1 //===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // DependenceAnalysis is an LLVM pass that analyses dependences between memory
10 // accesses. Currently, it is an (incomplete) implementation of the approach
13 // Practical Dependence Testing
14 // Goff, Kennedy, Tseng
17 // There's a single entry point that analyzes the dependence between a pair
18 // of memory references in a function, returning either NULL, for no dependence,
19 // or a more-or-less detailed description of the dependence between them.
21 // Currently, the implementation cannot propagate constraints between
22 // coupled RDIV subscripts and lacks a multi-subscript MIV test.
23 // Both of these are conservative weaknesses;
24 // that is, not a source of correctness problems.
26 // Since Clang linearizes some array subscripts, the dependence
27 // analysis is using SCEV->delinearize to recover the representation of multiple
28 // subscripts, and thus avoid the more expensive and less precise MIV tests. The
29 // delinearization is controlled by the flag -da-delinearize.
31 // We should pay some careful attention to the possibility of integer overflow
32 // in the implementation of the various tests. This could happen with Add,
33 // Subtract, or Multiply, with both APInt's and SCEV's.
35 // Some non-linear subscript pairs can be handled by the GCD test
36 // (and perhaps other tests).
37 // Should explore how often these things occur.
39 // Finally, it seems like certain test cases expose weaknesses in the SCEV
40 // simplification, especially in the handling of sign and zero extensions.
41 // It could be useful to spend time exploring these.
43 // Please note that this is work in progress and the interface is subject to
46 //===----------------------------------------------------------------------===//
48 // In memory of Ken Kennedy, 1945 - 2007 //
50 //===----------------------------------------------------------------------===//
52 #include "llvm/Analysis/DependenceAnalysis.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/Statistic.h"
55 #include "llvm/Analysis/AliasAnalysis.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/ScalarEvolution.h"
58 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
59 #include "llvm/Analysis/ValueTracking.h"
60 #include "llvm/Config/llvm-config.h"
61 #include "llvm/IR/InstIterator.h"
62 #include "llvm/IR/Module.h"
63 #include "llvm/IR/Operator.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/raw_ostream.h"
71 #define DEBUG_TYPE "da"
73 //===----------------------------------------------------------------------===//
76 STATISTIC(TotalArrayPairs
, "Array pairs tested");
77 STATISTIC(SeparableSubscriptPairs
, "Separable subscript pairs");
78 STATISTIC(CoupledSubscriptPairs
, "Coupled subscript pairs");
79 STATISTIC(NonlinearSubscriptPairs
, "Nonlinear subscript pairs");
80 STATISTIC(ZIVapplications
, "ZIV applications");
81 STATISTIC(ZIVindependence
, "ZIV independence");
82 STATISTIC(StrongSIVapplications
, "Strong SIV applications");
83 STATISTIC(StrongSIVsuccesses
, "Strong SIV successes");
84 STATISTIC(StrongSIVindependence
, "Strong SIV independence");
85 STATISTIC(WeakCrossingSIVapplications
, "Weak-Crossing SIV applications");
86 STATISTIC(WeakCrossingSIVsuccesses
, "Weak-Crossing SIV successes");
87 STATISTIC(WeakCrossingSIVindependence
, "Weak-Crossing SIV independence");
88 STATISTIC(ExactSIVapplications
, "Exact SIV applications");
89 STATISTIC(ExactSIVsuccesses
, "Exact SIV successes");
90 STATISTIC(ExactSIVindependence
, "Exact SIV independence");
91 STATISTIC(WeakZeroSIVapplications
, "Weak-Zero SIV applications");
92 STATISTIC(WeakZeroSIVsuccesses
, "Weak-Zero SIV successes");
93 STATISTIC(WeakZeroSIVindependence
, "Weak-Zero SIV independence");
94 STATISTIC(ExactRDIVapplications
, "Exact RDIV applications");
95 STATISTIC(ExactRDIVindependence
, "Exact RDIV independence");
96 STATISTIC(SymbolicRDIVapplications
, "Symbolic RDIV applications");
97 STATISTIC(SymbolicRDIVindependence
, "Symbolic RDIV independence");
98 STATISTIC(DeltaApplications
, "Delta applications");
99 STATISTIC(DeltaSuccesses
, "Delta successes");
100 STATISTIC(DeltaIndependence
, "Delta independence");
101 STATISTIC(DeltaPropagations
, "Delta propagations");
102 STATISTIC(GCDapplications
, "GCD applications");
103 STATISTIC(GCDsuccesses
, "GCD successes");
104 STATISTIC(GCDindependence
, "GCD independence");
105 STATISTIC(BanerjeeApplications
, "Banerjee applications");
106 STATISTIC(BanerjeeIndependence
, "Banerjee independence");
107 STATISTIC(BanerjeeSuccesses
, "Banerjee successes");
110 Delinearize("da-delinearize", cl::init(true), cl::Hidden
, cl::ZeroOrMore
,
111 cl::desc("Try to delinearize array references."));
112 static cl::opt
<bool> DisableDelinearizationChecks(
113 "da-disable-delinearization-checks", cl::init(false), cl::Hidden
,
116 "Disable checks that try to statically verify validity of "
117 "delinearized subscripts. Enabling this option may result in incorrect "
118 "dependence vectors for languages that allow the subscript of one "
119 "dimension to underflow or overflow into another dimension."));
121 //===----------------------------------------------------------------------===//
124 DependenceAnalysis::Result
125 DependenceAnalysis::run(Function
&F
, FunctionAnalysisManager
&FAM
) {
126 auto &AA
= FAM
.getResult
<AAManager
>(F
);
127 auto &SE
= FAM
.getResult
<ScalarEvolutionAnalysis
>(F
);
128 auto &LI
= FAM
.getResult
<LoopAnalysis
>(F
);
129 return DependenceInfo(&F
, &AA
, &SE
, &LI
);
132 AnalysisKey
DependenceAnalysis::Key
;
134 INITIALIZE_PASS_BEGIN(DependenceAnalysisWrapperPass
, "da",
135 "Dependence Analysis", true, true)
136 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
137 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass
)
138 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
139 INITIALIZE_PASS_END(DependenceAnalysisWrapperPass
, "da", "Dependence Analysis",
142 char DependenceAnalysisWrapperPass::ID
= 0;
144 FunctionPass
*llvm::createDependenceAnalysisWrapperPass() {
145 return new DependenceAnalysisWrapperPass();
148 bool DependenceAnalysisWrapperPass::runOnFunction(Function
&F
) {
149 auto &AA
= getAnalysis
<AAResultsWrapperPass
>().getAAResults();
150 auto &SE
= getAnalysis
<ScalarEvolutionWrapperPass
>().getSE();
151 auto &LI
= getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
152 info
.reset(new DependenceInfo(&F
, &AA
, &SE
, &LI
));
156 DependenceInfo
&DependenceAnalysisWrapperPass::getDI() const { return *info
; }
158 void DependenceAnalysisWrapperPass::releaseMemory() { info
.reset(); }
160 void DependenceAnalysisWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
161 AU
.setPreservesAll();
162 AU
.addRequiredTransitive
<AAResultsWrapperPass
>();
163 AU
.addRequiredTransitive
<ScalarEvolutionWrapperPass
>();
164 AU
.addRequiredTransitive
<LoopInfoWrapperPass
>();
168 // Used to test the dependence analyzer.
169 // Looks through the function, noting loads and stores.
170 // Calls depends() on every possible pair and prints out the result.
171 // Ignores all other instructions.
172 static void dumpExampleDependence(raw_ostream
&OS
, DependenceInfo
*DA
) {
173 auto *F
= DA
->getFunction();
174 for (inst_iterator SrcI
= inst_begin(F
), SrcE
= inst_end(F
); SrcI
!= SrcE
;
176 if (isa
<StoreInst
>(*SrcI
) || isa
<LoadInst
>(*SrcI
)) {
177 for (inst_iterator DstI
= SrcI
, DstE
= inst_end(F
);
178 DstI
!= DstE
; ++DstI
) {
179 if (isa
<StoreInst
>(*DstI
) || isa
<LoadInst
>(*DstI
)) {
180 OS
<< "da analyze - ";
181 if (auto D
= DA
->depends(&*SrcI
, &*DstI
, true)) {
183 for (unsigned Level
= 1; Level
<= D
->getLevels(); Level
++) {
184 if (D
->isSplitable(Level
)) {
185 OS
<< "da analyze - split level = " << Level
;
186 OS
<< ", iteration = " << *DA
->getSplitIteration(*D
, Level
);
199 void DependenceAnalysisWrapperPass::print(raw_ostream
&OS
,
200 const Module
*) const {
201 dumpExampleDependence(OS
, info
.get());
205 DependenceAnalysisPrinterPass::run(Function
&F
, FunctionAnalysisManager
&FAM
) {
206 OS
<< "'Dependence Analysis' for function '" << F
.getName() << "':\n";
207 dumpExampleDependence(OS
, &FAM
.getResult
<DependenceAnalysis
>(F
));
208 return PreservedAnalyses::all();
211 //===----------------------------------------------------------------------===//
212 // Dependence methods
214 // Returns true if this is an input dependence.
215 bool Dependence::isInput() const {
216 return Src
->mayReadFromMemory() && Dst
->mayReadFromMemory();
220 // Returns true if this is an output dependence.
221 bool Dependence::isOutput() const {
222 return Src
->mayWriteToMemory() && Dst
->mayWriteToMemory();
226 // Returns true if this is an flow (aka true) dependence.
227 bool Dependence::isFlow() const {
228 return Src
->mayWriteToMemory() && Dst
->mayReadFromMemory();
232 // Returns true if this is an anti dependence.
233 bool Dependence::isAnti() const {
234 return Src
->mayReadFromMemory() && Dst
->mayWriteToMemory();
238 // Returns true if a particular level is scalar; that is,
239 // if no subscript in the source or destination mention the induction
240 // variable associated with the loop at this level.
241 // Leave this out of line, so it will serve as a virtual method anchor
242 bool Dependence::isScalar(unsigned level
) const {
247 //===----------------------------------------------------------------------===//
248 // FullDependence methods
250 FullDependence::FullDependence(Instruction
*Source
, Instruction
*Destination
,
251 bool PossiblyLoopIndependent
,
252 unsigned CommonLevels
)
253 : Dependence(Source
, Destination
), Levels(CommonLevels
),
254 LoopIndependent(PossiblyLoopIndependent
) {
257 DV
= make_unique
<DVEntry
[]>(CommonLevels
);
260 // The rest are simple getters that hide the implementation.
262 // getDirection - Returns the direction associated with a particular level.
263 unsigned FullDependence::getDirection(unsigned Level
) const {
264 assert(0 < Level
&& Level
<= Levels
&& "Level out of range");
265 return DV
[Level
- 1].Direction
;
269 // Returns the distance (or NULL) associated with a particular level.
270 const SCEV
*FullDependence::getDistance(unsigned Level
) const {
271 assert(0 < Level
&& Level
<= Levels
&& "Level out of range");
272 return DV
[Level
- 1].Distance
;
276 // Returns true if a particular level is scalar; that is,
277 // if no subscript in the source or destination mention the induction
278 // variable associated with the loop at this level.
279 bool FullDependence::isScalar(unsigned Level
) const {
280 assert(0 < Level
&& Level
<= Levels
&& "Level out of range");
281 return DV
[Level
- 1].Scalar
;
285 // Returns true if peeling the first iteration from this loop
286 // will break this dependence.
287 bool FullDependence::isPeelFirst(unsigned Level
) const {
288 assert(0 < Level
&& Level
<= Levels
&& "Level out of range");
289 return DV
[Level
- 1].PeelFirst
;
293 // Returns true if peeling the last iteration from this loop
294 // will break this dependence.
295 bool FullDependence::isPeelLast(unsigned Level
) const {
296 assert(0 < Level
&& Level
<= Levels
&& "Level out of range");
297 return DV
[Level
- 1].PeelLast
;
301 // Returns true if splitting this loop will break the dependence.
302 bool FullDependence::isSplitable(unsigned Level
) const {
303 assert(0 < Level
&& Level
<= Levels
&& "Level out of range");
304 return DV
[Level
- 1].Splitable
;
308 //===----------------------------------------------------------------------===//
309 // DependenceInfo::Constraint methods
311 // If constraint is a point <X, Y>, returns X.
313 const SCEV
*DependenceInfo::Constraint::getX() const {
314 assert(Kind
== Point
&& "Kind should be Point");
319 // If constraint is a point <X, Y>, returns Y.
321 const SCEV
*DependenceInfo::Constraint::getY() const {
322 assert(Kind
== Point
&& "Kind should be Point");
327 // If constraint is a line AX + BY = C, returns A.
329 const SCEV
*DependenceInfo::Constraint::getA() const {
330 assert((Kind
== Line
|| Kind
== Distance
) &&
331 "Kind should be Line (or Distance)");
336 // If constraint is a line AX + BY = C, returns B.
338 const SCEV
*DependenceInfo::Constraint::getB() const {
339 assert((Kind
== Line
|| Kind
== Distance
) &&
340 "Kind should be Line (or Distance)");
345 // If constraint is a line AX + BY = C, returns C.
347 const SCEV
*DependenceInfo::Constraint::getC() const {
348 assert((Kind
== Line
|| Kind
== Distance
) &&
349 "Kind should be Line (or Distance)");
354 // If constraint is a distance, returns D.
356 const SCEV
*DependenceInfo::Constraint::getD() const {
357 assert(Kind
== Distance
&& "Kind should be Distance");
358 return SE
->getNegativeSCEV(C
);
362 // Returns the loop associated with this constraint.
363 const Loop
*DependenceInfo::Constraint::getAssociatedLoop() const {
364 assert((Kind
== Distance
|| Kind
== Line
|| Kind
== Point
) &&
365 "Kind should be Distance, Line, or Point");
366 return AssociatedLoop
;
369 void DependenceInfo::Constraint::setPoint(const SCEV
*X
, const SCEV
*Y
,
370 const Loop
*CurLoop
) {
374 AssociatedLoop
= CurLoop
;
377 void DependenceInfo::Constraint::setLine(const SCEV
*AA
, const SCEV
*BB
,
378 const SCEV
*CC
, const Loop
*CurLoop
) {
383 AssociatedLoop
= CurLoop
;
386 void DependenceInfo::Constraint::setDistance(const SCEV
*D
,
387 const Loop
*CurLoop
) {
389 A
= SE
->getOne(D
->getType());
390 B
= SE
->getNegativeSCEV(A
);
391 C
= SE
->getNegativeSCEV(D
);
392 AssociatedLoop
= CurLoop
;
395 void DependenceInfo::Constraint::setEmpty() { Kind
= Empty
; }
397 void DependenceInfo::Constraint::setAny(ScalarEvolution
*NewSE
) {
402 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
403 // For debugging purposes. Dumps the constraint out to OS.
404 LLVM_DUMP_METHOD
void DependenceInfo::Constraint::dump(raw_ostream
&OS
) const {
410 OS
<< " Point is <" << *getX() << ", " << *getY() << ">\n";
411 else if (isDistance())
412 OS
<< " Distance is " << *getD() <<
413 " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n";
415 OS
<< " Line is " << *getA() << "*X + " <<
416 *getB() << "*Y = " << *getC() << "\n";
418 llvm_unreachable("unknown constraint type in Constraint::dump");
423 // Updates X with the intersection
424 // of the Constraints X and Y. Returns true if X has changed.
425 // Corresponds to Figure 4 from the paper
427 // Practical Dependence Testing
428 // Goff, Kennedy, Tseng
430 bool DependenceInfo::intersectConstraints(Constraint
*X
, const Constraint
*Y
) {
432 LLVM_DEBUG(dbgs() << "\tintersect constraints\n");
433 LLVM_DEBUG(dbgs() << "\t X ="; X
->dump(dbgs()));
434 LLVM_DEBUG(dbgs() << "\t Y ="; Y
->dump(dbgs()));
435 assert(!Y
->isPoint() && "Y must not be a Point");
449 if (X
->isDistance() && Y
->isDistance()) {
450 LLVM_DEBUG(dbgs() << "\t intersect 2 distances\n");
451 if (isKnownPredicate(CmpInst::ICMP_EQ
, X
->getD(), Y
->getD()))
453 if (isKnownPredicate(CmpInst::ICMP_NE
, X
->getD(), Y
->getD())) {
458 // Hmmm, interesting situation.
459 // I guess if either is constant, keep it and ignore the other.
460 if (isa
<SCEVConstant
>(Y
->getD())) {
467 // At this point, the pseudo-code in Figure 4 of the paper
468 // checks if (X->isPoint() && Y->isPoint()).
469 // This case can't occur in our implementation,
470 // since a Point can only arise as the result of intersecting
471 // two Line constraints, and the right-hand value, Y, is never
472 // the result of an intersection.
473 assert(!(X
->isPoint() && Y
->isPoint()) &&
474 "We shouldn't ever see X->isPoint() && Y->isPoint()");
476 if (X
->isLine() && Y
->isLine()) {
477 LLVM_DEBUG(dbgs() << "\t intersect 2 lines\n");
478 const SCEV
*Prod1
= SE
->getMulExpr(X
->getA(), Y
->getB());
479 const SCEV
*Prod2
= SE
->getMulExpr(X
->getB(), Y
->getA());
480 if (isKnownPredicate(CmpInst::ICMP_EQ
, Prod1
, Prod2
)) {
481 // slopes are equal, so lines are parallel
482 LLVM_DEBUG(dbgs() << "\t\tsame slope\n");
483 Prod1
= SE
->getMulExpr(X
->getC(), Y
->getB());
484 Prod2
= SE
->getMulExpr(X
->getB(), Y
->getC());
485 if (isKnownPredicate(CmpInst::ICMP_EQ
, Prod1
, Prod2
))
487 if (isKnownPredicate(CmpInst::ICMP_NE
, Prod1
, Prod2
)) {
494 if (isKnownPredicate(CmpInst::ICMP_NE
, Prod1
, Prod2
)) {
495 // slopes differ, so lines intersect
496 LLVM_DEBUG(dbgs() << "\t\tdifferent slopes\n");
497 const SCEV
*C1B2
= SE
->getMulExpr(X
->getC(), Y
->getB());
498 const SCEV
*C1A2
= SE
->getMulExpr(X
->getC(), Y
->getA());
499 const SCEV
*C2B1
= SE
->getMulExpr(Y
->getC(), X
->getB());
500 const SCEV
*C2A1
= SE
->getMulExpr(Y
->getC(), X
->getA());
501 const SCEV
*A1B2
= SE
->getMulExpr(X
->getA(), Y
->getB());
502 const SCEV
*A2B1
= SE
->getMulExpr(Y
->getA(), X
->getB());
503 const SCEVConstant
*C1A2_C2A1
=
504 dyn_cast
<SCEVConstant
>(SE
->getMinusSCEV(C1A2
, C2A1
));
505 const SCEVConstant
*C1B2_C2B1
=
506 dyn_cast
<SCEVConstant
>(SE
->getMinusSCEV(C1B2
, C2B1
));
507 const SCEVConstant
*A1B2_A2B1
=
508 dyn_cast
<SCEVConstant
>(SE
->getMinusSCEV(A1B2
, A2B1
));
509 const SCEVConstant
*A2B1_A1B2
=
510 dyn_cast
<SCEVConstant
>(SE
->getMinusSCEV(A2B1
, A1B2
));
511 if (!C1B2_C2B1
|| !C1A2_C2A1
||
512 !A1B2_A2B1
|| !A2B1_A1B2
)
514 APInt Xtop
= C1B2_C2B1
->getAPInt();
515 APInt Xbot
= A1B2_A2B1
->getAPInt();
516 APInt Ytop
= C1A2_C2A1
->getAPInt();
517 APInt Ybot
= A2B1_A1B2
->getAPInt();
518 LLVM_DEBUG(dbgs() << "\t\tXtop = " << Xtop
<< "\n");
519 LLVM_DEBUG(dbgs() << "\t\tXbot = " << Xbot
<< "\n");
520 LLVM_DEBUG(dbgs() << "\t\tYtop = " << Ytop
<< "\n");
521 LLVM_DEBUG(dbgs() << "\t\tYbot = " << Ybot
<< "\n");
522 APInt Xq
= Xtop
; // these need to be initialized, even
523 APInt Xr
= Xtop
; // though they're just going to be overwritten
524 APInt::sdivrem(Xtop
, Xbot
, Xq
, Xr
);
527 APInt::sdivrem(Ytop
, Ybot
, Yq
, Yr
);
528 if (Xr
!= 0 || Yr
!= 0) {
533 LLVM_DEBUG(dbgs() << "\t\tX = " << Xq
<< ", Y = " << Yq
<< "\n");
534 if (Xq
.slt(0) || Yq
.slt(0)) {
539 if (const SCEVConstant
*CUB
=
540 collectConstantUpperBound(X
->getAssociatedLoop(), Prod1
->getType())) {
541 const APInt
&UpperBound
= CUB
->getAPInt();
542 LLVM_DEBUG(dbgs() << "\t\tupper bound = " << UpperBound
<< "\n");
543 if (Xq
.sgt(UpperBound
) || Yq
.sgt(UpperBound
)) {
549 X
->setPoint(SE
->getConstant(Xq
),
551 X
->getAssociatedLoop());
558 // if (X->isLine() && Y->isPoint()) This case can't occur.
559 assert(!(X
->isLine() && Y
->isPoint()) && "This case should never occur");
561 if (X
->isPoint() && Y
->isLine()) {
562 LLVM_DEBUG(dbgs() << "\t intersect Point and Line\n");
563 const SCEV
*A1X1
= SE
->getMulExpr(Y
->getA(), X
->getX());
564 const SCEV
*B1Y1
= SE
->getMulExpr(Y
->getB(), X
->getY());
565 const SCEV
*Sum
= SE
->getAddExpr(A1X1
, B1Y1
);
566 if (isKnownPredicate(CmpInst::ICMP_EQ
, Sum
, Y
->getC()))
568 if (isKnownPredicate(CmpInst::ICMP_NE
, Sum
, Y
->getC())) {
576 llvm_unreachable("shouldn't reach the end of Constraint intersection");
581 //===----------------------------------------------------------------------===//
582 // DependenceInfo methods
584 // For debugging purposes. Dumps a dependence to OS.
585 void Dependence::dump(raw_ostream
&OS
) const {
586 bool Splitable
= false;
600 unsigned Levels
= getLevels();
602 for (unsigned II
= 1; II
<= Levels
; ++II
) {
607 const SCEV
*Distance
= getDistance(II
);
610 else if (isScalar(II
))
613 unsigned Direction
= getDirection(II
);
614 if (Direction
== DVEntry::ALL
)
617 if (Direction
& DVEntry::LT
)
619 if (Direction
& DVEntry::EQ
)
621 if (Direction
& DVEntry::GT
)
630 if (isLoopIndependent())
639 // Returns NoAlias/MayAliass/MustAlias for two memory locations based upon their
640 // underlaying objects. If LocA and LocB are known to not alias (for any reason:
641 // tbaa, non-overlapping regions etc), then it is known there is no dependecy.
642 // Otherwise the underlying objects are checked to see if they point to
643 // different identifiable objects.
644 static AliasResult
underlyingObjectsAlias(AliasAnalysis
*AA
,
645 const DataLayout
&DL
,
646 const MemoryLocation
&LocA
,
647 const MemoryLocation
&LocB
) {
648 // Check the original locations (minus size) for noalias, which can happen for
649 // tbaa, incompatible underlying object locations, etc.
650 MemoryLocation
LocAS(LocA
.Ptr
, LocationSize::unknown(), LocA
.AATags
);
651 MemoryLocation
LocBS(LocB
.Ptr
, LocationSize::unknown(), LocB
.AATags
);
652 if (AA
->alias(LocAS
, LocBS
) == NoAlias
)
655 // Check the underlying objects are the same
656 const Value
*AObj
= GetUnderlyingObject(LocA
.Ptr
, DL
);
657 const Value
*BObj
= GetUnderlyingObject(LocB
.Ptr
, DL
);
659 // If the underlying objects are the same, they must alias
663 // We may have hit the recursion limit for underlying objects, or have
664 // underlying objects where we don't know they will alias.
665 if (!isIdentifiedObject(AObj
) || !isIdentifiedObject(BObj
))
668 // Otherwise we know the objects are different and both identified objects so
674 // Returns true if the load or store can be analyzed. Atomic and volatile
675 // operations have properties which this analysis does not understand.
677 bool isLoadOrStore(const Instruction
*I
) {
678 if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(I
))
679 return LI
->isUnordered();
680 else if (const StoreInst
*SI
= dyn_cast
<StoreInst
>(I
))
681 return SI
->isUnordered();
686 // Examines the loop nesting of the Src and Dst
687 // instructions and establishes their shared loops. Sets the variables
688 // CommonLevels, SrcLevels, and MaxLevels.
689 // The source and destination instructions needn't be contained in the same
690 // loop. The routine establishNestingLevels finds the level of most deeply
691 // nested loop that contains them both, CommonLevels. An instruction that's
692 // not contained in a loop is at level = 0. MaxLevels is equal to the level
693 // of the source plus the level of the destination, minus CommonLevels.
694 // This lets us allocate vectors MaxLevels in length, with room for every
695 // distinct loop referenced in both the source and destination subscripts.
696 // The variable SrcLevels is the nesting depth of the source instruction.
697 // It's used to help calculate distinct loops referenced by the destination.
698 // Here's the map from loops to levels:
700 // 1 - outermost common loop
701 // ... - other common loops
702 // CommonLevels - innermost common loop
703 // ... - loops containing Src but not Dst
704 // SrcLevels - innermost loop containing Src but not Dst
705 // ... - loops containing Dst but not Src
706 // MaxLevels - innermost loops containing Dst but not Src
707 // Consider the follow code fragment:
724 // If we're looking at the possibility of a dependence between the store
725 // to A (the Src) and the load from A (the Dst), we'll note that they
726 // have 2 loops in common, so CommonLevels will equal 2 and the direction
727 // vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
728 // A map from loop names to loop numbers would look like
730 // b - 2 = CommonLevels
736 void DependenceInfo::establishNestingLevels(const Instruction
*Src
,
737 const Instruction
*Dst
) {
738 const BasicBlock
*SrcBlock
= Src
->getParent();
739 const BasicBlock
*DstBlock
= Dst
->getParent();
740 unsigned SrcLevel
= LI
->getLoopDepth(SrcBlock
);
741 unsigned DstLevel
= LI
->getLoopDepth(DstBlock
);
742 const Loop
*SrcLoop
= LI
->getLoopFor(SrcBlock
);
743 const Loop
*DstLoop
= LI
->getLoopFor(DstBlock
);
744 SrcLevels
= SrcLevel
;
745 MaxLevels
= SrcLevel
+ DstLevel
;
746 while (SrcLevel
> DstLevel
) {
747 SrcLoop
= SrcLoop
->getParentLoop();
750 while (DstLevel
> SrcLevel
) {
751 DstLoop
= DstLoop
->getParentLoop();
754 while (SrcLoop
!= DstLoop
) {
755 SrcLoop
= SrcLoop
->getParentLoop();
756 DstLoop
= DstLoop
->getParentLoop();
759 CommonLevels
= SrcLevel
;
760 MaxLevels
-= CommonLevels
;
764 // Given one of the loops containing the source, return
765 // its level index in our numbering scheme.
766 unsigned DependenceInfo::mapSrcLoop(const Loop
*SrcLoop
) const {
767 return SrcLoop
->getLoopDepth();
771 // Given one of the loops containing the destination,
772 // return its level index in our numbering scheme.
773 unsigned DependenceInfo::mapDstLoop(const Loop
*DstLoop
) const {
774 unsigned D
= DstLoop
->getLoopDepth();
775 if (D
> CommonLevels
)
776 return D
- CommonLevels
+ SrcLevels
;
782 // Returns true if Expression is loop invariant in LoopNest.
783 bool DependenceInfo::isLoopInvariant(const SCEV
*Expression
,
784 const Loop
*LoopNest
) const {
787 return SE
->isLoopInvariant(Expression
, LoopNest
) &&
788 isLoopInvariant(Expression
, LoopNest
->getParentLoop());
793 // Finds the set of loops from the LoopNest that
794 // have a level <= CommonLevels and are referred to by the SCEV Expression.
795 void DependenceInfo::collectCommonLoops(const SCEV
*Expression
,
796 const Loop
*LoopNest
,
797 SmallBitVector
&Loops
) const {
799 unsigned Level
= LoopNest
->getLoopDepth();
800 if (Level
<= CommonLevels
&& !SE
->isLoopInvariant(Expression
, LoopNest
))
802 LoopNest
= LoopNest
->getParentLoop();
806 void DependenceInfo::unifySubscriptType(ArrayRef
<Subscript
*> Pairs
) {
808 unsigned widestWidthSeen
= 0;
811 // Go through each pair and find the widest bit to which we need
812 // to extend all of them.
813 for (Subscript
*Pair
: Pairs
) {
814 const SCEV
*Src
= Pair
->Src
;
815 const SCEV
*Dst
= Pair
->Dst
;
816 IntegerType
*SrcTy
= dyn_cast
<IntegerType
>(Src
->getType());
817 IntegerType
*DstTy
= dyn_cast
<IntegerType
>(Dst
->getType());
818 if (SrcTy
== nullptr || DstTy
== nullptr) {
819 assert(SrcTy
== DstTy
&& "This function only unify integer types and "
820 "expect Src and Dst share the same type "
824 if (SrcTy
->getBitWidth() > widestWidthSeen
) {
825 widestWidthSeen
= SrcTy
->getBitWidth();
828 if (DstTy
->getBitWidth() > widestWidthSeen
) {
829 widestWidthSeen
= DstTy
->getBitWidth();
835 assert(widestWidthSeen
> 0);
837 // Now extend each pair to the widest seen.
838 for (Subscript
*Pair
: Pairs
) {
839 const SCEV
*Src
= Pair
->Src
;
840 const SCEV
*Dst
= Pair
->Dst
;
841 IntegerType
*SrcTy
= dyn_cast
<IntegerType
>(Src
->getType());
842 IntegerType
*DstTy
= dyn_cast
<IntegerType
>(Dst
->getType());
843 if (SrcTy
== nullptr || DstTy
== nullptr) {
844 assert(SrcTy
== DstTy
&& "This function only unify integer types and "
845 "expect Src and Dst share the same type "
849 if (SrcTy
->getBitWidth() < widestWidthSeen
)
850 // Sign-extend Src to widestType
851 Pair
->Src
= SE
->getSignExtendExpr(Src
, widestType
);
852 if (DstTy
->getBitWidth() < widestWidthSeen
) {
853 // Sign-extend Dst to widestType
854 Pair
->Dst
= SE
->getSignExtendExpr(Dst
, widestType
);
859 // removeMatchingExtensions - Examines a subscript pair.
860 // If the source and destination are identically sign (or zero)
861 // extended, it strips off the extension in an effect to simplify
862 // the actual analysis.
863 void DependenceInfo::removeMatchingExtensions(Subscript
*Pair
) {
864 const SCEV
*Src
= Pair
->Src
;
865 const SCEV
*Dst
= Pair
->Dst
;
866 if ((isa
<SCEVZeroExtendExpr
>(Src
) && isa
<SCEVZeroExtendExpr
>(Dst
)) ||
867 (isa
<SCEVSignExtendExpr
>(Src
) && isa
<SCEVSignExtendExpr
>(Dst
))) {
868 const SCEVCastExpr
*SrcCast
= cast
<SCEVCastExpr
>(Src
);
869 const SCEVCastExpr
*DstCast
= cast
<SCEVCastExpr
>(Dst
);
870 const SCEV
*SrcCastOp
= SrcCast
->getOperand();
871 const SCEV
*DstCastOp
= DstCast
->getOperand();
872 if (SrcCastOp
->getType() == DstCastOp
->getType()) {
873 Pair
->Src
= SrcCastOp
;
874 Pair
->Dst
= DstCastOp
;
880 // Examine the scev and return true iff it's linear.
881 // Collect any loops mentioned in the set of "Loops".
882 bool DependenceInfo::checkSrcSubscript(const SCEV
*Src
, const Loop
*LoopNest
,
883 SmallBitVector
&Loops
) {
884 const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(Src
);
886 return isLoopInvariant(Src
, LoopNest
);
887 const SCEV
*Start
= AddRec
->getStart();
888 const SCEV
*Step
= AddRec
->getStepRecurrence(*SE
);
889 const SCEV
*UB
= SE
->getBackedgeTakenCount(AddRec
->getLoop());
890 if (!isa
<SCEVCouldNotCompute
>(UB
)) {
891 if (SE
->getTypeSizeInBits(Start
->getType()) <
892 SE
->getTypeSizeInBits(UB
->getType())) {
893 if (!AddRec
->getNoWrapFlags())
897 if (!isLoopInvariant(Step
, LoopNest
))
899 Loops
.set(mapSrcLoop(AddRec
->getLoop()));
900 return checkSrcSubscript(Start
, LoopNest
, Loops
);
905 // Examine the scev and return true iff it's linear.
906 // Collect any loops mentioned in the set of "Loops".
907 bool DependenceInfo::checkDstSubscript(const SCEV
*Dst
, const Loop
*LoopNest
,
908 SmallBitVector
&Loops
) {
909 const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(Dst
);
911 return isLoopInvariant(Dst
, LoopNest
);
912 const SCEV
*Start
= AddRec
->getStart();
913 const SCEV
*Step
= AddRec
->getStepRecurrence(*SE
);
914 const SCEV
*UB
= SE
->getBackedgeTakenCount(AddRec
->getLoop());
915 if (!isa
<SCEVCouldNotCompute
>(UB
)) {
916 if (SE
->getTypeSizeInBits(Start
->getType()) <
917 SE
->getTypeSizeInBits(UB
->getType())) {
918 if (!AddRec
->getNoWrapFlags())
922 if (!isLoopInvariant(Step
, LoopNest
))
924 Loops
.set(mapDstLoop(AddRec
->getLoop()));
925 return checkDstSubscript(Start
, LoopNest
, Loops
);
929 // Examines the subscript pair (the Src and Dst SCEVs)
930 // and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
931 // Collects the associated loops in a set.
932 DependenceInfo::Subscript::ClassificationKind
933 DependenceInfo::classifyPair(const SCEV
*Src
, const Loop
*SrcLoopNest
,
934 const SCEV
*Dst
, const Loop
*DstLoopNest
,
935 SmallBitVector
&Loops
) {
936 SmallBitVector
SrcLoops(MaxLevels
+ 1);
937 SmallBitVector
DstLoops(MaxLevels
+ 1);
938 if (!checkSrcSubscript(Src
, SrcLoopNest
, SrcLoops
))
939 return Subscript::NonLinear
;
940 if (!checkDstSubscript(Dst
, DstLoopNest
, DstLoops
))
941 return Subscript::NonLinear
;
944 unsigned N
= Loops
.count();
946 return Subscript::ZIV
;
948 return Subscript::SIV
;
949 if (N
== 2 && (SrcLoops
.count() == 0 ||
950 DstLoops
.count() == 0 ||
951 (SrcLoops
.count() == 1 && DstLoops
.count() == 1)))
952 return Subscript::RDIV
;
953 return Subscript::MIV
;
957 // A wrapper around SCEV::isKnownPredicate.
958 // Looks for cases where we're interested in comparing for equality.
959 // If both X and Y have been identically sign or zero extended,
960 // it strips off the (confusing) extensions before invoking
961 // SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package
962 // will be similarly updated.
964 // If SCEV::isKnownPredicate can't prove the predicate,
965 // we try simple subtraction, which seems to help in some cases
966 // involving symbolics.
967 bool DependenceInfo::isKnownPredicate(ICmpInst::Predicate Pred
, const SCEV
*X
,
968 const SCEV
*Y
) const {
969 if (Pred
== CmpInst::ICMP_EQ
||
970 Pred
== CmpInst::ICMP_NE
) {
971 if ((isa
<SCEVSignExtendExpr
>(X
) &&
972 isa
<SCEVSignExtendExpr
>(Y
)) ||
973 (isa
<SCEVZeroExtendExpr
>(X
) &&
974 isa
<SCEVZeroExtendExpr
>(Y
))) {
975 const SCEVCastExpr
*CX
= cast
<SCEVCastExpr
>(X
);
976 const SCEVCastExpr
*CY
= cast
<SCEVCastExpr
>(Y
);
977 const SCEV
*Xop
= CX
->getOperand();
978 const SCEV
*Yop
= CY
->getOperand();
979 if (Xop
->getType() == Yop
->getType()) {
985 if (SE
->isKnownPredicate(Pred
, X
, Y
))
987 // If SE->isKnownPredicate can't prove the condition,
988 // we try the brute-force approach of subtracting
989 // and testing the difference.
990 // By testing with SE->isKnownPredicate first, we avoid
991 // the possibility of overflow when the arguments are constants.
992 const SCEV
*Delta
= SE
->getMinusSCEV(X
, Y
);
994 case CmpInst::ICMP_EQ
:
995 return Delta
->isZero();
996 case CmpInst::ICMP_NE
:
997 return SE
->isKnownNonZero(Delta
);
998 case CmpInst::ICMP_SGE
:
999 return SE
->isKnownNonNegative(Delta
);
1000 case CmpInst::ICMP_SLE
:
1001 return SE
->isKnownNonPositive(Delta
);
1002 case CmpInst::ICMP_SGT
:
1003 return SE
->isKnownPositive(Delta
);
1004 case CmpInst::ICMP_SLT
:
1005 return SE
->isKnownNegative(Delta
);
1007 llvm_unreachable("unexpected predicate in isKnownPredicate");
1011 /// Compare to see if S is less than Size, using isKnownNegative(S - max(Size, 1))
1012 /// with some extra checking if S is an AddRec and we can prove less-than using
1013 /// the loop bounds.
1014 bool DependenceInfo::isKnownLessThan(const SCEV
*S
, const SCEV
*Size
) const {
1015 // First unify to the same type
1016 auto *SType
= dyn_cast
<IntegerType
>(S
->getType());
1017 auto *SizeType
= dyn_cast
<IntegerType
>(Size
->getType());
1018 if (!SType
|| !SizeType
)
1021 (SType
->getBitWidth() >= SizeType
->getBitWidth()) ? SType
: SizeType
;
1022 S
= SE
->getTruncateOrZeroExtend(S
, MaxType
);
1023 Size
= SE
->getTruncateOrZeroExtend(Size
, MaxType
);
1025 // Special check for addrecs using BE taken count
1026 const SCEV
*Bound
= SE
->getMinusSCEV(S
, Size
);
1027 if (const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(Bound
)) {
1028 if (AddRec
->isAffine()) {
1029 const SCEV
*BECount
= SE
->getBackedgeTakenCount(AddRec
->getLoop());
1030 if (!isa
<SCEVCouldNotCompute
>(BECount
)) {
1031 const SCEV
*Limit
= AddRec
->evaluateAtIteration(BECount
, *SE
);
1032 if (SE
->isKnownNegative(Limit
))
1038 // Check using normal isKnownNegative
1039 const SCEV
*LimitedBound
=
1040 SE
->getMinusSCEV(S
, SE
->getSMaxExpr(Size
, SE
->getOne(Size
->getType())));
1041 return SE
->isKnownNegative(LimitedBound
);
1044 bool DependenceInfo::isKnownNonNegative(const SCEV
*S
, const Value
*Ptr
) const {
1045 bool Inbounds
= false;
1046 if (auto *SrcGEP
= dyn_cast
<GetElementPtrInst
>(Ptr
))
1047 Inbounds
= SrcGEP
->isInBounds();
1049 if (const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
1050 if (AddRec
->isAffine()) {
1051 // We know S is for Ptr, the operand on a load/store, so doesn't wrap.
1052 // If both parts are NonNegative, the end result will be NonNegative
1053 if (SE
->isKnownNonNegative(AddRec
->getStart()) &&
1054 SE
->isKnownNonNegative(AddRec
->getOperand(1)))
1060 return SE
->isKnownNonNegative(S
);
1063 // All subscripts are all the same type.
1064 // Loop bound may be smaller (e.g., a char).
1065 // Should zero extend loop bound, since it's always >= 0.
1066 // This routine collects upper bound and extends or truncates if needed.
1067 // Truncating is safe when subscripts are known not to wrap. Cases without
1068 // nowrap flags should have been rejected earlier.
1069 // Return null if no bound available.
1070 const SCEV
*DependenceInfo::collectUpperBound(const Loop
*L
, Type
*T
) const {
1071 if (SE
->hasLoopInvariantBackedgeTakenCount(L
)) {
1072 const SCEV
*UB
= SE
->getBackedgeTakenCount(L
);
1073 return SE
->getTruncateOrZeroExtend(UB
, T
);
1079 // Calls collectUpperBound(), then attempts to cast it to SCEVConstant.
1080 // If the cast fails, returns NULL.
1081 const SCEVConstant
*DependenceInfo::collectConstantUpperBound(const Loop
*L
,
1083 if (const SCEV
*UB
= collectUpperBound(L
, T
))
1084 return dyn_cast
<SCEVConstant
>(UB
);
1090 // When we have a pair of subscripts of the form [c1] and [c2],
1091 // where c1 and c2 are both loop invariant, we attack it using
1092 // the ZIV test. Basically, we test by comparing the two values,
1093 // but there are actually three possible results:
1094 // 1) the values are equal, so there's a dependence
1095 // 2) the values are different, so there's no dependence
1096 // 3) the values might be equal, so we have to assume a dependence.
1098 // Return true if dependence disproved.
1099 bool DependenceInfo::testZIV(const SCEV
*Src
, const SCEV
*Dst
,
1100 FullDependence
&Result
) const {
1101 LLVM_DEBUG(dbgs() << " src = " << *Src
<< "\n");
1102 LLVM_DEBUG(dbgs() << " dst = " << *Dst
<< "\n");
1104 if (isKnownPredicate(CmpInst::ICMP_EQ
, Src
, Dst
)) {
1105 LLVM_DEBUG(dbgs() << " provably dependent\n");
1106 return false; // provably dependent
1108 if (isKnownPredicate(CmpInst::ICMP_NE
, Src
, Dst
)) {
1109 LLVM_DEBUG(dbgs() << " provably independent\n");
1111 return true; // provably independent
1113 LLVM_DEBUG(dbgs() << " possibly dependent\n");
1114 Result
.Consistent
= false;
1115 return false; // possibly dependent
1120 // From the paper, Practical Dependence Testing, Section 4.2.1
1122 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i],
1123 // where i is an induction variable, c1 and c2 are loop invariant,
1124 // and a is a constant, we can solve it exactly using the Strong SIV test.
1126 // Can prove independence. Failing that, can compute distance (and direction).
1127 // In the presence of symbolic terms, we can sometimes make progress.
1129 // If there's a dependence,
1131 // c1 + a*i = c2 + a*i'
1133 // The dependence distance is
1135 // d = i' - i = (c1 - c2)/a
1137 // A dependence only exists if d is an integer and abs(d) <= U, where U is the
1138 // loop's upper bound. If a dependence exists, the dependence direction is
1142 // direction = { = if d = 0
1145 // Return true if dependence disproved.
1146 bool DependenceInfo::strongSIVtest(const SCEV
*Coeff
, const SCEV
*SrcConst
,
1147 const SCEV
*DstConst
, const Loop
*CurLoop
,
1148 unsigned Level
, FullDependence
&Result
,
1149 Constraint
&NewConstraint
) const {
1150 LLVM_DEBUG(dbgs() << "\tStrong SIV test\n");
1151 LLVM_DEBUG(dbgs() << "\t Coeff = " << *Coeff
);
1152 LLVM_DEBUG(dbgs() << ", " << *Coeff
->getType() << "\n");
1153 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst
);
1154 LLVM_DEBUG(dbgs() << ", " << *SrcConst
->getType() << "\n");
1155 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst
);
1156 LLVM_DEBUG(dbgs() << ", " << *DstConst
->getType() << "\n");
1157 ++StrongSIVapplications
;
1158 assert(0 < Level
&& Level
<= CommonLevels
&& "level out of range");
1161 const SCEV
*Delta
= SE
->getMinusSCEV(SrcConst
, DstConst
);
1162 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta
);
1163 LLVM_DEBUG(dbgs() << ", " << *Delta
->getType() << "\n");
1165 // check that |Delta| < iteration count
1166 if (const SCEV
*UpperBound
= collectUpperBound(CurLoop
, Delta
->getType())) {
1167 LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound
);
1168 LLVM_DEBUG(dbgs() << ", " << *UpperBound
->getType() << "\n");
1169 const SCEV
*AbsDelta
=
1170 SE
->isKnownNonNegative(Delta
) ? Delta
: SE
->getNegativeSCEV(Delta
);
1171 const SCEV
*AbsCoeff
=
1172 SE
->isKnownNonNegative(Coeff
) ? Coeff
: SE
->getNegativeSCEV(Coeff
);
1173 const SCEV
*Product
= SE
->getMulExpr(UpperBound
, AbsCoeff
);
1174 if (isKnownPredicate(CmpInst::ICMP_SGT
, AbsDelta
, Product
)) {
1175 // Distance greater than trip count - no dependence
1176 ++StrongSIVindependence
;
1177 ++StrongSIVsuccesses
;
1182 // Can we compute distance?
1183 if (isa
<SCEVConstant
>(Delta
) && isa
<SCEVConstant
>(Coeff
)) {
1184 APInt ConstDelta
= cast
<SCEVConstant
>(Delta
)->getAPInt();
1185 APInt ConstCoeff
= cast
<SCEVConstant
>(Coeff
)->getAPInt();
1186 APInt Distance
= ConstDelta
; // these need to be initialized
1187 APInt Remainder
= ConstDelta
;
1188 APInt::sdivrem(ConstDelta
, ConstCoeff
, Distance
, Remainder
);
1189 LLVM_DEBUG(dbgs() << "\t Distance = " << Distance
<< "\n");
1190 LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder
<< "\n");
1191 // Make sure Coeff divides Delta exactly
1192 if (Remainder
!= 0) {
1193 // Coeff doesn't divide Distance, no dependence
1194 ++StrongSIVindependence
;
1195 ++StrongSIVsuccesses
;
1198 Result
.DV
[Level
].Distance
= SE
->getConstant(Distance
);
1199 NewConstraint
.setDistance(SE
->getConstant(Distance
), CurLoop
);
1200 if (Distance
.sgt(0))
1201 Result
.DV
[Level
].Direction
&= Dependence::DVEntry::LT
;
1202 else if (Distance
.slt(0))
1203 Result
.DV
[Level
].Direction
&= Dependence::DVEntry::GT
;
1205 Result
.DV
[Level
].Direction
&= Dependence::DVEntry::EQ
;
1206 ++StrongSIVsuccesses
;
1208 else if (Delta
->isZero()) {
1210 Result
.DV
[Level
].Distance
= Delta
;
1211 NewConstraint
.setDistance(Delta
, CurLoop
);
1212 Result
.DV
[Level
].Direction
&= Dependence::DVEntry::EQ
;
1213 ++StrongSIVsuccesses
;
1216 if (Coeff
->isOne()) {
1217 LLVM_DEBUG(dbgs() << "\t Distance = " << *Delta
<< "\n");
1218 Result
.DV
[Level
].Distance
= Delta
; // since X/1 == X
1219 NewConstraint
.setDistance(Delta
, CurLoop
);
1222 Result
.Consistent
= false;
1223 NewConstraint
.setLine(Coeff
,
1224 SE
->getNegativeSCEV(Coeff
),
1225 SE
->getNegativeSCEV(Delta
), CurLoop
);
1228 // maybe we can get a useful direction
1229 bool DeltaMaybeZero
= !SE
->isKnownNonZero(Delta
);
1230 bool DeltaMaybePositive
= !SE
->isKnownNonPositive(Delta
);
1231 bool DeltaMaybeNegative
= !SE
->isKnownNonNegative(Delta
);
1232 bool CoeffMaybePositive
= !SE
->isKnownNonPositive(Coeff
);
1233 bool CoeffMaybeNegative
= !SE
->isKnownNonNegative(Coeff
);
1234 // The double negatives above are confusing.
1235 // It helps to read !SE->isKnownNonZero(Delta)
1236 // as "Delta might be Zero"
1237 unsigned NewDirection
= Dependence::DVEntry::NONE
;
1238 if ((DeltaMaybePositive
&& CoeffMaybePositive
) ||
1239 (DeltaMaybeNegative
&& CoeffMaybeNegative
))
1240 NewDirection
= Dependence::DVEntry::LT
;
1242 NewDirection
|= Dependence::DVEntry::EQ
;
1243 if ((DeltaMaybeNegative
&& CoeffMaybePositive
) ||
1244 (DeltaMaybePositive
&& CoeffMaybeNegative
))
1245 NewDirection
|= Dependence::DVEntry::GT
;
1246 if (NewDirection
< Result
.DV
[Level
].Direction
)
1247 ++StrongSIVsuccesses
;
1248 Result
.DV
[Level
].Direction
&= NewDirection
;
1254 // weakCrossingSIVtest -
1255 // From the paper, Practical Dependence Testing, Section 4.2.2
1257 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i],
1258 // where i is an induction variable, c1 and c2 are loop invariant,
1259 // and a is a constant, we can solve it exactly using the
1260 // Weak-Crossing SIV test.
1262 // Given c1 + a*i = c2 - a*i', we can look for the intersection of
1263 // the two lines, where i = i', yielding
1265 // c1 + a*i = c2 - a*i
1269 // If i < 0, there is no dependence.
1270 // If i > upperbound, there is no dependence.
1271 // If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0.
1272 // If i = upperbound, there's a dependence with distance = 0.
1273 // If i is integral, there's a dependence (all directions).
1274 // If the non-integer part = 1/2, there's a dependence (<> directions).
1275 // Otherwise, there's no dependence.
1277 // Can prove independence. Failing that,
1278 // can sometimes refine the directions.
1279 // Can determine iteration for splitting.
1281 // Return true if dependence disproved.
1282 bool DependenceInfo::weakCrossingSIVtest(
1283 const SCEV
*Coeff
, const SCEV
*SrcConst
, const SCEV
*DstConst
,
1284 const Loop
*CurLoop
, unsigned Level
, FullDependence
&Result
,
1285 Constraint
&NewConstraint
, const SCEV
*&SplitIter
) const {
1286 LLVM_DEBUG(dbgs() << "\tWeak-Crossing SIV test\n");
1287 LLVM_DEBUG(dbgs() << "\t Coeff = " << *Coeff
<< "\n");
1288 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst
<< "\n");
1289 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst
<< "\n");
1290 ++WeakCrossingSIVapplications
;
1291 assert(0 < Level
&& Level
<= CommonLevels
&& "Level out of range");
1293 Result
.Consistent
= false;
1294 const SCEV
*Delta
= SE
->getMinusSCEV(DstConst
, SrcConst
);
1295 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta
<< "\n");
1296 NewConstraint
.setLine(Coeff
, Coeff
, Delta
, CurLoop
);
1297 if (Delta
->isZero()) {
1298 Result
.DV
[Level
].Direction
&= unsigned(~Dependence::DVEntry::LT
);
1299 Result
.DV
[Level
].Direction
&= unsigned(~Dependence::DVEntry::GT
);
1300 ++WeakCrossingSIVsuccesses
;
1301 if (!Result
.DV
[Level
].Direction
) {
1302 ++WeakCrossingSIVindependence
;
1305 Result
.DV
[Level
].Distance
= Delta
; // = 0
1308 const SCEVConstant
*ConstCoeff
= dyn_cast
<SCEVConstant
>(Coeff
);
1312 Result
.DV
[Level
].Splitable
= true;
1313 if (SE
->isKnownNegative(ConstCoeff
)) {
1314 ConstCoeff
= dyn_cast
<SCEVConstant
>(SE
->getNegativeSCEV(ConstCoeff
));
1315 assert(ConstCoeff
&&
1316 "dynamic cast of negative of ConstCoeff should yield constant");
1317 Delta
= SE
->getNegativeSCEV(Delta
);
1319 assert(SE
->isKnownPositive(ConstCoeff
) && "ConstCoeff should be positive");
1321 // compute SplitIter for use by DependenceInfo::getSplitIteration()
1322 SplitIter
= SE
->getUDivExpr(
1323 SE
->getSMaxExpr(SE
->getZero(Delta
->getType()), Delta
),
1324 SE
->getMulExpr(SE
->getConstant(Delta
->getType(), 2), ConstCoeff
));
1325 LLVM_DEBUG(dbgs() << "\t Split iter = " << *SplitIter
<< "\n");
1327 const SCEVConstant
*ConstDelta
= dyn_cast
<SCEVConstant
>(Delta
);
1331 // We're certain that ConstCoeff > 0; therefore,
1332 // if Delta < 0, then no dependence.
1333 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta
<< "\n");
1334 LLVM_DEBUG(dbgs() << "\t ConstCoeff = " << *ConstCoeff
<< "\n");
1335 if (SE
->isKnownNegative(Delta
)) {
1336 // No dependence, Delta < 0
1337 ++WeakCrossingSIVindependence
;
1338 ++WeakCrossingSIVsuccesses
;
1342 // We're certain that Delta > 0 and ConstCoeff > 0.
1343 // Check Delta/(2*ConstCoeff) against upper loop bound
1344 if (const SCEV
*UpperBound
= collectUpperBound(CurLoop
, Delta
->getType())) {
1345 LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound
<< "\n");
1346 const SCEV
*ConstantTwo
= SE
->getConstant(UpperBound
->getType(), 2);
1347 const SCEV
*ML
= SE
->getMulExpr(SE
->getMulExpr(ConstCoeff
, UpperBound
),
1349 LLVM_DEBUG(dbgs() << "\t ML = " << *ML
<< "\n");
1350 if (isKnownPredicate(CmpInst::ICMP_SGT
, Delta
, ML
)) {
1351 // Delta too big, no dependence
1352 ++WeakCrossingSIVindependence
;
1353 ++WeakCrossingSIVsuccesses
;
1356 if (isKnownPredicate(CmpInst::ICMP_EQ
, Delta
, ML
)) {
1358 Result
.DV
[Level
].Direction
&= unsigned(~Dependence::DVEntry::LT
);
1359 Result
.DV
[Level
].Direction
&= unsigned(~Dependence::DVEntry::GT
);
1360 ++WeakCrossingSIVsuccesses
;
1361 if (!Result
.DV
[Level
].Direction
) {
1362 ++WeakCrossingSIVindependence
;
1365 Result
.DV
[Level
].Splitable
= false;
1366 Result
.DV
[Level
].Distance
= SE
->getZero(Delta
->getType());
1371 // check that Coeff divides Delta
1372 APInt APDelta
= ConstDelta
->getAPInt();
1373 APInt APCoeff
= ConstCoeff
->getAPInt();
1374 APInt Distance
= APDelta
; // these need to be initialzed
1375 APInt Remainder
= APDelta
;
1376 APInt::sdivrem(APDelta
, APCoeff
, Distance
, Remainder
);
1377 LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder
<< "\n");
1378 if (Remainder
!= 0) {
1379 // Coeff doesn't divide Delta, no dependence
1380 ++WeakCrossingSIVindependence
;
1381 ++WeakCrossingSIVsuccesses
;
1384 LLVM_DEBUG(dbgs() << "\t Distance = " << Distance
<< "\n");
1386 // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible
1387 APInt Two
= APInt(Distance
.getBitWidth(), 2, true);
1388 Remainder
= Distance
.srem(Two
);
1389 LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder
<< "\n");
1390 if (Remainder
!= 0) {
1391 // Equal direction isn't possible
1392 Result
.DV
[Level
].Direction
&= unsigned(~Dependence::DVEntry::EQ
);
1393 ++WeakCrossingSIVsuccesses
;
1399 // Kirch's algorithm, from
1401 // Optimizing Supercompilers for Supercomputers
1405 // Program 2.1, page 29.
1406 // Computes the GCD of AM and BM.
1407 // Also finds a solution to the equation ax - by = gcd(a, b).
1408 // Returns true if dependence disproved; i.e., gcd does not divide Delta.
1409 static bool findGCD(unsigned Bits
, const APInt
&AM
, const APInt
&BM
,
1410 const APInt
&Delta
, APInt
&G
, APInt
&X
, APInt
&Y
) {
1411 APInt
A0(Bits
, 1, true), A1(Bits
, 0, true);
1412 APInt
B0(Bits
, 0, true), B1(Bits
, 1, true);
1413 APInt G0
= AM
.abs();
1414 APInt G1
= BM
.abs();
1415 APInt Q
= G0
; // these need to be initialized
1417 APInt::sdivrem(G0
, G1
, Q
, R
);
1419 APInt A2
= A0
- Q
*A1
; A0
= A1
; A1
= A2
;
1420 APInt B2
= B0
- Q
*B1
; B0
= B1
; B1
= B2
;
1422 APInt::sdivrem(G0
, G1
, Q
, R
);
1425 LLVM_DEBUG(dbgs() << "\t GCD = " << G
<< "\n");
1426 X
= AM
.slt(0) ? -A1
: A1
;
1427 Y
= BM
.slt(0) ? B1
: -B1
;
1429 // make sure gcd divides Delta
1432 return true; // gcd doesn't divide Delta, no dependence
1439 static APInt
floorOfQuotient(const APInt
&A
, const APInt
&B
) {
1440 APInt Q
= A
; // these need to be initialized
1442 APInt::sdivrem(A
, B
, Q
, R
);
1445 if ((A
.sgt(0) && B
.sgt(0)) ||
1446 (A
.slt(0) && B
.slt(0)))
1452 static APInt
ceilingOfQuotient(const APInt
&A
, const APInt
&B
) {
1453 APInt Q
= A
; // these need to be initialized
1455 APInt::sdivrem(A
, B
, Q
, R
);
1458 if ((A
.sgt(0) && B
.sgt(0)) ||
1459 (A
.slt(0) && B
.slt(0)))
1467 APInt
maxAPInt(APInt A
, APInt B
) {
1468 return A
.sgt(B
) ? A
: B
;
1473 APInt
minAPInt(APInt A
, APInt B
) {
1474 return A
.slt(B
) ? A
: B
;
1479 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i],
1480 // where i is an induction variable, c1 and c2 are loop invariant, and a1
1481 // and a2 are constant, we can solve it exactly using an algorithm developed
1482 // by Banerjee and Wolfe. See Section 2.5.3 in
1484 // Optimizing Supercompilers for Supercomputers
1488 // It's slower than the specialized tests (strong SIV, weak-zero SIV, etc),
1489 // so use them if possible. They're also a bit better with symbolics and,
1490 // in the case of the strong SIV test, can compute Distances.
1492 // Return true if dependence disproved.
1493 bool DependenceInfo::exactSIVtest(const SCEV
*SrcCoeff
, const SCEV
*DstCoeff
,
1494 const SCEV
*SrcConst
, const SCEV
*DstConst
,
1495 const Loop
*CurLoop
, unsigned Level
,
1496 FullDependence
&Result
,
1497 Constraint
&NewConstraint
) const {
1498 LLVM_DEBUG(dbgs() << "\tExact SIV test\n");
1499 LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff
<< " = AM\n");
1500 LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff
<< " = BM\n");
1501 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst
<< "\n");
1502 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst
<< "\n");
1503 ++ExactSIVapplications
;
1504 assert(0 < Level
&& Level
<= CommonLevels
&& "Level out of range");
1506 Result
.Consistent
= false;
1507 const SCEV
*Delta
= SE
->getMinusSCEV(DstConst
, SrcConst
);
1508 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta
<< "\n");
1509 NewConstraint
.setLine(SrcCoeff
, SE
->getNegativeSCEV(DstCoeff
),
1511 const SCEVConstant
*ConstDelta
= dyn_cast
<SCEVConstant
>(Delta
);
1512 const SCEVConstant
*ConstSrcCoeff
= dyn_cast
<SCEVConstant
>(SrcCoeff
);
1513 const SCEVConstant
*ConstDstCoeff
= dyn_cast
<SCEVConstant
>(DstCoeff
);
1514 if (!ConstDelta
|| !ConstSrcCoeff
|| !ConstDstCoeff
)
1519 APInt AM
= ConstSrcCoeff
->getAPInt();
1520 APInt BM
= ConstDstCoeff
->getAPInt();
1521 unsigned Bits
= AM
.getBitWidth();
1522 if (findGCD(Bits
, AM
, BM
, ConstDelta
->getAPInt(), G
, X
, Y
)) {
1523 // gcd doesn't divide Delta, no dependence
1524 ++ExactSIVindependence
;
1525 ++ExactSIVsuccesses
;
1529 LLVM_DEBUG(dbgs() << "\t X = " << X
<< ", Y = " << Y
<< "\n");
1531 // since SCEV construction normalizes, LM = 0
1532 APInt
UM(Bits
, 1, true);
1533 bool UMvalid
= false;
1534 // UM is perhaps unavailable, let's check
1535 if (const SCEVConstant
*CUB
=
1536 collectConstantUpperBound(CurLoop
, Delta
->getType())) {
1537 UM
= CUB
->getAPInt();
1538 LLVM_DEBUG(dbgs() << "\t UM = " << UM
<< "\n");
1542 APInt
TU(APInt::getSignedMaxValue(Bits
));
1543 APInt
TL(APInt::getSignedMinValue(Bits
));
1545 // test(BM/G, LM-X) and test(-BM/G, X-UM)
1546 APInt TMUL
= BM
.sdiv(G
);
1548 TL
= maxAPInt(TL
, ceilingOfQuotient(-X
, TMUL
));
1549 LLVM_DEBUG(dbgs() << "\t TL = " << TL
<< "\n");
1551 TU
= minAPInt(TU
, floorOfQuotient(UM
- X
, TMUL
));
1552 LLVM_DEBUG(dbgs() << "\t TU = " << TU
<< "\n");
1556 TU
= minAPInt(TU
, floorOfQuotient(-X
, TMUL
));
1557 LLVM_DEBUG(dbgs() << "\t TU = " << TU
<< "\n");
1559 TL
= maxAPInt(TL
, ceilingOfQuotient(UM
- X
, TMUL
));
1560 LLVM_DEBUG(dbgs() << "\t TL = " << TL
<< "\n");
1564 // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1567 TL
= maxAPInt(TL
, ceilingOfQuotient(-Y
, TMUL
));
1568 LLVM_DEBUG(dbgs() << "\t TL = " << TL
<< "\n");
1570 TU
= minAPInt(TU
, floorOfQuotient(UM
- Y
, TMUL
));
1571 LLVM_DEBUG(dbgs() << "\t TU = " << TU
<< "\n");
1575 TU
= minAPInt(TU
, floorOfQuotient(-Y
, TMUL
));
1576 LLVM_DEBUG(dbgs() << "\t TU = " << TU
<< "\n");
1578 TL
= maxAPInt(TL
, ceilingOfQuotient(UM
- Y
, TMUL
));
1579 LLVM_DEBUG(dbgs() << "\t TL = " << TL
<< "\n");
1583 ++ExactSIVindependence
;
1584 ++ExactSIVsuccesses
;
1588 // explore directions
1589 unsigned NewDirection
= Dependence::DVEntry::NONE
;
1592 APInt
SaveTU(TU
); // save these
1594 LLVM_DEBUG(dbgs() << "\t exploring LT direction\n");
1597 TL
= maxAPInt(TL
, ceilingOfQuotient(X
- Y
+ 1, TMUL
));
1598 LLVM_DEBUG(dbgs() << "\t\t TL = " << TL
<< "\n");
1601 TU
= minAPInt(TU
, floorOfQuotient(X
- Y
+ 1, TMUL
));
1602 LLVM_DEBUG(dbgs() << "\t\t TU = " << TU
<< "\n");
1605 NewDirection
|= Dependence::DVEntry::LT
;
1606 ++ExactSIVsuccesses
;
1610 TU
= SaveTU
; // restore
1612 LLVM_DEBUG(dbgs() << "\t exploring EQ direction\n");
1614 TL
= maxAPInt(TL
, ceilingOfQuotient(X
- Y
, TMUL
));
1615 LLVM_DEBUG(dbgs() << "\t\t TL = " << TL
<< "\n");
1618 TU
= minAPInt(TU
, floorOfQuotient(X
- Y
, TMUL
));
1619 LLVM_DEBUG(dbgs() << "\t\t TU = " << TU
<< "\n");
1623 TL
= maxAPInt(TL
, ceilingOfQuotient(Y
- X
, TMUL
));
1624 LLVM_DEBUG(dbgs() << "\t\t TL = " << TL
<< "\n");
1627 TU
= minAPInt(TU
, floorOfQuotient(Y
- X
, TMUL
));
1628 LLVM_DEBUG(dbgs() << "\t\t TU = " << TU
<< "\n");
1631 NewDirection
|= Dependence::DVEntry::EQ
;
1632 ++ExactSIVsuccesses
;
1636 TU
= SaveTU
; // restore
1638 LLVM_DEBUG(dbgs() << "\t exploring GT direction\n");
1640 TL
= maxAPInt(TL
, ceilingOfQuotient(Y
- X
+ 1, TMUL
));
1641 LLVM_DEBUG(dbgs() << "\t\t TL = " << TL
<< "\n");
1644 TU
= minAPInt(TU
, floorOfQuotient(Y
- X
+ 1, TMUL
));
1645 LLVM_DEBUG(dbgs() << "\t\t TU = " << TU
<< "\n");
1648 NewDirection
|= Dependence::DVEntry::GT
;
1649 ++ExactSIVsuccesses
;
1653 Result
.DV
[Level
].Direction
&= NewDirection
;
1654 if (Result
.DV
[Level
].Direction
== Dependence::DVEntry::NONE
)
1655 ++ExactSIVindependence
;
1656 return Result
.DV
[Level
].Direction
== Dependence::DVEntry::NONE
;
1661 // Return true if the divisor evenly divides the dividend.
1663 bool isRemainderZero(const SCEVConstant
*Dividend
,
1664 const SCEVConstant
*Divisor
) {
1665 const APInt
&ConstDividend
= Dividend
->getAPInt();
1666 const APInt
&ConstDivisor
= Divisor
->getAPInt();
1667 return ConstDividend
.srem(ConstDivisor
) == 0;
1671 // weakZeroSrcSIVtest -
1672 // From the paper, Practical Dependence Testing, Section 4.2.2
1674 // When we have a pair of subscripts of the form [c1] and [c2 + a*i],
1675 // where i is an induction variable, c1 and c2 are loop invariant,
1676 // and a is a constant, we can solve it exactly using the
1677 // Weak-Zero SIV test.
1687 // If i is not an integer, there's no dependence.
1688 // If i < 0 or > UB, there's no dependence.
1689 // If i = 0, the direction is >= and peeling the
1690 // 1st iteration will break the dependence.
1691 // If i = UB, the direction is <= and peeling the
1692 // last iteration will break the dependence.
1693 // Otherwise, the direction is *.
1695 // Can prove independence. Failing that, we can sometimes refine
1696 // the directions. Can sometimes show that first or last
1697 // iteration carries all the dependences (so worth peeling).
1699 // (see also weakZeroDstSIVtest)
1701 // Return true if dependence disproved.
1702 bool DependenceInfo::weakZeroSrcSIVtest(const SCEV
*DstCoeff
,
1703 const SCEV
*SrcConst
,
1704 const SCEV
*DstConst
,
1705 const Loop
*CurLoop
, unsigned Level
,
1706 FullDependence
&Result
,
1707 Constraint
&NewConstraint
) const {
1708 // For the WeakSIV test, it's possible the loop isn't common to
1709 // the Src and Dst loops. If it isn't, then there's no need to
1710 // record a direction.
1711 LLVM_DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n");
1712 LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff
<< "\n");
1713 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst
<< "\n");
1714 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst
<< "\n");
1715 ++WeakZeroSIVapplications
;
1716 assert(0 < Level
&& Level
<= MaxLevels
&& "Level out of range");
1718 Result
.Consistent
= false;
1719 const SCEV
*Delta
= SE
->getMinusSCEV(SrcConst
, DstConst
);
1720 NewConstraint
.setLine(SE
->getZero(Delta
->getType()), DstCoeff
, Delta
,
1722 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta
<< "\n");
1723 if (isKnownPredicate(CmpInst::ICMP_EQ
, SrcConst
, DstConst
)) {
1724 if (Level
< CommonLevels
) {
1725 Result
.DV
[Level
].Direction
&= Dependence::DVEntry::GE
;
1726 Result
.DV
[Level
].PeelFirst
= true;
1727 ++WeakZeroSIVsuccesses
;
1729 return false; // dependences caused by first iteration
1731 const SCEVConstant
*ConstCoeff
= dyn_cast
<SCEVConstant
>(DstCoeff
);
1734 const SCEV
*AbsCoeff
=
1735 SE
->isKnownNegative(ConstCoeff
) ?
1736 SE
->getNegativeSCEV(ConstCoeff
) : ConstCoeff
;
1737 const SCEV
*NewDelta
=
1738 SE
->isKnownNegative(ConstCoeff
) ? SE
->getNegativeSCEV(Delta
) : Delta
;
1740 // check that Delta/SrcCoeff < iteration count
1741 // really check NewDelta < count*AbsCoeff
1742 if (const SCEV
*UpperBound
= collectUpperBound(CurLoop
, Delta
->getType())) {
1743 LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound
<< "\n");
1744 const SCEV
*Product
= SE
->getMulExpr(AbsCoeff
, UpperBound
);
1745 if (isKnownPredicate(CmpInst::ICMP_SGT
, NewDelta
, Product
)) {
1746 ++WeakZeroSIVindependence
;
1747 ++WeakZeroSIVsuccesses
;
1750 if (isKnownPredicate(CmpInst::ICMP_EQ
, NewDelta
, Product
)) {
1751 // dependences caused by last iteration
1752 if (Level
< CommonLevels
) {
1753 Result
.DV
[Level
].Direction
&= Dependence::DVEntry::LE
;
1754 Result
.DV
[Level
].PeelLast
= true;
1755 ++WeakZeroSIVsuccesses
;
1761 // check that Delta/SrcCoeff >= 0
1762 // really check that NewDelta >= 0
1763 if (SE
->isKnownNegative(NewDelta
)) {
1764 // No dependence, newDelta < 0
1765 ++WeakZeroSIVindependence
;
1766 ++WeakZeroSIVsuccesses
;
1770 // if SrcCoeff doesn't divide Delta, then no dependence
1771 if (isa
<SCEVConstant
>(Delta
) &&
1772 !isRemainderZero(cast
<SCEVConstant
>(Delta
), ConstCoeff
)) {
1773 ++WeakZeroSIVindependence
;
1774 ++WeakZeroSIVsuccesses
;
1781 // weakZeroDstSIVtest -
1782 // From the paper, Practical Dependence Testing, Section 4.2.2
1784 // When we have a pair of subscripts of the form [c1 + a*i] and [c2],
1785 // where i is an induction variable, c1 and c2 are loop invariant,
1786 // and a is a constant, we can solve it exactly using the
1787 // Weak-Zero SIV test.
1797 // If i is not an integer, there's no dependence.
1798 // If i < 0 or > UB, there's no dependence.
1799 // If i = 0, the direction is <= and peeling the
1800 // 1st iteration will break the dependence.
1801 // If i = UB, the direction is >= and peeling the
1802 // last iteration will break the dependence.
1803 // Otherwise, the direction is *.
1805 // Can prove independence. Failing that, we can sometimes refine
1806 // the directions. Can sometimes show that first or last
1807 // iteration carries all the dependences (so worth peeling).
1809 // (see also weakZeroSrcSIVtest)
1811 // Return true if dependence disproved.
1812 bool DependenceInfo::weakZeroDstSIVtest(const SCEV
*SrcCoeff
,
1813 const SCEV
*SrcConst
,
1814 const SCEV
*DstConst
,
1815 const Loop
*CurLoop
, unsigned Level
,
1816 FullDependence
&Result
,
1817 Constraint
&NewConstraint
) const {
1818 // For the WeakSIV test, it's possible the loop isn't common to the
1819 // Src and Dst loops. If it isn't, then there's no need to record a direction.
1820 LLVM_DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n");
1821 LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff
<< "\n");
1822 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst
<< "\n");
1823 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst
<< "\n");
1824 ++WeakZeroSIVapplications
;
1825 assert(0 < Level
&& Level
<= SrcLevels
&& "Level out of range");
1827 Result
.Consistent
= false;
1828 const SCEV
*Delta
= SE
->getMinusSCEV(DstConst
, SrcConst
);
1829 NewConstraint
.setLine(SrcCoeff
, SE
->getZero(Delta
->getType()), Delta
,
1831 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta
<< "\n");
1832 if (isKnownPredicate(CmpInst::ICMP_EQ
, DstConst
, SrcConst
)) {
1833 if (Level
< CommonLevels
) {
1834 Result
.DV
[Level
].Direction
&= Dependence::DVEntry::LE
;
1835 Result
.DV
[Level
].PeelFirst
= true;
1836 ++WeakZeroSIVsuccesses
;
1838 return false; // dependences caused by first iteration
1840 const SCEVConstant
*ConstCoeff
= dyn_cast
<SCEVConstant
>(SrcCoeff
);
1843 const SCEV
*AbsCoeff
=
1844 SE
->isKnownNegative(ConstCoeff
) ?
1845 SE
->getNegativeSCEV(ConstCoeff
) : ConstCoeff
;
1846 const SCEV
*NewDelta
=
1847 SE
->isKnownNegative(ConstCoeff
) ? SE
->getNegativeSCEV(Delta
) : Delta
;
1849 // check that Delta/SrcCoeff < iteration count
1850 // really check NewDelta < count*AbsCoeff
1851 if (const SCEV
*UpperBound
= collectUpperBound(CurLoop
, Delta
->getType())) {
1852 LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound
<< "\n");
1853 const SCEV
*Product
= SE
->getMulExpr(AbsCoeff
, UpperBound
);
1854 if (isKnownPredicate(CmpInst::ICMP_SGT
, NewDelta
, Product
)) {
1855 ++WeakZeroSIVindependence
;
1856 ++WeakZeroSIVsuccesses
;
1859 if (isKnownPredicate(CmpInst::ICMP_EQ
, NewDelta
, Product
)) {
1860 // dependences caused by last iteration
1861 if (Level
< CommonLevels
) {
1862 Result
.DV
[Level
].Direction
&= Dependence::DVEntry::GE
;
1863 Result
.DV
[Level
].PeelLast
= true;
1864 ++WeakZeroSIVsuccesses
;
1870 // check that Delta/SrcCoeff >= 0
1871 // really check that NewDelta >= 0
1872 if (SE
->isKnownNegative(NewDelta
)) {
1873 // No dependence, newDelta < 0
1874 ++WeakZeroSIVindependence
;
1875 ++WeakZeroSIVsuccesses
;
1879 // if SrcCoeff doesn't divide Delta, then no dependence
1880 if (isa
<SCEVConstant
>(Delta
) &&
1881 !isRemainderZero(cast
<SCEVConstant
>(Delta
), ConstCoeff
)) {
1882 ++WeakZeroSIVindependence
;
1883 ++WeakZeroSIVsuccesses
;
1890 // exactRDIVtest - Tests the RDIV subscript pair for dependence.
1891 // Things of the form [c1 + a*i] and [c2 + b*j],
1892 // where i and j are induction variable, c1 and c2 are loop invariant,
1893 // and a and b are constants.
1894 // Returns true if any possible dependence is disproved.
1895 // Marks the result as inconsistent.
1896 // Works in some cases that symbolicRDIVtest doesn't, and vice versa.
1897 bool DependenceInfo::exactRDIVtest(const SCEV
*SrcCoeff
, const SCEV
*DstCoeff
,
1898 const SCEV
*SrcConst
, const SCEV
*DstConst
,
1899 const Loop
*SrcLoop
, const Loop
*DstLoop
,
1900 FullDependence
&Result
) const {
1901 LLVM_DEBUG(dbgs() << "\tExact RDIV test\n");
1902 LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff
<< " = AM\n");
1903 LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff
<< " = BM\n");
1904 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst
<< "\n");
1905 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst
<< "\n");
1906 ++ExactRDIVapplications
;
1907 Result
.Consistent
= false;
1908 const SCEV
*Delta
= SE
->getMinusSCEV(DstConst
, SrcConst
);
1909 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta
<< "\n");
1910 const SCEVConstant
*ConstDelta
= dyn_cast
<SCEVConstant
>(Delta
);
1911 const SCEVConstant
*ConstSrcCoeff
= dyn_cast
<SCEVConstant
>(SrcCoeff
);
1912 const SCEVConstant
*ConstDstCoeff
= dyn_cast
<SCEVConstant
>(DstCoeff
);
1913 if (!ConstDelta
|| !ConstSrcCoeff
|| !ConstDstCoeff
)
1918 APInt AM
= ConstSrcCoeff
->getAPInt();
1919 APInt BM
= ConstDstCoeff
->getAPInt();
1920 unsigned Bits
= AM
.getBitWidth();
1921 if (findGCD(Bits
, AM
, BM
, ConstDelta
->getAPInt(), G
, X
, Y
)) {
1922 // gcd doesn't divide Delta, no dependence
1923 ++ExactRDIVindependence
;
1927 LLVM_DEBUG(dbgs() << "\t X = " << X
<< ", Y = " << Y
<< "\n");
1929 // since SCEV construction seems to normalize, LM = 0
1930 APInt
SrcUM(Bits
, 1, true);
1931 bool SrcUMvalid
= false;
1932 // SrcUM is perhaps unavailable, let's check
1933 if (const SCEVConstant
*UpperBound
=
1934 collectConstantUpperBound(SrcLoop
, Delta
->getType())) {
1935 SrcUM
= UpperBound
->getAPInt();
1936 LLVM_DEBUG(dbgs() << "\t SrcUM = " << SrcUM
<< "\n");
1940 APInt
DstUM(Bits
, 1, true);
1941 bool DstUMvalid
= false;
1942 // UM is perhaps unavailable, let's check
1943 if (const SCEVConstant
*UpperBound
=
1944 collectConstantUpperBound(DstLoop
, Delta
->getType())) {
1945 DstUM
= UpperBound
->getAPInt();
1946 LLVM_DEBUG(dbgs() << "\t DstUM = " << DstUM
<< "\n");
1950 APInt
TU(APInt::getSignedMaxValue(Bits
));
1951 APInt
TL(APInt::getSignedMinValue(Bits
));
1953 // test(BM/G, LM-X) and test(-BM/G, X-UM)
1954 APInt TMUL
= BM
.sdiv(G
);
1956 TL
= maxAPInt(TL
, ceilingOfQuotient(-X
, TMUL
));
1957 LLVM_DEBUG(dbgs() << "\t TL = " << TL
<< "\n");
1959 TU
= minAPInt(TU
, floorOfQuotient(SrcUM
- X
, TMUL
));
1960 LLVM_DEBUG(dbgs() << "\t TU = " << TU
<< "\n");
1964 TU
= minAPInt(TU
, floorOfQuotient(-X
, TMUL
));
1965 LLVM_DEBUG(dbgs() << "\t TU = " << TU
<< "\n");
1967 TL
= maxAPInt(TL
, ceilingOfQuotient(SrcUM
- X
, TMUL
));
1968 LLVM_DEBUG(dbgs() << "\t TL = " << TL
<< "\n");
1972 // test(AM/G, LM-Y) and test(-AM/G, Y-UM)
1975 TL
= maxAPInt(TL
, ceilingOfQuotient(-Y
, TMUL
));
1976 LLVM_DEBUG(dbgs() << "\t TL = " << TL
<< "\n");
1978 TU
= minAPInt(TU
, floorOfQuotient(DstUM
- Y
, TMUL
));
1979 LLVM_DEBUG(dbgs() << "\t TU = " << TU
<< "\n");
1983 TU
= minAPInt(TU
, floorOfQuotient(-Y
, TMUL
));
1984 LLVM_DEBUG(dbgs() << "\t TU = " << TU
<< "\n");
1986 TL
= maxAPInt(TL
, ceilingOfQuotient(DstUM
- Y
, TMUL
));
1987 LLVM_DEBUG(dbgs() << "\t TL = " << TL
<< "\n");
1991 ++ExactRDIVindependence
;
1996 // symbolicRDIVtest -
1997 // In Section 4.5 of the Practical Dependence Testing paper,the authors
1998 // introduce a special case of Banerjee's Inequalities (also called the
1999 // Extreme-Value Test) that can handle some of the SIV and RDIV cases,
2000 // particularly cases with symbolics. Since it's only able to disprove
2001 // dependence (not compute distances or directions), we'll use it as a
2002 // fall back for the other tests.
2004 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
2005 // where i and j are induction variables and c1 and c2 are loop invariants,
2006 // we can use the symbolic tests to disprove some dependences, serving as a
2007 // backup for the RDIV test. Note that i and j can be the same variable,
2008 // letting this test serve as a backup for the various SIV tests.
2010 // For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some
2011 // 0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized)
2012 // loop bounds for the i and j loops, respectively. So, ...
2014 // c1 + a1*i = c2 + a2*j
2015 // a1*i - a2*j = c2 - c1
2017 // To test for a dependence, we compute c2 - c1 and make sure it's in the
2018 // range of the maximum and minimum possible values of a1*i - a2*j.
2019 // Considering the signs of a1 and a2, we have 4 possible cases:
2021 // 1) If a1 >= 0 and a2 >= 0, then
2022 // a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0
2023 // -a2*N2 <= c2 - c1 <= a1*N1
2025 // 2) If a1 >= 0 and a2 <= 0, then
2026 // a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2
2027 // 0 <= c2 - c1 <= a1*N1 - a2*N2
2029 // 3) If a1 <= 0 and a2 >= 0, then
2030 // a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0
2031 // a1*N1 - a2*N2 <= c2 - c1 <= 0
2033 // 4) If a1 <= 0 and a2 <= 0, then
2034 // a1*N1 - a2*0 <= c2 - c1 <= a1*0 - a2*N2
2035 // a1*N1 <= c2 - c1 <= -a2*N2
2037 // return true if dependence disproved
2038 bool DependenceInfo::symbolicRDIVtest(const SCEV
*A1
, const SCEV
*A2
,
2039 const SCEV
*C1
, const SCEV
*C2
,
2041 const Loop
*Loop2
) const {
2042 ++SymbolicRDIVapplications
;
2043 LLVM_DEBUG(dbgs() << "\ttry symbolic RDIV test\n");
2044 LLVM_DEBUG(dbgs() << "\t A1 = " << *A1
);
2045 LLVM_DEBUG(dbgs() << ", type = " << *A1
->getType() << "\n");
2046 LLVM_DEBUG(dbgs() << "\t A2 = " << *A2
<< "\n");
2047 LLVM_DEBUG(dbgs() << "\t C1 = " << *C1
<< "\n");
2048 LLVM_DEBUG(dbgs() << "\t C2 = " << *C2
<< "\n");
2049 const SCEV
*N1
= collectUpperBound(Loop1
, A1
->getType());
2050 const SCEV
*N2
= collectUpperBound(Loop2
, A1
->getType());
2051 LLVM_DEBUG(if (N1
) dbgs() << "\t N1 = " << *N1
<< "\n");
2052 LLVM_DEBUG(if (N2
) dbgs() << "\t N2 = " << *N2
<< "\n");
2053 const SCEV
*C2_C1
= SE
->getMinusSCEV(C2
, C1
);
2054 const SCEV
*C1_C2
= SE
->getMinusSCEV(C1
, C2
);
2055 LLVM_DEBUG(dbgs() << "\t C2 - C1 = " << *C2_C1
<< "\n");
2056 LLVM_DEBUG(dbgs() << "\t C1 - C2 = " << *C1_C2
<< "\n");
2057 if (SE
->isKnownNonNegative(A1
)) {
2058 if (SE
->isKnownNonNegative(A2
)) {
2059 // A1 >= 0 && A2 >= 0
2061 // make sure that c2 - c1 <= a1*N1
2062 const SCEV
*A1N1
= SE
->getMulExpr(A1
, N1
);
2063 LLVM_DEBUG(dbgs() << "\t A1*N1 = " << *A1N1
<< "\n");
2064 if (isKnownPredicate(CmpInst::ICMP_SGT
, C2_C1
, A1N1
)) {
2065 ++SymbolicRDIVindependence
;
2070 // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2
2071 const SCEV
*A2N2
= SE
->getMulExpr(A2
, N2
);
2072 LLVM_DEBUG(dbgs() << "\t A2*N2 = " << *A2N2
<< "\n");
2073 if (isKnownPredicate(CmpInst::ICMP_SLT
, A2N2
, C1_C2
)) {
2074 ++SymbolicRDIVindependence
;
2079 else if (SE
->isKnownNonPositive(A2
)) {
2080 // a1 >= 0 && a2 <= 0
2082 // make sure that c2 - c1 <= a1*N1 - a2*N2
2083 const SCEV
*A1N1
= SE
->getMulExpr(A1
, N1
);
2084 const SCEV
*A2N2
= SE
->getMulExpr(A2
, N2
);
2085 const SCEV
*A1N1_A2N2
= SE
->getMinusSCEV(A1N1
, A2N2
);
2086 LLVM_DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2
<< "\n");
2087 if (isKnownPredicate(CmpInst::ICMP_SGT
, C2_C1
, A1N1_A2N2
)) {
2088 ++SymbolicRDIVindependence
;
2092 // make sure that 0 <= c2 - c1
2093 if (SE
->isKnownNegative(C2_C1
)) {
2094 ++SymbolicRDIVindependence
;
2099 else if (SE
->isKnownNonPositive(A1
)) {
2100 if (SE
->isKnownNonNegative(A2
)) {
2101 // a1 <= 0 && a2 >= 0
2103 // make sure that a1*N1 - a2*N2 <= c2 - c1
2104 const SCEV
*A1N1
= SE
->getMulExpr(A1
, N1
);
2105 const SCEV
*A2N2
= SE
->getMulExpr(A2
, N2
);
2106 const SCEV
*A1N1_A2N2
= SE
->getMinusSCEV(A1N1
, A2N2
);
2107 LLVM_DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2
<< "\n");
2108 if (isKnownPredicate(CmpInst::ICMP_SGT
, A1N1_A2N2
, C2_C1
)) {
2109 ++SymbolicRDIVindependence
;
2113 // make sure that c2 - c1 <= 0
2114 if (SE
->isKnownPositive(C2_C1
)) {
2115 ++SymbolicRDIVindependence
;
2119 else if (SE
->isKnownNonPositive(A2
)) {
2120 // a1 <= 0 && a2 <= 0
2122 // make sure that a1*N1 <= c2 - c1
2123 const SCEV
*A1N1
= SE
->getMulExpr(A1
, N1
);
2124 LLVM_DEBUG(dbgs() << "\t A1*N1 = " << *A1N1
<< "\n");
2125 if (isKnownPredicate(CmpInst::ICMP_SGT
, A1N1
, C2_C1
)) {
2126 ++SymbolicRDIVindependence
;
2131 // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2
2132 const SCEV
*A2N2
= SE
->getMulExpr(A2
, N2
);
2133 LLVM_DEBUG(dbgs() << "\t A2*N2 = " << *A2N2
<< "\n");
2134 if (isKnownPredicate(CmpInst::ICMP_SLT
, C1_C2
, A2N2
)) {
2135 ++SymbolicRDIVindependence
;
2146 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i]
2147 // where i is an induction variable, c1 and c2 are loop invariant, and a1 and
2148 // a2 are constant, we attack it with an SIV test. While they can all be
2149 // solved with the Exact SIV test, it's worthwhile to use simpler tests when
2150 // they apply; they're cheaper and sometimes more precise.
2152 // Return true if dependence disproved.
2153 bool DependenceInfo::testSIV(const SCEV
*Src
, const SCEV
*Dst
, unsigned &Level
,
2154 FullDependence
&Result
, Constraint
&NewConstraint
,
2155 const SCEV
*&SplitIter
) const {
2156 LLVM_DEBUG(dbgs() << " src = " << *Src
<< "\n");
2157 LLVM_DEBUG(dbgs() << " dst = " << *Dst
<< "\n");
2158 const SCEVAddRecExpr
*SrcAddRec
= dyn_cast
<SCEVAddRecExpr
>(Src
);
2159 const SCEVAddRecExpr
*DstAddRec
= dyn_cast
<SCEVAddRecExpr
>(Dst
);
2160 if (SrcAddRec
&& DstAddRec
) {
2161 const SCEV
*SrcConst
= SrcAddRec
->getStart();
2162 const SCEV
*DstConst
= DstAddRec
->getStart();
2163 const SCEV
*SrcCoeff
= SrcAddRec
->getStepRecurrence(*SE
);
2164 const SCEV
*DstCoeff
= DstAddRec
->getStepRecurrence(*SE
);
2165 const Loop
*CurLoop
= SrcAddRec
->getLoop();
2166 assert(CurLoop
== DstAddRec
->getLoop() &&
2167 "both loops in SIV should be same");
2168 Level
= mapSrcLoop(CurLoop
);
2170 if (SrcCoeff
== DstCoeff
)
2171 disproven
= strongSIVtest(SrcCoeff
, SrcConst
, DstConst
, CurLoop
,
2172 Level
, Result
, NewConstraint
);
2173 else if (SrcCoeff
== SE
->getNegativeSCEV(DstCoeff
))
2174 disproven
= weakCrossingSIVtest(SrcCoeff
, SrcConst
, DstConst
, CurLoop
,
2175 Level
, Result
, NewConstraint
, SplitIter
);
2177 disproven
= exactSIVtest(SrcCoeff
, DstCoeff
, SrcConst
, DstConst
, CurLoop
,
2178 Level
, Result
, NewConstraint
);
2180 gcdMIVtest(Src
, Dst
, Result
) ||
2181 symbolicRDIVtest(SrcCoeff
, DstCoeff
, SrcConst
, DstConst
, CurLoop
, CurLoop
);
2184 const SCEV
*SrcConst
= SrcAddRec
->getStart();
2185 const SCEV
*SrcCoeff
= SrcAddRec
->getStepRecurrence(*SE
);
2186 const SCEV
*DstConst
= Dst
;
2187 const Loop
*CurLoop
= SrcAddRec
->getLoop();
2188 Level
= mapSrcLoop(CurLoop
);
2189 return weakZeroDstSIVtest(SrcCoeff
, SrcConst
, DstConst
, CurLoop
,
2190 Level
, Result
, NewConstraint
) ||
2191 gcdMIVtest(Src
, Dst
, Result
);
2194 const SCEV
*DstConst
= DstAddRec
->getStart();
2195 const SCEV
*DstCoeff
= DstAddRec
->getStepRecurrence(*SE
);
2196 const SCEV
*SrcConst
= Src
;
2197 const Loop
*CurLoop
= DstAddRec
->getLoop();
2198 Level
= mapDstLoop(CurLoop
);
2199 return weakZeroSrcSIVtest(DstCoeff
, SrcConst
, DstConst
,
2200 CurLoop
, Level
, Result
, NewConstraint
) ||
2201 gcdMIVtest(Src
, Dst
, Result
);
2203 llvm_unreachable("SIV test expected at least one AddRec");
2209 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
2210 // where i and j are induction variables, c1 and c2 are loop invariant,
2211 // and a1 and a2 are constant, we can solve it exactly with an easy adaptation
2212 // of the Exact SIV test, the Restricted Double Index Variable (RDIV) test.
2213 // It doesn't make sense to talk about distance or direction in this case,
2214 // so there's no point in making special versions of the Strong SIV test or
2215 // the Weak-crossing SIV test.
2217 // With minor algebra, this test can also be used for things like
2218 // [c1 + a1*i + a2*j][c2].
2220 // Return true if dependence disproved.
2221 bool DependenceInfo::testRDIV(const SCEV
*Src
, const SCEV
*Dst
,
2222 FullDependence
&Result
) const {
2223 // we have 3 possible situations here:
2224 // 1) [a*i + b] and [c*j + d]
2225 // 2) [a*i + c*j + b] and [d]
2226 // 3) [b] and [a*i + c*j + d]
2227 // We need to find what we've got and get organized
2229 const SCEV
*SrcConst
, *DstConst
;
2230 const SCEV
*SrcCoeff
, *DstCoeff
;
2231 const Loop
*SrcLoop
, *DstLoop
;
2233 LLVM_DEBUG(dbgs() << " src = " << *Src
<< "\n");
2234 LLVM_DEBUG(dbgs() << " dst = " << *Dst
<< "\n");
2235 const SCEVAddRecExpr
*SrcAddRec
= dyn_cast
<SCEVAddRecExpr
>(Src
);
2236 const SCEVAddRecExpr
*DstAddRec
= dyn_cast
<SCEVAddRecExpr
>(Dst
);
2237 if (SrcAddRec
&& DstAddRec
) {
2238 SrcConst
= SrcAddRec
->getStart();
2239 SrcCoeff
= SrcAddRec
->getStepRecurrence(*SE
);
2240 SrcLoop
= SrcAddRec
->getLoop();
2241 DstConst
= DstAddRec
->getStart();
2242 DstCoeff
= DstAddRec
->getStepRecurrence(*SE
);
2243 DstLoop
= DstAddRec
->getLoop();
2245 else if (SrcAddRec
) {
2246 if (const SCEVAddRecExpr
*tmpAddRec
=
2247 dyn_cast
<SCEVAddRecExpr
>(SrcAddRec
->getStart())) {
2248 SrcConst
= tmpAddRec
->getStart();
2249 SrcCoeff
= tmpAddRec
->getStepRecurrence(*SE
);
2250 SrcLoop
= tmpAddRec
->getLoop();
2252 DstCoeff
= SE
->getNegativeSCEV(SrcAddRec
->getStepRecurrence(*SE
));
2253 DstLoop
= SrcAddRec
->getLoop();
2256 llvm_unreachable("RDIV reached by surprising SCEVs");
2258 else if (DstAddRec
) {
2259 if (const SCEVAddRecExpr
*tmpAddRec
=
2260 dyn_cast
<SCEVAddRecExpr
>(DstAddRec
->getStart())) {
2261 DstConst
= tmpAddRec
->getStart();
2262 DstCoeff
= tmpAddRec
->getStepRecurrence(*SE
);
2263 DstLoop
= tmpAddRec
->getLoop();
2265 SrcCoeff
= SE
->getNegativeSCEV(DstAddRec
->getStepRecurrence(*SE
));
2266 SrcLoop
= DstAddRec
->getLoop();
2269 llvm_unreachable("RDIV reached by surprising SCEVs");
2272 llvm_unreachable("RDIV expected at least one AddRec");
2273 return exactRDIVtest(SrcCoeff
, DstCoeff
,
2277 gcdMIVtest(Src
, Dst
, Result
) ||
2278 symbolicRDIVtest(SrcCoeff
, DstCoeff
,
2284 // Tests the single-subscript MIV pair (Src and Dst) for dependence.
2285 // Return true if dependence disproved.
2286 // Can sometimes refine direction vectors.
2287 bool DependenceInfo::testMIV(const SCEV
*Src
, const SCEV
*Dst
,
2288 const SmallBitVector
&Loops
,
2289 FullDependence
&Result
) const {
2290 LLVM_DEBUG(dbgs() << " src = " << *Src
<< "\n");
2291 LLVM_DEBUG(dbgs() << " dst = " << *Dst
<< "\n");
2292 Result
.Consistent
= false;
2293 return gcdMIVtest(Src
, Dst
, Result
) ||
2294 banerjeeMIVtest(Src
, Dst
, Loops
, Result
);
2298 // Given a product, e.g., 10*X*Y, returns the first constant operand,
2299 // in this case 10. If there is no constant part, returns NULL.
2301 const SCEVConstant
*getConstantPart(const SCEV
*Expr
) {
2302 if (const auto *Constant
= dyn_cast
<SCEVConstant
>(Expr
))
2304 else if (const auto *Product
= dyn_cast
<SCEVMulExpr
>(Expr
))
2305 if (const auto *Constant
= dyn_cast
<SCEVConstant
>(Product
->getOperand(0)))
2311 //===----------------------------------------------------------------------===//
2313 // Tests an MIV subscript pair for dependence.
2314 // Returns true if any possible dependence is disproved.
2315 // Marks the result as inconsistent.
2316 // Can sometimes disprove the equal direction for 1 or more loops,
2317 // as discussed in Michael Wolfe's book,
2318 // High Performance Compilers for Parallel Computing, page 235.
2320 // We spend some effort (code!) to handle cases like
2321 // [10*i + 5*N*j + 15*M + 6], where i and j are induction variables,
2322 // but M and N are just loop-invariant variables.
2323 // This should help us handle linearized subscripts;
2324 // also makes this test a useful backup to the various SIV tests.
2326 // It occurs to me that the presence of loop-invariant variables
2327 // changes the nature of the test from "greatest common divisor"
2328 // to "a common divisor".
2329 bool DependenceInfo::gcdMIVtest(const SCEV
*Src
, const SCEV
*Dst
,
2330 FullDependence
&Result
) const {
2331 LLVM_DEBUG(dbgs() << "starting gcd\n");
2333 unsigned BitWidth
= SE
->getTypeSizeInBits(Src
->getType());
2334 APInt RunningGCD
= APInt::getNullValue(BitWidth
);
2336 // Examine Src coefficients.
2337 // Compute running GCD and record source constant.
2338 // Because we're looking for the constant at the end of the chain,
2339 // we can't quit the loop just because the GCD == 1.
2340 const SCEV
*Coefficients
= Src
;
2341 while (const SCEVAddRecExpr
*AddRec
=
2342 dyn_cast
<SCEVAddRecExpr
>(Coefficients
)) {
2343 const SCEV
*Coeff
= AddRec
->getStepRecurrence(*SE
);
2344 // If the coefficient is the product of a constant and other stuff,
2345 // we can use the constant in the GCD computation.
2346 const auto *Constant
= getConstantPart(Coeff
);
2349 APInt ConstCoeff
= Constant
->getAPInt();
2350 RunningGCD
= APIntOps::GreatestCommonDivisor(RunningGCD
, ConstCoeff
.abs());
2351 Coefficients
= AddRec
->getStart();
2353 const SCEV
*SrcConst
= Coefficients
;
2355 // Examine Dst coefficients.
2356 // Compute running GCD and record destination constant.
2357 // Because we're looking for the constant at the end of the chain,
2358 // we can't quit the loop just because the GCD == 1.
2360 while (const SCEVAddRecExpr
*AddRec
=
2361 dyn_cast
<SCEVAddRecExpr
>(Coefficients
)) {
2362 const SCEV
*Coeff
= AddRec
->getStepRecurrence(*SE
);
2363 // If the coefficient is the product of a constant and other stuff,
2364 // we can use the constant in the GCD computation.
2365 const auto *Constant
= getConstantPart(Coeff
);
2368 APInt ConstCoeff
= Constant
->getAPInt();
2369 RunningGCD
= APIntOps::GreatestCommonDivisor(RunningGCD
, ConstCoeff
.abs());
2370 Coefficients
= AddRec
->getStart();
2372 const SCEV
*DstConst
= Coefficients
;
2374 APInt ExtraGCD
= APInt::getNullValue(BitWidth
);
2375 const SCEV
*Delta
= SE
->getMinusSCEV(DstConst
, SrcConst
);
2376 LLVM_DEBUG(dbgs() << " Delta = " << *Delta
<< "\n");
2377 const SCEVConstant
*Constant
= dyn_cast
<SCEVConstant
>(Delta
);
2378 if (const SCEVAddExpr
*Sum
= dyn_cast
<SCEVAddExpr
>(Delta
)) {
2379 // If Delta is a sum of products, we may be able to make further progress.
2380 for (unsigned Op
= 0, Ops
= Sum
->getNumOperands(); Op
< Ops
; Op
++) {
2381 const SCEV
*Operand
= Sum
->getOperand(Op
);
2382 if (isa
<SCEVConstant
>(Operand
)) {
2383 assert(!Constant
&& "Surprised to find multiple constants");
2384 Constant
= cast
<SCEVConstant
>(Operand
);
2386 else if (const SCEVMulExpr
*Product
= dyn_cast
<SCEVMulExpr
>(Operand
)) {
2387 // Search for constant operand to participate in GCD;
2388 // If none found; return false.
2389 const SCEVConstant
*ConstOp
= getConstantPart(Product
);
2392 APInt ConstOpValue
= ConstOp
->getAPInt();
2393 ExtraGCD
= APIntOps::GreatestCommonDivisor(ExtraGCD
,
2394 ConstOpValue
.abs());
2402 APInt ConstDelta
= cast
<SCEVConstant
>(Constant
)->getAPInt();
2403 LLVM_DEBUG(dbgs() << " ConstDelta = " << ConstDelta
<< "\n");
2404 if (ConstDelta
== 0)
2406 RunningGCD
= APIntOps::GreatestCommonDivisor(RunningGCD
, ExtraGCD
);
2407 LLVM_DEBUG(dbgs() << " RunningGCD = " << RunningGCD
<< "\n");
2408 APInt Remainder
= ConstDelta
.srem(RunningGCD
);
2409 if (Remainder
!= 0) {
2414 // Try to disprove equal directions.
2415 // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1],
2416 // the code above can't disprove the dependence because the GCD = 1.
2417 // So we consider what happen if i = i' and what happens if j = j'.
2418 // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1],
2419 // which is infeasible, so we can disallow the = direction for the i level.
2420 // Setting j = j' doesn't help matters, so we end up with a direction vector
2423 // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5],
2424 // we need to remember that the constant part is 5 and the RunningGCD should
2425 // be initialized to ExtraGCD = 30.
2426 LLVM_DEBUG(dbgs() << " ExtraGCD = " << ExtraGCD
<< '\n');
2428 bool Improved
= false;
2430 while (const SCEVAddRecExpr
*AddRec
=
2431 dyn_cast
<SCEVAddRecExpr
>(Coefficients
)) {
2432 Coefficients
= AddRec
->getStart();
2433 const Loop
*CurLoop
= AddRec
->getLoop();
2434 RunningGCD
= ExtraGCD
;
2435 const SCEV
*SrcCoeff
= AddRec
->getStepRecurrence(*SE
);
2436 const SCEV
*DstCoeff
= SE
->getMinusSCEV(SrcCoeff
, SrcCoeff
);
2437 const SCEV
*Inner
= Src
;
2438 while (RunningGCD
!= 1 && isa
<SCEVAddRecExpr
>(Inner
)) {
2439 AddRec
= cast
<SCEVAddRecExpr
>(Inner
);
2440 const SCEV
*Coeff
= AddRec
->getStepRecurrence(*SE
);
2441 if (CurLoop
== AddRec
->getLoop())
2442 ; // SrcCoeff == Coeff
2444 // If the coefficient is the product of a constant and other stuff,
2445 // we can use the constant in the GCD computation.
2446 Constant
= getConstantPart(Coeff
);
2449 APInt ConstCoeff
= Constant
->getAPInt();
2450 RunningGCD
= APIntOps::GreatestCommonDivisor(RunningGCD
, ConstCoeff
.abs());
2452 Inner
= AddRec
->getStart();
2455 while (RunningGCD
!= 1 && isa
<SCEVAddRecExpr
>(Inner
)) {
2456 AddRec
= cast
<SCEVAddRecExpr
>(Inner
);
2457 const SCEV
*Coeff
= AddRec
->getStepRecurrence(*SE
);
2458 if (CurLoop
== AddRec
->getLoop())
2461 // If the coefficient is the product of a constant and other stuff,
2462 // we can use the constant in the GCD computation.
2463 Constant
= getConstantPart(Coeff
);
2466 APInt ConstCoeff
= Constant
->getAPInt();
2467 RunningGCD
= APIntOps::GreatestCommonDivisor(RunningGCD
, ConstCoeff
.abs());
2469 Inner
= AddRec
->getStart();
2471 Delta
= SE
->getMinusSCEV(SrcCoeff
, DstCoeff
);
2472 // If the coefficient is the product of a constant and other stuff,
2473 // we can use the constant in the GCD computation.
2474 Constant
= getConstantPart(Delta
);
2476 // The difference of the two coefficients might not be a product
2477 // or constant, in which case we give up on this direction.
2479 APInt ConstCoeff
= Constant
->getAPInt();
2480 RunningGCD
= APIntOps::GreatestCommonDivisor(RunningGCD
, ConstCoeff
.abs());
2481 LLVM_DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD
<< "\n");
2482 if (RunningGCD
!= 0) {
2483 Remainder
= ConstDelta
.srem(RunningGCD
);
2484 LLVM_DEBUG(dbgs() << "\tRemainder = " << Remainder
<< "\n");
2485 if (Remainder
!= 0) {
2486 unsigned Level
= mapSrcLoop(CurLoop
);
2487 Result
.DV
[Level
- 1].Direction
&= unsigned(~Dependence::DVEntry::EQ
);
2494 LLVM_DEBUG(dbgs() << "all done\n");
2499 //===----------------------------------------------------------------------===//
2500 // banerjeeMIVtest -
2501 // Use Banerjee's Inequalities to test an MIV subscript pair.
2502 // (Wolfe, in the race-car book, calls this the Extreme Value Test.)
2503 // Generally follows the discussion in Section 2.5.2 of
2505 // Optimizing Supercompilers for Supercomputers
2508 // The inequalities given on page 25 are simplified in that loops are
2509 // normalized so that the lower bound is always 0 and the stride is always 1.
2510 // For example, Wolfe gives
2512 // LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2514 // where A_k is the coefficient of the kth index in the source subscript,
2515 // B_k is the coefficient of the kth index in the destination subscript,
2516 // U_k is the upper bound of the kth index, L_k is the lower bound of the Kth
2517 // index, and N_k is the stride of the kth index. Since all loops are normalized
2518 // by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the
2521 // LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1
2522 // = (A^-_k - B_k)^- (U_k - 1) - B_k
2524 // Similar simplifications are possible for the other equations.
2526 // When we can't determine the number of iterations for a loop,
2527 // we use NULL as an indicator for the worst case, infinity.
2528 // When computing the upper bound, NULL denotes +inf;
2529 // for the lower bound, NULL denotes -inf.
2531 // Return true if dependence disproved.
2532 bool DependenceInfo::banerjeeMIVtest(const SCEV
*Src
, const SCEV
*Dst
,
2533 const SmallBitVector
&Loops
,
2534 FullDependence
&Result
) const {
2535 LLVM_DEBUG(dbgs() << "starting Banerjee\n");
2536 ++BanerjeeApplications
;
2537 LLVM_DEBUG(dbgs() << " Src = " << *Src
<< '\n');
2539 CoefficientInfo
*A
= collectCoeffInfo(Src
, true, A0
);
2540 LLVM_DEBUG(dbgs() << " Dst = " << *Dst
<< '\n');
2542 CoefficientInfo
*B
= collectCoeffInfo(Dst
, false, B0
);
2543 BoundInfo
*Bound
= new BoundInfo
[MaxLevels
+ 1];
2544 const SCEV
*Delta
= SE
->getMinusSCEV(B0
, A0
);
2545 LLVM_DEBUG(dbgs() << "\tDelta = " << *Delta
<< '\n');
2547 // Compute bounds for all the * directions.
2548 LLVM_DEBUG(dbgs() << "\tBounds[*]\n");
2549 for (unsigned K
= 1; K
<= MaxLevels
; ++K
) {
2550 Bound
[K
].Iterations
= A
[K
].Iterations
? A
[K
].Iterations
: B
[K
].Iterations
;
2551 Bound
[K
].Direction
= Dependence::DVEntry::ALL
;
2552 Bound
[K
].DirSet
= Dependence::DVEntry::NONE
;
2553 findBoundsALL(A
, B
, Bound
, K
);
2555 LLVM_DEBUG(dbgs() << "\t " << K
<< '\t');
2556 if (Bound
[K
].Lower
[Dependence::DVEntry::ALL
])
2557 LLVM_DEBUG(dbgs() << *Bound
[K
].Lower
[Dependence::DVEntry::ALL
] << '\t');
2559 LLVM_DEBUG(dbgs() << "-inf\t");
2560 if (Bound
[K
].Upper
[Dependence::DVEntry::ALL
])
2561 LLVM_DEBUG(dbgs() << *Bound
[K
].Upper
[Dependence::DVEntry::ALL
] << '\n');
2563 LLVM_DEBUG(dbgs() << "+inf\n");
2567 // Test the *, *, *, ... case.
2568 bool Disproved
= false;
2569 if (testBounds(Dependence::DVEntry::ALL
, 0, Bound
, Delta
)) {
2570 // Explore the direction vector hierarchy.
2571 unsigned DepthExpanded
= 0;
2572 unsigned NewDeps
= exploreDirections(1, A
, B
, Bound
,
2573 Loops
, DepthExpanded
, Delta
);
2575 bool Improved
= false;
2576 for (unsigned K
= 1; K
<= CommonLevels
; ++K
) {
2578 unsigned Old
= Result
.DV
[K
- 1].Direction
;
2579 Result
.DV
[K
- 1].Direction
= Old
& Bound
[K
].DirSet
;
2580 Improved
|= Old
!= Result
.DV
[K
- 1].Direction
;
2581 if (!Result
.DV
[K
- 1].Direction
) {
2589 ++BanerjeeSuccesses
;
2592 ++BanerjeeIndependence
;
2597 ++BanerjeeIndependence
;
2607 // Hierarchically expands the direction vector
2608 // search space, combining the directions of discovered dependences
2609 // in the DirSet field of Bound. Returns the number of distinct
2610 // dependences discovered. If the dependence is disproved,
2611 // it will return 0.
2612 unsigned DependenceInfo::exploreDirections(unsigned Level
, CoefficientInfo
*A
,
2613 CoefficientInfo
*B
, BoundInfo
*Bound
,
2614 const SmallBitVector
&Loops
,
2615 unsigned &DepthExpanded
,
2616 const SCEV
*Delta
) const {
2617 if (Level
> CommonLevels
) {
2619 LLVM_DEBUG(dbgs() << "\t[");
2620 for (unsigned K
= 1; K
<= CommonLevels
; ++K
) {
2622 Bound
[K
].DirSet
|= Bound
[K
].Direction
;
2624 switch (Bound
[K
].Direction
) {
2625 case Dependence::DVEntry::LT
:
2626 LLVM_DEBUG(dbgs() << " <");
2628 case Dependence::DVEntry::EQ
:
2629 LLVM_DEBUG(dbgs() << " =");
2631 case Dependence::DVEntry::GT
:
2632 LLVM_DEBUG(dbgs() << " >");
2634 case Dependence::DVEntry::ALL
:
2635 LLVM_DEBUG(dbgs() << " *");
2638 llvm_unreachable("unexpected Bound[K].Direction");
2643 LLVM_DEBUG(dbgs() << " ]\n");
2647 if (Level
> DepthExpanded
) {
2648 DepthExpanded
= Level
;
2649 // compute bounds for <, =, > at current level
2650 findBoundsLT(A
, B
, Bound
, Level
);
2651 findBoundsGT(A
, B
, Bound
, Level
);
2652 findBoundsEQ(A
, B
, Bound
, Level
);
2654 LLVM_DEBUG(dbgs() << "\tBound for level = " << Level
<< '\n');
2655 LLVM_DEBUG(dbgs() << "\t <\t");
2656 if (Bound
[Level
].Lower
[Dependence::DVEntry::LT
])
2657 LLVM_DEBUG(dbgs() << *Bound
[Level
].Lower
[Dependence::DVEntry::LT
]
2660 LLVM_DEBUG(dbgs() << "-inf\t");
2661 if (Bound
[Level
].Upper
[Dependence::DVEntry::LT
])
2662 LLVM_DEBUG(dbgs() << *Bound
[Level
].Upper
[Dependence::DVEntry::LT
]
2665 LLVM_DEBUG(dbgs() << "+inf\n");
2666 LLVM_DEBUG(dbgs() << "\t =\t");
2667 if (Bound
[Level
].Lower
[Dependence::DVEntry::EQ
])
2668 LLVM_DEBUG(dbgs() << *Bound
[Level
].Lower
[Dependence::DVEntry::EQ
]
2671 LLVM_DEBUG(dbgs() << "-inf\t");
2672 if (Bound
[Level
].Upper
[Dependence::DVEntry::EQ
])
2673 LLVM_DEBUG(dbgs() << *Bound
[Level
].Upper
[Dependence::DVEntry::EQ
]
2676 LLVM_DEBUG(dbgs() << "+inf\n");
2677 LLVM_DEBUG(dbgs() << "\t >\t");
2678 if (Bound
[Level
].Lower
[Dependence::DVEntry::GT
])
2679 LLVM_DEBUG(dbgs() << *Bound
[Level
].Lower
[Dependence::DVEntry::GT
]
2682 LLVM_DEBUG(dbgs() << "-inf\t");
2683 if (Bound
[Level
].Upper
[Dependence::DVEntry::GT
])
2684 LLVM_DEBUG(dbgs() << *Bound
[Level
].Upper
[Dependence::DVEntry::GT
]
2687 LLVM_DEBUG(dbgs() << "+inf\n");
2691 unsigned NewDeps
= 0;
2693 // test bounds for <, *, *, ...
2694 if (testBounds(Dependence::DVEntry::LT
, Level
, Bound
, Delta
))
2695 NewDeps
+= exploreDirections(Level
+ 1, A
, B
, Bound
,
2696 Loops
, DepthExpanded
, Delta
);
2698 // Test bounds for =, *, *, ...
2699 if (testBounds(Dependence::DVEntry::EQ
, Level
, Bound
, Delta
))
2700 NewDeps
+= exploreDirections(Level
+ 1, A
, B
, Bound
,
2701 Loops
, DepthExpanded
, Delta
);
2703 // test bounds for >, *, *, ...
2704 if (testBounds(Dependence::DVEntry::GT
, Level
, Bound
, Delta
))
2705 NewDeps
+= exploreDirections(Level
+ 1, A
, B
, Bound
,
2706 Loops
, DepthExpanded
, Delta
);
2708 Bound
[Level
].Direction
= Dependence::DVEntry::ALL
;
2712 return exploreDirections(Level
+ 1, A
, B
, Bound
, Loops
, DepthExpanded
, Delta
);
2716 // Returns true iff the current bounds are plausible.
2717 bool DependenceInfo::testBounds(unsigned char DirKind
, unsigned Level
,
2718 BoundInfo
*Bound
, const SCEV
*Delta
) const {
2719 Bound
[Level
].Direction
= DirKind
;
2720 if (const SCEV
*LowerBound
= getLowerBound(Bound
))
2721 if (isKnownPredicate(CmpInst::ICMP_SGT
, LowerBound
, Delta
))
2723 if (const SCEV
*UpperBound
= getUpperBound(Bound
))
2724 if (isKnownPredicate(CmpInst::ICMP_SGT
, Delta
, UpperBound
))
2730 // Computes the upper and lower bounds for level K
2731 // using the * direction. Records them in Bound.
2732 // Wolfe gives the equations
2734 // LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k
2735 // UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k
2737 // Since we normalize loops, we can simplify these equations to
2739 // LB^*_k = (A^-_k - B^+_k)U_k
2740 // UB^*_k = (A^+_k - B^-_k)U_k
2742 // We must be careful to handle the case where the upper bound is unknown.
2743 // Note that the lower bound is always <= 0
2744 // and the upper bound is always >= 0.
2745 void DependenceInfo::findBoundsALL(CoefficientInfo
*A
, CoefficientInfo
*B
,
2746 BoundInfo
*Bound
, unsigned K
) const {
2747 Bound
[K
].Lower
[Dependence::DVEntry::ALL
] = nullptr; // Default value = -infinity.
2748 Bound
[K
].Upper
[Dependence::DVEntry::ALL
] = nullptr; // Default value = +infinity.
2749 if (Bound
[K
].Iterations
) {
2750 Bound
[K
].Lower
[Dependence::DVEntry::ALL
] =
2751 SE
->getMulExpr(SE
->getMinusSCEV(A
[K
].NegPart
, B
[K
].PosPart
),
2752 Bound
[K
].Iterations
);
2753 Bound
[K
].Upper
[Dependence::DVEntry::ALL
] =
2754 SE
->getMulExpr(SE
->getMinusSCEV(A
[K
].PosPart
, B
[K
].NegPart
),
2755 Bound
[K
].Iterations
);
2758 // If the difference is 0, we won't need to know the number of iterations.
2759 if (isKnownPredicate(CmpInst::ICMP_EQ
, A
[K
].NegPart
, B
[K
].PosPart
))
2760 Bound
[K
].Lower
[Dependence::DVEntry::ALL
] =
2761 SE
->getZero(A
[K
].Coeff
->getType());
2762 if (isKnownPredicate(CmpInst::ICMP_EQ
, A
[K
].PosPart
, B
[K
].NegPart
))
2763 Bound
[K
].Upper
[Dependence::DVEntry::ALL
] =
2764 SE
->getZero(A
[K
].Coeff
->getType());
2769 // Computes the upper and lower bounds for level K
2770 // using the = direction. Records them in Bound.
2771 // Wolfe gives the equations
2773 // LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k
2774 // UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k
2776 // Since we normalize loops, we can simplify these equations to
2778 // LB^=_k = (A_k - B_k)^- U_k
2779 // UB^=_k = (A_k - B_k)^+ U_k
2781 // We must be careful to handle the case where the upper bound is unknown.
2782 // Note that the lower bound is always <= 0
2783 // and the upper bound is always >= 0.
2784 void DependenceInfo::findBoundsEQ(CoefficientInfo
*A
, CoefficientInfo
*B
,
2785 BoundInfo
*Bound
, unsigned K
) const {
2786 Bound
[K
].Lower
[Dependence::DVEntry::EQ
] = nullptr; // Default value = -infinity.
2787 Bound
[K
].Upper
[Dependence::DVEntry::EQ
] = nullptr; // Default value = +infinity.
2788 if (Bound
[K
].Iterations
) {
2789 const SCEV
*Delta
= SE
->getMinusSCEV(A
[K
].Coeff
, B
[K
].Coeff
);
2790 const SCEV
*NegativePart
= getNegativePart(Delta
);
2791 Bound
[K
].Lower
[Dependence::DVEntry::EQ
] =
2792 SE
->getMulExpr(NegativePart
, Bound
[K
].Iterations
);
2793 const SCEV
*PositivePart
= getPositivePart(Delta
);
2794 Bound
[K
].Upper
[Dependence::DVEntry::EQ
] =
2795 SE
->getMulExpr(PositivePart
, Bound
[K
].Iterations
);
2798 // If the positive/negative part of the difference is 0,
2799 // we won't need to know the number of iterations.
2800 const SCEV
*Delta
= SE
->getMinusSCEV(A
[K
].Coeff
, B
[K
].Coeff
);
2801 const SCEV
*NegativePart
= getNegativePart(Delta
);
2802 if (NegativePart
->isZero())
2803 Bound
[K
].Lower
[Dependence::DVEntry::EQ
] = NegativePart
; // Zero
2804 const SCEV
*PositivePart
= getPositivePart(Delta
);
2805 if (PositivePart
->isZero())
2806 Bound
[K
].Upper
[Dependence::DVEntry::EQ
] = PositivePart
; // Zero
2811 // Computes the upper and lower bounds for level K
2812 // using the < direction. Records them in Bound.
2813 // Wolfe gives the equations
2815 // LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2816 // UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2818 // Since we normalize loops, we can simplify these equations to
2820 // LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k
2821 // UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k
2823 // We must be careful to handle the case where the upper bound is unknown.
2824 void DependenceInfo::findBoundsLT(CoefficientInfo
*A
, CoefficientInfo
*B
,
2825 BoundInfo
*Bound
, unsigned K
) const {
2826 Bound
[K
].Lower
[Dependence::DVEntry::LT
] = nullptr; // Default value = -infinity.
2827 Bound
[K
].Upper
[Dependence::DVEntry::LT
] = nullptr; // Default value = +infinity.
2828 if (Bound
[K
].Iterations
) {
2829 const SCEV
*Iter_1
= SE
->getMinusSCEV(
2830 Bound
[K
].Iterations
, SE
->getOne(Bound
[K
].Iterations
->getType()));
2831 const SCEV
*NegPart
=
2832 getNegativePart(SE
->getMinusSCEV(A
[K
].NegPart
, B
[K
].Coeff
));
2833 Bound
[K
].Lower
[Dependence::DVEntry::LT
] =
2834 SE
->getMinusSCEV(SE
->getMulExpr(NegPart
, Iter_1
), B
[K
].Coeff
);
2835 const SCEV
*PosPart
=
2836 getPositivePart(SE
->getMinusSCEV(A
[K
].PosPart
, B
[K
].Coeff
));
2837 Bound
[K
].Upper
[Dependence::DVEntry::LT
] =
2838 SE
->getMinusSCEV(SE
->getMulExpr(PosPart
, Iter_1
), B
[K
].Coeff
);
2841 // If the positive/negative part of the difference is 0,
2842 // we won't need to know the number of iterations.
2843 const SCEV
*NegPart
=
2844 getNegativePart(SE
->getMinusSCEV(A
[K
].NegPart
, B
[K
].Coeff
));
2845 if (NegPart
->isZero())
2846 Bound
[K
].Lower
[Dependence::DVEntry::LT
] = SE
->getNegativeSCEV(B
[K
].Coeff
);
2847 const SCEV
*PosPart
=
2848 getPositivePart(SE
->getMinusSCEV(A
[K
].PosPart
, B
[K
].Coeff
));
2849 if (PosPart
->isZero())
2850 Bound
[K
].Upper
[Dependence::DVEntry::LT
] = SE
->getNegativeSCEV(B
[K
].Coeff
);
2855 // Computes the upper and lower bounds for level K
2856 // using the > direction. Records them in Bound.
2857 // Wolfe gives the equations
2859 // LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2860 // UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2862 // Since we normalize loops, we can simplify these equations to
2864 // LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k
2865 // UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k
2867 // We must be careful to handle the case where the upper bound is unknown.
2868 void DependenceInfo::findBoundsGT(CoefficientInfo
*A
, CoefficientInfo
*B
,
2869 BoundInfo
*Bound
, unsigned K
) const {
2870 Bound
[K
].Lower
[Dependence::DVEntry::GT
] = nullptr; // Default value = -infinity.
2871 Bound
[K
].Upper
[Dependence::DVEntry::GT
] = nullptr; // Default value = +infinity.
2872 if (Bound
[K
].Iterations
) {
2873 const SCEV
*Iter_1
= SE
->getMinusSCEV(
2874 Bound
[K
].Iterations
, SE
->getOne(Bound
[K
].Iterations
->getType()));
2875 const SCEV
*NegPart
=
2876 getNegativePart(SE
->getMinusSCEV(A
[K
].Coeff
, B
[K
].PosPart
));
2877 Bound
[K
].Lower
[Dependence::DVEntry::GT
] =
2878 SE
->getAddExpr(SE
->getMulExpr(NegPart
, Iter_1
), A
[K
].Coeff
);
2879 const SCEV
*PosPart
=
2880 getPositivePart(SE
->getMinusSCEV(A
[K
].Coeff
, B
[K
].NegPart
));
2881 Bound
[K
].Upper
[Dependence::DVEntry::GT
] =
2882 SE
->getAddExpr(SE
->getMulExpr(PosPart
, Iter_1
), A
[K
].Coeff
);
2885 // If the positive/negative part of the difference is 0,
2886 // we won't need to know the number of iterations.
2887 const SCEV
*NegPart
= getNegativePart(SE
->getMinusSCEV(A
[K
].Coeff
, B
[K
].PosPart
));
2888 if (NegPart
->isZero())
2889 Bound
[K
].Lower
[Dependence::DVEntry::GT
] = A
[K
].Coeff
;
2890 const SCEV
*PosPart
= getPositivePart(SE
->getMinusSCEV(A
[K
].Coeff
, B
[K
].NegPart
));
2891 if (PosPart
->isZero())
2892 Bound
[K
].Upper
[Dependence::DVEntry::GT
] = A
[K
].Coeff
;
2898 const SCEV
*DependenceInfo::getPositivePart(const SCEV
*X
) const {
2899 return SE
->getSMaxExpr(X
, SE
->getZero(X
->getType()));
2904 const SCEV
*DependenceInfo::getNegativePart(const SCEV
*X
) const {
2905 return SE
->getSMinExpr(X
, SE
->getZero(X
->getType()));
2909 // Walks through the subscript,
2910 // collecting each coefficient, the associated loop bounds,
2911 // and recording its positive and negative parts for later use.
2912 DependenceInfo::CoefficientInfo
*
2913 DependenceInfo::collectCoeffInfo(const SCEV
*Subscript
, bool SrcFlag
,
2914 const SCEV
*&Constant
) const {
2915 const SCEV
*Zero
= SE
->getZero(Subscript
->getType());
2916 CoefficientInfo
*CI
= new CoefficientInfo
[MaxLevels
+ 1];
2917 for (unsigned K
= 1; K
<= MaxLevels
; ++K
) {
2919 CI
[K
].PosPart
= Zero
;
2920 CI
[K
].NegPart
= Zero
;
2921 CI
[K
].Iterations
= nullptr;
2923 while (const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(Subscript
)) {
2924 const Loop
*L
= AddRec
->getLoop();
2925 unsigned K
= SrcFlag
? mapSrcLoop(L
) : mapDstLoop(L
);
2926 CI
[K
].Coeff
= AddRec
->getStepRecurrence(*SE
);
2927 CI
[K
].PosPart
= getPositivePart(CI
[K
].Coeff
);
2928 CI
[K
].NegPart
= getNegativePart(CI
[K
].Coeff
);
2929 CI
[K
].Iterations
= collectUpperBound(L
, Subscript
->getType());
2930 Subscript
= AddRec
->getStart();
2932 Constant
= Subscript
;
2934 LLVM_DEBUG(dbgs() << "\tCoefficient Info\n");
2935 for (unsigned K
= 1; K
<= MaxLevels
; ++K
) {
2936 LLVM_DEBUG(dbgs() << "\t " << K
<< "\t" << *CI
[K
].Coeff
);
2937 LLVM_DEBUG(dbgs() << "\tPos Part = ");
2938 LLVM_DEBUG(dbgs() << *CI
[K
].PosPart
);
2939 LLVM_DEBUG(dbgs() << "\tNeg Part = ");
2940 LLVM_DEBUG(dbgs() << *CI
[K
].NegPart
);
2941 LLVM_DEBUG(dbgs() << "\tUpper Bound = ");
2942 if (CI
[K
].Iterations
)
2943 LLVM_DEBUG(dbgs() << *CI
[K
].Iterations
);
2945 LLVM_DEBUG(dbgs() << "+inf");
2946 LLVM_DEBUG(dbgs() << '\n');
2948 LLVM_DEBUG(dbgs() << "\t Constant = " << *Subscript
<< '\n');
2954 // Looks through all the bounds info and
2955 // computes the lower bound given the current direction settings
2956 // at each level. If the lower bound for any level is -inf,
2957 // the result is -inf.
2958 const SCEV
*DependenceInfo::getLowerBound(BoundInfo
*Bound
) const {
2959 const SCEV
*Sum
= Bound
[1].Lower
[Bound
[1].Direction
];
2960 for (unsigned K
= 2; Sum
&& K
<= MaxLevels
; ++K
) {
2961 if (Bound
[K
].Lower
[Bound
[K
].Direction
])
2962 Sum
= SE
->getAddExpr(Sum
, Bound
[K
].Lower
[Bound
[K
].Direction
]);
2970 // Looks through all the bounds info and
2971 // computes the upper bound given the current direction settings
2972 // at each level. If the upper bound at any level is +inf,
2973 // the result is +inf.
2974 const SCEV
*DependenceInfo::getUpperBound(BoundInfo
*Bound
) const {
2975 const SCEV
*Sum
= Bound
[1].Upper
[Bound
[1].Direction
];
2976 for (unsigned K
= 2; Sum
&& K
<= MaxLevels
; ++K
) {
2977 if (Bound
[K
].Upper
[Bound
[K
].Direction
])
2978 Sum
= SE
->getAddExpr(Sum
, Bound
[K
].Upper
[Bound
[K
].Direction
]);
2986 //===----------------------------------------------------------------------===//
2987 // Constraint manipulation for Delta test.
2989 // Given a linear SCEV,
2990 // return the coefficient (the step)
2991 // corresponding to the specified loop.
2992 // If there isn't one, return 0.
2993 // For example, given a*i + b*j + c*k, finding the coefficient
2994 // corresponding to the j loop would yield b.
2995 const SCEV
*DependenceInfo::findCoefficient(const SCEV
*Expr
,
2996 const Loop
*TargetLoop
) const {
2997 const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(Expr
);
2999 return SE
->getZero(Expr
->getType());
3000 if (AddRec
->getLoop() == TargetLoop
)
3001 return AddRec
->getStepRecurrence(*SE
);
3002 return findCoefficient(AddRec
->getStart(), TargetLoop
);
3006 // Given a linear SCEV,
3007 // return the SCEV given by zeroing out the coefficient
3008 // corresponding to the specified loop.
3009 // For example, given a*i + b*j + c*k, zeroing the coefficient
3010 // corresponding to the j loop would yield a*i + c*k.
3011 const SCEV
*DependenceInfo::zeroCoefficient(const SCEV
*Expr
,
3012 const Loop
*TargetLoop
) const {
3013 const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(Expr
);
3015 return Expr
; // ignore
3016 if (AddRec
->getLoop() == TargetLoop
)
3017 return AddRec
->getStart();
3018 return SE
->getAddRecExpr(zeroCoefficient(AddRec
->getStart(), TargetLoop
),
3019 AddRec
->getStepRecurrence(*SE
),
3021 AddRec
->getNoWrapFlags());
3025 // Given a linear SCEV Expr,
3026 // return the SCEV given by adding some Value to the
3027 // coefficient corresponding to the specified TargetLoop.
3028 // For example, given a*i + b*j + c*k, adding 1 to the coefficient
3029 // corresponding to the j loop would yield a*i + (b+1)*j + c*k.
3030 const SCEV
*DependenceInfo::addToCoefficient(const SCEV
*Expr
,
3031 const Loop
*TargetLoop
,
3032 const SCEV
*Value
) const {
3033 const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(Expr
);
3034 if (!AddRec
) // create a new addRec
3035 return SE
->getAddRecExpr(Expr
,
3038 SCEV::FlagAnyWrap
); // Worst case, with no info.
3039 if (AddRec
->getLoop() == TargetLoop
) {
3040 const SCEV
*Sum
= SE
->getAddExpr(AddRec
->getStepRecurrence(*SE
), Value
);
3042 return AddRec
->getStart();
3043 return SE
->getAddRecExpr(AddRec
->getStart(),
3046 AddRec
->getNoWrapFlags());
3048 if (SE
->isLoopInvariant(AddRec
, TargetLoop
))
3049 return SE
->getAddRecExpr(AddRec
, Value
, TargetLoop
, SCEV::FlagAnyWrap
);
3050 return SE
->getAddRecExpr(
3051 addToCoefficient(AddRec
->getStart(), TargetLoop
, Value
),
3052 AddRec
->getStepRecurrence(*SE
), AddRec
->getLoop(),
3053 AddRec
->getNoWrapFlags());
3057 // Review the constraints, looking for opportunities
3058 // to simplify a subscript pair (Src and Dst).
3059 // Return true if some simplification occurs.
3060 // If the simplification isn't exact (that is, if it is conservative
3061 // in terms of dependence), set consistent to false.
3062 // Corresponds to Figure 5 from the paper
3064 // Practical Dependence Testing
3065 // Goff, Kennedy, Tseng
3067 bool DependenceInfo::propagate(const SCEV
*&Src
, const SCEV
*&Dst
,
3068 SmallBitVector
&Loops
,
3069 SmallVectorImpl
<Constraint
> &Constraints
,
3071 bool Result
= false;
3072 for (unsigned LI
: Loops
.set_bits()) {
3073 LLVM_DEBUG(dbgs() << "\t Constraint[" << LI
<< "] is");
3074 LLVM_DEBUG(Constraints
[LI
].dump(dbgs()));
3075 if (Constraints
[LI
].isDistance())
3076 Result
|= propagateDistance(Src
, Dst
, Constraints
[LI
], Consistent
);
3077 else if (Constraints
[LI
].isLine())
3078 Result
|= propagateLine(Src
, Dst
, Constraints
[LI
], Consistent
);
3079 else if (Constraints
[LI
].isPoint())
3080 Result
|= propagatePoint(Src
, Dst
, Constraints
[LI
]);
3086 // Attempt to propagate a distance
3087 // constraint into a subscript pair (Src and Dst).
3088 // Return true if some simplification occurs.
3089 // If the simplification isn't exact (that is, if it is conservative
3090 // in terms of dependence), set consistent to false.
3091 bool DependenceInfo::propagateDistance(const SCEV
*&Src
, const SCEV
*&Dst
,
3092 Constraint
&CurConstraint
,
3094 const Loop
*CurLoop
= CurConstraint
.getAssociatedLoop();
3095 LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src
<< "\n");
3096 const SCEV
*A_K
= findCoefficient(Src
, CurLoop
);
3099 const SCEV
*DA_K
= SE
->getMulExpr(A_K
, CurConstraint
.getD());
3100 Src
= SE
->getMinusSCEV(Src
, DA_K
);
3101 Src
= zeroCoefficient(Src
, CurLoop
);
3102 LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src
<< "\n");
3103 LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst
<< "\n");
3104 Dst
= addToCoefficient(Dst
, CurLoop
, SE
->getNegativeSCEV(A_K
));
3105 LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst
<< "\n");
3106 if (!findCoefficient(Dst
, CurLoop
)->isZero())
3112 // Attempt to propagate a line
3113 // constraint into a subscript pair (Src and Dst).
3114 // Return true if some simplification occurs.
3115 // If the simplification isn't exact (that is, if it is conservative
3116 // in terms of dependence), set consistent to false.
3117 bool DependenceInfo::propagateLine(const SCEV
*&Src
, const SCEV
*&Dst
,
3118 Constraint
&CurConstraint
,
3120 const Loop
*CurLoop
= CurConstraint
.getAssociatedLoop();
3121 const SCEV
*A
= CurConstraint
.getA();
3122 const SCEV
*B
= CurConstraint
.getB();
3123 const SCEV
*C
= CurConstraint
.getC();
3124 LLVM_DEBUG(dbgs() << "\t\tA = " << *A
<< ", B = " << *B
<< ", C = " << *C
3126 LLVM_DEBUG(dbgs() << "\t\tSrc = " << *Src
<< "\n");
3127 LLVM_DEBUG(dbgs() << "\t\tDst = " << *Dst
<< "\n");
3129 const SCEVConstant
*Bconst
= dyn_cast
<SCEVConstant
>(B
);
3130 const SCEVConstant
*Cconst
= dyn_cast
<SCEVConstant
>(C
);
3131 if (!Bconst
|| !Cconst
) return false;
3132 APInt Beta
= Bconst
->getAPInt();
3133 APInt Charlie
= Cconst
->getAPInt();
3134 APInt CdivB
= Charlie
.sdiv(Beta
);
3135 assert(Charlie
.srem(Beta
) == 0 && "C should be evenly divisible by B");
3136 const SCEV
*AP_K
= findCoefficient(Dst
, CurLoop
);
3137 // Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3138 Src
= SE
->getMinusSCEV(Src
, SE
->getMulExpr(AP_K
, SE
->getConstant(CdivB
)));
3139 Dst
= zeroCoefficient(Dst
, CurLoop
);
3140 if (!findCoefficient(Src
, CurLoop
)->isZero())
3143 else if (B
->isZero()) {
3144 const SCEVConstant
*Aconst
= dyn_cast
<SCEVConstant
>(A
);
3145 const SCEVConstant
*Cconst
= dyn_cast
<SCEVConstant
>(C
);
3146 if (!Aconst
|| !Cconst
) return false;
3147 APInt Alpha
= Aconst
->getAPInt();
3148 APInt Charlie
= Cconst
->getAPInt();
3149 APInt CdivA
= Charlie
.sdiv(Alpha
);
3150 assert(Charlie
.srem(Alpha
) == 0 && "C should be evenly divisible by A");
3151 const SCEV
*A_K
= findCoefficient(Src
, CurLoop
);
3152 Src
= SE
->getAddExpr(Src
, SE
->getMulExpr(A_K
, SE
->getConstant(CdivA
)));
3153 Src
= zeroCoefficient(Src
, CurLoop
);
3154 if (!findCoefficient(Dst
, CurLoop
)->isZero())
3157 else if (isKnownPredicate(CmpInst::ICMP_EQ
, A
, B
)) {
3158 const SCEVConstant
*Aconst
= dyn_cast
<SCEVConstant
>(A
);
3159 const SCEVConstant
*Cconst
= dyn_cast
<SCEVConstant
>(C
);
3160 if (!Aconst
|| !Cconst
) return false;
3161 APInt Alpha
= Aconst
->getAPInt();
3162 APInt Charlie
= Cconst
->getAPInt();
3163 APInt CdivA
= Charlie
.sdiv(Alpha
);
3164 assert(Charlie
.srem(Alpha
) == 0 && "C should be evenly divisible by A");
3165 const SCEV
*A_K
= findCoefficient(Src
, CurLoop
);
3166 Src
= SE
->getAddExpr(Src
, SE
->getMulExpr(A_K
, SE
->getConstant(CdivA
)));
3167 Src
= zeroCoefficient(Src
, CurLoop
);
3168 Dst
= addToCoefficient(Dst
, CurLoop
, A_K
);
3169 if (!findCoefficient(Dst
, CurLoop
)->isZero())
3173 // paper is incorrect here, or perhaps just misleading
3174 const SCEV
*A_K
= findCoefficient(Src
, CurLoop
);
3175 Src
= SE
->getMulExpr(Src
, A
);
3176 Dst
= SE
->getMulExpr(Dst
, A
);
3177 Src
= SE
->getAddExpr(Src
, SE
->getMulExpr(A_K
, C
));
3178 Src
= zeroCoefficient(Src
, CurLoop
);
3179 Dst
= addToCoefficient(Dst
, CurLoop
, SE
->getMulExpr(A_K
, B
));
3180 if (!findCoefficient(Dst
, CurLoop
)->isZero())
3183 LLVM_DEBUG(dbgs() << "\t\tnew Src = " << *Src
<< "\n");
3184 LLVM_DEBUG(dbgs() << "\t\tnew Dst = " << *Dst
<< "\n");
3189 // Attempt to propagate a point
3190 // constraint into a subscript pair (Src and Dst).
3191 // Return true if some simplification occurs.
3192 bool DependenceInfo::propagatePoint(const SCEV
*&Src
, const SCEV
*&Dst
,
3193 Constraint
&CurConstraint
) {
3194 const Loop
*CurLoop
= CurConstraint
.getAssociatedLoop();
3195 const SCEV
*A_K
= findCoefficient(Src
, CurLoop
);
3196 const SCEV
*AP_K
= findCoefficient(Dst
, CurLoop
);
3197 const SCEV
*XA_K
= SE
->getMulExpr(A_K
, CurConstraint
.getX());
3198 const SCEV
*YAP_K
= SE
->getMulExpr(AP_K
, CurConstraint
.getY());
3199 LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src
<< "\n");
3200 Src
= SE
->getAddExpr(Src
, SE
->getMinusSCEV(XA_K
, YAP_K
));
3201 Src
= zeroCoefficient(Src
, CurLoop
);
3202 LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src
<< "\n");
3203 LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst
<< "\n");
3204 Dst
= zeroCoefficient(Dst
, CurLoop
);
3205 LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst
<< "\n");
3210 // Update direction vector entry based on the current constraint.
3211 void DependenceInfo::updateDirection(Dependence::DVEntry
&Level
,
3212 const Constraint
&CurConstraint
) const {
3213 LLVM_DEBUG(dbgs() << "\tUpdate direction, constraint =");
3214 LLVM_DEBUG(CurConstraint
.dump(dbgs()));
3215 if (CurConstraint
.isAny())
3217 else if (CurConstraint
.isDistance()) {
3218 // this one is consistent, the others aren't
3219 Level
.Scalar
= false;
3220 Level
.Distance
= CurConstraint
.getD();
3221 unsigned NewDirection
= Dependence::DVEntry::NONE
;
3222 if (!SE
->isKnownNonZero(Level
.Distance
)) // if may be zero
3223 NewDirection
= Dependence::DVEntry::EQ
;
3224 if (!SE
->isKnownNonPositive(Level
.Distance
)) // if may be positive
3225 NewDirection
|= Dependence::DVEntry::LT
;
3226 if (!SE
->isKnownNonNegative(Level
.Distance
)) // if may be negative
3227 NewDirection
|= Dependence::DVEntry::GT
;
3228 Level
.Direction
&= NewDirection
;
3230 else if (CurConstraint
.isLine()) {
3231 Level
.Scalar
= false;
3232 Level
.Distance
= nullptr;
3233 // direction should be accurate
3235 else if (CurConstraint
.isPoint()) {
3236 Level
.Scalar
= false;
3237 Level
.Distance
= nullptr;
3238 unsigned NewDirection
= Dependence::DVEntry::NONE
;
3239 if (!isKnownPredicate(CmpInst::ICMP_NE
,
3240 CurConstraint
.getY(),
3241 CurConstraint
.getX()))
3243 NewDirection
|= Dependence::DVEntry::EQ
;
3244 if (!isKnownPredicate(CmpInst::ICMP_SLE
,
3245 CurConstraint
.getY(),
3246 CurConstraint
.getX()))
3248 NewDirection
|= Dependence::DVEntry::LT
;
3249 if (!isKnownPredicate(CmpInst::ICMP_SGE
,
3250 CurConstraint
.getY(),
3251 CurConstraint
.getX()))
3253 NewDirection
|= Dependence::DVEntry::GT
;
3254 Level
.Direction
&= NewDirection
;
3257 llvm_unreachable("constraint has unexpected kind");
3260 /// Check if we can delinearize the subscripts. If the SCEVs representing the
3261 /// source and destination array references are recurrences on a nested loop,
3262 /// this function flattens the nested recurrences into separate recurrences
3263 /// for each loop level.
3264 bool DependenceInfo::tryDelinearize(Instruction
*Src
, Instruction
*Dst
,
3265 SmallVectorImpl
<Subscript
> &Pair
) {
3266 assert(isLoadOrStore(Src
) && "instruction is not load or store");
3267 assert(isLoadOrStore(Dst
) && "instruction is not load or store");
3268 Value
*SrcPtr
= getLoadStorePointerOperand(Src
);
3269 Value
*DstPtr
= getLoadStorePointerOperand(Dst
);
3271 Loop
*SrcLoop
= LI
->getLoopFor(Src
->getParent());
3272 Loop
*DstLoop
= LI
->getLoopFor(Dst
->getParent());
3274 // Below code mimics the code in Delinearization.cpp
3275 const SCEV
*SrcAccessFn
=
3276 SE
->getSCEVAtScope(SrcPtr
, SrcLoop
);
3277 const SCEV
*DstAccessFn
=
3278 SE
->getSCEVAtScope(DstPtr
, DstLoop
);
3280 const SCEVUnknown
*SrcBase
=
3281 dyn_cast
<SCEVUnknown
>(SE
->getPointerBase(SrcAccessFn
));
3282 const SCEVUnknown
*DstBase
=
3283 dyn_cast
<SCEVUnknown
>(SE
->getPointerBase(DstAccessFn
));
3285 if (!SrcBase
|| !DstBase
|| SrcBase
!= DstBase
)
3288 const SCEV
*ElementSize
= SE
->getElementSize(Src
);
3289 if (ElementSize
!= SE
->getElementSize(Dst
))
3292 const SCEV
*SrcSCEV
= SE
->getMinusSCEV(SrcAccessFn
, SrcBase
);
3293 const SCEV
*DstSCEV
= SE
->getMinusSCEV(DstAccessFn
, DstBase
);
3295 const SCEVAddRecExpr
*SrcAR
= dyn_cast
<SCEVAddRecExpr
>(SrcSCEV
);
3296 const SCEVAddRecExpr
*DstAR
= dyn_cast
<SCEVAddRecExpr
>(DstSCEV
);
3297 if (!SrcAR
|| !DstAR
|| !SrcAR
->isAffine() || !DstAR
->isAffine())
3300 // First step: collect parametric terms in both array references.
3301 SmallVector
<const SCEV
*, 4> Terms
;
3302 SE
->collectParametricTerms(SrcAR
, Terms
);
3303 SE
->collectParametricTerms(DstAR
, Terms
);
3305 // Second step: find subscript sizes.
3306 SmallVector
<const SCEV
*, 4> Sizes
;
3307 SE
->findArrayDimensions(Terms
, Sizes
, ElementSize
);
3309 // Third step: compute the access functions for each subscript.
3310 SmallVector
<const SCEV
*, 4> SrcSubscripts
, DstSubscripts
;
3311 SE
->computeAccessFunctions(SrcAR
, SrcSubscripts
, Sizes
);
3312 SE
->computeAccessFunctions(DstAR
, DstSubscripts
, Sizes
);
3314 // Fail when there is only a subscript: that's a linearized access function.
3315 if (SrcSubscripts
.size() < 2 || DstSubscripts
.size() < 2 ||
3316 SrcSubscripts
.size() != DstSubscripts
.size())
3319 int size
= SrcSubscripts
.size();
3321 // Statically check that the array bounds are in-range. The first subscript we
3322 // don't have a size for and it cannot overflow into another subscript, so is
3323 // always safe. The others need to be 0 <= subscript[i] < bound, for both src
3325 // FIXME: It may be better to record these sizes and add them as constraints
3326 // to the dependency checks.
3327 if (!DisableDelinearizationChecks
)
3328 for (int i
= 1; i
< size
; ++i
) {
3329 if (!isKnownNonNegative(SrcSubscripts
[i
], SrcPtr
))
3332 if (!isKnownLessThan(SrcSubscripts
[i
], Sizes
[i
- 1]))
3335 if (!isKnownNonNegative(DstSubscripts
[i
], DstPtr
))
3338 if (!isKnownLessThan(DstSubscripts
[i
], Sizes
[i
- 1]))
3343 dbgs() << "\nSrcSubscripts: ";
3344 for (int i
= 0; i
< size
; i
++)
3345 dbgs() << *SrcSubscripts
[i
];
3346 dbgs() << "\nDstSubscripts: ";
3347 for (int i
= 0; i
< size
; i
++)
3348 dbgs() << *DstSubscripts
[i
];
3351 // The delinearization transforms a single-subscript MIV dependence test into
3352 // a multi-subscript SIV dependence test that is easier to compute. So we
3353 // resize Pair to contain as many pairs of subscripts as the delinearization
3354 // has found, and then initialize the pairs following the delinearization.
3356 for (int i
= 0; i
< size
; ++i
) {
3357 Pair
[i
].Src
= SrcSubscripts
[i
];
3358 Pair
[i
].Dst
= DstSubscripts
[i
];
3359 unifySubscriptType(&Pair
[i
]);
3365 //===----------------------------------------------------------------------===//
3368 // For debugging purposes, dump a small bit vector to dbgs().
3369 static void dumpSmallBitVector(SmallBitVector
&BV
) {
3371 for (unsigned VI
: BV
.set_bits()) {
3373 if (BV
.find_next(VI
) >= 0)
3380 bool DependenceInfo::invalidate(Function
&F
, const PreservedAnalyses
&PA
,
3381 FunctionAnalysisManager::Invalidator
&Inv
) {
3382 // Check if the analysis itself has been invalidated.
3383 auto PAC
= PA
.getChecker
<DependenceAnalysis
>();
3384 if (!PAC
.preserved() && !PAC
.preservedSet
<AllAnalysesOn
<Function
>>())
3387 // Check transitive dependencies.
3388 return Inv
.invalidate
<AAManager
>(F
, PA
) ||
3389 Inv
.invalidate
<ScalarEvolutionAnalysis
>(F
, PA
) ||
3390 Inv
.invalidate
<LoopAnalysis
>(F
, PA
);
3394 // Returns NULL if there is no dependence.
3395 // Otherwise, return a Dependence with as many details as possible.
3396 // Corresponds to Section 3.1 in the paper
3398 // Practical Dependence Testing
3399 // Goff, Kennedy, Tseng
3402 // Care is required to keep the routine below, getSplitIteration(),
3403 // up to date with respect to this routine.
3404 std::unique_ptr
<Dependence
>
3405 DependenceInfo::depends(Instruction
*Src
, Instruction
*Dst
,
3406 bool PossiblyLoopIndependent
) {
3408 PossiblyLoopIndependent
= false;
3410 if ((!Src
->mayReadFromMemory() && !Src
->mayWriteToMemory()) ||
3411 (!Dst
->mayReadFromMemory() && !Dst
->mayWriteToMemory()))
3412 // if both instructions don't reference memory, there's no dependence
3415 if (!isLoadOrStore(Src
) || !isLoadOrStore(Dst
)) {
3416 // can only analyze simple loads and stores, i.e., no calls, invokes, etc.
3417 LLVM_DEBUG(dbgs() << "can only handle simple loads and stores\n");
3418 return make_unique
<Dependence
>(Src
, Dst
);
3421 assert(isLoadOrStore(Src
) && "instruction is not load or store");
3422 assert(isLoadOrStore(Dst
) && "instruction is not load or store");
3423 Value
*SrcPtr
= getLoadStorePointerOperand(Src
);
3424 Value
*DstPtr
= getLoadStorePointerOperand(Dst
);
3426 switch (underlyingObjectsAlias(AA
, F
->getParent()->getDataLayout(),
3427 MemoryLocation::get(Dst
),
3428 MemoryLocation::get(Src
))) {
3431 // cannot analyse objects if we don't understand their aliasing.
3432 LLVM_DEBUG(dbgs() << "can't analyze may or partial alias\n");
3433 return make_unique
<Dependence
>(Src
, Dst
);
3435 // If the objects noalias, they are distinct, accesses are independent.
3436 LLVM_DEBUG(dbgs() << "no alias\n");
3439 break; // The underlying objects alias; test accesses for dependence.
3442 // establish loop nesting levels
3443 establishNestingLevels(Src
, Dst
);
3444 LLVM_DEBUG(dbgs() << " common nesting levels = " << CommonLevels
<< "\n");
3445 LLVM_DEBUG(dbgs() << " maximum nesting levels = " << MaxLevels
<< "\n");
3447 FullDependence
Result(Src
, Dst
, PossiblyLoopIndependent
, CommonLevels
);
3451 SmallVector
<Subscript
, 2> Pair(Pairs
);
3452 const SCEV
*SrcSCEV
= SE
->getSCEV(SrcPtr
);
3453 const SCEV
*DstSCEV
= SE
->getSCEV(DstPtr
);
3454 LLVM_DEBUG(dbgs() << " SrcSCEV = " << *SrcSCEV
<< "\n");
3455 LLVM_DEBUG(dbgs() << " DstSCEV = " << *DstSCEV
<< "\n");
3456 Pair
[0].Src
= SrcSCEV
;
3457 Pair
[0].Dst
= DstSCEV
;
3460 if (tryDelinearize(Src
, Dst
, Pair
)) {
3461 LLVM_DEBUG(dbgs() << " delinearized\n");
3462 Pairs
= Pair
.size();
3466 for (unsigned P
= 0; P
< Pairs
; ++P
) {
3467 Pair
[P
].Loops
.resize(MaxLevels
+ 1);
3468 Pair
[P
].GroupLoops
.resize(MaxLevels
+ 1);
3469 Pair
[P
].Group
.resize(Pairs
);
3470 removeMatchingExtensions(&Pair
[P
]);
3471 Pair
[P
].Classification
=
3472 classifyPair(Pair
[P
].Src
, LI
->getLoopFor(Src
->getParent()),
3473 Pair
[P
].Dst
, LI
->getLoopFor(Dst
->getParent()),
3475 Pair
[P
].GroupLoops
= Pair
[P
].Loops
;
3476 Pair
[P
].Group
.set(P
);
3477 LLVM_DEBUG(dbgs() << " subscript " << P
<< "\n");
3478 LLVM_DEBUG(dbgs() << "\tsrc = " << *Pair
[P
].Src
<< "\n");
3479 LLVM_DEBUG(dbgs() << "\tdst = " << *Pair
[P
].Dst
<< "\n");
3480 LLVM_DEBUG(dbgs() << "\tclass = " << Pair
[P
].Classification
<< "\n");
3481 LLVM_DEBUG(dbgs() << "\tloops = ");
3482 LLVM_DEBUG(dumpSmallBitVector(Pair
[P
].Loops
));
3485 SmallBitVector
Separable(Pairs
);
3486 SmallBitVector
Coupled(Pairs
);
3488 // Partition subscripts into separable and minimally-coupled groups
3489 // Algorithm in paper is algorithmically better;
3490 // this may be faster in practice. Check someday.
3492 // Here's an example of how it works. Consider this code:
3499 // A[i][j][k][m] = ...;
3500 // ... = A[0][j][l][i + j];
3507 // There are 4 subscripts here:
3511 // 3 [m] and [i + j]
3513 // We've already classified each subscript pair as ZIV, SIV, etc.,
3514 // and collected all the loops mentioned by pair P in Pair[P].Loops.
3515 // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops
3516 // and set Pair[P].Group = {P}.
3518 // Src Dst Classification Loops GroupLoops Group
3519 // 0 [i] [0] SIV {1} {1} {0}
3520 // 1 [j] [j] SIV {2} {2} {1}
3521 // 2 [k] [l] RDIV {3,4} {3,4} {2}
3522 // 3 [m] [i + j] MIV {1,2,5} {1,2,5} {3}
3524 // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ.
3525 // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc.
3527 // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty.
3528 // Next, 0 and 2. Again, the intersection of their GroupLoops is empty.
3529 // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty,
3530 // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added
3531 // to either Separable or Coupled).
3533 // Next, we consider 1 and 2. The intersection of the GroupLoops is empty.
3534 // Next, 1 and 3. The intersection of their GroupLoops = {2}, not empty,
3535 // so Pair[3].Group = {0, 1, 3} and Done = false.
3537 // Next, we compare 2 against 3. The intersection of the GroupLoops is empty.
3538 // Since Done remains true, we add 2 to the set of Separable pairs.
3540 // Finally, we consider 3. There's nothing to compare it with,
3541 // so Done remains true and we add it to the Coupled set.
3542 // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}.
3544 // In the end, we've got 1 separable subscript and 1 coupled group.
3545 for (unsigned SI
= 0; SI
< Pairs
; ++SI
) {
3546 if (Pair
[SI
].Classification
== Subscript::NonLinear
) {
3547 // ignore these, but collect loops for later
3548 ++NonlinearSubscriptPairs
;
3549 collectCommonLoops(Pair
[SI
].Src
,
3550 LI
->getLoopFor(Src
->getParent()),
3552 collectCommonLoops(Pair
[SI
].Dst
,
3553 LI
->getLoopFor(Dst
->getParent()),
3555 Result
.Consistent
= false;
3556 } else if (Pair
[SI
].Classification
== Subscript::ZIV
) {
3561 // SIV, RDIV, or MIV, so check for coupled group
3563 for (unsigned SJ
= SI
+ 1; SJ
< Pairs
; ++SJ
) {
3564 SmallBitVector Intersection
= Pair
[SI
].GroupLoops
;
3565 Intersection
&= Pair
[SJ
].GroupLoops
;
3566 if (Intersection
.any()) {
3567 // accumulate set of all the loops in group
3568 Pair
[SJ
].GroupLoops
|= Pair
[SI
].GroupLoops
;
3569 // accumulate set of all subscripts in group
3570 Pair
[SJ
].Group
|= Pair
[SI
].Group
;
3575 if (Pair
[SI
].Group
.count() == 1) {
3577 ++SeparableSubscriptPairs
;
3581 ++CoupledSubscriptPairs
;
3587 LLVM_DEBUG(dbgs() << " Separable = ");
3588 LLVM_DEBUG(dumpSmallBitVector(Separable
));
3589 LLVM_DEBUG(dbgs() << " Coupled = ");
3590 LLVM_DEBUG(dumpSmallBitVector(Coupled
));
3592 Constraint NewConstraint
;
3593 NewConstraint
.setAny(SE
);
3595 // test separable subscripts
3596 for (unsigned SI
: Separable
.set_bits()) {
3597 LLVM_DEBUG(dbgs() << "testing subscript " << SI
);
3598 switch (Pair
[SI
].Classification
) {
3599 case Subscript::ZIV
:
3600 LLVM_DEBUG(dbgs() << ", ZIV\n");
3601 if (testZIV(Pair
[SI
].Src
, Pair
[SI
].Dst
, Result
))
3604 case Subscript::SIV
: {
3605 LLVM_DEBUG(dbgs() << ", SIV\n");
3607 const SCEV
*SplitIter
= nullptr;
3608 if (testSIV(Pair
[SI
].Src
, Pair
[SI
].Dst
, Level
, Result
, NewConstraint
,
3613 case Subscript::RDIV
:
3614 LLVM_DEBUG(dbgs() << ", RDIV\n");
3615 if (testRDIV(Pair
[SI
].Src
, Pair
[SI
].Dst
, Result
))
3618 case Subscript::MIV
:
3619 LLVM_DEBUG(dbgs() << ", MIV\n");
3620 if (testMIV(Pair
[SI
].Src
, Pair
[SI
].Dst
, Pair
[SI
].Loops
, Result
))
3624 llvm_unreachable("subscript has unexpected classification");
3628 if (Coupled
.count()) {
3629 // test coupled subscript groups
3630 LLVM_DEBUG(dbgs() << "starting on coupled subscripts\n");
3631 LLVM_DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels
+ 1 << "\n");
3632 SmallVector
<Constraint
, 4> Constraints(MaxLevels
+ 1);
3633 for (unsigned II
= 0; II
<= MaxLevels
; ++II
)
3634 Constraints
[II
].setAny(SE
);
3635 for (unsigned SI
: Coupled
.set_bits()) {
3636 LLVM_DEBUG(dbgs() << "testing subscript group " << SI
<< " { ");
3637 SmallBitVector
Group(Pair
[SI
].Group
);
3638 SmallBitVector
Sivs(Pairs
);
3639 SmallBitVector
Mivs(Pairs
);
3640 SmallBitVector
ConstrainedLevels(MaxLevels
+ 1);
3641 SmallVector
<Subscript
*, 4> PairsInGroup
;
3642 for (unsigned SJ
: Group
.set_bits()) {
3643 LLVM_DEBUG(dbgs() << SJ
<< " ");
3644 if (Pair
[SJ
].Classification
== Subscript::SIV
)
3648 PairsInGroup
.push_back(&Pair
[SJ
]);
3650 unifySubscriptType(PairsInGroup
);
3651 LLVM_DEBUG(dbgs() << "}\n");
3652 while (Sivs
.any()) {
3653 bool Changed
= false;
3654 for (unsigned SJ
: Sivs
.set_bits()) {
3655 LLVM_DEBUG(dbgs() << "testing subscript " << SJ
<< ", SIV\n");
3656 // SJ is an SIV subscript that's part of the current coupled group
3658 const SCEV
*SplitIter
= nullptr;
3659 LLVM_DEBUG(dbgs() << "SIV\n");
3660 if (testSIV(Pair
[SJ
].Src
, Pair
[SJ
].Dst
, Level
, Result
, NewConstraint
,
3663 ConstrainedLevels
.set(Level
);
3664 if (intersectConstraints(&Constraints
[Level
], &NewConstraint
)) {
3665 if (Constraints
[Level
].isEmpty()) {
3666 ++DeltaIndependence
;
3674 // propagate, possibly creating new SIVs and ZIVs
3675 LLVM_DEBUG(dbgs() << " propagating\n");
3676 LLVM_DEBUG(dbgs() << "\tMivs = ");
3677 LLVM_DEBUG(dumpSmallBitVector(Mivs
));
3678 for (unsigned SJ
: Mivs
.set_bits()) {
3679 // SJ is an MIV subscript that's part of the current coupled group
3680 LLVM_DEBUG(dbgs() << "\tSJ = " << SJ
<< "\n");
3681 if (propagate(Pair
[SJ
].Src
, Pair
[SJ
].Dst
, Pair
[SJ
].Loops
,
3682 Constraints
, Result
.Consistent
)) {
3683 LLVM_DEBUG(dbgs() << "\t Changed\n");
3684 ++DeltaPropagations
;
3685 Pair
[SJ
].Classification
=
3686 classifyPair(Pair
[SJ
].Src
, LI
->getLoopFor(Src
->getParent()),
3687 Pair
[SJ
].Dst
, LI
->getLoopFor(Dst
->getParent()),
3689 switch (Pair
[SJ
].Classification
) {
3690 case Subscript::ZIV
:
3691 LLVM_DEBUG(dbgs() << "ZIV\n");
3692 if (testZIV(Pair
[SJ
].Src
, Pair
[SJ
].Dst
, Result
))
3696 case Subscript::SIV
:
3700 case Subscript::RDIV
:
3701 case Subscript::MIV
:
3704 llvm_unreachable("bad subscript classification");
3711 // test & propagate remaining RDIVs
3712 for (unsigned SJ
: Mivs
.set_bits()) {
3713 if (Pair
[SJ
].Classification
== Subscript::RDIV
) {
3714 LLVM_DEBUG(dbgs() << "RDIV test\n");
3715 if (testRDIV(Pair
[SJ
].Src
, Pair
[SJ
].Dst
, Result
))
3717 // I don't yet understand how to propagate RDIV results
3722 // test remaining MIVs
3723 // This code is temporary.
3724 // Better to somehow test all remaining subscripts simultaneously.
3725 for (unsigned SJ
: Mivs
.set_bits()) {
3726 if (Pair
[SJ
].Classification
== Subscript::MIV
) {
3727 LLVM_DEBUG(dbgs() << "MIV test\n");
3728 if (testMIV(Pair
[SJ
].Src
, Pair
[SJ
].Dst
, Pair
[SJ
].Loops
, Result
))
3732 llvm_unreachable("expected only MIV subscripts at this point");
3735 // update Result.DV from constraint vector
3736 LLVM_DEBUG(dbgs() << " updating\n");
3737 for (unsigned SJ
: ConstrainedLevels
.set_bits()) {
3738 if (SJ
> CommonLevels
)
3740 updateDirection(Result
.DV
[SJ
- 1], Constraints
[SJ
]);
3741 if (Result
.DV
[SJ
- 1].Direction
== Dependence::DVEntry::NONE
)
3747 // Make sure the Scalar flags are set correctly.
3748 SmallBitVector
CompleteLoops(MaxLevels
+ 1);
3749 for (unsigned SI
= 0; SI
< Pairs
; ++SI
)
3750 CompleteLoops
|= Pair
[SI
].Loops
;
3751 for (unsigned II
= 1; II
<= CommonLevels
; ++II
)
3752 if (CompleteLoops
[II
])
3753 Result
.DV
[II
- 1].Scalar
= false;
3755 if (PossiblyLoopIndependent
) {
3756 // Make sure the LoopIndependent flag is set correctly.
3757 // All directions must include equal, otherwise no
3758 // loop-independent dependence is possible.
3759 for (unsigned II
= 1; II
<= CommonLevels
; ++II
) {
3760 if (!(Result
.getDirection(II
) & Dependence::DVEntry::EQ
)) {
3761 Result
.LoopIndependent
= false;
3767 // On the other hand, if all directions are equal and there's no
3768 // loop-independent dependence possible, then no dependence exists.
3769 bool AllEqual
= true;
3770 for (unsigned II
= 1; II
<= CommonLevels
; ++II
) {
3771 if (Result
.getDirection(II
) != Dependence::DVEntry::EQ
) {
3780 return make_unique
<FullDependence
>(std::move(Result
));
3785 //===----------------------------------------------------------------------===//
3786 // getSplitIteration -
3787 // Rather than spend rarely-used space recording the splitting iteration
3788 // during the Weak-Crossing SIV test, we re-compute it on demand.
3789 // The re-computation is basically a repeat of the entire dependence test,
3790 // though simplified since we know that the dependence exists.
3791 // It's tedious, since we must go through all propagations, etc.
3793 // Care is required to keep this code up to date with respect to the routine
3794 // above, depends().
3796 // Generally, the dependence analyzer will be used to build
3797 // a dependence graph for a function (basically a map from instructions
3798 // to dependences). Looking for cycles in the graph shows us loops
3799 // that cannot be trivially vectorized/parallelized.
3801 // We can try to improve the situation by examining all the dependences
3802 // that make up the cycle, looking for ones we can break.
3803 // Sometimes, peeling the first or last iteration of a loop will break
3804 // dependences, and we've got flags for those possibilities.
3805 // Sometimes, splitting a loop at some other iteration will do the trick,
3806 // and we've got a flag for that case. Rather than waste the space to
3807 // record the exact iteration (since we rarely know), we provide
3808 // a method that calculates the iteration. It's a drag that it must work
3809 // from scratch, but wonderful in that it's possible.
3811 // Here's an example:
3813 // for (i = 0; i < 10; i++)
3817 // There's a loop-carried flow dependence from the store to the load,
3818 // found by the weak-crossing SIV test. The dependence will have a flag,
3819 // indicating that the dependence can be broken by splitting the loop.
3820 // Calling getSplitIteration will return 5.
3821 // Splitting the loop breaks the dependence, like so:
3823 // for (i = 0; i <= 5; i++)
3826 // for (i = 6; i < 10; i++)
3830 // breaks the dependence and allows us to vectorize/parallelize
3832 const SCEV
*DependenceInfo::getSplitIteration(const Dependence
&Dep
,
3833 unsigned SplitLevel
) {
3834 assert(Dep
.isSplitable(SplitLevel
) &&
3835 "Dep should be splitable at SplitLevel");
3836 Instruction
*Src
= Dep
.getSrc();
3837 Instruction
*Dst
= Dep
.getDst();
3838 assert(Src
->mayReadFromMemory() || Src
->mayWriteToMemory());
3839 assert(Dst
->mayReadFromMemory() || Dst
->mayWriteToMemory());
3840 assert(isLoadOrStore(Src
));
3841 assert(isLoadOrStore(Dst
));
3842 Value
*SrcPtr
= getLoadStorePointerOperand(Src
);
3843 Value
*DstPtr
= getLoadStorePointerOperand(Dst
);
3844 assert(underlyingObjectsAlias(AA
, F
->getParent()->getDataLayout(),
3845 MemoryLocation::get(Dst
),
3846 MemoryLocation::get(Src
)) == MustAlias
);
3848 // establish loop nesting levels
3849 establishNestingLevels(Src
, Dst
);
3851 FullDependence
Result(Src
, Dst
, false, CommonLevels
);
3854 SmallVector
<Subscript
, 2> Pair(Pairs
);
3855 const SCEV
*SrcSCEV
= SE
->getSCEV(SrcPtr
);
3856 const SCEV
*DstSCEV
= SE
->getSCEV(DstPtr
);
3857 Pair
[0].Src
= SrcSCEV
;
3858 Pair
[0].Dst
= DstSCEV
;
3861 if (tryDelinearize(Src
, Dst
, Pair
)) {
3862 LLVM_DEBUG(dbgs() << " delinearized\n");
3863 Pairs
= Pair
.size();
3867 for (unsigned P
= 0; P
< Pairs
; ++P
) {
3868 Pair
[P
].Loops
.resize(MaxLevels
+ 1);
3869 Pair
[P
].GroupLoops
.resize(MaxLevels
+ 1);
3870 Pair
[P
].Group
.resize(Pairs
);
3871 removeMatchingExtensions(&Pair
[P
]);
3872 Pair
[P
].Classification
=
3873 classifyPair(Pair
[P
].Src
, LI
->getLoopFor(Src
->getParent()),
3874 Pair
[P
].Dst
, LI
->getLoopFor(Dst
->getParent()),
3876 Pair
[P
].GroupLoops
= Pair
[P
].Loops
;
3877 Pair
[P
].Group
.set(P
);
3880 SmallBitVector
Separable(Pairs
);
3881 SmallBitVector
Coupled(Pairs
);
3883 // partition subscripts into separable and minimally-coupled groups
3884 for (unsigned SI
= 0; SI
< Pairs
; ++SI
) {
3885 if (Pair
[SI
].Classification
== Subscript::NonLinear
) {
3886 // ignore these, but collect loops for later
3887 collectCommonLoops(Pair
[SI
].Src
,
3888 LI
->getLoopFor(Src
->getParent()),
3890 collectCommonLoops(Pair
[SI
].Dst
,
3891 LI
->getLoopFor(Dst
->getParent()),
3893 Result
.Consistent
= false;
3895 else if (Pair
[SI
].Classification
== Subscript::ZIV
)
3898 // SIV, RDIV, or MIV, so check for coupled group
3900 for (unsigned SJ
= SI
+ 1; SJ
< Pairs
; ++SJ
) {
3901 SmallBitVector Intersection
= Pair
[SI
].GroupLoops
;
3902 Intersection
&= Pair
[SJ
].GroupLoops
;
3903 if (Intersection
.any()) {
3904 // accumulate set of all the loops in group
3905 Pair
[SJ
].GroupLoops
|= Pair
[SI
].GroupLoops
;
3906 // accumulate set of all subscripts in group
3907 Pair
[SJ
].Group
|= Pair
[SI
].Group
;
3912 if (Pair
[SI
].Group
.count() == 1)
3920 Constraint NewConstraint
;
3921 NewConstraint
.setAny(SE
);
3923 // test separable subscripts
3924 for (unsigned SI
: Separable
.set_bits()) {
3925 switch (Pair
[SI
].Classification
) {
3926 case Subscript::SIV
: {
3928 const SCEV
*SplitIter
= nullptr;
3929 (void) testSIV(Pair
[SI
].Src
, Pair
[SI
].Dst
, Level
,
3930 Result
, NewConstraint
, SplitIter
);
3931 if (Level
== SplitLevel
) {
3932 assert(SplitIter
!= nullptr);
3937 case Subscript::ZIV
:
3938 case Subscript::RDIV
:
3939 case Subscript::MIV
:
3942 llvm_unreachable("subscript has unexpected classification");
3946 if (Coupled
.count()) {
3947 // test coupled subscript groups
3948 SmallVector
<Constraint
, 4> Constraints(MaxLevels
+ 1);
3949 for (unsigned II
= 0; II
<= MaxLevels
; ++II
)
3950 Constraints
[II
].setAny(SE
);
3951 for (unsigned SI
: Coupled
.set_bits()) {
3952 SmallBitVector
Group(Pair
[SI
].Group
);
3953 SmallBitVector
Sivs(Pairs
);
3954 SmallBitVector
Mivs(Pairs
);
3955 SmallBitVector
ConstrainedLevels(MaxLevels
+ 1);
3956 for (unsigned SJ
: Group
.set_bits()) {
3957 if (Pair
[SJ
].Classification
== Subscript::SIV
)
3962 while (Sivs
.any()) {
3963 bool Changed
= false;
3964 for (unsigned SJ
: Sivs
.set_bits()) {
3965 // SJ is an SIV subscript that's part of the current coupled group
3967 const SCEV
*SplitIter
= nullptr;
3968 (void) testSIV(Pair
[SJ
].Src
, Pair
[SJ
].Dst
, Level
,
3969 Result
, NewConstraint
, SplitIter
);
3970 if (Level
== SplitLevel
&& SplitIter
)
3972 ConstrainedLevels
.set(Level
);
3973 if (intersectConstraints(&Constraints
[Level
], &NewConstraint
))
3978 // propagate, possibly creating new SIVs and ZIVs
3979 for (unsigned SJ
: Mivs
.set_bits()) {
3980 // SJ is an MIV subscript that's part of the current coupled group
3981 if (propagate(Pair
[SJ
].Src
, Pair
[SJ
].Dst
,
3982 Pair
[SJ
].Loops
, Constraints
, Result
.Consistent
)) {
3983 Pair
[SJ
].Classification
=
3984 classifyPair(Pair
[SJ
].Src
, LI
->getLoopFor(Src
->getParent()),
3985 Pair
[SJ
].Dst
, LI
->getLoopFor(Dst
->getParent()),
3987 switch (Pair
[SJ
].Classification
) {
3988 case Subscript::ZIV
:
3991 case Subscript::SIV
:
3995 case Subscript::RDIV
:
3996 case Subscript::MIV
:
3999 llvm_unreachable("bad subscript classification");
4007 llvm_unreachable("somehow reached end of routine");