1 //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------===//
9 // This file implements the MemorySSAUpdater class.
11 //===----------------------------------------------------------------===//
12 #include "llvm/Analysis/MemorySSAUpdater.h"
13 #include "llvm/ADT/STLExtras.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/Analysis/IteratedDominanceFrontier.h"
17 #include "llvm/Analysis/MemorySSA.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/Dominators.h"
20 #include "llvm/IR/GlobalVariable.h"
21 #include "llvm/IR/IRBuilder.h"
22 #include "llvm/IR/LLVMContext.h"
23 #include "llvm/IR/Metadata.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/FormattedStream.h"
29 #define DEBUG_TYPE "memoryssa"
32 // This is the marker algorithm from "Simple and Efficient Construction of
33 // Static Single Assignment Form"
34 // The simple, non-marker algorithm places phi nodes at any join
35 // Here, we place markers, and only place phi nodes if they end up necessary.
36 // They are only necessary if they break a cycle (IE we recursively visit
37 // ourselves again), or we discover, while getting the value of the operands,
38 // that there are two or more definitions needing to be merged.
39 // This still will leave non-minimal form in the case of irreducible control
40 // flow, where phi nodes may be in cycles with themselves, but unnecessary.
41 MemoryAccess
*MemorySSAUpdater::getPreviousDefRecursive(
43 DenseMap
<BasicBlock
*, TrackingVH
<MemoryAccess
>> &CachedPreviousDef
) {
44 // First, do a cache lookup. Without this cache, certain CFG structures
45 // (like a series of if statements) take exponential time to visit.
46 auto Cached
= CachedPreviousDef
.find(BB
);
47 if (Cached
!= CachedPreviousDef
.end()) {
48 return Cached
->second
;
51 if (BasicBlock
*Pred
= BB
->getSinglePredecessor()) {
52 // Single predecessor case, just recurse, we can only have one definition.
53 MemoryAccess
*Result
= getPreviousDefFromEnd(Pred
, CachedPreviousDef
);
54 CachedPreviousDef
.insert({BB
, Result
});
58 if (VisitedBlocks
.count(BB
)) {
59 // We hit our node again, meaning we had a cycle, we must insert a phi
60 // node to break it so we have an operand. The only case this will
61 // insert useless phis is if we have irreducible control flow.
62 MemoryAccess
*Result
= MSSA
->createMemoryPhi(BB
);
63 CachedPreviousDef
.insert({BB
, Result
});
67 if (VisitedBlocks
.insert(BB
).second
) {
68 // Mark us visited so we can detect a cycle
69 SmallVector
<TrackingVH
<MemoryAccess
>, 8> PhiOps
;
71 // Recurse to get the values in our predecessors for placement of a
72 // potential phi node. This will insert phi nodes if we cycle in order to
73 // break the cycle and have an operand.
74 for (auto *Pred
: predecessors(BB
))
75 if (MSSA
->DT
->isReachableFromEntry(Pred
))
76 PhiOps
.push_back(getPreviousDefFromEnd(Pred
, CachedPreviousDef
));
78 PhiOps
.push_back(MSSA
->getLiveOnEntryDef());
80 // Now try to simplify the ops to avoid placing a phi.
81 // This may return null if we never created a phi yet, that's okay
82 MemoryPhi
*Phi
= dyn_cast_or_null
<MemoryPhi
>(MSSA
->getMemoryAccess(BB
));
84 // See if we can avoid the phi by simplifying it.
85 auto *Result
= tryRemoveTrivialPhi(Phi
, PhiOps
);
86 // If we couldn't simplify, we may have to create a phi
89 Phi
= MSSA
->createMemoryPhi(BB
);
91 // See if the existing phi operands match what we need.
92 // Unlike normal SSA, we only allow one phi node per block, so we can't just
94 if (Phi
->getNumOperands() != 0) {
95 // FIXME: Figure out whether this is dead code and if so remove it.
96 if (!std::equal(Phi
->op_begin(), Phi
->op_end(), PhiOps
.begin())) {
97 // These will have been filled in by the recursive read we did above.
98 llvm::copy(PhiOps
, Phi
->op_begin());
99 std::copy(pred_begin(BB
), pred_end(BB
), Phi
->block_begin());
103 for (auto *Pred
: predecessors(BB
))
104 Phi
->addIncoming(&*PhiOps
[i
++], Pred
);
105 InsertedPHIs
.push_back(Phi
);
110 // Set ourselves up for the next variable by resetting visited state.
111 VisitedBlocks
.erase(BB
);
112 CachedPreviousDef
.insert({BB
, Result
});
115 llvm_unreachable("Should have hit one of the three cases above");
118 // This starts at the memory access, and goes backwards in the block to find the
119 // previous definition. If a definition is not found the block of the access,
120 // it continues globally, creating phi nodes to ensure we have a single
122 MemoryAccess
*MemorySSAUpdater::getPreviousDef(MemoryAccess
*MA
) {
123 if (auto *LocalResult
= getPreviousDefInBlock(MA
))
125 DenseMap
<BasicBlock
*, TrackingVH
<MemoryAccess
>> CachedPreviousDef
;
126 return getPreviousDefRecursive(MA
->getBlock(), CachedPreviousDef
);
129 // This starts at the memory access, and goes backwards in the block to the find
130 // the previous definition. If the definition is not found in the block of the
131 // access, it returns nullptr.
132 MemoryAccess
*MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess
*MA
) {
133 auto *Defs
= MSSA
->getWritableBlockDefs(MA
->getBlock());
135 // It's possible there are no defs, or we got handed the first def to start.
137 // If this is a def, we can just use the def iterators.
138 if (!isa
<MemoryUse
>(MA
)) {
139 auto Iter
= MA
->getReverseDefsIterator();
141 if (Iter
!= Defs
->rend())
144 // Otherwise, have to walk the all access iterator.
145 auto End
= MSSA
->getWritableBlockAccesses(MA
->getBlock())->rend();
146 for (auto &U
: make_range(++MA
->getReverseIterator(), End
))
147 if (!isa
<MemoryUse
>(U
))
148 return cast
<MemoryAccess
>(&U
);
149 // Note that if MA comes before Defs->begin(), we won't hit a def.
156 // This starts at the end of block
157 MemoryAccess
*MemorySSAUpdater::getPreviousDefFromEnd(
159 DenseMap
<BasicBlock
*, TrackingVH
<MemoryAccess
>> &CachedPreviousDef
) {
160 auto *Defs
= MSSA
->getWritableBlockDefs(BB
);
163 CachedPreviousDef
.insert({BB
, &*Defs
->rbegin()});
164 return &*Defs
->rbegin();
167 return getPreviousDefRecursive(BB
, CachedPreviousDef
);
169 // Recurse over a set of phi uses to eliminate the trivial ones
170 MemoryAccess
*MemorySSAUpdater::recursePhi(MemoryAccess
*Phi
) {
173 TrackingVH
<MemoryAccess
> Res(Phi
);
174 SmallVector
<TrackingVH
<Value
>, 8> Uses
;
175 std::copy(Phi
->user_begin(), Phi
->user_end(), std::back_inserter(Uses
));
176 for (auto &U
: Uses
) {
177 if (MemoryPhi
*UsePhi
= dyn_cast
<MemoryPhi
>(&*U
)) {
178 auto OperRange
= UsePhi
->operands();
179 tryRemoveTrivialPhi(UsePhi
, OperRange
);
185 // Eliminate trivial phis
186 // Phis are trivial if they are defined either by themselves, or all the same
188 // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c)
189 // We recursively try to remove them.
190 template <class RangeType
>
191 MemoryAccess
*MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi
*Phi
,
192 RangeType
&Operands
) {
193 // Bail out on non-opt Phis.
194 if (NonOptPhis
.count(Phi
))
197 // Detect equal or self arguments
198 MemoryAccess
*Same
= nullptr;
199 for (auto &Op
: Operands
) {
200 // If the same or self, good so far
201 if (Op
== Phi
|| Op
== Same
)
203 // not the same, return the phi since it's not eliminatable by us
206 Same
= cast
<MemoryAccess
>(&*Op
);
208 // Never found a non-self reference, the phi is undef
210 return MSSA
->getLiveOnEntryDef();
212 Phi
->replaceAllUsesWith(Same
);
213 removeMemoryAccess(Phi
);
216 // We should only end up recursing in case we replaced something, in which
217 // case, we may have made other Phis trivial.
218 return recursePhi(Same
);
221 void MemorySSAUpdater::insertUse(MemoryUse
*MU
) {
222 InsertedPHIs
.clear();
223 MU
->setDefiningAccess(getPreviousDef(MU
));
224 // Unlike for defs, there is no extra work to do. Because uses do not create
225 // new may-defs, there are only two cases:
227 // 1. There was a def already below us, and therefore, we should not have
228 // created a phi node because it was already needed for the def.
230 // 2. There is no def below us, and therefore, there is no extra renaming work
234 // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef.
235 static void setMemoryPhiValueForBlock(MemoryPhi
*MP
, const BasicBlock
*BB
,
236 MemoryAccess
*NewDef
) {
237 // Replace any operand with us an incoming block with the new defining
239 int i
= MP
->getBasicBlockIndex(BB
);
240 assert(i
!= -1 && "Should have found the basic block in the phi");
241 // We can't just compare i against getNumOperands since one is signed and the
242 // other not. So use it to index into the block iterator.
243 for (auto BBIter
= MP
->block_begin() + i
; BBIter
!= MP
->block_end();
247 MP
->setIncomingValue(i
, NewDef
);
252 // A brief description of the algorithm:
253 // First, we compute what should define the new def, using the SSA
254 // construction algorithm.
255 // Then, we update the defs below us (and any new phi nodes) in the graph to
256 // point to the correct new defs, to ensure we only have one variable, and no
257 // disconnected stores.
258 void MemorySSAUpdater::insertDef(MemoryDef
*MD
, bool RenameUses
) {
259 InsertedPHIs
.clear();
261 // See if we had a local def, and if not, go hunting.
262 MemoryAccess
*DefBefore
= getPreviousDef(MD
);
263 bool DefBeforeSameBlock
= DefBefore
->getBlock() == MD
->getBlock();
265 // There is a def before us, which means we can replace any store/phi uses
266 // of that thing with us, since we are in the way of whatever was there
268 // We now define that def's memorydefs and memoryphis
269 if (DefBeforeSameBlock
) {
270 for (auto UI
= DefBefore
->use_begin(), UE
= DefBefore
->use_end();
273 // Leave the MemoryUses alone.
274 // Also make sure we skip ourselves to avoid self references.
275 if (isa
<MemoryUse
>(U
.getUser()) || U
.getUser() == MD
)
277 // Defs are automatically unoptimized when the user is set to MD below,
278 // because the isOptimized() call will fail to find the same ID.
283 // and that def is now our defining access.
284 MD
->setDefiningAccess(DefBefore
);
286 // Remember the index where we may insert new phis below.
287 unsigned NewPhiIndex
= InsertedPHIs
.size();
289 SmallVector
<WeakVH
, 8> FixupList(InsertedPHIs
.begin(), InsertedPHIs
.end());
290 if (!DefBeforeSameBlock
) {
291 // If there was a local def before us, we must have the same effect it
292 // did. Because every may-def is the same, any phis/etc we would create, it
293 // would also have created. If there was no local def before us, we
294 // performed a global update, and have to search all successors and make
295 // sure we update the first def in each of them (following all paths until
296 // we hit the first def along each path). This may also insert phi nodes.
297 // TODO: There are other cases we can skip this work, such as when we have a
298 // single successor, and only used a straight line of single pred blocks
299 // backwards to find the def. To make that work, we'd have to track whether
300 // getDefRecursive only ever used the single predecessor case. These types
301 // of paths also only exist in between CFG simplifications.
303 // If this is the first def in the block and this insert is in an arbitrary
304 // place, compute IDF and place phis.
305 auto Iter
= MD
->getDefsIterator();
307 auto IterEnd
= MSSA
->getBlockDefs(MD
->getBlock())->end();
308 if (Iter
== IterEnd
) {
309 ForwardIDFCalculator
IDFs(*MSSA
->DT
);
310 SmallVector
<BasicBlock
*, 32> IDFBlocks
;
311 SmallPtrSet
<BasicBlock
*, 2> DefiningBlocks
;
312 DefiningBlocks
.insert(MD
->getBlock());
313 IDFs
.setDefiningBlocks(DefiningBlocks
);
314 IDFs
.calculate(IDFBlocks
);
315 SmallVector
<AssertingVH
<MemoryPhi
>, 4> NewInsertedPHIs
;
316 for (auto *BBIDF
: IDFBlocks
)
317 if (!MSSA
->getMemoryAccess(BBIDF
)) {
318 auto *MPhi
= MSSA
->createMemoryPhi(BBIDF
);
319 NewInsertedPHIs
.push_back(MPhi
);
320 // Add the phis created into the IDF blocks to NonOptPhis, so they are
321 // not optimized out as trivial by the call to getPreviousDefFromEnd
322 // below. Once they are complete, all these Phis are added to the
323 // FixupList, and removed from NonOptPhis inside fixupDefs().
324 NonOptPhis
.insert(MPhi
);
327 for (auto &MPhi
: NewInsertedPHIs
) {
328 auto *BBIDF
= MPhi
->getBlock();
329 for (auto *Pred
: predecessors(BBIDF
)) {
330 DenseMap
<BasicBlock
*, TrackingVH
<MemoryAccess
>> CachedPreviousDef
;
331 MPhi
->addIncoming(getPreviousDefFromEnd(Pred
, CachedPreviousDef
),
336 // Re-take the index where we're adding the new phis, because the above
337 // call to getPreviousDefFromEnd, may have inserted into InsertedPHIs.
338 NewPhiIndex
= InsertedPHIs
.size();
339 for (auto &MPhi
: NewInsertedPHIs
) {
340 InsertedPHIs
.push_back(&*MPhi
);
341 FixupList
.push_back(&*MPhi
);
345 FixupList
.push_back(MD
);
348 // Remember the index where we stopped inserting new phis above, since the
349 // fixupDefs call in the loop below may insert more, that are already minimal.
350 unsigned NewPhiIndexEnd
= InsertedPHIs
.size();
352 while (!FixupList
.empty()) {
353 unsigned StartingPHISize
= InsertedPHIs
.size();
354 fixupDefs(FixupList
);
356 // Put any new phis on the fixup list, and process them
357 FixupList
.append(InsertedPHIs
.begin() + StartingPHISize
, InsertedPHIs
.end());
360 // Optimize potentially non-minimal phis added in this method.
361 unsigned NewPhiSize
= NewPhiIndexEnd
- NewPhiIndex
;
363 tryRemoveTrivialPhis(ArrayRef
<WeakVH
>(&InsertedPHIs
[NewPhiIndex
], NewPhiSize
));
365 // Now that all fixups are done, rename all uses if we are asked.
367 SmallPtrSet
<BasicBlock
*, 16> Visited
;
368 BasicBlock
*StartBlock
= MD
->getBlock();
369 // We are guaranteed there is a def in the block, because we just got it
370 // handed to us in this function.
371 MemoryAccess
*FirstDef
= &*MSSA
->getWritableBlockDefs(StartBlock
)->begin();
372 // Convert to incoming value if it's a memorydef. A phi *is* already an
374 if (auto *MD
= dyn_cast
<MemoryDef
>(FirstDef
))
375 FirstDef
= MD
->getDefiningAccess();
377 MSSA
->renamePass(MD
->getBlock(), FirstDef
, Visited
);
378 // We just inserted a phi into this block, so the incoming value will become
379 // the phi anyway, so it does not matter what we pass.
380 for (auto &MP
: InsertedPHIs
) {
381 MemoryPhi
*Phi
= dyn_cast_or_null
<MemoryPhi
>(MP
);
383 MSSA
->renamePass(Phi
->getBlock(), nullptr, Visited
);
388 void MemorySSAUpdater::fixupDefs(const SmallVectorImpl
<WeakVH
> &Vars
) {
389 SmallPtrSet
<const BasicBlock
*, 8> Seen
;
390 SmallVector
<const BasicBlock
*, 16> Worklist
;
391 for (auto &Var
: Vars
) {
392 MemoryAccess
*NewDef
= dyn_cast_or_null
<MemoryAccess
>(Var
);
395 // First, see if there is a local def after the operand.
396 auto *Defs
= MSSA
->getWritableBlockDefs(NewDef
->getBlock());
397 auto DefIter
= NewDef
->getDefsIterator();
399 // The temporary Phi is being fixed, unmark it for not to optimize.
400 if (MemoryPhi
*Phi
= dyn_cast
<MemoryPhi
>(NewDef
))
401 NonOptPhis
.erase(Phi
);
403 // If there is a local def after us, we only have to rename that.
404 if (++DefIter
!= Defs
->end()) {
405 cast
<MemoryDef
>(DefIter
)->setDefiningAccess(NewDef
);
409 // Otherwise, we need to search down through the CFG.
410 // For each of our successors, handle it directly if their is a phi, or
411 // place on the fixup worklist.
412 for (const auto *S
: successors(NewDef
->getBlock())) {
413 if (auto *MP
= MSSA
->getMemoryAccess(S
))
414 setMemoryPhiValueForBlock(MP
, NewDef
->getBlock(), NewDef
);
416 Worklist
.push_back(S
);
419 while (!Worklist
.empty()) {
420 const BasicBlock
*FixupBlock
= Worklist
.back();
423 // Get the first def in the block that isn't a phi node.
424 if (auto *Defs
= MSSA
->getWritableBlockDefs(FixupBlock
)) {
425 auto *FirstDef
= &*Defs
->begin();
426 // The loop above and below should have taken care of phi nodes
427 assert(!isa
<MemoryPhi
>(FirstDef
) &&
428 "Should have already handled phi nodes!");
429 // We are now this def's defining access, make sure we actually dominate
431 assert(MSSA
->dominates(NewDef
, FirstDef
) &&
432 "Should have dominated the new access");
434 // This may insert new phi nodes, because we are not guaranteed the
435 // block we are processing has a single pred, and depending where the
436 // store was inserted, it may require phi nodes below it.
437 cast
<MemoryDef
>(FirstDef
)->setDefiningAccess(getPreviousDef(FirstDef
));
440 // We didn't find a def, so we must continue.
441 for (const auto *S
: successors(FixupBlock
)) {
442 // If there is a phi node, handle it.
443 // Otherwise, put the block on the worklist
444 if (auto *MP
= MSSA
->getMemoryAccess(S
))
445 setMemoryPhiValueForBlock(MP
, FixupBlock
, NewDef
);
447 // If we cycle, we should have ended up at a phi node that we already
448 // processed. FIXME: Double check this
449 if (!Seen
.insert(S
).second
)
451 Worklist
.push_back(S
);
458 void MemorySSAUpdater::removeEdge(BasicBlock
*From
, BasicBlock
*To
) {
459 if (MemoryPhi
*MPhi
= MSSA
->getMemoryAccess(To
)) {
460 MPhi
->unorderedDeleteIncomingBlock(From
);
461 if (MPhi
->getNumIncomingValues() == 1)
462 removeMemoryAccess(MPhi
);
466 void MemorySSAUpdater::removeDuplicatePhiEdgesBetween(const BasicBlock
*From
,
467 const BasicBlock
*To
) {
468 if (MemoryPhi
*MPhi
= MSSA
->getMemoryAccess(To
)) {
470 MPhi
->unorderedDeleteIncomingIf([&](const MemoryAccess
*, BasicBlock
*B
) {
478 if (MPhi
->getNumIncomingValues() == 1)
479 removeMemoryAccess(MPhi
);
483 void MemorySSAUpdater::cloneUsesAndDefs(BasicBlock
*BB
, BasicBlock
*NewBB
,
484 const ValueToValueMapTy
&VMap
,
485 PhiToDefMap
&MPhiMap
,
486 bool CloneWasSimplified
) {
487 auto GetNewDefiningAccess
= [&](MemoryAccess
*MA
) -> MemoryAccess
* {
488 MemoryAccess
*InsnDefining
= MA
;
489 if (MemoryUseOrDef
*DefMUD
= dyn_cast
<MemoryUseOrDef
>(InsnDefining
)) {
490 if (!MSSA
->isLiveOnEntryDef(DefMUD
)) {
491 Instruction
*DefMUDI
= DefMUD
->getMemoryInst();
492 assert(DefMUDI
&& "Found MemoryUseOrDef with no Instruction.");
493 if (Instruction
*NewDefMUDI
=
494 cast_or_null
<Instruction
>(VMap
.lookup(DefMUDI
)))
495 InsnDefining
= MSSA
->getMemoryAccess(NewDefMUDI
);
498 MemoryPhi
*DefPhi
= cast
<MemoryPhi
>(InsnDefining
);
499 if (MemoryAccess
*NewDefPhi
= MPhiMap
.lookup(DefPhi
))
500 InsnDefining
= NewDefPhi
;
502 assert(InsnDefining
&& "Defining instruction cannot be nullptr.");
506 const MemorySSA::AccessList
*Acc
= MSSA
->getBlockAccesses(BB
);
509 for (const MemoryAccess
&MA
: *Acc
) {
510 if (const MemoryUseOrDef
*MUD
= dyn_cast
<MemoryUseOrDef
>(&MA
)) {
511 Instruction
*Insn
= MUD
->getMemoryInst();
512 // Entry does not exist if the clone of the block did not clone all
513 // instructions. This occurs in LoopRotate when cloning instructions
514 // from the old header to the old preheader. The cloned instruction may
515 // also be a simplified Value, not an Instruction (see LoopRotate).
516 // Also in LoopRotate, even when it's an instruction, due to it being
517 // simplified, it may be a Use rather than a Def, so we cannot use MUD as
518 // template. Calls coming from updateForClonedBlockIntoPred, ensure this.
519 if (Instruction
*NewInsn
=
520 dyn_cast_or_null
<Instruction
>(VMap
.lookup(Insn
))) {
521 MemoryAccess
*NewUseOrDef
= MSSA
->createDefinedAccess(
522 NewInsn
, GetNewDefiningAccess(MUD
->getDefiningAccess()),
523 CloneWasSimplified
? nullptr : MUD
);
524 MSSA
->insertIntoListsForBlock(NewUseOrDef
, NewBB
, MemorySSA::End
);
530 void MemorySSAUpdater::updatePhisWhenInsertingUniqueBackedgeBlock(
531 BasicBlock
*Header
, BasicBlock
*Preheader
, BasicBlock
*BEBlock
) {
532 auto *MPhi
= MSSA
->getMemoryAccess(Header
);
536 // Create phi node in the backedge block and populate it with the same
537 // incoming values as MPhi. Skip incoming values coming from Preheader.
538 auto *NewMPhi
= MSSA
->createMemoryPhi(BEBlock
);
539 bool HasUniqueIncomingValue
= true;
540 MemoryAccess
*UniqueValue
= nullptr;
541 for (unsigned I
= 0, E
= MPhi
->getNumIncomingValues(); I
!= E
; ++I
) {
542 BasicBlock
*IBB
= MPhi
->getIncomingBlock(I
);
543 MemoryAccess
*IV
= MPhi
->getIncomingValue(I
);
544 if (IBB
!= Preheader
) {
545 NewMPhi
->addIncoming(IV
, IBB
);
546 if (HasUniqueIncomingValue
) {
549 else if (UniqueValue
!= IV
)
550 HasUniqueIncomingValue
= false;
555 // Update incoming edges into MPhi. Remove all but the incoming edge from
556 // Preheader. Add an edge from NewMPhi
557 auto *AccFromPreheader
= MPhi
->getIncomingValueForBlock(Preheader
);
558 MPhi
->setIncomingValue(0, AccFromPreheader
);
559 MPhi
->setIncomingBlock(0, Preheader
);
560 for (unsigned I
= MPhi
->getNumIncomingValues() - 1; I
>= 1; --I
)
561 MPhi
->unorderedDeleteIncoming(I
);
562 MPhi
->addIncoming(NewMPhi
, BEBlock
);
564 // If NewMPhi is a trivial phi, remove it. Its use in the header MPhi will be
565 // replaced with the unique value.
566 if (HasUniqueIncomingValue
)
567 removeMemoryAccess(NewMPhi
);
570 void MemorySSAUpdater::updateForClonedLoop(const LoopBlocksRPO
&LoopBlocks
,
571 ArrayRef
<BasicBlock
*> ExitBlocks
,
572 const ValueToValueMapTy
&VMap
,
573 bool IgnoreIncomingWithNoClones
) {
576 auto FixPhiIncomingValues
= [&](MemoryPhi
*Phi
, MemoryPhi
*NewPhi
) {
577 assert(Phi
&& NewPhi
&& "Invalid Phi nodes.");
578 BasicBlock
*NewPhiBB
= NewPhi
->getBlock();
579 SmallPtrSet
<BasicBlock
*, 4> NewPhiBBPreds(pred_begin(NewPhiBB
),
581 for (unsigned It
= 0, E
= Phi
->getNumIncomingValues(); It
< E
; ++It
) {
582 MemoryAccess
*IncomingAccess
= Phi
->getIncomingValue(It
);
583 BasicBlock
*IncBB
= Phi
->getIncomingBlock(It
);
585 if (BasicBlock
*NewIncBB
= cast_or_null
<BasicBlock
>(VMap
.lookup(IncBB
)))
587 else if (IgnoreIncomingWithNoClones
)
590 // Now we have IncBB, and will need to add incoming from it to NewPhi.
592 // If IncBB is not a predecessor of NewPhiBB, then do not add it.
593 // NewPhiBB was cloned without that edge.
594 if (!NewPhiBBPreds
.count(IncBB
))
597 // Determine incoming value and add it as incoming from IncBB.
598 if (MemoryUseOrDef
*IncMUD
= dyn_cast
<MemoryUseOrDef
>(IncomingAccess
)) {
599 if (!MSSA
->isLiveOnEntryDef(IncMUD
)) {
600 Instruction
*IncI
= IncMUD
->getMemoryInst();
601 assert(IncI
&& "Found MemoryUseOrDef with no Instruction.");
602 if (Instruction
*NewIncI
=
603 cast_or_null
<Instruction
>(VMap
.lookup(IncI
))) {
604 IncMUD
= MSSA
->getMemoryAccess(NewIncI
);
606 "MemoryUseOrDef cannot be null, all preds processed.");
609 NewPhi
->addIncoming(IncMUD
, IncBB
);
611 MemoryPhi
*IncPhi
= cast
<MemoryPhi
>(IncomingAccess
);
612 if (MemoryAccess
*NewDefPhi
= MPhiMap
.lookup(IncPhi
))
613 NewPhi
->addIncoming(NewDefPhi
, IncBB
);
615 NewPhi
->addIncoming(IncPhi
, IncBB
);
620 auto ProcessBlock
= [&](BasicBlock
*BB
) {
621 BasicBlock
*NewBlock
= cast_or_null
<BasicBlock
>(VMap
.lookup(BB
));
625 assert(!MSSA
->getWritableBlockAccesses(NewBlock
) &&
626 "Cloned block should have no accesses");
629 if (MemoryPhi
*MPhi
= MSSA
->getMemoryAccess(BB
)) {
630 MemoryPhi
*NewPhi
= MSSA
->createMemoryPhi(NewBlock
);
631 MPhiMap
[MPhi
] = NewPhi
;
633 // Update Uses and Defs.
634 cloneUsesAndDefs(BB
, NewBlock
, VMap
, MPhiMap
);
637 for (auto BB
: llvm::concat
<BasicBlock
*const>(LoopBlocks
, ExitBlocks
))
640 for (auto BB
: llvm::concat
<BasicBlock
*const>(LoopBlocks
, ExitBlocks
))
641 if (MemoryPhi
*MPhi
= MSSA
->getMemoryAccess(BB
))
642 if (MemoryAccess
*NewPhi
= MPhiMap
.lookup(MPhi
))
643 FixPhiIncomingValues(MPhi
, cast
<MemoryPhi
>(NewPhi
));
646 void MemorySSAUpdater::updateForClonedBlockIntoPred(
647 BasicBlock
*BB
, BasicBlock
*P1
, const ValueToValueMapTy
&VM
) {
648 // All defs/phis from outside BB that are used in BB, are valid uses in P1.
649 // Since those defs/phis must have dominated BB, and also dominate P1.
650 // Defs from BB being used in BB will be replaced with the cloned defs from
651 // VM. The uses of BB's Phi (if it exists) in BB will be replaced by the
652 // incoming def into the Phi from P1.
653 // Instructions cloned into the predecessor are in practice sometimes
654 // simplified, so disable the use of the template, and create an access from
657 if (MemoryPhi
*MPhi
= MSSA
->getMemoryAccess(BB
))
658 MPhiMap
[MPhi
] = MPhi
->getIncomingValueForBlock(P1
);
659 cloneUsesAndDefs(BB
, P1
, VM
, MPhiMap
, /*CloneWasSimplified=*/true);
662 template <typename Iter
>
663 void MemorySSAUpdater::privateUpdateExitBlocksForClonedLoop(
664 ArrayRef
<BasicBlock
*> ExitBlocks
, Iter ValuesBegin
, Iter ValuesEnd
,
666 SmallVector
<CFGUpdate
, 4> Updates
;
667 // Update/insert phis in all successors of exit blocks.
668 for (auto *Exit
: ExitBlocks
)
669 for (const ValueToValueMapTy
*VMap
: make_range(ValuesBegin
, ValuesEnd
))
670 if (BasicBlock
*NewExit
= cast_or_null
<BasicBlock
>(VMap
->lookup(Exit
))) {
671 BasicBlock
*ExitSucc
= NewExit
->getTerminator()->getSuccessor(0);
672 Updates
.push_back({DT
.Insert
, NewExit
, ExitSucc
});
674 applyInsertUpdates(Updates
, DT
);
677 void MemorySSAUpdater::updateExitBlocksForClonedLoop(
678 ArrayRef
<BasicBlock
*> ExitBlocks
, const ValueToValueMapTy
&VMap
,
680 const ValueToValueMapTy
*const Arr
[] = {&VMap
};
681 privateUpdateExitBlocksForClonedLoop(ExitBlocks
, std::begin(Arr
),
685 void MemorySSAUpdater::updateExitBlocksForClonedLoop(
686 ArrayRef
<BasicBlock
*> ExitBlocks
,
687 ArrayRef
<std::unique_ptr
<ValueToValueMapTy
>> VMaps
, DominatorTree
&DT
) {
688 auto GetPtr
= [&](const std::unique_ptr
<ValueToValueMapTy
> &I
) {
691 using MappedIteratorType
=
692 mapped_iterator
<const std::unique_ptr
<ValueToValueMapTy
> *,
694 auto MapBegin
= MappedIteratorType(VMaps
.begin(), GetPtr
);
695 auto MapEnd
= MappedIteratorType(VMaps
.end(), GetPtr
);
696 privateUpdateExitBlocksForClonedLoop(ExitBlocks
, MapBegin
, MapEnd
, DT
);
699 void MemorySSAUpdater::applyUpdates(ArrayRef
<CFGUpdate
> Updates
,
701 SmallVector
<CFGUpdate
, 4> RevDeleteUpdates
;
702 SmallVector
<CFGUpdate
, 4> InsertUpdates
;
703 for (auto &Update
: Updates
) {
704 if (Update
.getKind() == DT
.Insert
)
705 InsertUpdates
.push_back({DT
.Insert
, Update
.getFrom(), Update
.getTo()});
707 RevDeleteUpdates
.push_back({DT
.Insert
, Update
.getFrom(), Update
.getTo()});
710 if (!RevDeleteUpdates
.empty()) {
711 // Update for inserted edges: use newDT and snapshot CFG as if deletes had
713 // FIXME: This creates a new DT, so it's more expensive to do mix
714 // delete/inserts vs just inserts. We can do an incremental update on the DT
715 // to revert deletes, than re-delete the edges. Teaching DT to do this, is
716 // part of a pending cleanup.
717 DominatorTree
NewDT(DT
, RevDeleteUpdates
);
718 GraphDiff
<BasicBlock
*> GD(RevDeleteUpdates
);
719 applyInsertUpdates(InsertUpdates
, NewDT
, &GD
);
721 GraphDiff
<BasicBlock
*> GD
;
722 applyInsertUpdates(InsertUpdates
, DT
, &GD
);
725 // Update for deleted edges
726 for (auto &Update
: RevDeleteUpdates
)
727 removeEdge(Update
.getFrom(), Update
.getTo());
730 void MemorySSAUpdater::applyInsertUpdates(ArrayRef
<CFGUpdate
> Updates
,
732 GraphDiff
<BasicBlock
*> GD
;
733 applyInsertUpdates(Updates
, DT
, &GD
);
736 void MemorySSAUpdater::applyInsertUpdates(ArrayRef
<CFGUpdate
> Updates
,
738 const GraphDiff
<BasicBlock
*> *GD
) {
739 // Get recursive last Def, assuming well formed MSSA and updated DT.
740 auto GetLastDef
= [&](BasicBlock
*BB
) -> MemoryAccess
* {
742 MemorySSA::DefsList
*Defs
= MSSA
->getWritableBlockDefs(BB
);
743 // Return last Def or Phi in BB, if it exists.
745 return &*(--Defs
->end());
747 // Check number of predecessors, we only care if there's more than one.
749 BasicBlock
*Pred
= nullptr;
750 for (auto &Pair
: children
<GraphDiffInvBBPair
>({GD
, BB
})) {
757 // If BB has multiple predecessors, get last definition from IDom.
759 // [SimpleLoopUnswitch] If BB is a dead block, about to be deleted, its
760 // DT is invalidated. Return LoE as its last def. This will be added to
761 // MemoryPhi node, and later deleted when the block is deleted.
763 return MSSA
->getLiveOnEntryDef();
764 if (auto *IDom
= DT
.getNode(BB
)->getIDom())
765 if (IDom
->getBlock() != BB
) {
766 BB
= IDom
->getBlock();
769 return MSSA
->getLiveOnEntryDef();
771 // Single predecessor, BB cannot be dead. GetLastDef of Pred.
772 assert(Count
== 1 && Pred
&& "Single predecessor expected.");
776 llvm_unreachable("Unable to get last definition.");
779 // Get nearest IDom given a set of blocks.
780 // TODO: this can be optimized by starting the search at the node with the
781 // lowest level (highest in the tree).
782 auto FindNearestCommonDominator
=
783 [&](const SmallSetVector
<BasicBlock
*, 2> &BBSet
) -> BasicBlock
* {
784 BasicBlock
*PrevIDom
= *BBSet
.begin();
785 for (auto *BB
: BBSet
)
786 PrevIDom
= DT
.findNearestCommonDominator(PrevIDom
, BB
);
790 // Get all blocks that dominate PrevIDom, stop when reaching CurrIDom. Do not
792 auto GetNoLongerDomBlocks
=
793 [&](BasicBlock
*PrevIDom
, BasicBlock
*CurrIDom
,
794 SmallVectorImpl
<BasicBlock
*> &BlocksPrevDom
) {
795 if (PrevIDom
== CurrIDom
)
797 BlocksPrevDom
.push_back(PrevIDom
);
798 BasicBlock
*NextIDom
= PrevIDom
;
799 while (BasicBlock
*UpIDom
=
800 DT
.getNode(NextIDom
)->getIDom()->getBlock()) {
801 if (UpIDom
== CurrIDom
)
803 BlocksPrevDom
.push_back(UpIDom
);
808 // Map a BB to its predecessors: added + previously existing. To get a
809 // deterministic order, store predecessors as SetVectors. The order in each
810 // will be defined by the order in Updates (fixed) and the order given by
811 // children<> (also fixed). Since we further iterate over these ordered sets,
812 // we lose the information of multiple edges possibly existing between two
813 // blocks, so we'll keep and EdgeCount map for that.
814 // An alternate implementation could keep unordered set for the predecessors,
815 // traverse either Updates or children<> each time to get the deterministic
816 // order, and drop the usage of EdgeCount. This alternate approach would still
817 // require querying the maps for each predecessor, and children<> call has
818 // additional computation inside for creating the snapshot-graph predecessors.
819 // As such, we favor using a little additional storage and less compute time.
820 // This decision can be revisited if we find the alternative more favorable.
823 SmallSetVector
<BasicBlock
*, 2> Added
;
824 SmallSetVector
<BasicBlock
*, 2> Prev
;
826 SmallDenseMap
<BasicBlock
*, PredInfo
> PredMap
;
828 for (auto &Edge
: Updates
) {
829 BasicBlock
*BB
= Edge
.getTo();
830 auto &AddedBlockSet
= PredMap
[BB
].Added
;
831 AddedBlockSet
.insert(Edge
.getFrom());
834 // Store all existing predecessor for each BB, at least one must exist.
835 SmallDenseMap
<std::pair
<BasicBlock
*, BasicBlock
*>, int> EdgeCountMap
;
836 SmallPtrSet
<BasicBlock
*, 2> NewBlocks
;
837 for (auto &BBPredPair
: PredMap
) {
838 auto *BB
= BBPredPair
.first
;
839 const auto &AddedBlockSet
= BBPredPair
.second
.Added
;
840 auto &PrevBlockSet
= BBPredPair
.second
.Prev
;
841 for (auto &Pair
: children
<GraphDiffInvBBPair
>({GD
, BB
})) {
842 BasicBlock
*Pi
= Pair
.second
;
843 if (!AddedBlockSet
.count(Pi
))
844 PrevBlockSet
.insert(Pi
);
845 EdgeCountMap
[{Pi
, BB
}]++;
848 if (PrevBlockSet
.empty()) {
849 assert(pred_size(BB
) == AddedBlockSet
.size() && "Duplicate edges added.");
852 << "Adding a predecessor to a block with no predecessors. "
853 "This must be an edge added to a new, likely cloned, block. "
854 "Its memory accesses must be already correct, assuming completed "
855 "via the updateExitBlocksForClonedLoop API. "
856 "Assert a single such edge is added so no phi addition or "
857 "additional processing is required.\n");
858 assert(AddedBlockSet
.size() == 1 &&
859 "Can only handle adding one predecessor to a new block.");
860 // Need to remove new blocks from PredMap. Remove below to not invalidate
862 NewBlocks
.insert(BB
);
865 // Nothing to process for new/cloned blocks.
866 for (auto *BB
: NewBlocks
)
869 SmallVector
<BasicBlock
*, 16> BlocksWithDefsToReplace
;
870 SmallVector
<WeakVH
, 8> InsertedPhis
;
872 // First create MemoryPhis in all blocks that don't have one. Create in the
873 // order found in Updates, not in PredMap, to get deterministic numbering.
874 for (auto &Edge
: Updates
) {
875 BasicBlock
*BB
= Edge
.getTo();
876 if (PredMap
.count(BB
) && !MSSA
->getMemoryAccess(BB
))
877 InsertedPhis
.push_back(MSSA
->createMemoryPhi(BB
));
880 // Now we'll fill in the MemoryPhis with the right incoming values.
881 for (auto &BBPredPair
: PredMap
) {
882 auto *BB
= BBPredPair
.first
;
883 const auto &PrevBlockSet
= BBPredPair
.second
.Prev
;
884 const auto &AddedBlockSet
= BBPredPair
.second
.Added
;
885 assert(!PrevBlockSet
.empty() &&
886 "At least one previous predecessor must exist.");
888 // TODO: if this becomes a bottleneck, we can save on GetLastDef calls by
889 // keeping this map before the loop. We can reuse already populated entries
890 // if an edge is added from the same predecessor to two different blocks,
891 // and this does happen in rotate. Note that the map needs to be updated
892 // when deleting non-necessary phis below, if the phi is in the map by
893 // replacing the value with DefP1.
894 SmallDenseMap
<BasicBlock
*, MemoryAccess
*> LastDefAddedPred
;
895 for (auto *AddedPred
: AddedBlockSet
) {
896 auto *DefPn
= GetLastDef(AddedPred
);
897 assert(DefPn
!= nullptr && "Unable to find last definition.");
898 LastDefAddedPred
[AddedPred
] = DefPn
;
901 MemoryPhi
*NewPhi
= MSSA
->getMemoryAccess(BB
);
902 // If Phi is not empty, add an incoming edge from each added pred. Must
903 // still compute blocks with defs to replace for this block below.
904 if (NewPhi
->getNumOperands()) {
905 for (auto *Pred
: AddedBlockSet
) {
906 auto *LastDefForPred
= LastDefAddedPred
[Pred
];
907 for (int I
= 0, E
= EdgeCountMap
[{Pred
, BB
}]; I
< E
; ++I
)
908 NewPhi
->addIncoming(LastDefForPred
, Pred
);
911 // Pick any existing predecessor and get its definition. All other
912 // existing predecessors should have the same one, since no phi existed.
913 auto *P1
= *PrevBlockSet
.begin();
914 MemoryAccess
*DefP1
= GetLastDef(P1
);
916 // Check DefP1 against all Defs in LastDefPredPair. If all the same,
918 bool InsertPhi
= false;
919 for (auto LastDefPredPair
: LastDefAddedPred
)
920 if (DefP1
!= LastDefPredPair
.second
) {
925 // Since NewPhi may be used in other newly added Phis, replace all uses
926 // of NewPhi with the definition coming from all predecessors (DefP1),
927 // before deleting it.
928 NewPhi
->replaceAllUsesWith(DefP1
);
929 removeMemoryAccess(NewPhi
);
933 // Update Phi with new values for new predecessors and old value for all
934 // other predecessors. Since AddedBlockSet and PrevBlockSet are ordered
935 // sets, the order of entries in NewPhi is deterministic.
936 for (auto *Pred
: AddedBlockSet
) {
937 auto *LastDefForPred
= LastDefAddedPred
[Pred
];
938 for (int I
= 0, E
= EdgeCountMap
[{Pred
, BB
}]; I
< E
; ++I
)
939 NewPhi
->addIncoming(LastDefForPred
, Pred
);
941 for (auto *Pred
: PrevBlockSet
)
942 for (int I
= 0, E
= EdgeCountMap
[{Pred
, BB
}]; I
< E
; ++I
)
943 NewPhi
->addIncoming(DefP1
, Pred
);
946 // Get all blocks that used to dominate BB and no longer do after adding
947 // AddedBlockSet, where PrevBlockSet are the previously known predecessors.
948 assert(DT
.getNode(BB
)->getIDom() && "BB does not have valid idom");
949 BasicBlock
*PrevIDom
= FindNearestCommonDominator(PrevBlockSet
);
950 assert(PrevIDom
&& "Previous IDom should exists");
951 BasicBlock
*NewIDom
= DT
.getNode(BB
)->getIDom()->getBlock();
952 assert(NewIDom
&& "BB should have a new valid idom");
953 assert(DT
.dominates(NewIDom
, PrevIDom
) &&
954 "New idom should dominate old idom");
955 GetNoLongerDomBlocks(PrevIDom
, NewIDom
, BlocksWithDefsToReplace
);
958 tryRemoveTrivialPhis(InsertedPhis
);
959 // Create the set of blocks that now have a definition. We'll use this to
960 // compute IDF and add Phis there next.
961 SmallVector
<BasicBlock
*, 8> BlocksToProcess
;
962 for (auto &VH
: InsertedPhis
)
963 if (auto *MPhi
= cast_or_null
<MemoryPhi
>(VH
))
964 BlocksToProcess
.push_back(MPhi
->getBlock());
966 // Compute IDF and add Phis in all IDF blocks that do not have one.
967 SmallVector
<BasicBlock
*, 32> IDFBlocks
;
968 if (!BlocksToProcess
.empty()) {
969 ForwardIDFCalculator
IDFs(DT
, GD
);
970 SmallPtrSet
<BasicBlock
*, 16> DefiningBlocks(BlocksToProcess
.begin(),
971 BlocksToProcess
.end());
972 IDFs
.setDefiningBlocks(DefiningBlocks
);
973 IDFs
.calculate(IDFBlocks
);
975 SmallSetVector
<MemoryPhi
*, 4> PhisToFill
;
976 // First create all needed Phis.
977 for (auto *BBIDF
: IDFBlocks
)
978 if (!MSSA
->getMemoryAccess(BBIDF
)) {
979 auto *IDFPhi
= MSSA
->createMemoryPhi(BBIDF
);
980 InsertedPhis
.push_back(IDFPhi
);
981 PhisToFill
.insert(IDFPhi
);
983 // Then update or insert their correct incoming values.
984 for (auto *BBIDF
: IDFBlocks
) {
985 auto *IDFPhi
= MSSA
->getMemoryAccess(BBIDF
);
986 assert(IDFPhi
&& "Phi must exist");
987 if (!PhisToFill
.count(IDFPhi
)) {
988 // Update existing Phi.
989 // FIXME: some updates may be redundant, try to optimize and skip some.
990 for (unsigned I
= 0, E
= IDFPhi
->getNumIncomingValues(); I
< E
; ++I
)
991 IDFPhi
->setIncomingValue(I
, GetLastDef(IDFPhi
->getIncomingBlock(I
)));
993 for (auto &Pair
: children
<GraphDiffInvBBPair
>({GD
, BBIDF
})) {
994 BasicBlock
*Pi
= Pair
.second
;
995 IDFPhi
->addIncoming(GetLastDef(Pi
), Pi
);
1001 // Now for all defs in BlocksWithDefsToReplace, if there are uses they no
1002 // longer dominate, replace those with the closest dominating def.
1003 // This will also update optimized accesses, as they're also uses.
1004 for (auto *BlockWithDefsToReplace
: BlocksWithDefsToReplace
) {
1005 if (auto DefsList
= MSSA
->getWritableBlockDefs(BlockWithDefsToReplace
)) {
1006 for (auto &DefToReplaceUses
: *DefsList
) {
1007 BasicBlock
*DominatingBlock
= DefToReplaceUses
.getBlock();
1008 Value::use_iterator UI
= DefToReplaceUses
.use_begin(),
1009 E
= DefToReplaceUses
.use_end();
1013 MemoryAccess
*Usr
= dyn_cast
<MemoryAccess
>(U
.getUser());
1014 if (MemoryPhi
*UsrPhi
= dyn_cast
<MemoryPhi
>(Usr
)) {
1015 BasicBlock
*DominatedBlock
= UsrPhi
->getIncomingBlock(U
);
1016 if (!DT
.dominates(DominatingBlock
, DominatedBlock
))
1017 U
.set(GetLastDef(DominatedBlock
));
1019 BasicBlock
*DominatedBlock
= Usr
->getBlock();
1020 if (!DT
.dominates(DominatingBlock
, DominatedBlock
)) {
1021 if (auto *DomBlPhi
= MSSA
->getMemoryAccess(DominatedBlock
))
1024 auto *IDom
= DT
.getNode(DominatedBlock
)->getIDom();
1025 assert(IDom
&& "Block must have a valid IDom.");
1026 U
.set(GetLastDef(IDom
->getBlock()));
1028 cast
<MemoryUseOrDef
>(Usr
)->resetOptimized();
1035 tryRemoveTrivialPhis(InsertedPhis
);
1038 // Move What before Where in the MemorySSA IR.
1039 template <class WhereType
>
1040 void MemorySSAUpdater::moveTo(MemoryUseOrDef
*What
, BasicBlock
*BB
,
1042 // Mark MemoryPhi users of What not to be optimized.
1043 for (auto *U
: What
->users())
1044 if (MemoryPhi
*PhiUser
= dyn_cast
<MemoryPhi
>(U
))
1045 NonOptPhis
.insert(PhiUser
);
1047 // Replace all our users with our defining access.
1048 What
->replaceAllUsesWith(What
->getDefiningAccess());
1050 // Let MemorySSA take care of moving it around in the lists.
1051 MSSA
->moveTo(What
, BB
, Where
);
1053 // Now reinsert it into the IR and do whatever fixups needed.
1054 if (auto *MD
= dyn_cast
<MemoryDef
>(What
))
1057 insertUse(cast
<MemoryUse
>(What
));
1059 // Clear dangling pointers. We added all MemoryPhi users, but not all
1060 // of them are removed by fixupDefs().
1064 // Move What before Where in the MemorySSA IR.
1065 void MemorySSAUpdater::moveBefore(MemoryUseOrDef
*What
, MemoryUseOrDef
*Where
) {
1066 moveTo(What
, Where
->getBlock(), Where
->getIterator());
1069 // Move What after Where in the MemorySSA IR.
1070 void MemorySSAUpdater::moveAfter(MemoryUseOrDef
*What
, MemoryUseOrDef
*Where
) {
1071 moveTo(What
, Where
->getBlock(), ++Where
->getIterator());
1074 void MemorySSAUpdater::moveToPlace(MemoryUseOrDef
*What
, BasicBlock
*BB
,
1075 MemorySSA::InsertionPlace Where
) {
1076 return moveTo(What
, BB
, Where
);
1079 // All accesses in To used to be in From. Move to end and update access lists.
1080 void MemorySSAUpdater::moveAllAccesses(BasicBlock
*From
, BasicBlock
*To
,
1081 Instruction
*Start
) {
1083 MemorySSA::AccessList
*Accs
= MSSA
->getWritableBlockAccesses(From
);
1087 MemoryAccess
*FirstInNew
= nullptr;
1088 for (Instruction
&I
: make_range(Start
->getIterator(), To
->end()))
1089 if ((FirstInNew
= MSSA
->getMemoryAccess(&I
)))
1094 auto *MUD
= cast
<MemoryUseOrDef
>(FirstInNew
);
1096 auto NextIt
= ++MUD
->getIterator();
1097 MemoryUseOrDef
*NextMUD
= (!Accs
|| NextIt
== Accs
->end())
1099 : cast
<MemoryUseOrDef
>(&*NextIt
);
1100 MSSA
->moveTo(MUD
, To
, MemorySSA::End
);
1101 // Moving MUD from Accs in the moveTo above, may delete Accs, so we need to
1102 // retrieve it again.
1103 Accs
= MSSA
->getWritableBlockAccesses(From
);
1108 void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock
*From
,
1110 Instruction
*Start
) {
1111 assert(MSSA
->getBlockAccesses(To
) == nullptr &&
1112 "To block is expected to be free of MemoryAccesses.");
1113 moveAllAccesses(From
, To
, Start
);
1114 for (BasicBlock
*Succ
: successors(To
))
1115 if (MemoryPhi
*MPhi
= MSSA
->getMemoryAccess(Succ
))
1116 MPhi
->setIncomingBlock(MPhi
->getBasicBlockIndex(From
), To
);
1119 void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock
*From
, BasicBlock
*To
,
1120 Instruction
*Start
) {
1121 assert(From
->getSinglePredecessor() == To
&&
1122 "From block is expected to have a single predecessor (To).");
1123 moveAllAccesses(From
, To
, Start
);
1124 for (BasicBlock
*Succ
: successors(From
))
1125 if (MemoryPhi
*MPhi
= MSSA
->getMemoryAccess(Succ
))
1126 MPhi
->setIncomingBlock(MPhi
->getBasicBlockIndex(From
), To
);
1129 /// If all arguments of a MemoryPHI are defined by the same incoming
1130 /// argument, return that argument.
1131 static MemoryAccess
*onlySingleValue(MemoryPhi
*MP
) {
1132 MemoryAccess
*MA
= nullptr;
1134 for (auto &Arg
: MP
->operands()) {
1136 MA
= cast
<MemoryAccess
>(Arg
);
1143 void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor(
1144 BasicBlock
*Old
, BasicBlock
*New
, ArrayRef
<BasicBlock
*> Preds
,
1145 bool IdenticalEdgesWereMerged
) {
1146 assert(!MSSA
->getWritableBlockAccesses(New
) &&
1147 "Access list should be null for a new block.");
1148 MemoryPhi
*Phi
= MSSA
->getMemoryAccess(Old
);
1151 if (Old
->hasNPredecessors(1)) {
1152 assert(pred_size(New
) == Preds
.size() &&
1153 "Should have moved all predecessors.");
1154 MSSA
->moveTo(Phi
, New
, MemorySSA::Beginning
);
1156 assert(!Preds
.empty() && "Must be moving at least one predecessor to the "
1157 "new immediate predecessor.");
1158 MemoryPhi
*NewPhi
= MSSA
->createMemoryPhi(New
);
1159 SmallPtrSet
<BasicBlock
*, 16> PredsSet(Preds
.begin(), Preds
.end());
1160 // Currently only support the case of removing a single incoming edge when
1161 // identical edges were not merged.
1162 if (!IdenticalEdgesWereMerged
)
1163 assert(PredsSet
.size() == Preds
.size() &&
1164 "If identical edges were not merged, we cannot have duplicate "
1165 "blocks in the predecessors");
1166 Phi
->unorderedDeleteIncomingIf([&](MemoryAccess
*MA
, BasicBlock
*B
) {
1167 if (PredsSet
.count(B
)) {
1168 NewPhi
->addIncoming(MA
, B
);
1169 if (!IdenticalEdgesWereMerged
)
1175 Phi
->addIncoming(NewPhi
, New
);
1176 if (onlySingleValue(NewPhi
))
1177 removeMemoryAccess(NewPhi
);
1181 void MemorySSAUpdater::removeMemoryAccess(MemoryAccess
*MA
, bool OptimizePhis
) {
1182 assert(!MSSA
->isLiveOnEntryDef(MA
) &&
1183 "Trying to remove the live on entry def");
1184 // We can only delete phi nodes if they have no uses, or we can replace all
1185 // uses with a single definition.
1186 MemoryAccess
*NewDefTarget
= nullptr;
1187 if (MemoryPhi
*MP
= dyn_cast
<MemoryPhi
>(MA
)) {
1188 // Note that it is sufficient to know that all edges of the phi node have
1189 // the same argument. If they do, by the definition of dominance frontiers
1190 // (which we used to place this phi), that argument must dominate this phi,
1191 // and thus, must dominate the phi's uses, and so we will not hit the assert
1193 NewDefTarget
= onlySingleValue(MP
);
1194 assert((NewDefTarget
|| MP
->use_empty()) &&
1195 "We can't delete this memory phi");
1197 NewDefTarget
= cast
<MemoryUseOrDef
>(MA
)->getDefiningAccess();
1200 SmallSetVector
<MemoryPhi
*, 4> PhisToCheck
;
1202 // Re-point the uses at our defining access
1203 if (!isa
<MemoryUse
>(MA
) && !MA
->use_empty()) {
1204 // Reset optimized on users of this store, and reset the uses.
1206 // 1. This is a slightly modified version of RAUW to avoid walking the
1208 // 2. If we wanted to be complete, we would have to reset the optimized
1209 // flags on users of phi nodes if doing the below makes a phi node have all
1210 // the same arguments. Instead, we prefer users to removeMemoryAccess those
1211 // phi nodes, because doing it here would be N^3.
1212 if (MA
->hasValueHandle())
1213 ValueHandleBase::ValueIsRAUWd(MA
, NewDefTarget
);
1214 // Note: We assume MemorySSA is not used in metadata since it's not really
1217 while (!MA
->use_empty()) {
1218 Use
&U
= *MA
->use_begin();
1219 if (auto *MUD
= dyn_cast
<MemoryUseOrDef
>(U
.getUser()))
1220 MUD
->resetOptimized();
1222 if (MemoryPhi
*MP
= dyn_cast
<MemoryPhi
>(U
.getUser()))
1223 PhisToCheck
.insert(MP
);
1224 U
.set(NewDefTarget
);
1228 // The call below to erase will destroy MA, so we can't change the order we
1229 // are doing things here
1230 MSSA
->removeFromLookups(MA
);
1231 MSSA
->removeFromLists(MA
);
1233 // Optionally optimize Phi uses. This will recursively remove trivial phis.
1234 if (!PhisToCheck
.empty()) {
1235 SmallVector
<WeakVH
, 16> PhisToOptimize
{PhisToCheck
.begin(),
1237 PhisToCheck
.clear();
1239 unsigned PhisSize
= PhisToOptimize
.size();
1240 while (PhisSize
-- > 0)
1242 cast_or_null
<MemoryPhi
>(PhisToOptimize
.pop_back_val())) {
1243 auto OperRange
= MP
->operands();
1244 tryRemoveTrivialPhi(MP
, OperRange
);
1249 void MemorySSAUpdater::removeBlocks(
1250 const SmallSetVector
<BasicBlock
*, 8> &DeadBlocks
) {
1251 // First delete all uses of BB in MemoryPhis.
1252 for (BasicBlock
*BB
: DeadBlocks
) {
1253 Instruction
*TI
= BB
->getTerminator();
1254 assert(TI
&& "Basic block expected to have a terminator instruction");
1255 for (BasicBlock
*Succ
: successors(TI
))
1256 if (!DeadBlocks
.count(Succ
))
1257 if (MemoryPhi
*MP
= MSSA
->getMemoryAccess(Succ
)) {
1258 MP
->unorderedDeleteIncomingBlock(BB
);
1259 if (MP
->getNumIncomingValues() == 1)
1260 removeMemoryAccess(MP
);
1262 // Drop all references of all accesses in BB
1263 if (MemorySSA::AccessList
*Acc
= MSSA
->getWritableBlockAccesses(BB
))
1264 for (MemoryAccess
&MA
: *Acc
)
1265 MA
.dropAllReferences();
1268 // Next, delete all memory accesses in each block
1269 for (BasicBlock
*BB
: DeadBlocks
) {
1270 MemorySSA::AccessList
*Acc
= MSSA
->getWritableBlockAccesses(BB
);
1273 for (auto AB
= Acc
->begin(), AE
= Acc
->end(); AB
!= AE
;) {
1274 MemoryAccess
*MA
= &*AB
;
1276 MSSA
->removeFromLookups(MA
);
1277 MSSA
->removeFromLists(MA
);
1282 void MemorySSAUpdater::tryRemoveTrivialPhis(ArrayRef
<WeakVH
> UpdatedPHIs
) {
1283 for (auto &VH
: UpdatedPHIs
)
1284 if (auto *MPhi
= cast_or_null
<MemoryPhi
>(VH
)) {
1285 auto OperRange
= MPhi
->operands();
1286 tryRemoveTrivialPhi(MPhi
, OperRange
);
1290 void MemorySSAUpdater::changeToUnreachable(const Instruction
*I
) {
1291 const BasicBlock
*BB
= I
->getParent();
1292 // Remove memory accesses in BB for I and all following instructions.
1293 auto BBI
= I
->getIterator(), BBE
= BB
->end();
1294 // FIXME: If this becomes too expensive, iterate until the first instruction
1295 // with a memory access, then iterate over MemoryAccesses.
1297 removeMemoryAccess(&*(BBI
++));
1298 // Update phis in BB's successors to remove BB.
1299 SmallVector
<WeakVH
, 16> UpdatedPHIs
;
1300 for (const BasicBlock
*Successor
: successors(BB
)) {
1301 removeDuplicatePhiEdgesBetween(BB
, Successor
);
1302 if (MemoryPhi
*MPhi
= MSSA
->getMemoryAccess(Successor
)) {
1303 MPhi
->unorderedDeleteIncomingBlock(BB
);
1304 UpdatedPHIs
.push_back(MPhi
);
1307 // Optimize trivial phis.
1308 tryRemoveTrivialPhis(UpdatedPHIs
);
1311 void MemorySSAUpdater::changeCondBranchToUnconditionalTo(const BranchInst
*BI
,
1312 const BasicBlock
*To
) {
1313 const BasicBlock
*BB
= BI
->getParent();
1314 SmallVector
<WeakVH
, 16> UpdatedPHIs
;
1315 for (const BasicBlock
*Succ
: successors(BB
)) {
1316 removeDuplicatePhiEdgesBetween(BB
, Succ
);
1318 if (auto *MPhi
= MSSA
->getMemoryAccess(Succ
)) {
1319 MPhi
->unorderedDeleteIncomingBlock(BB
);
1320 UpdatedPHIs
.push_back(MPhi
);
1323 // Optimize trivial phis.
1324 tryRemoveTrivialPhis(UpdatedPHIs
);
1327 MemoryAccess
*MemorySSAUpdater::createMemoryAccessInBB(
1328 Instruction
*I
, MemoryAccess
*Definition
, const BasicBlock
*BB
,
1329 MemorySSA::InsertionPlace Point
) {
1330 MemoryUseOrDef
*NewAccess
= MSSA
->createDefinedAccess(I
, Definition
);
1331 MSSA
->insertIntoListsForBlock(NewAccess
, BB
, Point
);
1335 MemoryUseOrDef
*MemorySSAUpdater::createMemoryAccessBefore(
1336 Instruction
*I
, MemoryAccess
*Definition
, MemoryUseOrDef
*InsertPt
) {
1337 assert(I
->getParent() == InsertPt
->getBlock() &&
1338 "New and old access must be in the same block");
1339 MemoryUseOrDef
*NewAccess
= MSSA
->createDefinedAccess(I
, Definition
);
1340 MSSA
->insertIntoListsBefore(NewAccess
, InsertPt
->getBlock(),
1341 InsertPt
->getIterator());
1345 MemoryUseOrDef
*MemorySSAUpdater::createMemoryAccessAfter(
1346 Instruction
*I
, MemoryAccess
*Definition
, MemoryAccess
*InsertPt
) {
1347 assert(I
->getParent() == InsertPt
->getBlock() &&
1348 "New and old access must be in the same block");
1349 MemoryUseOrDef
*NewAccess
= MSSA
->createDefinedAccess(I
, Definition
);
1350 MSSA
->insertIntoListsBefore(NewAccess
, InsertPt
->getBlock(),
1351 ++InsertPt
->getIterator());