1 //===- LegacyDivergenceAnalysis.cpp --------- Legacy Divergence Analysis
4 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
5 // See https://llvm.org/LICENSE.txt for license information.
6 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
8 //===----------------------------------------------------------------------===//
10 // This file implements divergence analysis which determines whether a branch
11 // in a GPU program is divergent.It can help branch optimizations such as jump
12 // threading and loop unswitching to make better decisions.
14 // GPU programs typically use the SIMD execution model, where multiple threads
15 // in the same execution group have to execute in lock-step. Therefore, if the
16 // code contains divergent branches (i.e., threads in a group do not agree on
17 // which path of the branch to take), the group of threads has to execute all
18 // the paths from that branch with different subsets of threads enabled until
19 // they converge at the immediately post-dominating BB of the paths.
21 // Due to this execution model, some optimizations such as jump
22 // threading and loop unswitching can be unfortunately harmful when performed on
23 // divergent branches. Therefore, an analysis that computes which branches in a
24 // GPU program are divergent can help the compiler to selectively run these
27 // This file defines divergence analysis which computes a conservative but
28 // non-trivial approximation of all divergent branches in a GPU program. It
29 // partially implements the approach described in
31 // Divergence Analysis
32 // Sampaio, Souza, Collange, Pereira
35 // The divergence analysis identifies the sources of divergence (e.g., special
36 // variables that hold the thread ID), and recursively marks variables that are
37 // data or sync dependent on a source of divergence as divergent.
39 // While data dependency is a well-known concept, the notion of sync dependency
40 // is worth more explanation. Sync dependence characterizes the control flow
41 // aspect of the propagation of branch divergence. For example,
43 // %cond = icmp slt i32 %tid, 10
44 // br i1 %cond, label %then, label %else
50 // %a = phi i32 [ 0, %then ], [ 1, %else ]
52 // Suppose %tid holds the thread ID. Although %a is not data dependent on %tid
53 // because %tid is not on its use-def chains, %a is sync dependent on %tid
54 // because the branch "br i1 %cond" depends on %tid and affects which value %a
57 // The current implementation has the following limitations:
58 // 1. intra-procedural. It conservatively considers the arguments of a
59 // non-kernel-entry function and the return value of a function call as
61 // 2. memory as black box. It conservatively considers values loaded from
62 // generic or local address as divergent. This can be improved by leveraging
65 //===----------------------------------------------------------------------===//
67 #include "llvm/ADT/PostOrderIterator.h"
68 #include "llvm/Analysis/CFG.h"
69 #include "llvm/Analysis/DivergenceAnalysis.h"
70 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
71 #include "llvm/Analysis/Passes.h"
72 #include "llvm/Analysis/PostDominators.h"
73 #include "llvm/Analysis/TargetTransformInfo.h"
74 #include "llvm/IR/Dominators.h"
75 #include "llvm/IR/InstIterator.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/Value.h"
78 #include "llvm/Support/Debug.h"
79 #include "llvm/Support/raw_ostream.h"
83 #define DEBUG_TYPE "divergence"
85 // transparently use the GPUDivergenceAnalysis
86 static cl::opt
<bool> UseGPUDA("use-gpu-divergence-analysis", cl::init(false),
88 cl::desc("turn the LegacyDivergenceAnalysis into "
89 "a wrapper for GPUDivergenceAnalysis"));
93 class DivergencePropagator
{
95 DivergencePropagator(Function
&F
, TargetTransformInfo
&TTI
, DominatorTree
&DT
,
96 PostDominatorTree
&PDT
, DenseSet
<const Value
*> &DV
)
97 : F(F
), TTI(TTI
), DT(DT
), PDT(PDT
), DV(DV
) {}
98 void populateWithSourcesOfDivergence();
102 // A helper function that explores data dependents of V.
103 void exploreDataDependency(Value
*V
);
104 // A helper function that explores sync dependents of TI.
105 void exploreSyncDependency(Instruction
*TI
);
106 // Computes the influence region from Start to End. This region includes all
107 // basic blocks on any simple path from Start to End.
108 void computeInfluenceRegion(BasicBlock
*Start
, BasicBlock
*End
,
109 DenseSet
<BasicBlock
*> &InfluenceRegion
);
110 // Finds all users of I that are outside the influence region, and add these
111 // users to Worklist.
112 void findUsersOutsideInfluenceRegion(
113 Instruction
&I
, const DenseSet
<BasicBlock
*> &InfluenceRegion
);
116 TargetTransformInfo
&TTI
;
118 PostDominatorTree
&PDT
;
119 std::vector
<Value
*> Worklist
; // Stack for DFS.
120 DenseSet
<const Value
*> &DV
; // Stores all divergent values.
123 void DivergencePropagator::populateWithSourcesOfDivergence() {
126 for (auto &I
: instructions(F
)) {
127 if (TTI
.isSourceOfDivergence(&I
)) {
128 Worklist
.push_back(&I
);
132 for (auto &Arg
: F
.args()) {
133 if (TTI
.isSourceOfDivergence(&Arg
)) {
134 Worklist
.push_back(&Arg
);
140 void DivergencePropagator::exploreSyncDependency(Instruction
*TI
) {
141 // Propagation rule 1: if branch TI is divergent, all PHINodes in TI's
142 // immediate post dominator are divergent. This rule handles if-then-else
143 // patterns. For example,
149 // a = phi(a1, a2); // sync dependent on (tid < 5)
150 BasicBlock
*ThisBB
= TI
->getParent();
152 // Unreachable blocks may not be in the dominator tree.
153 if (!DT
.isReachableFromEntry(ThisBB
))
156 // If the function has no exit blocks or doesn't reach any exit blocks, the
157 // post dominator may be null.
158 DomTreeNode
*ThisNode
= PDT
.getNode(ThisBB
);
162 BasicBlock
*IPostDom
= ThisNode
->getIDom()->getBlock();
163 if (IPostDom
== nullptr)
166 for (auto I
= IPostDom
->begin(); isa
<PHINode
>(I
); ++I
) {
167 // A PHINode is uniform if it returns the same value no matter which path is
169 if (!cast
<PHINode
>(I
)->hasConstantOrUndefValue() && DV
.insert(&*I
).second
)
170 Worklist
.push_back(&*I
);
173 // Propagation rule 2: if a value defined in a loop is used outside, the user
174 // is sync dependent on the condition of the loop exits that dominate the
175 // user. For example,
180 // if (foo(i)) ... // uniform
181 // } while (i < tid);
182 // if (bar(i)) ... // divergent
184 // A program may contain unstructured loops. Therefore, we cannot leverage
185 // LoopInfo, which only recognizes natural loops.
187 // The algorithm used here handles both natural and unstructured loops. Given
188 // a branch TI, we first compute its influence region, the union of all simple
189 // paths from TI to its immediate post dominator (IPostDom). Then, we search
190 // for all the values defined in the influence region but used outside. All
191 // these users are sync dependent on TI.
192 DenseSet
<BasicBlock
*> InfluenceRegion
;
193 computeInfluenceRegion(ThisBB
, IPostDom
, InfluenceRegion
);
194 // An insight that can speed up the search process is that all the in-region
195 // values that are used outside must dominate TI. Therefore, instead of
196 // searching every basic blocks in the influence region, we search all the
197 // dominators of TI until it is outside the influence region.
198 BasicBlock
*InfluencedBB
= ThisBB
;
199 while (InfluenceRegion
.count(InfluencedBB
)) {
200 for (auto &I
: *InfluencedBB
)
201 findUsersOutsideInfluenceRegion(I
, InfluenceRegion
);
202 DomTreeNode
*IDomNode
= DT
.getNode(InfluencedBB
)->getIDom();
203 if (IDomNode
== nullptr)
205 InfluencedBB
= IDomNode
->getBlock();
209 void DivergencePropagator::findUsersOutsideInfluenceRegion(
210 Instruction
&I
, const DenseSet
<BasicBlock
*> &InfluenceRegion
) {
211 for (User
*U
: I
.users()) {
212 Instruction
*UserInst
= cast
<Instruction
>(U
);
213 if (!InfluenceRegion
.count(UserInst
->getParent())) {
214 if (DV
.insert(UserInst
).second
)
215 Worklist
.push_back(UserInst
);
220 // A helper function for computeInfluenceRegion that adds successors of "ThisBB"
221 // to the influence region.
223 addSuccessorsToInfluenceRegion(BasicBlock
*ThisBB
, BasicBlock
*End
,
224 DenseSet
<BasicBlock
*> &InfluenceRegion
,
225 std::vector
<BasicBlock
*> &InfluenceStack
) {
226 for (BasicBlock
*Succ
: successors(ThisBB
)) {
227 if (Succ
!= End
&& InfluenceRegion
.insert(Succ
).second
)
228 InfluenceStack
.push_back(Succ
);
232 void DivergencePropagator::computeInfluenceRegion(
233 BasicBlock
*Start
, BasicBlock
*End
,
234 DenseSet
<BasicBlock
*> &InfluenceRegion
) {
235 assert(PDT
.properlyDominates(End
, Start
) &&
236 "End does not properly dominate Start");
238 // The influence region starts from the end of "Start" to the beginning of
239 // "End". Therefore, "Start" should not be in the region unless "Start" is in
240 // a loop that doesn't contain "End".
241 std::vector
<BasicBlock
*> InfluenceStack
;
242 addSuccessorsToInfluenceRegion(Start
, End
, InfluenceRegion
, InfluenceStack
);
243 while (!InfluenceStack
.empty()) {
244 BasicBlock
*BB
= InfluenceStack
.back();
245 InfluenceStack
.pop_back();
246 addSuccessorsToInfluenceRegion(BB
, End
, InfluenceRegion
, InfluenceStack
);
250 void DivergencePropagator::exploreDataDependency(Value
*V
) {
251 // Follow def-use chains of V.
252 for (User
*U
: V
->users()) {
253 Instruction
*UserInst
= cast
<Instruction
>(U
);
254 if (!TTI
.isAlwaysUniform(U
) && DV
.insert(UserInst
).second
)
255 Worklist
.push_back(UserInst
);
259 void DivergencePropagator::propagate() {
260 // Traverse the dependency graph using DFS.
261 while (!Worklist
.empty()) {
262 Value
*V
= Worklist
.back();
264 if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
265 // Terminators with less than two successors won't introduce sync
266 // dependency. Ignore them.
267 if (I
->isTerminator() && I
->getNumSuccessors() > 1)
268 exploreSyncDependency(I
);
270 exploreDataDependency(V
);
276 // Register this pass.
277 char LegacyDivergenceAnalysis::ID
= 0;
278 INITIALIZE_PASS_BEGIN(LegacyDivergenceAnalysis
, "divergence",
279 "Legacy Divergence Analysis", false, true)
280 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
281 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass
)
282 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
283 INITIALIZE_PASS_END(LegacyDivergenceAnalysis
, "divergence",
284 "Legacy Divergence Analysis", false, true)
286 FunctionPass
*llvm::createLegacyDivergenceAnalysisPass() {
287 return new LegacyDivergenceAnalysis();
290 void LegacyDivergenceAnalysis::getAnalysisUsage(AnalysisUsage
&AU
) const {
291 AU
.addRequired
<DominatorTreeWrapperPass
>();
292 AU
.addRequired
<PostDominatorTreeWrapperPass
>();
294 AU
.addRequired
<LoopInfoWrapperPass
>();
295 AU
.setPreservesAll();
298 bool LegacyDivergenceAnalysis::shouldUseGPUDivergenceAnalysis(
299 const Function
&F
) const {
303 // GPUDivergenceAnalysis requires a reducible CFG.
304 auto &LI
= getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
305 using RPOTraversal
= ReversePostOrderTraversal
<const Function
*>;
306 RPOTraversal
FuncRPOT(&F
);
307 return !containsIrreducibleCFG
<const BasicBlock
*, const RPOTraversal
,
308 const LoopInfo
>(FuncRPOT
, LI
);
311 bool LegacyDivergenceAnalysis::runOnFunction(Function
&F
) {
312 auto *TTIWP
= getAnalysisIfAvailable
<TargetTransformInfoWrapperPass
>();
313 if (TTIWP
== nullptr)
316 TargetTransformInfo
&TTI
= TTIWP
->getTTI(F
);
317 // Fast path: if the target does not have branch divergence, we do not mark
318 // any branch as divergent.
319 if (!TTI
.hasBranchDivergence())
322 DivergentValues
.clear();
325 auto &DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
326 auto &PDT
= getAnalysis
<PostDominatorTreeWrapperPass
>().getPostDomTree();
328 if (shouldUseGPUDivergenceAnalysis(F
)) {
329 // run the new GPU divergence analysis
330 auto &LI
= getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
331 gpuDA
= llvm::make_unique
<GPUDivergenceAnalysis
>(F
, DT
, PDT
, LI
, TTI
);
334 // run LLVM's existing DivergenceAnalysis
335 DivergencePropagator
DP(F
, TTI
, DT
, PDT
, DivergentValues
);
336 DP
.populateWithSourcesOfDivergence();
340 LLVM_DEBUG(dbgs() << "\nAfter divergence analysis on " << F
.getName()
342 print(dbgs(), F
.getParent()));
347 bool LegacyDivergenceAnalysis::isDivergent(const Value
*V
) const {
349 return gpuDA
->isDivergent(*V
);
351 return DivergentValues
.count(V
);
354 void LegacyDivergenceAnalysis::print(raw_ostream
&OS
, const Module
*) const {
355 if ((!gpuDA
|| !gpuDA
->hasDivergence()) && DivergentValues
.empty())
358 const Function
*F
= nullptr;
359 if (!DivergentValues
.empty()) {
360 const Value
*FirstDivergentValue
= *DivergentValues
.begin();
361 if (const Argument
*Arg
= dyn_cast
<Argument
>(FirstDivergentValue
)) {
362 F
= Arg
->getParent();
363 } else if (const Instruction
*I
=
364 dyn_cast
<Instruction
>(FirstDivergentValue
)) {
365 F
= I
->getParent()->getParent();
367 llvm_unreachable("Only arguments and instructions can be divergent");
370 F
= &gpuDA
->getFunction();
375 // Dumps all divergent values in F, arguments and then instructions.
376 for (auto &Arg
: F
->args()) {
377 OS
<< (isDivergent(&Arg
) ? "DIVERGENT: " : " ");
380 // Iterate instructions using instructions() to ensure a deterministic order.
381 for (auto BI
= F
->begin(), BE
= F
->end(); BI
!= BE
; ++BI
) {
383 OS
<< "\n " << BB
.getName() << ":\n";
384 for (auto &I
: BB
.instructionsWithoutDebug()) {
385 OS
<< (isDivergent(&I
) ? "DIVERGENT: " : " ");