1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements all of the non-inline methods for the LLVM instruction
12 //===----------------------------------------------------------------------===//
14 #include "llvm/IR/Instructions.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/IR/Attributes.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/Constant.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/MDBuilder.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Support/AtomicOrdering.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/TypeSize.h"
49 //===----------------------------------------------------------------------===//
51 //===----------------------------------------------------------------------===//
54 AllocaInst::getAllocationSizeInBits(const DataLayout
&DL
) const {
55 uint64_t Size
= DL
.getTypeAllocSizeInBits(getAllocatedType());
56 if (isArrayAllocation()) {
57 auto C
= dyn_cast
<ConstantInt
>(getArraySize());
60 Size
*= C
->getZExtValue();
65 //===----------------------------------------------------------------------===//
67 //===----------------------------------------------------------------------===//
69 User::op_iterator
CallSite::getCallee() const {
70 return cast
<CallBase
>(getInstruction())->op_end() - 1;
73 //===----------------------------------------------------------------------===//
75 //===----------------------------------------------------------------------===//
77 /// areInvalidOperands - Return a string if the specified operands are invalid
78 /// for a select operation, otherwise return null.
79 const char *SelectInst::areInvalidOperands(Value
*Op0
, Value
*Op1
, Value
*Op2
) {
80 if (Op1
->getType() != Op2
->getType())
81 return "both values to select must have same type";
83 if (Op1
->getType()->isTokenTy())
84 return "select values cannot have token type";
86 if (VectorType
*VT
= dyn_cast
<VectorType
>(Op0
->getType())) {
88 if (VT
->getElementType() != Type::getInt1Ty(Op0
->getContext()))
89 return "vector select condition element type must be i1";
90 VectorType
*ET
= dyn_cast
<VectorType
>(Op1
->getType());
92 return "selected values for vector select must be vectors";
93 if (ET
->getNumElements() != VT
->getNumElements())
94 return "vector select requires selected vectors to have "
95 "the same vector length as select condition";
96 } else if (Op0
->getType() != Type::getInt1Ty(Op0
->getContext())) {
97 return "select condition must be i1 or <n x i1>";
102 //===----------------------------------------------------------------------===//
104 //===----------------------------------------------------------------------===//
106 PHINode::PHINode(const PHINode
&PN
)
107 : Instruction(PN
.getType(), Instruction::PHI
, nullptr, PN
.getNumOperands()),
108 ReservedSpace(PN
.getNumOperands()) {
109 allocHungoffUses(PN
.getNumOperands());
110 std::copy(PN
.op_begin(), PN
.op_end(), op_begin());
111 std::copy(PN
.block_begin(), PN
.block_end(), block_begin());
112 SubclassOptionalData
= PN
.SubclassOptionalData
;
115 // removeIncomingValue - Remove an incoming value. This is useful if a
116 // predecessor basic block is deleted.
117 Value
*PHINode::removeIncomingValue(unsigned Idx
, bool DeletePHIIfEmpty
) {
118 Value
*Removed
= getIncomingValue(Idx
);
120 // Move everything after this operand down.
122 // FIXME: we could just swap with the end of the list, then erase. However,
123 // clients might not expect this to happen. The code as it is thrashes the
124 // use/def lists, which is kinda lame.
125 std::copy(op_begin() + Idx
+ 1, op_end(), op_begin() + Idx
);
126 std::copy(block_begin() + Idx
+ 1, block_end(), block_begin() + Idx
);
128 // Nuke the last value.
129 Op
<-1>().set(nullptr);
130 setNumHungOffUseOperands(getNumOperands() - 1);
132 // If the PHI node is dead, because it has zero entries, nuke it now.
133 if (getNumOperands() == 0 && DeletePHIIfEmpty
) {
134 // If anyone is using this PHI, make them use a dummy value instead...
135 replaceAllUsesWith(UndefValue::get(getType()));
141 /// growOperands - grow operands - This grows the operand list in response
142 /// to a push_back style of operation. This grows the number of ops by 1.5
145 void PHINode::growOperands() {
146 unsigned e
= getNumOperands();
147 unsigned NumOps
= e
+ e
/ 2;
148 if (NumOps
< 2) NumOps
= 2; // 2 op PHI nodes are VERY common.
150 ReservedSpace
= NumOps
;
151 growHungoffUses(ReservedSpace
, /* IsPhi */ true);
154 /// hasConstantValue - If the specified PHI node always merges together the same
155 /// value, return the value, otherwise return null.
156 Value
*PHINode::hasConstantValue() const {
157 // Exploit the fact that phi nodes always have at least one entry.
158 Value
*ConstantValue
= getIncomingValue(0);
159 for (unsigned i
= 1, e
= getNumIncomingValues(); i
!= e
; ++i
)
160 if (getIncomingValue(i
) != ConstantValue
&& getIncomingValue(i
) != this) {
161 if (ConstantValue
!= this)
162 return nullptr; // Incoming values not all the same.
163 // The case where the first value is this PHI.
164 ConstantValue
= getIncomingValue(i
);
166 if (ConstantValue
== this)
167 return UndefValue::get(getType());
168 return ConstantValue
;
171 /// hasConstantOrUndefValue - Whether the specified PHI node always merges
172 /// together the same value, assuming that undefs result in the same value as
174 /// Unlike \ref hasConstantValue, this does not return a value because the
175 /// unique non-undef incoming value need not dominate the PHI node.
176 bool PHINode::hasConstantOrUndefValue() const {
177 Value
*ConstantValue
= nullptr;
178 for (unsigned i
= 0, e
= getNumIncomingValues(); i
!= e
; ++i
) {
179 Value
*Incoming
= getIncomingValue(i
);
180 if (Incoming
!= this && !isa
<UndefValue
>(Incoming
)) {
181 if (ConstantValue
&& ConstantValue
!= Incoming
)
183 ConstantValue
= Incoming
;
189 //===----------------------------------------------------------------------===//
190 // LandingPadInst Implementation
191 //===----------------------------------------------------------------------===//
193 LandingPadInst::LandingPadInst(Type
*RetTy
, unsigned NumReservedValues
,
194 const Twine
&NameStr
, Instruction
*InsertBefore
)
195 : Instruction(RetTy
, Instruction::LandingPad
, nullptr, 0, InsertBefore
) {
196 init(NumReservedValues
, NameStr
);
199 LandingPadInst::LandingPadInst(Type
*RetTy
, unsigned NumReservedValues
,
200 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
)
201 : Instruction(RetTy
, Instruction::LandingPad
, nullptr, 0, InsertAtEnd
) {
202 init(NumReservedValues
, NameStr
);
205 LandingPadInst::LandingPadInst(const LandingPadInst
&LP
)
206 : Instruction(LP
.getType(), Instruction::LandingPad
, nullptr,
207 LP
.getNumOperands()),
208 ReservedSpace(LP
.getNumOperands()) {
209 allocHungoffUses(LP
.getNumOperands());
210 Use
*OL
= getOperandList();
211 const Use
*InOL
= LP
.getOperandList();
212 for (unsigned I
= 0, E
= ReservedSpace
; I
!= E
; ++I
)
215 setCleanup(LP
.isCleanup());
218 LandingPadInst
*LandingPadInst::Create(Type
*RetTy
, unsigned NumReservedClauses
,
219 const Twine
&NameStr
,
220 Instruction
*InsertBefore
) {
221 return new LandingPadInst(RetTy
, NumReservedClauses
, NameStr
, InsertBefore
);
224 LandingPadInst
*LandingPadInst::Create(Type
*RetTy
, unsigned NumReservedClauses
,
225 const Twine
&NameStr
,
226 BasicBlock
*InsertAtEnd
) {
227 return new LandingPadInst(RetTy
, NumReservedClauses
, NameStr
, InsertAtEnd
);
230 void LandingPadInst::init(unsigned NumReservedValues
, const Twine
&NameStr
) {
231 ReservedSpace
= NumReservedValues
;
232 setNumHungOffUseOperands(0);
233 allocHungoffUses(ReservedSpace
);
238 /// growOperands - grow operands - This grows the operand list in response to a
239 /// push_back style of operation. This grows the number of ops by 2 times.
240 void LandingPadInst::growOperands(unsigned Size
) {
241 unsigned e
= getNumOperands();
242 if (ReservedSpace
>= e
+ Size
) return;
243 ReservedSpace
= (std::max(e
, 1U) + Size
/ 2) * 2;
244 growHungoffUses(ReservedSpace
);
247 void LandingPadInst::addClause(Constant
*Val
) {
248 unsigned OpNo
= getNumOperands();
250 assert(OpNo
< ReservedSpace
&& "Growing didn't work!");
251 setNumHungOffUseOperands(getNumOperands() + 1);
252 getOperandList()[OpNo
] = Val
;
255 //===----------------------------------------------------------------------===//
256 // CallBase Implementation
257 //===----------------------------------------------------------------------===//
259 Function
*CallBase::getCaller() { return getParent()->getParent(); }
261 unsigned CallBase::getNumSubclassExtraOperandsDynamic() const {
262 assert(getOpcode() == Instruction::CallBr
&& "Unexpected opcode!");
263 return cast
<CallBrInst
>(this)->getNumIndirectDests() + 1;
266 bool CallBase::isIndirectCall() const {
267 const Value
*V
= getCalledValue();
268 if (isa
<Function
>(V
) || isa
<Constant
>(V
))
270 if (const CallInst
*CI
= dyn_cast
<CallInst
>(this))
271 if (CI
->isInlineAsm())
276 /// Tests if this call site must be tail call optimized. Only a CallInst can
277 /// be tail call optimized.
278 bool CallBase::isMustTailCall() const {
279 if (auto *CI
= dyn_cast
<CallInst
>(this))
280 return CI
->isMustTailCall();
284 /// Tests if this call site is marked as a tail call.
285 bool CallBase::isTailCall() const {
286 if (auto *CI
= dyn_cast
<CallInst
>(this))
287 return CI
->isTailCall();
291 Intrinsic::ID
CallBase::getIntrinsicID() const {
292 if (auto *F
= getCalledFunction())
293 return F
->getIntrinsicID();
294 return Intrinsic::not_intrinsic
;
297 bool CallBase::isReturnNonNull() const {
298 if (hasRetAttr(Attribute::NonNull
))
301 if (getDereferenceableBytes(AttributeList::ReturnIndex
) > 0 &&
302 !NullPointerIsDefined(getCaller(),
303 getType()->getPointerAddressSpace()))
309 Value
*CallBase::getReturnedArgOperand() const {
312 if (Attrs
.hasAttrSomewhere(Attribute::Returned
, &Index
) && Index
)
313 return getArgOperand(Index
- AttributeList::FirstArgIndex
);
314 if (const Function
*F
= getCalledFunction())
315 if (F
->getAttributes().hasAttrSomewhere(Attribute::Returned
, &Index
) &&
317 return getArgOperand(Index
- AttributeList::FirstArgIndex
);
322 bool CallBase::hasRetAttr(Attribute::AttrKind Kind
) const {
323 if (Attrs
.hasAttribute(AttributeList::ReturnIndex
, Kind
))
326 // Look at the callee, if available.
327 if (const Function
*F
= getCalledFunction())
328 return F
->getAttributes().hasAttribute(AttributeList::ReturnIndex
, Kind
);
332 /// Determine whether the argument or parameter has the given attribute.
333 bool CallBase::paramHasAttr(unsigned ArgNo
, Attribute::AttrKind Kind
) const {
334 assert(ArgNo
< getNumArgOperands() && "Param index out of bounds!");
336 if (Attrs
.hasParamAttribute(ArgNo
, Kind
))
338 if (const Function
*F
= getCalledFunction())
339 return F
->getAttributes().hasParamAttribute(ArgNo
, Kind
);
343 bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind
) const {
344 if (const Function
*F
= getCalledFunction())
345 return F
->getAttributes().hasAttribute(AttributeList::FunctionIndex
, Kind
);
349 bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind
) const {
350 if (const Function
*F
= getCalledFunction())
351 return F
->getAttributes().hasAttribute(AttributeList::FunctionIndex
, Kind
);
355 CallBase::op_iterator
356 CallBase::populateBundleOperandInfos(ArrayRef
<OperandBundleDef
> Bundles
,
357 const unsigned BeginIndex
) {
358 auto It
= op_begin() + BeginIndex
;
359 for (auto &B
: Bundles
)
360 It
= std::copy(B
.input_begin(), B
.input_end(), It
);
362 auto *ContextImpl
= getContext().pImpl
;
363 auto BI
= Bundles
.begin();
364 unsigned CurrentIndex
= BeginIndex
;
366 for (auto &BOI
: bundle_op_infos()) {
367 assert(BI
!= Bundles
.end() && "Incorrect allocation?");
369 BOI
.Tag
= ContextImpl
->getOrInsertBundleTag(BI
->getTag());
370 BOI
.Begin
= CurrentIndex
;
371 BOI
.End
= CurrentIndex
+ BI
->input_size();
372 CurrentIndex
= BOI
.End
;
376 assert(BI
== Bundles
.end() && "Incorrect allocation?");
381 //===----------------------------------------------------------------------===//
382 // CallInst Implementation
383 //===----------------------------------------------------------------------===//
385 void CallInst::init(FunctionType
*FTy
, Value
*Func
, ArrayRef
<Value
*> Args
,
386 ArrayRef
<OperandBundleDef
> Bundles
, const Twine
&NameStr
) {
388 assert(getNumOperands() == Args
.size() + CountBundleInputs(Bundles
) + 1 &&
389 "NumOperands not set up?");
390 setCalledOperand(Func
);
393 assert((Args
.size() == FTy
->getNumParams() ||
394 (FTy
->isVarArg() && Args
.size() > FTy
->getNumParams())) &&
395 "Calling a function with bad signature!");
397 for (unsigned i
= 0; i
!= Args
.size(); ++i
)
398 assert((i
>= FTy
->getNumParams() ||
399 FTy
->getParamType(i
) == Args
[i
]->getType()) &&
400 "Calling a function with a bad signature!");
403 llvm::copy(Args
, op_begin());
405 auto It
= populateBundleOperandInfos(Bundles
, Args
.size());
407 assert(It
+ 1 == op_end() && "Should add up!");
412 void CallInst::init(FunctionType
*FTy
, Value
*Func
, const Twine
&NameStr
) {
414 assert(getNumOperands() == 1 && "NumOperands not set up?");
415 setCalledOperand(Func
);
417 assert(FTy
->getNumParams() == 0 && "Calling a function with bad signature");
422 CallInst::CallInst(FunctionType
*Ty
, Value
*Func
, const Twine
&Name
,
423 Instruction
*InsertBefore
)
424 : CallBase(Ty
->getReturnType(), Instruction::Call
,
425 OperandTraits
<CallBase
>::op_end(this) - 1, 1, InsertBefore
) {
426 init(Ty
, Func
, Name
);
429 CallInst::CallInst(FunctionType
*Ty
, Value
*Func
, const Twine
&Name
,
430 BasicBlock
*InsertAtEnd
)
431 : CallBase(Ty
->getReturnType(), Instruction::Call
,
432 OperandTraits
<CallBase
>::op_end(this) - 1, 1, InsertAtEnd
) {
433 init(Ty
, Func
, Name
);
436 CallInst::CallInst(const CallInst
&CI
)
437 : CallBase(CI
.Attrs
, CI
.FTy
, CI
.getType(), Instruction::Call
,
438 OperandTraits
<CallBase
>::op_end(this) - CI
.getNumOperands(),
439 CI
.getNumOperands()) {
440 setTailCallKind(CI
.getTailCallKind());
441 setCallingConv(CI
.getCallingConv());
443 std::copy(CI
.op_begin(), CI
.op_end(), op_begin());
444 std::copy(CI
.bundle_op_info_begin(), CI
.bundle_op_info_end(),
445 bundle_op_info_begin());
446 SubclassOptionalData
= CI
.SubclassOptionalData
;
449 CallInst
*CallInst::Create(CallInst
*CI
, ArrayRef
<OperandBundleDef
> OpB
,
450 Instruction
*InsertPt
) {
451 std::vector
<Value
*> Args(CI
->arg_begin(), CI
->arg_end());
453 auto *NewCI
= CallInst::Create(CI
->getFunctionType(), CI
->getCalledValue(),
454 Args
, OpB
, CI
->getName(), InsertPt
);
455 NewCI
->setTailCallKind(CI
->getTailCallKind());
456 NewCI
->setCallingConv(CI
->getCallingConv());
457 NewCI
->SubclassOptionalData
= CI
->SubclassOptionalData
;
458 NewCI
->setAttributes(CI
->getAttributes());
459 NewCI
->setDebugLoc(CI
->getDebugLoc());
463 // Update profile weight for call instruction by scaling it using the ratio
464 // of S/T. The meaning of "branch_weights" meta data for call instruction is
465 // transfered to represent call count.
466 void CallInst::updateProfWeight(uint64_t S
, uint64_t T
) {
467 auto *ProfileData
= getMetadata(LLVMContext::MD_prof
);
468 if (ProfileData
== nullptr)
471 auto *ProfDataName
= dyn_cast
<MDString
>(ProfileData
->getOperand(0));
472 if (!ProfDataName
|| (!ProfDataName
->getString().equals("branch_weights") &&
473 !ProfDataName
->getString().equals("VP")))
477 LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in "
478 "div by 0. Ignoring. Likely the function "
479 << getParent()->getParent()->getName()
480 << " has 0 entry count, and contains call instructions "
481 "with non-zero prof info.");
485 MDBuilder
MDB(getContext());
486 SmallVector
<Metadata
*, 3> Vals
;
487 Vals
.push_back(ProfileData
->getOperand(0));
488 APInt
APS(128, S
), APT(128, T
);
489 if (ProfDataName
->getString().equals("branch_weights") &&
490 ProfileData
->getNumOperands() > 0) {
491 // Using APInt::div may be expensive, but most cases should fit 64 bits.
492 APInt
Val(128, mdconst::dyn_extract
<ConstantInt
>(ProfileData
->getOperand(1))
496 Vals
.push_back(MDB
.createConstant(ConstantInt::get(
497 Type::getInt64Ty(getContext()), Val
.udiv(APT
).getLimitedValue())));
498 } else if (ProfDataName
->getString().equals("VP"))
499 for (unsigned i
= 1; i
< ProfileData
->getNumOperands(); i
+= 2) {
500 // The first value is the key of the value profile, which will not change.
501 Vals
.push_back(ProfileData
->getOperand(i
));
502 // Using APInt::div may be expensive, but most cases should fit 64 bits.
504 mdconst::dyn_extract
<ConstantInt
>(ProfileData
->getOperand(i
+ 1))
508 Vals
.push_back(MDB
.createConstant(
509 ConstantInt::get(Type::getInt64Ty(getContext()),
510 Val
.udiv(APT
).getLimitedValue())));
512 setMetadata(LLVMContext::MD_prof
, MDNode::get(getContext(), Vals
));
515 /// IsConstantOne - Return true only if val is constant int 1
516 static bool IsConstantOne(Value
*val
) {
517 assert(val
&& "IsConstantOne does not work with nullptr val");
518 const ConstantInt
*CVal
= dyn_cast
<ConstantInt
>(val
);
519 return CVal
&& CVal
->isOne();
522 static Instruction
*createMalloc(Instruction
*InsertBefore
,
523 BasicBlock
*InsertAtEnd
, Type
*IntPtrTy
,
524 Type
*AllocTy
, Value
*AllocSize
,
526 ArrayRef
<OperandBundleDef
> OpB
,
527 Function
*MallocF
, const Twine
&Name
) {
528 assert(((!InsertBefore
&& InsertAtEnd
) || (InsertBefore
&& !InsertAtEnd
)) &&
529 "createMalloc needs either InsertBefore or InsertAtEnd");
531 // malloc(type) becomes:
532 // bitcast (i8* malloc(typeSize)) to type*
533 // malloc(type, arraySize) becomes:
534 // bitcast (i8* malloc(typeSize*arraySize)) to type*
536 ArraySize
= ConstantInt::get(IntPtrTy
, 1);
537 else if (ArraySize
->getType() != IntPtrTy
) {
539 ArraySize
= CastInst::CreateIntegerCast(ArraySize
, IntPtrTy
, false,
542 ArraySize
= CastInst::CreateIntegerCast(ArraySize
, IntPtrTy
, false,
546 if (!IsConstantOne(ArraySize
)) {
547 if (IsConstantOne(AllocSize
)) {
548 AllocSize
= ArraySize
; // Operand * 1 = Operand
549 } else if (Constant
*CO
= dyn_cast
<Constant
>(ArraySize
)) {
550 Constant
*Scale
= ConstantExpr::getIntegerCast(CO
, IntPtrTy
,
552 // Malloc arg is constant product of type size and array size
553 AllocSize
= ConstantExpr::getMul(Scale
, cast
<Constant
>(AllocSize
));
555 // Multiply type size by the array size...
557 AllocSize
= BinaryOperator::CreateMul(ArraySize
, AllocSize
,
558 "mallocsize", InsertBefore
);
560 AllocSize
= BinaryOperator::CreateMul(ArraySize
, AllocSize
,
561 "mallocsize", InsertAtEnd
);
565 assert(AllocSize
->getType() == IntPtrTy
&& "malloc arg is wrong size");
566 // Create the call to Malloc.
567 BasicBlock
*BB
= InsertBefore
? InsertBefore
->getParent() : InsertAtEnd
;
568 Module
*M
= BB
->getParent()->getParent();
569 Type
*BPTy
= Type::getInt8PtrTy(BB
->getContext());
570 FunctionCallee MallocFunc
= MallocF
;
572 // prototype malloc as "void *malloc(size_t)"
573 MallocFunc
= M
->getOrInsertFunction("malloc", BPTy
, IntPtrTy
);
574 PointerType
*AllocPtrType
= PointerType::getUnqual(AllocTy
);
575 CallInst
*MCall
= nullptr;
576 Instruction
*Result
= nullptr;
578 MCall
= CallInst::Create(MallocFunc
, AllocSize
, OpB
, "malloccall",
581 if (Result
->getType() != AllocPtrType
)
582 // Create a cast instruction to convert to the right type...
583 Result
= new BitCastInst(MCall
, AllocPtrType
, Name
, InsertBefore
);
585 MCall
= CallInst::Create(MallocFunc
, AllocSize
, OpB
, "malloccall");
587 if (Result
->getType() != AllocPtrType
) {
588 InsertAtEnd
->getInstList().push_back(MCall
);
589 // Create a cast instruction to convert to the right type...
590 Result
= new BitCastInst(MCall
, AllocPtrType
, Name
);
593 MCall
->setTailCall();
594 if (Function
*F
= dyn_cast
<Function
>(MallocFunc
.getCallee())) {
595 MCall
->setCallingConv(F
->getCallingConv());
596 if (!F
->returnDoesNotAlias())
597 F
->setReturnDoesNotAlias();
599 assert(!MCall
->getType()->isVoidTy() && "Malloc has void return type");
604 /// CreateMalloc - Generate the IR for a call to malloc:
605 /// 1. Compute the malloc call's argument as the specified type's size,
606 /// possibly multiplied by the array size if the array size is not
608 /// 2. Call malloc with that argument.
609 /// 3. Bitcast the result of the malloc call to the specified type.
610 Instruction
*CallInst::CreateMalloc(Instruction
*InsertBefore
,
611 Type
*IntPtrTy
, Type
*AllocTy
,
612 Value
*AllocSize
, Value
*ArraySize
,
615 return createMalloc(InsertBefore
, nullptr, IntPtrTy
, AllocTy
, AllocSize
,
616 ArraySize
, None
, MallocF
, Name
);
618 Instruction
*CallInst::CreateMalloc(Instruction
*InsertBefore
,
619 Type
*IntPtrTy
, Type
*AllocTy
,
620 Value
*AllocSize
, Value
*ArraySize
,
621 ArrayRef
<OperandBundleDef
> OpB
,
624 return createMalloc(InsertBefore
, nullptr, IntPtrTy
, AllocTy
, AllocSize
,
625 ArraySize
, OpB
, MallocF
, Name
);
628 /// CreateMalloc - Generate the IR for a call to malloc:
629 /// 1. Compute the malloc call's argument as the specified type's size,
630 /// possibly multiplied by the array size if the array size is not
632 /// 2. Call malloc with that argument.
633 /// 3. Bitcast the result of the malloc call to the specified type.
634 /// Note: This function does not add the bitcast to the basic block, that is the
635 /// responsibility of the caller.
636 Instruction
*CallInst::CreateMalloc(BasicBlock
*InsertAtEnd
,
637 Type
*IntPtrTy
, Type
*AllocTy
,
638 Value
*AllocSize
, Value
*ArraySize
,
639 Function
*MallocF
, const Twine
&Name
) {
640 return createMalloc(nullptr, InsertAtEnd
, IntPtrTy
, AllocTy
, AllocSize
,
641 ArraySize
, None
, MallocF
, Name
);
643 Instruction
*CallInst::CreateMalloc(BasicBlock
*InsertAtEnd
,
644 Type
*IntPtrTy
, Type
*AllocTy
,
645 Value
*AllocSize
, Value
*ArraySize
,
646 ArrayRef
<OperandBundleDef
> OpB
,
647 Function
*MallocF
, const Twine
&Name
) {
648 return createMalloc(nullptr, InsertAtEnd
, IntPtrTy
, AllocTy
, AllocSize
,
649 ArraySize
, OpB
, MallocF
, Name
);
652 static Instruction
*createFree(Value
*Source
,
653 ArrayRef
<OperandBundleDef
> Bundles
,
654 Instruction
*InsertBefore
,
655 BasicBlock
*InsertAtEnd
) {
656 assert(((!InsertBefore
&& InsertAtEnd
) || (InsertBefore
&& !InsertAtEnd
)) &&
657 "createFree needs either InsertBefore or InsertAtEnd");
658 assert(Source
->getType()->isPointerTy() &&
659 "Can not free something of nonpointer type!");
661 BasicBlock
*BB
= InsertBefore
? InsertBefore
->getParent() : InsertAtEnd
;
662 Module
*M
= BB
->getParent()->getParent();
664 Type
*VoidTy
= Type::getVoidTy(M
->getContext());
665 Type
*IntPtrTy
= Type::getInt8PtrTy(M
->getContext());
666 // prototype free as "void free(void*)"
667 FunctionCallee FreeFunc
= M
->getOrInsertFunction("free", VoidTy
, IntPtrTy
);
668 CallInst
*Result
= nullptr;
669 Value
*PtrCast
= Source
;
671 if (Source
->getType() != IntPtrTy
)
672 PtrCast
= new BitCastInst(Source
, IntPtrTy
, "", InsertBefore
);
673 Result
= CallInst::Create(FreeFunc
, PtrCast
, Bundles
, "", InsertBefore
);
675 if (Source
->getType() != IntPtrTy
)
676 PtrCast
= new BitCastInst(Source
, IntPtrTy
, "", InsertAtEnd
);
677 Result
= CallInst::Create(FreeFunc
, PtrCast
, Bundles
, "");
679 Result
->setTailCall();
680 if (Function
*F
= dyn_cast
<Function
>(FreeFunc
.getCallee()))
681 Result
->setCallingConv(F
->getCallingConv());
686 /// CreateFree - Generate the IR for a call to the builtin free function.
687 Instruction
*CallInst::CreateFree(Value
*Source
, Instruction
*InsertBefore
) {
688 return createFree(Source
, None
, InsertBefore
, nullptr);
690 Instruction
*CallInst::CreateFree(Value
*Source
,
691 ArrayRef
<OperandBundleDef
> Bundles
,
692 Instruction
*InsertBefore
) {
693 return createFree(Source
, Bundles
, InsertBefore
, nullptr);
696 /// CreateFree - Generate the IR for a call to the builtin free function.
697 /// Note: This function does not add the call to the basic block, that is the
698 /// responsibility of the caller.
699 Instruction
*CallInst::CreateFree(Value
*Source
, BasicBlock
*InsertAtEnd
) {
700 Instruction
*FreeCall
= createFree(Source
, None
, nullptr, InsertAtEnd
);
701 assert(FreeCall
&& "CreateFree did not create a CallInst");
704 Instruction
*CallInst::CreateFree(Value
*Source
,
705 ArrayRef
<OperandBundleDef
> Bundles
,
706 BasicBlock
*InsertAtEnd
) {
707 Instruction
*FreeCall
= createFree(Source
, Bundles
, nullptr, InsertAtEnd
);
708 assert(FreeCall
&& "CreateFree did not create a CallInst");
712 //===----------------------------------------------------------------------===//
713 // InvokeInst Implementation
714 //===----------------------------------------------------------------------===//
716 void InvokeInst::init(FunctionType
*FTy
, Value
*Fn
, BasicBlock
*IfNormal
,
717 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
718 ArrayRef
<OperandBundleDef
> Bundles
,
719 const Twine
&NameStr
) {
722 assert((int)getNumOperands() ==
723 ComputeNumOperands(Args
.size(), CountBundleInputs(Bundles
)) &&
724 "NumOperands not set up?");
725 setNormalDest(IfNormal
);
726 setUnwindDest(IfException
);
727 setCalledOperand(Fn
);
730 assert(((Args
.size() == FTy
->getNumParams()) ||
731 (FTy
->isVarArg() && Args
.size() > FTy
->getNumParams())) &&
732 "Invoking a function with bad signature");
734 for (unsigned i
= 0, e
= Args
.size(); i
!= e
; i
++)
735 assert((i
>= FTy
->getNumParams() ||
736 FTy
->getParamType(i
) == Args
[i
]->getType()) &&
737 "Invoking a function with a bad signature!");
740 llvm::copy(Args
, op_begin());
742 auto It
= populateBundleOperandInfos(Bundles
, Args
.size());
744 assert(It
+ 3 == op_end() && "Should add up!");
749 InvokeInst::InvokeInst(const InvokeInst
&II
)
750 : CallBase(II
.Attrs
, II
.FTy
, II
.getType(), Instruction::Invoke
,
751 OperandTraits
<CallBase
>::op_end(this) - II
.getNumOperands(),
752 II
.getNumOperands()) {
753 setCallingConv(II
.getCallingConv());
754 std::copy(II
.op_begin(), II
.op_end(), op_begin());
755 std::copy(II
.bundle_op_info_begin(), II
.bundle_op_info_end(),
756 bundle_op_info_begin());
757 SubclassOptionalData
= II
.SubclassOptionalData
;
760 InvokeInst
*InvokeInst::Create(InvokeInst
*II
, ArrayRef
<OperandBundleDef
> OpB
,
761 Instruction
*InsertPt
) {
762 std::vector
<Value
*> Args(II
->arg_begin(), II
->arg_end());
764 auto *NewII
= InvokeInst::Create(II
->getFunctionType(), II
->getCalledValue(),
765 II
->getNormalDest(), II
->getUnwindDest(),
766 Args
, OpB
, II
->getName(), InsertPt
);
767 NewII
->setCallingConv(II
->getCallingConv());
768 NewII
->SubclassOptionalData
= II
->SubclassOptionalData
;
769 NewII
->setAttributes(II
->getAttributes());
770 NewII
->setDebugLoc(II
->getDebugLoc());
775 LandingPadInst
*InvokeInst::getLandingPadInst() const {
776 return cast
<LandingPadInst
>(getUnwindDest()->getFirstNonPHI());
779 //===----------------------------------------------------------------------===//
780 // CallBrInst Implementation
781 //===----------------------------------------------------------------------===//
783 void CallBrInst::init(FunctionType
*FTy
, Value
*Fn
, BasicBlock
*Fallthrough
,
784 ArrayRef
<BasicBlock
*> IndirectDests
,
785 ArrayRef
<Value
*> Args
,
786 ArrayRef
<OperandBundleDef
> Bundles
,
787 const Twine
&NameStr
) {
790 assert((int)getNumOperands() ==
791 ComputeNumOperands(Args
.size(), IndirectDests
.size(),
792 CountBundleInputs(Bundles
)) &&
793 "NumOperands not set up?");
794 NumIndirectDests
= IndirectDests
.size();
795 setDefaultDest(Fallthrough
);
796 for (unsigned i
= 0; i
!= NumIndirectDests
; ++i
)
797 setIndirectDest(i
, IndirectDests
[i
]);
798 setCalledOperand(Fn
);
801 assert(((Args
.size() == FTy
->getNumParams()) ||
802 (FTy
->isVarArg() && Args
.size() > FTy
->getNumParams())) &&
803 "Calling a function with bad signature");
805 for (unsigned i
= 0, e
= Args
.size(); i
!= e
; i
++)
806 assert((i
>= FTy
->getNumParams() ||
807 FTy
->getParamType(i
) == Args
[i
]->getType()) &&
808 "Calling a function with a bad signature!");
811 std::copy(Args
.begin(), Args
.end(), op_begin());
813 auto It
= populateBundleOperandInfos(Bundles
, Args
.size());
815 assert(It
+ 2 + IndirectDests
.size() == op_end() && "Should add up!");
820 void CallBrInst::updateArgBlockAddresses(unsigned i
, BasicBlock
*B
) {
821 assert(getNumIndirectDests() > i
&& "IndirectDest # out of range for callbr");
822 if (BasicBlock
*OldBB
= getIndirectDest(i
)) {
823 BlockAddress
*Old
= BlockAddress::get(OldBB
);
824 BlockAddress
*New
= BlockAddress::get(B
);
825 for (unsigned ArgNo
= 0, e
= getNumArgOperands(); ArgNo
!= e
; ++ArgNo
)
826 if (dyn_cast
<BlockAddress
>(getArgOperand(ArgNo
)) == Old
)
827 setArgOperand(ArgNo
, New
);
831 CallBrInst::CallBrInst(const CallBrInst
&CBI
)
832 : CallBase(CBI
.Attrs
, CBI
.FTy
, CBI
.getType(), Instruction::CallBr
,
833 OperandTraits
<CallBase
>::op_end(this) - CBI
.getNumOperands(),
834 CBI
.getNumOperands()) {
835 setCallingConv(CBI
.getCallingConv());
836 std::copy(CBI
.op_begin(), CBI
.op_end(), op_begin());
837 std::copy(CBI
.bundle_op_info_begin(), CBI
.bundle_op_info_end(),
838 bundle_op_info_begin());
839 SubclassOptionalData
= CBI
.SubclassOptionalData
;
840 NumIndirectDests
= CBI
.NumIndirectDests
;
843 CallBrInst
*CallBrInst::Create(CallBrInst
*CBI
, ArrayRef
<OperandBundleDef
> OpB
,
844 Instruction
*InsertPt
) {
845 std::vector
<Value
*> Args(CBI
->arg_begin(), CBI
->arg_end());
847 auto *NewCBI
= CallBrInst::Create(CBI
->getFunctionType(),
848 CBI
->getCalledValue(),
849 CBI
->getDefaultDest(),
850 CBI
->getIndirectDests(),
851 Args
, OpB
, CBI
->getName(), InsertPt
);
852 NewCBI
->setCallingConv(CBI
->getCallingConv());
853 NewCBI
->SubclassOptionalData
= CBI
->SubclassOptionalData
;
854 NewCBI
->setAttributes(CBI
->getAttributes());
855 NewCBI
->setDebugLoc(CBI
->getDebugLoc());
856 NewCBI
->NumIndirectDests
= CBI
->NumIndirectDests
;
860 //===----------------------------------------------------------------------===//
861 // ReturnInst Implementation
862 //===----------------------------------------------------------------------===//
864 ReturnInst::ReturnInst(const ReturnInst
&RI
)
865 : Instruction(Type::getVoidTy(RI
.getContext()), Instruction::Ret
,
866 OperandTraits
<ReturnInst
>::op_end(this) - RI
.getNumOperands(),
867 RI
.getNumOperands()) {
868 if (RI
.getNumOperands())
869 Op
<0>() = RI
.Op
<0>();
870 SubclassOptionalData
= RI
.SubclassOptionalData
;
873 ReturnInst::ReturnInst(LLVMContext
&C
, Value
*retVal
, Instruction
*InsertBefore
)
874 : Instruction(Type::getVoidTy(C
), Instruction::Ret
,
875 OperandTraits
<ReturnInst
>::op_end(this) - !!retVal
, !!retVal
,
881 ReturnInst::ReturnInst(LLVMContext
&C
, Value
*retVal
, BasicBlock
*InsertAtEnd
)
882 : Instruction(Type::getVoidTy(C
), Instruction::Ret
,
883 OperandTraits
<ReturnInst
>::op_end(this) - !!retVal
, !!retVal
,
889 ReturnInst::ReturnInst(LLVMContext
&Context
, BasicBlock
*InsertAtEnd
)
890 : Instruction(Type::getVoidTy(Context
), Instruction::Ret
,
891 OperandTraits
<ReturnInst
>::op_end(this), 0, InsertAtEnd
) {}
893 //===----------------------------------------------------------------------===//
894 // ResumeInst Implementation
895 //===----------------------------------------------------------------------===//
897 ResumeInst::ResumeInst(const ResumeInst
&RI
)
898 : Instruction(Type::getVoidTy(RI
.getContext()), Instruction::Resume
,
899 OperandTraits
<ResumeInst
>::op_begin(this), 1) {
900 Op
<0>() = RI
.Op
<0>();
903 ResumeInst::ResumeInst(Value
*Exn
, Instruction
*InsertBefore
)
904 : Instruction(Type::getVoidTy(Exn
->getContext()), Instruction::Resume
,
905 OperandTraits
<ResumeInst
>::op_begin(this), 1, InsertBefore
) {
909 ResumeInst::ResumeInst(Value
*Exn
, BasicBlock
*InsertAtEnd
)
910 : Instruction(Type::getVoidTy(Exn
->getContext()), Instruction::Resume
,
911 OperandTraits
<ResumeInst
>::op_begin(this), 1, InsertAtEnd
) {
915 //===----------------------------------------------------------------------===//
916 // CleanupReturnInst Implementation
917 //===----------------------------------------------------------------------===//
919 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst
&CRI
)
920 : Instruction(CRI
.getType(), Instruction::CleanupRet
,
921 OperandTraits
<CleanupReturnInst
>::op_end(this) -
922 CRI
.getNumOperands(),
923 CRI
.getNumOperands()) {
924 setInstructionSubclassData(CRI
.getSubclassDataFromInstruction());
925 Op
<0>() = CRI
.Op
<0>();
926 if (CRI
.hasUnwindDest())
927 Op
<1>() = CRI
.Op
<1>();
930 void CleanupReturnInst::init(Value
*CleanupPad
, BasicBlock
*UnwindBB
) {
932 setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
934 Op
<0>() = CleanupPad
;
939 CleanupReturnInst::CleanupReturnInst(Value
*CleanupPad
, BasicBlock
*UnwindBB
,
940 unsigned Values
, Instruction
*InsertBefore
)
941 : Instruction(Type::getVoidTy(CleanupPad
->getContext()),
942 Instruction::CleanupRet
,
943 OperandTraits
<CleanupReturnInst
>::op_end(this) - Values
,
944 Values
, InsertBefore
) {
945 init(CleanupPad
, UnwindBB
);
948 CleanupReturnInst::CleanupReturnInst(Value
*CleanupPad
, BasicBlock
*UnwindBB
,
949 unsigned Values
, BasicBlock
*InsertAtEnd
)
950 : Instruction(Type::getVoidTy(CleanupPad
->getContext()),
951 Instruction::CleanupRet
,
952 OperandTraits
<CleanupReturnInst
>::op_end(this) - Values
,
953 Values
, InsertAtEnd
) {
954 init(CleanupPad
, UnwindBB
);
957 //===----------------------------------------------------------------------===//
958 // CatchReturnInst Implementation
959 //===----------------------------------------------------------------------===//
960 void CatchReturnInst::init(Value
*CatchPad
, BasicBlock
*BB
) {
965 CatchReturnInst::CatchReturnInst(const CatchReturnInst
&CRI
)
966 : Instruction(Type::getVoidTy(CRI
.getContext()), Instruction::CatchRet
,
967 OperandTraits
<CatchReturnInst
>::op_begin(this), 2) {
968 Op
<0>() = CRI
.Op
<0>();
969 Op
<1>() = CRI
.Op
<1>();
972 CatchReturnInst::CatchReturnInst(Value
*CatchPad
, BasicBlock
*BB
,
973 Instruction
*InsertBefore
)
974 : Instruction(Type::getVoidTy(BB
->getContext()), Instruction::CatchRet
,
975 OperandTraits
<CatchReturnInst
>::op_begin(this), 2,
980 CatchReturnInst::CatchReturnInst(Value
*CatchPad
, BasicBlock
*BB
,
981 BasicBlock
*InsertAtEnd
)
982 : Instruction(Type::getVoidTy(BB
->getContext()), Instruction::CatchRet
,
983 OperandTraits
<CatchReturnInst
>::op_begin(this), 2,
988 //===----------------------------------------------------------------------===//
989 // CatchSwitchInst Implementation
990 //===----------------------------------------------------------------------===//
992 CatchSwitchInst::CatchSwitchInst(Value
*ParentPad
, BasicBlock
*UnwindDest
,
993 unsigned NumReservedValues
,
994 const Twine
&NameStr
,
995 Instruction
*InsertBefore
)
996 : Instruction(ParentPad
->getType(), Instruction::CatchSwitch
, nullptr, 0,
1000 init(ParentPad
, UnwindDest
, NumReservedValues
+ 1);
1004 CatchSwitchInst::CatchSwitchInst(Value
*ParentPad
, BasicBlock
*UnwindDest
,
1005 unsigned NumReservedValues
,
1006 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
)
1007 : Instruction(ParentPad
->getType(), Instruction::CatchSwitch
, nullptr, 0,
1010 ++NumReservedValues
;
1011 init(ParentPad
, UnwindDest
, NumReservedValues
+ 1);
1015 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst
&CSI
)
1016 : Instruction(CSI
.getType(), Instruction::CatchSwitch
, nullptr,
1017 CSI
.getNumOperands()) {
1018 init(CSI
.getParentPad(), CSI
.getUnwindDest(), CSI
.getNumOperands());
1019 setNumHungOffUseOperands(ReservedSpace
);
1020 Use
*OL
= getOperandList();
1021 const Use
*InOL
= CSI
.getOperandList();
1022 for (unsigned I
= 1, E
= ReservedSpace
; I
!= E
; ++I
)
1026 void CatchSwitchInst::init(Value
*ParentPad
, BasicBlock
*UnwindDest
,
1027 unsigned NumReservedValues
) {
1028 assert(ParentPad
&& NumReservedValues
);
1030 ReservedSpace
= NumReservedValues
;
1031 setNumHungOffUseOperands(UnwindDest
? 2 : 1);
1032 allocHungoffUses(ReservedSpace
);
1034 Op
<0>() = ParentPad
;
1036 setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
1037 setUnwindDest(UnwindDest
);
1041 /// growOperands - grow operands - This grows the operand list in response to a
1042 /// push_back style of operation. This grows the number of ops by 2 times.
1043 void CatchSwitchInst::growOperands(unsigned Size
) {
1044 unsigned NumOperands
= getNumOperands();
1045 assert(NumOperands
>= 1);
1046 if (ReservedSpace
>= NumOperands
+ Size
)
1048 ReservedSpace
= (NumOperands
+ Size
/ 2) * 2;
1049 growHungoffUses(ReservedSpace
);
1052 void CatchSwitchInst::addHandler(BasicBlock
*Handler
) {
1053 unsigned OpNo
= getNumOperands();
1055 assert(OpNo
< ReservedSpace
&& "Growing didn't work!");
1056 setNumHungOffUseOperands(getNumOperands() + 1);
1057 getOperandList()[OpNo
] = Handler
;
1060 void CatchSwitchInst::removeHandler(handler_iterator HI
) {
1061 // Move all subsequent handlers up one.
1062 Use
*EndDst
= op_end() - 1;
1063 for (Use
*CurDst
= HI
.getCurrent(); CurDst
!= EndDst
; ++CurDst
)
1064 *CurDst
= *(CurDst
+ 1);
1065 // Null out the last handler use.
1068 setNumHungOffUseOperands(getNumOperands() - 1);
1071 //===----------------------------------------------------------------------===//
1072 // FuncletPadInst Implementation
1073 //===----------------------------------------------------------------------===//
1074 void FuncletPadInst::init(Value
*ParentPad
, ArrayRef
<Value
*> Args
,
1075 const Twine
&NameStr
) {
1076 assert(getNumOperands() == 1 + Args
.size() && "NumOperands not set up?");
1077 llvm::copy(Args
, op_begin());
1078 setParentPad(ParentPad
);
1082 FuncletPadInst::FuncletPadInst(const FuncletPadInst
&FPI
)
1083 : Instruction(FPI
.getType(), FPI
.getOpcode(),
1084 OperandTraits
<FuncletPadInst
>::op_end(this) -
1085 FPI
.getNumOperands(),
1086 FPI
.getNumOperands()) {
1087 std::copy(FPI
.op_begin(), FPI
.op_end(), op_begin());
1088 setParentPad(FPI
.getParentPad());
1091 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op
, Value
*ParentPad
,
1092 ArrayRef
<Value
*> Args
, unsigned Values
,
1093 const Twine
&NameStr
, Instruction
*InsertBefore
)
1094 : Instruction(ParentPad
->getType(), Op
,
1095 OperandTraits
<FuncletPadInst
>::op_end(this) - Values
, Values
,
1097 init(ParentPad
, Args
, NameStr
);
1100 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op
, Value
*ParentPad
,
1101 ArrayRef
<Value
*> Args
, unsigned Values
,
1102 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
)
1103 : Instruction(ParentPad
->getType(), Op
,
1104 OperandTraits
<FuncletPadInst
>::op_end(this) - Values
, Values
,
1106 init(ParentPad
, Args
, NameStr
);
1109 //===----------------------------------------------------------------------===//
1110 // UnreachableInst Implementation
1111 //===----------------------------------------------------------------------===//
1113 UnreachableInst::UnreachableInst(LLVMContext
&Context
,
1114 Instruction
*InsertBefore
)
1115 : Instruction(Type::getVoidTy(Context
), Instruction::Unreachable
, nullptr,
1117 UnreachableInst::UnreachableInst(LLVMContext
&Context
, BasicBlock
*InsertAtEnd
)
1118 : Instruction(Type::getVoidTy(Context
), Instruction::Unreachable
, nullptr,
1121 //===----------------------------------------------------------------------===//
1122 // BranchInst Implementation
1123 //===----------------------------------------------------------------------===//
1125 void BranchInst::AssertOK() {
1126 if (isConditional())
1127 assert(getCondition()->getType()->isIntegerTy(1) &&
1128 "May only branch on boolean predicates!");
1131 BranchInst::BranchInst(BasicBlock
*IfTrue
, Instruction
*InsertBefore
)
1132 : Instruction(Type::getVoidTy(IfTrue
->getContext()), Instruction::Br
,
1133 OperandTraits
<BranchInst
>::op_end(this) - 1, 1,
1135 assert(IfTrue
&& "Branch destination may not be null!");
1139 BranchInst::BranchInst(BasicBlock
*IfTrue
, BasicBlock
*IfFalse
, Value
*Cond
,
1140 Instruction
*InsertBefore
)
1141 : Instruction(Type::getVoidTy(IfTrue
->getContext()), Instruction::Br
,
1142 OperandTraits
<BranchInst
>::op_end(this) - 3, 3,
1152 BranchInst::BranchInst(BasicBlock
*IfTrue
, BasicBlock
*InsertAtEnd
)
1153 : Instruction(Type::getVoidTy(IfTrue
->getContext()), Instruction::Br
,
1154 OperandTraits
<BranchInst
>::op_end(this) - 1, 1, InsertAtEnd
) {
1155 assert(IfTrue
&& "Branch destination may not be null!");
1159 BranchInst::BranchInst(BasicBlock
*IfTrue
, BasicBlock
*IfFalse
, Value
*Cond
,
1160 BasicBlock
*InsertAtEnd
)
1161 : Instruction(Type::getVoidTy(IfTrue
->getContext()), Instruction::Br
,
1162 OperandTraits
<BranchInst
>::op_end(this) - 3, 3, InsertAtEnd
) {
1171 BranchInst::BranchInst(const BranchInst
&BI
)
1172 : Instruction(Type::getVoidTy(BI
.getContext()), Instruction::Br
,
1173 OperandTraits
<BranchInst
>::op_end(this) - BI
.getNumOperands(),
1174 BI
.getNumOperands()) {
1175 Op
<-1>() = BI
.Op
<-1>();
1176 if (BI
.getNumOperands() != 1) {
1177 assert(BI
.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
1178 Op
<-3>() = BI
.Op
<-3>();
1179 Op
<-2>() = BI
.Op
<-2>();
1181 SubclassOptionalData
= BI
.SubclassOptionalData
;
1184 void BranchInst::swapSuccessors() {
1185 assert(isConditional() &&
1186 "Cannot swap successors of an unconditional branch");
1187 Op
<-1>().swap(Op
<-2>());
1189 // Update profile metadata if present and it matches our structural
1194 //===----------------------------------------------------------------------===//
1195 // AllocaInst Implementation
1196 //===----------------------------------------------------------------------===//
1198 static Value
*getAISize(LLVMContext
&Context
, Value
*Amt
) {
1200 Amt
= ConstantInt::get(Type::getInt32Ty(Context
), 1);
1202 assert(!isa
<BasicBlock
>(Amt
) &&
1203 "Passed basic block into allocation size parameter! Use other ctor");
1204 assert(Amt
->getType()->isIntegerTy() &&
1205 "Allocation array size is not an integer!");
1210 AllocaInst::AllocaInst(Type
*Ty
, unsigned AddrSpace
, const Twine
&Name
,
1211 Instruction
*InsertBefore
)
1212 : AllocaInst(Ty
, AddrSpace
, /*ArraySize=*/nullptr, Name
, InsertBefore
) {}
1214 AllocaInst::AllocaInst(Type
*Ty
, unsigned AddrSpace
, const Twine
&Name
,
1215 BasicBlock
*InsertAtEnd
)
1216 : AllocaInst(Ty
, AddrSpace
, /*ArraySize=*/nullptr, Name
, InsertAtEnd
) {}
1218 AllocaInst::AllocaInst(Type
*Ty
, unsigned AddrSpace
, Value
*ArraySize
,
1219 const Twine
&Name
, Instruction
*InsertBefore
)
1220 : AllocaInst(Ty
, AddrSpace
, ArraySize
, /*Align=*/0, Name
, InsertBefore
) {}
1222 AllocaInst::AllocaInst(Type
*Ty
, unsigned AddrSpace
, Value
*ArraySize
,
1223 const Twine
&Name
, BasicBlock
*InsertAtEnd
)
1224 : AllocaInst(Ty
, AddrSpace
, ArraySize
, /*Align=*/0, Name
, InsertAtEnd
) {}
1226 AllocaInst::AllocaInst(Type
*Ty
, unsigned AddrSpace
, Value
*ArraySize
,
1227 unsigned Align
, const Twine
&Name
,
1228 Instruction
*InsertBefore
)
1229 : UnaryInstruction(PointerType::get(Ty
, AddrSpace
), Alloca
,
1230 getAISize(Ty
->getContext(), ArraySize
), InsertBefore
),
1232 setAlignment(MaybeAlign(Align
));
1233 assert(!Ty
->isVoidTy() && "Cannot allocate void!");
1237 AllocaInst::AllocaInst(Type
*Ty
, unsigned AddrSpace
, Value
*ArraySize
,
1238 unsigned Align
, const Twine
&Name
,
1239 BasicBlock
*InsertAtEnd
)
1240 : UnaryInstruction(PointerType::get(Ty
, AddrSpace
), Alloca
,
1241 getAISize(Ty
->getContext(), ArraySize
), InsertAtEnd
),
1243 setAlignment(MaybeAlign(Align
));
1244 assert(!Ty
->isVoidTy() && "Cannot allocate void!");
1248 void AllocaInst::setAlignment(MaybeAlign Align
) {
1249 assert((!Align
|| *Align
<= MaximumAlignment
) &&
1250 "Alignment is greater than MaximumAlignment!");
1251 setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) |
1254 assert(getAlignment() == Align
->value() &&
1255 "Alignment representation error!");
1257 assert(getAlignment() == 0 && "Alignment representation error!");
1260 bool AllocaInst::isArrayAllocation() const {
1261 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(getOperand(0)))
1262 return !CI
->isOne();
1266 /// isStaticAlloca - Return true if this alloca is in the entry block of the
1267 /// function and is a constant size. If so, the code generator will fold it
1268 /// into the prolog/epilog code, so it is basically free.
1269 bool AllocaInst::isStaticAlloca() const {
1270 // Must be constant size.
1271 if (!isa
<ConstantInt
>(getArraySize())) return false;
1273 // Must be in the entry block.
1274 const BasicBlock
*Parent
= getParent();
1275 return Parent
== &Parent
->getParent()->front() && !isUsedWithInAlloca();
1278 //===----------------------------------------------------------------------===//
1279 // LoadInst Implementation
1280 //===----------------------------------------------------------------------===//
1282 void LoadInst::AssertOK() {
1283 assert(getOperand(0)->getType()->isPointerTy() &&
1284 "Ptr must have pointer type.");
1285 assert(!(isAtomic() && getAlignment() == 0) &&
1286 "Alignment required for atomic load");
1289 LoadInst::LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&Name
,
1290 Instruction
*InsertBef
)
1291 : LoadInst(Ty
, Ptr
, Name
, /*isVolatile=*/false, InsertBef
) {}
1293 LoadInst::LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&Name
,
1294 BasicBlock
*InsertAE
)
1295 : LoadInst(Ty
, Ptr
, Name
, /*isVolatile=*/false, InsertAE
) {}
1297 LoadInst::LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&Name
, bool isVolatile
,
1298 Instruction
*InsertBef
)
1299 : LoadInst(Ty
, Ptr
, Name
, isVolatile
, /*Align=*/0, InsertBef
) {}
1301 LoadInst::LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&Name
, bool isVolatile
,
1302 BasicBlock
*InsertAE
)
1303 : LoadInst(Ty
, Ptr
, Name
, isVolatile
, /*Align=*/0, InsertAE
) {}
1305 LoadInst::LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&Name
, bool isVolatile
,
1306 unsigned Align
, Instruction
*InsertBef
)
1307 : LoadInst(Ty
, Ptr
, Name
, isVolatile
, Align
, AtomicOrdering::NotAtomic
,
1308 SyncScope::System
, InsertBef
) {}
1310 LoadInst::LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&Name
, bool isVolatile
,
1311 unsigned Align
, BasicBlock
*InsertAE
)
1312 : LoadInst(Ty
, Ptr
, Name
, isVolatile
, Align
, AtomicOrdering::NotAtomic
,
1313 SyncScope::System
, InsertAE
) {}
1315 LoadInst::LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&Name
, bool isVolatile
,
1316 unsigned Align
, AtomicOrdering Order
,
1317 SyncScope::ID SSID
, Instruction
*InsertBef
)
1318 : UnaryInstruction(Ty
, Load
, Ptr
, InsertBef
) {
1319 assert(Ty
== cast
<PointerType
>(Ptr
->getType())->getElementType());
1320 setVolatile(isVolatile
);
1321 setAlignment(MaybeAlign(Align
));
1322 setAtomic(Order
, SSID
);
1327 LoadInst::LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&Name
, bool isVolatile
,
1328 unsigned Align
, AtomicOrdering Order
, SyncScope::ID SSID
,
1329 BasicBlock
*InsertAE
)
1330 : UnaryInstruction(Ty
, Load
, Ptr
, InsertAE
) {
1331 assert(Ty
== cast
<PointerType
>(Ptr
->getType())->getElementType());
1332 setVolatile(isVolatile
);
1333 setAlignment(MaybeAlign(Align
));
1334 setAtomic(Order
, SSID
);
1339 void LoadInst::setAlignment(MaybeAlign Align
) {
1340 assert((!Align
|| *Align
<= MaximumAlignment
) &&
1341 "Alignment is greater than MaximumAlignment!");
1342 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1343 (encode(Align
) << 1));
1345 assert(getAlignment() == Align
->value() &&
1346 "Alignment representation error!");
1348 assert(getAlignment() == 0 && "Alignment representation error!");
1351 //===----------------------------------------------------------------------===//
1352 // StoreInst Implementation
1353 //===----------------------------------------------------------------------===//
1355 void StoreInst::AssertOK() {
1356 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1357 assert(getOperand(1)->getType()->isPointerTy() &&
1358 "Ptr must have pointer type!");
1359 assert(getOperand(0)->getType() ==
1360 cast
<PointerType
>(getOperand(1)->getType())->getElementType()
1361 && "Ptr must be a pointer to Val type!");
1362 assert(!(isAtomic() && getAlignment() == 0) &&
1363 "Alignment required for atomic store");
1366 StoreInst::StoreInst(Value
*val
, Value
*addr
, Instruction
*InsertBefore
)
1367 : StoreInst(val
, addr
, /*isVolatile=*/false, InsertBefore
) {}
1369 StoreInst::StoreInst(Value
*val
, Value
*addr
, BasicBlock
*InsertAtEnd
)
1370 : StoreInst(val
, addr
, /*isVolatile=*/false, InsertAtEnd
) {}
1372 StoreInst::StoreInst(Value
*val
, Value
*addr
, bool isVolatile
,
1373 Instruction
*InsertBefore
)
1374 : StoreInst(val
, addr
, isVolatile
, /*Align=*/0, InsertBefore
) {}
1376 StoreInst::StoreInst(Value
*val
, Value
*addr
, bool isVolatile
,
1377 BasicBlock
*InsertAtEnd
)
1378 : StoreInst(val
, addr
, isVolatile
, /*Align=*/0, InsertAtEnd
) {}
1380 StoreInst::StoreInst(Value
*val
, Value
*addr
, bool isVolatile
, unsigned Align
,
1381 Instruction
*InsertBefore
)
1382 : StoreInst(val
, addr
, isVolatile
, Align
, AtomicOrdering::NotAtomic
,
1383 SyncScope::System
, InsertBefore
) {}
1385 StoreInst::StoreInst(Value
*val
, Value
*addr
, bool isVolatile
, unsigned Align
,
1386 BasicBlock
*InsertAtEnd
)
1387 : StoreInst(val
, addr
, isVolatile
, Align
, AtomicOrdering::NotAtomic
,
1388 SyncScope::System
, InsertAtEnd
) {}
1390 StoreInst::StoreInst(Value
*val
, Value
*addr
, bool isVolatile
,
1391 unsigned Align
, AtomicOrdering Order
,
1393 Instruction
*InsertBefore
)
1394 : Instruction(Type::getVoidTy(val
->getContext()), Store
,
1395 OperandTraits
<StoreInst
>::op_begin(this),
1396 OperandTraits
<StoreInst
>::operands(this),
1400 setVolatile(isVolatile
);
1401 setAlignment(MaybeAlign(Align
));
1402 setAtomic(Order
, SSID
);
1406 StoreInst::StoreInst(Value
*val
, Value
*addr
, bool isVolatile
,
1407 unsigned Align
, AtomicOrdering Order
,
1409 BasicBlock
*InsertAtEnd
)
1410 : Instruction(Type::getVoidTy(val
->getContext()), Store
,
1411 OperandTraits
<StoreInst
>::op_begin(this),
1412 OperandTraits
<StoreInst
>::operands(this),
1416 setVolatile(isVolatile
);
1417 setAlignment(MaybeAlign(Align
));
1418 setAtomic(Order
, SSID
);
1422 void StoreInst::setAlignment(MaybeAlign Align
) {
1423 assert((!Align
|| *Align
<= MaximumAlignment
) &&
1424 "Alignment is greater than MaximumAlignment!");
1425 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1426 (encode(Align
) << 1));
1428 assert(getAlignment() == Align
->value() &&
1429 "Alignment representation error!");
1431 assert(getAlignment() == 0 && "Alignment representation error!");
1434 //===----------------------------------------------------------------------===//
1435 // AtomicCmpXchgInst Implementation
1436 //===----------------------------------------------------------------------===//
1438 void AtomicCmpXchgInst::Init(Value
*Ptr
, Value
*Cmp
, Value
*NewVal
,
1439 AtomicOrdering SuccessOrdering
,
1440 AtomicOrdering FailureOrdering
,
1441 SyncScope::ID SSID
) {
1445 setSuccessOrdering(SuccessOrdering
);
1446 setFailureOrdering(FailureOrdering
);
1447 setSyncScopeID(SSID
);
1449 assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1450 "All operands must be non-null!");
1451 assert(getOperand(0)->getType()->isPointerTy() &&
1452 "Ptr must have pointer type!");
1453 assert(getOperand(1)->getType() ==
1454 cast
<PointerType
>(getOperand(0)->getType())->getElementType()
1455 && "Ptr must be a pointer to Cmp type!");
1456 assert(getOperand(2)->getType() ==
1457 cast
<PointerType
>(getOperand(0)->getType())->getElementType()
1458 && "Ptr must be a pointer to NewVal type!");
1459 assert(SuccessOrdering
!= AtomicOrdering::NotAtomic
&&
1460 "AtomicCmpXchg instructions must be atomic!");
1461 assert(FailureOrdering
!= AtomicOrdering::NotAtomic
&&
1462 "AtomicCmpXchg instructions must be atomic!");
1463 assert(!isStrongerThan(FailureOrdering
, SuccessOrdering
) &&
1464 "AtomicCmpXchg failure argument shall be no stronger than the success "
1466 assert(FailureOrdering
!= AtomicOrdering::Release
&&
1467 FailureOrdering
!= AtomicOrdering::AcquireRelease
&&
1468 "AtomicCmpXchg failure ordering cannot include release semantics");
1471 AtomicCmpXchgInst::AtomicCmpXchgInst(Value
*Ptr
, Value
*Cmp
, Value
*NewVal
,
1472 AtomicOrdering SuccessOrdering
,
1473 AtomicOrdering FailureOrdering
,
1475 Instruction
*InsertBefore
)
1477 StructType::get(Cmp
->getType(), Type::getInt1Ty(Cmp
->getContext())),
1478 AtomicCmpXchg
, OperandTraits
<AtomicCmpXchgInst
>::op_begin(this),
1479 OperandTraits
<AtomicCmpXchgInst
>::operands(this), InsertBefore
) {
1480 Init(Ptr
, Cmp
, NewVal
, SuccessOrdering
, FailureOrdering
, SSID
);
1483 AtomicCmpXchgInst::AtomicCmpXchgInst(Value
*Ptr
, Value
*Cmp
, Value
*NewVal
,
1484 AtomicOrdering SuccessOrdering
,
1485 AtomicOrdering FailureOrdering
,
1487 BasicBlock
*InsertAtEnd
)
1489 StructType::get(Cmp
->getType(), Type::getInt1Ty(Cmp
->getContext())),
1490 AtomicCmpXchg
, OperandTraits
<AtomicCmpXchgInst
>::op_begin(this),
1491 OperandTraits
<AtomicCmpXchgInst
>::operands(this), InsertAtEnd
) {
1492 Init(Ptr
, Cmp
, NewVal
, SuccessOrdering
, FailureOrdering
, SSID
);
1495 //===----------------------------------------------------------------------===//
1496 // AtomicRMWInst Implementation
1497 //===----------------------------------------------------------------------===//
1499 void AtomicRMWInst::Init(BinOp Operation
, Value
*Ptr
, Value
*Val
,
1500 AtomicOrdering Ordering
,
1501 SyncScope::ID SSID
) {
1504 setOperation(Operation
);
1505 setOrdering(Ordering
);
1506 setSyncScopeID(SSID
);
1508 assert(getOperand(0) && getOperand(1) &&
1509 "All operands must be non-null!");
1510 assert(getOperand(0)->getType()->isPointerTy() &&
1511 "Ptr must have pointer type!");
1512 assert(getOperand(1)->getType() ==
1513 cast
<PointerType
>(getOperand(0)->getType())->getElementType()
1514 && "Ptr must be a pointer to Val type!");
1515 assert(Ordering
!= AtomicOrdering::NotAtomic
&&
1516 "AtomicRMW instructions must be atomic!");
1519 AtomicRMWInst::AtomicRMWInst(BinOp Operation
, Value
*Ptr
, Value
*Val
,
1520 AtomicOrdering Ordering
,
1522 Instruction
*InsertBefore
)
1523 : Instruction(Val
->getType(), AtomicRMW
,
1524 OperandTraits
<AtomicRMWInst
>::op_begin(this),
1525 OperandTraits
<AtomicRMWInst
>::operands(this),
1527 Init(Operation
, Ptr
, Val
, Ordering
, SSID
);
1530 AtomicRMWInst::AtomicRMWInst(BinOp Operation
, Value
*Ptr
, Value
*Val
,
1531 AtomicOrdering Ordering
,
1533 BasicBlock
*InsertAtEnd
)
1534 : Instruction(Val
->getType(), AtomicRMW
,
1535 OperandTraits
<AtomicRMWInst
>::op_begin(this),
1536 OperandTraits
<AtomicRMWInst
>::operands(this),
1538 Init(Operation
, Ptr
, Val
, Ordering
, SSID
);
1541 StringRef
AtomicRMWInst::getOperationName(BinOp Op
) {
1543 case AtomicRMWInst::Xchg
:
1545 case AtomicRMWInst::Add
:
1547 case AtomicRMWInst::Sub
:
1549 case AtomicRMWInst::And
:
1551 case AtomicRMWInst::Nand
:
1553 case AtomicRMWInst::Or
:
1555 case AtomicRMWInst::Xor
:
1557 case AtomicRMWInst::Max
:
1559 case AtomicRMWInst::Min
:
1561 case AtomicRMWInst::UMax
:
1563 case AtomicRMWInst::UMin
:
1565 case AtomicRMWInst::FAdd
:
1567 case AtomicRMWInst::FSub
:
1569 case AtomicRMWInst::BAD_BINOP
:
1570 return "<invalid operation>";
1573 llvm_unreachable("invalid atomicrmw operation");
1576 //===----------------------------------------------------------------------===//
1577 // FenceInst Implementation
1578 //===----------------------------------------------------------------------===//
1580 FenceInst::FenceInst(LLVMContext
&C
, AtomicOrdering Ordering
,
1582 Instruction
*InsertBefore
)
1583 : Instruction(Type::getVoidTy(C
), Fence
, nullptr, 0, InsertBefore
) {
1584 setOrdering(Ordering
);
1585 setSyncScopeID(SSID
);
1588 FenceInst::FenceInst(LLVMContext
&C
, AtomicOrdering Ordering
,
1590 BasicBlock
*InsertAtEnd
)
1591 : Instruction(Type::getVoidTy(C
), Fence
, nullptr, 0, InsertAtEnd
) {
1592 setOrdering(Ordering
);
1593 setSyncScopeID(SSID
);
1596 //===----------------------------------------------------------------------===//
1597 // GetElementPtrInst Implementation
1598 //===----------------------------------------------------------------------===//
1600 void GetElementPtrInst::init(Value
*Ptr
, ArrayRef
<Value
*> IdxList
,
1601 const Twine
&Name
) {
1602 assert(getNumOperands() == 1 + IdxList
.size() &&
1603 "NumOperands not initialized?");
1605 llvm::copy(IdxList
, op_begin() + 1);
1609 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst
&GEPI
)
1610 : Instruction(GEPI
.getType(), GetElementPtr
,
1611 OperandTraits
<GetElementPtrInst
>::op_end(this) -
1612 GEPI
.getNumOperands(),
1613 GEPI
.getNumOperands()),
1614 SourceElementType(GEPI
.SourceElementType
),
1615 ResultElementType(GEPI
.ResultElementType
) {
1616 std::copy(GEPI
.op_begin(), GEPI
.op_end(), op_begin());
1617 SubclassOptionalData
= GEPI
.SubclassOptionalData
;
1620 /// getIndexedType - Returns the type of the element that would be accessed with
1621 /// a gep instruction with the specified parameters.
1623 /// The Idxs pointer should point to a continuous piece of memory containing the
1624 /// indices, either as Value* or uint64_t.
1626 /// A null type is returned if the indices are invalid for the specified
1629 template <typename IndexTy
>
1630 static Type
*getIndexedTypeInternal(Type
*Agg
, ArrayRef
<IndexTy
> IdxList
) {
1631 // Handle the special case of the empty set index set, which is always valid.
1632 if (IdxList
.empty())
1635 // If there is at least one index, the top level type must be sized, otherwise
1636 // it cannot be 'stepped over'.
1637 if (!Agg
->isSized())
1640 unsigned CurIdx
= 1;
1641 for (; CurIdx
!= IdxList
.size(); ++CurIdx
) {
1642 CompositeType
*CT
= dyn_cast
<CompositeType
>(Agg
);
1643 if (!CT
|| CT
->isPointerTy()) return nullptr;
1644 IndexTy Index
= IdxList
[CurIdx
];
1645 if (!CT
->indexValid(Index
)) return nullptr;
1646 Agg
= CT
->getTypeAtIndex(Index
);
1648 return CurIdx
== IdxList
.size() ? Agg
: nullptr;
1651 Type
*GetElementPtrInst::getIndexedType(Type
*Ty
, ArrayRef
<Value
*> IdxList
) {
1652 return getIndexedTypeInternal(Ty
, IdxList
);
1655 Type
*GetElementPtrInst::getIndexedType(Type
*Ty
,
1656 ArrayRef
<Constant
*> IdxList
) {
1657 return getIndexedTypeInternal(Ty
, IdxList
);
1660 Type
*GetElementPtrInst::getIndexedType(Type
*Ty
, ArrayRef
<uint64_t> IdxList
) {
1661 return getIndexedTypeInternal(Ty
, IdxList
);
1664 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1665 /// zeros. If so, the result pointer and the first operand have the same
1666 /// value, just potentially different types.
1667 bool GetElementPtrInst::hasAllZeroIndices() const {
1668 for (unsigned i
= 1, e
= getNumOperands(); i
!= e
; ++i
) {
1669 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(getOperand(i
))) {
1670 if (!CI
->isZero()) return false;
1678 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1679 /// constant integers. If so, the result pointer and the first operand have
1680 /// a constant offset between them.
1681 bool GetElementPtrInst::hasAllConstantIndices() const {
1682 for (unsigned i
= 1, e
= getNumOperands(); i
!= e
; ++i
) {
1683 if (!isa
<ConstantInt
>(getOperand(i
)))
1689 void GetElementPtrInst::setIsInBounds(bool B
) {
1690 cast
<GEPOperator
>(this)->setIsInBounds(B
);
1693 bool GetElementPtrInst::isInBounds() const {
1694 return cast
<GEPOperator
>(this)->isInBounds();
1697 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout
&DL
,
1698 APInt
&Offset
) const {
1699 // Delegate to the generic GEPOperator implementation.
1700 return cast
<GEPOperator
>(this)->accumulateConstantOffset(DL
, Offset
);
1703 //===----------------------------------------------------------------------===//
1704 // ExtractElementInst Implementation
1705 //===----------------------------------------------------------------------===//
1707 ExtractElementInst::ExtractElementInst(Value
*Val
, Value
*Index
,
1709 Instruction
*InsertBef
)
1710 : Instruction(cast
<VectorType
>(Val
->getType())->getElementType(),
1712 OperandTraits
<ExtractElementInst
>::op_begin(this),
1714 assert(isValidOperands(Val
, Index
) &&
1715 "Invalid extractelement instruction operands!");
1721 ExtractElementInst::ExtractElementInst(Value
*Val
, Value
*Index
,
1723 BasicBlock
*InsertAE
)
1724 : Instruction(cast
<VectorType
>(Val
->getType())->getElementType(),
1726 OperandTraits
<ExtractElementInst
>::op_begin(this),
1728 assert(isValidOperands(Val
, Index
) &&
1729 "Invalid extractelement instruction operands!");
1736 bool ExtractElementInst::isValidOperands(const Value
*Val
, const Value
*Index
) {
1737 if (!Val
->getType()->isVectorTy() || !Index
->getType()->isIntegerTy())
1742 //===----------------------------------------------------------------------===//
1743 // InsertElementInst Implementation
1744 //===----------------------------------------------------------------------===//
1746 InsertElementInst::InsertElementInst(Value
*Vec
, Value
*Elt
, Value
*Index
,
1748 Instruction
*InsertBef
)
1749 : Instruction(Vec
->getType(), InsertElement
,
1750 OperandTraits
<InsertElementInst
>::op_begin(this),
1752 assert(isValidOperands(Vec
, Elt
, Index
) &&
1753 "Invalid insertelement instruction operands!");
1760 InsertElementInst::InsertElementInst(Value
*Vec
, Value
*Elt
, Value
*Index
,
1762 BasicBlock
*InsertAE
)
1763 : Instruction(Vec
->getType(), InsertElement
,
1764 OperandTraits
<InsertElementInst
>::op_begin(this),
1766 assert(isValidOperands(Vec
, Elt
, Index
) &&
1767 "Invalid insertelement instruction operands!");
1775 bool InsertElementInst::isValidOperands(const Value
*Vec
, const Value
*Elt
,
1776 const Value
*Index
) {
1777 if (!Vec
->getType()->isVectorTy())
1778 return false; // First operand of insertelement must be vector type.
1780 if (Elt
->getType() != cast
<VectorType
>(Vec
->getType())->getElementType())
1781 return false;// Second operand of insertelement must be vector element type.
1783 if (!Index
->getType()->isIntegerTy())
1784 return false; // Third operand of insertelement must be i32.
1788 //===----------------------------------------------------------------------===//
1789 // ShuffleVectorInst Implementation
1790 //===----------------------------------------------------------------------===//
1792 ShuffleVectorInst::ShuffleVectorInst(Value
*V1
, Value
*V2
, Value
*Mask
,
1794 Instruction
*InsertBefore
)
1795 : Instruction(VectorType::get(cast
<VectorType
>(V1
->getType())->getElementType(),
1796 cast
<VectorType
>(Mask
->getType())->getElementCount()),
1798 OperandTraits
<ShuffleVectorInst
>::op_begin(this),
1799 OperandTraits
<ShuffleVectorInst
>::operands(this),
1801 assert(isValidOperands(V1
, V2
, Mask
) &&
1802 "Invalid shuffle vector instruction operands!");
1809 ShuffleVectorInst::ShuffleVectorInst(Value
*V1
, Value
*V2
, Value
*Mask
,
1811 BasicBlock
*InsertAtEnd
)
1812 : Instruction(VectorType::get(cast
<VectorType
>(V1
->getType())->getElementType(),
1813 cast
<VectorType
>(Mask
->getType())->getElementCount()),
1815 OperandTraits
<ShuffleVectorInst
>::op_begin(this),
1816 OperandTraits
<ShuffleVectorInst
>::operands(this),
1818 assert(isValidOperands(V1
, V2
, Mask
) &&
1819 "Invalid shuffle vector instruction operands!");
1827 void ShuffleVectorInst::commute() {
1828 int NumOpElts
= Op
<0>()->getType()->getVectorNumElements();
1829 int NumMaskElts
= getMask()->getType()->getVectorNumElements();
1830 SmallVector
<Constant
*, 16> NewMask(NumMaskElts
);
1831 Type
*Int32Ty
= Type::getInt32Ty(getContext());
1832 for (int i
= 0; i
!= NumMaskElts
; ++i
) {
1833 int MaskElt
= getMaskValue(i
);
1834 if (MaskElt
== -1) {
1835 NewMask
[i
] = UndefValue::get(Int32Ty
);
1838 assert(MaskElt
>= 0 && MaskElt
< 2 * NumOpElts
&& "Out-of-range mask");
1839 MaskElt
= (MaskElt
< NumOpElts
) ? MaskElt
+ NumOpElts
: MaskElt
- NumOpElts
;
1840 NewMask
[i
] = ConstantInt::get(Int32Ty
, MaskElt
);
1842 Op
<2>() = ConstantVector::get(NewMask
);
1843 Op
<0>().swap(Op
<1>());
1846 bool ShuffleVectorInst::isValidOperands(const Value
*V1
, const Value
*V2
,
1847 const Value
*Mask
) {
1848 // V1 and V2 must be vectors of the same type.
1849 if (!V1
->getType()->isVectorTy() || V1
->getType() != V2
->getType())
1852 // Mask must be vector of i32.
1853 auto *MaskTy
= dyn_cast
<VectorType
>(Mask
->getType());
1854 if (!MaskTy
|| !MaskTy
->getElementType()->isIntegerTy(32))
1857 // Check to see if Mask is valid.
1858 if (isa
<UndefValue
>(Mask
) || isa
<ConstantAggregateZero
>(Mask
))
1861 if (const auto *MV
= dyn_cast
<ConstantVector
>(Mask
)) {
1862 unsigned V1Size
= cast
<VectorType
>(V1
->getType())->getNumElements();
1863 for (Value
*Op
: MV
->operands()) {
1864 if (auto *CI
= dyn_cast
<ConstantInt
>(Op
)) {
1865 if (CI
->uge(V1Size
*2))
1867 } else if (!isa
<UndefValue
>(Op
)) {
1874 if (const auto *CDS
= dyn_cast
<ConstantDataSequential
>(Mask
)) {
1875 unsigned V1Size
= cast
<VectorType
>(V1
->getType())->getNumElements();
1876 for (unsigned i
= 0, e
= MaskTy
->getNumElements(); i
!= e
; ++i
)
1877 if (CDS
->getElementAsInteger(i
) >= V1Size
*2)
1882 // The bitcode reader can create a place holder for a forward reference
1883 // used as the shuffle mask. When this occurs, the shuffle mask will
1884 // fall into this case and fail. To avoid this error, do this bit of
1885 // ugliness to allow such a mask pass.
1886 if (const auto *CE
= dyn_cast
<ConstantExpr
>(Mask
))
1887 if (CE
->getOpcode() == Instruction::UserOp1
)
1893 int ShuffleVectorInst::getMaskValue(const Constant
*Mask
, unsigned i
) {
1894 assert(i
< Mask
->getType()->getVectorNumElements() && "Index out of range");
1895 if (auto *CDS
= dyn_cast
<ConstantDataSequential
>(Mask
))
1896 return CDS
->getElementAsInteger(i
);
1897 Constant
*C
= Mask
->getAggregateElement(i
);
1898 if (isa
<UndefValue
>(C
))
1900 return cast
<ConstantInt
>(C
)->getZExtValue();
1903 void ShuffleVectorInst::getShuffleMask(const Constant
*Mask
,
1904 SmallVectorImpl
<int> &Result
) {
1905 unsigned NumElts
= Mask
->getType()->getVectorNumElements();
1907 if (auto *CDS
= dyn_cast
<ConstantDataSequential
>(Mask
)) {
1908 for (unsigned i
= 0; i
!= NumElts
; ++i
)
1909 Result
.push_back(CDS
->getElementAsInteger(i
));
1912 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
1913 Constant
*C
= Mask
->getAggregateElement(i
);
1914 Result
.push_back(isa
<UndefValue
>(C
) ? -1 :
1915 cast
<ConstantInt
>(C
)->getZExtValue());
1919 static bool isSingleSourceMaskImpl(ArrayRef
<int> Mask
, int NumOpElts
) {
1920 assert(!Mask
.empty() && "Shuffle mask must contain elements");
1921 bool UsesLHS
= false;
1922 bool UsesRHS
= false;
1923 for (int i
= 0, NumMaskElts
= Mask
.size(); i
< NumMaskElts
; ++i
) {
1926 assert(Mask
[i
] >= 0 && Mask
[i
] < (NumOpElts
* 2) &&
1927 "Out-of-bounds shuffle mask element");
1928 UsesLHS
|= (Mask
[i
] < NumOpElts
);
1929 UsesRHS
|= (Mask
[i
] >= NumOpElts
);
1930 if (UsesLHS
&& UsesRHS
)
1933 assert((UsesLHS
^ UsesRHS
) && "Should have selected from exactly 1 source");
1937 bool ShuffleVectorInst::isSingleSourceMask(ArrayRef
<int> Mask
) {
1938 // We don't have vector operand size information, so assume operands are the
1939 // same size as the mask.
1940 return isSingleSourceMaskImpl(Mask
, Mask
.size());
1943 static bool isIdentityMaskImpl(ArrayRef
<int> Mask
, int NumOpElts
) {
1944 if (!isSingleSourceMaskImpl(Mask
, NumOpElts
))
1946 for (int i
= 0, NumMaskElts
= Mask
.size(); i
< NumMaskElts
; ++i
) {
1949 if (Mask
[i
] != i
&& Mask
[i
] != (NumOpElts
+ i
))
1955 bool ShuffleVectorInst::isIdentityMask(ArrayRef
<int> Mask
) {
1956 // We don't have vector operand size information, so assume operands are the
1957 // same size as the mask.
1958 return isIdentityMaskImpl(Mask
, Mask
.size());
1961 bool ShuffleVectorInst::isReverseMask(ArrayRef
<int> Mask
) {
1962 if (!isSingleSourceMask(Mask
))
1964 for (int i
= 0, NumElts
= Mask
.size(); i
< NumElts
; ++i
) {
1967 if (Mask
[i
] != (NumElts
- 1 - i
) && Mask
[i
] != (NumElts
+ NumElts
- 1 - i
))
1973 bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef
<int> Mask
) {
1974 if (!isSingleSourceMask(Mask
))
1976 for (int i
= 0, NumElts
= Mask
.size(); i
< NumElts
; ++i
) {
1979 if (Mask
[i
] != 0 && Mask
[i
] != NumElts
)
1985 bool ShuffleVectorInst::isSelectMask(ArrayRef
<int> Mask
) {
1986 // Select is differentiated from identity. It requires using both sources.
1987 if (isSingleSourceMask(Mask
))
1989 for (int i
= 0, NumElts
= Mask
.size(); i
< NumElts
; ++i
) {
1992 if (Mask
[i
] != i
&& Mask
[i
] != (NumElts
+ i
))
1998 bool ShuffleVectorInst::isTransposeMask(ArrayRef
<int> Mask
) {
1999 // Example masks that will return true:
2000 // v1 = <a, b, c, d>
2001 // v2 = <e, f, g, h>
2002 // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
2003 // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
2005 // 1. The number of elements in the mask must be a power-of-2 and at least 2.
2006 int NumElts
= Mask
.size();
2007 if (NumElts
< 2 || !isPowerOf2_32(NumElts
))
2010 // 2. The first element of the mask must be either a 0 or a 1.
2011 if (Mask
[0] != 0 && Mask
[0] != 1)
2014 // 3. The difference between the first 2 elements must be equal to the
2015 // number of elements in the mask.
2016 if ((Mask
[1] - Mask
[0]) != NumElts
)
2019 // 4. The difference between consecutive even-numbered and odd-numbered
2020 // elements must be equal to 2.
2021 for (int i
= 2; i
< NumElts
; ++i
) {
2022 int MaskEltVal
= Mask
[i
];
2023 if (MaskEltVal
== -1)
2025 int MaskEltPrevVal
= Mask
[i
- 2];
2026 if (MaskEltVal
- MaskEltPrevVal
!= 2)
2032 bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef
<int> Mask
,
2033 int NumSrcElts
, int &Index
) {
2034 // Must extract from a single source.
2035 if (!isSingleSourceMaskImpl(Mask
, NumSrcElts
))
2038 // Must be smaller (else this is an Identity shuffle).
2039 if (NumSrcElts
<= (int)Mask
.size())
2042 // Find start of extraction, accounting that we may start with an UNDEF.
2044 for (int i
= 0, e
= Mask
.size(); i
!= e
; ++i
) {
2048 int Offset
= (M
% NumSrcElts
) - i
;
2049 if (0 <= SubIndex
&& SubIndex
!= Offset
)
2054 if (0 <= SubIndex
) {
2061 bool ShuffleVectorInst::isIdentityWithPadding() const {
2062 int NumOpElts
= Op
<0>()->getType()->getVectorNumElements();
2063 int NumMaskElts
= getType()->getVectorNumElements();
2064 if (NumMaskElts
<= NumOpElts
)
2067 // The first part of the mask must choose elements from exactly 1 source op.
2068 SmallVector
<int, 16> Mask
= getShuffleMask();
2069 if (!isIdentityMaskImpl(Mask
, NumOpElts
))
2072 // All extending must be with undef elements.
2073 for (int i
= NumOpElts
; i
< NumMaskElts
; ++i
)
2080 bool ShuffleVectorInst::isIdentityWithExtract() const {
2081 int NumOpElts
= Op
<0>()->getType()->getVectorNumElements();
2082 int NumMaskElts
= getType()->getVectorNumElements();
2083 if (NumMaskElts
>= NumOpElts
)
2086 return isIdentityMaskImpl(getShuffleMask(), NumOpElts
);
2089 bool ShuffleVectorInst::isConcat() const {
2090 // Vector concatenation is differentiated from identity with padding.
2091 if (isa
<UndefValue
>(Op
<0>()) || isa
<UndefValue
>(Op
<1>()))
2094 int NumOpElts
= Op
<0>()->getType()->getVectorNumElements();
2095 int NumMaskElts
= getType()->getVectorNumElements();
2096 if (NumMaskElts
!= NumOpElts
* 2)
2099 // Use the mask length rather than the operands' vector lengths here. We
2100 // already know that the shuffle returns a vector twice as long as the inputs,
2101 // and neither of the inputs are undef vectors. If the mask picks consecutive
2102 // elements from both inputs, then this is a concatenation of the inputs.
2103 return isIdentityMaskImpl(getShuffleMask(), NumMaskElts
);
2106 //===----------------------------------------------------------------------===//
2107 // InsertValueInst Class
2108 //===----------------------------------------------------------------------===//
2110 void InsertValueInst::init(Value
*Agg
, Value
*Val
, ArrayRef
<unsigned> Idxs
,
2111 const Twine
&Name
) {
2112 assert(getNumOperands() == 2 && "NumOperands not initialized?");
2114 // There's no fundamental reason why we require at least one index
2115 // (other than weirdness with &*IdxBegin being invalid; see
2116 // getelementptr's init routine for example). But there's no
2117 // present need to support it.
2118 assert(!Idxs
.empty() && "InsertValueInst must have at least one index");
2120 assert(ExtractValueInst::getIndexedType(Agg
->getType(), Idxs
) ==
2121 Val
->getType() && "Inserted value must match indexed type!");
2125 Indices
.append(Idxs
.begin(), Idxs
.end());
2129 InsertValueInst::InsertValueInst(const InsertValueInst
&IVI
)
2130 : Instruction(IVI
.getType(), InsertValue
,
2131 OperandTraits
<InsertValueInst
>::op_begin(this), 2),
2132 Indices(IVI
.Indices
) {
2133 Op
<0>() = IVI
.getOperand(0);
2134 Op
<1>() = IVI
.getOperand(1);
2135 SubclassOptionalData
= IVI
.SubclassOptionalData
;
2138 //===----------------------------------------------------------------------===//
2139 // ExtractValueInst Class
2140 //===----------------------------------------------------------------------===//
2142 void ExtractValueInst::init(ArrayRef
<unsigned> Idxs
, const Twine
&Name
) {
2143 assert(getNumOperands() == 1 && "NumOperands not initialized?");
2145 // There's no fundamental reason why we require at least one index.
2146 // But there's no present need to support it.
2147 assert(!Idxs
.empty() && "ExtractValueInst must have at least one index");
2149 Indices
.append(Idxs
.begin(), Idxs
.end());
2153 ExtractValueInst::ExtractValueInst(const ExtractValueInst
&EVI
)
2154 : UnaryInstruction(EVI
.getType(), ExtractValue
, EVI
.getOperand(0)),
2155 Indices(EVI
.Indices
) {
2156 SubclassOptionalData
= EVI
.SubclassOptionalData
;
2159 // getIndexedType - Returns the type of the element that would be extracted
2160 // with an extractvalue instruction with the specified parameters.
2162 // A null type is returned if the indices are invalid for the specified
2165 Type
*ExtractValueInst::getIndexedType(Type
*Agg
,
2166 ArrayRef
<unsigned> Idxs
) {
2167 for (unsigned Index
: Idxs
) {
2168 // We can't use CompositeType::indexValid(Index) here.
2169 // indexValid() always returns true for arrays because getelementptr allows
2170 // out-of-bounds indices. Since we don't allow those for extractvalue and
2171 // insertvalue we need to check array indexing manually.
2172 // Since the only other types we can index into are struct types it's just
2173 // as easy to check those manually as well.
2174 if (ArrayType
*AT
= dyn_cast
<ArrayType
>(Agg
)) {
2175 if (Index
>= AT
->getNumElements())
2177 } else if (StructType
*ST
= dyn_cast
<StructType
>(Agg
)) {
2178 if (Index
>= ST
->getNumElements())
2181 // Not a valid type to index into.
2185 Agg
= cast
<CompositeType
>(Agg
)->getTypeAtIndex(Index
);
2187 return const_cast<Type
*>(Agg
);
2190 //===----------------------------------------------------------------------===//
2191 // UnaryOperator Class
2192 //===----------------------------------------------------------------------===//
2194 UnaryOperator::UnaryOperator(UnaryOps iType
, Value
*S
,
2195 Type
*Ty
, const Twine
&Name
,
2196 Instruction
*InsertBefore
)
2197 : UnaryInstruction(Ty
, iType
, S
, InsertBefore
) {
2203 UnaryOperator::UnaryOperator(UnaryOps iType
, Value
*S
,
2204 Type
*Ty
, const Twine
&Name
,
2205 BasicBlock
*InsertAtEnd
)
2206 : UnaryInstruction(Ty
, iType
, S
, InsertAtEnd
) {
2212 UnaryOperator
*UnaryOperator::Create(UnaryOps Op
, Value
*S
,
2214 Instruction
*InsertBefore
) {
2215 return new UnaryOperator(Op
, S
, S
->getType(), Name
, InsertBefore
);
2218 UnaryOperator
*UnaryOperator::Create(UnaryOps Op
, Value
*S
,
2220 BasicBlock
*InsertAtEnd
) {
2221 UnaryOperator
*Res
= Create(Op
, S
, Name
);
2222 InsertAtEnd
->getInstList().push_back(Res
);
2226 void UnaryOperator::AssertOK() {
2227 Value
*LHS
= getOperand(0);
2228 (void)LHS
; // Silence warnings.
2230 switch (getOpcode()) {
2232 assert(getType() == LHS
->getType() &&
2233 "Unary operation should return same type as operand!");
2234 assert(getType()->isFPOrFPVectorTy() &&
2235 "Tried to create a floating-point operation on a "
2236 "non-floating-point type!");
2238 default: llvm_unreachable("Invalid opcode provided");
2243 //===----------------------------------------------------------------------===//
2244 // BinaryOperator Class
2245 //===----------------------------------------------------------------------===//
2247 BinaryOperator::BinaryOperator(BinaryOps iType
, Value
*S1
, Value
*S2
,
2248 Type
*Ty
, const Twine
&Name
,
2249 Instruction
*InsertBefore
)
2250 : Instruction(Ty
, iType
,
2251 OperandTraits
<BinaryOperator
>::op_begin(this),
2252 OperandTraits
<BinaryOperator
>::operands(this),
2260 BinaryOperator::BinaryOperator(BinaryOps iType
, Value
*S1
, Value
*S2
,
2261 Type
*Ty
, const Twine
&Name
,
2262 BasicBlock
*InsertAtEnd
)
2263 : Instruction(Ty
, iType
,
2264 OperandTraits
<BinaryOperator
>::op_begin(this),
2265 OperandTraits
<BinaryOperator
>::operands(this),
2273 void BinaryOperator::AssertOK() {
2274 Value
*LHS
= getOperand(0), *RHS
= getOperand(1);
2275 (void)LHS
; (void)RHS
; // Silence warnings.
2276 assert(LHS
->getType() == RHS
->getType() &&
2277 "Binary operator operand types must match!");
2279 switch (getOpcode()) {
2282 assert(getType() == LHS
->getType() &&
2283 "Arithmetic operation should return same type as operands!");
2284 assert(getType()->isIntOrIntVectorTy() &&
2285 "Tried to create an integer operation on a non-integer type!");
2287 case FAdd
: case FSub
:
2289 assert(getType() == LHS
->getType() &&
2290 "Arithmetic operation should return same type as operands!");
2291 assert(getType()->isFPOrFPVectorTy() &&
2292 "Tried to create a floating-point operation on a "
2293 "non-floating-point type!");
2297 assert(getType() == LHS
->getType() &&
2298 "Arithmetic operation should return same type as operands!");
2299 assert(getType()->isIntOrIntVectorTy() &&
2300 "Incorrect operand type (not integer) for S/UDIV");
2303 assert(getType() == LHS
->getType() &&
2304 "Arithmetic operation should return same type as operands!");
2305 assert(getType()->isFPOrFPVectorTy() &&
2306 "Incorrect operand type (not floating point) for FDIV");
2310 assert(getType() == LHS
->getType() &&
2311 "Arithmetic operation should return same type as operands!");
2312 assert(getType()->isIntOrIntVectorTy() &&
2313 "Incorrect operand type (not integer) for S/UREM");
2316 assert(getType() == LHS
->getType() &&
2317 "Arithmetic operation should return same type as operands!");
2318 assert(getType()->isFPOrFPVectorTy() &&
2319 "Incorrect operand type (not floating point) for FREM");
2324 assert(getType() == LHS
->getType() &&
2325 "Shift operation should return same type as operands!");
2326 assert(getType()->isIntOrIntVectorTy() &&
2327 "Tried to create a shift operation on a non-integral type!");
2331 assert(getType() == LHS
->getType() &&
2332 "Logical operation should return same type as operands!");
2333 assert(getType()->isIntOrIntVectorTy() &&
2334 "Tried to create a logical operation on a non-integral type!");
2336 default: llvm_unreachable("Invalid opcode provided");
2341 BinaryOperator
*BinaryOperator::Create(BinaryOps Op
, Value
*S1
, Value
*S2
,
2343 Instruction
*InsertBefore
) {
2344 assert(S1
->getType() == S2
->getType() &&
2345 "Cannot create binary operator with two operands of differing type!");
2346 return new BinaryOperator(Op
, S1
, S2
, S1
->getType(), Name
, InsertBefore
);
2349 BinaryOperator
*BinaryOperator::Create(BinaryOps Op
, Value
*S1
, Value
*S2
,
2351 BasicBlock
*InsertAtEnd
) {
2352 BinaryOperator
*Res
= Create(Op
, S1
, S2
, Name
);
2353 InsertAtEnd
->getInstList().push_back(Res
);
2357 BinaryOperator
*BinaryOperator::CreateNeg(Value
*Op
, const Twine
&Name
,
2358 Instruction
*InsertBefore
) {
2359 Value
*zero
= ConstantFP::getZeroValueForNegation(Op
->getType());
2360 return new BinaryOperator(Instruction::Sub
,
2362 Op
->getType(), Name
, InsertBefore
);
2365 BinaryOperator
*BinaryOperator::CreateNeg(Value
*Op
, const Twine
&Name
,
2366 BasicBlock
*InsertAtEnd
) {
2367 Value
*zero
= ConstantFP::getZeroValueForNegation(Op
->getType());
2368 return new BinaryOperator(Instruction::Sub
,
2370 Op
->getType(), Name
, InsertAtEnd
);
2373 BinaryOperator
*BinaryOperator::CreateNSWNeg(Value
*Op
, const Twine
&Name
,
2374 Instruction
*InsertBefore
) {
2375 Value
*zero
= ConstantFP::getZeroValueForNegation(Op
->getType());
2376 return BinaryOperator::CreateNSWSub(zero
, Op
, Name
, InsertBefore
);
2379 BinaryOperator
*BinaryOperator::CreateNSWNeg(Value
*Op
, const Twine
&Name
,
2380 BasicBlock
*InsertAtEnd
) {
2381 Value
*zero
= ConstantFP::getZeroValueForNegation(Op
->getType());
2382 return BinaryOperator::CreateNSWSub(zero
, Op
, Name
, InsertAtEnd
);
2385 BinaryOperator
*BinaryOperator::CreateNUWNeg(Value
*Op
, const Twine
&Name
,
2386 Instruction
*InsertBefore
) {
2387 Value
*zero
= ConstantFP::getZeroValueForNegation(Op
->getType());
2388 return BinaryOperator::CreateNUWSub(zero
, Op
, Name
, InsertBefore
);
2391 BinaryOperator
*BinaryOperator::CreateNUWNeg(Value
*Op
, const Twine
&Name
,
2392 BasicBlock
*InsertAtEnd
) {
2393 Value
*zero
= ConstantFP::getZeroValueForNegation(Op
->getType());
2394 return BinaryOperator::CreateNUWSub(zero
, Op
, Name
, InsertAtEnd
);
2397 BinaryOperator
*BinaryOperator::CreateFNeg(Value
*Op
, const Twine
&Name
,
2398 Instruction
*InsertBefore
) {
2399 Value
*zero
= ConstantFP::getZeroValueForNegation(Op
->getType());
2400 return new BinaryOperator(Instruction::FSub
, zero
, Op
,
2401 Op
->getType(), Name
, InsertBefore
);
2404 BinaryOperator
*BinaryOperator::CreateFNeg(Value
*Op
, const Twine
&Name
,
2405 BasicBlock
*InsertAtEnd
) {
2406 Value
*zero
= ConstantFP::getZeroValueForNegation(Op
->getType());
2407 return new BinaryOperator(Instruction::FSub
, zero
, Op
,
2408 Op
->getType(), Name
, InsertAtEnd
);
2411 BinaryOperator
*BinaryOperator::CreateNot(Value
*Op
, const Twine
&Name
,
2412 Instruction
*InsertBefore
) {
2413 Constant
*C
= Constant::getAllOnesValue(Op
->getType());
2414 return new BinaryOperator(Instruction::Xor
, Op
, C
,
2415 Op
->getType(), Name
, InsertBefore
);
2418 BinaryOperator
*BinaryOperator::CreateNot(Value
*Op
, const Twine
&Name
,
2419 BasicBlock
*InsertAtEnd
) {
2420 Constant
*AllOnes
= Constant::getAllOnesValue(Op
->getType());
2421 return new BinaryOperator(Instruction::Xor
, Op
, AllOnes
,
2422 Op
->getType(), Name
, InsertAtEnd
);
2425 // Exchange the two operands to this instruction. This instruction is safe to
2426 // use on any binary instruction and does not modify the semantics of the
2427 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
2429 bool BinaryOperator::swapOperands() {
2430 if (!isCommutative())
2431 return true; // Can't commute operands
2432 Op
<0>().swap(Op
<1>());
2436 //===----------------------------------------------------------------------===//
2437 // FPMathOperator Class
2438 //===----------------------------------------------------------------------===//
2440 float FPMathOperator::getFPAccuracy() const {
2442 cast
<Instruction
>(this)->getMetadata(LLVMContext::MD_fpmath
);
2445 ConstantFP
*Accuracy
= mdconst::extract
<ConstantFP
>(MD
->getOperand(0));
2446 return Accuracy
->getValueAPF().convertToFloat();
2449 //===----------------------------------------------------------------------===//
2451 //===----------------------------------------------------------------------===//
2453 // Just determine if this cast only deals with integral->integral conversion.
2454 bool CastInst::isIntegerCast() const {
2455 switch (getOpcode()) {
2456 default: return false;
2457 case Instruction::ZExt
:
2458 case Instruction::SExt
:
2459 case Instruction::Trunc
:
2461 case Instruction::BitCast
:
2462 return getOperand(0)->getType()->isIntegerTy() &&
2463 getType()->isIntegerTy();
2467 bool CastInst::isLosslessCast() const {
2468 // Only BitCast can be lossless, exit fast if we're not BitCast
2469 if (getOpcode() != Instruction::BitCast
)
2472 // Identity cast is always lossless
2473 Type
*SrcTy
= getOperand(0)->getType();
2474 Type
*DstTy
= getType();
2478 // Pointer to pointer is always lossless.
2479 if (SrcTy
->isPointerTy())
2480 return DstTy
->isPointerTy();
2481 return false; // Other types have no identity values
2484 /// This function determines if the CastInst does not require any bits to be
2485 /// changed in order to effect the cast. Essentially, it identifies cases where
2486 /// no code gen is necessary for the cast, hence the name no-op cast. For
2487 /// example, the following are all no-op casts:
2488 /// # bitcast i32* %x to i8*
2489 /// # bitcast <2 x i32> %x to <4 x i16>
2490 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
2491 /// Determine if the described cast is a no-op.
2492 bool CastInst::isNoopCast(Instruction::CastOps Opcode
,
2495 const DataLayout
&DL
) {
2497 default: llvm_unreachable("Invalid CastOp");
2498 case Instruction::Trunc
:
2499 case Instruction::ZExt
:
2500 case Instruction::SExt
:
2501 case Instruction::FPTrunc
:
2502 case Instruction::FPExt
:
2503 case Instruction::UIToFP
:
2504 case Instruction::SIToFP
:
2505 case Instruction::FPToUI
:
2506 case Instruction::FPToSI
:
2507 case Instruction::AddrSpaceCast
:
2508 // TODO: Target informations may give a more accurate answer here.
2510 case Instruction::BitCast
:
2511 return true; // BitCast never modifies bits.
2512 case Instruction::PtrToInt
:
2513 return DL
.getIntPtrType(SrcTy
)->getScalarSizeInBits() ==
2514 DestTy
->getScalarSizeInBits();
2515 case Instruction::IntToPtr
:
2516 return DL
.getIntPtrType(DestTy
)->getScalarSizeInBits() ==
2517 SrcTy
->getScalarSizeInBits();
2521 bool CastInst::isNoopCast(const DataLayout
&DL
) const {
2522 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL
);
2525 /// This function determines if a pair of casts can be eliminated and what
2526 /// opcode should be used in the elimination. This assumes that there are two
2527 /// instructions like this:
2528 /// * %F = firstOpcode SrcTy %x to MidTy
2529 /// * %S = secondOpcode MidTy %F to DstTy
2530 /// The function returns a resultOpcode so these two casts can be replaced with:
2531 /// * %Replacement = resultOpcode %SrcTy %x to DstTy
2532 /// If no such cast is permitted, the function returns 0.
2533 unsigned CastInst::isEliminableCastPair(
2534 Instruction::CastOps firstOp
, Instruction::CastOps secondOp
,
2535 Type
*SrcTy
, Type
*MidTy
, Type
*DstTy
, Type
*SrcIntPtrTy
, Type
*MidIntPtrTy
,
2536 Type
*DstIntPtrTy
) {
2537 // Define the 144 possibilities for these two cast instructions. The values
2538 // in this matrix determine what to do in a given situation and select the
2539 // case in the switch below. The rows correspond to firstOp, the columns
2540 // correspond to secondOp. In looking at the table below, keep in mind
2541 // the following cast properties:
2543 // Size Compare Source Destination
2544 // Operator Src ? Size Type Sign Type Sign
2545 // -------- ------------ ------------------- ---------------------
2546 // TRUNC > Integer Any Integral Any
2547 // ZEXT < Integral Unsigned Integer Any
2548 // SEXT < Integral Signed Integer Any
2549 // FPTOUI n/a FloatPt n/a Integral Unsigned
2550 // FPTOSI n/a FloatPt n/a Integral Signed
2551 // UITOFP n/a Integral Unsigned FloatPt n/a
2552 // SITOFP n/a Integral Signed FloatPt n/a
2553 // FPTRUNC > FloatPt n/a FloatPt n/a
2554 // FPEXT < FloatPt n/a FloatPt n/a
2555 // PTRTOINT n/a Pointer n/a Integral Unsigned
2556 // INTTOPTR n/a Integral Unsigned Pointer n/a
2557 // BITCAST = FirstClass n/a FirstClass n/a
2558 // ADDRSPCST n/a Pointer n/a Pointer n/a
2560 // NOTE: some transforms are safe, but we consider them to be non-profitable.
2561 // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2562 // into "fptoui double to i64", but this loses information about the range
2563 // of the produced value (we no longer know the top-part is all zeros).
2564 // Further this conversion is often much more expensive for typical hardware,
2565 // and causes issues when building libgcc. We disallow fptosi+sext for the
2567 const unsigned numCastOps
=
2568 Instruction::CastOpsEnd
- Instruction::CastOpsBegin
;
2569 static const uint8_t CastResults
[numCastOps
][numCastOps
] = {
2570 // T F F U S F F P I B A -+
2571 // R Z S P P I I T P 2 N T S |
2572 // U E E 2 2 2 2 R E I T C C +- secondOp
2573 // N X X U S F F N X N 2 V V |
2574 // C T T I I P P C T T P T T -+
2575 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc -+
2576 { 8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt |
2577 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt |
2578 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI |
2579 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI |
2580 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP +- firstOp
2581 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP |
2582 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc |
2583 { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt |
2584 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt |
2585 { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr |
2586 { 5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast |
2587 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2590 // TODO: This logic could be encoded into the table above and handled in the
2592 // If either of the casts are a bitcast from scalar to vector, disallow the
2593 // merging. However, any pair of bitcasts are allowed.
2594 bool IsFirstBitcast
= (firstOp
== Instruction::BitCast
);
2595 bool IsSecondBitcast
= (secondOp
== Instruction::BitCast
);
2596 bool AreBothBitcasts
= IsFirstBitcast
&& IsSecondBitcast
;
2598 // Check if any of the casts convert scalars <-> vectors.
2599 if ((IsFirstBitcast
&& isa
<VectorType
>(SrcTy
) != isa
<VectorType
>(MidTy
)) ||
2600 (IsSecondBitcast
&& isa
<VectorType
>(MidTy
) != isa
<VectorType
>(DstTy
)))
2601 if (!AreBothBitcasts
)
2604 int ElimCase
= CastResults
[firstOp
-Instruction::CastOpsBegin
]
2605 [secondOp
-Instruction::CastOpsBegin
];
2608 // Categorically disallowed.
2611 // Allowed, use first cast's opcode.
2614 // Allowed, use second cast's opcode.
2617 // No-op cast in second op implies firstOp as long as the DestTy
2618 // is integer and we are not converting between a vector and a
2620 if (!SrcTy
->isVectorTy() && DstTy
->isIntegerTy())
2624 // No-op cast in second op implies firstOp as long as the DestTy
2625 // is floating point.
2626 if (DstTy
->isFloatingPointTy())
2630 // No-op cast in first op implies secondOp as long as the SrcTy
2632 if (SrcTy
->isIntegerTy())
2636 // No-op cast in first op implies secondOp as long as the SrcTy
2637 // is a floating point.
2638 if (SrcTy
->isFloatingPointTy())
2642 // Cannot simplify if address spaces are different!
2643 if (SrcTy
->getPointerAddressSpace() != DstTy
->getPointerAddressSpace())
2646 unsigned MidSize
= MidTy
->getScalarSizeInBits();
2647 // We can still fold this without knowing the actual sizes as long we
2648 // know that the intermediate pointer is the largest possible
2650 // FIXME: Is this always true?
2652 return Instruction::BitCast
;
2654 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2655 if (!SrcIntPtrTy
|| DstIntPtrTy
!= SrcIntPtrTy
)
2657 unsigned PtrSize
= SrcIntPtrTy
->getScalarSizeInBits();
2658 if (MidSize
>= PtrSize
)
2659 return Instruction::BitCast
;
2663 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size
2664 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
2665 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
2666 unsigned SrcSize
= SrcTy
->getScalarSizeInBits();
2667 unsigned DstSize
= DstTy
->getScalarSizeInBits();
2668 if (SrcSize
== DstSize
)
2669 return Instruction::BitCast
;
2670 else if (SrcSize
< DstSize
)
2675 // zext, sext -> zext, because sext can't sign extend after zext
2676 return Instruction::ZExt
;
2678 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2681 unsigned PtrSize
= MidIntPtrTy
->getScalarSizeInBits();
2682 unsigned SrcSize
= SrcTy
->getScalarSizeInBits();
2683 unsigned DstSize
= DstTy
->getScalarSizeInBits();
2684 if (SrcSize
<= PtrSize
&& SrcSize
== DstSize
)
2685 return Instruction::BitCast
;
2689 // addrspacecast, addrspacecast -> bitcast, if SrcAS == DstAS
2690 // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2691 if (SrcTy
->getPointerAddressSpace() != DstTy
->getPointerAddressSpace())
2692 return Instruction::AddrSpaceCast
;
2693 return Instruction::BitCast
;
2695 // FIXME: this state can be merged with (1), but the following assert
2696 // is useful to check the correcteness of the sequence due to semantic
2697 // change of bitcast.
2699 SrcTy
->isPtrOrPtrVectorTy() &&
2700 MidTy
->isPtrOrPtrVectorTy() &&
2701 DstTy
->isPtrOrPtrVectorTy() &&
2702 SrcTy
->getPointerAddressSpace() != MidTy
->getPointerAddressSpace() &&
2703 MidTy
->getPointerAddressSpace() == DstTy
->getPointerAddressSpace() &&
2704 "Illegal addrspacecast, bitcast sequence!");
2705 // Allowed, use first cast's opcode
2708 // bitcast, addrspacecast -> addrspacecast if the element type of
2709 // bitcast's source is the same as that of addrspacecast's destination.
2710 if (SrcTy
->getScalarType()->getPointerElementType() ==
2711 DstTy
->getScalarType()->getPointerElementType())
2712 return Instruction::AddrSpaceCast
;
2715 // FIXME: this state can be merged with (1), but the following assert
2716 // is useful to check the correcteness of the sequence due to semantic
2717 // change of bitcast.
2719 SrcTy
->isIntOrIntVectorTy() &&
2720 MidTy
->isPtrOrPtrVectorTy() &&
2721 DstTy
->isPtrOrPtrVectorTy() &&
2722 MidTy
->getPointerAddressSpace() == DstTy
->getPointerAddressSpace() &&
2723 "Illegal inttoptr, bitcast sequence!");
2724 // Allowed, use first cast's opcode
2727 // FIXME: this state can be merged with (2), but the following assert
2728 // is useful to check the correcteness of the sequence due to semantic
2729 // change of bitcast.
2731 SrcTy
->isPtrOrPtrVectorTy() &&
2732 MidTy
->isPtrOrPtrVectorTy() &&
2733 DstTy
->isIntOrIntVectorTy() &&
2734 SrcTy
->getPointerAddressSpace() == MidTy
->getPointerAddressSpace() &&
2735 "Illegal bitcast, ptrtoint sequence!");
2736 // Allowed, use second cast's opcode
2739 // (sitofp (zext x)) -> (uitofp x)
2740 return Instruction::UIToFP
;
2742 // Cast combination can't happen (error in input). This is for all cases
2743 // where the MidTy is not the same for the two cast instructions.
2744 llvm_unreachable("Invalid Cast Combination");
2746 llvm_unreachable("Error in CastResults table!!!");
2750 CastInst
*CastInst::Create(Instruction::CastOps op
, Value
*S
, Type
*Ty
,
2751 const Twine
&Name
, Instruction
*InsertBefore
) {
2752 assert(castIsValid(op
, S
, Ty
) && "Invalid cast!");
2753 // Construct and return the appropriate CastInst subclass
2755 case Trunc
: return new TruncInst (S
, Ty
, Name
, InsertBefore
);
2756 case ZExt
: return new ZExtInst (S
, Ty
, Name
, InsertBefore
);
2757 case SExt
: return new SExtInst (S
, Ty
, Name
, InsertBefore
);
2758 case FPTrunc
: return new FPTruncInst (S
, Ty
, Name
, InsertBefore
);
2759 case FPExt
: return new FPExtInst (S
, Ty
, Name
, InsertBefore
);
2760 case UIToFP
: return new UIToFPInst (S
, Ty
, Name
, InsertBefore
);
2761 case SIToFP
: return new SIToFPInst (S
, Ty
, Name
, InsertBefore
);
2762 case FPToUI
: return new FPToUIInst (S
, Ty
, Name
, InsertBefore
);
2763 case FPToSI
: return new FPToSIInst (S
, Ty
, Name
, InsertBefore
);
2764 case PtrToInt
: return new PtrToIntInst (S
, Ty
, Name
, InsertBefore
);
2765 case IntToPtr
: return new IntToPtrInst (S
, Ty
, Name
, InsertBefore
);
2766 case BitCast
: return new BitCastInst (S
, Ty
, Name
, InsertBefore
);
2767 case AddrSpaceCast
: return new AddrSpaceCastInst (S
, Ty
, Name
, InsertBefore
);
2768 default: llvm_unreachable("Invalid opcode provided");
2772 CastInst
*CastInst::Create(Instruction::CastOps op
, Value
*S
, Type
*Ty
,
2773 const Twine
&Name
, BasicBlock
*InsertAtEnd
) {
2774 assert(castIsValid(op
, S
, Ty
) && "Invalid cast!");
2775 // Construct and return the appropriate CastInst subclass
2777 case Trunc
: return new TruncInst (S
, Ty
, Name
, InsertAtEnd
);
2778 case ZExt
: return new ZExtInst (S
, Ty
, Name
, InsertAtEnd
);
2779 case SExt
: return new SExtInst (S
, Ty
, Name
, InsertAtEnd
);
2780 case FPTrunc
: return new FPTruncInst (S
, Ty
, Name
, InsertAtEnd
);
2781 case FPExt
: return new FPExtInst (S
, Ty
, Name
, InsertAtEnd
);
2782 case UIToFP
: return new UIToFPInst (S
, Ty
, Name
, InsertAtEnd
);
2783 case SIToFP
: return new SIToFPInst (S
, Ty
, Name
, InsertAtEnd
);
2784 case FPToUI
: return new FPToUIInst (S
, Ty
, Name
, InsertAtEnd
);
2785 case FPToSI
: return new FPToSIInst (S
, Ty
, Name
, InsertAtEnd
);
2786 case PtrToInt
: return new PtrToIntInst (S
, Ty
, Name
, InsertAtEnd
);
2787 case IntToPtr
: return new IntToPtrInst (S
, Ty
, Name
, InsertAtEnd
);
2788 case BitCast
: return new BitCastInst (S
, Ty
, Name
, InsertAtEnd
);
2789 case AddrSpaceCast
: return new AddrSpaceCastInst (S
, Ty
, Name
, InsertAtEnd
);
2790 default: llvm_unreachable("Invalid opcode provided");
2794 CastInst
*CastInst::CreateZExtOrBitCast(Value
*S
, Type
*Ty
,
2796 Instruction
*InsertBefore
) {
2797 if (S
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
2798 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertBefore
);
2799 return Create(Instruction::ZExt
, S
, Ty
, Name
, InsertBefore
);
2802 CastInst
*CastInst::CreateZExtOrBitCast(Value
*S
, Type
*Ty
,
2804 BasicBlock
*InsertAtEnd
) {
2805 if (S
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
2806 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertAtEnd
);
2807 return Create(Instruction::ZExt
, S
, Ty
, Name
, InsertAtEnd
);
2810 CastInst
*CastInst::CreateSExtOrBitCast(Value
*S
, Type
*Ty
,
2812 Instruction
*InsertBefore
) {
2813 if (S
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
2814 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertBefore
);
2815 return Create(Instruction::SExt
, S
, Ty
, Name
, InsertBefore
);
2818 CastInst
*CastInst::CreateSExtOrBitCast(Value
*S
, Type
*Ty
,
2820 BasicBlock
*InsertAtEnd
) {
2821 if (S
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
2822 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertAtEnd
);
2823 return Create(Instruction::SExt
, S
, Ty
, Name
, InsertAtEnd
);
2826 CastInst
*CastInst::CreateTruncOrBitCast(Value
*S
, Type
*Ty
,
2828 Instruction
*InsertBefore
) {
2829 if (S
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
2830 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertBefore
);
2831 return Create(Instruction::Trunc
, S
, Ty
, Name
, InsertBefore
);
2834 CastInst
*CastInst::CreateTruncOrBitCast(Value
*S
, Type
*Ty
,
2836 BasicBlock
*InsertAtEnd
) {
2837 if (S
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
2838 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertAtEnd
);
2839 return Create(Instruction::Trunc
, S
, Ty
, Name
, InsertAtEnd
);
2842 CastInst
*CastInst::CreatePointerCast(Value
*S
, Type
*Ty
,
2844 BasicBlock
*InsertAtEnd
) {
2845 assert(S
->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2846 assert((Ty
->isIntOrIntVectorTy() || Ty
->isPtrOrPtrVectorTy()) &&
2848 assert(Ty
->isVectorTy() == S
->getType()->isVectorTy() && "Invalid cast");
2849 assert((!Ty
->isVectorTy() ||
2850 Ty
->getVectorNumElements() == S
->getType()->getVectorNumElements()) &&
2853 if (Ty
->isIntOrIntVectorTy())
2854 return Create(Instruction::PtrToInt
, S
, Ty
, Name
, InsertAtEnd
);
2856 return CreatePointerBitCastOrAddrSpaceCast(S
, Ty
, Name
, InsertAtEnd
);
2859 /// Create a BitCast or a PtrToInt cast instruction
2860 CastInst
*CastInst::CreatePointerCast(Value
*S
, Type
*Ty
,
2862 Instruction
*InsertBefore
) {
2863 assert(S
->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2864 assert((Ty
->isIntOrIntVectorTy() || Ty
->isPtrOrPtrVectorTy()) &&
2866 assert(Ty
->isVectorTy() == S
->getType()->isVectorTy() && "Invalid cast");
2867 assert((!Ty
->isVectorTy() ||
2868 Ty
->getVectorNumElements() == S
->getType()->getVectorNumElements()) &&
2871 if (Ty
->isIntOrIntVectorTy())
2872 return Create(Instruction::PtrToInt
, S
, Ty
, Name
, InsertBefore
);
2874 return CreatePointerBitCastOrAddrSpaceCast(S
, Ty
, Name
, InsertBefore
);
2877 CastInst
*CastInst::CreatePointerBitCastOrAddrSpaceCast(
2880 BasicBlock
*InsertAtEnd
) {
2881 assert(S
->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2882 assert(Ty
->isPtrOrPtrVectorTy() && "Invalid cast");
2884 if (S
->getType()->getPointerAddressSpace() != Ty
->getPointerAddressSpace())
2885 return Create(Instruction::AddrSpaceCast
, S
, Ty
, Name
, InsertAtEnd
);
2887 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertAtEnd
);
2890 CastInst
*CastInst::CreatePointerBitCastOrAddrSpaceCast(
2893 Instruction
*InsertBefore
) {
2894 assert(S
->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2895 assert(Ty
->isPtrOrPtrVectorTy() && "Invalid cast");
2897 if (S
->getType()->getPointerAddressSpace() != Ty
->getPointerAddressSpace())
2898 return Create(Instruction::AddrSpaceCast
, S
, Ty
, Name
, InsertBefore
);
2900 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertBefore
);
2903 CastInst
*CastInst::CreateBitOrPointerCast(Value
*S
, Type
*Ty
,
2905 Instruction
*InsertBefore
) {
2906 if (S
->getType()->isPointerTy() && Ty
->isIntegerTy())
2907 return Create(Instruction::PtrToInt
, S
, Ty
, Name
, InsertBefore
);
2908 if (S
->getType()->isIntegerTy() && Ty
->isPointerTy())
2909 return Create(Instruction::IntToPtr
, S
, Ty
, Name
, InsertBefore
);
2911 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertBefore
);
2914 CastInst
*CastInst::CreateIntegerCast(Value
*C
, Type
*Ty
,
2915 bool isSigned
, const Twine
&Name
,
2916 Instruction
*InsertBefore
) {
2917 assert(C
->getType()->isIntOrIntVectorTy() && Ty
->isIntOrIntVectorTy() &&
2918 "Invalid integer cast");
2919 unsigned SrcBits
= C
->getType()->getScalarSizeInBits();
2920 unsigned DstBits
= Ty
->getScalarSizeInBits();
2921 Instruction::CastOps opcode
=
2922 (SrcBits
== DstBits
? Instruction::BitCast
:
2923 (SrcBits
> DstBits
? Instruction::Trunc
:
2924 (isSigned
? Instruction::SExt
: Instruction::ZExt
)));
2925 return Create(opcode
, C
, Ty
, Name
, InsertBefore
);
2928 CastInst
*CastInst::CreateIntegerCast(Value
*C
, Type
*Ty
,
2929 bool isSigned
, const Twine
&Name
,
2930 BasicBlock
*InsertAtEnd
) {
2931 assert(C
->getType()->isIntOrIntVectorTy() && Ty
->isIntOrIntVectorTy() &&
2933 unsigned SrcBits
= C
->getType()->getScalarSizeInBits();
2934 unsigned DstBits
= Ty
->getScalarSizeInBits();
2935 Instruction::CastOps opcode
=
2936 (SrcBits
== DstBits
? Instruction::BitCast
:
2937 (SrcBits
> DstBits
? Instruction::Trunc
:
2938 (isSigned
? Instruction::SExt
: Instruction::ZExt
)));
2939 return Create(opcode
, C
, Ty
, Name
, InsertAtEnd
);
2942 CastInst
*CastInst::CreateFPCast(Value
*C
, Type
*Ty
,
2944 Instruction
*InsertBefore
) {
2945 assert(C
->getType()->isFPOrFPVectorTy() && Ty
->isFPOrFPVectorTy() &&
2947 unsigned SrcBits
= C
->getType()->getScalarSizeInBits();
2948 unsigned DstBits
= Ty
->getScalarSizeInBits();
2949 Instruction::CastOps opcode
=
2950 (SrcBits
== DstBits
? Instruction::BitCast
:
2951 (SrcBits
> DstBits
? Instruction::FPTrunc
: Instruction::FPExt
));
2952 return Create(opcode
, C
, Ty
, Name
, InsertBefore
);
2955 CastInst
*CastInst::CreateFPCast(Value
*C
, Type
*Ty
,
2957 BasicBlock
*InsertAtEnd
) {
2958 assert(C
->getType()->isFPOrFPVectorTy() && Ty
->isFPOrFPVectorTy() &&
2960 unsigned SrcBits
= C
->getType()->getScalarSizeInBits();
2961 unsigned DstBits
= Ty
->getScalarSizeInBits();
2962 Instruction::CastOps opcode
=
2963 (SrcBits
== DstBits
? Instruction::BitCast
:
2964 (SrcBits
> DstBits
? Instruction::FPTrunc
: Instruction::FPExt
));
2965 return Create(opcode
, C
, Ty
, Name
, InsertAtEnd
);
2968 // Check whether it is valid to call getCastOpcode for these types.
2969 // This routine must be kept in sync with getCastOpcode.
2970 bool CastInst::isCastable(Type
*SrcTy
, Type
*DestTy
) {
2971 if (!SrcTy
->isFirstClassType() || !DestTy
->isFirstClassType())
2974 if (SrcTy
== DestTy
)
2977 if (VectorType
*SrcVecTy
= dyn_cast
<VectorType
>(SrcTy
))
2978 if (VectorType
*DestVecTy
= dyn_cast
<VectorType
>(DestTy
))
2979 if (SrcVecTy
->getNumElements() == DestVecTy
->getNumElements()) {
2980 // An element by element cast. Valid if casting the elements is valid.
2981 SrcTy
= SrcVecTy
->getElementType();
2982 DestTy
= DestVecTy
->getElementType();
2985 // Get the bit sizes, we'll need these
2986 auto SrcBits
= SrcTy
->getPrimitiveSizeInBits(); // 0 for ptr
2987 auto DestBits
= DestTy
->getPrimitiveSizeInBits(); // 0 for ptr
2989 // Run through the possibilities ...
2990 if (DestTy
->isIntegerTy()) { // Casting to integral
2991 if (SrcTy
->isIntegerTy()) // Casting from integral
2993 if (SrcTy
->isFloatingPointTy()) // Casting from floating pt
2995 if (SrcTy
->isVectorTy()) // Casting from vector
2996 return DestBits
== SrcBits
;
2997 // Casting from something else
2998 return SrcTy
->isPointerTy();
3000 if (DestTy
->isFloatingPointTy()) { // Casting to floating pt
3001 if (SrcTy
->isIntegerTy()) // Casting from integral
3003 if (SrcTy
->isFloatingPointTy()) // Casting from floating pt
3005 if (SrcTy
->isVectorTy()) // Casting from vector
3006 return DestBits
== SrcBits
;
3007 // Casting from something else
3010 if (DestTy
->isVectorTy()) // Casting to vector
3011 return DestBits
== SrcBits
;
3012 if (DestTy
->isPointerTy()) { // Casting to pointer
3013 if (SrcTy
->isPointerTy()) // Casting from pointer
3015 return SrcTy
->isIntegerTy(); // Casting from integral
3017 if (DestTy
->isX86_MMXTy()) {
3018 if (SrcTy
->isVectorTy())
3019 return DestBits
== SrcBits
; // 64-bit vector to MMX
3021 } // Casting to something else
3025 bool CastInst::isBitCastable(Type
*SrcTy
, Type
*DestTy
) {
3026 if (!SrcTy
->isFirstClassType() || !DestTy
->isFirstClassType())
3029 if (SrcTy
== DestTy
)
3032 if (VectorType
*SrcVecTy
= dyn_cast
<VectorType
>(SrcTy
)) {
3033 if (VectorType
*DestVecTy
= dyn_cast
<VectorType
>(DestTy
)) {
3034 if (SrcVecTy
->getElementCount() == DestVecTy
->getElementCount()) {
3035 // An element by element cast. Valid if casting the elements is valid.
3036 SrcTy
= SrcVecTy
->getElementType();
3037 DestTy
= DestVecTy
->getElementType();
3042 if (PointerType
*DestPtrTy
= dyn_cast
<PointerType
>(DestTy
)) {
3043 if (PointerType
*SrcPtrTy
= dyn_cast
<PointerType
>(SrcTy
)) {
3044 return SrcPtrTy
->getAddressSpace() == DestPtrTy
->getAddressSpace();
3048 auto SrcBits
= SrcTy
->getPrimitiveSizeInBits(); // 0 for ptr
3049 auto DestBits
= DestTy
->getPrimitiveSizeInBits(); // 0 for ptr
3051 // Could still have vectors of pointers if the number of elements doesn't
3053 if (SrcBits
.getKnownMinSize() == 0 || DestBits
.getKnownMinSize() == 0)
3056 if (SrcBits
!= DestBits
)
3059 if (DestTy
->isX86_MMXTy() || SrcTy
->isX86_MMXTy())
3065 bool CastInst::isBitOrNoopPointerCastable(Type
*SrcTy
, Type
*DestTy
,
3066 const DataLayout
&DL
) {
3067 // ptrtoint and inttoptr are not allowed on non-integral pointers
3068 if (auto *PtrTy
= dyn_cast
<PointerType
>(SrcTy
))
3069 if (auto *IntTy
= dyn_cast
<IntegerType
>(DestTy
))
3070 return (IntTy
->getBitWidth() == DL
.getPointerTypeSizeInBits(PtrTy
) &&
3071 !DL
.isNonIntegralPointerType(PtrTy
));
3072 if (auto *PtrTy
= dyn_cast
<PointerType
>(DestTy
))
3073 if (auto *IntTy
= dyn_cast
<IntegerType
>(SrcTy
))
3074 return (IntTy
->getBitWidth() == DL
.getPointerTypeSizeInBits(PtrTy
) &&
3075 !DL
.isNonIntegralPointerType(PtrTy
));
3077 return isBitCastable(SrcTy
, DestTy
);
3080 // Provide a way to get a "cast" where the cast opcode is inferred from the
3081 // types and size of the operand. This, basically, is a parallel of the
3082 // logic in the castIsValid function below. This axiom should hold:
3083 // castIsValid( getCastOpcode(Val, Ty), Val, Ty)
3084 // should not assert in castIsValid. In other words, this produces a "correct"
3085 // casting opcode for the arguments passed to it.
3086 // This routine must be kept in sync with isCastable.
3087 Instruction::CastOps
3088 CastInst::getCastOpcode(
3089 const Value
*Src
, bool SrcIsSigned
, Type
*DestTy
, bool DestIsSigned
) {
3090 Type
*SrcTy
= Src
->getType();
3092 assert(SrcTy
->isFirstClassType() && DestTy
->isFirstClassType() &&
3093 "Only first class types are castable!");
3095 if (SrcTy
== DestTy
)
3098 // FIXME: Check address space sizes here
3099 if (VectorType
*SrcVecTy
= dyn_cast
<VectorType
>(SrcTy
))
3100 if (VectorType
*DestVecTy
= dyn_cast
<VectorType
>(DestTy
))
3101 if (SrcVecTy
->getNumElements() == DestVecTy
->getNumElements()) {
3102 // An element by element cast. Find the appropriate opcode based on the
3104 SrcTy
= SrcVecTy
->getElementType();
3105 DestTy
= DestVecTy
->getElementType();
3108 // Get the bit sizes, we'll need these
3109 unsigned SrcBits
= SrcTy
->getPrimitiveSizeInBits(); // 0 for ptr
3110 unsigned DestBits
= DestTy
->getPrimitiveSizeInBits(); // 0 for ptr
3112 // Run through the possibilities ...
3113 if (DestTy
->isIntegerTy()) { // Casting to integral
3114 if (SrcTy
->isIntegerTy()) { // Casting from integral
3115 if (DestBits
< SrcBits
)
3116 return Trunc
; // int -> smaller int
3117 else if (DestBits
> SrcBits
) { // its an extension
3119 return SExt
; // signed -> SEXT
3121 return ZExt
; // unsigned -> ZEXT
3123 return BitCast
; // Same size, No-op cast
3125 } else if (SrcTy
->isFloatingPointTy()) { // Casting from floating pt
3127 return FPToSI
; // FP -> sint
3129 return FPToUI
; // FP -> uint
3130 } else if (SrcTy
->isVectorTy()) {
3131 assert(DestBits
== SrcBits
&&
3132 "Casting vector to integer of different width");
3133 return BitCast
; // Same size, no-op cast
3135 assert(SrcTy
->isPointerTy() &&
3136 "Casting from a value that is not first-class type");
3137 return PtrToInt
; // ptr -> int
3139 } else if (DestTy
->isFloatingPointTy()) { // Casting to floating pt
3140 if (SrcTy
->isIntegerTy()) { // Casting from integral
3142 return SIToFP
; // sint -> FP
3144 return UIToFP
; // uint -> FP
3145 } else if (SrcTy
->isFloatingPointTy()) { // Casting from floating pt
3146 if (DestBits
< SrcBits
) {
3147 return FPTrunc
; // FP -> smaller FP
3148 } else if (DestBits
> SrcBits
) {
3149 return FPExt
; // FP -> larger FP
3151 return BitCast
; // same size, no-op cast
3153 } else if (SrcTy
->isVectorTy()) {
3154 assert(DestBits
== SrcBits
&&
3155 "Casting vector to floating point of different width");
3156 return BitCast
; // same size, no-op cast
3158 llvm_unreachable("Casting pointer or non-first class to float");
3159 } else if (DestTy
->isVectorTy()) {
3160 assert(DestBits
== SrcBits
&&
3161 "Illegal cast to vector (wrong type or size)");
3163 } else if (DestTy
->isPointerTy()) {
3164 if (SrcTy
->isPointerTy()) {
3165 if (DestTy
->getPointerAddressSpace() != SrcTy
->getPointerAddressSpace())
3166 return AddrSpaceCast
;
3167 return BitCast
; // ptr -> ptr
3168 } else if (SrcTy
->isIntegerTy()) {
3169 return IntToPtr
; // int -> ptr
3171 llvm_unreachable("Casting pointer to other than pointer or int");
3172 } else if (DestTy
->isX86_MMXTy()) {
3173 if (SrcTy
->isVectorTy()) {
3174 assert(DestBits
== SrcBits
&& "Casting vector of wrong width to X86_MMX");
3175 return BitCast
; // 64-bit vector to MMX
3177 llvm_unreachable("Illegal cast to X86_MMX");
3179 llvm_unreachable("Casting to type that is not first-class");
3182 //===----------------------------------------------------------------------===//
3183 // CastInst SubClass Constructors
3184 //===----------------------------------------------------------------------===//
3186 /// Check that the construction parameters for a CastInst are correct. This
3187 /// could be broken out into the separate constructors but it is useful to have
3188 /// it in one place and to eliminate the redundant code for getting the sizes
3189 /// of the types involved.
3191 CastInst::castIsValid(Instruction::CastOps op
, Value
*S
, Type
*DstTy
) {
3192 // Check for type sanity on the arguments
3193 Type
*SrcTy
= S
->getType();
3195 if (!SrcTy
->isFirstClassType() || !DstTy
->isFirstClassType() ||
3196 SrcTy
->isAggregateType() || DstTy
->isAggregateType())
3199 // Get the size of the types in bits, we'll need this later
3200 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
3201 unsigned DstBitSize
= DstTy
->getScalarSizeInBits();
3203 // If these are vector types, get the lengths of the vectors (using zero for
3204 // scalar types means that checking that vector lengths match also checks that
3205 // scalars are not being converted to vectors or vectors to scalars).
3206 unsigned SrcLength
= SrcTy
->isVectorTy() ?
3207 cast
<VectorType
>(SrcTy
)->getNumElements() : 0;
3208 unsigned DstLength
= DstTy
->isVectorTy() ?
3209 cast
<VectorType
>(DstTy
)->getNumElements() : 0;
3211 // Switch on the opcode provided
3213 default: return false; // This is an input error
3214 case Instruction::Trunc
:
3215 return SrcTy
->isIntOrIntVectorTy() && DstTy
->isIntOrIntVectorTy() &&
3216 SrcLength
== DstLength
&& SrcBitSize
> DstBitSize
;
3217 case Instruction::ZExt
:
3218 return SrcTy
->isIntOrIntVectorTy() && DstTy
->isIntOrIntVectorTy() &&
3219 SrcLength
== DstLength
&& SrcBitSize
< DstBitSize
;
3220 case Instruction::SExt
:
3221 return SrcTy
->isIntOrIntVectorTy() && DstTy
->isIntOrIntVectorTy() &&
3222 SrcLength
== DstLength
&& SrcBitSize
< DstBitSize
;
3223 case Instruction::FPTrunc
:
3224 return SrcTy
->isFPOrFPVectorTy() && DstTy
->isFPOrFPVectorTy() &&
3225 SrcLength
== DstLength
&& SrcBitSize
> DstBitSize
;
3226 case Instruction::FPExt
:
3227 return SrcTy
->isFPOrFPVectorTy() && DstTy
->isFPOrFPVectorTy() &&
3228 SrcLength
== DstLength
&& SrcBitSize
< DstBitSize
;
3229 case Instruction::UIToFP
:
3230 case Instruction::SIToFP
:
3231 return SrcTy
->isIntOrIntVectorTy() && DstTy
->isFPOrFPVectorTy() &&
3232 SrcLength
== DstLength
;
3233 case Instruction::FPToUI
:
3234 case Instruction::FPToSI
:
3235 return SrcTy
->isFPOrFPVectorTy() && DstTy
->isIntOrIntVectorTy() &&
3236 SrcLength
== DstLength
;
3237 case Instruction::PtrToInt
:
3238 if (isa
<VectorType
>(SrcTy
) != isa
<VectorType
>(DstTy
))
3240 if (VectorType
*VT
= dyn_cast
<VectorType
>(SrcTy
))
3241 if (VT
->getNumElements() != cast
<VectorType
>(DstTy
)->getNumElements())
3243 return SrcTy
->isPtrOrPtrVectorTy() && DstTy
->isIntOrIntVectorTy();
3244 case Instruction::IntToPtr
:
3245 if (isa
<VectorType
>(SrcTy
) != isa
<VectorType
>(DstTy
))
3247 if (VectorType
*VT
= dyn_cast
<VectorType
>(SrcTy
))
3248 if (VT
->getNumElements() != cast
<VectorType
>(DstTy
)->getNumElements())
3250 return SrcTy
->isIntOrIntVectorTy() && DstTy
->isPtrOrPtrVectorTy();
3251 case Instruction::BitCast
: {
3252 PointerType
*SrcPtrTy
= dyn_cast
<PointerType
>(SrcTy
->getScalarType());
3253 PointerType
*DstPtrTy
= dyn_cast
<PointerType
>(DstTy
->getScalarType());
3255 // BitCast implies a no-op cast of type only. No bits change.
3256 // However, you can't cast pointers to anything but pointers.
3257 if (!SrcPtrTy
!= !DstPtrTy
)
3260 // For non-pointer cases, the cast is okay if the source and destination bit
3261 // widths are identical.
3263 return SrcTy
->getPrimitiveSizeInBits() == DstTy
->getPrimitiveSizeInBits();
3265 // If both are pointers then the address spaces must match.
3266 if (SrcPtrTy
->getAddressSpace() != DstPtrTy
->getAddressSpace())
3269 // A vector of pointers must have the same number of elements.
3270 VectorType
*SrcVecTy
= dyn_cast
<VectorType
>(SrcTy
);
3271 VectorType
*DstVecTy
= dyn_cast
<VectorType
>(DstTy
);
3272 if (SrcVecTy
&& DstVecTy
)
3273 return (SrcVecTy
->getNumElements() == DstVecTy
->getNumElements());
3275 return SrcVecTy
->getNumElements() == 1;
3277 return DstVecTy
->getNumElements() == 1;
3281 case Instruction::AddrSpaceCast
: {
3282 PointerType
*SrcPtrTy
= dyn_cast
<PointerType
>(SrcTy
->getScalarType());
3286 PointerType
*DstPtrTy
= dyn_cast
<PointerType
>(DstTy
->getScalarType());
3290 if (SrcPtrTy
->getAddressSpace() == DstPtrTy
->getAddressSpace())
3293 if (VectorType
*SrcVecTy
= dyn_cast
<VectorType
>(SrcTy
)) {
3294 if (VectorType
*DstVecTy
= dyn_cast
<VectorType
>(DstTy
))
3295 return (SrcVecTy
->getNumElements() == DstVecTy
->getNumElements());
3305 TruncInst::TruncInst(
3306 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3307 ) : CastInst(Ty
, Trunc
, S
, Name
, InsertBefore
) {
3308 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal Trunc");
3311 TruncInst::TruncInst(
3312 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3313 ) : CastInst(Ty
, Trunc
, S
, Name
, InsertAtEnd
) {
3314 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal Trunc");
3318 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3319 ) : CastInst(Ty
, ZExt
, S
, Name
, InsertBefore
) {
3320 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal ZExt");
3324 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3325 ) : CastInst(Ty
, ZExt
, S
, Name
, InsertAtEnd
) {
3326 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal ZExt");
3329 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3330 ) : CastInst(Ty
, SExt
, S
, Name
, InsertBefore
) {
3331 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal SExt");
3335 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3336 ) : CastInst(Ty
, SExt
, S
, Name
, InsertAtEnd
) {
3337 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal SExt");
3340 FPTruncInst::FPTruncInst(
3341 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3342 ) : CastInst(Ty
, FPTrunc
, S
, Name
, InsertBefore
) {
3343 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPTrunc");
3346 FPTruncInst::FPTruncInst(
3347 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3348 ) : CastInst(Ty
, FPTrunc
, S
, Name
, InsertAtEnd
) {
3349 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPTrunc");
3352 FPExtInst::FPExtInst(
3353 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3354 ) : CastInst(Ty
, FPExt
, S
, Name
, InsertBefore
) {
3355 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPExt");
3358 FPExtInst::FPExtInst(
3359 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3360 ) : CastInst(Ty
, FPExt
, S
, Name
, InsertAtEnd
) {
3361 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPExt");
3364 UIToFPInst::UIToFPInst(
3365 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3366 ) : CastInst(Ty
, UIToFP
, S
, Name
, InsertBefore
) {
3367 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal UIToFP");
3370 UIToFPInst::UIToFPInst(
3371 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3372 ) : CastInst(Ty
, UIToFP
, S
, Name
, InsertAtEnd
) {
3373 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal UIToFP");
3376 SIToFPInst::SIToFPInst(
3377 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3378 ) : CastInst(Ty
, SIToFP
, S
, Name
, InsertBefore
) {
3379 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal SIToFP");
3382 SIToFPInst::SIToFPInst(
3383 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3384 ) : CastInst(Ty
, SIToFP
, S
, Name
, InsertAtEnd
) {
3385 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal SIToFP");
3388 FPToUIInst::FPToUIInst(
3389 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3390 ) : CastInst(Ty
, FPToUI
, S
, Name
, InsertBefore
) {
3391 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPToUI");
3394 FPToUIInst::FPToUIInst(
3395 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3396 ) : CastInst(Ty
, FPToUI
, S
, Name
, InsertAtEnd
) {
3397 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPToUI");
3400 FPToSIInst::FPToSIInst(
3401 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3402 ) : CastInst(Ty
, FPToSI
, S
, Name
, InsertBefore
) {
3403 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPToSI");
3406 FPToSIInst::FPToSIInst(
3407 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3408 ) : CastInst(Ty
, FPToSI
, S
, Name
, InsertAtEnd
) {
3409 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPToSI");
3412 PtrToIntInst::PtrToIntInst(
3413 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3414 ) : CastInst(Ty
, PtrToInt
, S
, Name
, InsertBefore
) {
3415 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal PtrToInt");
3418 PtrToIntInst::PtrToIntInst(
3419 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3420 ) : CastInst(Ty
, PtrToInt
, S
, Name
, InsertAtEnd
) {
3421 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal PtrToInt");
3424 IntToPtrInst::IntToPtrInst(
3425 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3426 ) : CastInst(Ty
, IntToPtr
, S
, Name
, InsertBefore
) {
3427 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal IntToPtr");
3430 IntToPtrInst::IntToPtrInst(
3431 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3432 ) : CastInst(Ty
, IntToPtr
, S
, Name
, InsertAtEnd
) {
3433 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal IntToPtr");
3436 BitCastInst::BitCastInst(
3437 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3438 ) : CastInst(Ty
, BitCast
, S
, Name
, InsertBefore
) {
3439 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal BitCast");
3442 BitCastInst::BitCastInst(
3443 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3444 ) : CastInst(Ty
, BitCast
, S
, Name
, InsertAtEnd
) {
3445 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal BitCast");
3448 AddrSpaceCastInst::AddrSpaceCastInst(
3449 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3450 ) : CastInst(Ty
, AddrSpaceCast
, S
, Name
, InsertBefore
) {
3451 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal AddrSpaceCast");
3454 AddrSpaceCastInst::AddrSpaceCastInst(
3455 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3456 ) : CastInst(Ty
, AddrSpaceCast
, S
, Name
, InsertAtEnd
) {
3457 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal AddrSpaceCast");
3460 //===----------------------------------------------------------------------===//
3462 //===----------------------------------------------------------------------===//
3464 CmpInst::CmpInst(Type
*ty
, OtherOps op
, Predicate predicate
, Value
*LHS
,
3465 Value
*RHS
, const Twine
&Name
, Instruction
*InsertBefore
,
3466 Instruction
*FlagsSource
)
3467 : Instruction(ty
, op
,
3468 OperandTraits
<CmpInst
>::op_begin(this),
3469 OperandTraits
<CmpInst
>::operands(this),
3473 setPredicate((Predicate
)predicate
);
3476 copyIRFlags(FlagsSource
);
3479 CmpInst::CmpInst(Type
*ty
, OtherOps op
, Predicate predicate
, Value
*LHS
,
3480 Value
*RHS
, const Twine
&Name
, BasicBlock
*InsertAtEnd
)
3481 : Instruction(ty
, op
,
3482 OperandTraits
<CmpInst
>::op_begin(this),
3483 OperandTraits
<CmpInst
>::operands(this),
3487 setPredicate((Predicate
)predicate
);
3492 CmpInst::Create(OtherOps Op
, Predicate predicate
, Value
*S1
, Value
*S2
,
3493 const Twine
&Name
, Instruction
*InsertBefore
) {
3494 if (Op
== Instruction::ICmp
) {
3496 return new ICmpInst(InsertBefore
, CmpInst::Predicate(predicate
),
3499 return new ICmpInst(CmpInst::Predicate(predicate
),
3504 return new FCmpInst(InsertBefore
, CmpInst::Predicate(predicate
),
3507 return new FCmpInst(CmpInst::Predicate(predicate
),
3512 CmpInst::Create(OtherOps Op
, Predicate predicate
, Value
*S1
, Value
*S2
,
3513 const Twine
&Name
, BasicBlock
*InsertAtEnd
) {
3514 if (Op
== Instruction::ICmp
) {
3515 return new ICmpInst(*InsertAtEnd
, CmpInst::Predicate(predicate
),
3518 return new FCmpInst(*InsertAtEnd
, CmpInst::Predicate(predicate
),
3522 void CmpInst::swapOperands() {
3523 if (ICmpInst
*IC
= dyn_cast
<ICmpInst
>(this))
3526 cast
<FCmpInst
>(this)->swapOperands();
3529 bool CmpInst::isCommutative() const {
3530 if (const ICmpInst
*IC
= dyn_cast
<ICmpInst
>(this))
3531 return IC
->isCommutative();
3532 return cast
<FCmpInst
>(this)->isCommutative();
3535 bool CmpInst::isEquality() const {
3536 if (const ICmpInst
*IC
= dyn_cast
<ICmpInst
>(this))
3537 return IC
->isEquality();
3538 return cast
<FCmpInst
>(this)->isEquality();
3541 CmpInst::Predicate
CmpInst::getInversePredicate(Predicate pred
) {
3543 default: llvm_unreachable("Unknown cmp predicate!");
3544 case ICMP_EQ
: return ICMP_NE
;
3545 case ICMP_NE
: return ICMP_EQ
;
3546 case ICMP_UGT
: return ICMP_ULE
;
3547 case ICMP_ULT
: return ICMP_UGE
;
3548 case ICMP_UGE
: return ICMP_ULT
;
3549 case ICMP_ULE
: return ICMP_UGT
;
3550 case ICMP_SGT
: return ICMP_SLE
;
3551 case ICMP_SLT
: return ICMP_SGE
;
3552 case ICMP_SGE
: return ICMP_SLT
;
3553 case ICMP_SLE
: return ICMP_SGT
;
3555 case FCMP_OEQ
: return FCMP_UNE
;
3556 case FCMP_ONE
: return FCMP_UEQ
;
3557 case FCMP_OGT
: return FCMP_ULE
;
3558 case FCMP_OLT
: return FCMP_UGE
;
3559 case FCMP_OGE
: return FCMP_ULT
;
3560 case FCMP_OLE
: return FCMP_UGT
;
3561 case FCMP_UEQ
: return FCMP_ONE
;
3562 case FCMP_UNE
: return FCMP_OEQ
;
3563 case FCMP_UGT
: return FCMP_OLE
;
3564 case FCMP_ULT
: return FCMP_OGE
;
3565 case FCMP_UGE
: return FCMP_OLT
;
3566 case FCMP_ULE
: return FCMP_OGT
;
3567 case FCMP_ORD
: return FCMP_UNO
;
3568 case FCMP_UNO
: return FCMP_ORD
;
3569 case FCMP_TRUE
: return FCMP_FALSE
;
3570 case FCMP_FALSE
: return FCMP_TRUE
;
3574 StringRef
CmpInst::getPredicateName(Predicate Pred
) {
3576 default: return "unknown";
3577 case FCmpInst::FCMP_FALSE
: return "false";
3578 case FCmpInst::FCMP_OEQ
: return "oeq";
3579 case FCmpInst::FCMP_OGT
: return "ogt";
3580 case FCmpInst::FCMP_OGE
: return "oge";
3581 case FCmpInst::FCMP_OLT
: return "olt";
3582 case FCmpInst::FCMP_OLE
: return "ole";
3583 case FCmpInst::FCMP_ONE
: return "one";
3584 case FCmpInst::FCMP_ORD
: return "ord";
3585 case FCmpInst::FCMP_UNO
: return "uno";
3586 case FCmpInst::FCMP_UEQ
: return "ueq";
3587 case FCmpInst::FCMP_UGT
: return "ugt";
3588 case FCmpInst::FCMP_UGE
: return "uge";
3589 case FCmpInst::FCMP_ULT
: return "ult";
3590 case FCmpInst::FCMP_ULE
: return "ule";
3591 case FCmpInst::FCMP_UNE
: return "une";
3592 case FCmpInst::FCMP_TRUE
: return "true";
3593 case ICmpInst::ICMP_EQ
: return "eq";
3594 case ICmpInst::ICMP_NE
: return "ne";
3595 case ICmpInst::ICMP_SGT
: return "sgt";
3596 case ICmpInst::ICMP_SGE
: return "sge";
3597 case ICmpInst::ICMP_SLT
: return "slt";
3598 case ICmpInst::ICMP_SLE
: return "sle";
3599 case ICmpInst::ICMP_UGT
: return "ugt";
3600 case ICmpInst::ICMP_UGE
: return "uge";
3601 case ICmpInst::ICMP_ULT
: return "ult";
3602 case ICmpInst::ICMP_ULE
: return "ule";
3606 ICmpInst::Predicate
ICmpInst::getSignedPredicate(Predicate pred
) {
3608 default: llvm_unreachable("Unknown icmp predicate!");
3609 case ICMP_EQ
: case ICMP_NE
:
3610 case ICMP_SGT
: case ICMP_SLT
: case ICMP_SGE
: case ICMP_SLE
:
3612 case ICMP_UGT
: return ICMP_SGT
;
3613 case ICMP_ULT
: return ICMP_SLT
;
3614 case ICMP_UGE
: return ICMP_SGE
;
3615 case ICMP_ULE
: return ICMP_SLE
;
3619 ICmpInst::Predicate
ICmpInst::getUnsignedPredicate(Predicate pred
) {
3621 default: llvm_unreachable("Unknown icmp predicate!");
3622 case ICMP_EQ
: case ICMP_NE
:
3623 case ICMP_UGT
: case ICMP_ULT
: case ICMP_UGE
: case ICMP_ULE
:
3625 case ICMP_SGT
: return ICMP_UGT
;
3626 case ICMP_SLT
: return ICMP_ULT
;
3627 case ICMP_SGE
: return ICMP_UGE
;
3628 case ICMP_SLE
: return ICMP_ULE
;
3632 CmpInst::Predicate
CmpInst::getFlippedStrictnessPredicate(Predicate pred
) {
3634 default: llvm_unreachable("Unknown or unsupported cmp predicate!");
3635 case ICMP_SGT
: return ICMP_SGE
;
3636 case ICMP_SLT
: return ICMP_SLE
;
3637 case ICMP_SGE
: return ICMP_SGT
;
3638 case ICMP_SLE
: return ICMP_SLT
;
3639 case ICMP_UGT
: return ICMP_UGE
;
3640 case ICMP_ULT
: return ICMP_ULE
;
3641 case ICMP_UGE
: return ICMP_UGT
;
3642 case ICMP_ULE
: return ICMP_ULT
;
3644 case FCMP_OGT
: return FCMP_OGE
;
3645 case FCMP_OLT
: return FCMP_OLE
;
3646 case FCMP_OGE
: return FCMP_OGT
;
3647 case FCMP_OLE
: return FCMP_OLT
;
3648 case FCMP_UGT
: return FCMP_UGE
;
3649 case FCMP_ULT
: return FCMP_ULE
;
3650 case FCMP_UGE
: return FCMP_UGT
;
3651 case FCMP_ULE
: return FCMP_ULT
;
3655 CmpInst::Predicate
CmpInst::getSwappedPredicate(Predicate pred
) {
3657 default: llvm_unreachable("Unknown cmp predicate!");
3658 case ICMP_EQ
: case ICMP_NE
:
3660 case ICMP_SGT
: return ICMP_SLT
;
3661 case ICMP_SLT
: return ICMP_SGT
;
3662 case ICMP_SGE
: return ICMP_SLE
;
3663 case ICMP_SLE
: return ICMP_SGE
;
3664 case ICMP_UGT
: return ICMP_ULT
;
3665 case ICMP_ULT
: return ICMP_UGT
;
3666 case ICMP_UGE
: return ICMP_ULE
;
3667 case ICMP_ULE
: return ICMP_UGE
;
3669 case FCMP_FALSE
: case FCMP_TRUE
:
3670 case FCMP_OEQ
: case FCMP_ONE
:
3671 case FCMP_UEQ
: case FCMP_UNE
:
3672 case FCMP_ORD
: case FCMP_UNO
:
3674 case FCMP_OGT
: return FCMP_OLT
;
3675 case FCMP_OLT
: return FCMP_OGT
;
3676 case FCMP_OGE
: return FCMP_OLE
;
3677 case FCMP_OLE
: return FCMP_OGE
;
3678 case FCMP_UGT
: return FCMP_ULT
;
3679 case FCMP_ULT
: return FCMP_UGT
;
3680 case FCMP_UGE
: return FCMP_ULE
;
3681 case FCMP_ULE
: return FCMP_UGE
;
3685 CmpInst::Predicate
CmpInst::getNonStrictPredicate(Predicate pred
) {
3687 case ICMP_SGT
: return ICMP_SGE
;
3688 case ICMP_SLT
: return ICMP_SLE
;
3689 case ICMP_UGT
: return ICMP_UGE
;
3690 case ICMP_ULT
: return ICMP_ULE
;
3691 case FCMP_OGT
: return FCMP_OGE
;
3692 case FCMP_OLT
: return FCMP_OLE
;
3693 case FCMP_UGT
: return FCMP_UGE
;
3694 case FCMP_ULT
: return FCMP_ULE
;
3695 default: return pred
;
3699 CmpInst::Predicate
CmpInst::getSignedPredicate(Predicate pred
) {
3700 assert(CmpInst::isUnsigned(pred
) && "Call only with signed predicates!");
3704 llvm_unreachable("Unknown predicate!");
3705 case CmpInst::ICMP_ULT
:
3706 return CmpInst::ICMP_SLT
;
3707 case CmpInst::ICMP_ULE
:
3708 return CmpInst::ICMP_SLE
;
3709 case CmpInst::ICMP_UGT
:
3710 return CmpInst::ICMP_SGT
;
3711 case CmpInst::ICMP_UGE
:
3712 return CmpInst::ICMP_SGE
;
3716 bool CmpInst::isUnsigned(Predicate predicate
) {
3717 switch (predicate
) {
3718 default: return false;
3719 case ICmpInst::ICMP_ULT
: case ICmpInst::ICMP_ULE
: case ICmpInst::ICMP_UGT
:
3720 case ICmpInst::ICMP_UGE
: return true;
3724 bool CmpInst::isSigned(Predicate predicate
) {
3725 switch (predicate
) {
3726 default: return false;
3727 case ICmpInst::ICMP_SLT
: case ICmpInst::ICMP_SLE
: case ICmpInst::ICMP_SGT
:
3728 case ICmpInst::ICMP_SGE
: return true;
3732 bool CmpInst::isOrdered(Predicate predicate
) {
3733 switch (predicate
) {
3734 default: return false;
3735 case FCmpInst::FCMP_OEQ
: case FCmpInst::FCMP_ONE
: case FCmpInst::FCMP_OGT
:
3736 case FCmpInst::FCMP_OLT
: case FCmpInst::FCMP_OGE
: case FCmpInst::FCMP_OLE
:
3737 case FCmpInst::FCMP_ORD
: return true;
3741 bool CmpInst::isUnordered(Predicate predicate
) {
3742 switch (predicate
) {
3743 default: return false;
3744 case FCmpInst::FCMP_UEQ
: case FCmpInst::FCMP_UNE
: case FCmpInst::FCMP_UGT
:
3745 case FCmpInst::FCMP_ULT
: case FCmpInst::FCMP_UGE
: case FCmpInst::FCMP_ULE
:
3746 case FCmpInst::FCMP_UNO
: return true;
3750 bool CmpInst::isTrueWhenEqual(Predicate predicate
) {
3752 default: return false;
3753 case ICMP_EQ
: case ICMP_UGE
: case ICMP_ULE
: case ICMP_SGE
: case ICMP_SLE
:
3754 case FCMP_TRUE
: case FCMP_UEQ
: case FCMP_UGE
: case FCMP_ULE
: return true;
3758 bool CmpInst::isFalseWhenEqual(Predicate predicate
) {
3760 case ICMP_NE
: case ICMP_UGT
: case ICMP_ULT
: case ICMP_SGT
: case ICMP_SLT
:
3761 case FCMP_FALSE
: case FCMP_ONE
: case FCMP_OGT
: case FCMP_OLT
: return true;
3762 default: return false;
3766 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1
, Predicate Pred2
) {
3767 // If the predicates match, then we know the first condition implies the
3776 // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
3777 return Pred2
== ICMP_UGE
|| Pred2
== ICMP_ULE
|| Pred2
== ICMP_SGE
||
3779 case ICMP_UGT
: // A >u B implies A != B and A >=u B are true.
3780 return Pred2
== ICMP_NE
|| Pred2
== ICMP_UGE
;
3781 case ICMP_ULT
: // A <u B implies A != B and A <=u B are true.
3782 return Pred2
== ICMP_NE
|| Pred2
== ICMP_ULE
;
3783 case ICMP_SGT
: // A >s B implies A != B and A >=s B are true.
3784 return Pred2
== ICMP_NE
|| Pred2
== ICMP_SGE
;
3785 case ICMP_SLT
: // A <s B implies A != B and A <=s B are true.
3786 return Pred2
== ICMP_NE
|| Pred2
== ICMP_SLE
;
3791 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1
, Predicate Pred2
) {
3792 return isImpliedTrueByMatchingCmp(Pred1
, getInversePredicate(Pred2
));
3795 //===----------------------------------------------------------------------===//
3796 // SwitchInst Implementation
3797 //===----------------------------------------------------------------------===//
3799 void SwitchInst::init(Value
*Value
, BasicBlock
*Default
, unsigned NumReserved
) {
3800 assert(Value
&& Default
&& NumReserved
);
3801 ReservedSpace
= NumReserved
;
3802 setNumHungOffUseOperands(2);
3803 allocHungoffUses(ReservedSpace
);
3809 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3810 /// switch on and a default destination. The number of additional cases can
3811 /// be specified here to make memory allocation more efficient. This
3812 /// constructor can also autoinsert before another instruction.
3813 SwitchInst::SwitchInst(Value
*Value
, BasicBlock
*Default
, unsigned NumCases
,
3814 Instruction
*InsertBefore
)
3815 : Instruction(Type::getVoidTy(Value
->getContext()), Instruction::Switch
,
3816 nullptr, 0, InsertBefore
) {
3817 init(Value
, Default
, 2+NumCases
*2);
3820 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3821 /// switch on and a default destination. The number of additional cases can
3822 /// be specified here to make memory allocation more efficient. This
3823 /// constructor also autoinserts at the end of the specified BasicBlock.
3824 SwitchInst::SwitchInst(Value
*Value
, BasicBlock
*Default
, unsigned NumCases
,
3825 BasicBlock
*InsertAtEnd
)
3826 : Instruction(Type::getVoidTy(Value
->getContext()), Instruction::Switch
,
3827 nullptr, 0, InsertAtEnd
) {
3828 init(Value
, Default
, 2+NumCases
*2);
3831 SwitchInst::SwitchInst(const SwitchInst
&SI
)
3832 : Instruction(SI
.getType(), Instruction::Switch
, nullptr, 0) {
3833 init(SI
.getCondition(), SI
.getDefaultDest(), SI
.getNumOperands());
3834 setNumHungOffUseOperands(SI
.getNumOperands());
3835 Use
*OL
= getOperandList();
3836 const Use
*InOL
= SI
.getOperandList();
3837 for (unsigned i
= 2, E
= SI
.getNumOperands(); i
!= E
; i
+= 2) {
3839 OL
[i
+1] = InOL
[i
+1];
3841 SubclassOptionalData
= SI
.SubclassOptionalData
;
3844 /// addCase - Add an entry to the switch instruction...
3846 void SwitchInst::addCase(ConstantInt
*OnVal
, BasicBlock
*Dest
) {
3847 unsigned NewCaseIdx
= getNumCases();
3848 unsigned OpNo
= getNumOperands();
3849 if (OpNo
+2 > ReservedSpace
)
3850 growOperands(); // Get more space!
3851 // Initialize some new operands.
3852 assert(OpNo
+1 < ReservedSpace
&& "Growing didn't work!");
3853 setNumHungOffUseOperands(OpNo
+2);
3854 CaseHandle
Case(this, NewCaseIdx
);
3855 Case
.setValue(OnVal
);
3856 Case
.setSuccessor(Dest
);
3859 /// removeCase - This method removes the specified case and its successor
3860 /// from the switch instruction.
3861 SwitchInst::CaseIt
SwitchInst::removeCase(CaseIt I
) {
3862 unsigned idx
= I
->getCaseIndex();
3864 assert(2 + idx
*2 < getNumOperands() && "Case index out of range!!!");
3866 unsigned NumOps
= getNumOperands();
3867 Use
*OL
= getOperandList();
3869 // Overwrite this case with the end of the list.
3870 if (2 + (idx
+ 1) * 2 != NumOps
) {
3871 OL
[2 + idx
* 2] = OL
[NumOps
- 2];
3872 OL
[2 + idx
* 2 + 1] = OL
[NumOps
- 1];
3875 // Nuke the last value.
3876 OL
[NumOps
-2].set(nullptr);
3877 OL
[NumOps
-2+1].set(nullptr);
3878 setNumHungOffUseOperands(NumOps
-2);
3880 return CaseIt(this, idx
);
3883 /// growOperands - grow operands - This grows the operand list in response
3884 /// to a push_back style of operation. This grows the number of ops by 3 times.
3886 void SwitchInst::growOperands() {
3887 unsigned e
= getNumOperands();
3888 unsigned NumOps
= e
*3;
3890 ReservedSpace
= NumOps
;
3891 growHungoffUses(ReservedSpace
);
3895 SwitchInstProfUpdateWrapper::getProfBranchWeightsMD(const SwitchInst
&SI
) {
3896 if (MDNode
*ProfileData
= SI
.getMetadata(LLVMContext::MD_prof
))
3897 if (auto *MDName
= dyn_cast
<MDString
>(ProfileData
->getOperand(0)))
3898 if (MDName
->getString() == "branch_weights")
3903 MDNode
*SwitchInstProfUpdateWrapper::buildProfBranchWeightsMD() {
3904 assert(Changed
&& "called only if metadata has changed");
3909 assert(SI
.getNumSuccessors() == Weights
->size() &&
3910 "num of prof branch_weights must accord with num of successors");
3913 all_of(Weights
.getValue(), [](uint32_t W
) { return W
== 0; });
3915 if (AllZeroes
|| Weights
.getValue().size() < 2)
3918 return MDBuilder(SI
.getParent()->getContext()).createBranchWeights(*Weights
);
3921 void SwitchInstProfUpdateWrapper::init() {
3922 MDNode
*ProfileData
= getProfBranchWeightsMD(SI
);
3926 if (ProfileData
->getNumOperands() != SI
.getNumSuccessors() + 1) {
3927 llvm_unreachable("number of prof branch_weights metadata operands does "
3928 "not correspond to number of succesors");
3931 SmallVector
<uint32_t, 8> Weights
;
3932 for (unsigned CI
= 1, CE
= SI
.getNumSuccessors(); CI
<= CE
; ++CI
) {
3933 ConstantInt
*C
= mdconst::extract
<ConstantInt
>(ProfileData
->getOperand(CI
));
3934 uint32_t CW
= C
->getValue().getZExtValue();
3935 Weights
.push_back(CW
);
3937 this->Weights
= std::move(Weights
);
3941 SwitchInstProfUpdateWrapper::removeCase(SwitchInst::CaseIt I
) {
3943 assert(SI
.getNumSuccessors() == Weights
->size() &&
3944 "num of prof branch_weights must accord with num of successors");
3946 // Copy the last case to the place of the removed one and shrink.
3947 // This is tightly coupled with the way SwitchInst::removeCase() removes
3948 // the cases in SwitchInst::removeCase(CaseIt).
3949 Weights
.getValue()[I
->getCaseIndex() + 1] = Weights
.getValue().back();
3950 Weights
.getValue().pop_back();
3952 return SI
.removeCase(I
);
3955 void SwitchInstProfUpdateWrapper::addCase(
3956 ConstantInt
*OnVal
, BasicBlock
*Dest
,
3957 SwitchInstProfUpdateWrapper::CaseWeightOpt W
) {
3958 SI
.addCase(OnVal
, Dest
);
3960 if (!Weights
&& W
&& *W
) {
3962 Weights
= SmallVector
<uint32_t, 8>(SI
.getNumSuccessors(), 0);
3963 Weights
.getValue()[SI
.getNumSuccessors() - 1] = *W
;
3964 } else if (Weights
) {
3966 Weights
.getValue().push_back(W
? *W
: 0);
3969 assert(SI
.getNumSuccessors() == Weights
->size() &&
3970 "num of prof branch_weights must accord with num of successors");
3973 SymbolTableList
<Instruction
>::iterator
3974 SwitchInstProfUpdateWrapper::eraseFromParent() {
3975 // Instruction is erased. Mark as unchanged to not touch it in the destructor.
3979 return SI
.eraseFromParent();
3982 SwitchInstProfUpdateWrapper::CaseWeightOpt
3983 SwitchInstProfUpdateWrapper::getSuccessorWeight(unsigned idx
) {
3986 return Weights
.getValue()[idx
];
3989 void SwitchInstProfUpdateWrapper::setSuccessorWeight(
3990 unsigned idx
, SwitchInstProfUpdateWrapper::CaseWeightOpt W
) {
3995 Weights
= SmallVector
<uint32_t, 8>(SI
.getNumSuccessors(), 0);
3998 auto &OldW
= Weights
.getValue()[idx
];
4006 SwitchInstProfUpdateWrapper::CaseWeightOpt
4007 SwitchInstProfUpdateWrapper::getSuccessorWeight(const SwitchInst
&SI
,
4009 if (MDNode
*ProfileData
= getProfBranchWeightsMD(SI
))
4010 if (ProfileData
->getNumOperands() == SI
.getNumSuccessors() + 1)
4011 return mdconst::extract
<ConstantInt
>(ProfileData
->getOperand(idx
+ 1))
4018 //===----------------------------------------------------------------------===//
4019 // IndirectBrInst Implementation
4020 //===----------------------------------------------------------------------===//
4022 void IndirectBrInst::init(Value
*Address
, unsigned NumDests
) {
4023 assert(Address
&& Address
->getType()->isPointerTy() &&
4024 "Address of indirectbr must be a pointer");
4025 ReservedSpace
= 1+NumDests
;
4026 setNumHungOffUseOperands(1);
4027 allocHungoffUses(ReservedSpace
);
4033 /// growOperands - grow operands - This grows the operand list in response
4034 /// to a push_back style of operation. This grows the number of ops by 2 times.
4036 void IndirectBrInst::growOperands() {
4037 unsigned e
= getNumOperands();
4038 unsigned NumOps
= e
*2;
4040 ReservedSpace
= NumOps
;
4041 growHungoffUses(ReservedSpace
);
4044 IndirectBrInst::IndirectBrInst(Value
*Address
, unsigned NumCases
,
4045 Instruction
*InsertBefore
)
4046 : Instruction(Type::getVoidTy(Address
->getContext()),
4047 Instruction::IndirectBr
, nullptr, 0, InsertBefore
) {
4048 init(Address
, NumCases
);
4051 IndirectBrInst::IndirectBrInst(Value
*Address
, unsigned NumCases
,
4052 BasicBlock
*InsertAtEnd
)
4053 : Instruction(Type::getVoidTy(Address
->getContext()),
4054 Instruction::IndirectBr
, nullptr, 0, InsertAtEnd
) {
4055 init(Address
, NumCases
);
4058 IndirectBrInst::IndirectBrInst(const IndirectBrInst
&IBI
)
4059 : Instruction(Type::getVoidTy(IBI
.getContext()), Instruction::IndirectBr
,
4060 nullptr, IBI
.getNumOperands()) {
4061 allocHungoffUses(IBI
.getNumOperands());
4062 Use
*OL
= getOperandList();
4063 const Use
*InOL
= IBI
.getOperandList();
4064 for (unsigned i
= 0, E
= IBI
.getNumOperands(); i
!= E
; ++i
)
4066 SubclassOptionalData
= IBI
.SubclassOptionalData
;
4069 /// addDestination - Add a destination.
4071 void IndirectBrInst::addDestination(BasicBlock
*DestBB
) {
4072 unsigned OpNo
= getNumOperands();
4073 if (OpNo
+1 > ReservedSpace
)
4074 growOperands(); // Get more space!
4075 // Initialize some new operands.
4076 assert(OpNo
< ReservedSpace
&& "Growing didn't work!");
4077 setNumHungOffUseOperands(OpNo
+1);
4078 getOperandList()[OpNo
] = DestBB
;
4081 /// removeDestination - This method removes the specified successor from the
4082 /// indirectbr instruction.
4083 void IndirectBrInst::removeDestination(unsigned idx
) {
4084 assert(idx
< getNumOperands()-1 && "Successor index out of range!");
4086 unsigned NumOps
= getNumOperands();
4087 Use
*OL
= getOperandList();
4089 // Replace this value with the last one.
4090 OL
[idx
+1] = OL
[NumOps
-1];
4092 // Nuke the last value.
4093 OL
[NumOps
-1].set(nullptr);
4094 setNumHungOffUseOperands(NumOps
-1);
4097 //===----------------------------------------------------------------------===//
4098 // cloneImpl() implementations
4099 //===----------------------------------------------------------------------===//
4101 // Define these methods here so vtables don't get emitted into every translation
4102 // unit that uses these classes.
4104 GetElementPtrInst
*GetElementPtrInst::cloneImpl() const {
4105 return new (getNumOperands()) GetElementPtrInst(*this);
4108 UnaryOperator
*UnaryOperator::cloneImpl() const {
4109 return Create(getOpcode(), Op
<0>());
4112 BinaryOperator
*BinaryOperator::cloneImpl() const {
4113 return Create(getOpcode(), Op
<0>(), Op
<1>());
4116 FCmpInst
*FCmpInst::cloneImpl() const {
4117 return new FCmpInst(getPredicate(), Op
<0>(), Op
<1>());
4120 ICmpInst
*ICmpInst::cloneImpl() const {
4121 return new ICmpInst(getPredicate(), Op
<0>(), Op
<1>());
4124 ExtractValueInst
*ExtractValueInst::cloneImpl() const {
4125 return new ExtractValueInst(*this);
4128 InsertValueInst
*InsertValueInst::cloneImpl() const {
4129 return new InsertValueInst(*this);
4132 AllocaInst
*AllocaInst::cloneImpl() const {
4133 AllocaInst
*Result
= new AllocaInst(getAllocatedType(),
4134 getType()->getAddressSpace(),
4135 (Value
*)getOperand(0), getAlignment());
4136 Result
->setUsedWithInAlloca(isUsedWithInAlloca());
4137 Result
->setSwiftError(isSwiftError());
4141 LoadInst
*LoadInst::cloneImpl() const {
4142 return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(),
4143 getAlignment(), getOrdering(), getSyncScopeID());
4146 StoreInst
*StoreInst::cloneImpl() const {
4147 return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
4148 getAlignment(), getOrdering(), getSyncScopeID());
4152 AtomicCmpXchgInst
*AtomicCmpXchgInst::cloneImpl() const {
4153 AtomicCmpXchgInst
*Result
=
4154 new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
4155 getSuccessOrdering(), getFailureOrdering(),
4157 Result
->setVolatile(isVolatile());
4158 Result
->setWeak(isWeak());
4162 AtomicRMWInst
*AtomicRMWInst::cloneImpl() const {
4163 AtomicRMWInst
*Result
=
4164 new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1),
4165 getOrdering(), getSyncScopeID());
4166 Result
->setVolatile(isVolatile());
4170 FenceInst
*FenceInst::cloneImpl() const {
4171 return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
4174 TruncInst
*TruncInst::cloneImpl() const {
4175 return new TruncInst(getOperand(0), getType());
4178 ZExtInst
*ZExtInst::cloneImpl() const {
4179 return new ZExtInst(getOperand(0), getType());
4182 SExtInst
*SExtInst::cloneImpl() const {
4183 return new SExtInst(getOperand(0), getType());
4186 FPTruncInst
*FPTruncInst::cloneImpl() const {
4187 return new FPTruncInst(getOperand(0), getType());
4190 FPExtInst
*FPExtInst::cloneImpl() const {
4191 return new FPExtInst(getOperand(0), getType());
4194 UIToFPInst
*UIToFPInst::cloneImpl() const {
4195 return new UIToFPInst(getOperand(0), getType());
4198 SIToFPInst
*SIToFPInst::cloneImpl() const {
4199 return new SIToFPInst(getOperand(0), getType());
4202 FPToUIInst
*FPToUIInst::cloneImpl() const {
4203 return new FPToUIInst(getOperand(0), getType());
4206 FPToSIInst
*FPToSIInst::cloneImpl() const {
4207 return new FPToSIInst(getOperand(0), getType());
4210 PtrToIntInst
*PtrToIntInst::cloneImpl() const {
4211 return new PtrToIntInst(getOperand(0), getType());
4214 IntToPtrInst
*IntToPtrInst::cloneImpl() const {
4215 return new IntToPtrInst(getOperand(0), getType());
4218 BitCastInst
*BitCastInst::cloneImpl() const {
4219 return new BitCastInst(getOperand(0), getType());
4222 AddrSpaceCastInst
*AddrSpaceCastInst::cloneImpl() const {
4223 return new AddrSpaceCastInst(getOperand(0), getType());
4226 CallInst
*CallInst::cloneImpl() const {
4227 if (hasOperandBundles()) {
4228 unsigned DescriptorBytes
= getNumOperandBundles() * sizeof(BundleOpInfo
);
4229 return new(getNumOperands(), DescriptorBytes
) CallInst(*this);
4231 return new(getNumOperands()) CallInst(*this);
4234 SelectInst
*SelectInst::cloneImpl() const {
4235 return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
4238 VAArgInst
*VAArgInst::cloneImpl() const {
4239 return new VAArgInst(getOperand(0), getType());
4242 ExtractElementInst
*ExtractElementInst::cloneImpl() const {
4243 return ExtractElementInst::Create(getOperand(0), getOperand(1));
4246 InsertElementInst
*InsertElementInst::cloneImpl() const {
4247 return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
4250 ShuffleVectorInst
*ShuffleVectorInst::cloneImpl() const {
4251 return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
4254 PHINode
*PHINode::cloneImpl() const { return new PHINode(*this); }
4256 LandingPadInst
*LandingPadInst::cloneImpl() const {
4257 return new LandingPadInst(*this);
4260 ReturnInst
*ReturnInst::cloneImpl() const {
4261 return new(getNumOperands()) ReturnInst(*this);
4264 BranchInst
*BranchInst::cloneImpl() const {
4265 return new(getNumOperands()) BranchInst(*this);
4268 SwitchInst
*SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
4270 IndirectBrInst
*IndirectBrInst::cloneImpl() const {
4271 return new IndirectBrInst(*this);
4274 InvokeInst
*InvokeInst::cloneImpl() const {
4275 if (hasOperandBundles()) {
4276 unsigned DescriptorBytes
= getNumOperandBundles() * sizeof(BundleOpInfo
);
4277 return new(getNumOperands(), DescriptorBytes
) InvokeInst(*this);
4279 return new(getNumOperands()) InvokeInst(*this);
4282 CallBrInst
*CallBrInst::cloneImpl() const {
4283 if (hasOperandBundles()) {
4284 unsigned DescriptorBytes
= getNumOperandBundles() * sizeof(BundleOpInfo
);
4285 return new (getNumOperands(), DescriptorBytes
) CallBrInst(*this);
4287 return new (getNumOperands()) CallBrInst(*this);
4290 ResumeInst
*ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
4292 CleanupReturnInst
*CleanupReturnInst::cloneImpl() const {
4293 return new (getNumOperands()) CleanupReturnInst(*this);
4296 CatchReturnInst
*CatchReturnInst::cloneImpl() const {
4297 return new (getNumOperands()) CatchReturnInst(*this);
4300 CatchSwitchInst
*CatchSwitchInst::cloneImpl() const {
4301 return new CatchSwitchInst(*this);
4304 FuncletPadInst
*FuncletPadInst::cloneImpl() const {
4305 return new (getNumOperands()) FuncletPadInst(*this);
4308 UnreachableInst
*UnreachableInst::cloneImpl() const {
4309 LLVMContext
&Context
= getContext();
4310 return new UnreachableInst(Context
);