[ARM] More MVE compare vector splat combines for ANDs
[llvm-complete.git] / lib / Analysis / LazyCallGraph.cpp
blob797fcf516429db0e490222ce239d51dcebb017b1
1 //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Analysis/LazyCallGraph.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/ScopeExit.h"
13 #include "llvm/ADT/Sequence.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/Analysis/TargetLibraryInfo.h"
18 #include "llvm/Config/llvm-config.h"
19 #include "llvm/IR/CallSite.h"
20 #include "llvm/IR/Function.h"
21 #include "llvm/IR/GlobalVariable.h"
22 #include "llvm/IR/Instruction.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/PassManager.h"
25 #include "llvm/Support/Casting.h"
26 #include "llvm/Support/Compiler.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/GraphWriter.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <cstddef>
33 #include <iterator>
34 #include <string>
35 #include <tuple>
36 #include <utility>
38 using namespace llvm;
40 #define DEBUG_TYPE "lcg"
42 void LazyCallGraph::EdgeSequence::insertEdgeInternal(Node &TargetN,
43 Edge::Kind EK) {
44 EdgeIndexMap.insert({&TargetN, Edges.size()});
45 Edges.emplace_back(TargetN, EK);
48 void LazyCallGraph::EdgeSequence::setEdgeKind(Node &TargetN, Edge::Kind EK) {
49 Edges[EdgeIndexMap.find(&TargetN)->second].setKind(EK);
52 bool LazyCallGraph::EdgeSequence::removeEdgeInternal(Node &TargetN) {
53 auto IndexMapI = EdgeIndexMap.find(&TargetN);
54 if (IndexMapI == EdgeIndexMap.end())
55 return false;
57 Edges[IndexMapI->second] = Edge();
58 EdgeIndexMap.erase(IndexMapI);
59 return true;
62 static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges,
63 DenseMap<LazyCallGraph::Node *, int> &EdgeIndexMap,
64 LazyCallGraph::Node &N, LazyCallGraph::Edge::Kind EK) {
65 if (!EdgeIndexMap.insert({&N, Edges.size()}).second)
66 return;
68 LLVM_DEBUG(dbgs() << " Added callable function: " << N.getName() << "\n");
69 Edges.emplace_back(LazyCallGraph::Edge(N, EK));
72 LazyCallGraph::EdgeSequence &LazyCallGraph::Node::populateSlow() {
73 assert(!Edges && "Must not have already populated the edges for this node!");
75 LLVM_DEBUG(dbgs() << " Adding functions called by '" << getName()
76 << "' to the graph.\n");
78 Edges = EdgeSequence();
80 SmallVector<Constant *, 16> Worklist;
81 SmallPtrSet<Function *, 4> Callees;
82 SmallPtrSet<Constant *, 16> Visited;
84 // Find all the potential call graph edges in this function. We track both
85 // actual call edges and indirect references to functions. The direct calls
86 // are trivially added, but to accumulate the latter we walk the instructions
87 // and add every operand which is a constant to the worklist to process
88 // afterward.
90 // Note that we consider *any* function with a definition to be a viable
91 // edge. Even if the function's definition is subject to replacement by
92 // some other module (say, a weak definition) there may still be
93 // optimizations which essentially speculate based on the definition and
94 // a way to check that the specific definition is in fact the one being
95 // used. For example, this could be done by moving the weak definition to
96 // a strong (internal) definition and making the weak definition be an
97 // alias. Then a test of the address of the weak function against the new
98 // strong definition's address would be an effective way to determine the
99 // safety of optimizing a direct call edge.
100 for (BasicBlock &BB : *F)
101 for (Instruction &I : BB) {
102 if (auto CS = CallSite(&I))
103 if (Function *Callee = CS.getCalledFunction())
104 if (!Callee->isDeclaration())
105 if (Callees.insert(Callee).second) {
106 Visited.insert(Callee);
107 addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*Callee),
108 LazyCallGraph::Edge::Call);
111 for (Value *Op : I.operand_values())
112 if (Constant *C = dyn_cast<Constant>(Op))
113 if (Visited.insert(C).second)
114 Worklist.push_back(C);
117 // We've collected all the constant (and thus potentially function or
118 // function containing) operands to all of the instructions in the function.
119 // Process them (recursively) collecting every function found.
120 visitReferences(Worklist, Visited, [&](Function &F) {
121 addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(F),
122 LazyCallGraph::Edge::Ref);
125 // Add implicit reference edges to any defined libcall functions (if we
126 // haven't found an explicit edge).
127 for (auto *F : G->LibFunctions)
128 if (!Visited.count(F))
129 addEdge(Edges->Edges, Edges->EdgeIndexMap, G->get(*F),
130 LazyCallGraph::Edge::Ref);
132 return *Edges;
135 void LazyCallGraph::Node::replaceFunction(Function &NewF) {
136 assert(F != &NewF && "Must not replace a function with itself!");
137 F = &NewF;
140 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
141 LLVM_DUMP_METHOD void LazyCallGraph::Node::dump() const {
142 dbgs() << *this << '\n';
144 #endif
146 static bool isKnownLibFunction(Function &F, TargetLibraryInfo &TLI) {
147 LibFunc LF;
149 // Either this is a normal library function or a "vectorizable" function.
150 return TLI.getLibFunc(F, LF) || TLI.isFunctionVectorizable(F.getName());
153 LazyCallGraph::LazyCallGraph(Module &M, TargetLibraryInfo &TLI) {
154 LLVM_DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
155 << "\n");
156 for (Function &F : M) {
157 if (F.isDeclaration())
158 continue;
159 // If this function is a known lib function to LLVM then we want to
160 // synthesize reference edges to it to model the fact that LLVM can turn
161 // arbitrary code into a library function call.
162 if (isKnownLibFunction(F, TLI))
163 LibFunctions.insert(&F);
165 if (F.hasLocalLinkage())
166 continue;
168 // External linkage defined functions have edges to them from other
169 // modules.
170 LLVM_DEBUG(dbgs() << " Adding '" << F.getName()
171 << "' to entry set of the graph.\n");
172 addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F), Edge::Ref);
175 // Externally visible aliases of internal functions are also viable entry
176 // edges to the module.
177 for (auto &A : M.aliases()) {
178 if (A.hasLocalLinkage())
179 continue;
180 if (Function* F = dyn_cast<Function>(A.getAliasee())) {
181 LLVM_DEBUG(dbgs() << " Adding '" << F->getName()
182 << "' with alias '" << A.getName()
183 << "' to entry set of the graph.\n");
184 addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(*F), Edge::Ref);
188 // Now add entry nodes for functions reachable via initializers to globals.
189 SmallVector<Constant *, 16> Worklist;
190 SmallPtrSet<Constant *, 16> Visited;
191 for (GlobalVariable &GV : M.globals())
192 if (GV.hasInitializer())
193 if (Visited.insert(GV.getInitializer()).second)
194 Worklist.push_back(GV.getInitializer());
196 LLVM_DEBUG(
197 dbgs() << " Adding functions referenced by global initializers to the "
198 "entry set.\n");
199 visitReferences(Worklist, Visited, [&](Function &F) {
200 addEdge(EntryEdges.Edges, EntryEdges.EdgeIndexMap, get(F),
201 LazyCallGraph::Edge::Ref);
205 LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
206 : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
207 EntryEdges(std::move(G.EntryEdges)), SCCBPA(std::move(G.SCCBPA)),
208 SCCMap(std::move(G.SCCMap)),
209 LibFunctions(std::move(G.LibFunctions)) {
210 updateGraphPtrs();
213 LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
214 BPA = std::move(G.BPA);
215 NodeMap = std::move(G.NodeMap);
216 EntryEdges = std::move(G.EntryEdges);
217 SCCBPA = std::move(G.SCCBPA);
218 SCCMap = std::move(G.SCCMap);
219 LibFunctions = std::move(G.LibFunctions);
220 updateGraphPtrs();
221 return *this;
224 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
225 LLVM_DUMP_METHOD void LazyCallGraph::SCC::dump() const {
226 dbgs() << *this << '\n';
228 #endif
230 #ifndef NDEBUG
231 void LazyCallGraph::SCC::verify() {
232 assert(OuterRefSCC && "Can't have a null RefSCC!");
233 assert(!Nodes.empty() && "Can't have an empty SCC!");
235 for (Node *N : Nodes) {
236 assert(N && "Can't have a null node!");
237 assert(OuterRefSCC->G->lookupSCC(*N) == this &&
238 "Node does not map to this SCC!");
239 assert(N->DFSNumber == -1 &&
240 "Must set DFS numbers to -1 when adding a node to an SCC!");
241 assert(N->LowLink == -1 &&
242 "Must set low link to -1 when adding a node to an SCC!");
243 for (Edge &E : **N)
244 assert(E.getNode().isPopulated() && "Can't have an unpopulated node!");
247 #endif
249 bool LazyCallGraph::SCC::isParentOf(const SCC &C) const {
250 if (this == &C)
251 return false;
253 for (Node &N : *this)
254 for (Edge &E : N->calls())
255 if (OuterRefSCC->G->lookupSCC(E.getNode()) == &C)
256 return true;
258 // No edges found.
259 return false;
262 bool LazyCallGraph::SCC::isAncestorOf(const SCC &TargetC) const {
263 if (this == &TargetC)
264 return false;
266 LazyCallGraph &G = *OuterRefSCC->G;
268 // Start with this SCC.
269 SmallPtrSet<const SCC *, 16> Visited = {this};
270 SmallVector<const SCC *, 16> Worklist = {this};
272 // Walk down the graph until we run out of edges or find a path to TargetC.
273 do {
274 const SCC &C = *Worklist.pop_back_val();
275 for (Node &N : C)
276 for (Edge &E : N->calls()) {
277 SCC *CalleeC = G.lookupSCC(E.getNode());
278 if (!CalleeC)
279 continue;
281 // If the callee's SCC is the TargetC, we're done.
282 if (CalleeC == &TargetC)
283 return true;
285 // If this is the first time we've reached this SCC, put it on the
286 // worklist to recurse through.
287 if (Visited.insert(CalleeC).second)
288 Worklist.push_back(CalleeC);
290 } while (!Worklist.empty());
292 // No paths found.
293 return false;
296 LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {}
298 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
299 LLVM_DUMP_METHOD void LazyCallGraph::RefSCC::dump() const {
300 dbgs() << *this << '\n';
302 #endif
304 #ifndef NDEBUG
305 void LazyCallGraph::RefSCC::verify() {
306 assert(G && "Can't have a null graph!");
307 assert(!SCCs.empty() && "Can't have an empty SCC!");
309 // Verify basic properties of the SCCs.
310 SmallPtrSet<SCC *, 4> SCCSet;
311 for (SCC *C : SCCs) {
312 assert(C && "Can't have a null SCC!");
313 C->verify();
314 assert(&C->getOuterRefSCC() == this &&
315 "SCC doesn't think it is inside this RefSCC!");
316 bool Inserted = SCCSet.insert(C).second;
317 assert(Inserted && "Found a duplicate SCC!");
318 auto IndexIt = SCCIndices.find(C);
319 assert(IndexIt != SCCIndices.end() &&
320 "Found an SCC that doesn't have an index!");
323 // Check that our indices map correctly.
324 for (auto &SCCIndexPair : SCCIndices) {
325 SCC *C = SCCIndexPair.first;
326 int i = SCCIndexPair.second;
327 assert(C && "Can't have a null SCC in the indices!");
328 assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!");
329 assert(SCCs[i] == C && "Index doesn't point to SCC!");
332 // Check that the SCCs are in fact in post-order.
333 for (int i = 0, Size = SCCs.size(); i < Size; ++i) {
334 SCC &SourceSCC = *SCCs[i];
335 for (Node &N : SourceSCC)
336 for (Edge &E : *N) {
337 if (!E.isCall())
338 continue;
339 SCC &TargetSCC = *G->lookupSCC(E.getNode());
340 if (&TargetSCC.getOuterRefSCC() == this) {
341 assert(SCCIndices.find(&TargetSCC)->second <= i &&
342 "Edge between SCCs violates post-order relationship.");
343 continue;
348 #endif
350 bool LazyCallGraph::RefSCC::isParentOf(const RefSCC &RC) const {
351 if (&RC == this)
352 return false;
354 // Search all edges to see if this is a parent.
355 for (SCC &C : *this)
356 for (Node &N : C)
357 for (Edge &E : *N)
358 if (G->lookupRefSCC(E.getNode()) == &RC)
359 return true;
361 return false;
364 bool LazyCallGraph::RefSCC::isAncestorOf(const RefSCC &RC) const {
365 if (&RC == this)
366 return false;
368 // For each descendant of this RefSCC, see if one of its children is the
369 // argument. If not, add that descendant to the worklist and continue
370 // searching.
371 SmallVector<const RefSCC *, 4> Worklist;
372 SmallPtrSet<const RefSCC *, 4> Visited;
373 Worklist.push_back(this);
374 Visited.insert(this);
375 do {
376 const RefSCC &DescendantRC = *Worklist.pop_back_val();
377 for (SCC &C : DescendantRC)
378 for (Node &N : C)
379 for (Edge &E : *N) {
380 auto *ChildRC = G->lookupRefSCC(E.getNode());
381 if (ChildRC == &RC)
382 return true;
383 if (!ChildRC || !Visited.insert(ChildRC).second)
384 continue;
385 Worklist.push_back(ChildRC);
387 } while (!Worklist.empty());
389 return false;
392 /// Generic helper that updates a postorder sequence of SCCs for a potentially
393 /// cycle-introducing edge insertion.
395 /// A postorder sequence of SCCs of a directed graph has one fundamental
396 /// property: all deges in the DAG of SCCs point "up" the sequence. That is,
397 /// all edges in the SCC DAG point to prior SCCs in the sequence.
399 /// This routine both updates a postorder sequence and uses that sequence to
400 /// compute the set of SCCs connected into a cycle. It should only be called to
401 /// insert a "downward" edge which will require changing the sequence to
402 /// restore it to a postorder.
404 /// When inserting an edge from an earlier SCC to a later SCC in some postorder
405 /// sequence, all of the SCCs which may be impacted are in the closed range of
406 /// those two within the postorder sequence. The algorithm used here to restore
407 /// the state is as follows:
409 /// 1) Starting from the source SCC, construct a set of SCCs which reach the
410 /// source SCC consisting of just the source SCC. Then scan toward the
411 /// target SCC in postorder and for each SCC, if it has an edge to an SCC
412 /// in the set, add it to the set. Otherwise, the source SCC is not
413 /// a successor, move it in the postorder sequence to immediately before
414 /// the source SCC, shifting the source SCC and all SCCs in the set one
415 /// position toward the target SCC. Stop scanning after processing the
416 /// target SCC.
417 /// 2) If the source SCC is now past the target SCC in the postorder sequence,
418 /// and thus the new edge will flow toward the start, we are done.
419 /// 3) Otherwise, starting from the target SCC, walk all edges which reach an
420 /// SCC between the source and the target, and add them to the set of
421 /// connected SCCs, then recurse through them. Once a complete set of the
422 /// SCCs the target connects to is known, hoist the remaining SCCs between
423 /// the source and the target to be above the target. Note that there is no
424 /// need to process the source SCC, it is already known to connect.
425 /// 4) At this point, all of the SCCs in the closed range between the source
426 /// SCC and the target SCC in the postorder sequence are connected,
427 /// including the target SCC and the source SCC. Inserting the edge from
428 /// the source SCC to the target SCC will form a cycle out of precisely
429 /// these SCCs. Thus we can merge all of the SCCs in this closed range into
430 /// a single SCC.
432 /// This process has various important properties:
433 /// - Only mutates the SCCs when adding the edge actually changes the SCC
434 /// structure.
435 /// - Never mutates SCCs which are unaffected by the change.
436 /// - Updates the postorder sequence to correctly satisfy the postorder
437 /// constraint after the edge is inserted.
438 /// - Only reorders SCCs in the closed postorder sequence from the source to
439 /// the target, so easy to bound how much has changed even in the ordering.
440 /// - Big-O is the number of edges in the closed postorder range of SCCs from
441 /// source to target.
443 /// This helper routine, in addition to updating the postorder sequence itself
444 /// will also update a map from SCCs to indices within that sequence.
446 /// The sequence and the map must operate on pointers to the SCC type.
448 /// Two callbacks must be provided. The first computes the subset of SCCs in
449 /// the postorder closed range from the source to the target which connect to
450 /// the source SCC via some (transitive) set of edges. The second computes the
451 /// subset of the same range which the target SCC connects to via some
452 /// (transitive) set of edges. Both callbacks should populate the set argument
453 /// provided.
454 template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT,
455 typename ComputeSourceConnectedSetCallableT,
456 typename ComputeTargetConnectedSetCallableT>
457 static iterator_range<typename PostorderSequenceT::iterator>
458 updatePostorderSequenceForEdgeInsertion(
459 SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs,
460 SCCIndexMapT &SCCIndices,
461 ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet,
462 ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) {
463 int SourceIdx = SCCIndices[&SourceSCC];
464 int TargetIdx = SCCIndices[&TargetSCC];
465 assert(SourceIdx < TargetIdx && "Cannot have equal indices here!");
467 SmallPtrSet<SCCT *, 4> ConnectedSet;
469 // Compute the SCCs which (transitively) reach the source.
470 ComputeSourceConnectedSet(ConnectedSet);
472 // Partition the SCCs in this part of the port-order sequence so only SCCs
473 // connecting to the source remain between it and the target. This is
474 // a benign partition as it preserves postorder.
475 auto SourceI = std::stable_partition(
476 SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1,
477 [&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); });
478 for (int i = SourceIdx, e = TargetIdx + 1; i < e; ++i)
479 SCCIndices.find(SCCs[i])->second = i;
481 // If the target doesn't connect to the source, then we've corrected the
482 // post-order and there are no cycles formed.
483 if (!ConnectedSet.count(&TargetSCC)) {
484 assert(SourceI > (SCCs.begin() + SourceIdx) &&
485 "Must have moved the source to fix the post-order.");
486 assert(*std::prev(SourceI) == &TargetSCC &&
487 "Last SCC to move should have bene the target.");
489 // Return an empty range at the target SCC indicating there is nothing to
490 // merge.
491 return make_range(std::prev(SourceI), std::prev(SourceI));
494 assert(SCCs[TargetIdx] == &TargetSCC &&
495 "Should not have moved target if connected!");
496 SourceIdx = SourceI - SCCs.begin();
497 assert(SCCs[SourceIdx] == &SourceSCC &&
498 "Bad updated index computation for the source SCC!");
501 // See whether there are any remaining intervening SCCs between the source
502 // and target. If so we need to make sure they all are reachable form the
503 // target.
504 if (SourceIdx + 1 < TargetIdx) {
505 ConnectedSet.clear();
506 ComputeTargetConnectedSet(ConnectedSet);
508 // Partition SCCs so that only SCCs reached from the target remain between
509 // the source and the target. This preserves postorder.
510 auto TargetI = std::stable_partition(
511 SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1,
512 [&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); });
513 for (int i = SourceIdx + 1, e = TargetIdx + 1; i < e; ++i)
514 SCCIndices.find(SCCs[i])->second = i;
515 TargetIdx = std::prev(TargetI) - SCCs.begin();
516 assert(SCCs[TargetIdx] == &TargetSCC &&
517 "Should always end with the target!");
520 // At this point, we know that connecting source to target forms a cycle
521 // because target connects back to source, and we know that all of the SCCs
522 // between the source and target in the postorder sequence participate in that
523 // cycle.
524 return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx);
527 bool
528 LazyCallGraph::RefSCC::switchInternalEdgeToCall(
529 Node &SourceN, Node &TargetN,
530 function_ref<void(ArrayRef<SCC *> MergeSCCs)> MergeCB) {
531 assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
532 SmallVector<SCC *, 1> DeletedSCCs;
534 #ifndef NDEBUG
535 // In a debug build, verify the RefSCC is valid to start with and when this
536 // routine finishes.
537 verify();
538 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
539 #endif
541 SCC &SourceSCC = *G->lookupSCC(SourceN);
542 SCC &TargetSCC = *G->lookupSCC(TargetN);
544 // If the two nodes are already part of the same SCC, we're also done as
545 // we've just added more connectivity.
546 if (&SourceSCC == &TargetSCC) {
547 SourceN->setEdgeKind(TargetN, Edge::Call);
548 return false; // No new cycle.
551 // At this point we leverage the postorder list of SCCs to detect when the
552 // insertion of an edge changes the SCC structure in any way.
554 // First and foremost, we can eliminate the need for any changes when the
555 // edge is toward the beginning of the postorder sequence because all edges
556 // flow in that direction already. Thus adding a new one cannot form a cycle.
557 int SourceIdx = SCCIndices[&SourceSCC];
558 int TargetIdx = SCCIndices[&TargetSCC];
559 if (TargetIdx < SourceIdx) {
560 SourceN->setEdgeKind(TargetN, Edge::Call);
561 return false; // No new cycle.
564 // Compute the SCCs which (transitively) reach the source.
565 auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
566 #ifndef NDEBUG
567 // Check that the RefSCC is still valid before computing this as the
568 // results will be nonsensical of we've broken its invariants.
569 verify();
570 #endif
571 ConnectedSet.insert(&SourceSCC);
572 auto IsConnected = [&](SCC &C) {
573 for (Node &N : C)
574 for (Edge &E : N->calls())
575 if (ConnectedSet.count(G->lookupSCC(E.getNode())))
576 return true;
578 return false;
581 for (SCC *C :
582 make_range(SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1))
583 if (IsConnected(*C))
584 ConnectedSet.insert(C);
587 // Use a normal worklist to find which SCCs the target connects to. We still
588 // bound the search based on the range in the postorder list we care about,
589 // but because this is forward connectivity we just "recurse" through the
590 // edges.
591 auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) {
592 #ifndef NDEBUG
593 // Check that the RefSCC is still valid before computing this as the
594 // results will be nonsensical of we've broken its invariants.
595 verify();
596 #endif
597 ConnectedSet.insert(&TargetSCC);
598 SmallVector<SCC *, 4> Worklist;
599 Worklist.push_back(&TargetSCC);
600 do {
601 SCC &C = *Worklist.pop_back_val();
602 for (Node &N : C)
603 for (Edge &E : *N) {
604 if (!E.isCall())
605 continue;
606 SCC &EdgeC = *G->lookupSCC(E.getNode());
607 if (&EdgeC.getOuterRefSCC() != this)
608 // Not in this RefSCC...
609 continue;
610 if (SCCIndices.find(&EdgeC)->second <= SourceIdx)
611 // Not in the postorder sequence between source and target.
612 continue;
614 if (ConnectedSet.insert(&EdgeC).second)
615 Worklist.push_back(&EdgeC);
617 } while (!Worklist.empty());
620 // Use a generic helper to update the postorder sequence of SCCs and return
621 // a range of any SCCs connected into a cycle by inserting this edge. This
622 // routine will also take care of updating the indices into the postorder
623 // sequence.
624 auto MergeRange = updatePostorderSequenceForEdgeInsertion(
625 SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet,
626 ComputeTargetConnectedSet);
628 // Run the user's callback on the merged SCCs before we actually merge them.
629 if (MergeCB)
630 MergeCB(makeArrayRef(MergeRange.begin(), MergeRange.end()));
632 // If the merge range is empty, then adding the edge didn't actually form any
633 // new cycles. We're done.
634 if (empty(MergeRange)) {
635 // Now that the SCC structure is finalized, flip the kind to call.
636 SourceN->setEdgeKind(TargetN, Edge::Call);
637 return false; // No new cycle.
640 #ifndef NDEBUG
641 // Before merging, check that the RefSCC remains valid after all the
642 // postorder updates.
643 verify();
644 #endif
646 // Otherwise we need to merge all of the SCCs in the cycle into a single
647 // result SCC.
649 // NB: We merge into the target because all of these functions were already
650 // reachable from the target, meaning any SCC-wide properties deduced about it
651 // other than the set of functions within it will not have changed.
652 for (SCC *C : MergeRange) {
653 assert(C != &TargetSCC &&
654 "We merge *into* the target and shouldn't process it here!");
655 SCCIndices.erase(C);
656 TargetSCC.Nodes.append(C->Nodes.begin(), C->Nodes.end());
657 for (Node *N : C->Nodes)
658 G->SCCMap[N] = &TargetSCC;
659 C->clear();
660 DeletedSCCs.push_back(C);
663 // Erase the merged SCCs from the list and update the indices of the
664 // remaining SCCs.
665 int IndexOffset = MergeRange.end() - MergeRange.begin();
666 auto EraseEnd = SCCs.erase(MergeRange.begin(), MergeRange.end());
667 for (SCC *C : make_range(EraseEnd, SCCs.end()))
668 SCCIndices[C] -= IndexOffset;
670 // Now that the SCC structure is finalized, flip the kind to call.
671 SourceN->setEdgeKind(TargetN, Edge::Call);
673 // And we're done, but we did form a new cycle.
674 return true;
677 void LazyCallGraph::RefSCC::switchTrivialInternalEdgeToRef(Node &SourceN,
678 Node &TargetN) {
679 assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
681 #ifndef NDEBUG
682 // In a debug build, verify the RefSCC is valid to start with and when this
683 // routine finishes.
684 verify();
685 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
686 #endif
688 assert(G->lookupRefSCC(SourceN) == this &&
689 "Source must be in this RefSCC.");
690 assert(G->lookupRefSCC(TargetN) == this &&
691 "Target must be in this RefSCC.");
692 assert(G->lookupSCC(SourceN) != G->lookupSCC(TargetN) &&
693 "Source and Target must be in separate SCCs for this to be trivial!");
695 // Set the edge kind.
696 SourceN->setEdgeKind(TargetN, Edge::Ref);
699 iterator_range<LazyCallGraph::RefSCC::iterator>
700 LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) {
701 assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
703 #ifndef NDEBUG
704 // In a debug build, verify the RefSCC is valid to start with and when this
705 // routine finishes.
706 verify();
707 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
708 #endif
710 assert(G->lookupRefSCC(SourceN) == this &&
711 "Source must be in this RefSCC.");
712 assert(G->lookupRefSCC(TargetN) == this &&
713 "Target must be in this RefSCC.");
715 SCC &TargetSCC = *G->lookupSCC(TargetN);
716 assert(G->lookupSCC(SourceN) == &TargetSCC && "Source and Target must be in "
717 "the same SCC to require the "
718 "full CG update.");
720 // Set the edge kind.
721 SourceN->setEdgeKind(TargetN, Edge::Ref);
723 // Otherwise we are removing a call edge from a single SCC. This may break
724 // the cycle. In order to compute the new set of SCCs, we need to do a small
725 // DFS over the nodes within the SCC to form any sub-cycles that remain as
726 // distinct SCCs and compute a postorder over the resulting SCCs.
728 // However, we specially handle the target node. The target node is known to
729 // reach all other nodes in the original SCC by definition. This means that
730 // we want the old SCC to be replaced with an SCC containing that node as it
731 // will be the root of whatever SCC DAG results from the DFS. Assumptions
732 // about an SCC such as the set of functions called will continue to hold,
733 // etc.
735 SCC &OldSCC = TargetSCC;
736 SmallVector<std::pair<Node *, EdgeSequence::call_iterator>, 16> DFSStack;
737 SmallVector<Node *, 16> PendingSCCStack;
738 SmallVector<SCC *, 4> NewSCCs;
740 // Prepare the nodes for a fresh DFS.
741 SmallVector<Node *, 16> Worklist;
742 Worklist.swap(OldSCC.Nodes);
743 for (Node *N : Worklist) {
744 N->DFSNumber = N->LowLink = 0;
745 G->SCCMap.erase(N);
748 // Force the target node to be in the old SCC. This also enables us to take
749 // a very significant short-cut in the standard Tarjan walk to re-form SCCs
750 // below: whenever we build an edge that reaches the target node, we know
751 // that the target node eventually connects back to all other nodes in our
752 // walk. As a consequence, we can detect and handle participants in that
753 // cycle without walking all the edges that form this connection, and instead
754 // by relying on the fundamental guarantee coming into this operation (all
755 // nodes are reachable from the target due to previously forming an SCC).
756 TargetN.DFSNumber = TargetN.LowLink = -1;
757 OldSCC.Nodes.push_back(&TargetN);
758 G->SCCMap[&TargetN] = &OldSCC;
760 // Scan down the stack and DFS across the call edges.
761 for (Node *RootN : Worklist) {
762 assert(DFSStack.empty() &&
763 "Cannot begin a new root with a non-empty DFS stack!");
764 assert(PendingSCCStack.empty() &&
765 "Cannot begin a new root with pending nodes for an SCC!");
767 // Skip any nodes we've already reached in the DFS.
768 if (RootN->DFSNumber != 0) {
769 assert(RootN->DFSNumber == -1 &&
770 "Shouldn't have any mid-DFS root nodes!");
771 continue;
774 RootN->DFSNumber = RootN->LowLink = 1;
775 int NextDFSNumber = 2;
777 DFSStack.push_back({RootN, (*RootN)->call_begin()});
778 do {
779 Node *N;
780 EdgeSequence::call_iterator I;
781 std::tie(N, I) = DFSStack.pop_back_val();
782 auto E = (*N)->call_end();
783 while (I != E) {
784 Node &ChildN = I->getNode();
785 if (ChildN.DFSNumber == 0) {
786 // We haven't yet visited this child, so descend, pushing the current
787 // node onto the stack.
788 DFSStack.push_back({N, I});
790 assert(!G->SCCMap.count(&ChildN) &&
791 "Found a node with 0 DFS number but already in an SCC!");
792 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
793 N = &ChildN;
794 I = (*N)->call_begin();
795 E = (*N)->call_end();
796 continue;
799 // Check for the child already being part of some component.
800 if (ChildN.DFSNumber == -1) {
801 if (G->lookupSCC(ChildN) == &OldSCC) {
802 // If the child is part of the old SCC, we know that it can reach
803 // every other node, so we have formed a cycle. Pull the entire DFS
804 // and pending stacks into it. See the comment above about setting
805 // up the old SCC for why we do this.
806 int OldSize = OldSCC.size();
807 OldSCC.Nodes.push_back(N);
808 OldSCC.Nodes.append(PendingSCCStack.begin(), PendingSCCStack.end());
809 PendingSCCStack.clear();
810 while (!DFSStack.empty())
811 OldSCC.Nodes.push_back(DFSStack.pop_back_val().first);
812 for (Node &N : make_range(OldSCC.begin() + OldSize, OldSCC.end())) {
813 N.DFSNumber = N.LowLink = -1;
814 G->SCCMap[&N] = &OldSCC;
816 N = nullptr;
817 break;
820 // If the child has already been added to some child component, it
821 // couldn't impact the low-link of this parent because it isn't
822 // connected, and thus its low-link isn't relevant so skip it.
823 ++I;
824 continue;
827 // Track the lowest linked child as the lowest link for this node.
828 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
829 if (ChildN.LowLink < N->LowLink)
830 N->LowLink = ChildN.LowLink;
832 // Move to the next edge.
833 ++I;
835 if (!N)
836 // Cleared the DFS early, start another round.
837 break;
839 // We've finished processing N and its descendants, put it on our pending
840 // SCC stack to eventually get merged into an SCC of nodes.
841 PendingSCCStack.push_back(N);
843 // If this node is linked to some lower entry, continue walking up the
844 // stack.
845 if (N->LowLink != N->DFSNumber)
846 continue;
848 // Otherwise, we've completed an SCC. Append it to our post order list of
849 // SCCs.
850 int RootDFSNumber = N->DFSNumber;
851 // Find the range of the node stack by walking down until we pass the
852 // root DFS number.
853 auto SCCNodes = make_range(
854 PendingSCCStack.rbegin(),
855 find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
856 return N->DFSNumber < RootDFSNumber;
857 }));
859 // Form a new SCC out of these nodes and then clear them off our pending
860 // stack.
861 NewSCCs.push_back(G->createSCC(*this, SCCNodes));
862 for (Node &N : *NewSCCs.back()) {
863 N.DFSNumber = N.LowLink = -1;
864 G->SCCMap[&N] = NewSCCs.back();
866 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
867 } while (!DFSStack.empty());
870 // Insert the remaining SCCs before the old one. The old SCC can reach all
871 // other SCCs we form because it contains the target node of the removed edge
872 // of the old SCC. This means that we will have edges into all of the new
873 // SCCs, which means the old one must come last for postorder.
874 int OldIdx = SCCIndices[&OldSCC];
875 SCCs.insert(SCCs.begin() + OldIdx, NewSCCs.begin(), NewSCCs.end());
877 // Update the mapping from SCC* to index to use the new SCC*s, and remove the
878 // old SCC from the mapping.
879 for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx)
880 SCCIndices[SCCs[Idx]] = Idx;
882 return make_range(SCCs.begin() + OldIdx,
883 SCCs.begin() + OldIdx + NewSCCs.size());
886 void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN,
887 Node &TargetN) {
888 assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!");
890 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
891 assert(G->lookupRefSCC(TargetN) != this &&
892 "Target must not be in this RefSCC.");
893 #ifdef EXPENSIVE_CHECKS
894 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
895 "Target must be a descendant of the Source.");
896 #endif
898 // Edges between RefSCCs are the same regardless of call or ref, so we can
899 // just flip the edge here.
900 SourceN->setEdgeKind(TargetN, Edge::Call);
902 #ifndef NDEBUG
903 // Check that the RefSCC is still valid.
904 verify();
905 #endif
908 void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN,
909 Node &TargetN) {
910 assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!");
912 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
913 assert(G->lookupRefSCC(TargetN) != this &&
914 "Target must not be in this RefSCC.");
915 #ifdef EXPENSIVE_CHECKS
916 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
917 "Target must be a descendant of the Source.");
918 #endif
920 // Edges between RefSCCs are the same regardless of call or ref, so we can
921 // just flip the edge here.
922 SourceN->setEdgeKind(TargetN, Edge::Ref);
924 #ifndef NDEBUG
925 // Check that the RefSCC is still valid.
926 verify();
927 #endif
930 void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN,
931 Node &TargetN) {
932 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
933 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
935 SourceN->insertEdgeInternal(TargetN, Edge::Ref);
937 #ifndef NDEBUG
938 // Check that the RefSCC is still valid.
939 verify();
940 #endif
943 void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN,
944 Edge::Kind EK) {
945 // First insert it into the caller.
946 SourceN->insertEdgeInternal(TargetN, EK);
948 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
950 assert(G->lookupRefSCC(TargetN) != this &&
951 "Target must not be in this RefSCC.");
952 #ifdef EXPENSIVE_CHECKS
953 assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) &&
954 "Target must be a descendant of the Source.");
955 #endif
957 #ifndef NDEBUG
958 // Check that the RefSCC is still valid.
959 verify();
960 #endif
963 SmallVector<LazyCallGraph::RefSCC *, 1>
964 LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) {
965 assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC.");
966 RefSCC &SourceC = *G->lookupRefSCC(SourceN);
967 assert(&SourceC != this && "Source must not be in this RefSCC.");
968 #ifdef EXPENSIVE_CHECKS
969 assert(SourceC.isDescendantOf(*this) &&
970 "Source must be a descendant of the Target.");
971 #endif
973 SmallVector<RefSCC *, 1> DeletedRefSCCs;
975 #ifndef NDEBUG
976 // In a debug build, verify the RefSCC is valid to start with and when this
977 // routine finishes.
978 verify();
979 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
980 #endif
982 int SourceIdx = G->RefSCCIndices[&SourceC];
983 int TargetIdx = G->RefSCCIndices[this];
984 assert(SourceIdx < TargetIdx &&
985 "Postorder list doesn't see edge as incoming!");
987 // Compute the RefSCCs which (transitively) reach the source. We do this by
988 // working backwards from the source using the parent set in each RefSCC,
989 // skipping any RefSCCs that don't fall in the postorder range. This has the
990 // advantage of walking the sparser parent edge (in high fan-out graphs) but
991 // more importantly this removes examining all forward edges in all RefSCCs
992 // within the postorder range which aren't in fact connected. Only connected
993 // RefSCCs (and their edges) are visited here.
994 auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
995 Set.insert(&SourceC);
996 auto IsConnected = [&](RefSCC &RC) {
997 for (SCC &C : RC)
998 for (Node &N : C)
999 for (Edge &E : *N)
1000 if (Set.count(G->lookupRefSCC(E.getNode())))
1001 return true;
1003 return false;
1006 for (RefSCC *C : make_range(G->PostOrderRefSCCs.begin() + SourceIdx + 1,
1007 G->PostOrderRefSCCs.begin() + TargetIdx + 1))
1008 if (IsConnected(*C))
1009 Set.insert(C);
1012 // Use a normal worklist to find which SCCs the target connects to. We still
1013 // bound the search based on the range in the postorder list we care about,
1014 // but because this is forward connectivity we just "recurse" through the
1015 // edges.
1016 auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) {
1017 Set.insert(this);
1018 SmallVector<RefSCC *, 4> Worklist;
1019 Worklist.push_back(this);
1020 do {
1021 RefSCC &RC = *Worklist.pop_back_val();
1022 for (SCC &C : RC)
1023 for (Node &N : C)
1024 for (Edge &E : *N) {
1025 RefSCC &EdgeRC = *G->lookupRefSCC(E.getNode());
1026 if (G->getRefSCCIndex(EdgeRC) <= SourceIdx)
1027 // Not in the postorder sequence between source and target.
1028 continue;
1030 if (Set.insert(&EdgeRC).second)
1031 Worklist.push_back(&EdgeRC);
1033 } while (!Worklist.empty());
1036 // Use a generic helper to update the postorder sequence of RefSCCs and return
1037 // a range of any RefSCCs connected into a cycle by inserting this edge. This
1038 // routine will also take care of updating the indices into the postorder
1039 // sequence.
1040 iterator_range<SmallVectorImpl<RefSCC *>::iterator> MergeRange =
1041 updatePostorderSequenceForEdgeInsertion(
1042 SourceC, *this, G->PostOrderRefSCCs, G->RefSCCIndices,
1043 ComputeSourceConnectedSet, ComputeTargetConnectedSet);
1045 // Build a set so we can do fast tests for whether a RefSCC will end up as
1046 // part of the merged RefSCC.
1047 SmallPtrSet<RefSCC *, 16> MergeSet(MergeRange.begin(), MergeRange.end());
1049 // This RefSCC will always be part of that set, so just insert it here.
1050 MergeSet.insert(this);
1052 // Now that we have identified all of the SCCs which need to be merged into
1053 // a connected set with the inserted edge, merge all of them into this SCC.
1054 SmallVector<SCC *, 16> MergedSCCs;
1055 int SCCIndex = 0;
1056 for (RefSCC *RC : MergeRange) {
1057 assert(RC != this && "We're merging into the target RefSCC, so it "
1058 "shouldn't be in the range.");
1060 // Walk the inner SCCs to update their up-pointer and walk all the edges to
1061 // update any parent sets.
1062 // FIXME: We should try to find a way to avoid this (rather expensive) edge
1063 // walk by updating the parent sets in some other manner.
1064 for (SCC &InnerC : *RC) {
1065 InnerC.OuterRefSCC = this;
1066 SCCIndices[&InnerC] = SCCIndex++;
1067 for (Node &N : InnerC)
1068 G->SCCMap[&N] = &InnerC;
1071 // Now merge in the SCCs. We can actually move here so try to reuse storage
1072 // the first time through.
1073 if (MergedSCCs.empty())
1074 MergedSCCs = std::move(RC->SCCs);
1075 else
1076 MergedSCCs.append(RC->SCCs.begin(), RC->SCCs.end());
1077 RC->SCCs.clear();
1078 DeletedRefSCCs.push_back(RC);
1081 // Append our original SCCs to the merged list and move it into place.
1082 for (SCC &InnerC : *this)
1083 SCCIndices[&InnerC] = SCCIndex++;
1084 MergedSCCs.append(SCCs.begin(), SCCs.end());
1085 SCCs = std::move(MergedSCCs);
1087 // Remove the merged away RefSCCs from the post order sequence.
1088 for (RefSCC *RC : MergeRange)
1089 G->RefSCCIndices.erase(RC);
1090 int IndexOffset = MergeRange.end() - MergeRange.begin();
1091 auto EraseEnd =
1092 G->PostOrderRefSCCs.erase(MergeRange.begin(), MergeRange.end());
1093 for (RefSCC *RC : make_range(EraseEnd, G->PostOrderRefSCCs.end()))
1094 G->RefSCCIndices[RC] -= IndexOffset;
1096 // At this point we have a merged RefSCC with a post-order SCCs list, just
1097 // connect the nodes to form the new edge.
1098 SourceN->insertEdgeInternal(TargetN, Edge::Ref);
1100 // We return the list of SCCs which were merged so that callers can
1101 // invalidate any data they have associated with those SCCs. Note that these
1102 // SCCs are no longer in an interesting state (they are totally empty) but
1103 // the pointers will remain stable for the life of the graph itself.
1104 return DeletedRefSCCs;
1107 void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) {
1108 assert(G->lookupRefSCC(SourceN) == this &&
1109 "The source must be a member of this RefSCC.");
1110 assert(G->lookupRefSCC(TargetN) != this &&
1111 "The target must not be a member of this RefSCC");
1113 #ifndef NDEBUG
1114 // In a debug build, verify the RefSCC is valid to start with and when this
1115 // routine finishes.
1116 verify();
1117 auto VerifyOnExit = make_scope_exit([&]() { verify(); });
1118 #endif
1120 // First remove it from the node.
1121 bool Removed = SourceN->removeEdgeInternal(TargetN);
1122 (void)Removed;
1123 assert(Removed && "Target not in the edge set for this caller?");
1126 SmallVector<LazyCallGraph::RefSCC *, 1>
1127 LazyCallGraph::RefSCC::removeInternalRefEdge(Node &SourceN,
1128 ArrayRef<Node *> TargetNs) {
1129 // We return a list of the resulting *new* RefSCCs in post-order.
1130 SmallVector<RefSCC *, 1> Result;
1132 #ifndef NDEBUG
1133 // In a debug build, verify the RefSCC is valid to start with and that either
1134 // we return an empty list of result RefSCCs and this RefSCC remains valid,
1135 // or we return new RefSCCs and this RefSCC is dead.
1136 verify();
1137 auto VerifyOnExit = make_scope_exit([&]() {
1138 // If we didn't replace our RefSCC with new ones, check that this one
1139 // remains valid.
1140 if (G)
1141 verify();
1143 #endif
1145 // First remove the actual edges.
1146 for (Node *TargetN : TargetNs) {
1147 assert(!(*SourceN)[*TargetN].isCall() &&
1148 "Cannot remove a call edge, it must first be made a ref edge");
1150 bool Removed = SourceN->removeEdgeInternal(*TargetN);
1151 (void)Removed;
1152 assert(Removed && "Target not in the edge set for this caller?");
1155 // Direct self references don't impact the ref graph at all.
1156 if (llvm::all_of(TargetNs,
1157 [&](Node *TargetN) { return &SourceN == TargetN; }))
1158 return Result;
1160 // If all targets are in the same SCC as the source, because no call edges
1161 // were removed there is no RefSCC structure change.
1162 SCC &SourceC = *G->lookupSCC(SourceN);
1163 if (llvm::all_of(TargetNs, [&](Node *TargetN) {
1164 return G->lookupSCC(*TargetN) == &SourceC;
1166 return Result;
1168 // We build somewhat synthetic new RefSCCs by providing a postorder mapping
1169 // for each inner SCC. We store these inside the low-link field of the nodes
1170 // rather than associated with SCCs because this saves a round-trip through
1171 // the node->SCC map and in the common case, SCCs are small. We will verify
1172 // that we always give the same number to every node in the SCC such that
1173 // these are equivalent.
1174 int PostOrderNumber = 0;
1176 // Reset all the other nodes to prepare for a DFS over them, and add them to
1177 // our worklist.
1178 SmallVector<Node *, 8> Worklist;
1179 for (SCC *C : SCCs) {
1180 for (Node &N : *C)
1181 N.DFSNumber = N.LowLink = 0;
1183 Worklist.append(C->Nodes.begin(), C->Nodes.end());
1186 // Track the number of nodes in this RefSCC so that we can quickly recognize
1187 // an important special case of the edge removal not breaking the cycle of
1188 // this RefSCC.
1189 const int NumRefSCCNodes = Worklist.size();
1191 SmallVector<std::pair<Node *, EdgeSequence::iterator>, 4> DFSStack;
1192 SmallVector<Node *, 4> PendingRefSCCStack;
1193 do {
1194 assert(DFSStack.empty() &&
1195 "Cannot begin a new root with a non-empty DFS stack!");
1196 assert(PendingRefSCCStack.empty() &&
1197 "Cannot begin a new root with pending nodes for an SCC!");
1199 Node *RootN = Worklist.pop_back_val();
1200 // Skip any nodes we've already reached in the DFS.
1201 if (RootN->DFSNumber != 0) {
1202 assert(RootN->DFSNumber == -1 &&
1203 "Shouldn't have any mid-DFS root nodes!");
1204 continue;
1207 RootN->DFSNumber = RootN->LowLink = 1;
1208 int NextDFSNumber = 2;
1210 DFSStack.push_back({RootN, (*RootN)->begin()});
1211 do {
1212 Node *N;
1213 EdgeSequence::iterator I;
1214 std::tie(N, I) = DFSStack.pop_back_val();
1215 auto E = (*N)->end();
1217 assert(N->DFSNumber != 0 && "We should always assign a DFS number "
1218 "before processing a node.");
1220 while (I != E) {
1221 Node &ChildN = I->getNode();
1222 if (ChildN.DFSNumber == 0) {
1223 // Mark that we should start at this child when next this node is the
1224 // top of the stack. We don't start at the next child to ensure this
1225 // child's lowlink is reflected.
1226 DFSStack.push_back({N, I});
1228 // Continue, resetting to the child node.
1229 ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
1230 N = &ChildN;
1231 I = ChildN->begin();
1232 E = ChildN->end();
1233 continue;
1235 if (ChildN.DFSNumber == -1) {
1236 // If this child isn't currently in this RefSCC, no need to process
1237 // it.
1238 ++I;
1239 continue;
1242 // Track the lowest link of the children, if any are still in the stack.
1243 // Any child not on the stack will have a LowLink of -1.
1244 assert(ChildN.LowLink != 0 &&
1245 "Low-link must not be zero with a non-zero DFS number.");
1246 if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
1247 N->LowLink = ChildN.LowLink;
1248 ++I;
1251 // We've finished processing N and its descendants, put it on our pending
1252 // stack to eventually get merged into a RefSCC.
1253 PendingRefSCCStack.push_back(N);
1255 // If this node is linked to some lower entry, continue walking up the
1256 // stack.
1257 if (N->LowLink != N->DFSNumber) {
1258 assert(!DFSStack.empty() &&
1259 "We never found a viable root for a RefSCC to pop off!");
1260 continue;
1263 // Otherwise, form a new RefSCC from the top of the pending node stack.
1264 int RefSCCNumber = PostOrderNumber++;
1265 int RootDFSNumber = N->DFSNumber;
1267 // Find the range of the node stack by walking down until we pass the
1268 // root DFS number. Update the DFS numbers and low link numbers in the
1269 // process to avoid re-walking this list where possible.
1270 auto StackRI = find_if(reverse(PendingRefSCCStack), [&](Node *N) {
1271 if (N->DFSNumber < RootDFSNumber)
1272 // We've found the bottom.
1273 return true;
1275 // Update this node and keep scanning.
1276 N->DFSNumber = -1;
1277 // Save the post-order number in the lowlink field so that we can use
1278 // it to map SCCs into new RefSCCs after we finish the DFS.
1279 N->LowLink = RefSCCNumber;
1280 return false;
1282 auto RefSCCNodes = make_range(StackRI.base(), PendingRefSCCStack.end());
1284 // If we find a cycle containing all nodes originally in this RefSCC then
1285 // the removal hasn't changed the structure at all. This is an important
1286 // special case and we can directly exit the entire routine more
1287 // efficiently as soon as we discover it.
1288 if (llvm::size(RefSCCNodes) == NumRefSCCNodes) {
1289 // Clear out the low link field as we won't need it.
1290 for (Node *N : RefSCCNodes)
1291 N->LowLink = -1;
1292 // Return the empty result immediately.
1293 return Result;
1296 // We've already marked the nodes internally with the RefSCC number so
1297 // just clear them off the stack and continue.
1298 PendingRefSCCStack.erase(RefSCCNodes.begin(), PendingRefSCCStack.end());
1299 } while (!DFSStack.empty());
1301 assert(DFSStack.empty() && "Didn't flush the entire DFS stack!");
1302 assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!");
1303 } while (!Worklist.empty());
1305 assert(PostOrderNumber > 1 &&
1306 "Should never finish the DFS when the existing RefSCC remains valid!");
1308 // Otherwise we create a collection of new RefSCC nodes and build
1309 // a radix-sort style map from postorder number to these new RefSCCs. We then
1310 // append SCCs to each of these RefSCCs in the order they occurred in the
1311 // original SCCs container.
1312 for (int i = 0; i < PostOrderNumber; ++i)
1313 Result.push_back(G->createRefSCC(*G));
1315 // Insert the resulting postorder sequence into the global graph postorder
1316 // sequence before the current RefSCC in that sequence, and then remove the
1317 // current one.
1319 // FIXME: It'd be nice to change the APIs so that we returned an iterator
1320 // range over the global postorder sequence and generally use that sequence
1321 // rather than building a separate result vector here.
1322 int Idx = G->getRefSCCIndex(*this);
1323 G->PostOrderRefSCCs.erase(G->PostOrderRefSCCs.begin() + Idx);
1324 G->PostOrderRefSCCs.insert(G->PostOrderRefSCCs.begin() + Idx, Result.begin(),
1325 Result.end());
1326 for (int i : seq<int>(Idx, G->PostOrderRefSCCs.size()))
1327 G->RefSCCIndices[G->PostOrderRefSCCs[i]] = i;
1329 for (SCC *C : SCCs) {
1330 // We store the SCC number in the node's low-link field above.
1331 int SCCNumber = C->begin()->LowLink;
1332 // Clear out all of the SCC's node's low-link fields now that we're done
1333 // using them as side-storage.
1334 for (Node &N : *C) {
1335 assert(N.LowLink == SCCNumber &&
1336 "Cannot have different numbers for nodes in the same SCC!");
1337 N.LowLink = -1;
1340 RefSCC &RC = *Result[SCCNumber];
1341 int SCCIndex = RC.SCCs.size();
1342 RC.SCCs.push_back(C);
1343 RC.SCCIndices[C] = SCCIndex;
1344 C->OuterRefSCC = &RC;
1347 // Now that we've moved things into the new RefSCCs, clear out our current
1348 // one.
1349 G = nullptr;
1350 SCCs.clear();
1351 SCCIndices.clear();
1353 #ifndef NDEBUG
1354 // Verify the new RefSCCs we've built.
1355 for (RefSCC *RC : Result)
1356 RC->verify();
1357 #endif
1359 // Return the new list of SCCs.
1360 return Result;
1363 void LazyCallGraph::RefSCC::handleTrivialEdgeInsertion(Node &SourceN,
1364 Node &TargetN) {
1365 // The only trivial case that requires any graph updates is when we add new
1366 // ref edge and may connect different RefSCCs along that path. This is only
1367 // because of the parents set. Every other part of the graph remains constant
1368 // after this edge insertion.
1369 assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC.");
1370 RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
1371 if (&TargetRC == this)
1372 return;
1374 #ifdef EXPENSIVE_CHECKS
1375 assert(TargetRC.isDescendantOf(*this) &&
1376 "Target must be a descendant of the Source.");
1377 #endif
1380 void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node &SourceN,
1381 Node &TargetN) {
1382 #ifndef NDEBUG
1383 // Check that the RefSCC is still valid when we finish.
1384 auto ExitVerifier = make_scope_exit([this] { verify(); });
1386 #ifdef EXPENSIVE_CHECKS
1387 // Check that we aren't breaking some invariants of the SCC graph. Note that
1388 // this is quadratic in the number of edges in the call graph!
1389 SCC &SourceC = *G->lookupSCC(SourceN);
1390 SCC &TargetC = *G->lookupSCC(TargetN);
1391 if (&SourceC != &TargetC)
1392 assert(SourceC.isAncestorOf(TargetC) &&
1393 "Call edge is not trivial in the SCC graph!");
1394 #endif // EXPENSIVE_CHECKS
1395 #endif // NDEBUG
1397 // First insert it into the source or find the existing edge.
1398 auto InsertResult =
1399 SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()});
1400 if (!InsertResult.second) {
1401 // Already an edge, just update it.
1402 Edge &E = SourceN->Edges[InsertResult.first->second];
1403 if (E.isCall())
1404 return; // Nothing to do!
1405 E.setKind(Edge::Call);
1406 } else {
1407 // Create the new edge.
1408 SourceN->Edges.emplace_back(TargetN, Edge::Call);
1411 // Now that we have the edge, handle the graph fallout.
1412 handleTrivialEdgeInsertion(SourceN, TargetN);
1415 void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) {
1416 #ifndef NDEBUG
1417 // Check that the RefSCC is still valid when we finish.
1418 auto ExitVerifier = make_scope_exit([this] { verify(); });
1420 #ifdef EXPENSIVE_CHECKS
1421 // Check that we aren't breaking some invariants of the RefSCC graph.
1422 RefSCC &SourceRC = *G->lookupRefSCC(SourceN);
1423 RefSCC &TargetRC = *G->lookupRefSCC(TargetN);
1424 if (&SourceRC != &TargetRC)
1425 assert(SourceRC.isAncestorOf(TargetRC) &&
1426 "Ref edge is not trivial in the RefSCC graph!");
1427 #endif // EXPENSIVE_CHECKS
1428 #endif // NDEBUG
1430 // First insert it into the source or find the existing edge.
1431 auto InsertResult =
1432 SourceN->EdgeIndexMap.insert({&TargetN, SourceN->Edges.size()});
1433 if (!InsertResult.second)
1434 // Already an edge, we're done.
1435 return;
1437 // Create the new edge.
1438 SourceN->Edges.emplace_back(TargetN, Edge::Ref);
1440 // Now that we have the edge, handle the graph fallout.
1441 handleTrivialEdgeInsertion(SourceN, TargetN);
1444 void LazyCallGraph::RefSCC::replaceNodeFunction(Node &N, Function &NewF) {
1445 Function &OldF = N.getFunction();
1447 #ifndef NDEBUG
1448 // Check that the RefSCC is still valid when we finish.
1449 auto ExitVerifier = make_scope_exit([this] { verify(); });
1451 assert(G->lookupRefSCC(N) == this &&
1452 "Cannot replace the function of a node outside this RefSCC.");
1454 assert(G->NodeMap.find(&NewF) == G->NodeMap.end() &&
1455 "Must not have already walked the new function!'");
1457 // It is important that this replacement not introduce graph changes so we
1458 // insist that the caller has already removed every use of the original
1459 // function and that all uses of the new function correspond to existing
1460 // edges in the graph. The common and expected way to use this is when
1461 // replacing the function itself in the IR without changing the call graph
1462 // shape and just updating the analysis based on that.
1463 assert(&OldF != &NewF && "Cannot replace a function with itself!");
1464 assert(OldF.use_empty() &&
1465 "Must have moved all uses from the old function to the new!");
1466 #endif
1468 N.replaceFunction(NewF);
1470 // Update various call graph maps.
1471 G->NodeMap.erase(&OldF);
1472 G->NodeMap[&NewF] = &N;
1475 void LazyCallGraph::insertEdge(Node &SourceN, Node &TargetN, Edge::Kind EK) {
1476 assert(SCCMap.empty() &&
1477 "This method cannot be called after SCCs have been formed!");
1479 return SourceN->insertEdgeInternal(TargetN, EK);
1482 void LazyCallGraph::removeEdge(Node &SourceN, Node &TargetN) {
1483 assert(SCCMap.empty() &&
1484 "This method cannot be called after SCCs have been formed!");
1486 bool Removed = SourceN->removeEdgeInternal(TargetN);
1487 (void)Removed;
1488 assert(Removed && "Target not in the edge set for this caller?");
1491 void LazyCallGraph::removeDeadFunction(Function &F) {
1492 // FIXME: This is unnecessarily restrictive. We should be able to remove
1493 // functions which recursively call themselves.
1494 assert(F.use_empty() &&
1495 "This routine should only be called on trivially dead functions!");
1497 // We shouldn't remove library functions as they are never really dead while
1498 // the call graph is in use -- every function definition refers to them.
1499 assert(!isLibFunction(F) &&
1500 "Must not remove lib functions from the call graph!");
1502 auto NI = NodeMap.find(&F);
1503 if (NI == NodeMap.end())
1504 // Not in the graph at all!
1505 return;
1507 Node &N = *NI->second;
1508 NodeMap.erase(NI);
1510 // Remove this from the entry edges if present.
1511 EntryEdges.removeEdgeInternal(N);
1513 if (SCCMap.empty()) {
1514 // No SCCs have been formed, so removing this is fine and there is nothing
1515 // else necessary at this point but clearing out the node.
1516 N.clear();
1517 return;
1520 // Cannot remove a function which has yet to be visited in the DFS walk, so
1521 // if we have a node at all then we must have an SCC and RefSCC.
1522 auto CI = SCCMap.find(&N);
1523 assert(CI != SCCMap.end() &&
1524 "Tried to remove a node without an SCC after DFS walk started!");
1525 SCC &C = *CI->second;
1526 SCCMap.erase(CI);
1527 RefSCC &RC = C.getOuterRefSCC();
1529 // This node must be the only member of its SCC as it has no callers, and
1530 // that SCC must be the only member of a RefSCC as it has no references.
1531 // Validate these properties first.
1532 assert(C.size() == 1 && "Dead functions must be in a singular SCC");
1533 assert(RC.size() == 1 && "Dead functions must be in a singular RefSCC");
1535 auto RCIndexI = RefSCCIndices.find(&RC);
1536 int RCIndex = RCIndexI->second;
1537 PostOrderRefSCCs.erase(PostOrderRefSCCs.begin() + RCIndex);
1538 RefSCCIndices.erase(RCIndexI);
1539 for (int i = RCIndex, Size = PostOrderRefSCCs.size(); i < Size; ++i)
1540 RefSCCIndices[PostOrderRefSCCs[i]] = i;
1542 // Finally clear out all the data structures from the node down through the
1543 // components.
1544 N.clear();
1545 N.G = nullptr;
1546 N.F = nullptr;
1547 C.clear();
1548 RC.clear();
1549 RC.G = nullptr;
1551 // Nothing to delete as all the objects are allocated in stable bump pointer
1552 // allocators.
1555 LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
1556 return *new (MappedN = BPA.Allocate()) Node(*this, F);
1559 void LazyCallGraph::updateGraphPtrs() {
1560 // Walk the node map to update their graph pointers. While this iterates in
1561 // an unstable order, the order has no effect so it remains correct.
1562 for (auto &FunctionNodePair : NodeMap)
1563 FunctionNodePair.second->G = this;
1565 for (auto *RC : PostOrderRefSCCs)
1566 RC->G = this;
1569 template <typename RootsT, typename GetBeginT, typename GetEndT,
1570 typename GetNodeT, typename FormSCCCallbackT>
1571 void LazyCallGraph::buildGenericSCCs(RootsT &&Roots, GetBeginT &&GetBegin,
1572 GetEndT &&GetEnd, GetNodeT &&GetNode,
1573 FormSCCCallbackT &&FormSCC) {
1574 using EdgeItT = decltype(GetBegin(std::declval<Node &>()));
1576 SmallVector<std::pair<Node *, EdgeItT>, 16> DFSStack;
1577 SmallVector<Node *, 16> PendingSCCStack;
1579 // Scan down the stack and DFS across the call edges.
1580 for (Node *RootN : Roots) {
1581 assert(DFSStack.empty() &&
1582 "Cannot begin a new root with a non-empty DFS stack!");
1583 assert(PendingSCCStack.empty() &&
1584 "Cannot begin a new root with pending nodes for an SCC!");
1586 // Skip any nodes we've already reached in the DFS.
1587 if (RootN->DFSNumber != 0) {
1588 assert(RootN->DFSNumber == -1 &&
1589 "Shouldn't have any mid-DFS root nodes!");
1590 continue;
1593 RootN->DFSNumber = RootN->LowLink = 1;
1594 int NextDFSNumber = 2;
1596 DFSStack.push_back({RootN, GetBegin(*RootN)});
1597 do {
1598 Node *N;
1599 EdgeItT I;
1600 std::tie(N, I) = DFSStack.pop_back_val();
1601 auto E = GetEnd(*N);
1602 while (I != E) {
1603 Node &ChildN = GetNode(I);
1604 if (ChildN.DFSNumber == 0) {
1605 // We haven't yet visited this child, so descend, pushing the current
1606 // node onto the stack.
1607 DFSStack.push_back({N, I});
1609 ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++;
1610 N = &ChildN;
1611 I = GetBegin(*N);
1612 E = GetEnd(*N);
1613 continue;
1616 // If the child has already been added to some child component, it
1617 // couldn't impact the low-link of this parent because it isn't
1618 // connected, and thus its low-link isn't relevant so skip it.
1619 if (ChildN.DFSNumber == -1) {
1620 ++I;
1621 continue;
1624 // Track the lowest linked child as the lowest link for this node.
1625 assert(ChildN.LowLink > 0 && "Must have a positive low-link number!");
1626 if (ChildN.LowLink < N->LowLink)
1627 N->LowLink = ChildN.LowLink;
1629 // Move to the next edge.
1630 ++I;
1633 // We've finished processing N and its descendants, put it on our pending
1634 // SCC stack to eventually get merged into an SCC of nodes.
1635 PendingSCCStack.push_back(N);
1637 // If this node is linked to some lower entry, continue walking up the
1638 // stack.
1639 if (N->LowLink != N->DFSNumber)
1640 continue;
1642 // Otherwise, we've completed an SCC. Append it to our post order list of
1643 // SCCs.
1644 int RootDFSNumber = N->DFSNumber;
1645 // Find the range of the node stack by walking down until we pass the
1646 // root DFS number.
1647 auto SCCNodes = make_range(
1648 PendingSCCStack.rbegin(),
1649 find_if(reverse(PendingSCCStack), [RootDFSNumber](const Node *N) {
1650 return N->DFSNumber < RootDFSNumber;
1651 }));
1652 // Form a new SCC out of these nodes and then clear them off our pending
1653 // stack.
1654 FormSCC(SCCNodes);
1655 PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end());
1656 } while (!DFSStack.empty());
1660 /// Build the internal SCCs for a RefSCC from a sequence of nodes.
1662 /// Appends the SCCs to the provided vector and updates the map with their
1663 /// indices. Both the vector and map must be empty when passed into this
1664 /// routine.
1665 void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) {
1666 assert(RC.SCCs.empty() && "Already built SCCs!");
1667 assert(RC.SCCIndices.empty() && "Already mapped SCC indices!");
1669 for (Node *N : Nodes) {
1670 assert(N->LowLink >= (*Nodes.begin())->LowLink &&
1671 "We cannot have a low link in an SCC lower than its root on the "
1672 "stack!");
1674 // This node will go into the next RefSCC, clear out its DFS and low link
1675 // as we scan.
1676 N->DFSNumber = N->LowLink = 0;
1679 // Each RefSCC contains a DAG of the call SCCs. To build these, we do
1680 // a direct walk of the call edges using Tarjan's algorithm. We reuse the
1681 // internal storage as we won't need it for the outer graph's DFS any longer.
1682 buildGenericSCCs(
1683 Nodes, [](Node &N) { return N->call_begin(); },
1684 [](Node &N) { return N->call_end(); },
1685 [](EdgeSequence::call_iterator I) -> Node & { return I->getNode(); },
1686 [this, &RC](node_stack_range Nodes) {
1687 RC.SCCs.push_back(createSCC(RC, Nodes));
1688 for (Node &N : *RC.SCCs.back()) {
1689 N.DFSNumber = N.LowLink = -1;
1690 SCCMap[&N] = RC.SCCs.back();
1694 // Wire up the SCC indices.
1695 for (int i = 0, Size = RC.SCCs.size(); i < Size; ++i)
1696 RC.SCCIndices[RC.SCCs[i]] = i;
1699 void LazyCallGraph::buildRefSCCs() {
1700 if (EntryEdges.empty() || !PostOrderRefSCCs.empty())
1701 // RefSCCs are either non-existent or already built!
1702 return;
1704 assert(RefSCCIndices.empty() && "Already mapped RefSCC indices!");
1706 SmallVector<Node *, 16> Roots;
1707 for (Edge &E : *this)
1708 Roots.push_back(&E.getNode());
1710 // The roots will be popped of a stack, so use reverse to get a less
1711 // surprising order. This doesn't change any of the semantics anywhere.
1712 std::reverse(Roots.begin(), Roots.end());
1714 buildGenericSCCs(
1715 Roots,
1716 [](Node &N) {
1717 // We need to populate each node as we begin to walk its edges.
1718 N.populate();
1719 return N->begin();
1721 [](Node &N) { return N->end(); },
1722 [](EdgeSequence::iterator I) -> Node & { return I->getNode(); },
1723 [this](node_stack_range Nodes) {
1724 RefSCC *NewRC = createRefSCC(*this);
1725 buildSCCs(*NewRC, Nodes);
1727 // Push the new node into the postorder list and remember its position
1728 // in the index map.
1729 bool Inserted =
1730 RefSCCIndices.insert({NewRC, PostOrderRefSCCs.size()}).second;
1731 (void)Inserted;
1732 assert(Inserted && "Cannot already have this RefSCC in the index map!");
1733 PostOrderRefSCCs.push_back(NewRC);
1734 #ifndef NDEBUG
1735 NewRC->verify();
1736 #endif
1740 AnalysisKey LazyCallGraphAnalysis::Key;
1742 LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
1744 static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) {
1745 OS << " Edges in function: " << N.getFunction().getName() << "\n";
1746 for (LazyCallGraph::Edge &E : N.populate())
1747 OS << " " << (E.isCall() ? "call" : "ref ") << " -> "
1748 << E.getFunction().getName() << "\n";
1750 OS << "\n";
1753 static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) {
1754 ptrdiff_t Size = size(C);
1755 OS << " SCC with " << Size << " functions:\n";
1757 for (LazyCallGraph::Node &N : C)
1758 OS << " " << N.getFunction().getName() << "\n";
1761 static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) {
1762 ptrdiff_t Size = size(C);
1763 OS << " RefSCC with " << Size << " call SCCs:\n";
1765 for (LazyCallGraph::SCC &InnerC : C)
1766 printSCC(OS, InnerC);
1768 OS << "\n";
1771 PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M,
1772 ModuleAnalysisManager &AM) {
1773 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
1775 OS << "Printing the call graph for module: " << M.getModuleIdentifier()
1776 << "\n\n";
1778 for (Function &F : M)
1779 printNode(OS, G.get(F));
1781 G.buildRefSCCs();
1782 for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs())
1783 printRefSCC(OS, C);
1785 return PreservedAnalyses::all();
1788 LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS)
1789 : OS(OS) {}
1791 static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) {
1792 std::string Name = "\"" + DOT::EscapeString(N.getFunction().getName()) + "\"";
1794 for (LazyCallGraph::Edge &E : N.populate()) {
1795 OS << " " << Name << " -> \""
1796 << DOT::EscapeString(E.getFunction().getName()) << "\"";
1797 if (!E.isCall()) // It is a ref edge.
1798 OS << " [style=dashed,label=\"ref\"]";
1799 OS << ";\n";
1802 OS << "\n";
1805 PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M,
1806 ModuleAnalysisManager &AM) {
1807 LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(M);
1809 OS << "digraph \"" << DOT::EscapeString(M.getModuleIdentifier()) << "\" {\n";
1811 for (Function &F : M)
1812 printNodeDOT(OS, G.get(F));
1814 OS << "}\n";
1816 return PreservedAnalyses::all();