[ARM] More MVE compare vector splat combines for ANDs
[llvm-complete.git] / lib / Analysis / DependenceAnalysis.cpp
blob75f269e84f9dcf0ea41b1e9422c6411a33550133
1 //===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // DependenceAnalysis is an LLVM pass that analyses dependences between memory
10 // accesses. Currently, it is an (incomplete) implementation of the approach
11 // described in
13 // Practical Dependence Testing
14 // Goff, Kennedy, Tseng
15 // PLDI 1991
17 // There's a single entry point that analyzes the dependence between a pair
18 // of memory references in a function, returning either NULL, for no dependence,
19 // or a more-or-less detailed description of the dependence between them.
21 // Currently, the implementation cannot propagate constraints between
22 // coupled RDIV subscripts and lacks a multi-subscript MIV test.
23 // Both of these are conservative weaknesses;
24 // that is, not a source of correctness problems.
26 // Since Clang linearizes some array subscripts, the dependence
27 // analysis is using SCEV->delinearize to recover the representation of multiple
28 // subscripts, and thus avoid the more expensive and less precise MIV tests. The
29 // delinearization is controlled by the flag -da-delinearize.
31 // We should pay some careful attention to the possibility of integer overflow
32 // in the implementation of the various tests. This could happen with Add,
33 // Subtract, or Multiply, with both APInt's and SCEV's.
35 // Some non-linear subscript pairs can be handled by the GCD test
36 // (and perhaps other tests).
37 // Should explore how often these things occur.
39 // Finally, it seems like certain test cases expose weaknesses in the SCEV
40 // simplification, especially in the handling of sign and zero extensions.
41 // It could be useful to spend time exploring these.
43 // Please note that this is work in progress and the interface is subject to
44 // change.
46 //===----------------------------------------------------------------------===//
47 // //
48 // In memory of Ken Kennedy, 1945 - 2007 //
49 // //
50 //===----------------------------------------------------------------------===//
52 #include "llvm/Analysis/DependenceAnalysis.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/Statistic.h"
55 #include "llvm/Analysis/AliasAnalysis.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/ScalarEvolution.h"
58 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
59 #include "llvm/Analysis/ValueTracking.h"
60 #include "llvm/Config/llvm-config.h"
61 #include "llvm/IR/InstIterator.h"
62 #include "llvm/IR/Module.h"
63 #include "llvm/IR/Operator.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/raw_ostream.h"
69 using namespace llvm;
71 #define DEBUG_TYPE "da"
73 //===----------------------------------------------------------------------===//
74 // statistics
76 STATISTIC(TotalArrayPairs, "Array pairs tested");
77 STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs");
78 STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs");
79 STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs");
80 STATISTIC(ZIVapplications, "ZIV applications");
81 STATISTIC(ZIVindependence, "ZIV independence");
82 STATISTIC(StrongSIVapplications, "Strong SIV applications");
83 STATISTIC(StrongSIVsuccesses, "Strong SIV successes");
84 STATISTIC(StrongSIVindependence, "Strong SIV independence");
85 STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications");
86 STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes");
87 STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence");
88 STATISTIC(ExactSIVapplications, "Exact SIV applications");
89 STATISTIC(ExactSIVsuccesses, "Exact SIV successes");
90 STATISTIC(ExactSIVindependence, "Exact SIV independence");
91 STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications");
92 STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes");
93 STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence");
94 STATISTIC(ExactRDIVapplications, "Exact RDIV applications");
95 STATISTIC(ExactRDIVindependence, "Exact RDIV independence");
96 STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications");
97 STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence");
98 STATISTIC(DeltaApplications, "Delta applications");
99 STATISTIC(DeltaSuccesses, "Delta successes");
100 STATISTIC(DeltaIndependence, "Delta independence");
101 STATISTIC(DeltaPropagations, "Delta propagations");
102 STATISTIC(GCDapplications, "GCD applications");
103 STATISTIC(GCDsuccesses, "GCD successes");
104 STATISTIC(GCDindependence, "GCD independence");
105 STATISTIC(BanerjeeApplications, "Banerjee applications");
106 STATISTIC(BanerjeeIndependence, "Banerjee independence");
107 STATISTIC(BanerjeeSuccesses, "Banerjee successes");
109 static cl::opt<bool>
110 Delinearize("da-delinearize", cl::init(true), cl::Hidden, cl::ZeroOrMore,
111 cl::desc("Try to delinearize array references."));
112 static cl::opt<bool> DisableDelinearizationChecks(
113 "da-disable-delinearization-checks", cl::init(false), cl::Hidden,
114 cl::ZeroOrMore,
115 cl::desc(
116 "Disable checks that try to statically verify validity of "
117 "delinearized subscripts. Enabling this option may result in incorrect "
118 "dependence vectors for languages that allow the subscript of one "
119 "dimension to underflow or overflow into another dimension."));
121 //===----------------------------------------------------------------------===//
122 // basics
124 DependenceAnalysis::Result
125 DependenceAnalysis::run(Function &F, FunctionAnalysisManager &FAM) {
126 auto &AA = FAM.getResult<AAManager>(F);
127 auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
128 auto &LI = FAM.getResult<LoopAnalysis>(F);
129 return DependenceInfo(&F, &AA, &SE, &LI);
132 AnalysisKey DependenceAnalysis::Key;
134 INITIALIZE_PASS_BEGIN(DependenceAnalysisWrapperPass, "da",
135 "Dependence Analysis", true, true)
136 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
137 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
138 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
139 INITIALIZE_PASS_END(DependenceAnalysisWrapperPass, "da", "Dependence Analysis",
140 true, true)
142 char DependenceAnalysisWrapperPass::ID = 0;
144 FunctionPass *llvm::createDependenceAnalysisWrapperPass() {
145 return new DependenceAnalysisWrapperPass();
148 bool DependenceAnalysisWrapperPass::runOnFunction(Function &F) {
149 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
150 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
151 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
152 info.reset(new DependenceInfo(&F, &AA, &SE, &LI));
153 return false;
156 DependenceInfo &DependenceAnalysisWrapperPass::getDI() const { return *info; }
158 void DependenceAnalysisWrapperPass::releaseMemory() { info.reset(); }
160 void DependenceAnalysisWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
161 AU.setPreservesAll();
162 AU.addRequiredTransitive<AAResultsWrapperPass>();
163 AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
164 AU.addRequiredTransitive<LoopInfoWrapperPass>();
168 // Used to test the dependence analyzer.
169 // Looks through the function, noting loads and stores.
170 // Calls depends() on every possible pair and prints out the result.
171 // Ignores all other instructions.
172 static void dumpExampleDependence(raw_ostream &OS, DependenceInfo *DA) {
173 auto *F = DA->getFunction();
174 for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F); SrcI != SrcE;
175 ++SrcI) {
176 if (isa<StoreInst>(*SrcI) || isa<LoadInst>(*SrcI)) {
177 for (inst_iterator DstI = SrcI, DstE = inst_end(F);
178 DstI != DstE; ++DstI) {
179 if (isa<StoreInst>(*DstI) || isa<LoadInst>(*DstI)) {
180 OS << "da analyze - ";
181 if (auto D = DA->depends(&*SrcI, &*DstI, true)) {
182 D->dump(OS);
183 for (unsigned Level = 1; Level <= D->getLevels(); Level++) {
184 if (D->isSplitable(Level)) {
185 OS << "da analyze - split level = " << Level;
186 OS << ", iteration = " << *DA->getSplitIteration(*D, Level);
187 OS << "!\n";
191 else
192 OS << "none!\n";
199 void DependenceAnalysisWrapperPass::print(raw_ostream &OS,
200 const Module *) const {
201 dumpExampleDependence(OS, info.get());
204 PreservedAnalyses
205 DependenceAnalysisPrinterPass::run(Function &F, FunctionAnalysisManager &FAM) {
206 OS << "'Dependence Analysis' for function '" << F.getName() << "':\n";
207 dumpExampleDependence(OS, &FAM.getResult<DependenceAnalysis>(F));
208 return PreservedAnalyses::all();
211 //===----------------------------------------------------------------------===//
212 // Dependence methods
214 // Returns true if this is an input dependence.
215 bool Dependence::isInput() const {
216 return Src->mayReadFromMemory() && Dst->mayReadFromMemory();
220 // Returns true if this is an output dependence.
221 bool Dependence::isOutput() const {
222 return Src->mayWriteToMemory() && Dst->mayWriteToMemory();
226 // Returns true if this is an flow (aka true) dependence.
227 bool Dependence::isFlow() const {
228 return Src->mayWriteToMemory() && Dst->mayReadFromMemory();
232 // Returns true if this is an anti dependence.
233 bool Dependence::isAnti() const {
234 return Src->mayReadFromMemory() && Dst->mayWriteToMemory();
238 // Returns true if a particular level is scalar; that is,
239 // if no subscript in the source or destination mention the induction
240 // variable associated with the loop at this level.
241 // Leave this out of line, so it will serve as a virtual method anchor
242 bool Dependence::isScalar(unsigned level) const {
243 return false;
247 //===----------------------------------------------------------------------===//
248 // FullDependence methods
250 FullDependence::FullDependence(Instruction *Source, Instruction *Destination,
251 bool PossiblyLoopIndependent,
252 unsigned CommonLevels)
253 : Dependence(Source, Destination), Levels(CommonLevels),
254 LoopIndependent(PossiblyLoopIndependent) {
255 Consistent = true;
256 if (CommonLevels)
257 DV = make_unique<DVEntry[]>(CommonLevels);
260 // The rest are simple getters that hide the implementation.
262 // getDirection - Returns the direction associated with a particular level.
263 unsigned FullDependence::getDirection(unsigned Level) const {
264 assert(0 < Level && Level <= Levels && "Level out of range");
265 return DV[Level - 1].Direction;
269 // Returns the distance (or NULL) associated with a particular level.
270 const SCEV *FullDependence::getDistance(unsigned Level) const {
271 assert(0 < Level && Level <= Levels && "Level out of range");
272 return DV[Level - 1].Distance;
276 // Returns true if a particular level is scalar; that is,
277 // if no subscript in the source or destination mention the induction
278 // variable associated with the loop at this level.
279 bool FullDependence::isScalar(unsigned Level) const {
280 assert(0 < Level && Level <= Levels && "Level out of range");
281 return DV[Level - 1].Scalar;
285 // Returns true if peeling the first iteration from this loop
286 // will break this dependence.
287 bool FullDependence::isPeelFirst(unsigned Level) const {
288 assert(0 < Level && Level <= Levels && "Level out of range");
289 return DV[Level - 1].PeelFirst;
293 // Returns true if peeling the last iteration from this loop
294 // will break this dependence.
295 bool FullDependence::isPeelLast(unsigned Level) const {
296 assert(0 < Level && Level <= Levels && "Level out of range");
297 return DV[Level - 1].PeelLast;
301 // Returns true if splitting this loop will break the dependence.
302 bool FullDependence::isSplitable(unsigned Level) const {
303 assert(0 < Level && Level <= Levels && "Level out of range");
304 return DV[Level - 1].Splitable;
308 //===----------------------------------------------------------------------===//
309 // DependenceInfo::Constraint methods
311 // If constraint is a point <X, Y>, returns X.
312 // Otherwise assert.
313 const SCEV *DependenceInfo::Constraint::getX() const {
314 assert(Kind == Point && "Kind should be Point");
315 return A;
319 // If constraint is a point <X, Y>, returns Y.
320 // Otherwise assert.
321 const SCEV *DependenceInfo::Constraint::getY() const {
322 assert(Kind == Point && "Kind should be Point");
323 return B;
327 // If constraint is a line AX + BY = C, returns A.
328 // Otherwise assert.
329 const SCEV *DependenceInfo::Constraint::getA() const {
330 assert((Kind == Line || Kind == Distance) &&
331 "Kind should be Line (or Distance)");
332 return A;
336 // If constraint is a line AX + BY = C, returns B.
337 // Otherwise assert.
338 const SCEV *DependenceInfo::Constraint::getB() const {
339 assert((Kind == Line || Kind == Distance) &&
340 "Kind should be Line (or Distance)");
341 return B;
345 // If constraint is a line AX + BY = C, returns C.
346 // Otherwise assert.
347 const SCEV *DependenceInfo::Constraint::getC() const {
348 assert((Kind == Line || Kind == Distance) &&
349 "Kind should be Line (or Distance)");
350 return C;
354 // If constraint is a distance, returns D.
355 // Otherwise assert.
356 const SCEV *DependenceInfo::Constraint::getD() const {
357 assert(Kind == Distance && "Kind should be Distance");
358 return SE->getNegativeSCEV(C);
362 // Returns the loop associated with this constraint.
363 const Loop *DependenceInfo::Constraint::getAssociatedLoop() const {
364 assert((Kind == Distance || Kind == Line || Kind == Point) &&
365 "Kind should be Distance, Line, or Point");
366 return AssociatedLoop;
369 void DependenceInfo::Constraint::setPoint(const SCEV *X, const SCEV *Y,
370 const Loop *CurLoop) {
371 Kind = Point;
372 A = X;
373 B = Y;
374 AssociatedLoop = CurLoop;
377 void DependenceInfo::Constraint::setLine(const SCEV *AA, const SCEV *BB,
378 const SCEV *CC, const Loop *CurLoop) {
379 Kind = Line;
380 A = AA;
381 B = BB;
382 C = CC;
383 AssociatedLoop = CurLoop;
386 void DependenceInfo::Constraint::setDistance(const SCEV *D,
387 const Loop *CurLoop) {
388 Kind = Distance;
389 A = SE->getOne(D->getType());
390 B = SE->getNegativeSCEV(A);
391 C = SE->getNegativeSCEV(D);
392 AssociatedLoop = CurLoop;
395 void DependenceInfo::Constraint::setEmpty() { Kind = Empty; }
397 void DependenceInfo::Constraint::setAny(ScalarEvolution *NewSE) {
398 SE = NewSE;
399 Kind = Any;
402 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
403 // For debugging purposes. Dumps the constraint out to OS.
404 LLVM_DUMP_METHOD void DependenceInfo::Constraint::dump(raw_ostream &OS) const {
405 if (isEmpty())
406 OS << " Empty\n";
407 else if (isAny())
408 OS << " Any\n";
409 else if (isPoint())
410 OS << " Point is <" << *getX() << ", " << *getY() << ">\n";
411 else if (isDistance())
412 OS << " Distance is " << *getD() <<
413 " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n";
414 else if (isLine())
415 OS << " Line is " << *getA() << "*X + " <<
416 *getB() << "*Y = " << *getC() << "\n";
417 else
418 llvm_unreachable("unknown constraint type in Constraint::dump");
420 #endif
423 // Updates X with the intersection
424 // of the Constraints X and Y. Returns true if X has changed.
425 // Corresponds to Figure 4 from the paper
427 // Practical Dependence Testing
428 // Goff, Kennedy, Tseng
429 // PLDI 1991
430 bool DependenceInfo::intersectConstraints(Constraint *X, const Constraint *Y) {
431 ++DeltaApplications;
432 LLVM_DEBUG(dbgs() << "\tintersect constraints\n");
433 LLVM_DEBUG(dbgs() << "\t X ="; X->dump(dbgs()));
434 LLVM_DEBUG(dbgs() << "\t Y ="; Y->dump(dbgs()));
435 assert(!Y->isPoint() && "Y must not be a Point");
436 if (X->isAny()) {
437 if (Y->isAny())
438 return false;
439 *X = *Y;
440 return true;
442 if (X->isEmpty())
443 return false;
444 if (Y->isEmpty()) {
445 X->setEmpty();
446 return true;
449 if (X->isDistance() && Y->isDistance()) {
450 LLVM_DEBUG(dbgs() << "\t intersect 2 distances\n");
451 if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD()))
452 return false;
453 if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) {
454 X->setEmpty();
455 ++DeltaSuccesses;
456 return true;
458 // Hmmm, interesting situation.
459 // I guess if either is constant, keep it and ignore the other.
460 if (isa<SCEVConstant>(Y->getD())) {
461 *X = *Y;
462 return true;
464 return false;
467 // At this point, the pseudo-code in Figure 4 of the paper
468 // checks if (X->isPoint() && Y->isPoint()).
469 // This case can't occur in our implementation,
470 // since a Point can only arise as the result of intersecting
471 // two Line constraints, and the right-hand value, Y, is never
472 // the result of an intersection.
473 assert(!(X->isPoint() && Y->isPoint()) &&
474 "We shouldn't ever see X->isPoint() && Y->isPoint()");
476 if (X->isLine() && Y->isLine()) {
477 LLVM_DEBUG(dbgs() << "\t intersect 2 lines\n");
478 const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB());
479 const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA());
480 if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) {
481 // slopes are equal, so lines are parallel
482 LLVM_DEBUG(dbgs() << "\t\tsame slope\n");
483 Prod1 = SE->getMulExpr(X->getC(), Y->getB());
484 Prod2 = SE->getMulExpr(X->getB(), Y->getC());
485 if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2))
486 return false;
487 if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
488 X->setEmpty();
489 ++DeltaSuccesses;
490 return true;
492 return false;
494 if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
495 // slopes differ, so lines intersect
496 LLVM_DEBUG(dbgs() << "\t\tdifferent slopes\n");
497 const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB());
498 const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA());
499 const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB());
500 const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA());
501 const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB());
502 const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB());
503 const SCEVConstant *C1A2_C2A1 =
504 dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1));
505 const SCEVConstant *C1B2_C2B1 =
506 dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1));
507 const SCEVConstant *A1B2_A2B1 =
508 dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1));
509 const SCEVConstant *A2B1_A1B2 =
510 dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2));
511 if (!C1B2_C2B1 || !C1A2_C2A1 ||
512 !A1B2_A2B1 || !A2B1_A1B2)
513 return false;
514 APInt Xtop = C1B2_C2B1->getAPInt();
515 APInt Xbot = A1B2_A2B1->getAPInt();
516 APInt Ytop = C1A2_C2A1->getAPInt();
517 APInt Ybot = A2B1_A1B2->getAPInt();
518 LLVM_DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n");
519 LLVM_DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n");
520 LLVM_DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n");
521 LLVM_DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n");
522 APInt Xq = Xtop; // these need to be initialized, even
523 APInt Xr = Xtop; // though they're just going to be overwritten
524 APInt::sdivrem(Xtop, Xbot, Xq, Xr);
525 APInt Yq = Ytop;
526 APInt Yr = Ytop;
527 APInt::sdivrem(Ytop, Ybot, Yq, Yr);
528 if (Xr != 0 || Yr != 0) {
529 X->setEmpty();
530 ++DeltaSuccesses;
531 return true;
533 LLVM_DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n");
534 if (Xq.slt(0) || Yq.slt(0)) {
535 X->setEmpty();
536 ++DeltaSuccesses;
537 return true;
539 if (const SCEVConstant *CUB =
540 collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) {
541 const APInt &UpperBound = CUB->getAPInt();
542 LLVM_DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n");
543 if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) {
544 X->setEmpty();
545 ++DeltaSuccesses;
546 return true;
549 X->setPoint(SE->getConstant(Xq),
550 SE->getConstant(Yq),
551 X->getAssociatedLoop());
552 ++DeltaSuccesses;
553 return true;
555 return false;
558 // if (X->isLine() && Y->isPoint()) This case can't occur.
559 assert(!(X->isLine() && Y->isPoint()) && "This case should never occur");
561 if (X->isPoint() && Y->isLine()) {
562 LLVM_DEBUG(dbgs() << "\t intersect Point and Line\n");
563 const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX());
564 const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY());
565 const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1);
566 if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC()))
567 return false;
568 if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) {
569 X->setEmpty();
570 ++DeltaSuccesses;
571 return true;
573 return false;
576 llvm_unreachable("shouldn't reach the end of Constraint intersection");
577 return false;
581 //===----------------------------------------------------------------------===//
582 // DependenceInfo methods
584 // For debugging purposes. Dumps a dependence to OS.
585 void Dependence::dump(raw_ostream &OS) const {
586 bool Splitable = false;
587 if (isConfused())
588 OS << "confused";
589 else {
590 if (isConsistent())
591 OS << "consistent ";
592 if (isFlow())
593 OS << "flow";
594 else if (isOutput())
595 OS << "output";
596 else if (isAnti())
597 OS << "anti";
598 else if (isInput())
599 OS << "input";
600 unsigned Levels = getLevels();
601 OS << " [";
602 for (unsigned II = 1; II <= Levels; ++II) {
603 if (isSplitable(II))
604 Splitable = true;
605 if (isPeelFirst(II))
606 OS << 'p';
607 const SCEV *Distance = getDistance(II);
608 if (Distance)
609 OS << *Distance;
610 else if (isScalar(II))
611 OS << "S";
612 else {
613 unsigned Direction = getDirection(II);
614 if (Direction == DVEntry::ALL)
615 OS << "*";
616 else {
617 if (Direction & DVEntry::LT)
618 OS << "<";
619 if (Direction & DVEntry::EQ)
620 OS << "=";
621 if (Direction & DVEntry::GT)
622 OS << ">";
625 if (isPeelLast(II))
626 OS << 'p';
627 if (II < Levels)
628 OS << " ";
630 if (isLoopIndependent())
631 OS << "|<";
632 OS << "]";
633 if (Splitable)
634 OS << " splitable";
636 OS << "!\n";
639 // Returns NoAlias/MayAliass/MustAlias for two memory locations based upon their
640 // underlaying objects. If LocA and LocB are known to not alias (for any reason:
641 // tbaa, non-overlapping regions etc), then it is known there is no dependecy.
642 // Otherwise the underlying objects are checked to see if they point to
643 // different identifiable objects.
644 static AliasResult underlyingObjectsAlias(AliasAnalysis *AA,
645 const DataLayout &DL,
646 const MemoryLocation &LocA,
647 const MemoryLocation &LocB) {
648 // Check the original locations (minus size) for noalias, which can happen for
649 // tbaa, incompatible underlying object locations, etc.
650 MemoryLocation LocAS(LocA.Ptr, LocationSize::unknown(), LocA.AATags);
651 MemoryLocation LocBS(LocB.Ptr, LocationSize::unknown(), LocB.AATags);
652 if (AA->alias(LocAS, LocBS) == NoAlias)
653 return NoAlias;
655 // Check the underlying objects are the same
656 const Value *AObj = GetUnderlyingObject(LocA.Ptr, DL);
657 const Value *BObj = GetUnderlyingObject(LocB.Ptr, DL);
659 // If the underlying objects are the same, they must alias
660 if (AObj == BObj)
661 return MustAlias;
663 // We may have hit the recursion limit for underlying objects, or have
664 // underlying objects where we don't know they will alias.
665 if (!isIdentifiedObject(AObj) || !isIdentifiedObject(BObj))
666 return MayAlias;
668 // Otherwise we know the objects are different and both identified objects so
669 // must not alias.
670 return NoAlias;
674 // Returns true if the load or store can be analyzed. Atomic and volatile
675 // operations have properties which this analysis does not understand.
676 static
677 bool isLoadOrStore(const Instruction *I) {
678 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
679 return LI->isUnordered();
680 else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
681 return SI->isUnordered();
682 return false;
686 // Examines the loop nesting of the Src and Dst
687 // instructions and establishes their shared loops. Sets the variables
688 // CommonLevels, SrcLevels, and MaxLevels.
689 // The source and destination instructions needn't be contained in the same
690 // loop. The routine establishNestingLevels finds the level of most deeply
691 // nested loop that contains them both, CommonLevels. An instruction that's
692 // not contained in a loop is at level = 0. MaxLevels is equal to the level
693 // of the source plus the level of the destination, minus CommonLevels.
694 // This lets us allocate vectors MaxLevels in length, with room for every
695 // distinct loop referenced in both the source and destination subscripts.
696 // The variable SrcLevels is the nesting depth of the source instruction.
697 // It's used to help calculate distinct loops referenced by the destination.
698 // Here's the map from loops to levels:
699 // 0 - unused
700 // 1 - outermost common loop
701 // ... - other common loops
702 // CommonLevels - innermost common loop
703 // ... - loops containing Src but not Dst
704 // SrcLevels - innermost loop containing Src but not Dst
705 // ... - loops containing Dst but not Src
706 // MaxLevels - innermost loops containing Dst but not Src
707 // Consider the follow code fragment:
708 // for (a = ...) {
709 // for (b = ...) {
710 // for (c = ...) {
711 // for (d = ...) {
712 // A[] = ...;
713 // }
714 // }
715 // for (e = ...) {
716 // for (f = ...) {
717 // for (g = ...) {
718 // ... = A[];
719 // }
720 // }
721 // }
722 // }
723 // }
724 // If we're looking at the possibility of a dependence between the store
725 // to A (the Src) and the load from A (the Dst), we'll note that they
726 // have 2 loops in common, so CommonLevels will equal 2 and the direction
727 // vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
728 // A map from loop names to loop numbers would look like
729 // a - 1
730 // b - 2 = CommonLevels
731 // c - 3
732 // d - 4 = SrcLevels
733 // e - 5
734 // f - 6
735 // g - 7 = MaxLevels
736 void DependenceInfo::establishNestingLevels(const Instruction *Src,
737 const Instruction *Dst) {
738 const BasicBlock *SrcBlock = Src->getParent();
739 const BasicBlock *DstBlock = Dst->getParent();
740 unsigned SrcLevel = LI->getLoopDepth(SrcBlock);
741 unsigned DstLevel = LI->getLoopDepth(DstBlock);
742 const Loop *SrcLoop = LI->getLoopFor(SrcBlock);
743 const Loop *DstLoop = LI->getLoopFor(DstBlock);
744 SrcLevels = SrcLevel;
745 MaxLevels = SrcLevel + DstLevel;
746 while (SrcLevel > DstLevel) {
747 SrcLoop = SrcLoop->getParentLoop();
748 SrcLevel--;
750 while (DstLevel > SrcLevel) {
751 DstLoop = DstLoop->getParentLoop();
752 DstLevel--;
754 while (SrcLoop != DstLoop) {
755 SrcLoop = SrcLoop->getParentLoop();
756 DstLoop = DstLoop->getParentLoop();
757 SrcLevel--;
759 CommonLevels = SrcLevel;
760 MaxLevels -= CommonLevels;
764 // Given one of the loops containing the source, return
765 // its level index in our numbering scheme.
766 unsigned DependenceInfo::mapSrcLoop(const Loop *SrcLoop) const {
767 return SrcLoop->getLoopDepth();
771 // Given one of the loops containing the destination,
772 // return its level index in our numbering scheme.
773 unsigned DependenceInfo::mapDstLoop(const Loop *DstLoop) const {
774 unsigned D = DstLoop->getLoopDepth();
775 if (D > CommonLevels)
776 return D - CommonLevels + SrcLevels;
777 else
778 return D;
782 // Returns true if Expression is loop invariant in LoopNest.
783 bool DependenceInfo::isLoopInvariant(const SCEV *Expression,
784 const Loop *LoopNest) const {
785 if (!LoopNest)
786 return true;
787 return SE->isLoopInvariant(Expression, LoopNest) &&
788 isLoopInvariant(Expression, LoopNest->getParentLoop());
793 // Finds the set of loops from the LoopNest that
794 // have a level <= CommonLevels and are referred to by the SCEV Expression.
795 void DependenceInfo::collectCommonLoops(const SCEV *Expression,
796 const Loop *LoopNest,
797 SmallBitVector &Loops) const {
798 while (LoopNest) {
799 unsigned Level = LoopNest->getLoopDepth();
800 if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest))
801 Loops.set(Level);
802 LoopNest = LoopNest->getParentLoop();
806 void DependenceInfo::unifySubscriptType(ArrayRef<Subscript *> Pairs) {
808 unsigned widestWidthSeen = 0;
809 Type *widestType;
811 // Go through each pair and find the widest bit to which we need
812 // to extend all of them.
813 for (Subscript *Pair : Pairs) {
814 const SCEV *Src = Pair->Src;
815 const SCEV *Dst = Pair->Dst;
816 IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
817 IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
818 if (SrcTy == nullptr || DstTy == nullptr) {
819 assert(SrcTy == DstTy && "This function only unify integer types and "
820 "expect Src and Dst share the same type "
821 "otherwise.");
822 continue;
824 if (SrcTy->getBitWidth() > widestWidthSeen) {
825 widestWidthSeen = SrcTy->getBitWidth();
826 widestType = SrcTy;
828 if (DstTy->getBitWidth() > widestWidthSeen) {
829 widestWidthSeen = DstTy->getBitWidth();
830 widestType = DstTy;
835 assert(widestWidthSeen > 0);
837 // Now extend each pair to the widest seen.
838 for (Subscript *Pair : Pairs) {
839 const SCEV *Src = Pair->Src;
840 const SCEV *Dst = Pair->Dst;
841 IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
842 IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
843 if (SrcTy == nullptr || DstTy == nullptr) {
844 assert(SrcTy == DstTy && "This function only unify integer types and "
845 "expect Src and Dst share the same type "
846 "otherwise.");
847 continue;
849 if (SrcTy->getBitWidth() < widestWidthSeen)
850 // Sign-extend Src to widestType
851 Pair->Src = SE->getSignExtendExpr(Src, widestType);
852 if (DstTy->getBitWidth() < widestWidthSeen) {
853 // Sign-extend Dst to widestType
854 Pair->Dst = SE->getSignExtendExpr(Dst, widestType);
859 // removeMatchingExtensions - Examines a subscript pair.
860 // If the source and destination are identically sign (or zero)
861 // extended, it strips off the extension in an effect to simplify
862 // the actual analysis.
863 void DependenceInfo::removeMatchingExtensions(Subscript *Pair) {
864 const SCEV *Src = Pair->Src;
865 const SCEV *Dst = Pair->Dst;
866 if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) ||
867 (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) {
868 const SCEVCastExpr *SrcCast = cast<SCEVCastExpr>(Src);
869 const SCEVCastExpr *DstCast = cast<SCEVCastExpr>(Dst);
870 const SCEV *SrcCastOp = SrcCast->getOperand();
871 const SCEV *DstCastOp = DstCast->getOperand();
872 if (SrcCastOp->getType() == DstCastOp->getType()) {
873 Pair->Src = SrcCastOp;
874 Pair->Dst = DstCastOp;
880 // Examine the scev and return true iff it's linear.
881 // Collect any loops mentioned in the set of "Loops".
882 bool DependenceInfo::checkSrcSubscript(const SCEV *Src, const Loop *LoopNest,
883 SmallBitVector &Loops) {
884 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Src);
885 if (!AddRec)
886 return isLoopInvariant(Src, LoopNest);
887 const SCEV *Start = AddRec->getStart();
888 const SCEV *Step = AddRec->getStepRecurrence(*SE);
889 const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop());
890 if (!isa<SCEVCouldNotCompute>(UB)) {
891 if (SE->getTypeSizeInBits(Start->getType()) <
892 SE->getTypeSizeInBits(UB->getType())) {
893 if (!AddRec->getNoWrapFlags())
894 return false;
897 if (!isLoopInvariant(Step, LoopNest))
898 return false;
899 Loops.set(mapSrcLoop(AddRec->getLoop()));
900 return checkSrcSubscript(Start, LoopNest, Loops);
905 // Examine the scev and return true iff it's linear.
906 // Collect any loops mentioned in the set of "Loops".
907 bool DependenceInfo::checkDstSubscript(const SCEV *Dst, const Loop *LoopNest,
908 SmallBitVector &Loops) {
909 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Dst);
910 if (!AddRec)
911 return isLoopInvariant(Dst, LoopNest);
912 const SCEV *Start = AddRec->getStart();
913 const SCEV *Step = AddRec->getStepRecurrence(*SE);
914 const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop());
915 if (!isa<SCEVCouldNotCompute>(UB)) {
916 if (SE->getTypeSizeInBits(Start->getType()) <
917 SE->getTypeSizeInBits(UB->getType())) {
918 if (!AddRec->getNoWrapFlags())
919 return false;
922 if (!isLoopInvariant(Step, LoopNest))
923 return false;
924 Loops.set(mapDstLoop(AddRec->getLoop()));
925 return checkDstSubscript(Start, LoopNest, Loops);
929 // Examines the subscript pair (the Src and Dst SCEVs)
930 // and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
931 // Collects the associated loops in a set.
932 DependenceInfo::Subscript::ClassificationKind
933 DependenceInfo::classifyPair(const SCEV *Src, const Loop *SrcLoopNest,
934 const SCEV *Dst, const Loop *DstLoopNest,
935 SmallBitVector &Loops) {
936 SmallBitVector SrcLoops(MaxLevels + 1);
937 SmallBitVector DstLoops(MaxLevels + 1);
938 if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops))
939 return Subscript::NonLinear;
940 if (!checkDstSubscript(Dst, DstLoopNest, DstLoops))
941 return Subscript::NonLinear;
942 Loops = SrcLoops;
943 Loops |= DstLoops;
944 unsigned N = Loops.count();
945 if (N == 0)
946 return Subscript::ZIV;
947 if (N == 1)
948 return Subscript::SIV;
949 if (N == 2 && (SrcLoops.count() == 0 ||
950 DstLoops.count() == 0 ||
951 (SrcLoops.count() == 1 && DstLoops.count() == 1)))
952 return Subscript::RDIV;
953 return Subscript::MIV;
957 // A wrapper around SCEV::isKnownPredicate.
958 // Looks for cases where we're interested in comparing for equality.
959 // If both X and Y have been identically sign or zero extended,
960 // it strips off the (confusing) extensions before invoking
961 // SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package
962 // will be similarly updated.
964 // If SCEV::isKnownPredicate can't prove the predicate,
965 // we try simple subtraction, which seems to help in some cases
966 // involving symbolics.
967 bool DependenceInfo::isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *X,
968 const SCEV *Y) const {
969 if (Pred == CmpInst::ICMP_EQ ||
970 Pred == CmpInst::ICMP_NE) {
971 if ((isa<SCEVSignExtendExpr>(X) &&
972 isa<SCEVSignExtendExpr>(Y)) ||
973 (isa<SCEVZeroExtendExpr>(X) &&
974 isa<SCEVZeroExtendExpr>(Y))) {
975 const SCEVCastExpr *CX = cast<SCEVCastExpr>(X);
976 const SCEVCastExpr *CY = cast<SCEVCastExpr>(Y);
977 const SCEV *Xop = CX->getOperand();
978 const SCEV *Yop = CY->getOperand();
979 if (Xop->getType() == Yop->getType()) {
980 X = Xop;
981 Y = Yop;
985 if (SE->isKnownPredicate(Pred, X, Y))
986 return true;
987 // If SE->isKnownPredicate can't prove the condition,
988 // we try the brute-force approach of subtracting
989 // and testing the difference.
990 // By testing with SE->isKnownPredicate first, we avoid
991 // the possibility of overflow when the arguments are constants.
992 const SCEV *Delta = SE->getMinusSCEV(X, Y);
993 switch (Pred) {
994 case CmpInst::ICMP_EQ:
995 return Delta->isZero();
996 case CmpInst::ICMP_NE:
997 return SE->isKnownNonZero(Delta);
998 case CmpInst::ICMP_SGE:
999 return SE->isKnownNonNegative(Delta);
1000 case CmpInst::ICMP_SLE:
1001 return SE->isKnownNonPositive(Delta);
1002 case CmpInst::ICMP_SGT:
1003 return SE->isKnownPositive(Delta);
1004 case CmpInst::ICMP_SLT:
1005 return SE->isKnownNegative(Delta);
1006 default:
1007 llvm_unreachable("unexpected predicate in isKnownPredicate");
1011 /// Compare to see if S is less than Size, using isKnownNegative(S - max(Size, 1))
1012 /// with some extra checking if S is an AddRec and we can prove less-than using
1013 /// the loop bounds.
1014 bool DependenceInfo::isKnownLessThan(const SCEV *S, const SCEV *Size) const {
1015 // First unify to the same type
1016 auto *SType = dyn_cast<IntegerType>(S->getType());
1017 auto *SizeType = dyn_cast<IntegerType>(Size->getType());
1018 if (!SType || !SizeType)
1019 return false;
1020 Type *MaxType =
1021 (SType->getBitWidth() >= SizeType->getBitWidth()) ? SType : SizeType;
1022 S = SE->getTruncateOrZeroExtend(S, MaxType);
1023 Size = SE->getTruncateOrZeroExtend(Size, MaxType);
1025 // Special check for addrecs using BE taken count
1026 const SCEV *Bound = SE->getMinusSCEV(S, Size);
1027 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Bound)) {
1028 if (AddRec->isAffine()) {
1029 const SCEV *BECount = SE->getBackedgeTakenCount(AddRec->getLoop());
1030 if (!isa<SCEVCouldNotCompute>(BECount)) {
1031 const SCEV *Limit = AddRec->evaluateAtIteration(BECount, *SE);
1032 if (SE->isKnownNegative(Limit))
1033 return true;
1038 // Check using normal isKnownNegative
1039 const SCEV *LimitedBound =
1040 SE->getMinusSCEV(S, SE->getSMaxExpr(Size, SE->getOne(Size->getType())));
1041 return SE->isKnownNegative(LimitedBound);
1044 bool DependenceInfo::isKnownNonNegative(const SCEV *S, const Value *Ptr) const {
1045 bool Inbounds = false;
1046 if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(Ptr))
1047 Inbounds = SrcGEP->isInBounds();
1048 if (Inbounds) {
1049 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
1050 if (AddRec->isAffine()) {
1051 // We know S is for Ptr, the operand on a load/store, so doesn't wrap.
1052 // If both parts are NonNegative, the end result will be NonNegative
1053 if (SE->isKnownNonNegative(AddRec->getStart()) &&
1054 SE->isKnownNonNegative(AddRec->getOperand(1)))
1055 return true;
1060 return SE->isKnownNonNegative(S);
1063 // All subscripts are all the same type.
1064 // Loop bound may be smaller (e.g., a char).
1065 // Should zero extend loop bound, since it's always >= 0.
1066 // This routine collects upper bound and extends or truncates if needed.
1067 // Truncating is safe when subscripts are known not to wrap. Cases without
1068 // nowrap flags should have been rejected earlier.
1069 // Return null if no bound available.
1070 const SCEV *DependenceInfo::collectUpperBound(const Loop *L, Type *T) const {
1071 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
1072 const SCEV *UB = SE->getBackedgeTakenCount(L);
1073 return SE->getTruncateOrZeroExtend(UB, T);
1075 return nullptr;
1079 // Calls collectUpperBound(), then attempts to cast it to SCEVConstant.
1080 // If the cast fails, returns NULL.
1081 const SCEVConstant *DependenceInfo::collectConstantUpperBound(const Loop *L,
1082 Type *T) const {
1083 if (const SCEV *UB = collectUpperBound(L, T))
1084 return dyn_cast<SCEVConstant>(UB);
1085 return nullptr;
1089 // testZIV -
1090 // When we have a pair of subscripts of the form [c1] and [c2],
1091 // where c1 and c2 are both loop invariant, we attack it using
1092 // the ZIV test. Basically, we test by comparing the two values,
1093 // but there are actually three possible results:
1094 // 1) the values are equal, so there's a dependence
1095 // 2) the values are different, so there's no dependence
1096 // 3) the values might be equal, so we have to assume a dependence.
1098 // Return true if dependence disproved.
1099 bool DependenceInfo::testZIV(const SCEV *Src, const SCEV *Dst,
1100 FullDependence &Result) const {
1101 LLVM_DEBUG(dbgs() << " src = " << *Src << "\n");
1102 LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n");
1103 ++ZIVapplications;
1104 if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) {
1105 LLVM_DEBUG(dbgs() << " provably dependent\n");
1106 return false; // provably dependent
1108 if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) {
1109 LLVM_DEBUG(dbgs() << " provably independent\n");
1110 ++ZIVindependence;
1111 return true; // provably independent
1113 LLVM_DEBUG(dbgs() << " possibly dependent\n");
1114 Result.Consistent = false;
1115 return false; // possibly dependent
1119 // strongSIVtest -
1120 // From the paper, Practical Dependence Testing, Section 4.2.1
1122 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i],
1123 // where i is an induction variable, c1 and c2 are loop invariant,
1124 // and a is a constant, we can solve it exactly using the Strong SIV test.
1126 // Can prove independence. Failing that, can compute distance (and direction).
1127 // In the presence of symbolic terms, we can sometimes make progress.
1129 // If there's a dependence,
1131 // c1 + a*i = c2 + a*i'
1133 // The dependence distance is
1135 // d = i' - i = (c1 - c2)/a
1137 // A dependence only exists if d is an integer and abs(d) <= U, where U is the
1138 // loop's upper bound. If a dependence exists, the dependence direction is
1139 // defined as
1141 // { < if d > 0
1142 // direction = { = if d = 0
1143 // { > if d < 0
1145 // Return true if dependence disproved.
1146 bool DependenceInfo::strongSIVtest(const SCEV *Coeff, const SCEV *SrcConst,
1147 const SCEV *DstConst, const Loop *CurLoop,
1148 unsigned Level, FullDependence &Result,
1149 Constraint &NewConstraint) const {
1150 LLVM_DEBUG(dbgs() << "\tStrong SIV test\n");
1151 LLVM_DEBUG(dbgs() << "\t Coeff = " << *Coeff);
1152 LLVM_DEBUG(dbgs() << ", " << *Coeff->getType() << "\n");
1153 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst);
1154 LLVM_DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n");
1155 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst);
1156 LLVM_DEBUG(dbgs() << ", " << *DstConst->getType() << "\n");
1157 ++StrongSIVapplications;
1158 assert(0 < Level && Level <= CommonLevels && "level out of range");
1159 Level--;
1161 const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1162 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta);
1163 LLVM_DEBUG(dbgs() << ", " << *Delta->getType() << "\n");
1165 // check that |Delta| < iteration count
1166 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1167 LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound);
1168 LLVM_DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n");
1169 const SCEV *AbsDelta =
1170 SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta);
1171 const SCEV *AbsCoeff =
1172 SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff);
1173 const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff);
1174 if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) {
1175 // Distance greater than trip count - no dependence
1176 ++StrongSIVindependence;
1177 ++StrongSIVsuccesses;
1178 return true;
1182 // Can we compute distance?
1183 if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) {
1184 APInt ConstDelta = cast<SCEVConstant>(Delta)->getAPInt();
1185 APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getAPInt();
1186 APInt Distance = ConstDelta; // these need to be initialized
1187 APInt Remainder = ConstDelta;
1188 APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder);
1189 LLVM_DEBUG(dbgs() << "\t Distance = " << Distance << "\n");
1190 LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1191 // Make sure Coeff divides Delta exactly
1192 if (Remainder != 0) {
1193 // Coeff doesn't divide Distance, no dependence
1194 ++StrongSIVindependence;
1195 ++StrongSIVsuccesses;
1196 return true;
1198 Result.DV[Level].Distance = SE->getConstant(Distance);
1199 NewConstraint.setDistance(SE->getConstant(Distance), CurLoop);
1200 if (Distance.sgt(0))
1201 Result.DV[Level].Direction &= Dependence::DVEntry::LT;
1202 else if (Distance.slt(0))
1203 Result.DV[Level].Direction &= Dependence::DVEntry::GT;
1204 else
1205 Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1206 ++StrongSIVsuccesses;
1208 else if (Delta->isZero()) {
1209 // since 0/X == 0
1210 Result.DV[Level].Distance = Delta;
1211 NewConstraint.setDistance(Delta, CurLoop);
1212 Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1213 ++StrongSIVsuccesses;
1215 else {
1216 if (Coeff->isOne()) {
1217 LLVM_DEBUG(dbgs() << "\t Distance = " << *Delta << "\n");
1218 Result.DV[Level].Distance = Delta; // since X/1 == X
1219 NewConstraint.setDistance(Delta, CurLoop);
1221 else {
1222 Result.Consistent = false;
1223 NewConstraint.setLine(Coeff,
1224 SE->getNegativeSCEV(Coeff),
1225 SE->getNegativeSCEV(Delta), CurLoop);
1228 // maybe we can get a useful direction
1229 bool DeltaMaybeZero = !SE->isKnownNonZero(Delta);
1230 bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta);
1231 bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta);
1232 bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff);
1233 bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff);
1234 // The double negatives above are confusing.
1235 // It helps to read !SE->isKnownNonZero(Delta)
1236 // as "Delta might be Zero"
1237 unsigned NewDirection = Dependence::DVEntry::NONE;
1238 if ((DeltaMaybePositive && CoeffMaybePositive) ||
1239 (DeltaMaybeNegative && CoeffMaybeNegative))
1240 NewDirection = Dependence::DVEntry::LT;
1241 if (DeltaMaybeZero)
1242 NewDirection |= Dependence::DVEntry::EQ;
1243 if ((DeltaMaybeNegative && CoeffMaybePositive) ||
1244 (DeltaMaybePositive && CoeffMaybeNegative))
1245 NewDirection |= Dependence::DVEntry::GT;
1246 if (NewDirection < Result.DV[Level].Direction)
1247 ++StrongSIVsuccesses;
1248 Result.DV[Level].Direction &= NewDirection;
1250 return false;
1254 // weakCrossingSIVtest -
1255 // From the paper, Practical Dependence Testing, Section 4.2.2
1257 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i],
1258 // where i is an induction variable, c1 and c2 are loop invariant,
1259 // and a is a constant, we can solve it exactly using the
1260 // Weak-Crossing SIV test.
1262 // Given c1 + a*i = c2 - a*i', we can look for the intersection of
1263 // the two lines, where i = i', yielding
1265 // c1 + a*i = c2 - a*i
1266 // 2a*i = c2 - c1
1267 // i = (c2 - c1)/2a
1269 // If i < 0, there is no dependence.
1270 // If i > upperbound, there is no dependence.
1271 // If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0.
1272 // If i = upperbound, there's a dependence with distance = 0.
1273 // If i is integral, there's a dependence (all directions).
1274 // If the non-integer part = 1/2, there's a dependence (<> directions).
1275 // Otherwise, there's no dependence.
1277 // Can prove independence. Failing that,
1278 // can sometimes refine the directions.
1279 // Can determine iteration for splitting.
1281 // Return true if dependence disproved.
1282 bool DependenceInfo::weakCrossingSIVtest(
1283 const SCEV *Coeff, const SCEV *SrcConst, const SCEV *DstConst,
1284 const Loop *CurLoop, unsigned Level, FullDependence &Result,
1285 Constraint &NewConstraint, const SCEV *&SplitIter) const {
1286 LLVM_DEBUG(dbgs() << "\tWeak-Crossing SIV test\n");
1287 LLVM_DEBUG(dbgs() << "\t Coeff = " << *Coeff << "\n");
1288 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1289 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1290 ++WeakCrossingSIVapplications;
1291 assert(0 < Level && Level <= CommonLevels && "Level out of range");
1292 Level--;
1293 Result.Consistent = false;
1294 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1295 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1296 NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop);
1297 if (Delta->isZero()) {
1298 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1299 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
1300 ++WeakCrossingSIVsuccesses;
1301 if (!Result.DV[Level].Direction) {
1302 ++WeakCrossingSIVindependence;
1303 return true;
1305 Result.DV[Level].Distance = Delta; // = 0
1306 return false;
1308 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff);
1309 if (!ConstCoeff)
1310 return false;
1312 Result.DV[Level].Splitable = true;
1313 if (SE->isKnownNegative(ConstCoeff)) {
1314 ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff));
1315 assert(ConstCoeff &&
1316 "dynamic cast of negative of ConstCoeff should yield constant");
1317 Delta = SE->getNegativeSCEV(Delta);
1319 assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive");
1321 // compute SplitIter for use by DependenceInfo::getSplitIteration()
1322 SplitIter = SE->getUDivExpr(
1323 SE->getSMaxExpr(SE->getZero(Delta->getType()), Delta),
1324 SE->getMulExpr(SE->getConstant(Delta->getType(), 2), ConstCoeff));
1325 LLVM_DEBUG(dbgs() << "\t Split iter = " << *SplitIter << "\n");
1327 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1328 if (!ConstDelta)
1329 return false;
1331 // We're certain that ConstCoeff > 0; therefore,
1332 // if Delta < 0, then no dependence.
1333 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1334 LLVM_DEBUG(dbgs() << "\t ConstCoeff = " << *ConstCoeff << "\n");
1335 if (SE->isKnownNegative(Delta)) {
1336 // No dependence, Delta < 0
1337 ++WeakCrossingSIVindependence;
1338 ++WeakCrossingSIVsuccesses;
1339 return true;
1342 // We're certain that Delta > 0 and ConstCoeff > 0.
1343 // Check Delta/(2*ConstCoeff) against upper loop bound
1344 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1345 LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1346 const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2);
1347 const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound),
1348 ConstantTwo);
1349 LLVM_DEBUG(dbgs() << "\t ML = " << *ML << "\n");
1350 if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) {
1351 // Delta too big, no dependence
1352 ++WeakCrossingSIVindependence;
1353 ++WeakCrossingSIVsuccesses;
1354 return true;
1356 if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) {
1357 // i = i' = UB
1358 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::LT);
1359 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::GT);
1360 ++WeakCrossingSIVsuccesses;
1361 if (!Result.DV[Level].Direction) {
1362 ++WeakCrossingSIVindependence;
1363 return true;
1365 Result.DV[Level].Splitable = false;
1366 Result.DV[Level].Distance = SE->getZero(Delta->getType());
1367 return false;
1371 // check that Coeff divides Delta
1372 APInt APDelta = ConstDelta->getAPInt();
1373 APInt APCoeff = ConstCoeff->getAPInt();
1374 APInt Distance = APDelta; // these need to be initialzed
1375 APInt Remainder = APDelta;
1376 APInt::sdivrem(APDelta, APCoeff, Distance, Remainder);
1377 LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1378 if (Remainder != 0) {
1379 // Coeff doesn't divide Delta, no dependence
1380 ++WeakCrossingSIVindependence;
1381 ++WeakCrossingSIVsuccesses;
1382 return true;
1384 LLVM_DEBUG(dbgs() << "\t Distance = " << Distance << "\n");
1386 // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible
1387 APInt Two = APInt(Distance.getBitWidth(), 2, true);
1388 Remainder = Distance.srem(Two);
1389 LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1390 if (Remainder != 0) {
1391 // Equal direction isn't possible
1392 Result.DV[Level].Direction &= unsigned(~Dependence::DVEntry::EQ);
1393 ++WeakCrossingSIVsuccesses;
1395 return false;
1399 // Kirch's algorithm, from
1401 // Optimizing Supercompilers for Supercomputers
1402 // Michael Wolfe
1403 // MIT Press, 1989
1405 // Program 2.1, page 29.
1406 // Computes the GCD of AM and BM.
1407 // Also finds a solution to the equation ax - by = gcd(a, b).
1408 // Returns true if dependence disproved; i.e., gcd does not divide Delta.
1409 static bool findGCD(unsigned Bits, const APInt &AM, const APInt &BM,
1410 const APInt &Delta, APInt &G, APInt &X, APInt &Y) {
1411 APInt A0(Bits, 1, true), A1(Bits, 0, true);
1412 APInt B0(Bits, 0, true), B1(Bits, 1, true);
1413 APInt G0 = AM.abs();
1414 APInt G1 = BM.abs();
1415 APInt Q = G0; // these need to be initialized
1416 APInt R = G0;
1417 APInt::sdivrem(G0, G1, Q, R);
1418 while (R != 0) {
1419 APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2;
1420 APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2;
1421 G0 = G1; G1 = R;
1422 APInt::sdivrem(G0, G1, Q, R);
1424 G = G1;
1425 LLVM_DEBUG(dbgs() << "\t GCD = " << G << "\n");
1426 X = AM.slt(0) ? -A1 : A1;
1427 Y = BM.slt(0) ? B1 : -B1;
1429 // make sure gcd divides Delta
1430 R = Delta.srem(G);
1431 if (R != 0)
1432 return true; // gcd doesn't divide Delta, no dependence
1433 Q = Delta.sdiv(G);
1434 X *= Q;
1435 Y *= Q;
1436 return false;
1439 static APInt floorOfQuotient(const APInt &A, const APInt &B) {
1440 APInt Q = A; // these need to be initialized
1441 APInt R = A;
1442 APInt::sdivrem(A, B, Q, R);
1443 if (R == 0)
1444 return Q;
1445 if ((A.sgt(0) && B.sgt(0)) ||
1446 (A.slt(0) && B.slt(0)))
1447 return Q;
1448 else
1449 return Q - 1;
1452 static APInt ceilingOfQuotient(const APInt &A, const APInt &B) {
1453 APInt Q = A; // these need to be initialized
1454 APInt R = A;
1455 APInt::sdivrem(A, B, Q, R);
1456 if (R == 0)
1457 return Q;
1458 if ((A.sgt(0) && B.sgt(0)) ||
1459 (A.slt(0) && B.slt(0)))
1460 return Q + 1;
1461 else
1462 return Q;
1466 static
1467 APInt maxAPInt(APInt A, APInt B) {
1468 return A.sgt(B) ? A : B;
1472 static
1473 APInt minAPInt(APInt A, APInt B) {
1474 return A.slt(B) ? A : B;
1478 // exactSIVtest -
1479 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i],
1480 // where i is an induction variable, c1 and c2 are loop invariant, and a1
1481 // and a2 are constant, we can solve it exactly using an algorithm developed
1482 // by Banerjee and Wolfe. See Section 2.5.3 in
1484 // Optimizing Supercompilers for Supercomputers
1485 // Michael Wolfe
1486 // MIT Press, 1989
1488 // It's slower than the specialized tests (strong SIV, weak-zero SIV, etc),
1489 // so use them if possible. They're also a bit better with symbolics and,
1490 // in the case of the strong SIV test, can compute Distances.
1492 // Return true if dependence disproved.
1493 bool DependenceInfo::exactSIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
1494 const SCEV *SrcConst, const SCEV *DstConst,
1495 const Loop *CurLoop, unsigned Level,
1496 FullDependence &Result,
1497 Constraint &NewConstraint) const {
1498 LLVM_DEBUG(dbgs() << "\tExact SIV test\n");
1499 LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n");
1500 LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n");
1501 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1502 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1503 ++ExactSIVapplications;
1504 assert(0 < Level && Level <= CommonLevels && "Level out of range");
1505 Level--;
1506 Result.Consistent = false;
1507 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1508 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1509 NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff),
1510 Delta, CurLoop);
1511 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1512 const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1513 const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1514 if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1515 return false;
1517 // find gcd
1518 APInt G, X, Y;
1519 APInt AM = ConstSrcCoeff->getAPInt();
1520 APInt BM = ConstDstCoeff->getAPInt();
1521 unsigned Bits = AM.getBitWidth();
1522 if (findGCD(Bits, AM, BM, ConstDelta->getAPInt(), G, X, Y)) {
1523 // gcd doesn't divide Delta, no dependence
1524 ++ExactSIVindependence;
1525 ++ExactSIVsuccesses;
1526 return true;
1529 LLVM_DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n");
1531 // since SCEV construction normalizes, LM = 0
1532 APInt UM(Bits, 1, true);
1533 bool UMvalid = false;
1534 // UM is perhaps unavailable, let's check
1535 if (const SCEVConstant *CUB =
1536 collectConstantUpperBound(CurLoop, Delta->getType())) {
1537 UM = CUB->getAPInt();
1538 LLVM_DEBUG(dbgs() << "\t UM = " << UM << "\n");
1539 UMvalid = true;
1542 APInt TU(APInt::getSignedMaxValue(Bits));
1543 APInt TL(APInt::getSignedMinValue(Bits));
1545 // test(BM/G, LM-X) and test(-BM/G, X-UM)
1546 APInt TMUL = BM.sdiv(G);
1547 if (TMUL.sgt(0)) {
1548 TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
1549 LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
1550 if (UMvalid) {
1551 TU = minAPInt(TU, floorOfQuotient(UM - X, TMUL));
1552 LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n");
1555 else {
1556 TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
1557 LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n");
1558 if (UMvalid) {
1559 TL = maxAPInt(TL, ceilingOfQuotient(UM - X, TMUL));
1560 LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
1564 // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1565 TMUL = AM.sdiv(G);
1566 if (TMUL.sgt(0)) {
1567 TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
1568 LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
1569 if (UMvalid) {
1570 TU = minAPInt(TU, floorOfQuotient(UM - Y, TMUL));
1571 LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n");
1574 else {
1575 TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
1576 LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n");
1577 if (UMvalid) {
1578 TL = maxAPInt(TL, ceilingOfQuotient(UM - Y, TMUL));
1579 LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
1582 if (TL.sgt(TU)) {
1583 ++ExactSIVindependence;
1584 ++ExactSIVsuccesses;
1585 return true;
1588 // explore directions
1589 unsigned NewDirection = Dependence::DVEntry::NONE;
1591 // less than
1592 APInt SaveTU(TU); // save these
1593 APInt SaveTL(TL);
1594 LLVM_DEBUG(dbgs() << "\t exploring LT direction\n");
1595 TMUL = AM - BM;
1596 if (TMUL.sgt(0)) {
1597 TL = maxAPInt(TL, ceilingOfQuotient(X - Y + 1, TMUL));
1598 LLVM_DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1600 else {
1601 TU = minAPInt(TU, floorOfQuotient(X - Y + 1, TMUL));
1602 LLVM_DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1604 if (TL.sle(TU)) {
1605 NewDirection |= Dependence::DVEntry::LT;
1606 ++ExactSIVsuccesses;
1609 // equal
1610 TU = SaveTU; // restore
1611 TL = SaveTL;
1612 LLVM_DEBUG(dbgs() << "\t exploring EQ direction\n");
1613 if (TMUL.sgt(0)) {
1614 TL = maxAPInt(TL, ceilingOfQuotient(X - Y, TMUL));
1615 LLVM_DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1617 else {
1618 TU = minAPInt(TU, floorOfQuotient(X - Y, TMUL));
1619 LLVM_DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1621 TMUL = BM - AM;
1622 if (TMUL.sgt(0)) {
1623 TL = maxAPInt(TL, ceilingOfQuotient(Y - X, TMUL));
1624 LLVM_DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1626 else {
1627 TU = minAPInt(TU, floorOfQuotient(Y - X, TMUL));
1628 LLVM_DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1630 if (TL.sle(TU)) {
1631 NewDirection |= Dependence::DVEntry::EQ;
1632 ++ExactSIVsuccesses;
1635 // greater than
1636 TU = SaveTU; // restore
1637 TL = SaveTL;
1638 LLVM_DEBUG(dbgs() << "\t exploring GT direction\n");
1639 if (TMUL.sgt(0)) {
1640 TL = maxAPInt(TL, ceilingOfQuotient(Y - X + 1, TMUL));
1641 LLVM_DEBUG(dbgs() << "\t\t TL = " << TL << "\n");
1643 else {
1644 TU = minAPInt(TU, floorOfQuotient(Y - X + 1, TMUL));
1645 LLVM_DEBUG(dbgs() << "\t\t TU = " << TU << "\n");
1647 if (TL.sle(TU)) {
1648 NewDirection |= Dependence::DVEntry::GT;
1649 ++ExactSIVsuccesses;
1652 // finished
1653 Result.DV[Level].Direction &= NewDirection;
1654 if (Result.DV[Level].Direction == Dependence::DVEntry::NONE)
1655 ++ExactSIVindependence;
1656 return Result.DV[Level].Direction == Dependence::DVEntry::NONE;
1661 // Return true if the divisor evenly divides the dividend.
1662 static
1663 bool isRemainderZero(const SCEVConstant *Dividend,
1664 const SCEVConstant *Divisor) {
1665 const APInt &ConstDividend = Dividend->getAPInt();
1666 const APInt &ConstDivisor = Divisor->getAPInt();
1667 return ConstDividend.srem(ConstDivisor) == 0;
1671 // weakZeroSrcSIVtest -
1672 // From the paper, Practical Dependence Testing, Section 4.2.2
1674 // When we have a pair of subscripts of the form [c1] and [c2 + a*i],
1675 // where i is an induction variable, c1 and c2 are loop invariant,
1676 // and a is a constant, we can solve it exactly using the
1677 // Weak-Zero SIV test.
1679 // Given
1681 // c1 = c2 + a*i
1683 // we get
1685 // (c1 - c2)/a = i
1687 // If i is not an integer, there's no dependence.
1688 // If i < 0 or > UB, there's no dependence.
1689 // If i = 0, the direction is >= and peeling the
1690 // 1st iteration will break the dependence.
1691 // If i = UB, the direction is <= and peeling the
1692 // last iteration will break the dependence.
1693 // Otherwise, the direction is *.
1695 // Can prove independence. Failing that, we can sometimes refine
1696 // the directions. Can sometimes show that first or last
1697 // iteration carries all the dependences (so worth peeling).
1699 // (see also weakZeroDstSIVtest)
1701 // Return true if dependence disproved.
1702 bool DependenceInfo::weakZeroSrcSIVtest(const SCEV *DstCoeff,
1703 const SCEV *SrcConst,
1704 const SCEV *DstConst,
1705 const Loop *CurLoop, unsigned Level,
1706 FullDependence &Result,
1707 Constraint &NewConstraint) const {
1708 // For the WeakSIV test, it's possible the loop isn't common to
1709 // the Src and Dst loops. If it isn't, then there's no need to
1710 // record a direction.
1711 LLVM_DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n");
1712 LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << "\n");
1713 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1714 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1715 ++WeakZeroSIVapplications;
1716 assert(0 < Level && Level <= MaxLevels && "Level out of range");
1717 Level--;
1718 Result.Consistent = false;
1719 const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1720 NewConstraint.setLine(SE->getZero(Delta->getType()), DstCoeff, Delta,
1721 CurLoop);
1722 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1723 if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) {
1724 if (Level < CommonLevels) {
1725 Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1726 Result.DV[Level].PeelFirst = true;
1727 ++WeakZeroSIVsuccesses;
1729 return false; // dependences caused by first iteration
1731 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1732 if (!ConstCoeff)
1733 return false;
1734 const SCEV *AbsCoeff =
1735 SE->isKnownNegative(ConstCoeff) ?
1736 SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1737 const SCEV *NewDelta =
1738 SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1740 // check that Delta/SrcCoeff < iteration count
1741 // really check NewDelta < count*AbsCoeff
1742 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1743 LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1744 const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1745 if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1746 ++WeakZeroSIVindependence;
1747 ++WeakZeroSIVsuccesses;
1748 return true;
1750 if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1751 // dependences caused by last iteration
1752 if (Level < CommonLevels) {
1753 Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1754 Result.DV[Level].PeelLast = true;
1755 ++WeakZeroSIVsuccesses;
1757 return false;
1761 // check that Delta/SrcCoeff >= 0
1762 // really check that NewDelta >= 0
1763 if (SE->isKnownNegative(NewDelta)) {
1764 // No dependence, newDelta < 0
1765 ++WeakZeroSIVindependence;
1766 ++WeakZeroSIVsuccesses;
1767 return true;
1770 // if SrcCoeff doesn't divide Delta, then no dependence
1771 if (isa<SCEVConstant>(Delta) &&
1772 !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1773 ++WeakZeroSIVindependence;
1774 ++WeakZeroSIVsuccesses;
1775 return true;
1777 return false;
1781 // weakZeroDstSIVtest -
1782 // From the paper, Practical Dependence Testing, Section 4.2.2
1784 // When we have a pair of subscripts of the form [c1 + a*i] and [c2],
1785 // where i is an induction variable, c1 and c2 are loop invariant,
1786 // and a is a constant, we can solve it exactly using the
1787 // Weak-Zero SIV test.
1789 // Given
1791 // c1 + a*i = c2
1793 // we get
1795 // i = (c2 - c1)/a
1797 // If i is not an integer, there's no dependence.
1798 // If i < 0 or > UB, there's no dependence.
1799 // If i = 0, the direction is <= and peeling the
1800 // 1st iteration will break the dependence.
1801 // If i = UB, the direction is >= and peeling the
1802 // last iteration will break the dependence.
1803 // Otherwise, the direction is *.
1805 // Can prove independence. Failing that, we can sometimes refine
1806 // the directions. Can sometimes show that first or last
1807 // iteration carries all the dependences (so worth peeling).
1809 // (see also weakZeroSrcSIVtest)
1811 // Return true if dependence disproved.
1812 bool DependenceInfo::weakZeroDstSIVtest(const SCEV *SrcCoeff,
1813 const SCEV *SrcConst,
1814 const SCEV *DstConst,
1815 const Loop *CurLoop, unsigned Level,
1816 FullDependence &Result,
1817 Constraint &NewConstraint) const {
1818 // For the WeakSIV test, it's possible the loop isn't common to the
1819 // Src and Dst loops. If it isn't, then there's no need to record a direction.
1820 LLVM_DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n");
1821 LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << "\n");
1822 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1823 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1824 ++WeakZeroSIVapplications;
1825 assert(0 < Level && Level <= SrcLevels && "Level out of range");
1826 Level--;
1827 Result.Consistent = false;
1828 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1829 NewConstraint.setLine(SrcCoeff, SE->getZero(Delta->getType()), Delta,
1830 CurLoop);
1831 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1832 if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) {
1833 if (Level < CommonLevels) {
1834 Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1835 Result.DV[Level].PeelFirst = true;
1836 ++WeakZeroSIVsuccesses;
1838 return false; // dependences caused by first iteration
1840 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1841 if (!ConstCoeff)
1842 return false;
1843 const SCEV *AbsCoeff =
1844 SE->isKnownNegative(ConstCoeff) ?
1845 SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1846 const SCEV *NewDelta =
1847 SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1849 // check that Delta/SrcCoeff < iteration count
1850 // really check NewDelta < count*AbsCoeff
1851 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1852 LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1853 const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1854 if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1855 ++WeakZeroSIVindependence;
1856 ++WeakZeroSIVsuccesses;
1857 return true;
1859 if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1860 // dependences caused by last iteration
1861 if (Level < CommonLevels) {
1862 Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1863 Result.DV[Level].PeelLast = true;
1864 ++WeakZeroSIVsuccesses;
1866 return false;
1870 // check that Delta/SrcCoeff >= 0
1871 // really check that NewDelta >= 0
1872 if (SE->isKnownNegative(NewDelta)) {
1873 // No dependence, newDelta < 0
1874 ++WeakZeroSIVindependence;
1875 ++WeakZeroSIVsuccesses;
1876 return true;
1879 // if SrcCoeff doesn't divide Delta, then no dependence
1880 if (isa<SCEVConstant>(Delta) &&
1881 !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1882 ++WeakZeroSIVindependence;
1883 ++WeakZeroSIVsuccesses;
1884 return true;
1886 return false;
1890 // exactRDIVtest - Tests the RDIV subscript pair for dependence.
1891 // Things of the form [c1 + a*i] and [c2 + b*j],
1892 // where i and j are induction variable, c1 and c2 are loop invariant,
1893 // and a and b are constants.
1894 // Returns true if any possible dependence is disproved.
1895 // Marks the result as inconsistent.
1896 // Works in some cases that symbolicRDIVtest doesn't, and vice versa.
1897 bool DependenceInfo::exactRDIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
1898 const SCEV *SrcConst, const SCEV *DstConst,
1899 const Loop *SrcLoop, const Loop *DstLoop,
1900 FullDependence &Result) const {
1901 LLVM_DEBUG(dbgs() << "\tExact RDIV test\n");
1902 LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n");
1903 LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n");
1904 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1905 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1906 ++ExactRDIVapplications;
1907 Result.Consistent = false;
1908 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1909 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1910 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1911 const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1912 const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1913 if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1914 return false;
1916 // find gcd
1917 APInt G, X, Y;
1918 APInt AM = ConstSrcCoeff->getAPInt();
1919 APInt BM = ConstDstCoeff->getAPInt();
1920 unsigned Bits = AM.getBitWidth();
1921 if (findGCD(Bits, AM, BM, ConstDelta->getAPInt(), G, X, Y)) {
1922 // gcd doesn't divide Delta, no dependence
1923 ++ExactRDIVindependence;
1924 return true;
1927 LLVM_DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n");
1929 // since SCEV construction seems to normalize, LM = 0
1930 APInt SrcUM(Bits, 1, true);
1931 bool SrcUMvalid = false;
1932 // SrcUM is perhaps unavailable, let's check
1933 if (const SCEVConstant *UpperBound =
1934 collectConstantUpperBound(SrcLoop, Delta->getType())) {
1935 SrcUM = UpperBound->getAPInt();
1936 LLVM_DEBUG(dbgs() << "\t SrcUM = " << SrcUM << "\n");
1937 SrcUMvalid = true;
1940 APInt DstUM(Bits, 1, true);
1941 bool DstUMvalid = false;
1942 // UM is perhaps unavailable, let's check
1943 if (const SCEVConstant *UpperBound =
1944 collectConstantUpperBound(DstLoop, Delta->getType())) {
1945 DstUM = UpperBound->getAPInt();
1946 LLVM_DEBUG(dbgs() << "\t DstUM = " << DstUM << "\n");
1947 DstUMvalid = true;
1950 APInt TU(APInt::getSignedMaxValue(Bits));
1951 APInt TL(APInt::getSignedMinValue(Bits));
1953 // test(BM/G, LM-X) and test(-BM/G, X-UM)
1954 APInt TMUL = BM.sdiv(G);
1955 if (TMUL.sgt(0)) {
1956 TL = maxAPInt(TL, ceilingOfQuotient(-X, TMUL));
1957 LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
1958 if (SrcUMvalid) {
1959 TU = minAPInt(TU, floorOfQuotient(SrcUM - X, TMUL));
1960 LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n");
1963 else {
1964 TU = minAPInt(TU, floorOfQuotient(-X, TMUL));
1965 LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n");
1966 if (SrcUMvalid) {
1967 TL = maxAPInt(TL, ceilingOfQuotient(SrcUM - X, TMUL));
1968 LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
1972 // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1973 TMUL = AM.sdiv(G);
1974 if (TMUL.sgt(0)) {
1975 TL = maxAPInt(TL, ceilingOfQuotient(-Y, TMUL));
1976 LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
1977 if (DstUMvalid) {
1978 TU = minAPInt(TU, floorOfQuotient(DstUM - Y, TMUL));
1979 LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n");
1982 else {
1983 TU = minAPInt(TU, floorOfQuotient(-Y, TMUL));
1984 LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n");
1985 if (DstUMvalid) {
1986 TL = maxAPInt(TL, ceilingOfQuotient(DstUM - Y, TMUL));
1987 LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
1990 if (TL.sgt(TU))
1991 ++ExactRDIVindependence;
1992 return TL.sgt(TU);
1996 // symbolicRDIVtest -
1997 // In Section 4.5 of the Practical Dependence Testing paper,the authors
1998 // introduce a special case of Banerjee's Inequalities (also called the
1999 // Extreme-Value Test) that can handle some of the SIV and RDIV cases,
2000 // particularly cases with symbolics. Since it's only able to disprove
2001 // dependence (not compute distances or directions), we'll use it as a
2002 // fall back for the other tests.
2004 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
2005 // where i and j are induction variables and c1 and c2 are loop invariants,
2006 // we can use the symbolic tests to disprove some dependences, serving as a
2007 // backup for the RDIV test. Note that i and j can be the same variable,
2008 // letting this test serve as a backup for the various SIV tests.
2010 // For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some
2011 // 0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized)
2012 // loop bounds for the i and j loops, respectively. So, ...
2014 // c1 + a1*i = c2 + a2*j
2015 // a1*i - a2*j = c2 - c1
2017 // To test for a dependence, we compute c2 - c1 and make sure it's in the
2018 // range of the maximum and minimum possible values of a1*i - a2*j.
2019 // Considering the signs of a1 and a2, we have 4 possible cases:
2021 // 1) If a1 >= 0 and a2 >= 0, then
2022 // a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0
2023 // -a2*N2 <= c2 - c1 <= a1*N1
2025 // 2) If a1 >= 0 and a2 <= 0, then
2026 // a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2
2027 // 0 <= c2 - c1 <= a1*N1 - a2*N2
2029 // 3) If a1 <= 0 and a2 >= 0, then
2030 // a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0
2031 // a1*N1 - a2*N2 <= c2 - c1 <= 0
2033 // 4) If a1 <= 0 and a2 <= 0, then
2034 // a1*N1 - a2*0 <= c2 - c1 <= a1*0 - a2*N2
2035 // a1*N1 <= c2 - c1 <= -a2*N2
2037 // return true if dependence disproved
2038 bool DependenceInfo::symbolicRDIVtest(const SCEV *A1, const SCEV *A2,
2039 const SCEV *C1, const SCEV *C2,
2040 const Loop *Loop1,
2041 const Loop *Loop2) const {
2042 ++SymbolicRDIVapplications;
2043 LLVM_DEBUG(dbgs() << "\ttry symbolic RDIV test\n");
2044 LLVM_DEBUG(dbgs() << "\t A1 = " << *A1);
2045 LLVM_DEBUG(dbgs() << ", type = " << *A1->getType() << "\n");
2046 LLVM_DEBUG(dbgs() << "\t A2 = " << *A2 << "\n");
2047 LLVM_DEBUG(dbgs() << "\t C1 = " << *C1 << "\n");
2048 LLVM_DEBUG(dbgs() << "\t C2 = " << *C2 << "\n");
2049 const SCEV *N1 = collectUpperBound(Loop1, A1->getType());
2050 const SCEV *N2 = collectUpperBound(Loop2, A1->getType());
2051 LLVM_DEBUG(if (N1) dbgs() << "\t N1 = " << *N1 << "\n");
2052 LLVM_DEBUG(if (N2) dbgs() << "\t N2 = " << *N2 << "\n");
2053 const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1);
2054 const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2);
2055 LLVM_DEBUG(dbgs() << "\t C2 - C1 = " << *C2_C1 << "\n");
2056 LLVM_DEBUG(dbgs() << "\t C1 - C2 = " << *C1_C2 << "\n");
2057 if (SE->isKnownNonNegative(A1)) {
2058 if (SE->isKnownNonNegative(A2)) {
2059 // A1 >= 0 && A2 >= 0
2060 if (N1) {
2061 // make sure that c2 - c1 <= a1*N1
2062 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2063 LLVM_DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n");
2064 if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) {
2065 ++SymbolicRDIVindependence;
2066 return true;
2069 if (N2) {
2070 // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2
2071 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2072 LLVM_DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n");
2073 if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) {
2074 ++SymbolicRDIVindependence;
2075 return true;
2079 else if (SE->isKnownNonPositive(A2)) {
2080 // a1 >= 0 && a2 <= 0
2081 if (N1 && N2) {
2082 // make sure that c2 - c1 <= a1*N1 - a2*N2
2083 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2084 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2085 const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
2086 LLVM_DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
2087 if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) {
2088 ++SymbolicRDIVindependence;
2089 return true;
2092 // make sure that 0 <= c2 - c1
2093 if (SE->isKnownNegative(C2_C1)) {
2094 ++SymbolicRDIVindependence;
2095 return true;
2099 else if (SE->isKnownNonPositive(A1)) {
2100 if (SE->isKnownNonNegative(A2)) {
2101 // a1 <= 0 && a2 >= 0
2102 if (N1 && N2) {
2103 // make sure that a1*N1 - a2*N2 <= c2 - c1
2104 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2105 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2106 const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
2107 LLVM_DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
2108 if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) {
2109 ++SymbolicRDIVindependence;
2110 return true;
2113 // make sure that c2 - c1 <= 0
2114 if (SE->isKnownPositive(C2_C1)) {
2115 ++SymbolicRDIVindependence;
2116 return true;
2119 else if (SE->isKnownNonPositive(A2)) {
2120 // a1 <= 0 && a2 <= 0
2121 if (N1) {
2122 // make sure that a1*N1 <= c2 - c1
2123 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2124 LLVM_DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n");
2125 if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) {
2126 ++SymbolicRDIVindependence;
2127 return true;
2130 if (N2) {
2131 // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2
2132 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2133 LLVM_DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n");
2134 if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) {
2135 ++SymbolicRDIVindependence;
2136 return true;
2141 return false;
2145 // testSIV -
2146 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i]
2147 // where i is an induction variable, c1 and c2 are loop invariant, and a1 and
2148 // a2 are constant, we attack it with an SIV test. While they can all be
2149 // solved with the Exact SIV test, it's worthwhile to use simpler tests when
2150 // they apply; they're cheaper and sometimes more precise.
2152 // Return true if dependence disproved.
2153 bool DependenceInfo::testSIV(const SCEV *Src, const SCEV *Dst, unsigned &Level,
2154 FullDependence &Result, Constraint &NewConstraint,
2155 const SCEV *&SplitIter) const {
2156 LLVM_DEBUG(dbgs() << " src = " << *Src << "\n");
2157 LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n");
2158 const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2159 const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2160 if (SrcAddRec && DstAddRec) {
2161 const SCEV *SrcConst = SrcAddRec->getStart();
2162 const SCEV *DstConst = DstAddRec->getStart();
2163 const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2164 const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2165 const Loop *CurLoop = SrcAddRec->getLoop();
2166 assert(CurLoop == DstAddRec->getLoop() &&
2167 "both loops in SIV should be same");
2168 Level = mapSrcLoop(CurLoop);
2169 bool disproven;
2170 if (SrcCoeff == DstCoeff)
2171 disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2172 Level, Result, NewConstraint);
2173 else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff))
2174 disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2175 Level, Result, NewConstraint, SplitIter);
2176 else
2177 disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop,
2178 Level, Result, NewConstraint);
2179 return disproven ||
2180 gcdMIVtest(Src, Dst, Result) ||
2181 symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop);
2183 if (SrcAddRec) {
2184 const SCEV *SrcConst = SrcAddRec->getStart();
2185 const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2186 const SCEV *DstConst = Dst;
2187 const Loop *CurLoop = SrcAddRec->getLoop();
2188 Level = mapSrcLoop(CurLoop);
2189 return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2190 Level, Result, NewConstraint) ||
2191 gcdMIVtest(Src, Dst, Result);
2193 if (DstAddRec) {
2194 const SCEV *DstConst = DstAddRec->getStart();
2195 const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2196 const SCEV *SrcConst = Src;
2197 const Loop *CurLoop = DstAddRec->getLoop();
2198 Level = mapDstLoop(CurLoop);
2199 return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst,
2200 CurLoop, Level, Result, NewConstraint) ||
2201 gcdMIVtest(Src, Dst, Result);
2203 llvm_unreachable("SIV test expected at least one AddRec");
2204 return false;
2208 // testRDIV -
2209 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
2210 // where i and j are induction variables, c1 and c2 are loop invariant,
2211 // and a1 and a2 are constant, we can solve it exactly with an easy adaptation
2212 // of the Exact SIV test, the Restricted Double Index Variable (RDIV) test.
2213 // It doesn't make sense to talk about distance or direction in this case,
2214 // so there's no point in making special versions of the Strong SIV test or
2215 // the Weak-crossing SIV test.
2217 // With minor algebra, this test can also be used for things like
2218 // [c1 + a1*i + a2*j][c2].
2220 // Return true if dependence disproved.
2221 bool DependenceInfo::testRDIV(const SCEV *Src, const SCEV *Dst,
2222 FullDependence &Result) const {
2223 // we have 3 possible situations here:
2224 // 1) [a*i + b] and [c*j + d]
2225 // 2) [a*i + c*j + b] and [d]
2226 // 3) [b] and [a*i + c*j + d]
2227 // We need to find what we've got and get organized
2229 const SCEV *SrcConst, *DstConst;
2230 const SCEV *SrcCoeff, *DstCoeff;
2231 const Loop *SrcLoop, *DstLoop;
2233 LLVM_DEBUG(dbgs() << " src = " << *Src << "\n");
2234 LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n");
2235 const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2236 const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2237 if (SrcAddRec && DstAddRec) {
2238 SrcConst = SrcAddRec->getStart();
2239 SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2240 SrcLoop = SrcAddRec->getLoop();
2241 DstConst = DstAddRec->getStart();
2242 DstCoeff = DstAddRec->getStepRecurrence(*SE);
2243 DstLoop = DstAddRec->getLoop();
2245 else if (SrcAddRec) {
2246 if (const SCEVAddRecExpr *tmpAddRec =
2247 dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) {
2248 SrcConst = tmpAddRec->getStart();
2249 SrcCoeff = tmpAddRec->getStepRecurrence(*SE);
2250 SrcLoop = tmpAddRec->getLoop();
2251 DstConst = Dst;
2252 DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE));
2253 DstLoop = SrcAddRec->getLoop();
2255 else
2256 llvm_unreachable("RDIV reached by surprising SCEVs");
2258 else if (DstAddRec) {
2259 if (const SCEVAddRecExpr *tmpAddRec =
2260 dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) {
2261 DstConst = tmpAddRec->getStart();
2262 DstCoeff = tmpAddRec->getStepRecurrence(*SE);
2263 DstLoop = tmpAddRec->getLoop();
2264 SrcConst = Src;
2265 SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE));
2266 SrcLoop = DstAddRec->getLoop();
2268 else
2269 llvm_unreachable("RDIV reached by surprising SCEVs");
2271 else
2272 llvm_unreachable("RDIV expected at least one AddRec");
2273 return exactRDIVtest(SrcCoeff, DstCoeff,
2274 SrcConst, DstConst,
2275 SrcLoop, DstLoop,
2276 Result) ||
2277 gcdMIVtest(Src, Dst, Result) ||
2278 symbolicRDIVtest(SrcCoeff, DstCoeff,
2279 SrcConst, DstConst,
2280 SrcLoop, DstLoop);
2284 // Tests the single-subscript MIV pair (Src and Dst) for dependence.
2285 // Return true if dependence disproved.
2286 // Can sometimes refine direction vectors.
2287 bool DependenceInfo::testMIV(const SCEV *Src, const SCEV *Dst,
2288 const SmallBitVector &Loops,
2289 FullDependence &Result) const {
2290 LLVM_DEBUG(dbgs() << " src = " << *Src << "\n");
2291 LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n");
2292 Result.Consistent = false;
2293 return gcdMIVtest(Src, Dst, Result) ||
2294 banerjeeMIVtest(Src, Dst, Loops, Result);
2298 // Given a product, e.g., 10*X*Y, returns the first constant operand,
2299 // in this case 10. If there is no constant part, returns NULL.
2300 static
2301 const SCEVConstant *getConstantPart(const SCEV *Expr) {
2302 if (const auto *Constant = dyn_cast<SCEVConstant>(Expr))
2303 return Constant;
2304 else if (const auto *Product = dyn_cast<SCEVMulExpr>(Expr))
2305 if (const auto *Constant = dyn_cast<SCEVConstant>(Product->getOperand(0)))
2306 return Constant;
2307 return nullptr;
2311 //===----------------------------------------------------------------------===//
2312 // gcdMIVtest -
2313 // Tests an MIV subscript pair for dependence.
2314 // Returns true if any possible dependence is disproved.
2315 // Marks the result as inconsistent.
2316 // Can sometimes disprove the equal direction for 1 or more loops,
2317 // as discussed in Michael Wolfe's book,
2318 // High Performance Compilers for Parallel Computing, page 235.
2320 // We spend some effort (code!) to handle cases like
2321 // [10*i + 5*N*j + 15*M + 6], where i and j are induction variables,
2322 // but M and N are just loop-invariant variables.
2323 // This should help us handle linearized subscripts;
2324 // also makes this test a useful backup to the various SIV tests.
2326 // It occurs to me that the presence of loop-invariant variables
2327 // changes the nature of the test from "greatest common divisor"
2328 // to "a common divisor".
2329 bool DependenceInfo::gcdMIVtest(const SCEV *Src, const SCEV *Dst,
2330 FullDependence &Result) const {
2331 LLVM_DEBUG(dbgs() << "starting gcd\n");
2332 ++GCDapplications;
2333 unsigned BitWidth = SE->getTypeSizeInBits(Src->getType());
2334 APInt RunningGCD = APInt::getNullValue(BitWidth);
2336 // Examine Src coefficients.
2337 // Compute running GCD and record source constant.
2338 // Because we're looking for the constant at the end of the chain,
2339 // we can't quit the loop just because the GCD == 1.
2340 const SCEV *Coefficients = Src;
2341 while (const SCEVAddRecExpr *AddRec =
2342 dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2343 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2344 // If the coefficient is the product of a constant and other stuff,
2345 // we can use the constant in the GCD computation.
2346 const auto *Constant = getConstantPart(Coeff);
2347 if (!Constant)
2348 return false;
2349 APInt ConstCoeff = Constant->getAPInt();
2350 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2351 Coefficients = AddRec->getStart();
2353 const SCEV *SrcConst = Coefficients;
2355 // Examine Dst coefficients.
2356 // Compute running GCD and record destination constant.
2357 // Because we're looking for the constant at the end of the chain,
2358 // we can't quit the loop just because the GCD == 1.
2359 Coefficients = Dst;
2360 while (const SCEVAddRecExpr *AddRec =
2361 dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2362 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2363 // If the coefficient is the product of a constant and other stuff,
2364 // we can use the constant in the GCD computation.
2365 const auto *Constant = getConstantPart(Coeff);
2366 if (!Constant)
2367 return false;
2368 APInt ConstCoeff = Constant->getAPInt();
2369 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2370 Coefficients = AddRec->getStart();
2372 const SCEV *DstConst = Coefficients;
2374 APInt ExtraGCD = APInt::getNullValue(BitWidth);
2375 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
2376 LLVM_DEBUG(dbgs() << " Delta = " << *Delta << "\n");
2377 const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta);
2378 if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) {
2379 // If Delta is a sum of products, we may be able to make further progress.
2380 for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) {
2381 const SCEV *Operand = Sum->getOperand(Op);
2382 if (isa<SCEVConstant>(Operand)) {
2383 assert(!Constant && "Surprised to find multiple constants");
2384 Constant = cast<SCEVConstant>(Operand);
2386 else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) {
2387 // Search for constant operand to participate in GCD;
2388 // If none found; return false.
2389 const SCEVConstant *ConstOp = getConstantPart(Product);
2390 if (!ConstOp)
2391 return false;
2392 APInt ConstOpValue = ConstOp->getAPInt();
2393 ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD,
2394 ConstOpValue.abs());
2396 else
2397 return false;
2400 if (!Constant)
2401 return false;
2402 APInt ConstDelta = cast<SCEVConstant>(Constant)->getAPInt();
2403 LLVM_DEBUG(dbgs() << " ConstDelta = " << ConstDelta << "\n");
2404 if (ConstDelta == 0)
2405 return false;
2406 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD);
2407 LLVM_DEBUG(dbgs() << " RunningGCD = " << RunningGCD << "\n");
2408 APInt Remainder = ConstDelta.srem(RunningGCD);
2409 if (Remainder != 0) {
2410 ++GCDindependence;
2411 return true;
2414 // Try to disprove equal directions.
2415 // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1],
2416 // the code above can't disprove the dependence because the GCD = 1.
2417 // So we consider what happen if i = i' and what happens if j = j'.
2418 // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1],
2419 // which is infeasible, so we can disallow the = direction for the i level.
2420 // Setting j = j' doesn't help matters, so we end up with a direction vector
2421 // of [<>, *]
2423 // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5],
2424 // we need to remember that the constant part is 5 and the RunningGCD should
2425 // be initialized to ExtraGCD = 30.
2426 LLVM_DEBUG(dbgs() << " ExtraGCD = " << ExtraGCD << '\n');
2428 bool Improved = false;
2429 Coefficients = Src;
2430 while (const SCEVAddRecExpr *AddRec =
2431 dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2432 Coefficients = AddRec->getStart();
2433 const Loop *CurLoop = AddRec->getLoop();
2434 RunningGCD = ExtraGCD;
2435 const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE);
2436 const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff);
2437 const SCEV *Inner = Src;
2438 while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2439 AddRec = cast<SCEVAddRecExpr>(Inner);
2440 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2441 if (CurLoop == AddRec->getLoop())
2442 ; // SrcCoeff == Coeff
2443 else {
2444 // If the coefficient is the product of a constant and other stuff,
2445 // we can use the constant in the GCD computation.
2446 Constant = getConstantPart(Coeff);
2447 if (!Constant)
2448 return false;
2449 APInt ConstCoeff = Constant->getAPInt();
2450 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2452 Inner = AddRec->getStart();
2454 Inner = Dst;
2455 while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2456 AddRec = cast<SCEVAddRecExpr>(Inner);
2457 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2458 if (CurLoop == AddRec->getLoop())
2459 DstCoeff = Coeff;
2460 else {
2461 // If the coefficient is the product of a constant and other stuff,
2462 // we can use the constant in the GCD computation.
2463 Constant = getConstantPart(Coeff);
2464 if (!Constant)
2465 return false;
2466 APInt ConstCoeff = Constant->getAPInt();
2467 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2469 Inner = AddRec->getStart();
2471 Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff);
2472 // If the coefficient is the product of a constant and other stuff,
2473 // we can use the constant in the GCD computation.
2474 Constant = getConstantPart(Delta);
2475 if (!Constant)
2476 // The difference of the two coefficients might not be a product
2477 // or constant, in which case we give up on this direction.
2478 continue;
2479 APInt ConstCoeff = Constant->getAPInt();
2480 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2481 LLVM_DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n");
2482 if (RunningGCD != 0) {
2483 Remainder = ConstDelta.srem(RunningGCD);
2484 LLVM_DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n");
2485 if (Remainder != 0) {
2486 unsigned Level = mapSrcLoop(CurLoop);
2487 Result.DV[Level - 1].Direction &= unsigned(~Dependence::DVEntry::EQ);
2488 Improved = true;
2492 if (Improved)
2493 ++GCDsuccesses;
2494 LLVM_DEBUG(dbgs() << "all done\n");
2495 return false;
2499 //===----------------------------------------------------------------------===//
2500 // banerjeeMIVtest -
2501 // Use Banerjee's Inequalities to test an MIV subscript pair.
2502 // (Wolfe, in the race-car book, calls this the Extreme Value Test.)
2503 // Generally follows the discussion in Section 2.5.2 of
2505 // Optimizing Supercompilers for Supercomputers
2506 // Michael Wolfe
2508 // The inequalities given on page 25 are simplified in that loops are
2509 // normalized so that the lower bound is always 0 and the stride is always 1.
2510 // For example, Wolfe gives
2512 // LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2514 // where A_k is the coefficient of the kth index in the source subscript,
2515 // B_k is the coefficient of the kth index in the destination subscript,
2516 // U_k is the upper bound of the kth index, L_k is the lower bound of the Kth
2517 // index, and N_k is the stride of the kth index. Since all loops are normalized
2518 // by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the
2519 // equation to
2521 // LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1
2522 // = (A^-_k - B_k)^- (U_k - 1) - B_k
2524 // Similar simplifications are possible for the other equations.
2526 // When we can't determine the number of iterations for a loop,
2527 // we use NULL as an indicator for the worst case, infinity.
2528 // When computing the upper bound, NULL denotes +inf;
2529 // for the lower bound, NULL denotes -inf.
2531 // Return true if dependence disproved.
2532 bool DependenceInfo::banerjeeMIVtest(const SCEV *Src, const SCEV *Dst,
2533 const SmallBitVector &Loops,
2534 FullDependence &Result) const {
2535 LLVM_DEBUG(dbgs() << "starting Banerjee\n");
2536 ++BanerjeeApplications;
2537 LLVM_DEBUG(dbgs() << " Src = " << *Src << '\n');
2538 const SCEV *A0;
2539 CoefficientInfo *A = collectCoeffInfo(Src, true, A0);
2540 LLVM_DEBUG(dbgs() << " Dst = " << *Dst << '\n');
2541 const SCEV *B0;
2542 CoefficientInfo *B = collectCoeffInfo(Dst, false, B0);
2543 BoundInfo *Bound = new BoundInfo[MaxLevels + 1];
2544 const SCEV *Delta = SE->getMinusSCEV(B0, A0);
2545 LLVM_DEBUG(dbgs() << "\tDelta = " << *Delta << '\n');
2547 // Compute bounds for all the * directions.
2548 LLVM_DEBUG(dbgs() << "\tBounds[*]\n");
2549 for (unsigned K = 1; K <= MaxLevels; ++K) {
2550 Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations;
2551 Bound[K].Direction = Dependence::DVEntry::ALL;
2552 Bound[K].DirSet = Dependence::DVEntry::NONE;
2553 findBoundsALL(A, B, Bound, K);
2554 #ifndef NDEBUG
2555 LLVM_DEBUG(dbgs() << "\t " << K << '\t');
2556 if (Bound[K].Lower[Dependence::DVEntry::ALL])
2557 LLVM_DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t');
2558 else
2559 LLVM_DEBUG(dbgs() << "-inf\t");
2560 if (Bound[K].Upper[Dependence::DVEntry::ALL])
2561 LLVM_DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n');
2562 else
2563 LLVM_DEBUG(dbgs() << "+inf\n");
2564 #endif
2567 // Test the *, *, *, ... case.
2568 bool Disproved = false;
2569 if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) {
2570 // Explore the direction vector hierarchy.
2571 unsigned DepthExpanded = 0;
2572 unsigned NewDeps = exploreDirections(1, A, B, Bound,
2573 Loops, DepthExpanded, Delta);
2574 if (NewDeps > 0) {
2575 bool Improved = false;
2576 for (unsigned K = 1; K <= CommonLevels; ++K) {
2577 if (Loops[K]) {
2578 unsigned Old = Result.DV[K - 1].Direction;
2579 Result.DV[K - 1].Direction = Old & Bound[K].DirSet;
2580 Improved |= Old != Result.DV[K - 1].Direction;
2581 if (!Result.DV[K - 1].Direction) {
2582 Improved = false;
2583 Disproved = true;
2584 break;
2588 if (Improved)
2589 ++BanerjeeSuccesses;
2591 else {
2592 ++BanerjeeIndependence;
2593 Disproved = true;
2596 else {
2597 ++BanerjeeIndependence;
2598 Disproved = true;
2600 delete [] Bound;
2601 delete [] A;
2602 delete [] B;
2603 return Disproved;
2607 // Hierarchically expands the direction vector
2608 // search space, combining the directions of discovered dependences
2609 // in the DirSet field of Bound. Returns the number of distinct
2610 // dependences discovered. If the dependence is disproved,
2611 // it will return 0.
2612 unsigned DependenceInfo::exploreDirections(unsigned Level, CoefficientInfo *A,
2613 CoefficientInfo *B, BoundInfo *Bound,
2614 const SmallBitVector &Loops,
2615 unsigned &DepthExpanded,
2616 const SCEV *Delta) const {
2617 if (Level > CommonLevels) {
2618 // record result
2619 LLVM_DEBUG(dbgs() << "\t[");
2620 for (unsigned K = 1; K <= CommonLevels; ++K) {
2621 if (Loops[K]) {
2622 Bound[K].DirSet |= Bound[K].Direction;
2623 #ifndef NDEBUG
2624 switch (Bound[K].Direction) {
2625 case Dependence::DVEntry::LT:
2626 LLVM_DEBUG(dbgs() << " <");
2627 break;
2628 case Dependence::DVEntry::EQ:
2629 LLVM_DEBUG(dbgs() << " =");
2630 break;
2631 case Dependence::DVEntry::GT:
2632 LLVM_DEBUG(dbgs() << " >");
2633 break;
2634 case Dependence::DVEntry::ALL:
2635 LLVM_DEBUG(dbgs() << " *");
2636 break;
2637 default:
2638 llvm_unreachable("unexpected Bound[K].Direction");
2640 #endif
2643 LLVM_DEBUG(dbgs() << " ]\n");
2644 return 1;
2646 if (Loops[Level]) {
2647 if (Level > DepthExpanded) {
2648 DepthExpanded = Level;
2649 // compute bounds for <, =, > at current level
2650 findBoundsLT(A, B, Bound, Level);
2651 findBoundsGT(A, B, Bound, Level);
2652 findBoundsEQ(A, B, Bound, Level);
2653 #ifndef NDEBUG
2654 LLVM_DEBUG(dbgs() << "\tBound for level = " << Level << '\n');
2655 LLVM_DEBUG(dbgs() << "\t <\t");
2656 if (Bound[Level].Lower[Dependence::DVEntry::LT])
2657 LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT]
2658 << '\t');
2659 else
2660 LLVM_DEBUG(dbgs() << "-inf\t");
2661 if (Bound[Level].Upper[Dependence::DVEntry::LT])
2662 LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT]
2663 << '\n');
2664 else
2665 LLVM_DEBUG(dbgs() << "+inf\n");
2666 LLVM_DEBUG(dbgs() << "\t =\t");
2667 if (Bound[Level].Lower[Dependence::DVEntry::EQ])
2668 LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ]
2669 << '\t');
2670 else
2671 LLVM_DEBUG(dbgs() << "-inf\t");
2672 if (Bound[Level].Upper[Dependence::DVEntry::EQ])
2673 LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ]
2674 << '\n');
2675 else
2676 LLVM_DEBUG(dbgs() << "+inf\n");
2677 LLVM_DEBUG(dbgs() << "\t >\t");
2678 if (Bound[Level].Lower[Dependence::DVEntry::GT])
2679 LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT]
2680 << '\t');
2681 else
2682 LLVM_DEBUG(dbgs() << "-inf\t");
2683 if (Bound[Level].Upper[Dependence::DVEntry::GT])
2684 LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT]
2685 << '\n');
2686 else
2687 LLVM_DEBUG(dbgs() << "+inf\n");
2688 #endif
2691 unsigned NewDeps = 0;
2693 // test bounds for <, *, *, ...
2694 if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta))
2695 NewDeps += exploreDirections(Level + 1, A, B, Bound,
2696 Loops, DepthExpanded, Delta);
2698 // Test bounds for =, *, *, ...
2699 if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta))
2700 NewDeps += exploreDirections(Level + 1, A, B, Bound,
2701 Loops, DepthExpanded, Delta);
2703 // test bounds for >, *, *, ...
2704 if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta))
2705 NewDeps += exploreDirections(Level + 1, A, B, Bound,
2706 Loops, DepthExpanded, Delta);
2708 Bound[Level].Direction = Dependence::DVEntry::ALL;
2709 return NewDeps;
2711 else
2712 return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta);
2716 // Returns true iff the current bounds are plausible.
2717 bool DependenceInfo::testBounds(unsigned char DirKind, unsigned Level,
2718 BoundInfo *Bound, const SCEV *Delta) const {
2719 Bound[Level].Direction = DirKind;
2720 if (const SCEV *LowerBound = getLowerBound(Bound))
2721 if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta))
2722 return false;
2723 if (const SCEV *UpperBound = getUpperBound(Bound))
2724 if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound))
2725 return false;
2726 return true;
2730 // Computes the upper and lower bounds for level K
2731 // using the * direction. Records them in Bound.
2732 // Wolfe gives the equations
2734 // LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k
2735 // UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k
2737 // Since we normalize loops, we can simplify these equations to
2739 // LB^*_k = (A^-_k - B^+_k)U_k
2740 // UB^*_k = (A^+_k - B^-_k)U_k
2742 // We must be careful to handle the case where the upper bound is unknown.
2743 // Note that the lower bound is always <= 0
2744 // and the upper bound is always >= 0.
2745 void DependenceInfo::findBoundsALL(CoefficientInfo *A, CoefficientInfo *B,
2746 BoundInfo *Bound, unsigned K) const {
2747 Bound[K].Lower[Dependence::DVEntry::ALL] = nullptr; // Default value = -infinity.
2748 Bound[K].Upper[Dependence::DVEntry::ALL] = nullptr; // Default value = +infinity.
2749 if (Bound[K].Iterations) {
2750 Bound[K].Lower[Dependence::DVEntry::ALL] =
2751 SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart),
2752 Bound[K].Iterations);
2753 Bound[K].Upper[Dependence::DVEntry::ALL] =
2754 SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart),
2755 Bound[K].Iterations);
2757 else {
2758 // If the difference is 0, we won't need to know the number of iterations.
2759 if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart))
2760 Bound[K].Lower[Dependence::DVEntry::ALL] =
2761 SE->getZero(A[K].Coeff->getType());
2762 if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart))
2763 Bound[K].Upper[Dependence::DVEntry::ALL] =
2764 SE->getZero(A[K].Coeff->getType());
2769 // Computes the upper and lower bounds for level K
2770 // using the = direction. Records them in Bound.
2771 // Wolfe gives the equations
2773 // LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k
2774 // UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k
2776 // Since we normalize loops, we can simplify these equations to
2778 // LB^=_k = (A_k - B_k)^- U_k
2779 // UB^=_k = (A_k - B_k)^+ U_k
2781 // We must be careful to handle the case where the upper bound is unknown.
2782 // Note that the lower bound is always <= 0
2783 // and the upper bound is always >= 0.
2784 void DependenceInfo::findBoundsEQ(CoefficientInfo *A, CoefficientInfo *B,
2785 BoundInfo *Bound, unsigned K) const {
2786 Bound[K].Lower[Dependence::DVEntry::EQ] = nullptr; // Default value = -infinity.
2787 Bound[K].Upper[Dependence::DVEntry::EQ] = nullptr; // Default value = +infinity.
2788 if (Bound[K].Iterations) {
2789 const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2790 const SCEV *NegativePart = getNegativePart(Delta);
2791 Bound[K].Lower[Dependence::DVEntry::EQ] =
2792 SE->getMulExpr(NegativePart, Bound[K].Iterations);
2793 const SCEV *PositivePart = getPositivePart(Delta);
2794 Bound[K].Upper[Dependence::DVEntry::EQ] =
2795 SE->getMulExpr(PositivePart, Bound[K].Iterations);
2797 else {
2798 // If the positive/negative part of the difference is 0,
2799 // we won't need to know the number of iterations.
2800 const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2801 const SCEV *NegativePart = getNegativePart(Delta);
2802 if (NegativePart->isZero())
2803 Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero
2804 const SCEV *PositivePart = getPositivePart(Delta);
2805 if (PositivePart->isZero())
2806 Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero
2811 // Computes the upper and lower bounds for level K
2812 // using the < direction. Records them in Bound.
2813 // Wolfe gives the equations
2815 // LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2816 // UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2818 // Since we normalize loops, we can simplify these equations to
2820 // LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k
2821 // UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k
2823 // We must be careful to handle the case where the upper bound is unknown.
2824 void DependenceInfo::findBoundsLT(CoefficientInfo *A, CoefficientInfo *B,
2825 BoundInfo *Bound, unsigned K) const {
2826 Bound[K].Lower[Dependence::DVEntry::LT] = nullptr; // Default value = -infinity.
2827 Bound[K].Upper[Dependence::DVEntry::LT] = nullptr; // Default value = +infinity.
2828 if (Bound[K].Iterations) {
2829 const SCEV *Iter_1 = SE->getMinusSCEV(
2830 Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
2831 const SCEV *NegPart =
2832 getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2833 Bound[K].Lower[Dependence::DVEntry::LT] =
2834 SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff);
2835 const SCEV *PosPart =
2836 getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2837 Bound[K].Upper[Dependence::DVEntry::LT] =
2838 SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff);
2840 else {
2841 // If the positive/negative part of the difference is 0,
2842 // we won't need to know the number of iterations.
2843 const SCEV *NegPart =
2844 getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2845 if (NegPart->isZero())
2846 Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2847 const SCEV *PosPart =
2848 getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2849 if (PosPart->isZero())
2850 Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2855 // Computes the upper and lower bounds for level K
2856 // using the > direction. Records them in Bound.
2857 // Wolfe gives the equations
2859 // LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2860 // UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2862 // Since we normalize loops, we can simplify these equations to
2864 // LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k
2865 // UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k
2867 // We must be careful to handle the case where the upper bound is unknown.
2868 void DependenceInfo::findBoundsGT(CoefficientInfo *A, CoefficientInfo *B,
2869 BoundInfo *Bound, unsigned K) const {
2870 Bound[K].Lower[Dependence::DVEntry::GT] = nullptr; // Default value = -infinity.
2871 Bound[K].Upper[Dependence::DVEntry::GT] = nullptr; // Default value = +infinity.
2872 if (Bound[K].Iterations) {
2873 const SCEV *Iter_1 = SE->getMinusSCEV(
2874 Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
2875 const SCEV *NegPart =
2876 getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2877 Bound[K].Lower[Dependence::DVEntry::GT] =
2878 SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff);
2879 const SCEV *PosPart =
2880 getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2881 Bound[K].Upper[Dependence::DVEntry::GT] =
2882 SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff);
2884 else {
2885 // If the positive/negative part of the difference is 0,
2886 // we won't need to know the number of iterations.
2887 const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2888 if (NegPart->isZero())
2889 Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff;
2890 const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2891 if (PosPart->isZero())
2892 Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff;
2897 // X^+ = max(X, 0)
2898 const SCEV *DependenceInfo::getPositivePart(const SCEV *X) const {
2899 return SE->getSMaxExpr(X, SE->getZero(X->getType()));
2903 // X^- = min(X, 0)
2904 const SCEV *DependenceInfo::getNegativePart(const SCEV *X) const {
2905 return SE->getSMinExpr(X, SE->getZero(X->getType()));
2909 // Walks through the subscript,
2910 // collecting each coefficient, the associated loop bounds,
2911 // and recording its positive and negative parts for later use.
2912 DependenceInfo::CoefficientInfo *
2913 DependenceInfo::collectCoeffInfo(const SCEV *Subscript, bool SrcFlag,
2914 const SCEV *&Constant) const {
2915 const SCEV *Zero = SE->getZero(Subscript->getType());
2916 CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1];
2917 for (unsigned K = 1; K <= MaxLevels; ++K) {
2918 CI[K].Coeff = Zero;
2919 CI[K].PosPart = Zero;
2920 CI[K].NegPart = Zero;
2921 CI[K].Iterations = nullptr;
2923 while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) {
2924 const Loop *L = AddRec->getLoop();
2925 unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L);
2926 CI[K].Coeff = AddRec->getStepRecurrence(*SE);
2927 CI[K].PosPart = getPositivePart(CI[K].Coeff);
2928 CI[K].NegPart = getNegativePart(CI[K].Coeff);
2929 CI[K].Iterations = collectUpperBound(L, Subscript->getType());
2930 Subscript = AddRec->getStart();
2932 Constant = Subscript;
2933 #ifndef NDEBUG
2934 LLVM_DEBUG(dbgs() << "\tCoefficient Info\n");
2935 for (unsigned K = 1; K <= MaxLevels; ++K) {
2936 LLVM_DEBUG(dbgs() << "\t " << K << "\t" << *CI[K].Coeff);
2937 LLVM_DEBUG(dbgs() << "\tPos Part = ");
2938 LLVM_DEBUG(dbgs() << *CI[K].PosPart);
2939 LLVM_DEBUG(dbgs() << "\tNeg Part = ");
2940 LLVM_DEBUG(dbgs() << *CI[K].NegPart);
2941 LLVM_DEBUG(dbgs() << "\tUpper Bound = ");
2942 if (CI[K].Iterations)
2943 LLVM_DEBUG(dbgs() << *CI[K].Iterations);
2944 else
2945 LLVM_DEBUG(dbgs() << "+inf");
2946 LLVM_DEBUG(dbgs() << '\n');
2948 LLVM_DEBUG(dbgs() << "\t Constant = " << *Subscript << '\n');
2949 #endif
2950 return CI;
2954 // Looks through all the bounds info and
2955 // computes the lower bound given the current direction settings
2956 // at each level. If the lower bound for any level is -inf,
2957 // the result is -inf.
2958 const SCEV *DependenceInfo::getLowerBound(BoundInfo *Bound) const {
2959 const SCEV *Sum = Bound[1].Lower[Bound[1].Direction];
2960 for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2961 if (Bound[K].Lower[Bound[K].Direction])
2962 Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]);
2963 else
2964 Sum = nullptr;
2966 return Sum;
2970 // Looks through all the bounds info and
2971 // computes the upper bound given the current direction settings
2972 // at each level. If the upper bound at any level is +inf,
2973 // the result is +inf.
2974 const SCEV *DependenceInfo::getUpperBound(BoundInfo *Bound) const {
2975 const SCEV *Sum = Bound[1].Upper[Bound[1].Direction];
2976 for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
2977 if (Bound[K].Upper[Bound[K].Direction])
2978 Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]);
2979 else
2980 Sum = nullptr;
2982 return Sum;
2986 //===----------------------------------------------------------------------===//
2987 // Constraint manipulation for Delta test.
2989 // Given a linear SCEV,
2990 // return the coefficient (the step)
2991 // corresponding to the specified loop.
2992 // If there isn't one, return 0.
2993 // For example, given a*i + b*j + c*k, finding the coefficient
2994 // corresponding to the j loop would yield b.
2995 const SCEV *DependenceInfo::findCoefficient(const SCEV *Expr,
2996 const Loop *TargetLoop) const {
2997 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
2998 if (!AddRec)
2999 return SE->getZero(Expr->getType());
3000 if (AddRec->getLoop() == TargetLoop)
3001 return AddRec->getStepRecurrence(*SE);
3002 return findCoefficient(AddRec->getStart(), TargetLoop);
3006 // Given a linear SCEV,
3007 // return the SCEV given by zeroing out the coefficient
3008 // corresponding to the specified loop.
3009 // For example, given a*i + b*j + c*k, zeroing the coefficient
3010 // corresponding to the j loop would yield a*i + c*k.
3011 const SCEV *DependenceInfo::zeroCoefficient(const SCEV *Expr,
3012 const Loop *TargetLoop) const {
3013 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
3014 if (!AddRec)
3015 return Expr; // ignore
3016 if (AddRec->getLoop() == TargetLoop)
3017 return AddRec->getStart();
3018 return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop),
3019 AddRec->getStepRecurrence(*SE),
3020 AddRec->getLoop(),
3021 AddRec->getNoWrapFlags());
3025 // Given a linear SCEV Expr,
3026 // return the SCEV given by adding some Value to the
3027 // coefficient corresponding to the specified TargetLoop.
3028 // For example, given a*i + b*j + c*k, adding 1 to the coefficient
3029 // corresponding to the j loop would yield a*i + (b+1)*j + c*k.
3030 const SCEV *DependenceInfo::addToCoefficient(const SCEV *Expr,
3031 const Loop *TargetLoop,
3032 const SCEV *Value) const {
3033 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
3034 if (!AddRec) // create a new addRec
3035 return SE->getAddRecExpr(Expr,
3036 Value,
3037 TargetLoop,
3038 SCEV::FlagAnyWrap); // Worst case, with no info.
3039 if (AddRec->getLoop() == TargetLoop) {
3040 const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value);
3041 if (Sum->isZero())
3042 return AddRec->getStart();
3043 return SE->getAddRecExpr(AddRec->getStart(),
3044 Sum,
3045 AddRec->getLoop(),
3046 AddRec->getNoWrapFlags());
3048 if (SE->isLoopInvariant(AddRec, TargetLoop))
3049 return SE->getAddRecExpr(AddRec, Value, TargetLoop, SCEV::FlagAnyWrap);
3050 return SE->getAddRecExpr(
3051 addToCoefficient(AddRec->getStart(), TargetLoop, Value),
3052 AddRec->getStepRecurrence(*SE), AddRec->getLoop(),
3053 AddRec->getNoWrapFlags());
3057 // Review the constraints, looking for opportunities
3058 // to simplify a subscript pair (Src and Dst).
3059 // Return true if some simplification occurs.
3060 // If the simplification isn't exact (that is, if it is conservative
3061 // in terms of dependence), set consistent to false.
3062 // Corresponds to Figure 5 from the paper
3064 // Practical Dependence Testing
3065 // Goff, Kennedy, Tseng
3066 // PLDI 1991
3067 bool DependenceInfo::propagate(const SCEV *&Src, const SCEV *&Dst,
3068 SmallBitVector &Loops,
3069 SmallVectorImpl<Constraint> &Constraints,
3070 bool &Consistent) {
3071 bool Result = false;
3072 for (unsigned LI : Loops.set_bits()) {
3073 LLVM_DEBUG(dbgs() << "\t Constraint[" << LI << "] is");
3074 LLVM_DEBUG(Constraints[LI].dump(dbgs()));
3075 if (Constraints[LI].isDistance())
3076 Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent);
3077 else if (Constraints[LI].isLine())
3078 Result |= propagateLine(Src, Dst, Constraints[LI], Consistent);
3079 else if (Constraints[LI].isPoint())
3080 Result |= propagatePoint(Src, Dst, Constraints[LI]);
3082 return Result;
3086 // Attempt to propagate a distance
3087 // constraint into a subscript pair (Src and Dst).
3088 // Return true if some simplification occurs.
3089 // If the simplification isn't exact (that is, if it is conservative
3090 // in terms of dependence), set consistent to false.
3091 bool DependenceInfo::propagateDistance(const SCEV *&Src, const SCEV *&Dst,
3092 Constraint &CurConstraint,
3093 bool &Consistent) {
3094 const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3095 LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3096 const SCEV *A_K = findCoefficient(Src, CurLoop);
3097 if (A_K->isZero())
3098 return false;
3099 const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD());
3100 Src = SE->getMinusSCEV(Src, DA_K);
3101 Src = zeroCoefficient(Src, CurLoop);
3102 LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3103 LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3104 Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K));
3105 LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3106 if (!findCoefficient(Dst, CurLoop)->isZero())
3107 Consistent = false;
3108 return true;
3112 // Attempt to propagate a line
3113 // constraint into a subscript pair (Src and Dst).
3114 // Return true if some simplification occurs.
3115 // If the simplification isn't exact (that is, if it is conservative
3116 // in terms of dependence), set consistent to false.
3117 bool DependenceInfo::propagateLine(const SCEV *&Src, const SCEV *&Dst,
3118 Constraint &CurConstraint,
3119 bool &Consistent) {
3120 const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3121 const SCEV *A = CurConstraint.getA();
3122 const SCEV *B = CurConstraint.getB();
3123 const SCEV *C = CurConstraint.getC();
3124 LLVM_DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C
3125 << "\n");
3126 LLVM_DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n");
3127 LLVM_DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n");
3128 if (A->isZero()) {
3129 const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B);
3130 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3131 if (!Bconst || !Cconst) return false;
3132 APInt Beta = Bconst->getAPInt();
3133 APInt Charlie = Cconst->getAPInt();
3134 APInt CdivB = Charlie.sdiv(Beta);
3135 assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B");
3136 const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3137 // Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3138 Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3139 Dst = zeroCoefficient(Dst, CurLoop);
3140 if (!findCoefficient(Src, CurLoop)->isZero())
3141 Consistent = false;
3143 else if (B->isZero()) {
3144 const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3145 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3146 if (!Aconst || !Cconst) return false;
3147 APInt Alpha = Aconst->getAPInt();
3148 APInt Charlie = Cconst->getAPInt();
3149 APInt CdivA = Charlie.sdiv(Alpha);
3150 assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3151 const SCEV *A_K = findCoefficient(Src, CurLoop);
3152 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3153 Src = zeroCoefficient(Src, CurLoop);
3154 if (!findCoefficient(Dst, CurLoop)->isZero())
3155 Consistent = false;
3157 else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) {
3158 const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3159 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3160 if (!Aconst || !Cconst) return false;
3161 APInt Alpha = Aconst->getAPInt();
3162 APInt Charlie = Cconst->getAPInt();
3163 APInt CdivA = Charlie.sdiv(Alpha);
3164 assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3165 const SCEV *A_K = findCoefficient(Src, CurLoop);
3166 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3167 Src = zeroCoefficient(Src, CurLoop);
3168 Dst = addToCoefficient(Dst, CurLoop, A_K);
3169 if (!findCoefficient(Dst, CurLoop)->isZero())
3170 Consistent = false;
3172 else {
3173 // paper is incorrect here, or perhaps just misleading
3174 const SCEV *A_K = findCoefficient(Src, CurLoop);
3175 Src = SE->getMulExpr(Src, A);
3176 Dst = SE->getMulExpr(Dst, A);
3177 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C));
3178 Src = zeroCoefficient(Src, CurLoop);
3179 Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B));
3180 if (!findCoefficient(Dst, CurLoop)->isZero())
3181 Consistent = false;
3183 LLVM_DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n");
3184 LLVM_DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n");
3185 return true;
3189 // Attempt to propagate a point
3190 // constraint into a subscript pair (Src and Dst).
3191 // Return true if some simplification occurs.
3192 bool DependenceInfo::propagatePoint(const SCEV *&Src, const SCEV *&Dst,
3193 Constraint &CurConstraint) {
3194 const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3195 const SCEV *A_K = findCoefficient(Src, CurLoop);
3196 const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3197 const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX());
3198 const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY());
3199 LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3200 Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K));
3201 Src = zeroCoefficient(Src, CurLoop);
3202 LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3203 LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3204 Dst = zeroCoefficient(Dst, CurLoop);
3205 LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3206 return true;
3210 // Update direction vector entry based on the current constraint.
3211 void DependenceInfo::updateDirection(Dependence::DVEntry &Level,
3212 const Constraint &CurConstraint) const {
3213 LLVM_DEBUG(dbgs() << "\tUpdate direction, constraint =");
3214 LLVM_DEBUG(CurConstraint.dump(dbgs()));
3215 if (CurConstraint.isAny())
3216 ; // use defaults
3217 else if (CurConstraint.isDistance()) {
3218 // this one is consistent, the others aren't
3219 Level.Scalar = false;
3220 Level.Distance = CurConstraint.getD();
3221 unsigned NewDirection = Dependence::DVEntry::NONE;
3222 if (!SE->isKnownNonZero(Level.Distance)) // if may be zero
3223 NewDirection = Dependence::DVEntry::EQ;
3224 if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive
3225 NewDirection |= Dependence::DVEntry::LT;
3226 if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative
3227 NewDirection |= Dependence::DVEntry::GT;
3228 Level.Direction &= NewDirection;
3230 else if (CurConstraint.isLine()) {
3231 Level.Scalar = false;
3232 Level.Distance = nullptr;
3233 // direction should be accurate
3235 else if (CurConstraint.isPoint()) {
3236 Level.Scalar = false;
3237 Level.Distance = nullptr;
3238 unsigned NewDirection = Dependence::DVEntry::NONE;
3239 if (!isKnownPredicate(CmpInst::ICMP_NE,
3240 CurConstraint.getY(),
3241 CurConstraint.getX()))
3242 // if X may be = Y
3243 NewDirection |= Dependence::DVEntry::EQ;
3244 if (!isKnownPredicate(CmpInst::ICMP_SLE,
3245 CurConstraint.getY(),
3246 CurConstraint.getX()))
3247 // if Y may be > X
3248 NewDirection |= Dependence::DVEntry::LT;
3249 if (!isKnownPredicate(CmpInst::ICMP_SGE,
3250 CurConstraint.getY(),
3251 CurConstraint.getX()))
3252 // if Y may be < X
3253 NewDirection |= Dependence::DVEntry::GT;
3254 Level.Direction &= NewDirection;
3256 else
3257 llvm_unreachable("constraint has unexpected kind");
3260 /// Check if we can delinearize the subscripts. If the SCEVs representing the
3261 /// source and destination array references are recurrences on a nested loop,
3262 /// this function flattens the nested recurrences into separate recurrences
3263 /// for each loop level.
3264 bool DependenceInfo::tryDelinearize(Instruction *Src, Instruction *Dst,
3265 SmallVectorImpl<Subscript> &Pair) {
3266 assert(isLoadOrStore(Src) && "instruction is not load or store");
3267 assert(isLoadOrStore(Dst) && "instruction is not load or store");
3268 Value *SrcPtr = getLoadStorePointerOperand(Src);
3269 Value *DstPtr = getLoadStorePointerOperand(Dst);
3271 Loop *SrcLoop = LI->getLoopFor(Src->getParent());
3272 Loop *DstLoop = LI->getLoopFor(Dst->getParent());
3274 // Below code mimics the code in Delinearization.cpp
3275 const SCEV *SrcAccessFn =
3276 SE->getSCEVAtScope(SrcPtr, SrcLoop);
3277 const SCEV *DstAccessFn =
3278 SE->getSCEVAtScope(DstPtr, DstLoop);
3280 const SCEVUnknown *SrcBase =
3281 dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
3282 const SCEVUnknown *DstBase =
3283 dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
3285 if (!SrcBase || !DstBase || SrcBase != DstBase)
3286 return false;
3288 const SCEV *ElementSize = SE->getElementSize(Src);
3289 if (ElementSize != SE->getElementSize(Dst))
3290 return false;
3292 const SCEV *SrcSCEV = SE->getMinusSCEV(SrcAccessFn, SrcBase);
3293 const SCEV *DstSCEV = SE->getMinusSCEV(DstAccessFn, DstBase);
3295 const SCEVAddRecExpr *SrcAR = dyn_cast<SCEVAddRecExpr>(SrcSCEV);
3296 const SCEVAddRecExpr *DstAR = dyn_cast<SCEVAddRecExpr>(DstSCEV);
3297 if (!SrcAR || !DstAR || !SrcAR->isAffine() || !DstAR->isAffine())
3298 return false;
3300 // First step: collect parametric terms in both array references.
3301 SmallVector<const SCEV *, 4> Terms;
3302 SE->collectParametricTerms(SrcAR, Terms);
3303 SE->collectParametricTerms(DstAR, Terms);
3305 // Second step: find subscript sizes.
3306 SmallVector<const SCEV *, 4> Sizes;
3307 SE->findArrayDimensions(Terms, Sizes, ElementSize);
3309 // Third step: compute the access functions for each subscript.
3310 SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts;
3311 SE->computeAccessFunctions(SrcAR, SrcSubscripts, Sizes);
3312 SE->computeAccessFunctions(DstAR, DstSubscripts, Sizes);
3314 // Fail when there is only a subscript: that's a linearized access function.
3315 if (SrcSubscripts.size() < 2 || DstSubscripts.size() < 2 ||
3316 SrcSubscripts.size() != DstSubscripts.size())
3317 return false;
3319 int size = SrcSubscripts.size();
3321 // Statically check that the array bounds are in-range. The first subscript we
3322 // don't have a size for and it cannot overflow into another subscript, so is
3323 // always safe. The others need to be 0 <= subscript[i] < bound, for both src
3324 // and dst.
3325 // FIXME: It may be better to record these sizes and add them as constraints
3326 // to the dependency checks.
3327 if (!DisableDelinearizationChecks)
3328 for (int i = 1; i < size; ++i) {
3329 if (!isKnownNonNegative(SrcSubscripts[i], SrcPtr))
3330 return false;
3332 if (!isKnownLessThan(SrcSubscripts[i], Sizes[i - 1]))
3333 return false;
3335 if (!isKnownNonNegative(DstSubscripts[i], DstPtr))
3336 return false;
3338 if (!isKnownLessThan(DstSubscripts[i], Sizes[i - 1]))
3339 return false;
3342 LLVM_DEBUG({
3343 dbgs() << "\nSrcSubscripts: ";
3344 for (int i = 0; i < size; i++)
3345 dbgs() << *SrcSubscripts[i];
3346 dbgs() << "\nDstSubscripts: ";
3347 for (int i = 0; i < size; i++)
3348 dbgs() << *DstSubscripts[i];
3351 // The delinearization transforms a single-subscript MIV dependence test into
3352 // a multi-subscript SIV dependence test that is easier to compute. So we
3353 // resize Pair to contain as many pairs of subscripts as the delinearization
3354 // has found, and then initialize the pairs following the delinearization.
3355 Pair.resize(size);
3356 for (int i = 0; i < size; ++i) {
3357 Pair[i].Src = SrcSubscripts[i];
3358 Pair[i].Dst = DstSubscripts[i];
3359 unifySubscriptType(&Pair[i]);
3362 return true;
3365 //===----------------------------------------------------------------------===//
3367 #ifndef NDEBUG
3368 // For debugging purposes, dump a small bit vector to dbgs().
3369 static void dumpSmallBitVector(SmallBitVector &BV) {
3370 dbgs() << "{";
3371 for (unsigned VI : BV.set_bits()) {
3372 dbgs() << VI;
3373 if (BV.find_next(VI) >= 0)
3374 dbgs() << ' ';
3376 dbgs() << "}\n";
3378 #endif
3380 bool DependenceInfo::invalidate(Function &F, const PreservedAnalyses &PA,
3381 FunctionAnalysisManager::Invalidator &Inv) {
3382 // Check if the analysis itself has been invalidated.
3383 auto PAC = PA.getChecker<DependenceAnalysis>();
3384 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
3385 return true;
3387 // Check transitive dependencies.
3388 return Inv.invalidate<AAManager>(F, PA) ||
3389 Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) ||
3390 Inv.invalidate<LoopAnalysis>(F, PA);
3393 // depends -
3394 // Returns NULL if there is no dependence.
3395 // Otherwise, return a Dependence with as many details as possible.
3396 // Corresponds to Section 3.1 in the paper
3398 // Practical Dependence Testing
3399 // Goff, Kennedy, Tseng
3400 // PLDI 1991
3402 // Care is required to keep the routine below, getSplitIteration(),
3403 // up to date with respect to this routine.
3404 std::unique_ptr<Dependence>
3405 DependenceInfo::depends(Instruction *Src, Instruction *Dst,
3406 bool PossiblyLoopIndependent) {
3407 if (Src == Dst)
3408 PossiblyLoopIndependent = false;
3410 if ((!Src->mayReadFromMemory() && !Src->mayWriteToMemory()) ||
3411 (!Dst->mayReadFromMemory() && !Dst->mayWriteToMemory()))
3412 // if both instructions don't reference memory, there's no dependence
3413 return nullptr;
3415 if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) {
3416 // can only analyze simple loads and stores, i.e., no calls, invokes, etc.
3417 LLVM_DEBUG(dbgs() << "can only handle simple loads and stores\n");
3418 return make_unique<Dependence>(Src, Dst);
3421 assert(isLoadOrStore(Src) && "instruction is not load or store");
3422 assert(isLoadOrStore(Dst) && "instruction is not load or store");
3423 Value *SrcPtr = getLoadStorePointerOperand(Src);
3424 Value *DstPtr = getLoadStorePointerOperand(Dst);
3426 switch (underlyingObjectsAlias(AA, F->getParent()->getDataLayout(),
3427 MemoryLocation::get(Dst),
3428 MemoryLocation::get(Src))) {
3429 case MayAlias:
3430 case PartialAlias:
3431 // cannot analyse objects if we don't understand their aliasing.
3432 LLVM_DEBUG(dbgs() << "can't analyze may or partial alias\n");
3433 return make_unique<Dependence>(Src, Dst);
3434 case NoAlias:
3435 // If the objects noalias, they are distinct, accesses are independent.
3436 LLVM_DEBUG(dbgs() << "no alias\n");
3437 return nullptr;
3438 case MustAlias:
3439 break; // The underlying objects alias; test accesses for dependence.
3442 // establish loop nesting levels
3443 establishNestingLevels(Src, Dst);
3444 LLVM_DEBUG(dbgs() << " common nesting levels = " << CommonLevels << "\n");
3445 LLVM_DEBUG(dbgs() << " maximum nesting levels = " << MaxLevels << "\n");
3447 FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels);
3448 ++TotalArrayPairs;
3450 unsigned Pairs = 1;
3451 SmallVector<Subscript, 2> Pair(Pairs);
3452 const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3453 const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3454 LLVM_DEBUG(dbgs() << " SrcSCEV = " << *SrcSCEV << "\n");
3455 LLVM_DEBUG(dbgs() << " DstSCEV = " << *DstSCEV << "\n");
3456 Pair[0].Src = SrcSCEV;
3457 Pair[0].Dst = DstSCEV;
3459 if (Delinearize) {
3460 if (tryDelinearize(Src, Dst, Pair)) {
3461 LLVM_DEBUG(dbgs() << " delinearized\n");
3462 Pairs = Pair.size();
3466 for (unsigned P = 0; P < Pairs; ++P) {
3467 Pair[P].Loops.resize(MaxLevels + 1);
3468 Pair[P].GroupLoops.resize(MaxLevels + 1);
3469 Pair[P].Group.resize(Pairs);
3470 removeMatchingExtensions(&Pair[P]);
3471 Pair[P].Classification =
3472 classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3473 Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3474 Pair[P].Loops);
3475 Pair[P].GroupLoops = Pair[P].Loops;
3476 Pair[P].Group.set(P);
3477 LLVM_DEBUG(dbgs() << " subscript " << P << "\n");
3478 LLVM_DEBUG(dbgs() << "\tsrc = " << *Pair[P].Src << "\n");
3479 LLVM_DEBUG(dbgs() << "\tdst = " << *Pair[P].Dst << "\n");
3480 LLVM_DEBUG(dbgs() << "\tclass = " << Pair[P].Classification << "\n");
3481 LLVM_DEBUG(dbgs() << "\tloops = ");
3482 LLVM_DEBUG(dumpSmallBitVector(Pair[P].Loops));
3485 SmallBitVector Separable(Pairs);
3486 SmallBitVector Coupled(Pairs);
3488 // Partition subscripts into separable and minimally-coupled groups
3489 // Algorithm in paper is algorithmically better;
3490 // this may be faster in practice. Check someday.
3492 // Here's an example of how it works. Consider this code:
3494 // for (i = ...) {
3495 // for (j = ...) {
3496 // for (k = ...) {
3497 // for (l = ...) {
3498 // for (m = ...) {
3499 // A[i][j][k][m] = ...;
3500 // ... = A[0][j][l][i + j];
3501 // }
3502 // }
3503 // }
3504 // }
3505 // }
3507 // There are 4 subscripts here:
3508 // 0 [i] and [0]
3509 // 1 [j] and [j]
3510 // 2 [k] and [l]
3511 // 3 [m] and [i + j]
3513 // We've already classified each subscript pair as ZIV, SIV, etc.,
3514 // and collected all the loops mentioned by pair P in Pair[P].Loops.
3515 // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops
3516 // and set Pair[P].Group = {P}.
3518 // Src Dst Classification Loops GroupLoops Group
3519 // 0 [i] [0] SIV {1} {1} {0}
3520 // 1 [j] [j] SIV {2} {2} {1}
3521 // 2 [k] [l] RDIV {3,4} {3,4} {2}
3522 // 3 [m] [i + j] MIV {1,2,5} {1,2,5} {3}
3524 // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ.
3525 // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc.
3527 // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty.
3528 // Next, 0 and 2. Again, the intersection of their GroupLoops is empty.
3529 // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty,
3530 // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added
3531 // to either Separable or Coupled).
3533 // Next, we consider 1 and 2. The intersection of the GroupLoops is empty.
3534 // Next, 1 and 3. The intersection of their GroupLoops = {2}, not empty,
3535 // so Pair[3].Group = {0, 1, 3} and Done = false.
3537 // Next, we compare 2 against 3. The intersection of the GroupLoops is empty.
3538 // Since Done remains true, we add 2 to the set of Separable pairs.
3540 // Finally, we consider 3. There's nothing to compare it with,
3541 // so Done remains true and we add it to the Coupled set.
3542 // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}.
3544 // In the end, we've got 1 separable subscript and 1 coupled group.
3545 for (unsigned SI = 0; SI < Pairs; ++SI) {
3546 if (Pair[SI].Classification == Subscript::NonLinear) {
3547 // ignore these, but collect loops for later
3548 ++NonlinearSubscriptPairs;
3549 collectCommonLoops(Pair[SI].Src,
3550 LI->getLoopFor(Src->getParent()),
3551 Pair[SI].Loops);
3552 collectCommonLoops(Pair[SI].Dst,
3553 LI->getLoopFor(Dst->getParent()),
3554 Pair[SI].Loops);
3555 Result.Consistent = false;
3556 } else if (Pair[SI].Classification == Subscript::ZIV) {
3557 // always separable
3558 Separable.set(SI);
3560 else {
3561 // SIV, RDIV, or MIV, so check for coupled group
3562 bool Done = true;
3563 for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3564 SmallBitVector Intersection = Pair[SI].GroupLoops;
3565 Intersection &= Pair[SJ].GroupLoops;
3566 if (Intersection.any()) {
3567 // accumulate set of all the loops in group
3568 Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3569 // accumulate set of all subscripts in group
3570 Pair[SJ].Group |= Pair[SI].Group;
3571 Done = false;
3574 if (Done) {
3575 if (Pair[SI].Group.count() == 1) {
3576 Separable.set(SI);
3577 ++SeparableSubscriptPairs;
3579 else {
3580 Coupled.set(SI);
3581 ++CoupledSubscriptPairs;
3587 LLVM_DEBUG(dbgs() << " Separable = ");
3588 LLVM_DEBUG(dumpSmallBitVector(Separable));
3589 LLVM_DEBUG(dbgs() << " Coupled = ");
3590 LLVM_DEBUG(dumpSmallBitVector(Coupled));
3592 Constraint NewConstraint;
3593 NewConstraint.setAny(SE);
3595 // test separable subscripts
3596 for (unsigned SI : Separable.set_bits()) {
3597 LLVM_DEBUG(dbgs() << "testing subscript " << SI);
3598 switch (Pair[SI].Classification) {
3599 case Subscript::ZIV:
3600 LLVM_DEBUG(dbgs() << ", ZIV\n");
3601 if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result))
3602 return nullptr;
3603 break;
3604 case Subscript::SIV: {
3605 LLVM_DEBUG(dbgs() << ", SIV\n");
3606 unsigned Level;
3607 const SCEV *SplitIter = nullptr;
3608 if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level, Result, NewConstraint,
3609 SplitIter))
3610 return nullptr;
3611 break;
3613 case Subscript::RDIV:
3614 LLVM_DEBUG(dbgs() << ", RDIV\n");
3615 if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result))
3616 return nullptr;
3617 break;
3618 case Subscript::MIV:
3619 LLVM_DEBUG(dbgs() << ", MIV\n");
3620 if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result))
3621 return nullptr;
3622 break;
3623 default:
3624 llvm_unreachable("subscript has unexpected classification");
3628 if (Coupled.count()) {
3629 // test coupled subscript groups
3630 LLVM_DEBUG(dbgs() << "starting on coupled subscripts\n");
3631 LLVM_DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n");
3632 SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3633 for (unsigned II = 0; II <= MaxLevels; ++II)
3634 Constraints[II].setAny(SE);
3635 for (unsigned SI : Coupled.set_bits()) {
3636 LLVM_DEBUG(dbgs() << "testing subscript group " << SI << " { ");
3637 SmallBitVector Group(Pair[SI].Group);
3638 SmallBitVector Sivs(Pairs);
3639 SmallBitVector Mivs(Pairs);
3640 SmallBitVector ConstrainedLevels(MaxLevels + 1);
3641 SmallVector<Subscript *, 4> PairsInGroup;
3642 for (unsigned SJ : Group.set_bits()) {
3643 LLVM_DEBUG(dbgs() << SJ << " ");
3644 if (Pair[SJ].Classification == Subscript::SIV)
3645 Sivs.set(SJ);
3646 else
3647 Mivs.set(SJ);
3648 PairsInGroup.push_back(&Pair[SJ]);
3650 unifySubscriptType(PairsInGroup);
3651 LLVM_DEBUG(dbgs() << "}\n");
3652 while (Sivs.any()) {
3653 bool Changed = false;
3654 for (unsigned SJ : Sivs.set_bits()) {
3655 LLVM_DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n");
3656 // SJ is an SIV subscript that's part of the current coupled group
3657 unsigned Level;
3658 const SCEV *SplitIter = nullptr;
3659 LLVM_DEBUG(dbgs() << "SIV\n");
3660 if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level, Result, NewConstraint,
3661 SplitIter))
3662 return nullptr;
3663 ConstrainedLevels.set(Level);
3664 if (intersectConstraints(&Constraints[Level], &NewConstraint)) {
3665 if (Constraints[Level].isEmpty()) {
3666 ++DeltaIndependence;
3667 return nullptr;
3669 Changed = true;
3671 Sivs.reset(SJ);
3673 if (Changed) {
3674 // propagate, possibly creating new SIVs and ZIVs
3675 LLVM_DEBUG(dbgs() << " propagating\n");
3676 LLVM_DEBUG(dbgs() << "\tMivs = ");
3677 LLVM_DEBUG(dumpSmallBitVector(Mivs));
3678 for (unsigned SJ : Mivs.set_bits()) {
3679 // SJ is an MIV subscript that's part of the current coupled group
3680 LLVM_DEBUG(dbgs() << "\tSJ = " << SJ << "\n");
3681 if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops,
3682 Constraints, Result.Consistent)) {
3683 LLVM_DEBUG(dbgs() << "\t Changed\n");
3684 ++DeltaPropagations;
3685 Pair[SJ].Classification =
3686 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3687 Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3688 Pair[SJ].Loops);
3689 switch (Pair[SJ].Classification) {
3690 case Subscript::ZIV:
3691 LLVM_DEBUG(dbgs() << "ZIV\n");
3692 if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3693 return nullptr;
3694 Mivs.reset(SJ);
3695 break;
3696 case Subscript::SIV:
3697 Sivs.set(SJ);
3698 Mivs.reset(SJ);
3699 break;
3700 case Subscript::RDIV:
3701 case Subscript::MIV:
3702 break;
3703 default:
3704 llvm_unreachable("bad subscript classification");
3711 // test & propagate remaining RDIVs
3712 for (unsigned SJ : Mivs.set_bits()) {
3713 if (Pair[SJ].Classification == Subscript::RDIV) {
3714 LLVM_DEBUG(dbgs() << "RDIV test\n");
3715 if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3716 return nullptr;
3717 // I don't yet understand how to propagate RDIV results
3718 Mivs.reset(SJ);
3722 // test remaining MIVs
3723 // This code is temporary.
3724 // Better to somehow test all remaining subscripts simultaneously.
3725 for (unsigned SJ : Mivs.set_bits()) {
3726 if (Pair[SJ].Classification == Subscript::MIV) {
3727 LLVM_DEBUG(dbgs() << "MIV test\n");
3728 if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result))
3729 return nullptr;
3731 else
3732 llvm_unreachable("expected only MIV subscripts at this point");
3735 // update Result.DV from constraint vector
3736 LLVM_DEBUG(dbgs() << " updating\n");
3737 for (unsigned SJ : ConstrainedLevels.set_bits()) {
3738 if (SJ > CommonLevels)
3739 break;
3740 updateDirection(Result.DV[SJ - 1], Constraints[SJ]);
3741 if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE)
3742 return nullptr;
3747 // Make sure the Scalar flags are set correctly.
3748 SmallBitVector CompleteLoops(MaxLevels + 1);
3749 for (unsigned SI = 0; SI < Pairs; ++SI)
3750 CompleteLoops |= Pair[SI].Loops;
3751 for (unsigned II = 1; II <= CommonLevels; ++II)
3752 if (CompleteLoops[II])
3753 Result.DV[II - 1].Scalar = false;
3755 if (PossiblyLoopIndependent) {
3756 // Make sure the LoopIndependent flag is set correctly.
3757 // All directions must include equal, otherwise no
3758 // loop-independent dependence is possible.
3759 for (unsigned II = 1; II <= CommonLevels; ++II) {
3760 if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) {
3761 Result.LoopIndependent = false;
3762 break;
3766 else {
3767 // On the other hand, if all directions are equal and there's no
3768 // loop-independent dependence possible, then no dependence exists.
3769 bool AllEqual = true;
3770 for (unsigned II = 1; II <= CommonLevels; ++II) {
3771 if (Result.getDirection(II) != Dependence::DVEntry::EQ) {
3772 AllEqual = false;
3773 break;
3776 if (AllEqual)
3777 return nullptr;
3780 return make_unique<FullDependence>(std::move(Result));
3785 //===----------------------------------------------------------------------===//
3786 // getSplitIteration -
3787 // Rather than spend rarely-used space recording the splitting iteration
3788 // during the Weak-Crossing SIV test, we re-compute it on demand.
3789 // The re-computation is basically a repeat of the entire dependence test,
3790 // though simplified since we know that the dependence exists.
3791 // It's tedious, since we must go through all propagations, etc.
3793 // Care is required to keep this code up to date with respect to the routine
3794 // above, depends().
3796 // Generally, the dependence analyzer will be used to build
3797 // a dependence graph for a function (basically a map from instructions
3798 // to dependences). Looking for cycles in the graph shows us loops
3799 // that cannot be trivially vectorized/parallelized.
3801 // We can try to improve the situation by examining all the dependences
3802 // that make up the cycle, looking for ones we can break.
3803 // Sometimes, peeling the first or last iteration of a loop will break
3804 // dependences, and we've got flags for those possibilities.
3805 // Sometimes, splitting a loop at some other iteration will do the trick,
3806 // and we've got a flag for that case. Rather than waste the space to
3807 // record the exact iteration (since we rarely know), we provide
3808 // a method that calculates the iteration. It's a drag that it must work
3809 // from scratch, but wonderful in that it's possible.
3811 // Here's an example:
3813 // for (i = 0; i < 10; i++)
3814 // A[i] = ...
3815 // ... = A[11 - i]
3817 // There's a loop-carried flow dependence from the store to the load,
3818 // found by the weak-crossing SIV test. The dependence will have a flag,
3819 // indicating that the dependence can be broken by splitting the loop.
3820 // Calling getSplitIteration will return 5.
3821 // Splitting the loop breaks the dependence, like so:
3823 // for (i = 0; i <= 5; i++)
3824 // A[i] = ...
3825 // ... = A[11 - i]
3826 // for (i = 6; i < 10; i++)
3827 // A[i] = ...
3828 // ... = A[11 - i]
3830 // breaks the dependence and allows us to vectorize/parallelize
3831 // both loops.
3832 const SCEV *DependenceInfo::getSplitIteration(const Dependence &Dep,
3833 unsigned SplitLevel) {
3834 assert(Dep.isSplitable(SplitLevel) &&
3835 "Dep should be splitable at SplitLevel");
3836 Instruction *Src = Dep.getSrc();
3837 Instruction *Dst = Dep.getDst();
3838 assert(Src->mayReadFromMemory() || Src->mayWriteToMemory());
3839 assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory());
3840 assert(isLoadOrStore(Src));
3841 assert(isLoadOrStore(Dst));
3842 Value *SrcPtr = getLoadStorePointerOperand(Src);
3843 Value *DstPtr = getLoadStorePointerOperand(Dst);
3844 assert(underlyingObjectsAlias(AA, F->getParent()->getDataLayout(),
3845 MemoryLocation::get(Dst),
3846 MemoryLocation::get(Src)) == MustAlias);
3848 // establish loop nesting levels
3849 establishNestingLevels(Src, Dst);
3851 FullDependence Result(Src, Dst, false, CommonLevels);
3853 unsigned Pairs = 1;
3854 SmallVector<Subscript, 2> Pair(Pairs);
3855 const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3856 const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3857 Pair[0].Src = SrcSCEV;
3858 Pair[0].Dst = DstSCEV;
3860 if (Delinearize) {
3861 if (tryDelinearize(Src, Dst, Pair)) {
3862 LLVM_DEBUG(dbgs() << " delinearized\n");
3863 Pairs = Pair.size();
3867 for (unsigned P = 0; P < Pairs; ++P) {
3868 Pair[P].Loops.resize(MaxLevels + 1);
3869 Pair[P].GroupLoops.resize(MaxLevels + 1);
3870 Pair[P].Group.resize(Pairs);
3871 removeMatchingExtensions(&Pair[P]);
3872 Pair[P].Classification =
3873 classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3874 Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3875 Pair[P].Loops);
3876 Pair[P].GroupLoops = Pair[P].Loops;
3877 Pair[P].Group.set(P);
3880 SmallBitVector Separable(Pairs);
3881 SmallBitVector Coupled(Pairs);
3883 // partition subscripts into separable and minimally-coupled groups
3884 for (unsigned SI = 0; SI < Pairs; ++SI) {
3885 if (Pair[SI].Classification == Subscript::NonLinear) {
3886 // ignore these, but collect loops for later
3887 collectCommonLoops(Pair[SI].Src,
3888 LI->getLoopFor(Src->getParent()),
3889 Pair[SI].Loops);
3890 collectCommonLoops(Pair[SI].Dst,
3891 LI->getLoopFor(Dst->getParent()),
3892 Pair[SI].Loops);
3893 Result.Consistent = false;
3895 else if (Pair[SI].Classification == Subscript::ZIV)
3896 Separable.set(SI);
3897 else {
3898 // SIV, RDIV, or MIV, so check for coupled group
3899 bool Done = true;
3900 for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3901 SmallBitVector Intersection = Pair[SI].GroupLoops;
3902 Intersection &= Pair[SJ].GroupLoops;
3903 if (Intersection.any()) {
3904 // accumulate set of all the loops in group
3905 Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3906 // accumulate set of all subscripts in group
3907 Pair[SJ].Group |= Pair[SI].Group;
3908 Done = false;
3911 if (Done) {
3912 if (Pair[SI].Group.count() == 1)
3913 Separable.set(SI);
3914 else
3915 Coupled.set(SI);
3920 Constraint NewConstraint;
3921 NewConstraint.setAny(SE);
3923 // test separable subscripts
3924 for (unsigned SI : Separable.set_bits()) {
3925 switch (Pair[SI].Classification) {
3926 case Subscript::SIV: {
3927 unsigned Level;
3928 const SCEV *SplitIter = nullptr;
3929 (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
3930 Result, NewConstraint, SplitIter);
3931 if (Level == SplitLevel) {
3932 assert(SplitIter != nullptr);
3933 return SplitIter;
3935 break;
3937 case Subscript::ZIV:
3938 case Subscript::RDIV:
3939 case Subscript::MIV:
3940 break;
3941 default:
3942 llvm_unreachable("subscript has unexpected classification");
3946 if (Coupled.count()) {
3947 // test coupled subscript groups
3948 SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3949 for (unsigned II = 0; II <= MaxLevels; ++II)
3950 Constraints[II].setAny(SE);
3951 for (unsigned SI : Coupled.set_bits()) {
3952 SmallBitVector Group(Pair[SI].Group);
3953 SmallBitVector Sivs(Pairs);
3954 SmallBitVector Mivs(Pairs);
3955 SmallBitVector ConstrainedLevels(MaxLevels + 1);
3956 for (unsigned SJ : Group.set_bits()) {
3957 if (Pair[SJ].Classification == Subscript::SIV)
3958 Sivs.set(SJ);
3959 else
3960 Mivs.set(SJ);
3962 while (Sivs.any()) {
3963 bool Changed = false;
3964 for (unsigned SJ : Sivs.set_bits()) {
3965 // SJ is an SIV subscript that's part of the current coupled group
3966 unsigned Level;
3967 const SCEV *SplitIter = nullptr;
3968 (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
3969 Result, NewConstraint, SplitIter);
3970 if (Level == SplitLevel && SplitIter)
3971 return SplitIter;
3972 ConstrainedLevels.set(Level);
3973 if (intersectConstraints(&Constraints[Level], &NewConstraint))
3974 Changed = true;
3975 Sivs.reset(SJ);
3977 if (Changed) {
3978 // propagate, possibly creating new SIVs and ZIVs
3979 for (unsigned SJ : Mivs.set_bits()) {
3980 // SJ is an MIV subscript that's part of the current coupled group
3981 if (propagate(Pair[SJ].Src, Pair[SJ].Dst,
3982 Pair[SJ].Loops, Constraints, Result.Consistent)) {
3983 Pair[SJ].Classification =
3984 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3985 Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3986 Pair[SJ].Loops);
3987 switch (Pair[SJ].Classification) {
3988 case Subscript::ZIV:
3989 Mivs.reset(SJ);
3990 break;
3991 case Subscript::SIV:
3992 Sivs.set(SJ);
3993 Mivs.reset(SJ);
3994 break;
3995 case Subscript::RDIV:
3996 case Subscript::MIV:
3997 break;
3998 default:
3999 llvm_unreachable("bad subscript classification");
4007 llvm_unreachable("somehow reached end of routine");
4008 return nullptr;