1 //===- X86InstrFPStack.td - FPU Instruction Set ------------*- tablegen -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file describes the X86 x87 FPU instruction set, defining the
10 // instructions, and properties of the instructions which are needed for code
11 // generation, machine code emission, and analysis.
13 //===----------------------------------------------------------------------===//
15 //===----------------------------------------------------------------------===//
16 // FPStack specific DAG Nodes.
17 //===----------------------------------------------------------------------===//
19 def SDTX86Fld : SDTypeProfile<1, 1, [SDTCisFP<0>,
21 def SDTX86Fst : SDTypeProfile<0, 2, [SDTCisFP<0>,
23 def SDTX86Fild : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisPtrTy<1>]>;
24 def SDTX86Fist : SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisPtrTy<1>]>;
25 def SDTX86Fnstsw : SDTypeProfile<1, 1, [SDTCisVT<0, i16>, SDTCisVT<1, i16>]>;
27 def SDTX86CwdStore : SDTypeProfile<0, 1, [SDTCisPtrTy<0>]>;
29 def X86fld : SDNode<"X86ISD::FLD", SDTX86Fld,
30 [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
31 def X86fst : SDNode<"X86ISD::FST", SDTX86Fst,
32 [SDNPHasChain, SDNPInGlue, SDNPMayStore,
34 def X86fild : SDNode<"X86ISD::FILD", SDTX86Fild,
35 [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
36 def X86fildflag : SDNode<"X86ISD::FILD_FLAG", SDTX86Fild,
37 [SDNPHasChain, SDNPOutGlue, SDNPMayLoad,
39 def X86fist : SDNode<"X86ISD::FIST", SDTX86Fist,
40 [SDNPHasChain, SDNPInGlue, SDNPMayStore,
42 def X86fp_stsw : SDNode<"X86ISD::FNSTSW16r", SDTX86Fnstsw>;
43 def X86fp_to_mem : SDNode<"X86ISD::FP_TO_INT_IN_MEM", SDTX86Fst,
44 [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
45 def X86fp_cwd_get16 : SDNode<"X86ISD::FNSTCW16m", SDTX86CwdStore,
46 [SDNPHasChain, SDNPMayStore, SDNPSideEffect,
49 def X86fstf32 : PatFrag<(ops node:$val, node:$ptr),
50 (X86fst node:$val, node:$ptr), [{
51 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f32;
53 def X86fstf64 : PatFrag<(ops node:$val, node:$ptr),
54 (X86fst node:$val, node:$ptr), [{
55 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f64;
57 def X86fstf80 : PatFrag<(ops node:$val, node:$ptr),
58 (X86fst node:$val, node:$ptr), [{
59 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f80;
62 def X86fldf32 : PatFrag<(ops node:$ptr), (X86fld node:$ptr), [{
63 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f32;
65 def X86fldf64 : PatFrag<(ops node:$ptr), (X86fld node:$ptr), [{
66 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f64;
68 def X86fldf80 : PatFrag<(ops node:$ptr), (X86fld node:$ptr), [{
69 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::f80;
72 def X86fild16 : PatFrag<(ops node:$ptr), (X86fild node:$ptr), [{
73 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
75 def X86fild32 : PatFrag<(ops node:$ptr), (X86fild node:$ptr), [{
76 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
78 def X86fild64 : PatFrag<(ops node:$ptr), (X86fild node:$ptr), [{
79 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
82 def X86fildflag64 : PatFrag<(ops node:$ptr), (X86fildflag node:$ptr), [{
83 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
86 def X86fist64 : PatFrag<(ops node:$val, node:$ptr),
87 (X86fist node:$val, node:$ptr), [{
88 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
91 def X86fp_to_i16mem : PatFrag<(ops node:$val, node:$ptr),
92 (X86fp_to_mem node:$val, node:$ptr), [{
93 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
95 def X86fp_to_i32mem : PatFrag<(ops node:$val, node:$ptr),
96 (X86fp_to_mem node:$val, node:$ptr), [{
97 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
99 def X86fp_to_i64mem : PatFrag<(ops node:$val, node:$ptr),
100 (X86fp_to_mem node:$val, node:$ptr), [{
101 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
104 //===----------------------------------------------------------------------===//
105 // FPStack pattern fragments
106 //===----------------------------------------------------------------------===//
108 def fpimm0 : FPImmLeaf<fAny, [{
109 return Imm.isExactlyValue(+0.0);
112 def fpimmneg0 : FPImmLeaf<fAny, [{
113 return Imm.isExactlyValue(-0.0);
116 def fpimm1 : FPImmLeaf<fAny, [{
117 return Imm.isExactlyValue(+1.0);
120 def fpimmneg1 : FPImmLeaf<fAny, [{
121 return Imm.isExactlyValue(-1.0);
124 // Some 'special' instructions - expanded after instruction selection.
125 // Clobbers EFLAGS due to OR instruction used internally.
126 // FIXME: Can we model this in SelectionDAG?
127 let usesCustomInserter = 1, hasNoSchedulingInfo = 1, Defs = [EFLAGS] in {
128 def FP32_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP32:$src),
129 [(X86fp_to_i16mem RFP32:$src, addr:$dst)]>;
130 def FP32_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP32:$src),
131 [(X86fp_to_i32mem RFP32:$src, addr:$dst)]>;
132 def FP32_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP32:$src),
133 [(X86fp_to_i64mem RFP32:$src, addr:$dst)]>;
134 def FP64_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP64:$src),
135 [(X86fp_to_i16mem RFP64:$src, addr:$dst)]>;
136 def FP64_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP64:$src),
137 [(X86fp_to_i32mem RFP64:$src, addr:$dst)]>;
138 def FP64_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP64:$src),
139 [(X86fp_to_i64mem RFP64:$src, addr:$dst)]>;
140 def FP80_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP80:$src),
141 [(X86fp_to_i16mem RFP80:$src, addr:$dst)]>;
142 def FP80_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP80:$src),
143 [(X86fp_to_i32mem RFP80:$src, addr:$dst)]>;
144 def FP80_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP80:$src),
145 [(X86fp_to_i64mem RFP80:$src, addr:$dst)]>;
148 // All FP Stack operations are represented with four instructions here. The
149 // first three instructions, generated by the instruction selector, use "RFP32"
150 // "RFP64" or "RFP80" registers: traditional register files to reference 32-bit,
151 // 64-bit or 80-bit floating point values. These sizes apply to the values,
152 // not the registers, which are always 80 bits; RFP32, RFP64 and RFP80 can be
153 // copied to each other without losing information. These instructions are all
154 // pseudo instructions and use the "_Fp" suffix.
155 // In some cases there are additional variants with a mixture of different
157 // The second instruction is defined with FPI, which is the actual instruction
158 // emitted by the assembler. These use "RST" registers, although frequently
159 // the actual register(s) used are implicit. These are always 80 bits.
160 // The FP stackifier pass converts one to the other after register allocation
163 // Note that the FpI instruction should have instruction selection info (e.g.
164 // a pattern) and the FPI instruction should have emission info (e.g. opcode
165 // encoding and asm printing info).
167 // FpIf32, FpIf64 - Floating Point Pseudo Instruction template.
168 // f32 instructions can use SSE1 and are predicated on FPStackf32 == !SSE1.
169 // f64 instructions can use SSE2 and are predicated on FPStackf64 == !SSE2.
170 // f80 instructions cannot use SSE and use neither of these.
171 class FpIf32<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
172 FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32]>;
173 class FpIf64<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
174 FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64]>;
176 // Factoring for arithmetic.
177 multiclass FPBinary_rr<SDNode OpNode> {
178 // Register op register -> register
179 // These are separated out because they have no reversed form.
180 def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), TwoArgFP,
181 [(set RFP32:$dst, (OpNode RFP32:$src1, RFP32:$src2))]>;
182 def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), TwoArgFP,
183 [(set RFP64:$dst, (OpNode RFP64:$src1, RFP64:$src2))]>;
184 def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), TwoArgFP,
185 [(set RFP80:$dst, (OpNode RFP80:$src1, RFP80:$src2))]>;
187 // The FopST0 series are not included here because of the irregularities
188 // in where the 'r' goes in assembly output.
189 // These instructions cannot address 80-bit memory.
190 multiclass FPBinary<SDNode OpNode, Format fp, string asmstring,
192 // ST(0) = ST(0) + [mem]
193 def _Fp32m : FpIf32<(outs RFP32:$dst),
194 (ins RFP32:$src1, f32mem:$src2), OneArgFPRW,
197 (OpNode RFP32:$src1, (loadf32 addr:$src2))),
199 (OpNode (loadf32 addr:$src2), RFP32:$src1)))]>;
200 def _Fp64m : FpIf64<(outs RFP64:$dst),
201 (ins RFP64:$src1, f64mem:$src2), OneArgFPRW,
204 (OpNode RFP64:$src1, (loadf64 addr:$src2))),
206 (OpNode (loadf64 addr:$src2), RFP64:$src1)))]>;
207 def _Fp64m32: FpIf64<(outs RFP64:$dst),
208 (ins RFP64:$src1, f32mem:$src2), OneArgFPRW,
211 (OpNode RFP64:$src1, (f64 (extloadf32 addr:$src2)))),
213 (OpNode (f64 (extloadf32 addr:$src2)), RFP64:$src1)))]>;
214 def _Fp80m32: FpI_<(outs RFP80:$dst),
215 (ins RFP80:$src1, f32mem:$src2), OneArgFPRW,
218 (OpNode RFP80:$src1, (f80 (extloadf32 addr:$src2)))),
220 (OpNode (f80 (extloadf32 addr:$src2)), RFP80:$src1)))]>;
221 def _Fp80m64: FpI_<(outs RFP80:$dst),
222 (ins RFP80:$src1, f64mem:$src2), OneArgFPRW,
225 (OpNode RFP80:$src1, (f80 (extloadf64 addr:$src2)))),
227 (OpNode (f80 (extloadf64 addr:$src2)), RFP80:$src1)))]>;
229 def _F32m : FPI<0xD8, fp, (outs), (ins f32mem:$src),
230 !strconcat("f", asmstring, "{s}\t$src")>;
232 def _F64m : FPI<0xDC, fp, (outs), (ins f64mem:$src),
233 !strconcat("f", asmstring, "{l}\t$src")>;
234 // ST(0) = ST(0) + [memint]
235 def _FpI16m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i16mem:$src2),
239 (OpNode RFP32:$src1, (X86fild16 addr:$src2))),
241 (OpNode (X86fild16 addr:$src2), RFP32:$src1)))]>;
242 def _FpI32m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i32mem:$src2),
246 (OpNode RFP32:$src1, (X86fild32 addr:$src2))),
248 (OpNode (X86fild32 addr:$src2), RFP32:$src1)))]>;
249 def _FpI16m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i16mem:$src2),
253 (OpNode RFP64:$src1, (X86fild16 addr:$src2))),
255 (OpNode (X86fild16 addr:$src2), RFP64:$src1)))]>;
256 def _FpI32m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i32mem:$src2),
260 (OpNode RFP64:$src1, (X86fild32 addr:$src2))),
262 (OpNode (X86fild32 addr:$src2), RFP64:$src1)))]>;
263 def _FpI16m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i16mem:$src2),
267 (OpNode RFP80:$src1, (X86fild16 addr:$src2))),
269 (OpNode (X86fild16 addr:$src2), RFP80:$src1)))]>;
270 def _FpI32m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i32mem:$src2),
274 (OpNode RFP80:$src1, (X86fild32 addr:$src2))),
276 (OpNode (X86fild32 addr:$src2), RFP80:$src1)))]>;
278 def _FI16m : FPI<0xDE, fp, (outs), (ins i16mem:$src),
279 !strconcat("fi", asmstring, "{s}\t$src")>;
281 def _FI32m : FPI<0xDA, fp, (outs), (ins i32mem:$src),
282 !strconcat("fi", asmstring, "{l}\t$src")>;
285 let Defs = [FPSW], Uses = [FPCW] in {
286 // FPBinary_rr just defines pseudo-instructions, no need to set a scheduling
288 let hasNoSchedulingInfo = 1 in {
289 defm ADD : FPBinary_rr<fadd>;
290 defm SUB : FPBinary_rr<fsub>;
291 defm MUL : FPBinary_rr<fmul>;
292 defm DIV : FPBinary_rr<fdiv>;
295 // Sets the scheduling resources for the actual NAME#_F<size>m defintions.
296 let SchedRW = [WriteFAddLd] in {
297 defm ADD : FPBinary<fadd, MRM0m, "add">;
298 defm SUB : FPBinary<fsub, MRM4m, "sub">;
299 defm SUBR: FPBinary<fsub ,MRM5m, "subr", 0>;
302 let SchedRW = [WriteFMulLd] in {
303 defm MUL : FPBinary<fmul, MRM1m, "mul">;
306 let SchedRW = [WriteFDivLd] in {
307 defm DIV : FPBinary<fdiv, MRM6m, "div">;
308 defm DIVR: FPBinary<fdiv, MRM7m, "divr", 0>;
312 class FPST0rInst<Format fp, string asm>
313 : FPI<0xD8, fp, (outs), (ins RSTi:$op), asm>;
314 class FPrST0Inst<Format fp, string asm>
315 : FPI<0xDC, fp, (outs), (ins RSTi:$op), asm>;
316 class FPrST0PInst<Format fp, string asm>
317 : FPI<0xDE, fp, (outs), (ins RSTi:$op), asm>;
319 // NOTE: GAS and apparently all other AT&T style assemblers have a broken notion
320 // of some of the 'reverse' forms of the fsub and fdiv instructions. As such,
321 // we have to put some 'r's in and take them out of weird places.
322 let SchedRW = [WriteFAdd], Defs = [FPSW], Uses = [FPCW] in {
323 def ADD_FST0r : FPST0rInst <MRM0r, "fadd\t{$op, %st|st, $op}">;
324 def ADD_FrST0 : FPrST0Inst <MRM0r, "fadd\t{%st, $op|$op, st}">;
325 def ADD_FPrST0 : FPrST0PInst<MRM0r, "faddp\t{%st, $op|$op, st}">;
326 def SUBR_FST0r : FPST0rInst <MRM5r, "fsubr\t{$op, %st|st, $op}">;
327 def SUB_FrST0 : FPrST0Inst <MRM5r, "fsub{r}\t{%st, $op|$op, st}">;
328 def SUB_FPrST0 : FPrST0PInst<MRM5r, "fsub{r}p\t{%st, $op|$op, st}">;
329 def SUB_FST0r : FPST0rInst <MRM4r, "fsub\t{$op, %st|st, $op}">;
330 def SUBR_FrST0 : FPrST0Inst <MRM4r, "fsub{|r}\t{%st, $op|$op, st}">;
331 def SUBR_FPrST0 : FPrST0PInst<MRM4r, "fsub{|r}p\t{%st, $op|$op, st}">;
333 let SchedRW = [WriteFCom], Defs = [FPSW], Uses = [FPCW] in {
334 def COM_FST0r : FPST0rInst <MRM2r, "fcom\t$op">;
335 def COMP_FST0r : FPST0rInst <MRM3r, "fcomp\t$op">;
337 let SchedRW = [WriteFMul], Defs = [FPSW], Uses = [FPCW] in {
338 def MUL_FST0r : FPST0rInst <MRM1r, "fmul\t{$op, %st|st, $op}">;
339 def MUL_FrST0 : FPrST0Inst <MRM1r, "fmul\t{%st, $op|$op, st}">;
340 def MUL_FPrST0 : FPrST0PInst<MRM1r, "fmulp\t{%st, $op|$op, st}">;
342 let SchedRW = [WriteFDiv], Defs = [FPSW], Uses = [FPCW] in {
343 def DIVR_FST0r : FPST0rInst <MRM7r, "fdivr\t{$op, %st|st, $op}">;
344 def DIV_FrST0 : FPrST0Inst <MRM7r, "fdiv{r}\t{%st, $op|$op, st}">;
345 def DIV_FPrST0 : FPrST0PInst<MRM7r, "fdiv{r}p\t{%st, $op|$op, st}">;
346 def DIV_FST0r : FPST0rInst <MRM6r, "fdiv\t{$op, %st|st, $op}">;
347 def DIVR_FrST0 : FPrST0Inst <MRM6r, "fdiv{|r}\t{%st, $op|$op, st}">;
348 def DIVR_FPrST0 : FPrST0PInst<MRM6r, "fdiv{|r}p\t{%st, $op|$op, st}">;
352 multiclass FPUnary<SDNode OpNode, Format fp, string asmstring> {
353 def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), OneArgFPRW,
354 [(set RFP32:$dst, (OpNode RFP32:$src))]>;
355 def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), OneArgFPRW,
356 [(set RFP64:$dst, (OpNode RFP64:$src))]>;
357 def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src), OneArgFPRW,
358 [(set RFP80:$dst, (OpNode RFP80:$src))]>;
359 def _F : FPI<0xD9, fp, (outs), (ins), asmstring>;
362 let Defs = [FPSW], Uses = [FPCW] in {
364 let SchedRW = [WriteFSign] in {
365 defm CHS : FPUnary<fneg, MRM_E0, "fchs">;
366 defm ABS : FPUnary<fabs, MRM_E1, "fabs">;
369 let SchedRW = [WriteFSqrt80] in
370 defm SQRT: FPUnary<fsqrt,MRM_FA, "fsqrt">;
372 let SchedRW = [WriteMicrocoded] in {
373 defm SIN : FPUnary<fsin, MRM_FE, "fsin">;
374 defm COS : FPUnary<fcos, MRM_FF, "fcos">;
377 let SchedRW = [WriteFCom] in {
378 let hasSideEffects = 0 in {
379 def TST_Fp32 : FpIf32<(outs), (ins RFP32:$src), OneArgFP, []>;
380 def TST_Fp64 : FpIf64<(outs), (ins RFP64:$src), OneArgFP, []>;
381 def TST_Fp80 : FpI_<(outs), (ins RFP80:$src), OneArgFP, []>;
384 def TST_F : FPI<0xD9, MRM_E4, (outs), (ins), "ftst">;
388 // Versions of FP instructions that take a single memory operand. Added for the
389 // disassembler; remove as they are included with patterns elsewhere.
390 let SchedRW = [WriteFComLd], Defs = [FPSW], Uses = [FPCW] in {
391 def FCOM32m : FPI<0xD8, MRM2m, (outs), (ins f32mem:$src), "fcom{s}\t$src">;
392 def FCOMP32m : FPI<0xD8, MRM3m, (outs), (ins f32mem:$src), "fcomp{s}\t$src">;
394 def FCOM64m : FPI<0xDC, MRM2m, (outs), (ins f64mem:$src), "fcom{l}\t$src">;
395 def FCOMP64m : FPI<0xDC, MRM3m, (outs), (ins f64mem:$src), "fcomp{l}\t$src">;
397 def FICOM16m : FPI<0xDE, MRM2m, (outs), (ins i16mem:$src), "ficom{s}\t$src">;
398 def FICOMP16m: FPI<0xDE, MRM3m, (outs), (ins i16mem:$src), "ficomp{s}\t$src">;
400 def FICOM32m : FPI<0xDA, MRM2m, (outs), (ins i32mem:$src), "ficom{l}\t$src">;
401 def FICOMP32m: FPI<0xDA, MRM3m, (outs), (ins i32mem:$src), "ficomp{l}\t$src">;
404 let SchedRW = [WriteMicrocoded] in {
405 def FLDENVm : FPI<0xD9, MRM4m, (outs), (ins f32mem:$src), "fldenv\t$src">;
406 def FSTENVm : FPI<0xD9, MRM6m, (outs), (ins f32mem:$dst), "fnstenv\t$dst">;
408 def FRSTORm : FPI<0xDD, MRM4m, (outs), (ins f32mem:$dst), "frstor\t$dst">;
409 def FSAVEm : FPI<0xDD, MRM6m, (outs), (ins f32mem:$dst), "fnsave\t$dst">;
410 def FNSTSWm : FPI<0xDD, MRM7m, (outs), (ins i16mem:$dst), "fnstsw\t$dst">;
412 def FBLDm : FPI<0xDF, MRM4m, (outs), (ins f80mem:$src), "fbld\t$src">;
413 def FBSTPm : FPI<0xDF, MRM6m, (outs), (ins f80mem:$dst), "fbstp\t$dst">;
416 // Floating point cmovs.
417 class FpIf32CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
418 FpI_<outs, ins, fp, pattern>, Requires<[FPStackf32, HasCMov]>;
419 class FpIf64CMov<dag outs, dag ins, FPFormat fp, list<dag> pattern> :
420 FpI_<outs, ins, fp, pattern>, Requires<[FPStackf64, HasCMov]>;
422 multiclass FPCMov<PatLeaf cc> {
423 def _Fp32 : FpIf32CMov<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2),
425 [(set RFP32:$dst, (X86cmov RFP32:$src1, RFP32:$src2,
427 def _Fp64 : FpIf64CMov<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2),
429 [(set RFP64:$dst, (X86cmov RFP64:$src1, RFP64:$src2,
431 def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2),
433 [(set RFP80:$dst, (X86cmov RFP80:$src1, RFP80:$src2,
438 let Defs = [FPSW] in {
439 let SchedRW = [WriteFCMOV] in {
440 let Uses = [EFLAGS], Constraints = "$src1 = $dst" in {
441 defm CMOVB : FPCMov<X86_COND_B>;
442 defm CMOVBE : FPCMov<X86_COND_BE>;
443 defm CMOVE : FPCMov<X86_COND_E>;
444 defm CMOVP : FPCMov<X86_COND_P>;
445 defm CMOVNB : FPCMov<X86_COND_AE>;
446 defm CMOVNBE: FPCMov<X86_COND_A>;
447 defm CMOVNE : FPCMov<X86_COND_NE>;
448 defm CMOVNP : FPCMov<X86_COND_NP>;
449 } // Uses = [EFLAGS], Constraints = "$src1 = $dst"
451 let Predicates = [HasCMov] in {
452 // These are not factored because there's no clean way to pass DA/DB.
453 def CMOVB_F : FPI<0xDA, MRM0r, (outs), (ins RSTi:$op),
454 "fcmovb\t{$op, %st|st, $op}">;
455 def CMOVBE_F : FPI<0xDA, MRM2r, (outs), (ins RSTi:$op),
456 "fcmovbe\t{$op, %st|st, $op}">;
457 def CMOVE_F : FPI<0xDA, MRM1r, (outs), (ins RSTi:$op),
458 "fcmove\t{$op, %st|st, $op}">;
459 def CMOVP_F : FPI<0xDA, MRM3r, (outs), (ins RSTi:$op),
460 "fcmovu\t{$op, %st|st, $op}">;
461 def CMOVNB_F : FPI<0xDB, MRM0r, (outs), (ins RSTi:$op),
462 "fcmovnb\t{$op, %st|st, $op}">;
463 def CMOVNBE_F: FPI<0xDB, MRM2r, (outs), (ins RSTi:$op),
464 "fcmovnbe\t{$op, %st|st, $op}">;
465 def CMOVNE_F : FPI<0xDB, MRM1r, (outs), (ins RSTi:$op),
466 "fcmovne\t{$op, %st|st, $op}">;
467 def CMOVNP_F : FPI<0xDB, MRM3r, (outs), (ins RSTi:$op),
468 "fcmovnu\t{$op, %st|st, $op}">;
469 } // Predicates = [HasCMov]
472 // Floating point loads & stores.
473 let SchedRW = [WriteLoad], Uses = [FPCW] in {
474 let canFoldAsLoad = 1 in {
475 def LD_Fp32m : FpIf32<(outs RFP32:$dst), (ins f32mem:$src), ZeroArgFP,
476 [(set RFP32:$dst, (loadf32 addr:$src))]>;
477 def LD_Fp64m : FpIf64<(outs RFP64:$dst), (ins f64mem:$src), ZeroArgFP,
478 [(set RFP64:$dst, (loadf64 addr:$src))]>;
479 def LD_Fp80m : FpI_<(outs RFP80:$dst), (ins f80mem:$src), ZeroArgFP,
480 [(set RFP80:$dst, (loadf80 addr:$src))]>;
482 def LD_Fp32m64 : FpIf64<(outs RFP64:$dst), (ins f32mem:$src), ZeroArgFP,
483 [(set RFP64:$dst, (f64 (extloadf32 addr:$src)))]>;
484 def LD_Fp64m80 : FpI_<(outs RFP80:$dst), (ins f64mem:$src), ZeroArgFP,
485 [(set RFP80:$dst, (f80 (extloadf64 addr:$src)))]>;
486 def LD_Fp32m80 : FpI_<(outs RFP80:$dst), (ins f32mem:$src), ZeroArgFP,
487 [(set RFP80:$dst, (f80 (extloadf32 addr:$src)))]>;
488 def ILD_Fp16m32: FpIf32<(outs RFP32:$dst), (ins i16mem:$src), ZeroArgFP,
489 [(set RFP32:$dst, (X86fild16 addr:$src))]>;
490 def ILD_Fp32m32: FpIf32<(outs RFP32:$dst), (ins i32mem:$src), ZeroArgFP,
491 [(set RFP32:$dst, (X86fild32 addr:$src))]>;
492 def ILD_Fp64m32: FpIf32<(outs RFP32:$dst), (ins i64mem:$src), ZeroArgFP,
493 [(set RFP32:$dst, (X86fild64 addr:$src))]>;
494 def ILD_Fp16m64: FpIf64<(outs RFP64:$dst), (ins i16mem:$src), ZeroArgFP,
495 [(set RFP64:$dst, (X86fild16 addr:$src))]>;
496 def ILD_Fp32m64: FpIf64<(outs RFP64:$dst), (ins i32mem:$src), ZeroArgFP,
497 [(set RFP64:$dst, (X86fild32 addr:$src))]>;
498 def ILD_Fp64m64: FpIf64<(outs RFP64:$dst), (ins i64mem:$src), ZeroArgFP,
499 [(set RFP64:$dst, (X86fild64 addr:$src))]>;
500 def ILD_Fp16m80: FpI_<(outs RFP80:$dst), (ins i16mem:$src), ZeroArgFP,
501 [(set RFP80:$dst, (X86fild16 addr:$src))]>;
502 def ILD_Fp32m80: FpI_<(outs RFP80:$dst), (ins i32mem:$src), ZeroArgFP,
503 [(set RFP80:$dst, (X86fild32 addr:$src))]>;
504 def ILD_Fp64m80: FpI_<(outs RFP80:$dst), (ins i64mem:$src), ZeroArgFP,
505 [(set RFP80:$dst, (X86fild64 addr:$src))]>;
508 let SchedRW = [WriteStore], Uses = [FPCW] in {
509 def ST_Fp32m : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP,
510 [(store RFP32:$src, addr:$op)]>;
511 def ST_Fp64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP,
512 [(truncstoref32 RFP64:$src, addr:$op)]>;
513 def ST_Fp64m : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP,
514 [(store RFP64:$src, addr:$op)]>;
515 def ST_Fp80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP,
516 [(truncstoref32 RFP80:$src, addr:$op)]>;
517 def ST_Fp80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP,
518 [(truncstoref64 RFP80:$src, addr:$op)]>;
519 // FST does not support 80-bit memory target; FSTP must be used.
521 let mayStore = 1, hasSideEffects = 0 in {
522 def ST_FpP32m : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, []>;
523 def ST_FpP64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, []>;
524 def ST_FpP64m : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, []>;
525 def ST_FpP80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, []>;
526 def ST_FpP80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, []>;
529 def ST_FpP80m : FpI_<(outs), (ins f80mem:$op, RFP80:$src), OneArgFP,
530 [(store RFP80:$src, addr:$op)]>;
532 let mayStore = 1, hasSideEffects = 0 in {
533 def IST_Fp16m32 : FpIf32<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, []>;
534 def IST_Fp32m32 : FpIf32<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP, []>;
535 def IST_Fp64m32 : FpIf32<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP, []>;
536 def IST_Fp16m64 : FpIf64<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, []>;
537 def IST_Fp32m64 : FpIf64<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP, []>;
538 def IST_Fp64m64 : FpIf64<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP, []>;
539 def IST_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, []>;
540 def IST_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP, []>;
541 def IST_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP, []>;
543 } // SchedRW, Uses = [FPCW]
545 let mayLoad = 1, SchedRW = [WriteLoad], Uses = [FPCW] in {
546 def LD_F32m : FPI<0xD9, MRM0m, (outs), (ins f32mem:$src), "fld{s}\t$src">;
547 def LD_F64m : FPI<0xDD, MRM0m, (outs), (ins f64mem:$src), "fld{l}\t$src">;
548 def LD_F80m : FPI<0xDB, MRM5m, (outs), (ins f80mem:$src), "fld{t}\t$src">;
549 def ILD_F16m : FPI<0xDF, MRM0m, (outs), (ins i16mem:$src), "fild{s}\t$src">;
550 def ILD_F32m : FPI<0xDB, MRM0m, (outs), (ins i32mem:$src), "fild{l}\t$src">;
551 def ILD_F64m : FPI<0xDF, MRM5m, (outs), (ins i64mem:$src), "fild{ll}\t$src">;
553 let mayStore = 1, SchedRW = [WriteStore], Uses = [FPCW] in {
554 def ST_F32m : FPI<0xD9, MRM2m, (outs), (ins f32mem:$dst), "fst{s}\t$dst">;
555 def ST_F64m : FPI<0xDD, MRM2m, (outs), (ins f64mem:$dst), "fst{l}\t$dst">;
556 def ST_FP32m : FPI<0xD9, MRM3m, (outs), (ins f32mem:$dst), "fstp{s}\t$dst">;
557 def ST_FP64m : FPI<0xDD, MRM3m, (outs), (ins f64mem:$dst), "fstp{l}\t$dst">;
558 def ST_FP80m : FPI<0xDB, MRM7m, (outs), (ins f80mem:$dst), "fstp{t}\t$dst">;
559 def IST_F16m : FPI<0xDF, MRM2m, (outs), (ins i16mem:$dst), "fist{s}\t$dst">;
560 def IST_F32m : FPI<0xDB, MRM2m, (outs), (ins i32mem:$dst), "fist{l}\t$dst">;
561 def IST_FP16m : FPI<0xDF, MRM3m, (outs), (ins i16mem:$dst), "fistp{s}\t$dst">;
562 def IST_FP32m : FPI<0xDB, MRM3m, (outs), (ins i32mem:$dst), "fistp{l}\t$dst">;
563 def IST_FP64m : FPI<0xDF, MRM7m, (outs), (ins i64mem:$dst), "fistp{ll}\t$dst">;
566 // FISTTP requires SSE3 even though it's a FPStack op.
567 let Predicates = [HasSSE3], SchedRW = [WriteStore], Uses = [FPCW] in {
568 def ISTT_Fp16m32 : FpI_<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP,
569 [(X86fp_to_i16mem RFP32:$src, addr:$op)]>;
570 def ISTT_Fp32m32 : FpI_<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP,
571 [(X86fp_to_i32mem RFP32:$src, addr:$op)]>;
572 def ISTT_Fp64m32 : FpI_<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP,
573 [(X86fp_to_i64mem RFP32:$src, addr:$op)]>;
574 def ISTT_Fp16m64 : FpI_<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP,
575 [(X86fp_to_i16mem RFP64:$src, addr:$op)]>;
576 def ISTT_Fp32m64 : FpI_<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP,
577 [(X86fp_to_i32mem RFP64:$src, addr:$op)]>;
578 def ISTT_Fp64m64 : FpI_<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP,
579 [(X86fp_to_i64mem RFP64:$src, addr:$op)]>;
580 def ISTT_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP,
581 [(X86fp_to_i16mem RFP80:$src, addr:$op)]>;
582 def ISTT_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP,
583 [(X86fp_to_i32mem RFP80:$src, addr:$op)]>;
584 def ISTT_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP,
585 [(X86fp_to_i64mem RFP80:$src, addr:$op)]>;
586 } // Predicates = [HasSSE3]
588 let mayStore = 1, SchedRW = [WriteStore], Uses = [FPCW] in {
589 def ISTT_FP16m : FPI<0xDF, MRM1m, (outs), (ins i16mem:$dst), "fisttp{s}\t$dst">;
590 def ISTT_FP32m : FPI<0xDB, MRM1m, (outs), (ins i32mem:$dst), "fisttp{l}\t$dst">;
591 def ISTT_FP64m : FPI<0xDD, MRM1m, (outs), (ins i64mem:$dst), "fisttp{ll}\t$dst">;
594 // FP Stack manipulation instructions.
595 let SchedRW = [WriteMove], Uses = [FPCW] in {
596 def LD_Frr : FPI<0xD9, MRM0r, (outs), (ins RSTi:$op), "fld\t$op">;
597 def ST_Frr : FPI<0xDD, MRM2r, (outs), (ins RSTi:$op), "fst\t$op">;
598 def ST_FPrr : FPI<0xDD, MRM3r, (outs), (ins RSTi:$op), "fstp\t$op">;
599 def XCH_F : FPI<0xD9, MRM1r, (outs), (ins RSTi:$op), "fxch\t$op">;
602 // Floating point constant loads.
603 let SchedRW = [WriteZero], Uses = [FPCW] in {
604 def LD_Fp032 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
605 [(set RFP32:$dst, fpimm0)]>;
606 def LD_Fp132 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP,
607 [(set RFP32:$dst, fpimm1)]>;
608 def LD_Fp064 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
609 [(set RFP64:$dst, fpimm0)]>;
610 def LD_Fp164 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP,
611 [(set RFP64:$dst, fpimm1)]>;
612 def LD_Fp080 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
613 [(set RFP80:$dst, fpimm0)]>;
614 def LD_Fp180 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP,
615 [(set RFP80:$dst, fpimm1)]>;
618 let SchedRW = [WriteFLD0], Uses = [FPCW] in
619 def LD_F0 : FPI<0xD9, MRM_EE, (outs), (ins), "fldz">;
621 let SchedRW = [WriteFLD1], Uses = [FPCW] in
622 def LD_F1 : FPI<0xD9, MRM_E8, (outs), (ins), "fld1">;
624 let SchedRW = [WriteFLDC], Uses = [FPCW] in {
625 def FLDL2T : I<0xD9, MRM_E9, (outs), (ins), "fldl2t", []>;
626 def FLDL2E : I<0xD9, MRM_EA, (outs), (ins), "fldl2e", []>;
627 def FLDPI : I<0xD9, MRM_EB, (outs), (ins), "fldpi", []>;
628 def FLDLG2 : I<0xD9, MRM_EC, (outs), (ins), "fldlg2", []>;
629 def FLDLN2 : I<0xD9, MRM_ED, (outs), (ins), "fldln2", []>;
632 // Floating point compares.
633 let SchedRW = [WriteFCom], Uses = [FPCW] in {
634 def UCOM_Fpr32 : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
635 [(set FPSW, (trunc (X86cmp RFP32:$lhs, RFP32:$rhs)))]>;
636 def UCOM_Fpr64 : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
637 [(set FPSW, (trunc (X86cmp RFP64:$lhs, RFP64:$rhs)))]>;
638 def UCOM_Fpr80 : FpI_ <(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
639 [(set FPSW, (trunc (X86cmp RFP80:$lhs, RFP80:$rhs)))]>;
643 let SchedRW = [WriteFCom] in {
644 // CC = ST(0) cmp ST(i)
645 let Defs = [EFLAGS, FPSW], Uses = [FPCW] in {
646 def UCOM_FpIr32: FpI_<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP,
647 [(set EFLAGS, (X86cmp RFP32:$lhs, RFP32:$rhs))]>,
648 Requires<[FPStackf32, HasCMov]>;
649 def UCOM_FpIr64: FpI_<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP,
650 [(set EFLAGS, (X86cmp RFP64:$lhs, RFP64:$rhs))]>,
651 Requires<[FPStackf64, HasCMov]>;
652 def UCOM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP,
653 [(set EFLAGS, (X86cmp RFP80:$lhs, RFP80:$rhs))]>,
657 let Defs = [FPSW], Uses = [ST0, FPCW] in {
658 def UCOM_Fr : FPI<0xDD, MRM4r, // FPSW = cmp ST(0) with ST(i)
659 (outs), (ins RSTi:$reg), "fucom\t$reg">;
660 def UCOM_FPr : FPI<0xDD, MRM5r, // FPSW = cmp ST(0) with ST(i), pop
661 (outs), (ins RSTi:$reg), "fucomp\t$reg">;
662 def UCOM_FPPr : FPI<0xDA, MRM_E9, // cmp ST(0) with ST(1), pop, pop
663 (outs), (ins), "fucompp">;
666 let Defs = [EFLAGS, FPSW], Uses = [ST0, FPCW] in {
667 def UCOM_FIr : FPI<0xDB, MRM5r, // CC = cmp ST(0) with ST(i)
668 (outs), (ins RSTi:$reg), "fucomi\t{$reg, %st|st, $reg}">;
669 def UCOM_FIPr : FPI<0xDF, MRM5r, // CC = cmp ST(0) with ST(i), pop
670 (outs), (ins RSTi:$reg), "fucompi\t{$reg, %st|st, $reg}">;
672 def COM_FIr : FPI<0xDB, MRM6r, (outs), (ins RSTi:$reg),
673 "fcomi\t{$reg, %st|st, $reg}">;
674 def COM_FIPr : FPI<0xDF, MRM6r, (outs), (ins RSTi:$reg),
675 "fcompi\t{$reg, %st|st, $reg}">;
679 // Floating point flag ops.
680 let SchedRW = [WriteALU] in {
681 let Defs = [AX], Uses = [FPSW] in
682 def FNSTSW16r : I<0xDF, MRM_E0, // AX = fp flags
683 (outs), (ins), "fnstsw\t{%ax|ax}",
684 [(set AX, (X86fp_stsw FPSW))]>;
685 let Defs = [FPSW], Uses = [FPCW] in
686 def FNSTCW16m : I<0xD9, MRM7m, // [mem16] = X87 control world
687 (outs), (ins i16mem:$dst), "fnstcw\t$dst",
688 [(X86fp_cwd_get16 addr:$dst)]>;
690 let Defs = [FPSW,FPCW], mayLoad = 1 in
691 def FLDCW16m : I<0xD9, MRM5m, // X87 control world = [mem16]
692 (outs), (ins i16mem:$dst), "fldcw\t$dst", []>,
695 // FPU control instructions
696 let SchedRW = [WriteMicrocoded] in {
697 let Defs = [FPSW] in {
698 def FNINIT : I<0xDB, MRM_E3, (outs), (ins), "fninit", []>;
699 def FFREE : FPI<0xDD, MRM0r, (outs), (ins RSTi:$reg), "ffree\t$reg">;
700 def FFREEP : FPI<0xDF, MRM0r, (outs), (ins RSTi:$reg), "ffreep\t$reg">;
703 def FNCLEX : I<0xDB, MRM_E2, (outs), (ins), "fnclex", []>;
707 // Operand-less floating-point instructions for the disassembler.
708 def FNOP : I<0xD9, MRM_D0, (outs), (ins), "fnop", []>, Sched<[WriteNop]>;
710 let SchedRW = [WriteMicrocoded] in {
711 let Defs = [FPSW] in {
712 def WAIT : I<0x9B, RawFrm, (outs), (ins), "wait", []>;
713 def FXAM : I<0xD9, MRM_E5, (outs), (ins), "fxam", []>;
714 def F2XM1 : I<0xD9, MRM_F0, (outs), (ins), "f2xm1", []>;
715 def FYL2X : I<0xD9, MRM_F1, (outs), (ins), "fyl2x", []>;
716 def FPTAN : I<0xD9, MRM_F2, (outs), (ins), "fptan", []>;
717 def FPATAN : I<0xD9, MRM_F3, (outs), (ins), "fpatan", []>;
718 def FXTRACT : I<0xD9, MRM_F4, (outs), (ins), "fxtract", []>;
719 def FPREM1 : I<0xD9, MRM_F5, (outs), (ins), "fprem1", []>;
720 def FDECSTP : I<0xD9, MRM_F6, (outs), (ins), "fdecstp", []>;
721 def FINCSTP : I<0xD9, MRM_F7, (outs), (ins), "fincstp", []>;
722 def FPREM : I<0xD9, MRM_F8, (outs), (ins), "fprem", []>;
723 def FYL2XP1 : I<0xD9, MRM_F9, (outs), (ins), "fyl2xp1", []>;
724 def FSINCOS : I<0xD9, MRM_FB, (outs), (ins), "fsincos", []>;
725 def FRNDINT : I<0xD9, MRM_FC, (outs), (ins), "frndint", []>;
726 def FSCALE : I<0xD9, MRM_FD, (outs), (ins), "fscale", []>;
727 def FCOMPP : I<0xDE, MRM_D9, (outs), (ins), "fcompp", []>;
730 def FXSAVE : I<0xAE, MRM0m, (outs), (ins opaquemem:$dst),
731 "fxsave\t$dst", [(int_x86_fxsave addr:$dst)]>, TB,
733 def FXSAVE64 : RI<0xAE, MRM0m, (outs), (ins opaquemem:$dst),
734 "fxsave64\t$dst", [(int_x86_fxsave64 addr:$dst)]>,
735 TB, Requires<[HasFXSR, In64BitMode]>;
736 def FXRSTOR : I<0xAE, MRM1m, (outs), (ins opaquemem:$src),
737 "fxrstor\t$src", [(int_x86_fxrstor addr:$src)]>,
738 TB, Requires<[HasFXSR]>;
739 def FXRSTOR64 : RI<0xAE, MRM1m, (outs), (ins opaquemem:$src),
740 "fxrstor64\t$src", [(int_x86_fxrstor64 addr:$src)]>,
741 TB, Requires<[HasFXSR, In64BitMode]>;
744 //===----------------------------------------------------------------------===//
745 // Non-Instruction Patterns
746 //===----------------------------------------------------------------------===//
748 // Required for RET of f32 / f64 / f80 values.
749 def : Pat<(X86fldf32 addr:$src), (LD_Fp32m addr:$src)>;
750 def : Pat<(X86fldf64 addr:$src), (LD_Fp64m addr:$src)>;
751 def : Pat<(X86fldf80 addr:$src), (LD_Fp80m addr:$src)>;
753 // Required for CALL which return f32 / f64 / f80 values.
754 def : Pat<(X86fstf32 RFP32:$src, addr:$op), (ST_Fp32m addr:$op, RFP32:$src)>;
755 def : Pat<(X86fstf32 RFP64:$src, addr:$op), (ST_Fp64m32 addr:$op, RFP64:$src)>;
756 def : Pat<(X86fstf64 RFP64:$src, addr:$op), (ST_Fp64m addr:$op, RFP64:$src)>;
757 def : Pat<(X86fstf32 RFP80:$src, addr:$op), (ST_Fp80m32 addr:$op, RFP80:$src)>;
758 def : Pat<(X86fstf64 RFP80:$src, addr:$op), (ST_Fp80m64 addr:$op, RFP80:$src)>;
759 def : Pat<(X86fstf80 RFP80:$src, addr:$op), (ST_FpP80m addr:$op, RFP80:$src)>;
761 // Floating point constant -0.0 and -1.0
762 def : Pat<(f32 fpimmneg0), (CHS_Fp32 (LD_Fp032))>, Requires<[FPStackf32]>;
763 def : Pat<(f32 fpimmneg1), (CHS_Fp32 (LD_Fp132))>, Requires<[FPStackf32]>;
764 def : Pat<(f64 fpimmneg0), (CHS_Fp64 (LD_Fp064))>, Requires<[FPStackf64]>;
765 def : Pat<(f64 fpimmneg1), (CHS_Fp64 (LD_Fp164))>, Requires<[FPStackf64]>;
766 def : Pat<(f80 fpimmneg0), (CHS_Fp80 (LD_Fp080))>;
767 def : Pat<(f80 fpimmneg1), (CHS_Fp80 (LD_Fp180))>;
769 // Used to conv. i64 to f64 since there isn't a SSE version.
770 def : Pat<(X86fildflag64 addr:$src), (ILD_Fp64m64 addr:$src)>;
772 // Used to conv. between f80 and i64 for i64 atomic loads.
773 def : Pat<(X86fildflag64 addr:$src), (ILD_Fp64m80 addr:$src)>;
774 def : Pat<(X86fist64 RFP80:$src, addr:$op), (IST_Fp64m80 addr:$op, RFP80:$src)>;
776 // FP extensions map onto simple pseudo-value conversions if they are to/from
778 def : Pat<(f64 (fpextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP64)>,
779 Requires<[FPStackf32]>;
780 def : Pat<(f80 (fpextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP80)>,
781 Requires<[FPStackf32]>;
782 def : Pat<(f80 (fpextend RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP80)>,
783 Requires<[FPStackf64]>;
785 // FP truncations map onto simple pseudo-value conversions if they are to/from
786 // the FP stack. We have validated that only value-preserving truncations make
788 def : Pat<(f32 (fpround RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP32)>,
789 Requires<[FPStackf32]>;
790 def : Pat<(f32 (fpround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP32)>,
791 Requires<[FPStackf32]>;
792 def : Pat<(f64 (fpround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP64)>,
793 Requires<[FPStackf64]>;