestTy
&& "GEP indices invalid!");
2024 unsigned AS
= C
->getType()->getPointerAddressSpace();
2025 Type
*ReqTy
= DestTy
->getPointerTo(AS
);
2027 unsigned NumVecElts
= 0;
2028 if (C
->getType()->isVectorTy())
2029 NumVecElts
= C
->getType()->getVectorNumElements();
2030 else for (auto Idx
: Idxs
)
2031 if (Idx
->getType()->isVectorTy())
2032 NumVecElts
= Idx
->getType()->getVectorNumElements();
2035 ReqTy
= VectorType::get(ReqTy
, NumVecElts
);
2037 if (OnlyIfReducedTy
== ReqTy
)
2040 // Look up the constant in the table first to ensure uniqueness
2041 std::vector
<Constant
*> ArgVec
;
2042 ArgVec
.reserve(1 + Idxs
.size());
2043 ArgVec
.push_back(C
);
2044 for (unsigned i
= 0, e
= Idxs
.size(); i
!= e
; ++i
) {
2045 assert((!Idxs
[i
]->getType()->isVectorTy() ||
2046 Idxs
[i
]->getType()->getVectorNumElements() == NumVecElts
) &&
2047 "getelementptr index type missmatch");
2049 Constant
*Idx
= cast
<Constant
>(Idxs
[i
]);
2050 if (NumVecElts
&& !Idxs
[i
]->getType()->isVectorTy())
2051 Idx
= ConstantVector::getSplat(NumVecElts
, Idx
);
2052 ArgVec
.push_back(Idx
);
2055 unsigned SubClassOptionalData
= InBounds
? GEPOperator::IsInBounds
: 0;
2056 if (InRangeIndex
&& *InRangeIndex
< 63)
2057 SubClassOptionalData
|= (*InRangeIndex
+ 1) << 1;
2058 const ConstantExprKeyType
Key(Instruction::GetElementPtr
, ArgVec
, 0,
2059 SubClassOptionalData
, None
, Ty
);
2061 LLVMContextImpl
*pImpl
= C
->getContext().pImpl
;
2062 return pImpl
->ExprConstants
.getOrCreate(ReqTy
, Key
);
2065 Constant
*ConstantExpr::getICmp(unsigned short pred
, Constant
*LHS
,
2066 Constant
*RHS
, bool OnlyIfReduced
) {
2067 assert(LHS
->getType() == RHS
->getType());
2068 assert(CmpInst::isIntPredicate((CmpInst::Predicate
)pred
) &&
2069 "Invalid ICmp Predicate");
2071 if (Constant
*FC
= ConstantFoldCompareInstruction(pred
, LHS
, RHS
))
2072 return FC
; // Fold a few common cases...
2077 // Look up the constant in the table first to ensure uniqueness
2078 Constant
*ArgVec
[] = { LHS
, RHS
};
2079 // Get the key type with both the opcode and predicate
2080 const ConstantExprKeyType
Key(Instruction::ICmp
, ArgVec
, pred
);
2082 Type
*ResultTy
= Type::getInt1Ty(LHS
->getContext());
2083 if (VectorType
*VT
= dyn_cast
<VectorType
>(LHS
->getType()))
2084 ResultTy
= VectorType::get(ResultTy
, VT
->getNumElements());
2086 LLVMContextImpl
*pImpl
= LHS
->getType()->getContext().pImpl
;
2087 return pImpl
->ExprConstants
.getOrCreate(ResultTy
, Key
);
2090 Constant
*ConstantExpr::getFCmp(unsigned short pred
, Constant
*LHS
,
2091 Constant
*RHS
, bool OnlyIfReduced
) {
2092 assert(LHS
->getType() == RHS
->getType());
2093 assert(CmpInst::isFPPredicate((CmpInst::Predicate
)pred
) &&
2094 "Invalid FCmp Predicate");
2096 if (Constant
*FC
= ConstantFoldCompareInstruction(pred
, LHS
, RHS
))
2097 return FC
; // Fold a few common cases...
2102 // Look up the constant in the table first to ensure uniqueness
2103 Constant
*ArgVec
[] = { LHS
, RHS
};
2104 // Get the key type with both the opcode and predicate
2105 const ConstantExprKeyType
Key(Instruction::FCmp
, ArgVec
, pred
);
2107 Type
*ResultTy
= Type::getInt1Ty(LHS
->getContext());
2108 if (VectorType
*VT
= dyn_cast
<VectorType
>(LHS
->getType()))
2109 ResultTy
= VectorType::get(ResultTy
, VT
->getNumElements());
2111 LLVMContextImpl
*pImpl
= LHS
->getType()->getContext().pImpl
;
2112 return pImpl
->ExprConstants
.getOrCreate(ResultTy
, Key
);
2115 Constant
*ConstantExpr::getExtractElement(Constant
*Val
, Constant
*Idx
,
2116 Type
*OnlyIfReducedTy
) {
2117 assert(Val
->getType()->isVectorTy() &&
2118 "Tried to create extractelement operation on non-vector type!");
2119 assert(Idx
->getType()->isIntegerTy() &&
2120 "Extractelement index must be an integer type!");
2122 if (Constant
*FC
= ConstantFoldExtractElementInstruction(Val
, Idx
))
2123 return FC
; // Fold a few common cases.
2125 Type
*ReqTy
= Val
->getType()->getVectorElementType();
2126 if (OnlyIfReducedTy
== ReqTy
)
2129 // Look up the constant in the table first to ensure uniqueness
2130 Constant
*ArgVec
[] = { Val
, Idx
};
2131 const ConstantExprKeyType
Key(Instruction::ExtractElement
, ArgVec
);
2133 LLVMContextImpl
*pImpl
= Val
->getContext().pImpl
;
2134 return pImpl
->ExprConstants
.getOrCreate(ReqTy
, Key
);
2137 Constant
*ConstantExpr::getInsertElement(Constant
*Val
, Constant
*Elt
,
2138 Constant
*Idx
, Type
*OnlyIfReducedTy
) {
2139 assert(Val
->getType()->isVectorTy() &&
2140 "Tried to create insertelement operation on non-vector type!");
2141 assert(Elt
->getType() == Val
->getType()->getVectorElementType() &&
2142 "Insertelement types must match!");
2143 assert(Idx
->getType()->isIntegerTy() &&
2144 "Insertelement index must be i32 type!");
2146 if (Constant
*FC
= ConstantFoldInsertElementInstruction(Val
, Elt
, Idx
))
2147 return FC
; // Fold a few common cases.
2149 if (OnlyIfReducedTy
== Val
->getType())
2152 // Look up the constant in the table first to ensure uniqueness
2153 Constant
*ArgVec
[] = { Val
, Elt
, Idx
};
2154 const ConstantExprKeyType
Key(Instruction::InsertElement
, ArgVec
);
2156 LLVMContextImpl
*pImpl
= Val
->getContext().pImpl
;
2157 return pImpl
->ExprConstants
.getOrCreate(Val
->getType(), Key
);
2160 Constant
*ConstantExpr::getShuffleVector(Constant
*V1
, Constant
*V2
,
2161 Constant
*Mask
, Type
*OnlyIfReducedTy
) {
2162 assert(ShuffleVectorInst::isValidOperands(V1
, V2
, Mask
) &&
2163 "Invalid shuffle vector constant expr operands!");
2165 if (Constant
*FC
= ConstantFoldShuffleVectorInstruction(V1
, V2
, Mask
))
2166 return FC
; // Fold a few common cases.
2168 unsigned NElts
= Mask
->getType()->getVectorNumElements();
2169 Type
*EltTy
= V1
->getType()->getVectorElementType();
2170 Type
*ShufTy
= VectorType::get(EltTy
, NElts
);
2172 if (OnlyIfReducedTy
== ShufTy
)
2175 // Look up the constant in the table first to ensure uniqueness
2176 Constant
*ArgVec
[] = { V1
, V2
, Mask
};
2177 const ConstantExprKeyType
Key(Instruction::ShuffleVector
, ArgVec
);
2179 LLVMContextImpl
*pImpl
= ShufTy
->getContext().pImpl
;
2180 return pImpl
->ExprConstants
.getOrCreate(ShufTy
, Key
);
2183 Constant
*ConstantExpr::getInsertValue(Constant
*Agg
, Constant
*Val
,
2184 ArrayRef
<unsigned> Idxs
,
2185 Type
*OnlyIfReducedTy
) {
2186 assert(Agg
->getType()->isFirstClassType() &&
2187 "Non-first-class type for constant insertvalue expression");
2189 assert(ExtractValueInst::getIndexedType(Agg
->getType(),
2190 Idxs
) == Val
->getType() &&
2191 "insertvalue indices invalid!");
2192 Type
*ReqTy
= Val
->getType();
2194 if (Constant
*FC
= ConstantFoldInsertValueInstruction(Agg
, Val
, Idxs
))
2197 if (OnlyIfReducedTy
== ReqTy
)
2200 Constant
*ArgVec
[] = { Agg
, Val
};
2201 const ConstantExprKeyType
Key(Instruction::InsertValue
, ArgVec
, 0, 0, Idxs
);
2203 LLVMContextImpl
*pImpl
= Agg
->getContext().pImpl
;
2204 return pImpl
->ExprConstants
.getOrCreate(ReqTy
, Key
);
2207 Constant
*ConstantExpr::getExtractValue(Constant
*Agg
, ArrayRef
<unsigned> Idxs
,
2208 Type
*OnlyIfReducedTy
) {
2209 assert(Agg
->getType()->isFirstClassType() &&
2210 "Tried to create extractelement operation on non-first-class type!");
2212 Type
*ReqTy
= ExtractValueInst::getIndexedType(Agg
->getType(), Idxs
);
2214 assert(ReqTy
&& "extractvalue indices invalid!");
2216 assert(Agg
->getType()->isFirstClassType() &&
2217 "Non-first-class type for constant extractvalue expression");
2218 if (Constant
*FC
= ConstantFoldExtractValueInstruction(Agg
, Idxs
))
2221 if (OnlyIfReducedTy
== ReqTy
)
2224 Constant
*ArgVec
[] = { Agg
};
2225 const ConstantExprKeyType
Key(Instruction::ExtractValue
, ArgVec
, 0, 0, Idxs
);
2227 LLVMContextImpl
*pImpl
= Agg
->getContext().pImpl
;
2228 return pImpl
->ExprConstants
.getOrCreate(ReqTy
, Key
);
2231 Constant
*ConstantExpr::getNeg(Constant
*C
, bool HasNUW
, bool HasNSW
) {
2232 assert(C
->getType()->isIntOrIntVectorTy() &&
2233 "Cannot NEG a nonintegral value!");
2234 return getSub(ConstantFP::getZeroValueForNegation(C
->getType()),
2238 Constant
*ConstantExpr::getFNeg(Constant
*C
) {
2239 assert(C
->getType()->isFPOrFPVectorTy() &&
2240 "Cannot FNEG a non-floating-point value!");
2241 return get(Instruction::FNeg
, C
);
2244 Constant
*ConstantExpr::getNot(Constant
*C
) {
2245 assert(C
->getType()->isIntOrIntVectorTy() &&
2246 "Cannot NOT a nonintegral value!");
2247 return get(Instruction::Xor
, C
, Constant::getAllOnesValue(C
->getType()));
2250 Constant
*ConstantExpr::getAdd(Constant
*C1
, Constant
*C2
,
2251 bool HasNUW
, bool HasNSW
) {
2252 unsigned Flags
= (HasNUW
? OverflowingBinaryOperator::NoUnsignedWrap
: 0) |
2253 (HasNSW
? OverflowingBinaryOperator::NoSignedWrap
: 0);
2254 return get(Instruction::Add
, C1
, C2
, Flags
);
2257 Constant
*ConstantExpr::getFAdd(Constant
*C1
, Constant
*C2
) {
2258 return get(Instruction::FAdd
, C1
, C2
);
2261 Constant
*ConstantExpr::getSub(Constant
*C1
, Constant
*C2
,
2262 bool HasNUW
, bool HasNSW
) {
2263 unsigned Flags
= (HasNUW
? OverflowingBinaryOperator::NoUnsignedWrap
: 0) |
2264 (HasNSW
? OverflowingBinaryOperator::NoSignedWrap
: 0);
2265 return get(Instruction::Sub
, C1
, C2
, Flags
);
2268 Constant
*ConstantExpr::getFSub(Constant
*C1
, Constant
*C2
) {
2269 return get(Instruction::FSub
, C1
, C2
);
2272 Constant
*ConstantExpr::getMul(Constant
*C1
, Constant
*C2
,
2273 bool HasNUW
, bool HasNSW
) {
2274 unsigned Flags
= (HasNUW
? OverflowingBinaryOperator::NoUnsignedWrap
: 0) |
2275 (HasNSW
? OverflowingBinaryOperator::NoSignedWrap
: 0);
2276 return get(Instruction::Mul
, C1
, C2
, Flags
);
2279 Constant
*ConstantExpr::getFMul(Constant
*C1
, Constant
*C2
) {
2280 return get(Instruction::FMul
, C1
, C2
);
2283 Constant
*ConstantExpr::getUDiv(Constant
*C1
, Constant
*C2
, bool isExact
) {
2284 return get(Instruction::UDiv
, C1
, C2
,
2285 isExact
? PossiblyExactOperator::IsExact
: 0);
2288 Constant
*ConstantExpr::getSDiv(Constant
*C1
, Constant
*C2
, bool isExact
) {
2289 return get(Instruction::SDiv
, C1
, C2
,
2290 isExact
? PossiblyExactOperator::IsExact
: 0);
2293 Constant
*ConstantExpr::getFDiv(Constant
*C1
, Constant
*C2
) {
2294 return get(Instruction::FDiv
, C1
, C2
);
2297 Constant
*ConstantExpr::getURem(Constant
*C1
, Constant
*C2
) {
2298 return get(Instruction::URem
, C1
, C2
);
2301 Constant
*ConstantExpr::getSRem(Constant
*C1
, Constant
*C2
) {
2302 return get(Instruction::SRem
, C1
, C2
);
2305 Constant
*ConstantExpr::getFRem(Constant
*C1
, Constant
*C2
) {
2306 return get(Instruction::FRem
, C1
, C2
);
2309 Constant
*ConstantExpr::getAnd(Constant
*C1
, Constant
*C2
) {
2310 return get(Instruction::And
, C1
, C2
);
2313 Constant
*ConstantExpr::getOr(Constant
*C1
, Constant
*C2
) {
2314 return get(Instruction::Or
, C1
, C2
);
2317 Constant
*ConstantExpr::getXor(Constant
*C1
, Constant
*C2
) {
2318 return get(Instruction::Xor
, C1
, C2
);
2321 Constant
*ConstantExpr::getShl(Constant
*C1
, Constant
*C2
,
2322 bool HasNUW
, bool HasNSW
) {
2323 unsigned Flags
= (HasNUW
? OverflowingBinaryOperator::NoUnsignedWrap
: 0) |
2324 (HasNSW
? OverflowingBinaryOperator::NoSignedWrap
: 0);
2325 return get(Instruction::Shl
, C1
, C2
, Flags
);
2328 Constant
*ConstantExpr::getLShr(Constant
*C1
, Constant
*C2
, bool isExact
) {
2329 return get(Instruction::LShr
, C1
, C2
,
2330 isExact
? PossiblyExactOperator::IsExact
: 0);
2333 Constant
*ConstantExpr::getAShr(Constant
*C1
, Constant
*C2
, bool isExact
) {
2334 return get(Instruction::AShr
, C1
, C2
,
2335 isExact
? PossiblyExactOperator::IsExact
: 0);
2338 Constant
*ConstantExpr::getBinOpIdentity(unsigned Opcode
, Type
*Ty
,
2339 bool AllowRHSConstant
) {
2340 assert(Instruction::isBinaryOp(Opcode
) && "Only binops allowed");
2342 // Commutative opcodes: it does not matter if AllowRHSConstant is set.
2343 if (Instruction::isCommutative(Opcode
)) {
2345 case Instruction::Add
: // X + 0 = X
2346 case Instruction::Or
: // X | 0 = X
2347 case Instruction::Xor
: // X ^ 0 = X
2348 return Constant::getNullValue(Ty
);
2349 case Instruction::Mul
: // X * 1 = X
2350 return ConstantInt::get(Ty
, 1);
2351 case Instruction::And
: // X & -1 = X
2352 return Constant::getAllOnesValue(Ty
);
2353 case Instruction::FAdd
: // X + -0.0 = X
2354 // TODO: If the fadd has 'nsz', should we return +0.0?
2355 return ConstantFP::getNegativeZero(Ty
);
2356 case Instruction::FMul
: // X * 1.0 = X
2357 return ConstantFP::get(Ty
, 1.0);
2359 llvm_unreachable("Every commutative binop has an identity constant");
2363 // Non-commutative opcodes: AllowRHSConstant must be set.
2364 if (!AllowRHSConstant
)
2368 case Instruction::Sub
: // X - 0 = X
2369 case Instruction::Shl
: // X << 0 = X
2370 case Instruction::LShr
: // X >>u 0 = X
2371 case Instruction::AShr
: // X >> 0 = X
2372 case Instruction::FSub
: // X - 0.0 = X
2373 return Constant::getNullValue(Ty
);
2374 case Instruction::SDiv
: // X / 1 = X
2375 case Instruction::UDiv
: // X /u 1 = X
2376 return ConstantInt::get(Ty
, 1);
2377 case Instruction::FDiv
: // X / 1.0 = X
2378 return ConstantFP::get(Ty
, 1.0);
2384 Constant
*ConstantExpr::getBinOpAbsorber(unsigned Opcode
, Type
*Ty
) {
2387 // Doesn't have an absorber.
2390 case Instruction::Or
:
2391 return Constant::getAllOnesValue(Ty
);
2393 case Instruction::And
:
2394 case Instruction::Mul
:
2395 return Constant::getNullValue(Ty
);
2399 /// Remove the constant from the constant table.
2400 void ConstantExpr::destroyConstantImpl() {
2401 getType()->getContext().pImpl
->ExprConstants
.remove(this);
2404 const char *ConstantExpr::getOpcodeName() const {
2405 return Instruction::getOpcodeName(getOpcode());
2408 GetElementPtrConstantExpr::GetElementPtrConstantExpr(
2409 Type
*SrcElementTy
, Constant
*C
, ArrayRef
<Constant
*> IdxList
, Type
*DestTy
)
2410 : ConstantExpr(DestTy
, Instruction::GetElementPtr
,
2411 OperandTraits
<GetElementPtrConstantExpr
>::op_end(this) -
2412 (IdxList
.size() + 1),
2413 IdxList
.size() + 1),
2414 SrcElementTy(SrcElementTy
),
2415 ResElementTy(GetElementPtrInst::getIndexedType(SrcElementTy
, IdxList
)) {
2417 Use
*OperandList
= getOperandList();
2418 for (unsigned i
= 0, E
= IdxList
.size(); i
!= E
; ++i
)
2419 OperandList
[i
+1] = IdxList
[i
];
2422 Type
*GetElementPtrConstantExpr::getSourceElementType() const {
2423 return SrcElementTy
;
2426 Type
*GetElementPtrConstantExpr::getResultElementType() const {
2427 return ResElementTy
;
2430 //===----------------------------------------------------------------------===//
2431 // ConstantData* implementations
2433 Type
*ConstantDataSequential::getElementType() const {
2434 return getType()->getElementType();
2437 StringRef
ConstantDataSequential::getRawDataValues() const {
2438 return StringRef(DataElements
, getNumElements()*getElementByteSize());
2441 bool ConstantDataSequential::isElementTypeCompatible(Type
*Ty
) {
2442 if (Ty
->isHalfTy() || Ty
->isFloatTy() || Ty
->isDoubleTy()) return true;
2443 if (auto *IT
= dyn_cast
<IntegerType
>(Ty
)) {
2444 switch (IT
->getBitWidth()) {
2456 unsigned ConstantDataSequential::getNumElements() const {
2457 if (ArrayType
*AT
= dyn_cast
<ArrayType
>(getType()))
2458 return AT
->getNumElements();
2459 return getType()->getVectorNumElements();
2463 uint64_t ConstantDataSequential::getElementByteSize() const {
2464 return getElementType()->getPrimitiveSizeInBits()/8;
2467 /// Return the start of the specified element.
2468 const char *ConstantDataSequential::getElementPointer(unsigned Elt
) const {
2469 assert(Elt
< getNumElements() && "Invalid Elt");
2470 return DataElements
+Elt
*getElementByteSize();
2474 /// Return true if the array is empty or all zeros.
2475 static bool isAllZeros(StringRef Arr
) {
2482 /// This is the underlying implementation of all of the
2483 /// ConstantDataSequential::get methods. They all thunk down to here, providing
2484 /// the correct element type. We take the bytes in as a StringRef because
2485 /// we *want* an underlying "char*" to avoid TBAA type punning violations.
2486 Constant
*ConstantDataSequential::getImpl(StringRef Elements
, Type
*Ty
) {
2487 assert(isElementTypeCompatible(Ty
->getSequentialElementType()));
2488 // If the elements are all zero or there are no elements, return a CAZ, which
2489 // is more dense and canonical.
2490 if (isAllZeros(Elements
))
2491 return ConstantAggregateZero::get(Ty
);
2493 // Do a lookup to see if we have already formed one of these.
2496 .pImpl
->CDSConstants
.insert(std::make_pair(Elements
, nullptr))
2499 // The bucket can point to a linked list of different CDS's that have the same
2500 // body but different types. For example, 0,0,0,1 could be a 4 element array
2501 // of i8, or a 1-element array of i32. They'll both end up in the same
2502 /// StringMap bucket, linked up by their Next pointers. Walk the list.
2503 ConstantDataSequential
**Entry
= &Slot
.second
;
2504 for (ConstantDataSequential
*Node
= *Entry
; Node
;
2505 Entry
= &Node
->Next
, Node
= *Entry
)
2506 if (Node
->getType() == Ty
)
2509 // Okay, we didn't get a hit. Create a node of the right class, link it in,
2511 if (isa
<ArrayType
>(Ty
))
2512 return *Entry
= new ConstantDataArray(Ty
, Slot
.first().data());
2514 assert(isa
<VectorType
>(Ty
));
2515 return *Entry
= new ConstantDataVector(Ty
, Slot
.first().data());
2518 void ConstantDataSequential::destroyConstantImpl() {
2519 // Remove the constant from the StringMap.
2520 StringMap
<ConstantDataSequential
*> &CDSConstants
=
2521 getType()->getContext().pImpl
->CDSConstants
;
2523 StringMap
<ConstantDataSequential
*>::iterator Slot
=
2524 CDSConstants
.find(getRawDataValues());
2526 assert(Slot
!= CDSConstants
.end() && "CDS not found in uniquing table");
2528 ConstantDataSequential
**Entry
= &Slot
->getValue();
2530 // Remove the entry from the hash table.
2531 if (!(*Entry
)->Next
) {
2532 // If there is only one value in the bucket (common case) it must be this
2533 // entry, and removing the entry should remove the bucket completely.
2534 assert((*Entry
) == this && "Hash mismatch in ConstantDataSequential");
2535 getContext().pImpl
->CDSConstants
.erase(Slot
);
2537 // Otherwise, there are multiple entries linked off the bucket, unlink the
2538 // node we care about but keep the bucket around.
2539 for (ConstantDataSequential
*Node
= *Entry
; ;
2540 Entry
= &Node
->Next
, Node
= *Entry
) {
2541 assert(Node
&& "Didn't find entry in its uniquing hash table!");
2542 // If we found our entry, unlink it from the list and we're done.
2544 *Entry
= Node
->Next
;
2550 // If we were part of a list, make sure that we don't delete the list that is
2551 // still owned by the uniquing map.
2555 /// getFP() constructors - Return a constant with array type with an element
2556 /// count and element type of float with precision matching the number of
2557 /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
2558 /// double for 64bits) Note that this can return a ConstantAggregateZero
2560 Constant
*ConstantDataArray::getFP(LLVMContext
&Context
,
2561 ArrayRef
<uint16_t> Elts
) {
2562 Type
*Ty
= ArrayType::get(Type::getHalfTy(Context
), Elts
.size());
2563 const char *Data
= reinterpret_cast<const char *>(Elts
.data());
2564 return getImpl(StringRef(Data
, Elts
.size() * 2), Ty
);
2566 Constant
*ConstantDataArray::getFP(LLVMContext
&Context
,
2567 ArrayRef
<uint32_t> Elts
) {
2568 Type
*Ty
= ArrayType::get(Type::getFloatTy(Context
), Elts
.size());
2569 const char *Data
= reinterpret_cast<const char *>(Elts
.data());
2570 return getImpl(StringRef(Data
, Elts
.size() * 4), Ty
);
2572 Constant
*ConstantDataArray::getFP(LLVMContext
&Context
,
2573 ArrayRef
<uint64_t> Elts
) {
2574 Type
*Ty
= ArrayType::get(Type::getDoubleTy(Context
), Elts
.size());
2575 const char *Data
= reinterpret_cast<const char *>(Elts
.data());
2576 return getImpl(StringRef(Data
, Elts
.size() * 8), Ty
);
2579 Constant
*ConstantDataArray::getString(LLVMContext
&Context
,
2580 StringRef Str
, bool AddNull
) {
2582 const uint8_t *Data
= Str
.bytes_begin();
2583 return get(Context
, makeArrayRef(Data
, Str
.size()));
2586 SmallVector
<uint8_t, 64> ElementVals
;
2587 ElementVals
.append(Str
.begin(), Str
.end());
2588 ElementVals
.push_back(0);
2589 return get(Context
, ElementVals
);
2592 /// get() constructors - Return a constant with vector type with an element
2593 /// count and element type matching the ArrayRef passed in. Note that this
2594 /// can return a ConstantAggregateZero object.
2595 Constant
*ConstantDataVector::get(LLVMContext
&Context
, ArrayRef
<uint8_t> Elts
){
2596 Type
*Ty
= VectorType::get(Type::getInt8Ty(Context
), Elts
.size());
2597 const char *Data
= reinterpret_cast<const char *>(Elts
.data());
2598 return getImpl(StringRef(Data
, Elts
.size() * 1), Ty
);
2600 Constant
*ConstantDataVector::get(LLVMContext
&Context
, ArrayRef
<uint16_t> Elts
){
2601 Type
*Ty
= VectorType::get(Type::getInt16Ty(Context
), Elts
.size());
2602 const char *Data
= reinterpret_cast<const char *>(Elts
.data());
2603 return getImpl(StringRef(Data
, Elts
.size() * 2), Ty
);
2605 Constant
*ConstantDataVector::get(LLVMContext
&Context
, ArrayRef
<uint32_t> Elts
){
2606 Type
*Ty
= VectorType::get(Type::getInt32Ty(Context
), Elts
.size());
2607 const char *Data
= reinterpret_cast<const char *>(Elts
.data());
2608 return getImpl(StringRef(Data
, Elts
.size() * 4), Ty
);
2610 Constant
*ConstantDataVector::get(LLVMContext
&Context
, ArrayRef
<uint64_t> Elts
){
2611 Type
*Ty
= VectorType::get(Type::getInt64Ty(Context
), Elts
.size());
2612 const char *Data
= reinterpret_cast<const char *>(Elts
.data());
2613 return getImpl(StringRef(Data
, Elts
.size() * 8), Ty
);
2615 Constant
*ConstantDataVector::get(LLVMContext
&Context
, ArrayRef
<float> Elts
) {
2616 Type
*Ty
= VectorType::get(Type::getFloatTy(Context
), Elts
.size());
2617 const char *Data
= reinterpret_cast<const char *>(Elts
.data());
2618 return getImpl(StringRef(Data
, Elts
.size() * 4), Ty
);
2620 Constant
*ConstantDataVector::get(LLVMContext
&Context
, ArrayRef
<double> Elts
) {
2621 Type
*Ty
= VectorType::get(Type::getDoubleTy(Context
), Elts
.size());
2622 const char *Data
= reinterpret_cast<const char *>(Elts
.data());
2623 return getImpl(StringRef(Data
, Elts
.size() * 8), Ty
);
2626 /// getFP() constructors - Return a constant with vector type with an element
2627 /// count and element type of float with the precision matching the number of
2628 /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
2629 /// double for 64bits) Note that this can return a ConstantAggregateZero
2631 Constant
*ConstantDataVector::getFP(LLVMContext
&Context
,
2632 ArrayRef
<uint16_t> Elts
) {
2633 Type
*Ty
= VectorType::get(Type::getHalfTy(Context
), Elts
.size());
2634 const char *Data
= reinterpret_cast<const char *>(Elts
.data());
2635 return getImpl(StringRef(Data
, Elts
.size() * 2), Ty
);
2637 Constant
*ConstantDataVector::getFP(LLVMContext
&Context
,
2638 ArrayRef
<uint32_t> Elts
) {
2639 Type
*Ty
= VectorType::get(Type::getFloatTy(Context
), Elts
.size());
2640 const char *Data
= reinterpret_cast<const char *>(Elts
.data());
2641 return getImpl(StringRef(Data
, Elts
.size() * 4), Ty
);
2643 Constant
*ConstantDataVector::getFP(LLVMContext
&Context
,
2644 ArrayRef
<uint64_t> Elts
) {
2645 Type
*Ty
= VectorType::get(Type::getDoubleTy(Context
), Elts
.size());
2646 const char *Data
= reinterpret_cast<const char *>(Elts
.data());
2647 return getImpl(StringRef(Data
, Elts
.size() * 8), Ty
);
2650 Constant
*ConstantDataVector::getSplat(unsigned NumElts
, Constant
*V
) {
2651 assert(isElementTypeCompatible(V
->getType()) &&
2652 "Element type not compatible with ConstantData");
2653 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
2654 if (CI
->getType()->isIntegerTy(8)) {
2655 SmallVector
<uint8_t, 16> Elts(NumElts
, CI
->getZExtValue());
2656 return get(V
->getContext(), Elts
);
2658 if (CI
->getType()->isIntegerTy(16)) {
2659 SmallVector
<uint16_t, 16> Elts(NumElts
, CI
->getZExtValue());
2660 return get(V
->getContext(), Elts
);
2662 if (CI
->getType()->isIntegerTy(32)) {
2663 SmallVector
<uint32_t, 16> Elts(NumElts
, CI
->getZExtValue());
2664 return get(V
->getContext(), Elts
);
2666 assert(CI
->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
2667 SmallVector
<uint64_t, 16> Elts(NumElts
, CI
->getZExtValue());
2668 return get(V
->getContext(), Elts
);
2671 if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(V
)) {
2672 if (CFP
->getType()->isHalfTy()) {
2673 SmallVector
<uint16_t, 16> Elts(
2674 NumElts
, CFP
->getValueAPF().bitcastToAPInt().getLimitedValue());
2675 return getFP(V
->getContext(), Elts
);
2677 if (CFP
->getType()->isFloatTy()) {
2678 SmallVector
<uint32_t, 16> Elts(
2679 NumElts
, CFP
->getValueAPF().bitcastToAPInt().getLimitedValue());
2680 return getFP(V
->getContext(), Elts
);
2682 if (CFP
->getType()->isDoubleTy()) {
2683 SmallVector
<uint64_t, 16> Elts(
2684 NumElts
, CFP
->getValueAPF().bitcastToAPInt().getLimitedValue());
2685 return getFP(V
->getContext(), Elts
);
2688 return ConstantVector::getSplat(NumElts
, V
);
2692 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt
) const {
2693 assert(isa
<IntegerType
>(getElementType()) &&
2694 "Accessor can only be used when element is an integer");
2695 const char *EltPtr
= getElementPointer(Elt
);
2697 // The data is stored in host byte order, make sure to cast back to the right
2698 // type to load with the right endianness.
2699 switch (getElementType()->getIntegerBitWidth()) {
2700 default: llvm_unreachable("Invalid bitwidth for CDS");
2702 return *reinterpret_cast<const uint8_t *>(EltPtr
);
2704 return *reinterpret_cast<const uint16_t *>(EltPtr
);
2706 return *reinterpret_cast<const uint32_t *>(EltPtr
);
2708 return *reinterpret_cast<const uint64_t *>(EltPtr
);
2712 APInt
ConstantDataSequential::getElementAsAPInt(unsigned Elt
) const {
2713 assert(isa
<IntegerType
>(getElementType()) &&
2714 "Accessor can only be used when element is an integer");
2715 const char *EltPtr
= getElementPointer(Elt
);
2717 // The data is stored in host byte order, make sure to cast back to the right
2718 // type to load with the right endianness.
2719 switch (getElementType()->getIntegerBitWidth()) {
2720 default: llvm_unreachable("Invalid bitwidth for CDS");
2722 auto EltVal
= *reinterpret_cast<const uint8_t *>(EltPtr
);
2723 return APInt(8, EltVal
);
2726 auto EltVal
= *reinterpret_cast<const uint16_t *>(EltPtr
);
2727 return APInt(16, EltVal
);
2730 auto EltVal
= *reinterpret_cast<const uint32_t *>(EltPtr
);
2731 return APInt(32, EltVal
);
2734 auto EltVal
= *reinterpret_cast<const uint64_t *>(EltPtr
);
2735 return APInt(64, EltVal
);
2740 APFloat
ConstantDataSequential::getElementAsAPFloat(unsigned Elt
) const {
2741 const char *EltPtr
= getElementPointer(Elt
);
2743 switch (getElementType()->getTypeID()) {
2745 llvm_unreachable("Accessor can only be used when element is float/double!");
2746 case Type::HalfTyID
: {
2747 auto EltVal
= *reinterpret_cast<const uint16_t *>(EltPtr
);
2748 return APFloat(APFloat::IEEEhalf(), APInt(16, EltVal
));
2750 case Type::FloatTyID
: {
2751 auto EltVal
= *reinterpret_cast<const uint32_t *>(EltPtr
);
2752 return APFloat(APFloat::IEEEsingle(), APInt(32, EltVal
));
2754 case Type::DoubleTyID
: {
2755 auto EltVal
= *reinterpret_cast<const uint64_t *>(EltPtr
);
2756 return APFloat(APFloat::IEEEdouble(), APInt(64, EltVal
));
2761 float ConstantDataSequential::getElementAsFloat(unsigned Elt
) const {
2762 assert(getElementType()->isFloatTy() &&
2763 "Accessor can only be used when element is a 'float'");
2764 return *reinterpret_cast<const float *>(getElementPointer(Elt
));
2767 double ConstantDataSequential::getElementAsDouble(unsigned Elt
) const {
2768 assert(getElementType()->isDoubleTy() &&
2769 "Accessor can only be used when element is a 'float'");
2770 return *reinterpret_cast<const double *>(getElementPointer(Elt
));
2773 Constant
*ConstantDataSequential::getElementAsConstant(unsigned Elt
) const {
2774 if (getElementType()->isHalfTy() || getElementType()->isFloatTy() ||
2775 getElementType()->isDoubleTy())
2776 return ConstantFP::get(getContext(), getElementAsAPFloat(Elt
));
2778 return ConstantInt::get(getElementType(), getElementAsInteger(Elt
));
2781 bool ConstantDataSequential::isString(unsigned CharSize
) const {
2782 return isa
<ArrayType
>(getType()) && getElementType()->isIntegerTy(CharSize
);
2785 bool ConstantDataSequential::isCString() const {
2789 StringRef Str
= getAsString();
2791 // The last value must be nul.
2792 if (Str
.back() != 0) return false;
2794 // Other elements must be non-nul.
2795 return Str
.drop_back().find(0) == StringRef::npos
;
2798 bool ConstantDataVector::isSplat() const {
2799 const char *Base
= getRawDataValues().data();
2801 // Compare elements 1+ to the 0'th element.
2802 unsigned EltSize
= getElementByteSize();
2803 for (unsigned i
= 1, e
= getNumElements(); i
!= e
; ++i
)
2804 if (memcmp(Base
, Base
+i
*EltSize
, EltSize
))
2810 Constant
*ConstantDataVector::getSplatValue() const {
2811 // If they're all the same, return the 0th one as a representative.
2812 return isSplat() ? getElementAsConstant(0) : nullptr;
2815 //===----------------------------------------------------------------------===//
2816 // handleOperandChange implementations
2818 /// Update this constant array to change uses of
2819 /// 'From' to be uses of 'To'. This must update the uniquing data structures
2822 /// Note that we intentionally replace all uses of From with To here. Consider
2823 /// a large array that uses 'From' 1000 times. By handling this case all here,
2824 /// ConstantArray::handleOperandChange is only invoked once, and that
2825 /// single invocation handles all 1000 uses. Handling them one at a time would
2826 /// work, but would be really slow because it would have to unique each updated
2829 void Constant::handleOperandChange(Value
*From
, Value
*To
) {
2830 Value
*Replacement
= nullptr;
2831 switch (getValueID()) {
2833 llvm_unreachable("Not a constant!");
2834 #define HANDLE_CONSTANT(Name) \
2835 case Value::Name##Val: \
2836 Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To); \
2838 #include "llvm/IR/Value.def"
2841 // If handleOperandChangeImpl returned nullptr, then it handled
2842 // replacing itself and we don't want to delete or replace anything else here.
2846 // I do need to replace this with an existing value.
2847 assert(Replacement
!= this && "I didn't contain From!");
2849 // Everyone using this now uses the replacement.
2850 replaceAllUsesWith(Replacement
);
2852 // Delete the old constant!
2856 Value
*ConstantArray::handleOperandChangeImpl(Value
*From
, Value
*To
) {
2857 assert(isa
<Constant
>(To
) && "Cannot make Constant refer to non-constant!");
2858 Constant
*ToC
= cast
<Constant
>(To
);
2860 SmallVector
<Constant
*, 8> Values
;
2861 Values
.reserve(getNumOperands()); // Build replacement array.
2863 // Fill values with the modified operands of the constant array. Also,
2864 // compute whether this turns into an all-zeros array.
2865 unsigned NumUpdated
= 0;
2867 // Keep track of whether all the values in the array are "ToC".
2868 bool AllSame
= true;
2869 Use
*OperandList
= getOperandList();
2870 unsigned OperandNo
= 0;
2871 for (Use
*O
= OperandList
, *E
= OperandList
+getNumOperands(); O
!= E
; ++O
) {
2872 Constant
*Val
= cast
<Constant
>(O
->get());
2874 OperandNo
= (O
- OperandList
);
2878 Values
.push_back(Val
);
2879 AllSame
&= Val
== ToC
;
2882 if (AllSame
&& ToC
->isNullValue())
2883 return ConstantAggregateZero::get(getType());
2885 if (AllSame
&& isa
<UndefValue
>(ToC
))
2886 return UndefValue::get(getType());
2888 // Check for any other type of constant-folding.
2889 if (Constant
*C
= getImpl(getType(), Values
))
2892 // Update to the new value.
2893 return getContext().pImpl
->ArrayConstants
.replaceOperandsInPlace(
2894 Values
, this, From
, ToC
, NumUpdated
, OperandNo
);
2897 Value
*ConstantStruct::handleOperandChangeImpl(Value
*From
, Value
*To
) {
2898 assert(isa
<Constant
>(To
) && "Cannot make Constant refer to non-constant!");
2899 Constant
*ToC
= cast
<Constant
>(To
);
2901 Use
*OperandList
= getOperandList();
2903 SmallVector
<Constant
*, 8> Values
;
2904 Values
.reserve(getNumOperands()); // Build replacement struct.
2906 // Fill values with the modified operands of the constant struct. Also,
2907 // compute whether this turns into an all-zeros struct.
2908 unsigned NumUpdated
= 0;
2909 bool AllSame
= true;
2910 unsigned OperandNo
= 0;
2911 for (Use
*O
= OperandList
, *E
= OperandList
+ getNumOperands(); O
!= E
; ++O
) {
2912 Constant
*Val
= cast
<Constant
>(O
->get());
2914 OperandNo
= (O
- OperandList
);
2918 Values
.push_back(Val
);
2919 AllSame
&= Val
== ToC
;
2922 if (AllSame
&& ToC
->isNullValue())
2923 return ConstantAggregateZero::get(getType());
2925 if (AllSame
&& isa
<UndefValue
>(ToC
))
2926 return UndefValue::get(getType());
2928 // Update to the new value.
2929 return getContext().pImpl
->StructConstants
.replaceOperandsInPlace(
2930 Values
, this, From
, ToC
, NumUpdated
, OperandNo
);
2933 Value
*ConstantVector::handleOperandChangeImpl(Value
*From
, Value
*To
) {
2934 assert(isa
<Constant
>(To
) && "Cannot make Constant refer to non-constant!");
2935 Constant
*ToC
= cast
<Constant
>(To
);
2937 SmallVector
<Constant
*, 8> Values
;
2938 Values
.reserve(getNumOperands()); // Build replacement array...
2939 unsigned NumUpdated
= 0;
2940 unsigned OperandNo
= 0;
2941 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
2942 Constant
*Val
= getOperand(i
);
2948 Values
.push_back(Val
);
2951 if (Constant
*C
= getImpl(Values
))
2954 // Update to the new value.
2955 return getContext().pImpl
->VectorConstants
.replaceOperandsInPlace(
2956 Values
, this, From
, ToC
, NumUpdated
, OperandNo
);
2959 Value
*ConstantExpr::handleOperandChangeImpl(Value
*From
, Value
*ToV
) {
2960 assert(isa
<Constant
>(ToV
) && "Cannot make Constant refer to non-constant!");
2961 Constant
*To
= cast
<Constant
>(ToV
);
2963 SmallVector
<Constant
*, 8> NewOps
;
2964 unsigned NumUpdated
= 0;
2965 unsigned OperandNo
= 0;
2966 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
2967 Constant
*Op
= getOperand(i
);
2973 NewOps
.push_back(Op
);
2975 assert(NumUpdated
&& "I didn't contain From!");
2977 if (Constant
*C
= getWithOperands(NewOps
, getType(), true))
2980 // Update to the new value.
2981 return getContext().pImpl
->ExprConstants
.replaceOperandsInPlace(
2982 NewOps
, this, From
, To
, NumUpdated
, OperandNo
);
2985 Instruction
*ConstantExpr::getAsInstruction() {
2986 SmallVector
<Value
*, 4> ValueOperands(op_begin(), op_end());
2987 ArrayRef
<Value
*> Ops(ValueOperands
);
2989 switch (getOpcode()) {
2990 case Instruction::Trunc
:
2991 case Instruction::ZExt
:
2992 case Instruction::SExt
:
2993 case Instruction::FPTrunc
:
2994 case Instruction::FPExt
:
2995 case Instruction::UIToFP
:
2996 case Instruction::SIToFP
:
2997 case Instruction::FPToUI
:
2998 case Instruction::FPToSI
:
2999 case Instruction::PtrToInt
:
3000 case Instruction::IntToPtr
:
3001 case Instruction::BitCast
:
3002 case Instruction::AddrSpaceCast
:
3003 return CastInst::Create((Instruction::CastOps
)getOpcode(),
3005 case Instruction::Select
:
3006 return SelectInst::Create(Ops
[0], Ops
[1], Ops
[2]);
3007 case Instruction::InsertElement
:
3008 return InsertElementInst::Create(Ops
[0], Ops
[1], Ops
[2]);
3009 case Instruction::ExtractElement
:
3010 return ExtractElementInst::Create(Ops
[0], Ops
[1]);
3011 case Instruction::InsertValue
:
3012 return InsertValueInst::Create(Ops
[0], Ops
[1], getIndices());
3013 case Instruction::ExtractValue
:
3014 return ExtractValueInst::Create(Ops
[0], getIndices());
3015 case Instruction::ShuffleVector
:
3016 return new ShuffleVectorInst(Ops
[0], Ops
[1], Ops
[2]);
3018 case Instruction::GetElementPtr
: {
3019 const auto *GO
= cast
<GEPOperator
>(this);
3020 if (GO
->isInBounds())
3021 return GetElementPtrInst::CreateInBounds(GO
->getSourceElementType(),
3022 Ops
[0], Ops
.slice(1));
3023 return GetElementPtrInst::Create(GO
->getSourceElementType(), Ops
[0],
3026 case Instruction::ICmp
:
3027 case Instruction::FCmp
:
3028 return CmpInst::Create((Instruction::OtherOps
)getOpcode(),
3029 (CmpInst::Predicate
)getPredicate(), Ops
[0], Ops
[1]);
3030 case Instruction::FNeg
:
3031 return UnaryOperator::Create((Instruction::UnaryOps
)getOpcode(), Ops
[0]);
3033 assert(getNumOperands() == 2 && "Must be binary operator?");
3034 BinaryOperator
*BO
=
3035 BinaryOperator::Create((Instruction::BinaryOps
)getOpcode(),
3037 if (isa
<OverflowingBinaryOperator
>(BO
)) {
3038 BO
->setHasNoUnsignedWrap(SubclassOptionalData
&
3039 OverflowingBinaryOperator::NoUnsignedWrap
);
3040 BO
->setHasNoSignedWrap(SubclassOptionalData
&
3041 OverflowingBinaryOperator::NoSignedWrap
);
3043 if (isa
<PossiblyExactOperator
>(BO
))
3044 BO
->setIsExact(SubclassOptionalData
& PossiblyExactOperator::IsExact
);