[ARM] More MVE compare vector splat combines for ANDs
[llvm-complete.git] / lib / Analysis / MemorySSAUpdater.cpp
blob4c1feee7fd9affdc46951ad8d30f06aa57367fe5
1 //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------===//
8 //
9 // This file implements the MemorySSAUpdater class.
11 //===----------------------------------------------------------------===//
12 #include "llvm/Analysis/MemorySSAUpdater.h"
13 #include "llvm/ADT/STLExtras.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/Analysis/IteratedDominanceFrontier.h"
17 #include "llvm/Analysis/MemorySSA.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/Dominators.h"
20 #include "llvm/IR/GlobalVariable.h"
21 #include "llvm/IR/IRBuilder.h"
22 #include "llvm/IR/LLVMContext.h"
23 #include "llvm/IR/Metadata.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/FormattedStream.h"
27 #include <algorithm>
29 #define DEBUG_TYPE "memoryssa"
30 using namespace llvm;
32 // This is the marker algorithm from "Simple and Efficient Construction of
33 // Static Single Assignment Form"
34 // The simple, non-marker algorithm places phi nodes at any join
35 // Here, we place markers, and only place phi nodes if they end up necessary.
36 // They are only necessary if they break a cycle (IE we recursively visit
37 // ourselves again), or we discover, while getting the value of the operands,
38 // that there are two or more definitions needing to be merged.
39 // This still will leave non-minimal form in the case of irreducible control
40 // flow, where phi nodes may be in cycles with themselves, but unnecessary.
41 MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(
42 BasicBlock *BB,
43 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
44 // First, do a cache lookup. Without this cache, certain CFG structures
45 // (like a series of if statements) take exponential time to visit.
46 auto Cached = CachedPreviousDef.find(BB);
47 if (Cached != CachedPreviousDef.end()) {
48 return Cached->second;
51 if (BasicBlock *Pred = BB->getSinglePredecessor()) {
52 // Single predecessor case, just recurse, we can only have one definition.
53 MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef);
54 CachedPreviousDef.insert({BB, Result});
55 return Result;
58 if (VisitedBlocks.count(BB)) {
59 // We hit our node again, meaning we had a cycle, we must insert a phi
60 // node to break it so we have an operand. The only case this will
61 // insert useless phis is if we have irreducible control flow.
62 MemoryAccess *Result = MSSA->createMemoryPhi(BB);
63 CachedPreviousDef.insert({BB, Result});
64 return Result;
67 if (VisitedBlocks.insert(BB).second) {
68 // Mark us visited so we can detect a cycle
69 SmallVector<TrackingVH<MemoryAccess>, 8> PhiOps;
71 // Recurse to get the values in our predecessors for placement of a
72 // potential phi node. This will insert phi nodes if we cycle in order to
73 // break the cycle and have an operand.
74 for (auto *Pred : predecessors(BB))
75 if (MSSA->DT->isReachableFromEntry(Pred))
76 PhiOps.push_back(getPreviousDefFromEnd(Pred, CachedPreviousDef));
77 else
78 PhiOps.push_back(MSSA->getLiveOnEntryDef());
80 // Now try to simplify the ops to avoid placing a phi.
81 // This may return null if we never created a phi yet, that's okay
82 MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB));
84 // See if we can avoid the phi by simplifying it.
85 auto *Result = tryRemoveTrivialPhi(Phi, PhiOps);
86 // If we couldn't simplify, we may have to create a phi
87 if (Result == Phi) {
88 if (!Phi)
89 Phi = MSSA->createMemoryPhi(BB);
91 // See if the existing phi operands match what we need.
92 // Unlike normal SSA, we only allow one phi node per block, so we can't just
93 // create a new one.
94 if (Phi->getNumOperands() != 0) {
95 // FIXME: Figure out whether this is dead code and if so remove it.
96 if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) {
97 // These will have been filled in by the recursive read we did above.
98 llvm::copy(PhiOps, Phi->op_begin());
99 std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin());
101 } else {
102 unsigned i = 0;
103 for (auto *Pred : predecessors(BB))
104 Phi->addIncoming(&*PhiOps[i++], Pred);
105 InsertedPHIs.push_back(Phi);
107 Result = Phi;
110 // Set ourselves up for the next variable by resetting visited state.
111 VisitedBlocks.erase(BB);
112 CachedPreviousDef.insert({BB, Result});
113 return Result;
115 llvm_unreachable("Should have hit one of the three cases above");
118 // This starts at the memory access, and goes backwards in the block to find the
119 // previous definition. If a definition is not found the block of the access,
120 // it continues globally, creating phi nodes to ensure we have a single
121 // definition.
122 MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) {
123 if (auto *LocalResult = getPreviousDefInBlock(MA))
124 return LocalResult;
125 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
126 return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef);
129 // This starts at the memory access, and goes backwards in the block to the find
130 // the previous definition. If the definition is not found in the block of the
131 // access, it returns nullptr.
132 MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) {
133 auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock());
135 // It's possible there are no defs, or we got handed the first def to start.
136 if (Defs) {
137 // If this is a def, we can just use the def iterators.
138 if (!isa<MemoryUse>(MA)) {
139 auto Iter = MA->getReverseDefsIterator();
140 ++Iter;
141 if (Iter != Defs->rend())
142 return &*Iter;
143 } else {
144 // Otherwise, have to walk the all access iterator.
145 auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend();
146 for (auto &U : make_range(++MA->getReverseIterator(), End))
147 if (!isa<MemoryUse>(U))
148 return cast<MemoryAccess>(&U);
149 // Note that if MA comes before Defs->begin(), we won't hit a def.
150 return nullptr;
153 return nullptr;
156 // This starts at the end of block
157 MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd(
158 BasicBlock *BB,
159 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
160 auto *Defs = MSSA->getWritableBlockDefs(BB);
162 if (Defs) {
163 CachedPreviousDef.insert({BB, &*Defs->rbegin()});
164 return &*Defs->rbegin();
167 return getPreviousDefRecursive(BB, CachedPreviousDef);
169 // Recurse over a set of phi uses to eliminate the trivial ones
170 MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) {
171 if (!Phi)
172 return nullptr;
173 TrackingVH<MemoryAccess> Res(Phi);
174 SmallVector<TrackingVH<Value>, 8> Uses;
175 std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses));
176 for (auto &U : Uses) {
177 if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U)) {
178 auto OperRange = UsePhi->operands();
179 tryRemoveTrivialPhi(UsePhi, OperRange);
182 return Res;
185 // Eliminate trivial phis
186 // Phis are trivial if they are defined either by themselves, or all the same
187 // argument.
188 // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c)
189 // We recursively try to remove them.
190 template <class RangeType>
191 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi,
192 RangeType &Operands) {
193 // Bail out on non-opt Phis.
194 if (NonOptPhis.count(Phi))
195 return Phi;
197 // Detect equal or self arguments
198 MemoryAccess *Same = nullptr;
199 for (auto &Op : Operands) {
200 // If the same or self, good so far
201 if (Op == Phi || Op == Same)
202 continue;
203 // not the same, return the phi since it's not eliminatable by us
204 if (Same)
205 return Phi;
206 Same = cast<MemoryAccess>(&*Op);
208 // Never found a non-self reference, the phi is undef
209 if (Same == nullptr)
210 return MSSA->getLiveOnEntryDef();
211 if (Phi) {
212 Phi->replaceAllUsesWith(Same);
213 removeMemoryAccess(Phi);
216 // We should only end up recursing in case we replaced something, in which
217 // case, we may have made other Phis trivial.
218 return recursePhi(Same);
221 void MemorySSAUpdater::insertUse(MemoryUse *MU) {
222 InsertedPHIs.clear();
223 MU->setDefiningAccess(getPreviousDef(MU));
224 // Unlike for defs, there is no extra work to do. Because uses do not create
225 // new may-defs, there are only two cases:
227 // 1. There was a def already below us, and therefore, we should not have
228 // created a phi node because it was already needed for the def.
230 // 2. There is no def below us, and therefore, there is no extra renaming work
231 // to do.
234 // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef.
235 static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB,
236 MemoryAccess *NewDef) {
237 // Replace any operand with us an incoming block with the new defining
238 // access.
239 int i = MP->getBasicBlockIndex(BB);
240 assert(i != -1 && "Should have found the basic block in the phi");
241 // We can't just compare i against getNumOperands since one is signed and the
242 // other not. So use it to index into the block iterator.
243 for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end();
244 ++BBIter) {
245 if (*BBIter != BB)
246 break;
247 MP->setIncomingValue(i, NewDef);
248 ++i;
252 // A brief description of the algorithm:
253 // First, we compute what should define the new def, using the SSA
254 // construction algorithm.
255 // Then, we update the defs below us (and any new phi nodes) in the graph to
256 // point to the correct new defs, to ensure we only have one variable, and no
257 // disconnected stores.
258 void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) {
259 InsertedPHIs.clear();
261 // See if we had a local def, and if not, go hunting.
262 MemoryAccess *DefBefore = getPreviousDef(MD);
263 bool DefBeforeSameBlock = DefBefore->getBlock() == MD->getBlock();
265 // There is a def before us, which means we can replace any store/phi uses
266 // of that thing with us, since we are in the way of whatever was there
267 // before.
268 // We now define that def's memorydefs and memoryphis
269 if (DefBeforeSameBlock) {
270 for (auto UI = DefBefore->use_begin(), UE = DefBefore->use_end();
271 UI != UE;) {
272 Use &U = *UI++;
273 // Leave the MemoryUses alone.
274 // Also make sure we skip ourselves to avoid self references.
275 if (isa<MemoryUse>(U.getUser()) || U.getUser() == MD)
276 continue;
277 // Defs are automatically unoptimized when the user is set to MD below,
278 // because the isOptimized() call will fail to find the same ID.
279 U.set(MD);
283 // and that def is now our defining access.
284 MD->setDefiningAccess(DefBefore);
286 // Remember the index where we may insert new phis below.
287 unsigned NewPhiIndex = InsertedPHIs.size();
289 SmallVector<WeakVH, 8> FixupList(InsertedPHIs.begin(), InsertedPHIs.end());
290 if (!DefBeforeSameBlock) {
291 // If there was a local def before us, we must have the same effect it
292 // did. Because every may-def is the same, any phis/etc we would create, it
293 // would also have created. If there was no local def before us, we
294 // performed a global update, and have to search all successors and make
295 // sure we update the first def in each of them (following all paths until
296 // we hit the first def along each path). This may also insert phi nodes.
297 // TODO: There are other cases we can skip this work, such as when we have a
298 // single successor, and only used a straight line of single pred blocks
299 // backwards to find the def. To make that work, we'd have to track whether
300 // getDefRecursive only ever used the single predecessor case. These types
301 // of paths also only exist in between CFG simplifications.
303 // If this is the first def in the block and this insert is in an arbitrary
304 // place, compute IDF and place phis.
305 auto Iter = MD->getDefsIterator();
306 ++Iter;
307 auto IterEnd = MSSA->getBlockDefs(MD->getBlock())->end();
308 if (Iter == IterEnd) {
309 ForwardIDFCalculator IDFs(*MSSA->DT);
310 SmallVector<BasicBlock *, 32> IDFBlocks;
311 SmallPtrSet<BasicBlock *, 2> DefiningBlocks;
312 DefiningBlocks.insert(MD->getBlock());
313 IDFs.setDefiningBlocks(DefiningBlocks);
314 IDFs.calculate(IDFBlocks);
315 SmallVector<AssertingVH<MemoryPhi>, 4> NewInsertedPHIs;
316 for (auto *BBIDF : IDFBlocks)
317 if (!MSSA->getMemoryAccess(BBIDF)) {
318 auto *MPhi = MSSA->createMemoryPhi(BBIDF);
319 NewInsertedPHIs.push_back(MPhi);
320 // Add the phis created into the IDF blocks to NonOptPhis, so they are
321 // not optimized out as trivial by the call to getPreviousDefFromEnd
322 // below. Once they are complete, all these Phis are added to the
323 // FixupList, and removed from NonOptPhis inside fixupDefs().
324 NonOptPhis.insert(MPhi);
327 for (auto &MPhi : NewInsertedPHIs) {
328 auto *BBIDF = MPhi->getBlock();
329 for (auto *Pred : predecessors(BBIDF)) {
330 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
331 MPhi->addIncoming(getPreviousDefFromEnd(Pred, CachedPreviousDef),
332 Pred);
336 // Re-take the index where we're adding the new phis, because the above
337 // call to getPreviousDefFromEnd, may have inserted into InsertedPHIs.
338 NewPhiIndex = InsertedPHIs.size();
339 for (auto &MPhi : NewInsertedPHIs) {
340 InsertedPHIs.push_back(&*MPhi);
341 FixupList.push_back(&*MPhi);
345 FixupList.push_back(MD);
348 // Remember the index where we stopped inserting new phis above, since the
349 // fixupDefs call in the loop below may insert more, that are already minimal.
350 unsigned NewPhiIndexEnd = InsertedPHIs.size();
352 while (!FixupList.empty()) {
353 unsigned StartingPHISize = InsertedPHIs.size();
354 fixupDefs(FixupList);
355 FixupList.clear();
356 // Put any new phis on the fixup list, and process them
357 FixupList.append(InsertedPHIs.begin() + StartingPHISize, InsertedPHIs.end());
360 // Optimize potentially non-minimal phis added in this method.
361 unsigned NewPhiSize = NewPhiIndexEnd - NewPhiIndex;
362 if (NewPhiSize)
363 tryRemoveTrivialPhis(ArrayRef<WeakVH>(&InsertedPHIs[NewPhiIndex], NewPhiSize));
365 // Now that all fixups are done, rename all uses if we are asked.
366 if (RenameUses) {
367 SmallPtrSet<BasicBlock *, 16> Visited;
368 BasicBlock *StartBlock = MD->getBlock();
369 // We are guaranteed there is a def in the block, because we just got it
370 // handed to us in this function.
371 MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin();
372 // Convert to incoming value if it's a memorydef. A phi *is* already an
373 // incoming value.
374 if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
375 FirstDef = MD->getDefiningAccess();
377 MSSA->renamePass(MD->getBlock(), FirstDef, Visited);
378 // We just inserted a phi into this block, so the incoming value will become
379 // the phi anyway, so it does not matter what we pass.
380 for (auto &MP : InsertedPHIs) {
381 MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP);
382 if (Phi)
383 MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
388 void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<WeakVH> &Vars) {
389 SmallPtrSet<const BasicBlock *, 8> Seen;
390 SmallVector<const BasicBlock *, 16> Worklist;
391 for (auto &Var : Vars) {
392 MemoryAccess *NewDef = dyn_cast_or_null<MemoryAccess>(Var);
393 if (!NewDef)
394 continue;
395 // First, see if there is a local def after the operand.
396 auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock());
397 auto DefIter = NewDef->getDefsIterator();
399 // The temporary Phi is being fixed, unmark it for not to optimize.
400 if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(NewDef))
401 NonOptPhis.erase(Phi);
403 // If there is a local def after us, we only have to rename that.
404 if (++DefIter != Defs->end()) {
405 cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef);
406 continue;
409 // Otherwise, we need to search down through the CFG.
410 // For each of our successors, handle it directly if their is a phi, or
411 // place on the fixup worklist.
412 for (const auto *S : successors(NewDef->getBlock())) {
413 if (auto *MP = MSSA->getMemoryAccess(S))
414 setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef);
415 else
416 Worklist.push_back(S);
419 while (!Worklist.empty()) {
420 const BasicBlock *FixupBlock = Worklist.back();
421 Worklist.pop_back();
423 // Get the first def in the block that isn't a phi node.
424 if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) {
425 auto *FirstDef = &*Defs->begin();
426 // The loop above and below should have taken care of phi nodes
427 assert(!isa<MemoryPhi>(FirstDef) &&
428 "Should have already handled phi nodes!");
429 // We are now this def's defining access, make sure we actually dominate
430 // it
431 assert(MSSA->dominates(NewDef, FirstDef) &&
432 "Should have dominated the new access");
434 // This may insert new phi nodes, because we are not guaranteed the
435 // block we are processing has a single pred, and depending where the
436 // store was inserted, it may require phi nodes below it.
437 cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef));
438 return;
440 // We didn't find a def, so we must continue.
441 for (const auto *S : successors(FixupBlock)) {
442 // If there is a phi node, handle it.
443 // Otherwise, put the block on the worklist
444 if (auto *MP = MSSA->getMemoryAccess(S))
445 setMemoryPhiValueForBlock(MP, FixupBlock, NewDef);
446 else {
447 // If we cycle, we should have ended up at a phi node that we already
448 // processed. FIXME: Double check this
449 if (!Seen.insert(S).second)
450 continue;
451 Worklist.push_back(S);
458 void MemorySSAUpdater::removeEdge(BasicBlock *From, BasicBlock *To) {
459 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
460 MPhi->unorderedDeleteIncomingBlock(From);
461 if (MPhi->getNumIncomingValues() == 1)
462 removeMemoryAccess(MPhi);
466 void MemorySSAUpdater::removeDuplicatePhiEdgesBetween(const BasicBlock *From,
467 const BasicBlock *To) {
468 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
469 bool Found = false;
470 MPhi->unorderedDeleteIncomingIf([&](const MemoryAccess *, BasicBlock *B) {
471 if (From != B)
472 return false;
473 if (Found)
474 return true;
475 Found = true;
476 return false;
478 if (MPhi->getNumIncomingValues() == 1)
479 removeMemoryAccess(MPhi);
483 void MemorySSAUpdater::cloneUsesAndDefs(BasicBlock *BB, BasicBlock *NewBB,
484 const ValueToValueMapTy &VMap,
485 PhiToDefMap &MPhiMap,
486 bool CloneWasSimplified) {
487 auto GetNewDefiningAccess = [&](MemoryAccess *MA) -> MemoryAccess * {
488 MemoryAccess *InsnDefining = MA;
489 if (MemoryUseOrDef *DefMUD = dyn_cast<MemoryUseOrDef>(InsnDefining)) {
490 if (!MSSA->isLiveOnEntryDef(DefMUD)) {
491 Instruction *DefMUDI = DefMUD->getMemoryInst();
492 assert(DefMUDI && "Found MemoryUseOrDef with no Instruction.");
493 if (Instruction *NewDefMUDI =
494 cast_or_null<Instruction>(VMap.lookup(DefMUDI)))
495 InsnDefining = MSSA->getMemoryAccess(NewDefMUDI);
497 } else {
498 MemoryPhi *DefPhi = cast<MemoryPhi>(InsnDefining);
499 if (MemoryAccess *NewDefPhi = MPhiMap.lookup(DefPhi))
500 InsnDefining = NewDefPhi;
502 assert(InsnDefining && "Defining instruction cannot be nullptr.");
503 return InsnDefining;
506 const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB);
507 if (!Acc)
508 return;
509 for (const MemoryAccess &MA : *Acc) {
510 if (const MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&MA)) {
511 Instruction *Insn = MUD->getMemoryInst();
512 // Entry does not exist if the clone of the block did not clone all
513 // instructions. This occurs in LoopRotate when cloning instructions
514 // from the old header to the old preheader. The cloned instruction may
515 // also be a simplified Value, not an Instruction (see LoopRotate).
516 // Also in LoopRotate, even when it's an instruction, due to it being
517 // simplified, it may be a Use rather than a Def, so we cannot use MUD as
518 // template. Calls coming from updateForClonedBlockIntoPred, ensure this.
519 if (Instruction *NewInsn =
520 dyn_cast_or_null<Instruction>(VMap.lookup(Insn))) {
521 MemoryAccess *NewUseOrDef = MSSA->createDefinedAccess(
522 NewInsn, GetNewDefiningAccess(MUD->getDefiningAccess()),
523 CloneWasSimplified ? nullptr : MUD);
524 MSSA->insertIntoListsForBlock(NewUseOrDef, NewBB, MemorySSA::End);
530 void MemorySSAUpdater::updatePhisWhenInsertingUniqueBackedgeBlock(
531 BasicBlock *Header, BasicBlock *Preheader, BasicBlock *BEBlock) {
532 auto *MPhi = MSSA->getMemoryAccess(Header);
533 if (!MPhi)
534 return;
536 // Create phi node in the backedge block and populate it with the same
537 // incoming values as MPhi. Skip incoming values coming from Preheader.
538 auto *NewMPhi = MSSA->createMemoryPhi(BEBlock);
539 bool HasUniqueIncomingValue = true;
540 MemoryAccess *UniqueValue = nullptr;
541 for (unsigned I = 0, E = MPhi->getNumIncomingValues(); I != E; ++I) {
542 BasicBlock *IBB = MPhi->getIncomingBlock(I);
543 MemoryAccess *IV = MPhi->getIncomingValue(I);
544 if (IBB != Preheader) {
545 NewMPhi->addIncoming(IV, IBB);
546 if (HasUniqueIncomingValue) {
547 if (!UniqueValue)
548 UniqueValue = IV;
549 else if (UniqueValue != IV)
550 HasUniqueIncomingValue = false;
555 // Update incoming edges into MPhi. Remove all but the incoming edge from
556 // Preheader. Add an edge from NewMPhi
557 auto *AccFromPreheader = MPhi->getIncomingValueForBlock(Preheader);
558 MPhi->setIncomingValue(0, AccFromPreheader);
559 MPhi->setIncomingBlock(0, Preheader);
560 for (unsigned I = MPhi->getNumIncomingValues() - 1; I >= 1; --I)
561 MPhi->unorderedDeleteIncoming(I);
562 MPhi->addIncoming(NewMPhi, BEBlock);
564 // If NewMPhi is a trivial phi, remove it. Its use in the header MPhi will be
565 // replaced with the unique value.
566 if (HasUniqueIncomingValue)
567 removeMemoryAccess(NewMPhi);
570 void MemorySSAUpdater::updateForClonedLoop(const LoopBlocksRPO &LoopBlocks,
571 ArrayRef<BasicBlock *> ExitBlocks,
572 const ValueToValueMapTy &VMap,
573 bool IgnoreIncomingWithNoClones) {
574 PhiToDefMap MPhiMap;
576 auto FixPhiIncomingValues = [&](MemoryPhi *Phi, MemoryPhi *NewPhi) {
577 assert(Phi && NewPhi && "Invalid Phi nodes.");
578 BasicBlock *NewPhiBB = NewPhi->getBlock();
579 SmallPtrSet<BasicBlock *, 4> NewPhiBBPreds(pred_begin(NewPhiBB),
580 pred_end(NewPhiBB));
581 for (unsigned It = 0, E = Phi->getNumIncomingValues(); It < E; ++It) {
582 MemoryAccess *IncomingAccess = Phi->getIncomingValue(It);
583 BasicBlock *IncBB = Phi->getIncomingBlock(It);
585 if (BasicBlock *NewIncBB = cast_or_null<BasicBlock>(VMap.lookup(IncBB)))
586 IncBB = NewIncBB;
587 else if (IgnoreIncomingWithNoClones)
588 continue;
590 // Now we have IncBB, and will need to add incoming from it to NewPhi.
592 // If IncBB is not a predecessor of NewPhiBB, then do not add it.
593 // NewPhiBB was cloned without that edge.
594 if (!NewPhiBBPreds.count(IncBB))
595 continue;
597 // Determine incoming value and add it as incoming from IncBB.
598 if (MemoryUseOrDef *IncMUD = dyn_cast<MemoryUseOrDef>(IncomingAccess)) {
599 if (!MSSA->isLiveOnEntryDef(IncMUD)) {
600 Instruction *IncI = IncMUD->getMemoryInst();
601 assert(IncI && "Found MemoryUseOrDef with no Instruction.");
602 if (Instruction *NewIncI =
603 cast_or_null<Instruction>(VMap.lookup(IncI))) {
604 IncMUD = MSSA->getMemoryAccess(NewIncI);
605 assert(IncMUD &&
606 "MemoryUseOrDef cannot be null, all preds processed.");
609 NewPhi->addIncoming(IncMUD, IncBB);
610 } else {
611 MemoryPhi *IncPhi = cast<MemoryPhi>(IncomingAccess);
612 if (MemoryAccess *NewDefPhi = MPhiMap.lookup(IncPhi))
613 NewPhi->addIncoming(NewDefPhi, IncBB);
614 else
615 NewPhi->addIncoming(IncPhi, IncBB);
620 auto ProcessBlock = [&](BasicBlock *BB) {
621 BasicBlock *NewBlock = cast_or_null<BasicBlock>(VMap.lookup(BB));
622 if (!NewBlock)
623 return;
625 assert(!MSSA->getWritableBlockAccesses(NewBlock) &&
626 "Cloned block should have no accesses");
628 // Add MemoryPhi.
629 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) {
630 MemoryPhi *NewPhi = MSSA->createMemoryPhi(NewBlock);
631 MPhiMap[MPhi] = NewPhi;
633 // Update Uses and Defs.
634 cloneUsesAndDefs(BB, NewBlock, VMap, MPhiMap);
637 for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
638 ProcessBlock(BB);
640 for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
641 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
642 if (MemoryAccess *NewPhi = MPhiMap.lookup(MPhi))
643 FixPhiIncomingValues(MPhi, cast<MemoryPhi>(NewPhi));
646 void MemorySSAUpdater::updateForClonedBlockIntoPred(
647 BasicBlock *BB, BasicBlock *P1, const ValueToValueMapTy &VM) {
648 // All defs/phis from outside BB that are used in BB, are valid uses in P1.
649 // Since those defs/phis must have dominated BB, and also dominate P1.
650 // Defs from BB being used in BB will be replaced with the cloned defs from
651 // VM. The uses of BB's Phi (if it exists) in BB will be replaced by the
652 // incoming def into the Phi from P1.
653 // Instructions cloned into the predecessor are in practice sometimes
654 // simplified, so disable the use of the template, and create an access from
655 // scratch.
656 PhiToDefMap MPhiMap;
657 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
658 MPhiMap[MPhi] = MPhi->getIncomingValueForBlock(P1);
659 cloneUsesAndDefs(BB, P1, VM, MPhiMap, /*CloneWasSimplified=*/true);
662 template <typename Iter>
663 void MemorySSAUpdater::privateUpdateExitBlocksForClonedLoop(
664 ArrayRef<BasicBlock *> ExitBlocks, Iter ValuesBegin, Iter ValuesEnd,
665 DominatorTree &DT) {
666 SmallVector<CFGUpdate, 4> Updates;
667 // Update/insert phis in all successors of exit blocks.
668 for (auto *Exit : ExitBlocks)
669 for (const ValueToValueMapTy *VMap : make_range(ValuesBegin, ValuesEnd))
670 if (BasicBlock *NewExit = cast_or_null<BasicBlock>(VMap->lookup(Exit))) {
671 BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
672 Updates.push_back({DT.Insert, NewExit, ExitSucc});
674 applyInsertUpdates(Updates, DT);
677 void MemorySSAUpdater::updateExitBlocksForClonedLoop(
678 ArrayRef<BasicBlock *> ExitBlocks, const ValueToValueMapTy &VMap,
679 DominatorTree &DT) {
680 const ValueToValueMapTy *const Arr[] = {&VMap};
681 privateUpdateExitBlocksForClonedLoop(ExitBlocks, std::begin(Arr),
682 std::end(Arr), DT);
685 void MemorySSAUpdater::updateExitBlocksForClonedLoop(
686 ArrayRef<BasicBlock *> ExitBlocks,
687 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, DominatorTree &DT) {
688 auto GetPtr = [&](const std::unique_ptr<ValueToValueMapTy> &I) {
689 return I.get();
691 using MappedIteratorType =
692 mapped_iterator<const std::unique_ptr<ValueToValueMapTy> *,
693 decltype(GetPtr)>;
694 auto MapBegin = MappedIteratorType(VMaps.begin(), GetPtr);
695 auto MapEnd = MappedIteratorType(VMaps.end(), GetPtr);
696 privateUpdateExitBlocksForClonedLoop(ExitBlocks, MapBegin, MapEnd, DT);
699 void MemorySSAUpdater::applyUpdates(ArrayRef<CFGUpdate> Updates,
700 DominatorTree &DT) {
701 SmallVector<CFGUpdate, 4> RevDeleteUpdates;
702 SmallVector<CFGUpdate, 4> InsertUpdates;
703 for (auto &Update : Updates) {
704 if (Update.getKind() == DT.Insert)
705 InsertUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
706 else
707 RevDeleteUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
710 if (!RevDeleteUpdates.empty()) {
711 // Update for inserted edges: use newDT and snapshot CFG as if deletes had
712 // not occurred.
713 // FIXME: This creates a new DT, so it's more expensive to do mix
714 // delete/inserts vs just inserts. We can do an incremental update on the DT
715 // to revert deletes, than re-delete the edges. Teaching DT to do this, is
716 // part of a pending cleanup.
717 DominatorTree NewDT(DT, RevDeleteUpdates);
718 GraphDiff<BasicBlock *> GD(RevDeleteUpdates);
719 applyInsertUpdates(InsertUpdates, NewDT, &GD);
720 } else {
721 GraphDiff<BasicBlock *> GD;
722 applyInsertUpdates(InsertUpdates, DT, &GD);
725 // Update for deleted edges
726 for (auto &Update : RevDeleteUpdates)
727 removeEdge(Update.getFrom(), Update.getTo());
730 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
731 DominatorTree &DT) {
732 GraphDiff<BasicBlock *> GD;
733 applyInsertUpdates(Updates, DT, &GD);
736 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
737 DominatorTree &DT,
738 const GraphDiff<BasicBlock *> *GD) {
739 // Get recursive last Def, assuming well formed MSSA and updated DT.
740 auto GetLastDef = [&](BasicBlock *BB) -> MemoryAccess * {
741 while (true) {
742 MemorySSA::DefsList *Defs = MSSA->getWritableBlockDefs(BB);
743 // Return last Def or Phi in BB, if it exists.
744 if (Defs)
745 return &*(--Defs->end());
747 // Check number of predecessors, we only care if there's more than one.
748 unsigned Count = 0;
749 BasicBlock *Pred = nullptr;
750 for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) {
751 Pred = Pair.second;
752 Count++;
753 if (Count == 2)
754 break;
757 // If BB has multiple predecessors, get last definition from IDom.
758 if (Count != 1) {
759 // [SimpleLoopUnswitch] If BB is a dead block, about to be deleted, its
760 // DT is invalidated. Return LoE as its last def. This will be added to
761 // MemoryPhi node, and later deleted when the block is deleted.
762 if (!DT.getNode(BB))
763 return MSSA->getLiveOnEntryDef();
764 if (auto *IDom = DT.getNode(BB)->getIDom())
765 if (IDom->getBlock() != BB) {
766 BB = IDom->getBlock();
767 continue;
769 return MSSA->getLiveOnEntryDef();
770 } else {
771 // Single predecessor, BB cannot be dead. GetLastDef of Pred.
772 assert(Count == 1 && Pred && "Single predecessor expected.");
773 BB = Pred;
776 llvm_unreachable("Unable to get last definition.");
779 // Get nearest IDom given a set of blocks.
780 // TODO: this can be optimized by starting the search at the node with the
781 // lowest level (highest in the tree).
782 auto FindNearestCommonDominator =
783 [&](const SmallSetVector<BasicBlock *, 2> &BBSet) -> BasicBlock * {
784 BasicBlock *PrevIDom = *BBSet.begin();
785 for (auto *BB : BBSet)
786 PrevIDom = DT.findNearestCommonDominator(PrevIDom, BB);
787 return PrevIDom;
790 // Get all blocks that dominate PrevIDom, stop when reaching CurrIDom. Do not
791 // include CurrIDom.
792 auto GetNoLongerDomBlocks =
793 [&](BasicBlock *PrevIDom, BasicBlock *CurrIDom,
794 SmallVectorImpl<BasicBlock *> &BlocksPrevDom) {
795 if (PrevIDom == CurrIDom)
796 return;
797 BlocksPrevDom.push_back(PrevIDom);
798 BasicBlock *NextIDom = PrevIDom;
799 while (BasicBlock *UpIDom =
800 DT.getNode(NextIDom)->getIDom()->getBlock()) {
801 if (UpIDom == CurrIDom)
802 break;
803 BlocksPrevDom.push_back(UpIDom);
804 NextIDom = UpIDom;
808 // Map a BB to its predecessors: added + previously existing. To get a
809 // deterministic order, store predecessors as SetVectors. The order in each
810 // will be defined by the order in Updates (fixed) and the order given by
811 // children<> (also fixed). Since we further iterate over these ordered sets,
812 // we lose the information of multiple edges possibly existing between two
813 // blocks, so we'll keep and EdgeCount map for that.
814 // An alternate implementation could keep unordered set for the predecessors,
815 // traverse either Updates or children<> each time to get the deterministic
816 // order, and drop the usage of EdgeCount. This alternate approach would still
817 // require querying the maps for each predecessor, and children<> call has
818 // additional computation inside for creating the snapshot-graph predecessors.
819 // As such, we favor using a little additional storage and less compute time.
820 // This decision can be revisited if we find the alternative more favorable.
822 struct PredInfo {
823 SmallSetVector<BasicBlock *, 2> Added;
824 SmallSetVector<BasicBlock *, 2> Prev;
826 SmallDenseMap<BasicBlock *, PredInfo> PredMap;
828 for (auto &Edge : Updates) {
829 BasicBlock *BB = Edge.getTo();
830 auto &AddedBlockSet = PredMap[BB].Added;
831 AddedBlockSet.insert(Edge.getFrom());
834 // Store all existing predecessor for each BB, at least one must exist.
835 SmallDenseMap<std::pair<BasicBlock *, BasicBlock *>, int> EdgeCountMap;
836 SmallPtrSet<BasicBlock *, 2> NewBlocks;
837 for (auto &BBPredPair : PredMap) {
838 auto *BB = BBPredPair.first;
839 const auto &AddedBlockSet = BBPredPair.second.Added;
840 auto &PrevBlockSet = BBPredPair.second.Prev;
841 for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) {
842 BasicBlock *Pi = Pair.second;
843 if (!AddedBlockSet.count(Pi))
844 PrevBlockSet.insert(Pi);
845 EdgeCountMap[{Pi, BB}]++;
848 if (PrevBlockSet.empty()) {
849 assert(pred_size(BB) == AddedBlockSet.size() && "Duplicate edges added.");
850 LLVM_DEBUG(
851 dbgs()
852 << "Adding a predecessor to a block with no predecessors. "
853 "This must be an edge added to a new, likely cloned, block. "
854 "Its memory accesses must be already correct, assuming completed "
855 "via the updateExitBlocksForClonedLoop API. "
856 "Assert a single such edge is added so no phi addition or "
857 "additional processing is required.\n");
858 assert(AddedBlockSet.size() == 1 &&
859 "Can only handle adding one predecessor to a new block.");
860 // Need to remove new blocks from PredMap. Remove below to not invalidate
861 // iterator here.
862 NewBlocks.insert(BB);
865 // Nothing to process for new/cloned blocks.
866 for (auto *BB : NewBlocks)
867 PredMap.erase(BB);
869 SmallVector<BasicBlock *, 16> BlocksWithDefsToReplace;
870 SmallVector<WeakVH, 8> InsertedPhis;
872 // First create MemoryPhis in all blocks that don't have one. Create in the
873 // order found in Updates, not in PredMap, to get deterministic numbering.
874 for (auto &Edge : Updates) {
875 BasicBlock *BB = Edge.getTo();
876 if (PredMap.count(BB) && !MSSA->getMemoryAccess(BB))
877 InsertedPhis.push_back(MSSA->createMemoryPhi(BB));
880 // Now we'll fill in the MemoryPhis with the right incoming values.
881 for (auto &BBPredPair : PredMap) {
882 auto *BB = BBPredPair.first;
883 const auto &PrevBlockSet = BBPredPair.second.Prev;
884 const auto &AddedBlockSet = BBPredPair.second.Added;
885 assert(!PrevBlockSet.empty() &&
886 "At least one previous predecessor must exist.");
888 // TODO: if this becomes a bottleneck, we can save on GetLastDef calls by
889 // keeping this map before the loop. We can reuse already populated entries
890 // if an edge is added from the same predecessor to two different blocks,
891 // and this does happen in rotate. Note that the map needs to be updated
892 // when deleting non-necessary phis below, if the phi is in the map by
893 // replacing the value with DefP1.
894 SmallDenseMap<BasicBlock *, MemoryAccess *> LastDefAddedPred;
895 for (auto *AddedPred : AddedBlockSet) {
896 auto *DefPn = GetLastDef(AddedPred);
897 assert(DefPn != nullptr && "Unable to find last definition.");
898 LastDefAddedPred[AddedPred] = DefPn;
901 MemoryPhi *NewPhi = MSSA->getMemoryAccess(BB);
902 // If Phi is not empty, add an incoming edge from each added pred. Must
903 // still compute blocks with defs to replace for this block below.
904 if (NewPhi->getNumOperands()) {
905 for (auto *Pred : AddedBlockSet) {
906 auto *LastDefForPred = LastDefAddedPred[Pred];
907 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
908 NewPhi->addIncoming(LastDefForPred, Pred);
910 } else {
911 // Pick any existing predecessor and get its definition. All other
912 // existing predecessors should have the same one, since no phi existed.
913 auto *P1 = *PrevBlockSet.begin();
914 MemoryAccess *DefP1 = GetLastDef(P1);
916 // Check DefP1 against all Defs in LastDefPredPair. If all the same,
917 // nothing to add.
918 bool InsertPhi = false;
919 for (auto LastDefPredPair : LastDefAddedPred)
920 if (DefP1 != LastDefPredPair.second) {
921 InsertPhi = true;
922 break;
924 if (!InsertPhi) {
925 // Since NewPhi may be used in other newly added Phis, replace all uses
926 // of NewPhi with the definition coming from all predecessors (DefP1),
927 // before deleting it.
928 NewPhi->replaceAllUsesWith(DefP1);
929 removeMemoryAccess(NewPhi);
930 continue;
933 // Update Phi with new values for new predecessors and old value for all
934 // other predecessors. Since AddedBlockSet and PrevBlockSet are ordered
935 // sets, the order of entries in NewPhi is deterministic.
936 for (auto *Pred : AddedBlockSet) {
937 auto *LastDefForPred = LastDefAddedPred[Pred];
938 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
939 NewPhi->addIncoming(LastDefForPred, Pred);
941 for (auto *Pred : PrevBlockSet)
942 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
943 NewPhi->addIncoming(DefP1, Pred);
946 // Get all blocks that used to dominate BB and no longer do after adding
947 // AddedBlockSet, where PrevBlockSet are the previously known predecessors.
948 assert(DT.getNode(BB)->getIDom() && "BB does not have valid idom");
949 BasicBlock *PrevIDom = FindNearestCommonDominator(PrevBlockSet);
950 assert(PrevIDom && "Previous IDom should exists");
951 BasicBlock *NewIDom = DT.getNode(BB)->getIDom()->getBlock();
952 assert(NewIDom && "BB should have a new valid idom");
953 assert(DT.dominates(NewIDom, PrevIDom) &&
954 "New idom should dominate old idom");
955 GetNoLongerDomBlocks(PrevIDom, NewIDom, BlocksWithDefsToReplace);
958 tryRemoveTrivialPhis(InsertedPhis);
959 // Create the set of blocks that now have a definition. We'll use this to
960 // compute IDF and add Phis there next.
961 SmallVector<BasicBlock *, 8> BlocksToProcess;
962 for (auto &VH : InsertedPhis)
963 if (auto *MPhi = cast_or_null<MemoryPhi>(VH))
964 BlocksToProcess.push_back(MPhi->getBlock());
966 // Compute IDF and add Phis in all IDF blocks that do not have one.
967 SmallVector<BasicBlock *, 32> IDFBlocks;
968 if (!BlocksToProcess.empty()) {
969 ForwardIDFCalculator IDFs(DT, GD);
970 SmallPtrSet<BasicBlock *, 16> DefiningBlocks(BlocksToProcess.begin(),
971 BlocksToProcess.end());
972 IDFs.setDefiningBlocks(DefiningBlocks);
973 IDFs.calculate(IDFBlocks);
975 SmallSetVector<MemoryPhi *, 4> PhisToFill;
976 // First create all needed Phis.
977 for (auto *BBIDF : IDFBlocks)
978 if (!MSSA->getMemoryAccess(BBIDF)) {
979 auto *IDFPhi = MSSA->createMemoryPhi(BBIDF);
980 InsertedPhis.push_back(IDFPhi);
981 PhisToFill.insert(IDFPhi);
983 // Then update or insert their correct incoming values.
984 for (auto *BBIDF : IDFBlocks) {
985 auto *IDFPhi = MSSA->getMemoryAccess(BBIDF);
986 assert(IDFPhi && "Phi must exist");
987 if (!PhisToFill.count(IDFPhi)) {
988 // Update existing Phi.
989 // FIXME: some updates may be redundant, try to optimize and skip some.
990 for (unsigned I = 0, E = IDFPhi->getNumIncomingValues(); I < E; ++I)
991 IDFPhi->setIncomingValue(I, GetLastDef(IDFPhi->getIncomingBlock(I)));
992 } else {
993 for (auto &Pair : children<GraphDiffInvBBPair>({GD, BBIDF})) {
994 BasicBlock *Pi = Pair.second;
995 IDFPhi->addIncoming(GetLastDef(Pi), Pi);
1001 // Now for all defs in BlocksWithDefsToReplace, if there are uses they no
1002 // longer dominate, replace those with the closest dominating def.
1003 // This will also update optimized accesses, as they're also uses.
1004 for (auto *BlockWithDefsToReplace : BlocksWithDefsToReplace) {
1005 if (auto DefsList = MSSA->getWritableBlockDefs(BlockWithDefsToReplace)) {
1006 for (auto &DefToReplaceUses : *DefsList) {
1007 BasicBlock *DominatingBlock = DefToReplaceUses.getBlock();
1008 Value::use_iterator UI = DefToReplaceUses.use_begin(),
1009 E = DefToReplaceUses.use_end();
1010 for (; UI != E;) {
1011 Use &U = *UI;
1012 ++UI;
1013 MemoryAccess *Usr = dyn_cast<MemoryAccess>(U.getUser());
1014 if (MemoryPhi *UsrPhi = dyn_cast<MemoryPhi>(Usr)) {
1015 BasicBlock *DominatedBlock = UsrPhi->getIncomingBlock(U);
1016 if (!DT.dominates(DominatingBlock, DominatedBlock))
1017 U.set(GetLastDef(DominatedBlock));
1018 } else {
1019 BasicBlock *DominatedBlock = Usr->getBlock();
1020 if (!DT.dominates(DominatingBlock, DominatedBlock)) {
1021 if (auto *DomBlPhi = MSSA->getMemoryAccess(DominatedBlock))
1022 U.set(DomBlPhi);
1023 else {
1024 auto *IDom = DT.getNode(DominatedBlock)->getIDom();
1025 assert(IDom && "Block must have a valid IDom.");
1026 U.set(GetLastDef(IDom->getBlock()));
1028 cast<MemoryUseOrDef>(Usr)->resetOptimized();
1035 tryRemoveTrivialPhis(InsertedPhis);
1038 // Move What before Where in the MemorySSA IR.
1039 template <class WhereType>
1040 void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1041 WhereType Where) {
1042 // Mark MemoryPhi users of What not to be optimized.
1043 for (auto *U : What->users())
1044 if (MemoryPhi *PhiUser = dyn_cast<MemoryPhi>(U))
1045 NonOptPhis.insert(PhiUser);
1047 // Replace all our users with our defining access.
1048 What->replaceAllUsesWith(What->getDefiningAccess());
1050 // Let MemorySSA take care of moving it around in the lists.
1051 MSSA->moveTo(What, BB, Where);
1053 // Now reinsert it into the IR and do whatever fixups needed.
1054 if (auto *MD = dyn_cast<MemoryDef>(What))
1055 insertDef(MD);
1056 else
1057 insertUse(cast<MemoryUse>(What));
1059 // Clear dangling pointers. We added all MemoryPhi users, but not all
1060 // of them are removed by fixupDefs().
1061 NonOptPhis.clear();
1064 // Move What before Where in the MemorySSA IR.
1065 void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
1066 moveTo(What, Where->getBlock(), Where->getIterator());
1069 // Move What after Where in the MemorySSA IR.
1070 void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
1071 moveTo(What, Where->getBlock(), ++Where->getIterator());
1074 void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB,
1075 MemorySSA::InsertionPlace Where) {
1076 return moveTo(What, BB, Where);
1079 // All accesses in To used to be in From. Move to end and update access lists.
1080 void MemorySSAUpdater::moveAllAccesses(BasicBlock *From, BasicBlock *To,
1081 Instruction *Start) {
1083 MemorySSA::AccessList *Accs = MSSA->getWritableBlockAccesses(From);
1084 if (!Accs)
1085 return;
1087 MemoryAccess *FirstInNew = nullptr;
1088 for (Instruction &I : make_range(Start->getIterator(), To->end()))
1089 if ((FirstInNew = MSSA->getMemoryAccess(&I)))
1090 break;
1091 if (!FirstInNew)
1092 return;
1094 auto *MUD = cast<MemoryUseOrDef>(FirstInNew);
1095 do {
1096 auto NextIt = ++MUD->getIterator();
1097 MemoryUseOrDef *NextMUD = (!Accs || NextIt == Accs->end())
1098 ? nullptr
1099 : cast<MemoryUseOrDef>(&*NextIt);
1100 MSSA->moveTo(MUD, To, MemorySSA::End);
1101 // Moving MUD from Accs in the moveTo above, may delete Accs, so we need to
1102 // retrieve it again.
1103 Accs = MSSA->getWritableBlockAccesses(From);
1104 MUD = NextMUD;
1105 } while (MUD);
1108 void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock *From,
1109 BasicBlock *To,
1110 Instruction *Start) {
1111 assert(MSSA->getBlockAccesses(To) == nullptr &&
1112 "To block is expected to be free of MemoryAccesses.");
1113 moveAllAccesses(From, To, Start);
1114 for (BasicBlock *Succ : successors(To))
1115 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
1116 MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
1119 void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To,
1120 Instruction *Start) {
1121 assert(From->getSinglePredecessor() == To &&
1122 "From block is expected to have a single predecessor (To).");
1123 moveAllAccesses(From, To, Start);
1124 for (BasicBlock *Succ : successors(From))
1125 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
1126 MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
1129 /// If all arguments of a MemoryPHI are defined by the same incoming
1130 /// argument, return that argument.
1131 static MemoryAccess *onlySingleValue(MemoryPhi *MP) {
1132 MemoryAccess *MA = nullptr;
1134 for (auto &Arg : MP->operands()) {
1135 if (!MA)
1136 MA = cast<MemoryAccess>(Arg);
1137 else if (MA != Arg)
1138 return nullptr;
1140 return MA;
1143 void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor(
1144 BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds,
1145 bool IdenticalEdgesWereMerged) {
1146 assert(!MSSA->getWritableBlockAccesses(New) &&
1147 "Access list should be null for a new block.");
1148 MemoryPhi *Phi = MSSA->getMemoryAccess(Old);
1149 if (!Phi)
1150 return;
1151 if (Old->hasNPredecessors(1)) {
1152 assert(pred_size(New) == Preds.size() &&
1153 "Should have moved all predecessors.");
1154 MSSA->moveTo(Phi, New, MemorySSA::Beginning);
1155 } else {
1156 assert(!Preds.empty() && "Must be moving at least one predecessor to the "
1157 "new immediate predecessor.");
1158 MemoryPhi *NewPhi = MSSA->createMemoryPhi(New);
1159 SmallPtrSet<BasicBlock *, 16> PredsSet(Preds.begin(), Preds.end());
1160 // Currently only support the case of removing a single incoming edge when
1161 // identical edges were not merged.
1162 if (!IdenticalEdgesWereMerged)
1163 assert(PredsSet.size() == Preds.size() &&
1164 "If identical edges were not merged, we cannot have duplicate "
1165 "blocks in the predecessors");
1166 Phi->unorderedDeleteIncomingIf([&](MemoryAccess *MA, BasicBlock *B) {
1167 if (PredsSet.count(B)) {
1168 NewPhi->addIncoming(MA, B);
1169 if (!IdenticalEdgesWereMerged)
1170 PredsSet.erase(B);
1171 return true;
1173 return false;
1175 Phi->addIncoming(NewPhi, New);
1176 if (onlySingleValue(NewPhi))
1177 removeMemoryAccess(NewPhi);
1181 void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA, bool OptimizePhis) {
1182 assert(!MSSA->isLiveOnEntryDef(MA) &&
1183 "Trying to remove the live on entry def");
1184 // We can only delete phi nodes if they have no uses, or we can replace all
1185 // uses with a single definition.
1186 MemoryAccess *NewDefTarget = nullptr;
1187 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) {
1188 // Note that it is sufficient to know that all edges of the phi node have
1189 // the same argument. If they do, by the definition of dominance frontiers
1190 // (which we used to place this phi), that argument must dominate this phi,
1191 // and thus, must dominate the phi's uses, and so we will not hit the assert
1192 // below.
1193 NewDefTarget = onlySingleValue(MP);
1194 assert((NewDefTarget || MP->use_empty()) &&
1195 "We can't delete this memory phi");
1196 } else {
1197 NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess();
1200 SmallSetVector<MemoryPhi *, 4> PhisToCheck;
1202 // Re-point the uses at our defining access
1203 if (!isa<MemoryUse>(MA) && !MA->use_empty()) {
1204 // Reset optimized on users of this store, and reset the uses.
1205 // A few notes:
1206 // 1. This is a slightly modified version of RAUW to avoid walking the
1207 // uses twice here.
1208 // 2. If we wanted to be complete, we would have to reset the optimized
1209 // flags on users of phi nodes if doing the below makes a phi node have all
1210 // the same arguments. Instead, we prefer users to removeMemoryAccess those
1211 // phi nodes, because doing it here would be N^3.
1212 if (MA->hasValueHandle())
1213 ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget);
1214 // Note: We assume MemorySSA is not used in metadata since it's not really
1215 // part of the IR.
1217 while (!MA->use_empty()) {
1218 Use &U = *MA->use_begin();
1219 if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser()))
1220 MUD->resetOptimized();
1221 if (OptimizePhis)
1222 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U.getUser()))
1223 PhisToCheck.insert(MP);
1224 U.set(NewDefTarget);
1228 // The call below to erase will destroy MA, so we can't change the order we
1229 // are doing things here
1230 MSSA->removeFromLookups(MA);
1231 MSSA->removeFromLists(MA);
1233 // Optionally optimize Phi uses. This will recursively remove trivial phis.
1234 if (!PhisToCheck.empty()) {
1235 SmallVector<WeakVH, 16> PhisToOptimize{PhisToCheck.begin(),
1236 PhisToCheck.end()};
1237 PhisToCheck.clear();
1239 unsigned PhisSize = PhisToOptimize.size();
1240 while (PhisSize-- > 0)
1241 if (MemoryPhi *MP =
1242 cast_or_null<MemoryPhi>(PhisToOptimize.pop_back_val())) {
1243 auto OperRange = MP->operands();
1244 tryRemoveTrivialPhi(MP, OperRange);
1249 void MemorySSAUpdater::removeBlocks(
1250 const SmallSetVector<BasicBlock *, 8> &DeadBlocks) {
1251 // First delete all uses of BB in MemoryPhis.
1252 for (BasicBlock *BB : DeadBlocks) {
1253 Instruction *TI = BB->getTerminator();
1254 assert(TI && "Basic block expected to have a terminator instruction");
1255 for (BasicBlock *Succ : successors(TI))
1256 if (!DeadBlocks.count(Succ))
1257 if (MemoryPhi *MP = MSSA->getMemoryAccess(Succ)) {
1258 MP->unorderedDeleteIncomingBlock(BB);
1259 if (MP->getNumIncomingValues() == 1)
1260 removeMemoryAccess(MP);
1262 // Drop all references of all accesses in BB
1263 if (MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB))
1264 for (MemoryAccess &MA : *Acc)
1265 MA.dropAllReferences();
1268 // Next, delete all memory accesses in each block
1269 for (BasicBlock *BB : DeadBlocks) {
1270 MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB);
1271 if (!Acc)
1272 continue;
1273 for (auto AB = Acc->begin(), AE = Acc->end(); AB != AE;) {
1274 MemoryAccess *MA = &*AB;
1275 ++AB;
1276 MSSA->removeFromLookups(MA);
1277 MSSA->removeFromLists(MA);
1282 void MemorySSAUpdater::tryRemoveTrivialPhis(ArrayRef<WeakVH> UpdatedPHIs) {
1283 for (auto &VH : UpdatedPHIs)
1284 if (auto *MPhi = cast_or_null<MemoryPhi>(VH)) {
1285 auto OperRange = MPhi->operands();
1286 tryRemoveTrivialPhi(MPhi, OperRange);
1290 void MemorySSAUpdater::changeToUnreachable(const Instruction *I) {
1291 const BasicBlock *BB = I->getParent();
1292 // Remove memory accesses in BB for I and all following instructions.
1293 auto BBI = I->getIterator(), BBE = BB->end();
1294 // FIXME: If this becomes too expensive, iterate until the first instruction
1295 // with a memory access, then iterate over MemoryAccesses.
1296 while (BBI != BBE)
1297 removeMemoryAccess(&*(BBI++));
1298 // Update phis in BB's successors to remove BB.
1299 SmallVector<WeakVH, 16> UpdatedPHIs;
1300 for (const BasicBlock *Successor : successors(BB)) {
1301 removeDuplicatePhiEdgesBetween(BB, Successor);
1302 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Successor)) {
1303 MPhi->unorderedDeleteIncomingBlock(BB);
1304 UpdatedPHIs.push_back(MPhi);
1307 // Optimize trivial phis.
1308 tryRemoveTrivialPhis(UpdatedPHIs);
1311 void MemorySSAUpdater::changeCondBranchToUnconditionalTo(const BranchInst *BI,
1312 const BasicBlock *To) {
1313 const BasicBlock *BB = BI->getParent();
1314 SmallVector<WeakVH, 16> UpdatedPHIs;
1315 for (const BasicBlock *Succ : successors(BB)) {
1316 removeDuplicatePhiEdgesBetween(BB, Succ);
1317 if (Succ != To)
1318 if (auto *MPhi = MSSA->getMemoryAccess(Succ)) {
1319 MPhi->unorderedDeleteIncomingBlock(BB);
1320 UpdatedPHIs.push_back(MPhi);
1323 // Optimize trivial phis.
1324 tryRemoveTrivialPhis(UpdatedPHIs);
1327 MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB(
1328 Instruction *I, MemoryAccess *Definition, const BasicBlock *BB,
1329 MemorySSA::InsertionPlace Point) {
1330 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1331 MSSA->insertIntoListsForBlock(NewAccess, BB, Point);
1332 return NewAccess;
1335 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore(
1336 Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) {
1337 assert(I->getParent() == InsertPt->getBlock() &&
1338 "New and old access must be in the same block");
1339 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1340 MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
1341 InsertPt->getIterator());
1342 return NewAccess;
1345 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter(
1346 Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) {
1347 assert(I->getParent() == InsertPt->getBlock() &&
1348 "New and old access must be in the same block");
1349 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1350 MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
1351 ++InsertPt->getIterator());
1352 return NewAccess;