[ARM] More MVE compare vector splat combines for ANDs
[llvm-complete.git] / lib / Analysis / LegacyDivergenceAnalysis.cpp
blob52212e1c42aa6ab2393abb8dc99a68b76f00df9e
1 //===- LegacyDivergenceAnalysis.cpp --------- Legacy Divergence Analysis
2 //Implementation -==//
3 //
4 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
5 // See https://llvm.org/LICENSE.txt for license information.
6 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements divergence analysis which determines whether a branch
11 // in a GPU program is divergent.It can help branch optimizations such as jump
12 // threading and loop unswitching to make better decisions.
14 // GPU programs typically use the SIMD execution model, where multiple threads
15 // in the same execution group have to execute in lock-step. Therefore, if the
16 // code contains divergent branches (i.e., threads in a group do not agree on
17 // which path of the branch to take), the group of threads has to execute all
18 // the paths from that branch with different subsets of threads enabled until
19 // they converge at the immediately post-dominating BB of the paths.
21 // Due to this execution model, some optimizations such as jump
22 // threading and loop unswitching can be unfortunately harmful when performed on
23 // divergent branches. Therefore, an analysis that computes which branches in a
24 // GPU program are divergent can help the compiler to selectively run these
25 // optimizations.
27 // This file defines divergence analysis which computes a conservative but
28 // non-trivial approximation of all divergent branches in a GPU program. It
29 // partially implements the approach described in
31 // Divergence Analysis
32 // Sampaio, Souza, Collange, Pereira
33 // TOPLAS '13
35 // The divergence analysis identifies the sources of divergence (e.g., special
36 // variables that hold the thread ID), and recursively marks variables that are
37 // data or sync dependent on a source of divergence as divergent.
39 // While data dependency is a well-known concept, the notion of sync dependency
40 // is worth more explanation. Sync dependence characterizes the control flow
41 // aspect of the propagation of branch divergence. For example,
43 // %cond = icmp slt i32 %tid, 10
44 // br i1 %cond, label %then, label %else
45 // then:
46 // br label %merge
47 // else:
48 // br label %merge
49 // merge:
50 // %a = phi i32 [ 0, %then ], [ 1, %else ]
52 // Suppose %tid holds the thread ID. Although %a is not data dependent on %tid
53 // because %tid is not on its use-def chains, %a is sync dependent on %tid
54 // because the branch "br i1 %cond" depends on %tid and affects which value %a
55 // is assigned to.
57 // The current implementation has the following limitations:
58 // 1. intra-procedural. It conservatively considers the arguments of a
59 // non-kernel-entry function and the return value of a function call as
60 // divergent.
61 // 2. memory as black box. It conservatively considers values loaded from
62 // generic or local address as divergent. This can be improved by leveraging
63 // pointer analysis.
65 //===----------------------------------------------------------------------===//
67 #include "llvm/ADT/PostOrderIterator.h"
68 #include "llvm/Analysis/CFG.h"
69 #include "llvm/Analysis/DivergenceAnalysis.h"
70 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
71 #include "llvm/Analysis/Passes.h"
72 #include "llvm/Analysis/PostDominators.h"
73 #include "llvm/Analysis/TargetTransformInfo.h"
74 #include "llvm/IR/Dominators.h"
75 #include "llvm/IR/InstIterator.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/Value.h"
78 #include "llvm/Support/Debug.h"
79 #include "llvm/Support/raw_ostream.h"
80 #include <vector>
81 using namespace llvm;
83 #define DEBUG_TYPE "divergence"
85 // transparently use the GPUDivergenceAnalysis
86 static cl::opt<bool> UseGPUDA("use-gpu-divergence-analysis", cl::init(false),
87 cl::Hidden,
88 cl::desc("turn the LegacyDivergenceAnalysis into "
89 "a wrapper for GPUDivergenceAnalysis"));
91 namespace {
93 class DivergencePropagator {
94 public:
95 DivergencePropagator(Function &F, TargetTransformInfo &TTI, DominatorTree &DT,
96 PostDominatorTree &PDT, DenseSet<const Value *> &DV)
97 : F(F), TTI(TTI), DT(DT), PDT(PDT), DV(DV) {}
98 void populateWithSourcesOfDivergence();
99 void propagate();
101 private:
102 // A helper function that explores data dependents of V.
103 void exploreDataDependency(Value *V);
104 // A helper function that explores sync dependents of TI.
105 void exploreSyncDependency(Instruction *TI);
106 // Computes the influence region from Start to End. This region includes all
107 // basic blocks on any simple path from Start to End.
108 void computeInfluenceRegion(BasicBlock *Start, BasicBlock *End,
109 DenseSet<BasicBlock *> &InfluenceRegion);
110 // Finds all users of I that are outside the influence region, and add these
111 // users to Worklist.
112 void findUsersOutsideInfluenceRegion(
113 Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion);
115 Function &F;
116 TargetTransformInfo &TTI;
117 DominatorTree &DT;
118 PostDominatorTree &PDT;
119 std::vector<Value *> Worklist; // Stack for DFS.
120 DenseSet<const Value *> &DV; // Stores all divergent values.
123 void DivergencePropagator::populateWithSourcesOfDivergence() {
124 Worklist.clear();
125 DV.clear();
126 for (auto &I : instructions(F)) {
127 if (TTI.isSourceOfDivergence(&I)) {
128 Worklist.push_back(&I);
129 DV.insert(&I);
132 for (auto &Arg : F.args()) {
133 if (TTI.isSourceOfDivergence(&Arg)) {
134 Worklist.push_back(&Arg);
135 DV.insert(&Arg);
140 void DivergencePropagator::exploreSyncDependency(Instruction *TI) {
141 // Propagation rule 1: if branch TI is divergent, all PHINodes in TI's
142 // immediate post dominator are divergent. This rule handles if-then-else
143 // patterns. For example,
145 // if (tid < 5)
146 // a1 = 1;
147 // else
148 // a2 = 2;
149 // a = phi(a1, a2); // sync dependent on (tid < 5)
150 BasicBlock *ThisBB = TI->getParent();
152 // Unreachable blocks may not be in the dominator tree.
153 if (!DT.isReachableFromEntry(ThisBB))
154 return;
156 // If the function has no exit blocks or doesn't reach any exit blocks, the
157 // post dominator may be null.
158 DomTreeNode *ThisNode = PDT.getNode(ThisBB);
159 if (!ThisNode)
160 return;
162 BasicBlock *IPostDom = ThisNode->getIDom()->getBlock();
163 if (IPostDom == nullptr)
164 return;
166 for (auto I = IPostDom->begin(); isa<PHINode>(I); ++I) {
167 // A PHINode is uniform if it returns the same value no matter which path is
168 // taken.
169 if (!cast<PHINode>(I)->hasConstantOrUndefValue() && DV.insert(&*I).second)
170 Worklist.push_back(&*I);
173 // Propagation rule 2: if a value defined in a loop is used outside, the user
174 // is sync dependent on the condition of the loop exits that dominate the
175 // user. For example,
177 // int i = 0;
178 // do {
179 // i++;
180 // if (foo(i)) ... // uniform
181 // } while (i < tid);
182 // if (bar(i)) ... // divergent
184 // A program may contain unstructured loops. Therefore, we cannot leverage
185 // LoopInfo, which only recognizes natural loops.
187 // The algorithm used here handles both natural and unstructured loops. Given
188 // a branch TI, we first compute its influence region, the union of all simple
189 // paths from TI to its immediate post dominator (IPostDom). Then, we search
190 // for all the values defined in the influence region but used outside. All
191 // these users are sync dependent on TI.
192 DenseSet<BasicBlock *> InfluenceRegion;
193 computeInfluenceRegion(ThisBB, IPostDom, InfluenceRegion);
194 // An insight that can speed up the search process is that all the in-region
195 // values that are used outside must dominate TI. Therefore, instead of
196 // searching every basic blocks in the influence region, we search all the
197 // dominators of TI until it is outside the influence region.
198 BasicBlock *InfluencedBB = ThisBB;
199 while (InfluenceRegion.count(InfluencedBB)) {
200 for (auto &I : *InfluencedBB)
201 findUsersOutsideInfluenceRegion(I, InfluenceRegion);
202 DomTreeNode *IDomNode = DT.getNode(InfluencedBB)->getIDom();
203 if (IDomNode == nullptr)
204 break;
205 InfluencedBB = IDomNode->getBlock();
209 void DivergencePropagator::findUsersOutsideInfluenceRegion(
210 Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion) {
211 for (User *U : I.users()) {
212 Instruction *UserInst = cast<Instruction>(U);
213 if (!InfluenceRegion.count(UserInst->getParent())) {
214 if (DV.insert(UserInst).second)
215 Worklist.push_back(UserInst);
220 // A helper function for computeInfluenceRegion that adds successors of "ThisBB"
221 // to the influence region.
222 static void
223 addSuccessorsToInfluenceRegion(BasicBlock *ThisBB, BasicBlock *End,
224 DenseSet<BasicBlock *> &InfluenceRegion,
225 std::vector<BasicBlock *> &InfluenceStack) {
226 for (BasicBlock *Succ : successors(ThisBB)) {
227 if (Succ != End && InfluenceRegion.insert(Succ).second)
228 InfluenceStack.push_back(Succ);
232 void DivergencePropagator::computeInfluenceRegion(
233 BasicBlock *Start, BasicBlock *End,
234 DenseSet<BasicBlock *> &InfluenceRegion) {
235 assert(PDT.properlyDominates(End, Start) &&
236 "End does not properly dominate Start");
238 // The influence region starts from the end of "Start" to the beginning of
239 // "End". Therefore, "Start" should not be in the region unless "Start" is in
240 // a loop that doesn't contain "End".
241 std::vector<BasicBlock *> InfluenceStack;
242 addSuccessorsToInfluenceRegion(Start, End, InfluenceRegion, InfluenceStack);
243 while (!InfluenceStack.empty()) {
244 BasicBlock *BB = InfluenceStack.back();
245 InfluenceStack.pop_back();
246 addSuccessorsToInfluenceRegion(BB, End, InfluenceRegion, InfluenceStack);
250 void DivergencePropagator::exploreDataDependency(Value *V) {
251 // Follow def-use chains of V.
252 for (User *U : V->users()) {
253 Instruction *UserInst = cast<Instruction>(U);
254 if (!TTI.isAlwaysUniform(U) && DV.insert(UserInst).second)
255 Worklist.push_back(UserInst);
259 void DivergencePropagator::propagate() {
260 // Traverse the dependency graph using DFS.
261 while (!Worklist.empty()) {
262 Value *V = Worklist.back();
263 Worklist.pop_back();
264 if (Instruction *I = dyn_cast<Instruction>(V)) {
265 // Terminators with less than two successors won't introduce sync
266 // dependency. Ignore them.
267 if (I->isTerminator() && I->getNumSuccessors() > 1)
268 exploreSyncDependency(I);
270 exploreDataDependency(V);
274 } // namespace
276 // Register this pass.
277 char LegacyDivergenceAnalysis::ID = 0;
278 INITIALIZE_PASS_BEGIN(LegacyDivergenceAnalysis, "divergence",
279 "Legacy Divergence Analysis", false, true)
280 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
281 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
282 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
283 INITIALIZE_PASS_END(LegacyDivergenceAnalysis, "divergence",
284 "Legacy Divergence Analysis", false, true)
286 FunctionPass *llvm::createLegacyDivergenceAnalysisPass() {
287 return new LegacyDivergenceAnalysis();
290 void LegacyDivergenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
291 AU.addRequired<DominatorTreeWrapperPass>();
292 AU.addRequired<PostDominatorTreeWrapperPass>();
293 if (UseGPUDA)
294 AU.addRequired<LoopInfoWrapperPass>();
295 AU.setPreservesAll();
298 bool LegacyDivergenceAnalysis::shouldUseGPUDivergenceAnalysis(
299 const Function &F) const {
300 if (!UseGPUDA)
301 return false;
303 // GPUDivergenceAnalysis requires a reducible CFG.
304 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
305 using RPOTraversal = ReversePostOrderTraversal<const Function *>;
306 RPOTraversal FuncRPOT(&F);
307 return !containsIrreducibleCFG<const BasicBlock *, const RPOTraversal,
308 const LoopInfo>(FuncRPOT, LI);
311 bool LegacyDivergenceAnalysis::runOnFunction(Function &F) {
312 auto *TTIWP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
313 if (TTIWP == nullptr)
314 return false;
316 TargetTransformInfo &TTI = TTIWP->getTTI(F);
317 // Fast path: if the target does not have branch divergence, we do not mark
318 // any branch as divergent.
319 if (!TTI.hasBranchDivergence())
320 return false;
322 DivergentValues.clear();
323 gpuDA = nullptr;
325 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
326 auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
328 if (shouldUseGPUDivergenceAnalysis(F)) {
329 // run the new GPU divergence analysis
330 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
331 gpuDA = llvm::make_unique<GPUDivergenceAnalysis>(F, DT, PDT, LI, TTI);
333 } else {
334 // run LLVM's existing DivergenceAnalysis
335 DivergencePropagator DP(F, TTI, DT, PDT, DivergentValues);
336 DP.populateWithSourcesOfDivergence();
337 DP.propagate();
340 LLVM_DEBUG(dbgs() << "\nAfter divergence analysis on " << F.getName()
341 << ":\n";
342 print(dbgs(), F.getParent()));
344 return false;
347 bool LegacyDivergenceAnalysis::isDivergent(const Value *V) const {
348 if (gpuDA) {
349 return gpuDA->isDivergent(*V);
351 return DivergentValues.count(V);
354 void LegacyDivergenceAnalysis::print(raw_ostream &OS, const Module *) const {
355 if ((!gpuDA || !gpuDA->hasDivergence()) && DivergentValues.empty())
356 return;
358 const Function *F = nullptr;
359 if (!DivergentValues.empty()) {
360 const Value *FirstDivergentValue = *DivergentValues.begin();
361 if (const Argument *Arg = dyn_cast<Argument>(FirstDivergentValue)) {
362 F = Arg->getParent();
363 } else if (const Instruction *I =
364 dyn_cast<Instruction>(FirstDivergentValue)) {
365 F = I->getParent()->getParent();
366 } else {
367 llvm_unreachable("Only arguments and instructions can be divergent");
369 } else if (gpuDA) {
370 F = &gpuDA->getFunction();
372 if (!F)
373 return;
375 // Dumps all divergent values in F, arguments and then instructions.
376 for (auto &Arg : F->args()) {
377 OS << (isDivergent(&Arg) ? "DIVERGENT: " : " ");
378 OS << Arg << "\n";
380 // Iterate instructions using instructions() to ensure a deterministic order.
381 for (auto BI = F->begin(), BE = F->end(); BI != BE; ++BI) {
382 auto &BB = *BI;
383 OS << "\n " << BB.getName() << ":\n";
384 for (auto &I : BB.instructionsWithoutDebug()) {
385 OS << (isDivergent(&I) ? "DIVERGENT: " : " ");
386 OS << I << "\n";
389 OS << "\n";