[ARM] More MVE compare vector splat combines for ANDs
[llvm-complete.git] / lib / Analysis / TargetTransformInfo.cpp
blobeb04c34453fb363ca6a229b2c00bd78db4949721
1 //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Analysis/TargetTransformInfo.h"
10 #include "llvm/Analysis/TargetTransformInfoImpl.h"
11 #include "llvm/IR/CallSite.h"
12 #include "llvm/IR/DataLayout.h"
13 #include "llvm/IR/Instruction.h"
14 #include "llvm/IR/Instructions.h"
15 #include "llvm/IR/IntrinsicInst.h"
16 #include "llvm/IR/Module.h"
17 #include "llvm/IR/Operator.h"
18 #include "llvm/IR/PatternMatch.h"
19 #include "llvm/Support/CommandLine.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/Analysis/CFG.h"
22 #include "llvm/Analysis/LoopIterator.h"
23 #include <utility>
25 using namespace llvm;
26 using namespace PatternMatch;
28 #define DEBUG_TYPE "tti"
30 static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
31 cl::Hidden,
32 cl::desc("Recognize reduction patterns."));
34 namespace {
35 /// No-op implementation of the TTI interface using the utility base
36 /// classes.
37 ///
38 /// This is used when no target specific information is available.
39 struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> {
40 explicit NoTTIImpl(const DataLayout &DL)
41 : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {}
45 bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) {
46 // If the loop has irreducible control flow, it can not be converted to
47 // Hardware loop.
48 LoopBlocksRPO RPOT(L);
49 RPOT.perform(&LI);
50 if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
51 return false;
52 return true;
55 bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE,
56 LoopInfo &LI, DominatorTree &DT,
57 bool ForceNestedLoop,
58 bool ForceHardwareLoopPHI) {
59 SmallVector<BasicBlock *, 4> ExitingBlocks;
60 L->getExitingBlocks(ExitingBlocks);
62 for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(),
63 IE = ExitingBlocks.end();
64 I != IE; ++I) {
65 BasicBlock *BB = *I;
67 // If we pass the updated counter back through a phi, we need to know
68 // which latch the updated value will be coming from.
69 if (!L->isLoopLatch(BB)) {
70 if (ForceHardwareLoopPHI || CounterInReg)
71 continue;
74 const SCEV *EC = SE.getExitCount(L, BB);
75 if (isa<SCEVCouldNotCompute>(EC))
76 continue;
77 if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) {
78 if (ConstEC->getValue()->isZero())
79 continue;
80 } else if (!SE.isLoopInvariant(EC, L))
81 continue;
83 if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth())
84 continue;
86 // If this exiting block is contained in a nested loop, it is not eligible
87 // for insertion of the branch-and-decrement since the inner loop would
88 // end up messing up the value in the CTR.
89 if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop)
90 continue;
92 // We now have a loop-invariant count of loop iterations (which is not the
93 // constant zero) for which we know that this loop will not exit via this
94 // existing block.
96 // We need to make sure that this block will run on every loop iteration.
97 // For this to be true, we must dominate all blocks with backedges. Such
98 // blocks are in-loop predecessors to the header block.
99 bool NotAlways = false;
100 for (pred_iterator PI = pred_begin(L->getHeader()),
101 PIE = pred_end(L->getHeader());
102 PI != PIE; ++PI) {
103 if (!L->contains(*PI))
104 continue;
106 if (!DT.dominates(*I, *PI)) {
107 NotAlways = true;
108 break;
112 if (NotAlways)
113 continue;
115 // Make sure this blocks ends with a conditional branch.
116 Instruction *TI = BB->getTerminator();
117 if (!TI)
118 continue;
120 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
121 if (!BI->isConditional())
122 continue;
124 ExitBranch = BI;
125 } else
126 continue;
128 // Note that this block may not be the loop latch block, even if the loop
129 // has a latch block.
130 ExitBlock = *I;
131 ExitCount = EC;
132 break;
135 if (!ExitBlock)
136 return false;
137 return true;
140 TargetTransformInfo::TargetTransformInfo(const DataLayout &DL)
141 : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {}
143 TargetTransformInfo::~TargetTransformInfo() {}
145 TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg)
146 : TTIImpl(std::move(Arg.TTIImpl)) {}
148 TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) {
149 TTIImpl = std::move(RHS.TTIImpl);
150 return *this;
153 int TargetTransformInfo::getOperationCost(unsigned Opcode, Type *Ty,
154 Type *OpTy) const {
155 int Cost = TTIImpl->getOperationCost(Opcode, Ty, OpTy);
156 assert(Cost >= 0 && "TTI should not produce negative costs!");
157 return Cost;
160 int TargetTransformInfo::getCallCost(FunctionType *FTy, int NumArgs,
161 const User *U) const {
162 int Cost = TTIImpl->getCallCost(FTy, NumArgs, U);
163 assert(Cost >= 0 && "TTI should not produce negative costs!");
164 return Cost;
167 int TargetTransformInfo::getCallCost(const Function *F,
168 ArrayRef<const Value *> Arguments,
169 const User *U) const {
170 int Cost = TTIImpl->getCallCost(F, Arguments, U);
171 assert(Cost >= 0 && "TTI should not produce negative costs!");
172 return Cost;
175 unsigned TargetTransformInfo::getInliningThresholdMultiplier() const {
176 return TTIImpl->getInliningThresholdMultiplier();
179 int TargetTransformInfo::getInlinerVectorBonusPercent() const {
180 return TTIImpl->getInlinerVectorBonusPercent();
183 int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr,
184 ArrayRef<const Value *> Operands) const {
185 return TTIImpl->getGEPCost(PointeeType, Ptr, Operands);
188 int TargetTransformInfo::getExtCost(const Instruction *I,
189 const Value *Src) const {
190 return TTIImpl->getExtCost(I, Src);
193 int TargetTransformInfo::getIntrinsicCost(
194 Intrinsic::ID IID, Type *RetTy, ArrayRef<const Value *> Arguments,
195 const User *U) const {
196 int Cost = TTIImpl->getIntrinsicCost(IID, RetTy, Arguments, U);
197 assert(Cost >= 0 && "TTI should not produce negative costs!");
198 return Cost;
201 unsigned
202 TargetTransformInfo::getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
203 unsigned &JTSize) const {
204 return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize);
207 int TargetTransformInfo::getUserCost(const User *U,
208 ArrayRef<const Value *> Operands) const {
209 int Cost = TTIImpl->getUserCost(U, Operands);
210 assert(Cost >= 0 && "TTI should not produce negative costs!");
211 return Cost;
214 bool TargetTransformInfo::hasBranchDivergence() const {
215 return TTIImpl->hasBranchDivergence();
218 bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const {
219 return TTIImpl->isSourceOfDivergence(V);
222 bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const {
223 return TTIImpl->isAlwaysUniform(V);
226 unsigned TargetTransformInfo::getFlatAddressSpace() const {
227 return TTIImpl->getFlatAddressSpace();
230 bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
231 return TTIImpl->isLoweredToCall(F);
234 bool TargetTransformInfo::isHardwareLoopProfitable(
235 Loop *L, ScalarEvolution &SE, AssumptionCache &AC,
236 TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const {
237 return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
240 void TargetTransformInfo::getUnrollingPreferences(
241 Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const {
242 return TTIImpl->getUnrollingPreferences(L, SE, UP);
245 bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
246 return TTIImpl->isLegalAddImmediate(Imm);
249 bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
250 return TTIImpl->isLegalICmpImmediate(Imm);
253 bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
254 int64_t BaseOffset,
255 bool HasBaseReg,
256 int64_t Scale,
257 unsigned AddrSpace,
258 Instruction *I) const {
259 return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
260 Scale, AddrSpace, I);
263 bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const {
264 return TTIImpl->isLSRCostLess(C1, C2);
267 bool TargetTransformInfo::canMacroFuseCmp() const {
268 return TTIImpl->canMacroFuseCmp();
271 bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI,
272 ScalarEvolution *SE, LoopInfo *LI,
273 DominatorTree *DT, AssumptionCache *AC,
274 TargetLibraryInfo *LibInfo) const {
275 return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
278 bool TargetTransformInfo::shouldFavorPostInc() const {
279 return TTIImpl->shouldFavorPostInc();
282 bool TargetTransformInfo::shouldFavorBackedgeIndex(const Loop *L) const {
283 return TTIImpl->shouldFavorBackedgeIndex(L);
286 bool TargetTransformInfo::isLegalMaskedStore(Type *DataType) const {
287 return TTIImpl->isLegalMaskedStore(DataType);
290 bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType) const {
291 return TTIImpl->isLegalMaskedLoad(DataType);
294 bool TargetTransformInfo::isLegalNTStore(Type *DataType,
295 unsigned Alignment) const {
296 return TTIImpl->isLegalNTStore(DataType, Alignment);
299 bool TargetTransformInfo::isLegalNTLoad(Type *DataType,
300 unsigned Alignment) const {
301 return TTIImpl->isLegalNTLoad(DataType, Alignment);
304 bool TargetTransformInfo::isLegalMaskedGather(Type *DataType) const {
305 return TTIImpl->isLegalMaskedGather(DataType);
308 bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType) const {
309 return TTIImpl->isLegalMaskedScatter(DataType);
312 bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const {
313 return TTIImpl->isLegalMaskedCompressStore(DataType);
316 bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const {
317 return TTIImpl->isLegalMaskedExpandLoad(DataType);
320 bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const {
321 return TTIImpl->hasDivRemOp(DataType, IsSigned);
324 bool TargetTransformInfo::hasVolatileVariant(Instruction *I,
325 unsigned AddrSpace) const {
326 return TTIImpl->hasVolatileVariant(I, AddrSpace);
329 bool TargetTransformInfo::prefersVectorizedAddressing() const {
330 return TTIImpl->prefersVectorizedAddressing();
333 int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
334 int64_t BaseOffset,
335 bool HasBaseReg,
336 int64_t Scale,
337 unsigned AddrSpace) const {
338 int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg,
339 Scale, AddrSpace);
340 assert(Cost >= 0 && "TTI should not produce negative costs!");
341 return Cost;
344 bool TargetTransformInfo::LSRWithInstrQueries() const {
345 return TTIImpl->LSRWithInstrQueries();
348 bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
349 return TTIImpl->isTruncateFree(Ty1, Ty2);
352 bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const {
353 return TTIImpl->isProfitableToHoist(I);
356 bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); }
358 bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
359 return TTIImpl->isTypeLegal(Ty);
362 unsigned TargetTransformInfo::getJumpBufAlignment() const {
363 return TTIImpl->getJumpBufAlignment();
366 unsigned TargetTransformInfo::getJumpBufSize() const {
367 return TTIImpl->getJumpBufSize();
370 bool TargetTransformInfo::shouldBuildLookupTables() const {
371 return TTIImpl->shouldBuildLookupTables();
373 bool TargetTransformInfo::shouldBuildLookupTablesForConstant(Constant *C) const {
374 return TTIImpl->shouldBuildLookupTablesForConstant(C);
377 bool TargetTransformInfo::useColdCCForColdCall(Function &F) const {
378 return TTIImpl->useColdCCForColdCall(F);
381 unsigned TargetTransformInfo::
382 getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const {
383 return TTIImpl->getScalarizationOverhead(Ty, Insert, Extract);
386 unsigned TargetTransformInfo::
387 getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
388 unsigned VF) const {
389 return TTIImpl->getOperandsScalarizationOverhead(Args, VF);
392 bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const {
393 return TTIImpl->supportsEfficientVectorElementLoadStore();
396 bool TargetTransformInfo::enableAggressiveInterleaving(bool LoopHasReductions) const {
397 return TTIImpl->enableAggressiveInterleaving(LoopHasReductions);
400 TargetTransformInfo::MemCmpExpansionOptions
401 TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
402 return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp);
405 bool TargetTransformInfo::enableInterleavedAccessVectorization() const {
406 return TTIImpl->enableInterleavedAccessVectorization();
409 bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const {
410 return TTIImpl->enableMaskedInterleavedAccessVectorization();
413 bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const {
414 return TTIImpl->isFPVectorizationPotentiallyUnsafe();
417 bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context,
418 unsigned BitWidth,
419 unsigned AddressSpace,
420 unsigned Alignment,
421 bool *Fast) const {
422 return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace,
423 Alignment, Fast);
426 TargetTransformInfo::PopcntSupportKind
427 TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
428 return TTIImpl->getPopcntSupport(IntTyWidthInBit);
431 bool TargetTransformInfo::haveFastSqrt(Type *Ty) const {
432 return TTIImpl->haveFastSqrt(Ty);
435 bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const {
436 return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty);
439 int TargetTransformInfo::getFPOpCost(Type *Ty) const {
440 int Cost = TTIImpl->getFPOpCost(Ty);
441 assert(Cost >= 0 && "TTI should not produce negative costs!");
442 return Cost;
445 int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
446 const APInt &Imm,
447 Type *Ty) const {
448 int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty);
449 assert(Cost >= 0 && "TTI should not produce negative costs!");
450 return Cost;
453 int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty) const {
454 int Cost = TTIImpl->getIntImmCost(Imm, Ty);
455 assert(Cost >= 0 && "TTI should not produce negative costs!");
456 return Cost;
459 int TargetTransformInfo::getIntImmCost(unsigned Opcode, unsigned Idx,
460 const APInt &Imm, Type *Ty) const {
461 int Cost = TTIImpl->getIntImmCost(Opcode, Idx, Imm, Ty);
462 assert(Cost >= 0 && "TTI should not produce negative costs!");
463 return Cost;
466 int TargetTransformInfo::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
467 const APInt &Imm, Type *Ty) const {
468 int Cost = TTIImpl->getIntImmCost(IID, Idx, Imm, Ty);
469 assert(Cost >= 0 && "TTI should not produce negative costs!");
470 return Cost;
473 unsigned TargetTransformInfo::getNumberOfRegisters(bool Vector) const {
474 return TTIImpl->getNumberOfRegisters(Vector);
477 unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const {
478 return TTIImpl->getRegisterBitWidth(Vector);
481 unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const {
482 return TTIImpl->getMinVectorRegisterBitWidth();
485 bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const {
486 return TTIImpl->shouldMaximizeVectorBandwidth(OptSize);
489 unsigned TargetTransformInfo::getMinimumVF(unsigned ElemWidth) const {
490 return TTIImpl->getMinimumVF(ElemWidth);
493 bool TargetTransformInfo::shouldConsiderAddressTypePromotion(
494 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const {
495 return TTIImpl->shouldConsiderAddressTypePromotion(
496 I, AllowPromotionWithoutCommonHeader);
499 unsigned TargetTransformInfo::getCacheLineSize() const {
500 return TTIImpl->getCacheLineSize();
503 llvm::Optional<unsigned> TargetTransformInfo::getCacheSize(CacheLevel Level)
504 const {
505 return TTIImpl->getCacheSize(Level);
508 llvm::Optional<unsigned> TargetTransformInfo::getCacheAssociativity(
509 CacheLevel Level) const {
510 return TTIImpl->getCacheAssociativity(Level);
513 unsigned TargetTransformInfo::getPrefetchDistance() const {
514 return TTIImpl->getPrefetchDistance();
517 unsigned TargetTransformInfo::getMinPrefetchStride() const {
518 return TTIImpl->getMinPrefetchStride();
521 unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const {
522 return TTIImpl->getMaxPrefetchIterationsAhead();
525 unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const {
526 return TTIImpl->getMaxInterleaveFactor(VF);
529 TargetTransformInfo::OperandValueKind
530 TargetTransformInfo::getOperandInfo(Value *V, OperandValueProperties &OpProps) {
531 OperandValueKind OpInfo = OK_AnyValue;
532 OpProps = OP_None;
534 if (auto *CI = dyn_cast<ConstantInt>(V)) {
535 if (CI->getValue().isPowerOf2())
536 OpProps = OP_PowerOf2;
537 return OK_UniformConstantValue;
540 // A broadcast shuffle creates a uniform value.
541 // TODO: Add support for non-zero index broadcasts.
542 // TODO: Add support for different source vector width.
543 if (auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V))
544 if (ShuffleInst->isZeroEltSplat())
545 OpInfo = OK_UniformValue;
547 const Value *Splat = getSplatValue(V);
549 // Check for a splat of a constant or for a non uniform vector of constants
550 // and check if the constant(s) are all powers of two.
551 if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
552 OpInfo = OK_NonUniformConstantValue;
553 if (Splat) {
554 OpInfo = OK_UniformConstantValue;
555 if (auto *CI = dyn_cast<ConstantInt>(Splat))
556 if (CI->getValue().isPowerOf2())
557 OpProps = OP_PowerOf2;
558 } else if (auto *CDS = dyn_cast<ConstantDataSequential>(V)) {
559 OpProps = OP_PowerOf2;
560 for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
561 if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I)))
562 if (CI->getValue().isPowerOf2())
563 continue;
564 OpProps = OP_None;
565 break;
570 // Check for a splat of a uniform value. This is not loop aware, so return
571 // true only for the obviously uniform cases (argument, globalvalue)
572 if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat)))
573 OpInfo = OK_UniformValue;
575 return OpInfo;
578 int TargetTransformInfo::getArithmeticInstrCost(
579 unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
580 OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo,
581 OperandValueProperties Opd2PropInfo,
582 ArrayRef<const Value *> Args) const {
583 int Cost = TTIImpl->getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
584 Opd1PropInfo, Opd2PropInfo, Args);
585 assert(Cost >= 0 && "TTI should not produce negative costs!");
586 return Cost;
589 int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, Type *Ty, int Index,
590 Type *SubTp) const {
591 int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp);
592 assert(Cost >= 0 && "TTI should not produce negative costs!");
593 return Cost;
596 int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst,
597 Type *Src, const Instruction *I) const {
598 assert ((I == nullptr || I->getOpcode() == Opcode) &&
599 "Opcode should reflect passed instruction.");
600 int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, I);
601 assert(Cost >= 0 && "TTI should not produce negative costs!");
602 return Cost;
605 int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst,
606 VectorType *VecTy,
607 unsigned Index) const {
608 int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
609 assert(Cost >= 0 && "TTI should not produce negative costs!");
610 return Cost;
613 int TargetTransformInfo::getCFInstrCost(unsigned Opcode) const {
614 int Cost = TTIImpl->getCFInstrCost(Opcode);
615 assert(Cost >= 0 && "TTI should not produce negative costs!");
616 return Cost;
619 int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
620 Type *CondTy, const Instruction *I) const {
621 assert ((I == nullptr || I->getOpcode() == Opcode) &&
622 "Opcode should reflect passed instruction.");
623 int Cost = TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
624 assert(Cost >= 0 && "TTI should not produce negative costs!");
625 return Cost;
628 int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val,
629 unsigned Index) const {
630 int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index);
631 assert(Cost >= 0 && "TTI should not produce negative costs!");
632 return Cost;
635 int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src,
636 unsigned Alignment,
637 unsigned AddressSpace,
638 const Instruction *I) const {
639 assert ((I == nullptr || I->getOpcode() == Opcode) &&
640 "Opcode should reflect passed instruction.");
641 int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
642 assert(Cost >= 0 && "TTI should not produce negative costs!");
643 return Cost;
646 int TargetTransformInfo::getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
647 unsigned Alignment,
648 unsigned AddressSpace) const {
649 int Cost =
650 TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
651 assert(Cost >= 0 && "TTI should not produce negative costs!");
652 return Cost;
655 int TargetTransformInfo::getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
656 Value *Ptr, bool VariableMask,
657 unsigned Alignment) const {
658 int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
659 Alignment);
660 assert(Cost >= 0 && "TTI should not produce negative costs!");
661 return Cost;
664 int TargetTransformInfo::getInterleavedMemoryOpCost(
665 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
666 unsigned Alignment, unsigned AddressSpace, bool UseMaskForCond,
667 bool UseMaskForGaps) const {
668 int Cost = TTIImpl->getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
669 Alignment, AddressSpace,
670 UseMaskForCond,
671 UseMaskForGaps);
672 assert(Cost >= 0 && "TTI should not produce negative costs!");
673 return Cost;
676 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
677 ArrayRef<Type *> Tys, FastMathFlags FMF,
678 unsigned ScalarizationCostPassed) const {
679 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Tys, FMF,
680 ScalarizationCostPassed);
681 assert(Cost >= 0 && "TTI should not produce negative costs!");
682 return Cost;
685 int TargetTransformInfo::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
686 ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) const {
687 int Cost = TTIImpl->getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
688 assert(Cost >= 0 && "TTI should not produce negative costs!");
689 return Cost;
692 int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy,
693 ArrayRef<Type *> Tys) const {
694 int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys);
695 assert(Cost >= 0 && "TTI should not produce negative costs!");
696 return Cost;
699 unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
700 return TTIImpl->getNumberOfParts(Tp);
703 int TargetTransformInfo::getAddressComputationCost(Type *Tp,
704 ScalarEvolution *SE,
705 const SCEV *Ptr) const {
706 int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr);
707 assert(Cost >= 0 && "TTI should not produce negative costs!");
708 return Cost;
711 int TargetTransformInfo::getMemcpyCost(const Instruction *I) const {
712 int Cost = TTIImpl->getMemcpyCost(I);
713 assert(Cost >= 0 && "TTI should not produce negative costs!");
714 return Cost;
717 int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode, Type *Ty,
718 bool IsPairwiseForm) const {
719 int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm);
720 assert(Cost >= 0 && "TTI should not produce negative costs!");
721 return Cost;
724 int TargetTransformInfo::getMinMaxReductionCost(Type *Ty, Type *CondTy,
725 bool IsPairwiseForm,
726 bool IsUnsigned) const {
727 int Cost =
728 TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned);
729 assert(Cost >= 0 && "TTI should not produce negative costs!");
730 return Cost;
733 unsigned
734 TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const {
735 return TTIImpl->getCostOfKeepingLiveOverCall(Tys);
738 bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst,
739 MemIntrinsicInfo &Info) const {
740 return TTIImpl->getTgtMemIntrinsic(Inst, Info);
743 unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const {
744 return TTIImpl->getAtomicMemIntrinsicMaxElementSize();
747 Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic(
748 IntrinsicInst *Inst, Type *ExpectedType) const {
749 return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
752 Type *TargetTransformInfo::getMemcpyLoopLoweringType(LLVMContext &Context,
753 Value *Length,
754 unsigned SrcAlign,
755 unsigned DestAlign) const {
756 return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAlign,
757 DestAlign);
760 void TargetTransformInfo::getMemcpyLoopResidualLoweringType(
761 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
762 unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const {
763 TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
764 SrcAlign, DestAlign);
767 bool TargetTransformInfo::areInlineCompatible(const Function *Caller,
768 const Function *Callee) const {
769 return TTIImpl->areInlineCompatible(Caller, Callee);
772 bool TargetTransformInfo::areFunctionArgsABICompatible(
773 const Function *Caller, const Function *Callee,
774 SmallPtrSetImpl<Argument *> &Args) const {
775 return TTIImpl->areFunctionArgsABICompatible(Caller, Callee, Args);
778 bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode,
779 Type *Ty) const {
780 return TTIImpl->isIndexedLoadLegal(Mode, Ty);
783 bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode,
784 Type *Ty) const {
785 return TTIImpl->isIndexedStoreLegal(Mode, Ty);
788 unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const {
789 return TTIImpl->getLoadStoreVecRegBitWidth(AS);
792 bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const {
793 return TTIImpl->isLegalToVectorizeLoad(LI);
796 bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const {
797 return TTIImpl->isLegalToVectorizeStore(SI);
800 bool TargetTransformInfo::isLegalToVectorizeLoadChain(
801 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const {
802 return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
803 AddrSpace);
806 bool TargetTransformInfo::isLegalToVectorizeStoreChain(
807 unsigned ChainSizeInBytes, unsigned Alignment, unsigned AddrSpace) const {
808 return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
809 AddrSpace);
812 unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF,
813 unsigned LoadSize,
814 unsigned ChainSizeInBytes,
815 VectorType *VecTy) const {
816 return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
819 unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF,
820 unsigned StoreSize,
821 unsigned ChainSizeInBytes,
822 VectorType *VecTy) const {
823 return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
826 bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode,
827 Type *Ty, ReductionFlags Flags) const {
828 return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags);
831 bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const {
832 return TTIImpl->shouldExpandReduction(II);
835 unsigned TargetTransformInfo::getGISelRematGlobalCost() const {
836 return TTIImpl->getGISelRematGlobalCost();
839 int TargetTransformInfo::getInstructionLatency(const Instruction *I) const {
840 return TTIImpl->getInstructionLatency(I);
843 static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft,
844 unsigned Level) {
845 // We don't need a shuffle if we just want to have element 0 in position 0 of
846 // the vector.
847 if (!SI && Level == 0 && IsLeft)
848 return true;
849 else if (!SI)
850 return false;
852 SmallVector<int, 32> Mask(SI->getType()->getVectorNumElements(), -1);
854 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether
855 // we look at the left or right side.
856 for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2)
857 Mask[i] = val;
859 SmallVector<int, 16> ActualMask = SI->getShuffleMask();
860 return Mask == ActualMask;
863 namespace {
864 /// Kind of the reduction data.
865 enum ReductionKind {
866 RK_None, /// Not a reduction.
867 RK_Arithmetic, /// Binary reduction data.
868 RK_MinMax, /// Min/max reduction data.
869 RK_UnsignedMinMax, /// Unsigned min/max reduction data.
871 /// Contains opcode + LHS/RHS parts of the reduction operations.
872 struct ReductionData {
873 ReductionData() = delete;
874 ReductionData(ReductionKind Kind, unsigned Opcode, Value *LHS, Value *RHS)
875 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind) {
876 assert(Kind != RK_None && "expected binary or min/max reduction only.");
878 unsigned Opcode = 0;
879 Value *LHS = nullptr;
880 Value *RHS = nullptr;
881 ReductionKind Kind = RK_None;
882 bool hasSameData(ReductionData &RD) const {
883 return Kind == RD.Kind && Opcode == RD.Opcode;
886 } // namespace
888 static Optional<ReductionData> getReductionData(Instruction *I) {
889 Value *L, *R;
890 if (m_BinOp(m_Value(L), m_Value(R)).match(I))
891 return ReductionData(RK_Arithmetic, I->getOpcode(), L, R);
892 if (auto *SI = dyn_cast<SelectInst>(I)) {
893 if (m_SMin(m_Value(L), m_Value(R)).match(SI) ||
894 m_SMax(m_Value(L), m_Value(R)).match(SI) ||
895 m_OrdFMin(m_Value(L), m_Value(R)).match(SI) ||
896 m_OrdFMax(m_Value(L), m_Value(R)).match(SI) ||
897 m_UnordFMin(m_Value(L), m_Value(R)).match(SI) ||
898 m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) {
899 auto *CI = cast<CmpInst>(SI->getCondition());
900 return ReductionData(RK_MinMax, CI->getOpcode(), L, R);
902 if (m_UMin(m_Value(L), m_Value(R)).match(SI) ||
903 m_UMax(m_Value(L), m_Value(R)).match(SI)) {
904 auto *CI = cast<CmpInst>(SI->getCondition());
905 return ReductionData(RK_UnsignedMinMax, CI->getOpcode(), L, R);
908 return llvm::None;
911 static ReductionKind matchPairwiseReductionAtLevel(Instruction *I,
912 unsigned Level,
913 unsigned NumLevels) {
914 // Match one level of pairwise operations.
915 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
916 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
917 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
918 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
919 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
920 if (!I)
921 return RK_None;
923 assert(I->getType()->isVectorTy() && "Expecting a vector type");
925 Optional<ReductionData> RD = getReductionData(I);
926 if (!RD)
927 return RK_None;
929 ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS);
930 if (!LS && Level)
931 return RK_None;
932 ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS);
933 if (!RS && Level)
934 return RK_None;
936 // On level 0 we can omit one shufflevector instruction.
937 if (!Level && !RS && !LS)
938 return RK_None;
940 // Shuffle inputs must match.
941 Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr;
942 Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr;
943 Value *NextLevelOp = nullptr;
944 if (NextLevelOpR && NextLevelOpL) {
945 // If we have two shuffles their operands must match.
946 if (NextLevelOpL != NextLevelOpR)
947 return RK_None;
949 NextLevelOp = NextLevelOpL;
950 } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) {
951 // On the first level we can omit the shufflevector <0, undef,...>. So the
952 // input to the other shufflevector <1, undef> must match with one of the
953 // inputs to the current binary operation.
954 // Example:
955 // %NextLevelOpL = shufflevector %R, <1, undef ...>
956 // %BinOp = fadd %NextLevelOpL, %R
957 if (NextLevelOpL && NextLevelOpL != RD->RHS)
958 return RK_None;
959 else if (NextLevelOpR && NextLevelOpR != RD->LHS)
960 return RK_None;
962 NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS;
963 } else
964 return RK_None;
966 // Check that the next levels binary operation exists and matches with the
967 // current one.
968 if (Level + 1 != NumLevels) {
969 Optional<ReductionData> NextLevelRD =
970 getReductionData(cast<Instruction>(NextLevelOp));
971 if (!NextLevelRD || !RD->hasSameData(*NextLevelRD))
972 return RK_None;
975 // Shuffle mask for pairwise operation must match.
976 if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) {
977 if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level))
978 return RK_None;
979 } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) {
980 if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level))
981 return RK_None;
982 } else {
983 return RK_None;
986 if (++Level == NumLevels)
987 return RD->Kind;
989 // Match next level.
990 return matchPairwiseReductionAtLevel(cast<Instruction>(NextLevelOp), Level,
991 NumLevels);
994 static ReductionKind matchPairwiseReduction(const ExtractElementInst *ReduxRoot,
995 unsigned &Opcode, Type *&Ty) {
996 if (!EnableReduxCost)
997 return RK_None;
999 // Need to extract the first element.
1000 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
1001 unsigned Idx = ~0u;
1002 if (CI)
1003 Idx = CI->getZExtValue();
1004 if (Idx != 0)
1005 return RK_None;
1007 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
1008 if (!RdxStart)
1009 return RK_None;
1010 Optional<ReductionData> RD = getReductionData(RdxStart);
1011 if (!RD)
1012 return RK_None;
1014 Type *VecTy = RdxStart->getType();
1015 unsigned NumVecElems = VecTy->getVectorNumElements();
1016 if (!isPowerOf2_32(NumVecElems))
1017 return RK_None;
1019 // We look for a sequence of shuffle,shuffle,add triples like the following
1020 // that builds a pairwise reduction tree.
1022 // (X0, X1, X2, X3)
1023 // (X0 + X1, X2 + X3, undef, undef)
1024 // ((X0 + X1) + (X2 + X3), undef, undef, undef)
1026 // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
1027 // <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
1028 // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
1029 // <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
1030 // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
1031 // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
1032 // <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef>
1033 // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
1034 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
1035 // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1
1036 // %r = extractelement <4 x float> %bin.rdx8, i32 0
1037 if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) ==
1038 RK_None)
1039 return RK_None;
1041 Opcode = RD->Opcode;
1042 Ty = VecTy;
1044 return RD->Kind;
1047 static std::pair<Value *, ShuffleVectorInst *>
1048 getShuffleAndOtherOprd(Value *L, Value *R) {
1049 ShuffleVectorInst *S = nullptr;
1051 if ((S = dyn_cast<ShuffleVectorInst>(L)))
1052 return std::make_pair(R, S);
1054 S = dyn_cast<ShuffleVectorInst>(R);
1055 return std::make_pair(L, S);
1058 static ReductionKind
1059 matchVectorSplittingReduction(const ExtractElementInst *ReduxRoot,
1060 unsigned &Opcode, Type *&Ty) {
1061 if (!EnableReduxCost)
1062 return RK_None;
1064 // Need to extract the first element.
1065 ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
1066 unsigned Idx = ~0u;
1067 if (CI)
1068 Idx = CI->getZExtValue();
1069 if (Idx != 0)
1070 return RK_None;
1072 auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
1073 if (!RdxStart)
1074 return RK_None;
1075 Optional<ReductionData> RD = getReductionData(RdxStart);
1076 if (!RD)
1077 return RK_None;
1079 Type *VecTy = ReduxRoot->getOperand(0)->getType();
1080 unsigned NumVecElems = VecTy->getVectorNumElements();
1081 if (!isPowerOf2_32(NumVecElems))
1082 return RK_None;
1084 // We look for a sequence of shuffles and adds like the following matching one
1085 // fadd, shuffle vector pair at a time.
1087 // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef,
1088 // <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
1089 // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf
1090 // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef,
1091 // <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
1092 // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7
1093 // %r = extractelement <4 x float> %bin.rdx8, i32 0
1095 unsigned MaskStart = 1;
1096 Instruction *RdxOp = RdxStart;
1097 SmallVector<int, 32> ShuffleMask(NumVecElems, 0);
1098 unsigned NumVecElemsRemain = NumVecElems;
1099 while (NumVecElemsRemain - 1) {
1100 // Check for the right reduction operation.
1101 if (!RdxOp)
1102 return RK_None;
1103 Optional<ReductionData> RDLevel = getReductionData(RdxOp);
1104 if (!RDLevel || !RDLevel->hasSameData(*RD))
1105 return RK_None;
1107 Value *NextRdxOp;
1108 ShuffleVectorInst *Shuffle;
1109 std::tie(NextRdxOp, Shuffle) =
1110 getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS);
1112 // Check the current reduction operation and the shuffle use the same value.
1113 if (Shuffle == nullptr)
1114 return RK_None;
1115 if (Shuffle->getOperand(0) != NextRdxOp)
1116 return RK_None;
1118 // Check that shuffle masks matches.
1119 for (unsigned j = 0; j != MaskStart; ++j)
1120 ShuffleMask[j] = MaskStart + j;
1121 // Fill the rest of the mask with -1 for undef.
1122 std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1);
1124 SmallVector<int, 16> Mask = Shuffle->getShuffleMask();
1125 if (ShuffleMask != Mask)
1126 return RK_None;
1128 RdxOp = dyn_cast<Instruction>(NextRdxOp);
1129 NumVecElemsRemain /= 2;
1130 MaskStart *= 2;
1133 Opcode = RD->Opcode;
1134 Ty = VecTy;
1135 return RD->Kind;
1138 int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const {
1139 switch (I->getOpcode()) {
1140 case Instruction::GetElementPtr:
1141 return getUserCost(I);
1143 case Instruction::Ret:
1144 case Instruction::PHI:
1145 case Instruction::Br: {
1146 return getCFInstrCost(I->getOpcode());
1148 case Instruction::Add:
1149 case Instruction::FAdd:
1150 case Instruction::Sub:
1151 case Instruction::FSub:
1152 case Instruction::Mul:
1153 case Instruction::FMul:
1154 case Instruction::UDiv:
1155 case Instruction::SDiv:
1156 case Instruction::FDiv:
1157 case Instruction::URem:
1158 case Instruction::SRem:
1159 case Instruction::FRem:
1160 case Instruction::Shl:
1161 case Instruction::LShr:
1162 case Instruction::AShr:
1163 case Instruction::And:
1164 case Instruction::Or:
1165 case Instruction::Xor: {
1166 TargetTransformInfo::OperandValueKind Op1VK, Op2VK;
1167 TargetTransformInfo::OperandValueProperties Op1VP, Op2VP;
1168 Op1VK = getOperandInfo(I->getOperand(0), Op1VP);
1169 Op2VK = getOperandInfo(I->getOperand(1), Op2VP);
1170 SmallVector<const Value *, 2> Operands(I->operand_values());
1171 return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, Op2VK,
1172 Op1VP, Op2VP, Operands);
1174 case Instruction::FNeg: {
1175 TargetTransformInfo::OperandValueKind Op1VK, Op2VK;
1176 TargetTransformInfo::OperandValueProperties Op1VP, Op2VP;
1177 Op1VK = getOperandInfo(I->getOperand(0), Op1VP);
1178 Op2VK = OK_AnyValue;
1179 Op2VP = OP_None;
1180 SmallVector<const Value *, 2> Operands(I->operand_values());
1181 return getArithmeticInstrCost(I->getOpcode(), I->getType(), Op1VK, Op2VK,
1182 Op1VP, Op2VP, Operands);
1184 case Instruction::Select: {
1185 const SelectInst *SI = cast<SelectInst>(I);
1186 Type *CondTy = SI->getCondition()->getType();
1187 return getCmpSelInstrCost(I->getOpcode(), I->getType(), CondTy, I);
1189 case Instruction::ICmp:
1190 case Instruction::FCmp: {
1191 Type *ValTy = I->getOperand(0)->getType();
1192 return getCmpSelInstrCost(I->getOpcode(), ValTy, I->getType(), I);
1194 case Instruction::Store: {
1195 const StoreInst *SI = cast<StoreInst>(I);
1196 Type *ValTy = SI->getValueOperand()->getType();
1197 return getMemoryOpCost(I->getOpcode(), ValTy,
1198 SI->getAlignment(),
1199 SI->getPointerAddressSpace(), I);
1201 case Instruction::Load: {
1202 const LoadInst *LI = cast<LoadInst>(I);
1203 return getMemoryOpCost(I->getOpcode(), I->getType(),
1204 LI->getAlignment(),
1205 LI->getPointerAddressSpace(), I);
1207 case Instruction::ZExt:
1208 case Instruction::SExt:
1209 case Instruction::FPToUI:
1210 case Instruction::FPToSI:
1211 case Instruction::FPExt:
1212 case Instruction::PtrToInt:
1213 case Instruction::IntToPtr:
1214 case Instruction::SIToFP:
1215 case Instruction::UIToFP:
1216 case Instruction::Trunc:
1217 case Instruction::FPTrunc:
1218 case Instruction::BitCast:
1219 case Instruction::AddrSpaceCast: {
1220 Type *SrcTy = I->getOperand(0)->getType();
1221 return getCastInstrCost(I->getOpcode(), I->getType(), SrcTy, I);
1223 case Instruction::ExtractElement: {
1224 const ExtractElementInst * EEI = cast<ExtractElementInst>(I);
1225 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
1226 unsigned Idx = -1;
1227 if (CI)
1228 Idx = CI->getZExtValue();
1230 // Try to match a reduction sequence (series of shufflevector and vector
1231 // adds followed by a extractelement).
1232 unsigned ReduxOpCode;
1233 Type *ReduxType;
1235 switch (matchVectorSplittingReduction(EEI, ReduxOpCode, ReduxType)) {
1236 case RK_Arithmetic:
1237 return getArithmeticReductionCost(ReduxOpCode, ReduxType,
1238 /*IsPairwiseForm=*/false);
1239 case RK_MinMax:
1240 return getMinMaxReductionCost(
1241 ReduxType, CmpInst::makeCmpResultType(ReduxType),
1242 /*IsPairwiseForm=*/false, /*IsUnsigned=*/false);
1243 case RK_UnsignedMinMax:
1244 return getMinMaxReductionCost(
1245 ReduxType, CmpInst::makeCmpResultType(ReduxType),
1246 /*IsPairwiseForm=*/false, /*IsUnsigned=*/true);
1247 case RK_None:
1248 break;
1251 switch (matchPairwiseReduction(EEI, ReduxOpCode, ReduxType)) {
1252 case RK_Arithmetic:
1253 return getArithmeticReductionCost(ReduxOpCode, ReduxType,
1254 /*IsPairwiseForm=*/true);
1255 case RK_MinMax:
1256 return getMinMaxReductionCost(
1257 ReduxType, CmpInst::makeCmpResultType(ReduxType),
1258 /*IsPairwiseForm=*/true, /*IsUnsigned=*/false);
1259 case RK_UnsignedMinMax:
1260 return getMinMaxReductionCost(
1261 ReduxType, CmpInst::makeCmpResultType(ReduxType),
1262 /*IsPairwiseForm=*/true, /*IsUnsigned=*/true);
1263 case RK_None:
1264 break;
1267 return getVectorInstrCost(I->getOpcode(),
1268 EEI->getOperand(0)->getType(), Idx);
1270 case Instruction::InsertElement: {
1271 const InsertElementInst * IE = cast<InsertElementInst>(I);
1272 ConstantInt *CI = dyn_cast<ConstantInt>(IE->getOperand(2));
1273 unsigned Idx = -1;
1274 if (CI)
1275 Idx = CI->getZExtValue();
1276 return getVectorInstrCost(I->getOpcode(),
1277 IE->getType(), Idx);
1279 case Instruction::ShuffleVector: {
1280 const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
1281 Type *Ty = Shuffle->getType();
1282 Type *SrcTy = Shuffle->getOperand(0)->getType();
1284 // TODO: Identify and add costs for insert subvector, etc.
1285 int SubIndex;
1286 if (Shuffle->isExtractSubvectorMask(SubIndex))
1287 return TTIImpl->getShuffleCost(SK_ExtractSubvector, SrcTy, SubIndex, Ty);
1289 if (Shuffle->changesLength())
1290 return -1;
1292 if (Shuffle->isIdentity())
1293 return 0;
1295 if (Shuffle->isReverse())
1296 return TTIImpl->getShuffleCost(SK_Reverse, Ty, 0, nullptr);
1298 if (Shuffle->isSelect())
1299 return TTIImpl->getShuffleCost(SK_Select, Ty, 0, nullptr);
1301 if (Shuffle->isTranspose())
1302 return TTIImpl->getShuffleCost(SK_Transpose, Ty, 0, nullptr);
1304 if (Shuffle->isZeroEltSplat())
1305 return TTIImpl->getShuffleCost(SK_Broadcast, Ty, 0, nullptr);
1307 if (Shuffle->isSingleSource())
1308 return TTIImpl->getShuffleCost(SK_PermuteSingleSrc, Ty, 0, nullptr);
1310 return TTIImpl->getShuffleCost(SK_PermuteTwoSrc, Ty, 0, nullptr);
1312 case Instruction::Call:
1313 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1314 SmallVector<Value *, 4> Args(II->arg_operands());
1316 FastMathFlags FMF;
1317 if (auto *FPMO = dyn_cast<FPMathOperator>(II))
1318 FMF = FPMO->getFastMathFlags();
1320 return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(),
1321 Args, FMF);
1323 return -1;
1324 default:
1325 // We don't have any information on this instruction.
1326 return -1;
1330 TargetTransformInfo::Concept::~Concept() {}
1332 TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {}
1334 TargetIRAnalysis::TargetIRAnalysis(
1335 std::function<Result(const Function &)> TTICallback)
1336 : TTICallback(std::move(TTICallback)) {}
1338 TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F,
1339 FunctionAnalysisManager &) {
1340 return TTICallback(F);
1343 AnalysisKey TargetIRAnalysis::Key;
1345 TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) {
1346 return Result(F.getParent()->getDataLayout());
1349 // Register the basic pass.
1350 INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti",
1351 "Target Transform Information", false, true)
1352 char TargetTransformInfoWrapperPass::ID = 0;
1354 void TargetTransformInfoWrapperPass::anchor() {}
1356 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass()
1357 : ImmutablePass(ID) {
1358 initializeTargetTransformInfoWrapperPassPass(
1359 *PassRegistry::getPassRegistry());
1362 TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass(
1363 TargetIRAnalysis TIRA)
1364 : ImmutablePass(ID), TIRA(std::move(TIRA)) {
1365 initializeTargetTransformInfoWrapperPassPass(
1366 *PassRegistry::getPassRegistry());
1369 TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) {
1370 FunctionAnalysisManager DummyFAM;
1371 TTI = TIRA.run(F, DummyFAM);
1372 return *TTI;
1375 ImmutablePass *
1376 llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) {
1377 return new TargetTransformInfoWrapperPass(std::move(TIRA));