1 //===- Type.cpp - Implement the Type class --------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the Type class for the IR library.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/IR/Type.h"
14 #include "LLVMContextImpl.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/StringMap.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/Value.h"
26 #include "llvm/Support/Casting.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Support/TypeSize.h"
35 //===----------------------------------------------------------------------===//
36 // Type Class Implementation
37 //===----------------------------------------------------------------------===//
39 Type
*Type::getPrimitiveType(LLVMContext
&C
, TypeID IDNumber
) {
41 case VoidTyID
: return getVoidTy(C
);
42 case HalfTyID
: return getHalfTy(C
);
43 case FloatTyID
: return getFloatTy(C
);
44 case DoubleTyID
: return getDoubleTy(C
);
45 case X86_FP80TyID
: return getX86_FP80Ty(C
);
46 case FP128TyID
: return getFP128Ty(C
);
47 case PPC_FP128TyID
: return getPPC_FP128Ty(C
);
48 case LabelTyID
: return getLabelTy(C
);
49 case MetadataTyID
: return getMetadataTy(C
);
50 case X86_MMXTyID
: return getX86_MMXTy(C
);
51 case TokenTyID
: return getTokenTy(C
);
57 bool Type::isIntegerTy(unsigned Bitwidth
) const {
58 return isIntegerTy() && cast
<IntegerType
>(this)->getBitWidth() == Bitwidth
;
61 bool Type::canLosslesslyBitCastTo(Type
*Ty
) const {
62 // Identity cast means no change so return true
66 // They are not convertible unless they are at least first class types
67 if (!this->isFirstClassType() || !Ty
->isFirstClassType())
70 // Vector -> Vector conversions are always lossless if the two vector types
71 // have the same size, otherwise not. Also, 64-bit vector types can be
72 // converted to x86mmx.
73 if (auto *thisPTy
= dyn_cast
<VectorType
>(this)) {
74 if (auto *thatPTy
= dyn_cast
<VectorType
>(Ty
))
75 return thisPTy
->getBitWidth() == thatPTy
->getBitWidth();
76 if (Ty
->getTypeID() == Type::X86_MMXTyID
&&
77 thisPTy
->getBitWidth() == 64)
81 if (this->getTypeID() == Type::X86_MMXTyID
)
82 if (auto *thatPTy
= dyn_cast
<VectorType
>(Ty
))
83 if (thatPTy
->getBitWidth() == 64)
86 // At this point we have only various mismatches of the first class types
87 // remaining and ptr->ptr. Just select the lossless conversions. Everything
88 // else is not lossless. Conservatively assume we can't losslessly convert
89 // between pointers with different address spaces.
90 if (auto *PTy
= dyn_cast
<PointerType
>(this)) {
91 if (auto *OtherPTy
= dyn_cast
<PointerType
>(Ty
))
92 return PTy
->getAddressSpace() == OtherPTy
->getAddressSpace();
95 return false; // Other types have no identity values
98 bool Type::isEmptyTy() const {
99 if (auto *ATy
= dyn_cast
<ArrayType
>(this)) {
100 unsigned NumElements
= ATy
->getNumElements();
101 return NumElements
== 0 || ATy
->getElementType()->isEmptyTy();
104 if (auto *STy
= dyn_cast
<StructType
>(this)) {
105 unsigned NumElements
= STy
->getNumElements();
106 for (unsigned i
= 0; i
< NumElements
; ++i
)
107 if (!STy
->getElementType(i
)->isEmptyTy())
115 TypeSize
Type::getPrimitiveSizeInBits() const {
116 switch (getTypeID()) {
117 case Type::HalfTyID
: return TypeSize::Fixed(16);
118 case Type::FloatTyID
: return TypeSize::Fixed(32);
119 case Type::DoubleTyID
: return TypeSize::Fixed(64);
120 case Type::X86_FP80TyID
: return TypeSize::Fixed(80);
121 case Type::FP128TyID
: return TypeSize::Fixed(128);
122 case Type::PPC_FP128TyID
: return TypeSize::Fixed(128);
123 case Type::X86_MMXTyID
: return TypeSize::Fixed(64);
124 case Type::IntegerTyID
:
125 return TypeSize::Fixed(cast
<IntegerType
>(this)->getBitWidth());
126 case Type::VectorTyID
: {
127 const VectorType
*VTy
= cast
<VectorType
>(this);
128 return TypeSize(VTy
->getBitWidth(), VTy
->isScalable());
130 default: return TypeSize::Fixed(0);
134 unsigned Type::getScalarSizeInBits() const {
135 return getScalarType()->getPrimitiveSizeInBits();
138 int Type::getFPMantissaWidth() const {
139 if (auto *VTy
= dyn_cast
<VectorType
>(this))
140 return VTy
->getElementType()->getFPMantissaWidth();
141 assert(isFloatingPointTy() && "Not a floating point type!");
142 if (getTypeID() == HalfTyID
) return 11;
143 if (getTypeID() == FloatTyID
) return 24;
144 if (getTypeID() == DoubleTyID
) return 53;
145 if (getTypeID() == X86_FP80TyID
) return 64;
146 if (getTypeID() == FP128TyID
) return 113;
147 assert(getTypeID() == PPC_FP128TyID
&& "unknown fp type");
151 bool Type::isSizedDerivedType(SmallPtrSetImpl
<Type
*> *Visited
) const {
152 if (auto *ATy
= dyn_cast
<ArrayType
>(this))
153 return ATy
->getElementType()->isSized(Visited
);
155 if (auto *VTy
= dyn_cast
<VectorType
>(this))
156 return VTy
->getElementType()->isSized(Visited
);
158 return cast
<StructType
>(this)->isSized(Visited
);
161 //===----------------------------------------------------------------------===//
162 // Primitive 'Type' data
163 //===----------------------------------------------------------------------===//
165 Type
*Type::getVoidTy(LLVMContext
&C
) { return &C
.pImpl
->VoidTy
; }
166 Type
*Type::getLabelTy(LLVMContext
&C
) { return &C
.pImpl
->LabelTy
; }
167 Type
*Type::getHalfTy(LLVMContext
&C
) { return &C
.pImpl
->HalfTy
; }
168 Type
*Type::getFloatTy(LLVMContext
&C
) { return &C
.pImpl
->FloatTy
; }
169 Type
*Type::getDoubleTy(LLVMContext
&C
) { return &C
.pImpl
->DoubleTy
; }
170 Type
*Type::getMetadataTy(LLVMContext
&C
) { return &C
.pImpl
->MetadataTy
; }
171 Type
*Type::getTokenTy(LLVMContext
&C
) { return &C
.pImpl
->TokenTy
; }
172 Type
*Type::getX86_FP80Ty(LLVMContext
&C
) { return &C
.pImpl
->X86_FP80Ty
; }
173 Type
*Type::getFP128Ty(LLVMContext
&C
) { return &C
.pImpl
->FP128Ty
; }
174 Type
*Type::getPPC_FP128Ty(LLVMContext
&C
) { return &C
.pImpl
->PPC_FP128Ty
; }
175 Type
*Type::getX86_MMXTy(LLVMContext
&C
) { return &C
.pImpl
->X86_MMXTy
; }
177 IntegerType
*Type::getInt1Ty(LLVMContext
&C
) { return &C
.pImpl
->Int1Ty
; }
178 IntegerType
*Type::getInt8Ty(LLVMContext
&C
) { return &C
.pImpl
->Int8Ty
; }
179 IntegerType
*Type::getInt16Ty(LLVMContext
&C
) { return &C
.pImpl
->Int16Ty
; }
180 IntegerType
*Type::getInt32Ty(LLVMContext
&C
) { return &C
.pImpl
->Int32Ty
; }
181 IntegerType
*Type::getInt64Ty(LLVMContext
&C
) { return &C
.pImpl
->Int64Ty
; }
182 IntegerType
*Type::getInt128Ty(LLVMContext
&C
) { return &C
.pImpl
->Int128Ty
; }
184 IntegerType
*Type::getIntNTy(LLVMContext
&C
, unsigned N
) {
185 return IntegerType::get(C
, N
);
188 PointerType
*Type::getHalfPtrTy(LLVMContext
&C
, unsigned AS
) {
189 return getHalfTy(C
)->getPointerTo(AS
);
192 PointerType
*Type::getFloatPtrTy(LLVMContext
&C
, unsigned AS
) {
193 return getFloatTy(C
)->getPointerTo(AS
);
196 PointerType
*Type::getDoublePtrTy(LLVMContext
&C
, unsigned AS
) {
197 return getDoubleTy(C
)->getPointerTo(AS
);
200 PointerType
*Type::getX86_FP80PtrTy(LLVMContext
&C
, unsigned AS
) {
201 return getX86_FP80Ty(C
)->getPointerTo(AS
);
204 PointerType
*Type::getFP128PtrTy(LLVMContext
&C
, unsigned AS
) {
205 return getFP128Ty(C
)->getPointerTo(AS
);
208 PointerType
*Type::getPPC_FP128PtrTy(LLVMContext
&C
, unsigned AS
) {
209 return getPPC_FP128Ty(C
)->getPointerTo(AS
);
212 PointerType
*Type::getX86_MMXPtrTy(LLVMContext
&C
, unsigned AS
) {
213 return getX86_MMXTy(C
)->getPointerTo(AS
);
216 PointerType
*Type::getIntNPtrTy(LLVMContext
&C
, unsigned N
, unsigned AS
) {
217 return getIntNTy(C
, N
)->getPointerTo(AS
);
220 PointerType
*Type::getInt1PtrTy(LLVMContext
&C
, unsigned AS
) {
221 return getInt1Ty(C
)->getPointerTo(AS
);
224 PointerType
*Type::getInt8PtrTy(LLVMContext
&C
, unsigned AS
) {
225 return getInt8Ty(C
)->getPointerTo(AS
);
228 PointerType
*Type::getInt16PtrTy(LLVMContext
&C
, unsigned AS
) {
229 return getInt16Ty(C
)->getPointerTo(AS
);
232 PointerType
*Type::getInt32PtrTy(LLVMContext
&C
, unsigned AS
) {
233 return getInt32Ty(C
)->getPointerTo(AS
);
236 PointerType
*Type::getInt64PtrTy(LLVMContext
&C
, unsigned AS
) {
237 return getInt64Ty(C
)->getPointerTo(AS
);
240 //===----------------------------------------------------------------------===//
241 // IntegerType Implementation
242 //===----------------------------------------------------------------------===//
244 IntegerType
*IntegerType::get(LLVMContext
&C
, unsigned NumBits
) {
245 assert(NumBits
>= MIN_INT_BITS
&& "bitwidth too small");
246 assert(NumBits
<= MAX_INT_BITS
&& "bitwidth too large");
248 // Check for the built-in integer types
250 case 1: return cast
<IntegerType
>(Type::getInt1Ty(C
));
251 case 8: return cast
<IntegerType
>(Type::getInt8Ty(C
));
252 case 16: return cast
<IntegerType
>(Type::getInt16Ty(C
));
253 case 32: return cast
<IntegerType
>(Type::getInt32Ty(C
));
254 case 64: return cast
<IntegerType
>(Type::getInt64Ty(C
));
255 case 128: return cast
<IntegerType
>(Type::getInt128Ty(C
));
260 IntegerType
*&Entry
= C
.pImpl
->IntegerTypes
[NumBits
];
263 Entry
= new (C
.pImpl
->Alloc
) IntegerType(C
, NumBits
);
268 bool IntegerType::isPowerOf2ByteWidth() const {
269 unsigned BitWidth
= getBitWidth();
270 return (BitWidth
> 7) && isPowerOf2_32(BitWidth
);
273 APInt
IntegerType::getMask() const {
274 return APInt::getAllOnesValue(getBitWidth());
277 //===----------------------------------------------------------------------===//
278 // FunctionType Implementation
279 //===----------------------------------------------------------------------===//
281 FunctionType::FunctionType(Type
*Result
, ArrayRef
<Type
*> Params
,
283 : Type(Result
->getContext(), FunctionTyID
) {
284 Type
**SubTys
= reinterpret_cast<Type
**>(this+1);
285 assert(isValidReturnType(Result
) && "invalid return type for function");
286 setSubclassData(IsVarArgs
);
290 for (unsigned i
= 0, e
= Params
.size(); i
!= e
; ++i
) {
291 assert(isValidArgumentType(Params
[i
]) &&
292 "Not a valid type for function argument!");
293 SubTys
[i
+1] = Params
[i
];
296 ContainedTys
= SubTys
;
297 NumContainedTys
= Params
.size() + 1; // + 1 for result type
300 // This is the factory function for the FunctionType class.
301 FunctionType
*FunctionType::get(Type
*ReturnType
,
302 ArrayRef
<Type
*> Params
, bool isVarArg
) {
303 LLVMContextImpl
*pImpl
= ReturnType
->getContext().pImpl
;
304 const FunctionTypeKeyInfo::KeyTy
Key(ReturnType
, Params
, isVarArg
);
306 // Since we only want to allocate a fresh function type in case none is found
307 // and we don't want to perform two lookups (one for checking if existent and
308 // one for inserting the newly allocated one), here we instead lookup based on
309 // Key and update the reference to the function type in-place to a newly
310 // allocated one if not found.
311 auto Insertion
= pImpl
->FunctionTypes
.insert_as(nullptr, Key
);
312 if (Insertion
.second
) {
313 // The function type was not found. Allocate one and update FunctionTypes
315 FT
= (FunctionType
*)pImpl
->Alloc
.Allocate(
316 sizeof(FunctionType
) + sizeof(Type
*) * (Params
.size() + 1),
317 alignof(FunctionType
));
318 new (FT
) FunctionType(ReturnType
, Params
, isVarArg
);
319 *Insertion
.first
= FT
;
321 // The function type was found. Just return it.
322 FT
= *Insertion
.first
;
327 FunctionType
*FunctionType::get(Type
*Result
, bool isVarArg
) {
328 return get(Result
, None
, isVarArg
);
331 bool FunctionType::isValidReturnType(Type
*RetTy
) {
332 return !RetTy
->isFunctionTy() && !RetTy
->isLabelTy() &&
333 !RetTy
->isMetadataTy();
336 bool FunctionType::isValidArgumentType(Type
*ArgTy
) {
337 return ArgTy
->isFirstClassType();
340 //===----------------------------------------------------------------------===//
341 // StructType Implementation
342 //===----------------------------------------------------------------------===//
344 // Primitive Constructors.
346 StructType
*StructType::get(LLVMContext
&Context
, ArrayRef
<Type
*> ETypes
,
348 LLVMContextImpl
*pImpl
= Context
.pImpl
;
349 const AnonStructTypeKeyInfo::KeyTy
Key(ETypes
, isPacked
);
352 // Since we only want to allocate a fresh struct type in case none is found
353 // and we don't want to perform two lookups (one for checking if existent and
354 // one for inserting the newly allocated one), here we instead lookup based on
355 // Key and update the reference to the struct type in-place to a newly
356 // allocated one if not found.
357 auto Insertion
= pImpl
->AnonStructTypes
.insert_as(nullptr, Key
);
358 if (Insertion
.second
) {
359 // The struct type was not found. Allocate one and update AnonStructTypes
361 ST
= new (Context
.pImpl
->Alloc
) StructType(Context
);
362 ST
->setSubclassData(SCDB_IsLiteral
); // Literal struct.
363 ST
->setBody(ETypes
, isPacked
);
364 *Insertion
.first
= ST
;
366 // The struct type was found. Just return it.
367 ST
= *Insertion
.first
;
373 void StructType::setBody(ArrayRef
<Type
*> Elements
, bool isPacked
) {
374 assert(isOpaque() && "Struct body already set!");
376 setSubclassData(getSubclassData() | SCDB_HasBody
);
378 setSubclassData(getSubclassData() | SCDB_Packed
);
380 NumContainedTys
= Elements
.size();
382 if (Elements
.empty()) {
383 ContainedTys
= nullptr;
387 ContainedTys
= Elements
.copy(getContext().pImpl
->Alloc
).data();
390 void StructType::setName(StringRef Name
) {
391 if (Name
== getName()) return;
393 StringMap
<StructType
*> &SymbolTable
= getContext().pImpl
->NamedStructTypes
;
395 using EntryTy
= StringMap
<StructType
*>::MapEntryTy
;
397 // If this struct already had a name, remove its symbol table entry. Don't
398 // delete the data yet because it may be part of the new name.
399 if (SymbolTableEntry
)
400 SymbolTable
.remove((EntryTy
*)SymbolTableEntry
);
402 // If this is just removing the name, we're done.
404 if (SymbolTableEntry
) {
405 // Delete the old string data.
406 ((EntryTy
*)SymbolTableEntry
)->Destroy(SymbolTable
.getAllocator());
407 SymbolTableEntry
= nullptr;
412 // Look up the entry for the name.
414 getContext().pImpl
->NamedStructTypes
.insert(std::make_pair(Name
, this));
416 // While we have a name collision, try a random rename.
417 if (!IterBool
.second
) {
418 SmallString
<64> TempStr(Name
);
419 TempStr
.push_back('.');
420 raw_svector_ostream
TmpStream(TempStr
);
421 unsigned NameSize
= Name
.size();
424 TempStr
.resize(NameSize
+ 1);
425 TmpStream
<< getContext().pImpl
->NamedStructTypesUniqueID
++;
427 IterBool
= getContext().pImpl
->NamedStructTypes
.insert(
428 std::make_pair(TmpStream
.str(), this));
429 } while (!IterBool
.second
);
432 // Delete the old string data.
433 if (SymbolTableEntry
)
434 ((EntryTy
*)SymbolTableEntry
)->Destroy(SymbolTable
.getAllocator());
435 SymbolTableEntry
= &*IterBool
.first
;
438 //===----------------------------------------------------------------------===//
439 // StructType Helper functions.
441 StructType
*StructType::create(LLVMContext
&Context
, StringRef Name
) {
442 StructType
*ST
= new (Context
.pImpl
->Alloc
) StructType(Context
);
448 StructType
*StructType::get(LLVMContext
&Context
, bool isPacked
) {
449 return get(Context
, None
, isPacked
);
452 StructType
*StructType::create(LLVMContext
&Context
, ArrayRef
<Type
*> Elements
,
453 StringRef Name
, bool isPacked
) {
454 StructType
*ST
= create(Context
, Name
);
455 ST
->setBody(Elements
, isPacked
);
459 StructType
*StructType::create(LLVMContext
&Context
, ArrayRef
<Type
*> Elements
) {
460 return create(Context
, Elements
, StringRef());
463 StructType
*StructType::create(LLVMContext
&Context
) {
464 return create(Context
, StringRef());
467 StructType
*StructType::create(ArrayRef
<Type
*> Elements
, StringRef Name
,
469 assert(!Elements
.empty() &&
470 "This method may not be invoked with an empty list");
471 return create(Elements
[0]->getContext(), Elements
, Name
, isPacked
);
474 StructType
*StructType::create(ArrayRef
<Type
*> Elements
) {
475 assert(!Elements
.empty() &&
476 "This method may not be invoked with an empty list");
477 return create(Elements
[0]->getContext(), Elements
, StringRef());
480 bool StructType::isSized(SmallPtrSetImpl
<Type
*> *Visited
) const {
481 if ((getSubclassData() & SCDB_IsSized
) != 0)
486 if (Visited
&& !Visited
->insert(const_cast<StructType
*>(this)).second
)
489 // Okay, our struct is sized if all of the elements are, but if one of the
490 // elements is opaque, the struct isn't sized *yet*, but may become sized in
491 // the future, so just bail out without caching.
492 for (element_iterator I
= element_begin(), E
= element_end(); I
!= E
; ++I
)
493 if (!(*I
)->isSized(Visited
))
496 // Here we cheat a bit and cast away const-ness. The goal is to memoize when
497 // we find a sized type, as types can only move from opaque to sized, not the
499 const_cast<StructType
*>(this)->setSubclassData(
500 getSubclassData() | SCDB_IsSized
);
504 StringRef
StructType::getName() const {
505 assert(!isLiteral() && "Literal structs never have names");
506 if (!SymbolTableEntry
) return StringRef();
508 return ((StringMapEntry
<StructType
*> *)SymbolTableEntry
)->getKey();
511 bool StructType::isValidElementType(Type
*ElemTy
) {
512 if (auto *VTy
= dyn_cast
<VectorType
>(ElemTy
))
513 return !VTy
->isScalable();
514 return !ElemTy
->isVoidTy() && !ElemTy
->isLabelTy() &&
515 !ElemTy
->isMetadataTy() && !ElemTy
->isFunctionTy() &&
516 !ElemTy
->isTokenTy();
519 bool StructType::isLayoutIdentical(StructType
*Other
) const {
520 if (this == Other
) return true;
522 if (isPacked() != Other
->isPacked())
525 return elements() == Other
->elements();
528 StructType
*Module::getTypeByName(StringRef Name
) const {
529 return getContext().pImpl
->NamedStructTypes
.lookup(Name
);
532 //===----------------------------------------------------------------------===//
533 // CompositeType Implementation
534 //===----------------------------------------------------------------------===//
536 Type
*CompositeType::getTypeAtIndex(const Value
*V
) const {
537 if (auto *STy
= dyn_cast
<StructType
>(this)) {
539 (unsigned)cast
<Constant
>(V
)->getUniqueInteger().getZExtValue();
540 assert(indexValid(Idx
) && "Invalid structure index!");
541 return STy
->getElementType(Idx
);
544 return cast
<SequentialType
>(this)->getElementType();
547 Type
*CompositeType::getTypeAtIndex(unsigned Idx
) const{
548 if (auto *STy
= dyn_cast
<StructType
>(this)) {
549 assert(indexValid(Idx
) && "Invalid structure index!");
550 return STy
->getElementType(Idx
);
553 return cast
<SequentialType
>(this)->getElementType();
556 bool CompositeType::indexValid(const Value
*V
) const {
557 if (auto *STy
= dyn_cast
<StructType
>(this)) {
558 // Structure indexes require (vectors of) 32-bit integer constants. In the
559 // vector case all of the indices must be equal.
560 if (!V
->getType()->isIntOrIntVectorTy(32))
562 const Constant
*C
= dyn_cast
<Constant
>(V
);
563 if (C
&& V
->getType()->isVectorTy())
564 C
= C
->getSplatValue();
565 const ConstantInt
*CU
= dyn_cast_or_null
<ConstantInt
>(C
);
566 return CU
&& CU
->getZExtValue() < STy
->getNumElements();
569 // Sequential types can be indexed by any integer.
570 return V
->getType()->isIntOrIntVectorTy();
573 bool CompositeType::indexValid(unsigned Idx
) const {
574 if (auto *STy
= dyn_cast
<StructType
>(this))
575 return Idx
< STy
->getNumElements();
576 // Sequential types can be indexed by any integer.
580 //===----------------------------------------------------------------------===//
581 // ArrayType Implementation
582 //===----------------------------------------------------------------------===//
584 ArrayType::ArrayType(Type
*ElType
, uint64_t NumEl
)
585 : SequentialType(ArrayTyID
, ElType
, NumEl
) {}
587 ArrayType
*ArrayType::get(Type
*ElementType
, uint64_t NumElements
) {
588 assert(isValidElementType(ElementType
) && "Invalid type for array element!");
590 LLVMContextImpl
*pImpl
= ElementType
->getContext().pImpl
;
592 pImpl
->ArrayTypes
[std::make_pair(ElementType
, NumElements
)];
595 Entry
= new (pImpl
->Alloc
) ArrayType(ElementType
, NumElements
);
599 bool ArrayType::isValidElementType(Type
*ElemTy
) {
600 if (auto *VTy
= dyn_cast
<VectorType
>(ElemTy
))
601 return !VTy
->isScalable();
602 return !ElemTy
->isVoidTy() && !ElemTy
->isLabelTy() &&
603 !ElemTy
->isMetadataTy() && !ElemTy
->isFunctionTy() &&
604 !ElemTy
->isTokenTy();
607 //===----------------------------------------------------------------------===//
608 // VectorType Implementation
609 //===----------------------------------------------------------------------===//
611 VectorType::VectorType(Type
*ElType
, ElementCount EC
)
612 : SequentialType(VectorTyID
, ElType
, EC
.Min
), Scalable(EC
.Scalable
) {}
614 VectorType
*VectorType::get(Type
*ElementType
, ElementCount EC
) {
615 assert(EC
.Min
> 0 && "#Elements of a VectorType must be greater than 0");
616 assert(isValidElementType(ElementType
) && "Element type of a VectorType must "
617 "be an integer, floating point, or "
620 LLVMContextImpl
*pImpl
= ElementType
->getContext().pImpl
;
621 VectorType
*&Entry
= ElementType
->getContext().pImpl
622 ->VectorTypes
[std::make_pair(ElementType
, EC
)];
624 Entry
= new (pImpl
->Alloc
) VectorType(ElementType
, EC
);
628 bool VectorType::isValidElementType(Type
*ElemTy
) {
629 return ElemTy
->isIntegerTy() || ElemTy
->isFloatingPointTy() ||
630 ElemTy
->isPointerTy();
633 //===----------------------------------------------------------------------===//
634 // PointerType Implementation
635 //===----------------------------------------------------------------------===//
637 PointerType
*PointerType::get(Type
*EltTy
, unsigned AddressSpace
) {
638 assert(EltTy
&& "Can't get a pointer to <null> type!");
639 assert(isValidElementType(EltTy
) && "Invalid type for pointer element!");
641 LLVMContextImpl
*CImpl
= EltTy
->getContext().pImpl
;
643 // Since AddressSpace #0 is the common case, we special case it.
644 PointerType
*&Entry
= AddressSpace
== 0 ? CImpl
->PointerTypes
[EltTy
]
645 : CImpl
->ASPointerTypes
[std::make_pair(EltTy
, AddressSpace
)];
648 Entry
= new (CImpl
->Alloc
) PointerType(EltTy
, AddressSpace
);
652 PointerType::PointerType(Type
*E
, unsigned AddrSpace
)
653 : Type(E
->getContext(), PointerTyID
), PointeeTy(E
) {
654 ContainedTys
= &PointeeTy
;
656 setSubclassData(AddrSpace
);
659 PointerType
*Type::getPointerTo(unsigned addrs
) const {
660 return PointerType::get(const_cast<Type
*>(this), addrs
);
663 bool PointerType::isValidElementType(Type
*ElemTy
) {
664 return !ElemTy
->isVoidTy() && !ElemTy
->isLabelTy() &&
665 !ElemTy
->isMetadataTy() && !ElemTy
->isTokenTy();
668 bool PointerType::isLoadableOrStorableType(Type
*ElemTy
) {
669 return isValidElementType(ElemTy
) && !ElemTy
->isFunctionTy();