[Demangle] Add a few more options to the microsoft demangler
[llvm-complete.git] / lib / Target / X86 / X86FixupSetCC.cpp
blobcbde280aa2803051bbf4baf86a1831369d60aa92
1 //===---- X86FixupSetCC.cpp - optimize usage of LEA instructions ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines a pass that fixes zero-extension of setcc patterns.
10 // X86 setcc instructions are modeled to have no input arguments, and a single
11 // GR8 output argument. This is consistent with other similar instructions
12 // (e.g. movb), but means it is impossible to directly generate a setcc into
13 // the lower GR8 of a specified GR32.
14 // This means that ISel must select (zext (setcc)) into something like
15 // seta %al; movzbl %al, %eax.
16 // Unfortunately, this can cause a stall due to the partial register write
17 // performed by the setcc. Instead, we can use:
18 // xor %eax, %eax; seta %al
19 // This both avoids the stall, and encodes shorter.
20 //===----------------------------------------------------------------------===//
22 #include "X86.h"
23 #include "X86InstrInfo.h"
24 #include "X86Subtarget.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 using namespace llvm;
32 #define DEBUG_TYPE "x86-fixup-setcc"
34 STATISTIC(NumSubstZexts, "Number of setcc + zext pairs substituted");
36 namespace {
37 class X86FixupSetCCPass : public MachineFunctionPass {
38 public:
39 X86FixupSetCCPass() : MachineFunctionPass(ID) {}
41 StringRef getPassName() const override { return "X86 Fixup SetCC"; }
43 bool runOnMachineFunction(MachineFunction &MF) override;
45 private:
46 // Find the preceding instruction that imp-defs eflags.
47 MachineInstr *findFlagsImpDef(MachineBasicBlock *MBB,
48 MachineBasicBlock::reverse_iterator MI);
50 // Return true if MI imp-uses eflags.
51 bool impUsesFlags(MachineInstr *MI);
53 // Return true if this is the opcode of a SetCC instruction with a register
54 // output.
55 bool isSetCCr(unsigned Opode);
57 MachineRegisterInfo *MRI;
58 const X86InstrInfo *TII;
60 enum { SearchBound = 16 };
62 static char ID;
65 char X86FixupSetCCPass::ID = 0;
68 FunctionPass *llvm::createX86FixupSetCC() { return new X86FixupSetCCPass(); }
70 // We expect the instruction *immediately* before the setcc to imp-def
71 // EFLAGS (because of scheduling glue). To make this less brittle w.r.t
72 // scheduling, look backwards until we hit the beginning of the
73 // basic-block, or a small bound (to avoid quadratic behavior).
74 MachineInstr *
75 X86FixupSetCCPass::findFlagsImpDef(MachineBasicBlock *MBB,
76 MachineBasicBlock::reverse_iterator MI) {
77 // FIXME: Should this be instr_rend(), and MI be reverse_instr_iterator?
78 auto MBBStart = MBB->rend();
79 for (int i = 0; (i < SearchBound) && (MI != MBBStart); ++i, ++MI)
80 for (auto &Op : MI->implicit_operands())
81 if (Op.isReg() && (Op.getReg() == X86::EFLAGS) && Op.isDef())
82 return &*MI;
84 return nullptr;
87 bool X86FixupSetCCPass::impUsesFlags(MachineInstr *MI) {
88 for (auto &Op : MI->implicit_operands())
89 if (Op.isReg() && (Op.getReg() == X86::EFLAGS) && Op.isUse())
90 return true;
92 return false;
95 bool X86FixupSetCCPass::runOnMachineFunction(MachineFunction &MF) {
96 bool Changed = false;
97 MRI = &MF.getRegInfo();
98 TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
100 SmallVector<MachineInstr*, 4> ToErase;
102 for (auto &MBB : MF) {
103 for (auto &MI : MBB) {
104 // Find a setcc that is used by a zext.
105 // This doesn't have to be the only use, the transformation is safe
106 // regardless.
107 if (MI.getOpcode() != X86::SETCCr)
108 continue;
110 MachineInstr *ZExt = nullptr;
111 for (auto &Use : MRI->use_instructions(MI.getOperand(0).getReg()))
112 if (Use.getOpcode() == X86::MOVZX32rr8)
113 ZExt = &Use;
115 if (!ZExt)
116 continue;
118 // Find the preceding instruction that imp-defs eflags.
119 MachineInstr *FlagsDefMI = findFlagsImpDef(
120 MI.getParent(), MachineBasicBlock::reverse_iterator(&MI));
121 if (!FlagsDefMI)
122 continue;
124 // We'd like to put something that clobbers eflags directly before
125 // FlagsDefMI. This can't hurt anything after FlagsDefMI, because
126 // it, itself, by definition, clobbers eflags. But it may happen that
127 // FlagsDefMI also *uses* eflags, in which case the transformation is
128 // invalid.
129 if (impUsesFlags(FlagsDefMI))
130 continue;
132 ++NumSubstZexts;
133 Changed = true;
135 // On 32-bit, we need to be careful to force an ABCD register.
136 const TargetRegisterClass *RC = MF.getSubtarget<X86Subtarget>().is64Bit()
137 ? &X86::GR32RegClass
138 : &X86::GR32_ABCDRegClass;
139 Register ZeroReg = MRI->createVirtualRegister(RC);
140 Register InsertReg = MRI->createVirtualRegister(RC);
142 // Initialize a register with 0. This must go before the eflags def
143 BuildMI(MBB, FlagsDefMI, MI.getDebugLoc(), TII->get(X86::MOV32r0),
144 ZeroReg);
146 // X86 setcc only takes an output GR8, so fake a GR32 input by inserting
147 // the setcc result into the low byte of the zeroed register.
148 BuildMI(*ZExt->getParent(), ZExt, ZExt->getDebugLoc(),
149 TII->get(X86::INSERT_SUBREG), InsertReg)
150 .addReg(ZeroReg)
151 .addReg(MI.getOperand(0).getReg())
152 .addImm(X86::sub_8bit);
153 MRI->replaceRegWith(ZExt->getOperand(0).getReg(), InsertReg);
154 ToErase.push_back(ZExt);
158 for (auto &I : ToErase)
159 I->eraseFromParent();
161 return Changed;