[ARM] More MVE compare vector splat combines for ANDs
[llvm-complete.git] / lib / Linker / IRMover.cpp
blob37515d93ed501b76c15dfe30e14f13e6089daed3
1 //===- lib/Linker/IRMover.cpp ---------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Linker/IRMover.h"
10 #include "LinkDiagnosticInfo.h"
11 #include "llvm/ADT/SetVector.h"
12 #include "llvm/ADT/SmallString.h"
13 #include "llvm/ADT/Triple.h"
14 #include "llvm/IR/Constants.h"
15 #include "llvm/IR/DebugInfo.h"
16 #include "llvm/IR/DiagnosticPrinter.h"
17 #include "llvm/IR/GVMaterializer.h"
18 #include "llvm/IR/Intrinsics.h"
19 #include "llvm/IR/TypeFinder.h"
20 #include "llvm/Support/Error.h"
21 #include "llvm/Transforms/Utils/Cloning.h"
22 #include <utility>
23 using namespace llvm;
25 //===----------------------------------------------------------------------===//
26 // TypeMap implementation.
27 //===----------------------------------------------------------------------===//
29 namespace {
30 class TypeMapTy : public ValueMapTypeRemapper {
31 /// This is a mapping from a source type to a destination type to use.
32 DenseMap<Type *, Type *> MappedTypes;
34 /// When checking to see if two subgraphs are isomorphic, we speculatively
35 /// add types to MappedTypes, but keep track of them here in case we need to
36 /// roll back.
37 SmallVector<Type *, 16> SpeculativeTypes;
39 SmallVector<StructType *, 16> SpeculativeDstOpaqueTypes;
41 /// This is a list of non-opaque structs in the source module that are mapped
42 /// to an opaque struct in the destination module.
43 SmallVector<StructType *, 16> SrcDefinitionsToResolve;
45 /// This is the set of opaque types in the destination modules who are
46 /// getting a body from the source module.
47 SmallPtrSet<StructType *, 16> DstResolvedOpaqueTypes;
49 public:
50 TypeMapTy(IRMover::IdentifiedStructTypeSet &DstStructTypesSet)
51 : DstStructTypesSet(DstStructTypesSet) {}
53 IRMover::IdentifiedStructTypeSet &DstStructTypesSet;
54 /// Indicate that the specified type in the destination module is conceptually
55 /// equivalent to the specified type in the source module.
56 void addTypeMapping(Type *DstTy, Type *SrcTy);
58 /// Produce a body for an opaque type in the dest module from a type
59 /// definition in the source module.
60 void linkDefinedTypeBodies();
62 /// Return the mapped type to use for the specified input type from the
63 /// source module.
64 Type *get(Type *SrcTy);
65 Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited);
67 void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes);
69 FunctionType *get(FunctionType *T) {
70 return cast<FunctionType>(get((Type *)T));
73 private:
74 Type *remapType(Type *SrcTy) override { return get(SrcTy); }
76 bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
80 void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
81 assert(SpeculativeTypes.empty());
82 assert(SpeculativeDstOpaqueTypes.empty());
84 // Check to see if these types are recursively isomorphic and establish a
85 // mapping between them if so.
86 if (!areTypesIsomorphic(DstTy, SrcTy)) {
87 // Oops, they aren't isomorphic. Just discard this request by rolling out
88 // any speculative mappings we've established.
89 for (Type *Ty : SpeculativeTypes)
90 MappedTypes.erase(Ty);
92 SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() -
93 SpeculativeDstOpaqueTypes.size());
94 for (StructType *Ty : SpeculativeDstOpaqueTypes)
95 DstResolvedOpaqueTypes.erase(Ty);
96 } else {
97 // SrcTy and DstTy are recursively ismorphic. We clear names of SrcTy
98 // and all its descendants to lower amount of renaming in LLVM context
99 // Renaming occurs because we load all source modules to the same context
100 // and declaration with existing name gets renamed (i.e Foo -> Foo.42).
101 // As a result we may get several different types in the destination
102 // module, which are in fact the same.
103 for (Type *Ty : SpeculativeTypes)
104 if (auto *STy = dyn_cast<StructType>(Ty))
105 if (STy->hasName())
106 STy->setName("");
108 SpeculativeTypes.clear();
109 SpeculativeDstOpaqueTypes.clear();
112 /// Recursively walk this pair of types, returning true if they are isomorphic,
113 /// false if they are not.
114 bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
115 // Two types with differing kinds are clearly not isomorphic.
116 if (DstTy->getTypeID() != SrcTy->getTypeID())
117 return false;
119 // If we have an entry in the MappedTypes table, then we have our answer.
120 Type *&Entry = MappedTypes[SrcTy];
121 if (Entry)
122 return Entry == DstTy;
124 // Two identical types are clearly isomorphic. Remember this
125 // non-speculatively.
126 if (DstTy == SrcTy) {
127 Entry = DstTy;
128 return true;
131 // Okay, we have two types with identical kinds that we haven't seen before.
133 // If this is an opaque struct type, special case it.
134 if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
135 // Mapping an opaque type to any struct, just keep the dest struct.
136 if (SSTy->isOpaque()) {
137 Entry = DstTy;
138 SpeculativeTypes.push_back(SrcTy);
139 return true;
142 // Mapping a non-opaque source type to an opaque dest. If this is the first
143 // type that we're mapping onto this destination type then we succeed. Keep
144 // the dest, but fill it in later. If this is the second (different) type
145 // that we're trying to map onto the same opaque type then we fail.
146 if (cast<StructType>(DstTy)->isOpaque()) {
147 // We can only map one source type onto the opaque destination type.
148 if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second)
149 return false;
150 SrcDefinitionsToResolve.push_back(SSTy);
151 SpeculativeTypes.push_back(SrcTy);
152 SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy));
153 Entry = DstTy;
154 return true;
158 // If the number of subtypes disagree between the two types, then we fail.
159 if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
160 return false;
162 // Fail if any of the extra properties (e.g. array size) of the type disagree.
163 if (isa<IntegerType>(DstTy))
164 return false; // bitwidth disagrees.
165 if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
166 if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
167 return false;
168 } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
169 if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
170 return false;
171 } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
172 StructType *SSTy = cast<StructType>(SrcTy);
173 if (DSTy->isLiteral() != SSTy->isLiteral() ||
174 DSTy->isPacked() != SSTy->isPacked())
175 return false;
176 } else if (auto *DSeqTy = dyn_cast<SequentialType>(DstTy)) {
177 if (DSeqTy->getNumElements() !=
178 cast<SequentialType>(SrcTy)->getNumElements())
179 return false;
182 // Otherwise, we speculate that these two types will line up and recursively
183 // check the subelements.
184 Entry = DstTy;
185 SpeculativeTypes.push_back(SrcTy);
187 for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I)
188 if (!areTypesIsomorphic(DstTy->getContainedType(I),
189 SrcTy->getContainedType(I)))
190 return false;
192 // If everything seems to have lined up, then everything is great.
193 return true;
196 void TypeMapTy::linkDefinedTypeBodies() {
197 SmallVector<Type *, 16> Elements;
198 for (StructType *SrcSTy : SrcDefinitionsToResolve) {
199 StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
200 assert(DstSTy->isOpaque());
202 // Map the body of the source type over to a new body for the dest type.
203 Elements.resize(SrcSTy->getNumElements());
204 for (unsigned I = 0, E = Elements.size(); I != E; ++I)
205 Elements[I] = get(SrcSTy->getElementType(I));
207 DstSTy->setBody(Elements, SrcSTy->isPacked());
208 DstStructTypesSet.switchToNonOpaque(DstSTy);
210 SrcDefinitionsToResolve.clear();
211 DstResolvedOpaqueTypes.clear();
214 void TypeMapTy::finishType(StructType *DTy, StructType *STy,
215 ArrayRef<Type *> ETypes) {
216 DTy->setBody(ETypes, STy->isPacked());
218 // Steal STy's name.
219 if (STy->hasName()) {
220 SmallString<16> TmpName = STy->getName();
221 STy->setName("");
222 DTy->setName(TmpName);
225 DstStructTypesSet.addNonOpaque(DTy);
228 Type *TypeMapTy::get(Type *Ty) {
229 SmallPtrSet<StructType *, 8> Visited;
230 return get(Ty, Visited);
233 Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) {
234 // If we already have an entry for this type, return it.
235 Type **Entry = &MappedTypes[Ty];
236 if (*Entry)
237 return *Entry;
239 // These are types that LLVM itself will unique.
240 bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral();
242 if (!IsUniqued) {
243 StructType *STy = cast<StructType>(Ty);
244 // This is actually a type from the destination module, this can be reached
245 // when this type is loaded in another module, added to DstStructTypesSet,
246 // and then we reach the same type in another module where it has not been
247 // added to MappedTypes. (PR37684)
248 if (STy->getContext().isODRUniquingDebugTypes() && !STy->isOpaque() &&
249 DstStructTypesSet.hasType(STy))
250 return *Entry = STy;
252 #ifndef NDEBUG
253 for (auto &Pair : MappedTypes) {
254 assert(!(Pair.first != Ty && Pair.second == Ty) &&
255 "mapping to a source type");
257 #endif
259 if (!Visited.insert(STy).second) {
260 StructType *DTy = StructType::create(Ty->getContext());
261 return *Entry = DTy;
265 // If this is not a recursive type, then just map all of the elements and
266 // then rebuild the type from inside out.
267 SmallVector<Type *, 4> ElementTypes;
269 // If there are no element types to map, then the type is itself. This is
270 // true for the anonymous {} struct, things like 'float', integers, etc.
271 if (Ty->getNumContainedTypes() == 0 && IsUniqued)
272 return *Entry = Ty;
274 // Remap all of the elements, keeping track of whether any of them change.
275 bool AnyChange = false;
276 ElementTypes.resize(Ty->getNumContainedTypes());
277 for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) {
278 ElementTypes[I] = get(Ty->getContainedType(I), Visited);
279 AnyChange |= ElementTypes[I] != Ty->getContainedType(I);
282 // If we found our type while recursively processing stuff, just use it.
283 Entry = &MappedTypes[Ty];
284 if (*Entry) {
285 if (auto *DTy = dyn_cast<StructType>(*Entry)) {
286 if (DTy->isOpaque()) {
287 auto *STy = cast<StructType>(Ty);
288 finishType(DTy, STy, ElementTypes);
291 return *Entry;
294 // If all of the element types mapped directly over and the type is not
295 // a named struct, then the type is usable as-is.
296 if (!AnyChange && IsUniqued)
297 return *Entry = Ty;
299 // Otherwise, rebuild a modified type.
300 switch (Ty->getTypeID()) {
301 default:
302 llvm_unreachable("unknown derived type to remap");
303 case Type::ArrayTyID:
304 return *Entry = ArrayType::get(ElementTypes[0],
305 cast<ArrayType>(Ty)->getNumElements());
306 case Type::VectorTyID:
307 return *Entry = VectorType::get(ElementTypes[0],
308 cast<VectorType>(Ty)->getNumElements());
309 case Type::PointerTyID:
310 return *Entry = PointerType::get(ElementTypes[0],
311 cast<PointerType>(Ty)->getAddressSpace());
312 case Type::FunctionTyID:
313 return *Entry = FunctionType::get(ElementTypes[0],
314 makeArrayRef(ElementTypes).slice(1),
315 cast<FunctionType>(Ty)->isVarArg());
316 case Type::StructTyID: {
317 auto *STy = cast<StructType>(Ty);
318 bool IsPacked = STy->isPacked();
319 if (IsUniqued)
320 return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked);
322 // If the type is opaque, we can just use it directly.
323 if (STy->isOpaque()) {
324 DstStructTypesSet.addOpaque(STy);
325 return *Entry = Ty;
328 if (StructType *OldT =
329 DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) {
330 STy->setName("");
331 return *Entry = OldT;
334 if (!AnyChange) {
335 DstStructTypesSet.addNonOpaque(STy);
336 return *Entry = Ty;
339 StructType *DTy = StructType::create(Ty->getContext());
340 finishType(DTy, STy, ElementTypes);
341 return *Entry = DTy;
346 LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity,
347 const Twine &Msg)
348 : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {}
349 void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
351 //===----------------------------------------------------------------------===//
352 // IRLinker implementation.
353 //===----------------------------------------------------------------------===//
355 namespace {
356 class IRLinker;
358 /// Creates prototypes for functions that are lazily linked on the fly. This
359 /// speeds up linking for modules with many/ lazily linked functions of which
360 /// few get used.
361 class GlobalValueMaterializer final : public ValueMaterializer {
362 IRLinker &TheIRLinker;
364 public:
365 GlobalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
366 Value *materialize(Value *V) override;
369 class LocalValueMaterializer final : public ValueMaterializer {
370 IRLinker &TheIRLinker;
372 public:
373 LocalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
374 Value *materialize(Value *V) override;
377 /// Type of the Metadata map in \a ValueToValueMapTy.
378 typedef DenseMap<const Metadata *, TrackingMDRef> MDMapT;
380 /// This is responsible for keeping track of the state used for moving data
381 /// from SrcM to DstM.
382 class IRLinker {
383 Module &DstM;
384 std::unique_ptr<Module> SrcM;
386 /// See IRMover::move().
387 std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor;
389 TypeMapTy TypeMap;
390 GlobalValueMaterializer GValMaterializer;
391 LocalValueMaterializer LValMaterializer;
393 /// A metadata map that's shared between IRLinker instances.
394 MDMapT &SharedMDs;
396 /// Mapping of values from what they used to be in Src, to what they are now
397 /// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead
398 /// due to the use of Value handles which the Linker doesn't actually need,
399 /// but this allows us to reuse the ValueMapper code.
400 ValueToValueMapTy ValueMap;
401 ValueToValueMapTy AliasValueMap;
403 DenseSet<GlobalValue *> ValuesToLink;
404 std::vector<GlobalValue *> Worklist;
405 std::vector<std::pair<GlobalValue *, Value*>> RAUWWorklist;
407 void maybeAdd(GlobalValue *GV) {
408 if (ValuesToLink.insert(GV).second)
409 Worklist.push_back(GV);
412 /// Whether we are importing globals for ThinLTO, as opposed to linking the
413 /// source module. If this flag is set, it means that we can rely on some
414 /// other object file to define any non-GlobalValue entities defined by the
415 /// source module. This currently causes us to not link retained types in
416 /// debug info metadata and module inline asm.
417 bool IsPerformingImport;
419 /// Set to true when all global value body linking is complete (including
420 /// lazy linking). Used to prevent metadata linking from creating new
421 /// references.
422 bool DoneLinkingBodies = false;
424 /// The Error encountered during materialization. We use an Optional here to
425 /// avoid needing to manage an unconsumed success value.
426 Optional<Error> FoundError;
427 void setError(Error E) {
428 if (E)
429 FoundError = std::move(E);
432 /// Most of the errors produced by this module are inconvertible StringErrors.
433 /// This convenience function lets us return one of those more easily.
434 Error stringErr(const Twine &T) {
435 return make_error<StringError>(T, inconvertibleErrorCode());
438 /// Entry point for mapping values and alternate context for mapping aliases.
439 ValueMapper Mapper;
440 unsigned AliasMCID;
442 /// Handles cloning of a global values from the source module into
443 /// the destination module, including setting the attributes and visibility.
444 GlobalValue *copyGlobalValueProto(const GlobalValue *SGV, bool ForDefinition);
446 void emitWarning(const Twine &Message) {
447 SrcM->getContext().diagnose(LinkDiagnosticInfo(DS_Warning, Message));
450 /// Given a global in the source module, return the global in the
451 /// destination module that is being linked to, if any.
452 GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) {
453 // If the source has no name it can't link. If it has local linkage,
454 // there is no name match-up going on.
455 if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
456 return nullptr;
458 // Otherwise see if we have a match in the destination module's symtab.
459 GlobalValue *DGV = DstM.getNamedValue(SrcGV->getName());
460 if (!DGV)
461 return nullptr;
463 // If we found a global with the same name in the dest module, but it has
464 // internal linkage, we are really not doing any linkage here.
465 if (DGV->hasLocalLinkage())
466 return nullptr;
468 // Otherwise, we do in fact link to the destination global.
469 return DGV;
472 void computeTypeMapping();
474 Expected<Constant *> linkAppendingVarProto(GlobalVariable *DstGV,
475 const GlobalVariable *SrcGV);
477 /// Given the GlobaValue \p SGV in the source module, and the matching
478 /// GlobalValue \p DGV (if any), return true if the linker will pull \p SGV
479 /// into the destination module.
481 /// Note this code may call the client-provided \p AddLazyFor.
482 bool shouldLink(GlobalValue *DGV, GlobalValue &SGV);
483 Expected<Constant *> linkGlobalValueProto(GlobalValue *GV, bool ForAlias);
485 Error linkModuleFlagsMetadata();
487 void linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src);
488 Error linkFunctionBody(Function &Dst, Function &Src);
489 void linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src);
490 Error linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src);
492 /// Replace all types in the source AttributeList with the
493 /// corresponding destination type.
494 AttributeList mapAttributeTypes(LLVMContext &C, AttributeList Attrs);
496 /// Functions that take care of cloning a specific global value type
497 /// into the destination module.
498 GlobalVariable *copyGlobalVariableProto(const GlobalVariable *SGVar);
499 Function *copyFunctionProto(const Function *SF);
500 GlobalValue *copyGlobalAliasProto(const GlobalAlias *SGA);
502 /// Perform "replace all uses with" operations. These work items need to be
503 /// performed as part of materialization, but we postpone them to happen after
504 /// materialization is done. The materializer called by ValueMapper is not
505 /// expected to delete constants, as ValueMapper is holding pointers to some
506 /// of them, but constant destruction may be indirectly triggered by RAUW.
507 /// Hence, the need to move this out of the materialization call chain.
508 void flushRAUWWorklist();
510 /// When importing for ThinLTO, prevent importing of types listed on
511 /// the DICompileUnit that we don't need a copy of in the importing
512 /// module.
513 void prepareCompileUnitsForImport();
514 void linkNamedMDNodes();
516 public:
517 IRLinker(Module &DstM, MDMapT &SharedMDs,
518 IRMover::IdentifiedStructTypeSet &Set, std::unique_ptr<Module> SrcM,
519 ArrayRef<GlobalValue *> ValuesToLink,
520 std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor,
521 bool IsPerformingImport)
522 : DstM(DstM), SrcM(std::move(SrcM)), AddLazyFor(std::move(AddLazyFor)),
523 TypeMap(Set), GValMaterializer(*this), LValMaterializer(*this),
524 SharedMDs(SharedMDs), IsPerformingImport(IsPerformingImport),
525 Mapper(ValueMap, RF_MoveDistinctMDs | RF_IgnoreMissingLocals, &TypeMap,
526 &GValMaterializer),
527 AliasMCID(Mapper.registerAlternateMappingContext(AliasValueMap,
528 &LValMaterializer)) {
529 ValueMap.getMDMap() = std::move(SharedMDs);
530 for (GlobalValue *GV : ValuesToLink)
531 maybeAdd(GV);
532 if (IsPerformingImport)
533 prepareCompileUnitsForImport();
535 ~IRLinker() { SharedMDs = std::move(*ValueMap.getMDMap()); }
537 Error run();
538 Value *materialize(Value *V, bool ForAlias);
542 /// The LLVM SymbolTable class autorenames globals that conflict in the symbol
543 /// table. This is good for all clients except for us. Go through the trouble
544 /// to force this back.
545 static void forceRenaming(GlobalValue *GV, StringRef Name) {
546 // If the global doesn't force its name or if it already has the right name,
547 // there is nothing for us to do.
548 if (GV->hasLocalLinkage() || GV->getName() == Name)
549 return;
551 Module *M = GV->getParent();
553 // If there is a conflict, rename the conflict.
554 if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
555 GV->takeName(ConflictGV);
556 ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
557 assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
558 } else {
559 GV->setName(Name); // Force the name back
563 Value *GlobalValueMaterializer::materialize(Value *SGV) {
564 return TheIRLinker.materialize(SGV, false);
567 Value *LocalValueMaterializer::materialize(Value *SGV) {
568 return TheIRLinker.materialize(SGV, true);
571 Value *IRLinker::materialize(Value *V, bool ForAlias) {
572 auto *SGV = dyn_cast<GlobalValue>(V);
573 if (!SGV)
574 return nullptr;
576 Expected<Constant *> NewProto = linkGlobalValueProto(SGV, ForAlias);
577 if (!NewProto) {
578 setError(NewProto.takeError());
579 return nullptr;
581 if (!*NewProto)
582 return nullptr;
584 GlobalValue *New = dyn_cast<GlobalValue>(*NewProto);
585 if (!New)
586 return *NewProto;
588 // If we already created the body, just return.
589 if (auto *F = dyn_cast<Function>(New)) {
590 if (!F->isDeclaration())
591 return New;
592 } else if (auto *V = dyn_cast<GlobalVariable>(New)) {
593 if (V->hasInitializer() || V->hasAppendingLinkage())
594 return New;
595 } else {
596 auto *A = cast<GlobalAlias>(New);
597 if (A->getAliasee())
598 return New;
601 // When linking a global for an alias, it will always be linked. However we
602 // need to check if it was not already scheduled to satisfy a reference from a
603 // regular global value initializer. We know if it has been schedule if the
604 // "New" GlobalValue that is mapped here for the alias is the same as the one
605 // already mapped. If there is an entry in the ValueMap but the value is
606 // different, it means that the value already had a definition in the
607 // destination module (linkonce for instance), but we need a new definition
608 // for the alias ("New" will be different.
609 if (ForAlias && ValueMap.lookup(SGV) == New)
610 return New;
612 if (ForAlias || shouldLink(New, *SGV))
613 setError(linkGlobalValueBody(*New, *SGV));
615 return New;
618 /// Loop through the global variables in the src module and merge them into the
619 /// dest module.
620 GlobalVariable *IRLinker::copyGlobalVariableProto(const GlobalVariable *SGVar) {
621 // No linking to be performed or linking from the source: simply create an
622 // identical version of the symbol over in the dest module... the
623 // initializer will be filled in later by LinkGlobalInits.
624 GlobalVariable *NewDGV =
625 new GlobalVariable(DstM, TypeMap.get(SGVar->getValueType()),
626 SGVar->isConstant(), GlobalValue::ExternalLinkage,
627 /*init*/ nullptr, SGVar->getName(),
628 /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(),
629 SGVar->getType()->getAddressSpace());
630 NewDGV->setAlignment(SGVar->getAlignment());
631 NewDGV->copyAttributesFrom(SGVar);
632 return NewDGV;
635 AttributeList IRLinker::mapAttributeTypes(LLVMContext &C, AttributeList Attrs) {
636 for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) {
637 if (Attrs.hasAttribute(i, Attribute::ByVal)) {
638 Type *Ty = Attrs.getAttribute(i, Attribute::ByVal).getValueAsType();
639 if (!Ty)
640 continue;
642 Attrs = Attrs.removeAttribute(C, i, Attribute::ByVal);
643 Attrs = Attrs.addAttribute(
644 C, i, Attribute::getWithByValType(C, TypeMap.get(Ty)));
647 return Attrs;
650 /// Link the function in the source module into the destination module if
651 /// needed, setting up mapping information.
652 Function *IRLinker::copyFunctionProto(const Function *SF) {
653 // If there is no linkage to be performed or we are linking from the source,
654 // bring SF over.
655 auto *F =
656 Function::Create(TypeMap.get(SF->getFunctionType()),
657 GlobalValue::ExternalLinkage, SF->getName(), &DstM);
658 F->copyAttributesFrom(SF);
659 F->setAttributes(mapAttributeTypes(F->getContext(), F->getAttributes()));
660 return F;
663 /// Set up prototypes for any aliases that come over from the source module.
664 GlobalValue *IRLinker::copyGlobalAliasProto(const GlobalAlias *SGA) {
665 // If there is no linkage to be performed or we're linking from the source,
666 // bring over SGA.
667 auto *Ty = TypeMap.get(SGA->getValueType());
668 auto *GA =
669 GlobalAlias::create(Ty, SGA->getType()->getPointerAddressSpace(),
670 GlobalValue::ExternalLinkage, SGA->getName(), &DstM);
671 GA->copyAttributesFrom(SGA);
672 return GA;
675 GlobalValue *IRLinker::copyGlobalValueProto(const GlobalValue *SGV,
676 bool ForDefinition) {
677 GlobalValue *NewGV;
678 if (auto *SGVar = dyn_cast<GlobalVariable>(SGV)) {
679 NewGV = copyGlobalVariableProto(SGVar);
680 } else if (auto *SF = dyn_cast<Function>(SGV)) {
681 NewGV = copyFunctionProto(SF);
682 } else {
683 if (ForDefinition)
684 NewGV = copyGlobalAliasProto(cast<GlobalAlias>(SGV));
685 else if (SGV->getValueType()->isFunctionTy())
686 NewGV =
687 Function::Create(cast<FunctionType>(TypeMap.get(SGV->getValueType())),
688 GlobalValue::ExternalLinkage, SGV->getName(), &DstM);
689 else
690 NewGV = new GlobalVariable(
691 DstM, TypeMap.get(SGV->getValueType()),
692 /*isConstant*/ false, GlobalValue::ExternalLinkage,
693 /*init*/ nullptr, SGV->getName(),
694 /*insertbefore*/ nullptr, SGV->getThreadLocalMode(),
695 SGV->getType()->getAddressSpace());
698 if (ForDefinition)
699 NewGV->setLinkage(SGV->getLinkage());
700 else if (SGV->hasExternalWeakLinkage())
701 NewGV->setLinkage(GlobalValue::ExternalWeakLinkage);
703 if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) {
704 // Metadata for global variables and function declarations is copied eagerly.
705 if (isa<GlobalVariable>(SGV) || SGV->isDeclaration())
706 NewGO->copyMetadata(cast<GlobalObject>(SGV), 0);
709 // Remove these copied constants in case this stays a declaration, since
710 // they point to the source module. If the def is linked the values will
711 // be mapped in during linkFunctionBody.
712 if (auto *NewF = dyn_cast<Function>(NewGV)) {
713 NewF->setPersonalityFn(nullptr);
714 NewF->setPrefixData(nullptr);
715 NewF->setPrologueData(nullptr);
718 return NewGV;
721 static StringRef getTypeNamePrefix(StringRef Name) {
722 size_t DotPos = Name.rfind('.');
723 return (DotPos == 0 || DotPos == StringRef::npos || Name.back() == '.' ||
724 !isdigit(static_cast<unsigned char>(Name[DotPos + 1])))
725 ? Name
726 : Name.substr(0, DotPos);
729 /// Loop over all of the linked values to compute type mappings. For example,
730 /// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct
731 /// types 'Foo' but one got renamed when the module was loaded into the same
732 /// LLVMContext.
733 void IRLinker::computeTypeMapping() {
734 for (GlobalValue &SGV : SrcM->globals()) {
735 GlobalValue *DGV = getLinkedToGlobal(&SGV);
736 if (!DGV)
737 continue;
739 if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) {
740 TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
741 continue;
744 // Unify the element type of appending arrays.
745 ArrayType *DAT = cast<ArrayType>(DGV->getValueType());
746 ArrayType *SAT = cast<ArrayType>(SGV.getValueType());
747 TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
750 for (GlobalValue &SGV : *SrcM)
751 if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
752 TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
754 for (GlobalValue &SGV : SrcM->aliases())
755 if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
756 TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
758 // Incorporate types by name, scanning all the types in the source module.
759 // At this point, the destination module may have a type "%foo = { i32 }" for
760 // example. When the source module got loaded into the same LLVMContext, if
761 // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
762 std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes();
763 for (StructType *ST : Types) {
764 if (!ST->hasName())
765 continue;
767 if (TypeMap.DstStructTypesSet.hasType(ST)) {
768 // This is actually a type from the destination module.
769 // getIdentifiedStructTypes() can have found it by walking debug info
770 // metadata nodes, some of which get linked by name when ODR Type Uniquing
771 // is enabled on the Context, from the source to the destination module.
772 continue;
775 auto STTypePrefix = getTypeNamePrefix(ST->getName());
776 if (STTypePrefix.size()== ST->getName().size())
777 continue;
779 // Check to see if the destination module has a struct with the prefix name.
780 StructType *DST = DstM.getTypeByName(STTypePrefix);
781 if (!DST)
782 continue;
784 // Don't use it if this actually came from the source module. They're in
785 // the same LLVMContext after all. Also don't use it unless the type is
786 // actually used in the destination module. This can happen in situations
787 // like this:
789 // Module A Module B
790 // -------- --------
791 // %Z = type { %A } %B = type { %C.1 }
792 // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* }
793 // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] }
794 // %C = type { i8* } %B.3 = type { %C.1 }
796 // When we link Module B with Module A, the '%B' in Module B is
797 // used. However, that would then use '%C.1'. But when we process '%C.1',
798 // we prefer to take the '%C' version. So we are then left with both
799 // '%C.1' and '%C' being used for the same types. This leads to some
800 // variables using one type and some using the other.
801 if (TypeMap.DstStructTypesSet.hasType(DST))
802 TypeMap.addTypeMapping(DST, ST);
805 // Now that we have discovered all of the type equivalences, get a body for
806 // any 'opaque' types in the dest module that are now resolved.
807 TypeMap.linkDefinedTypeBodies();
810 static void getArrayElements(const Constant *C,
811 SmallVectorImpl<Constant *> &Dest) {
812 unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
814 for (unsigned i = 0; i != NumElements; ++i)
815 Dest.push_back(C->getAggregateElement(i));
818 /// If there were any appending global variables, link them together now.
819 Expected<Constant *>
820 IRLinker::linkAppendingVarProto(GlobalVariable *DstGV,
821 const GlobalVariable *SrcGV) {
822 Type *EltTy = cast<ArrayType>(TypeMap.get(SrcGV->getValueType()))
823 ->getElementType();
825 // FIXME: This upgrade is done during linking to support the C API. Once the
826 // old form is deprecated, we should move this upgrade to
827 // llvm::UpgradeGlobalVariable() and simplify the logic here and in
828 // Mapper::mapAppendingVariable() in ValueMapper.cpp.
829 StringRef Name = SrcGV->getName();
830 bool IsNewStructor = false;
831 bool IsOldStructor = false;
832 if (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") {
833 if (cast<StructType>(EltTy)->getNumElements() == 3)
834 IsNewStructor = true;
835 else
836 IsOldStructor = true;
839 PointerType *VoidPtrTy = Type::getInt8Ty(SrcGV->getContext())->getPointerTo();
840 if (IsOldStructor) {
841 auto &ST = *cast<StructType>(EltTy);
842 Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
843 EltTy = StructType::get(SrcGV->getContext(), Tys, false);
846 uint64_t DstNumElements = 0;
847 if (DstGV) {
848 ArrayType *DstTy = cast<ArrayType>(DstGV->getValueType());
849 DstNumElements = DstTy->getNumElements();
851 if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
852 return stringErr(
853 "Linking globals named '" + SrcGV->getName() +
854 "': can only link appending global with another appending "
855 "global!");
857 // Check to see that they two arrays agree on type.
858 if (EltTy != DstTy->getElementType())
859 return stringErr("Appending variables with different element types!");
860 if (DstGV->isConstant() != SrcGV->isConstant())
861 return stringErr("Appending variables linked with different const'ness!");
863 if (DstGV->getAlignment() != SrcGV->getAlignment())
864 return stringErr(
865 "Appending variables with different alignment need to be linked!");
867 if (DstGV->getVisibility() != SrcGV->getVisibility())
868 return stringErr(
869 "Appending variables with different visibility need to be linked!");
871 if (DstGV->hasGlobalUnnamedAddr() != SrcGV->hasGlobalUnnamedAddr())
872 return stringErr(
873 "Appending variables with different unnamed_addr need to be linked!");
875 if (DstGV->getSection() != SrcGV->getSection())
876 return stringErr(
877 "Appending variables with different section name need to be linked!");
880 SmallVector<Constant *, 16> SrcElements;
881 getArrayElements(SrcGV->getInitializer(), SrcElements);
883 if (IsNewStructor) {
884 auto It = remove_if(SrcElements, [this](Constant *E) {
885 auto *Key =
886 dyn_cast<GlobalValue>(E->getAggregateElement(2)->stripPointerCasts());
887 if (!Key)
888 return false;
889 GlobalValue *DGV = getLinkedToGlobal(Key);
890 return !shouldLink(DGV, *Key);
892 SrcElements.erase(It, SrcElements.end());
894 uint64_t NewSize = DstNumElements + SrcElements.size();
895 ArrayType *NewType = ArrayType::get(EltTy, NewSize);
897 // Create the new global variable.
898 GlobalVariable *NG = new GlobalVariable(
899 DstM, NewType, SrcGV->isConstant(), SrcGV->getLinkage(),
900 /*init*/ nullptr, /*name*/ "", DstGV, SrcGV->getThreadLocalMode(),
901 SrcGV->getType()->getAddressSpace());
903 NG->copyAttributesFrom(SrcGV);
904 forceRenaming(NG, SrcGV->getName());
906 Constant *Ret = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
908 Mapper.scheduleMapAppendingVariable(*NG,
909 DstGV ? DstGV->getInitializer() : nullptr,
910 IsOldStructor, SrcElements);
912 // Replace any uses of the two global variables with uses of the new
913 // global.
914 if (DstGV) {
915 RAUWWorklist.push_back(
916 std::make_pair(DstGV, ConstantExpr::getBitCast(NG, DstGV->getType())));
919 return Ret;
922 bool IRLinker::shouldLink(GlobalValue *DGV, GlobalValue &SGV) {
923 if (ValuesToLink.count(&SGV) || SGV.hasLocalLinkage())
924 return true;
926 if (DGV && !DGV->isDeclarationForLinker())
927 return false;
929 if (SGV.isDeclaration() || DoneLinkingBodies)
930 return false;
932 // Callback to the client to give a chance to lazily add the Global to the
933 // list of value to link.
934 bool LazilyAdded = false;
935 AddLazyFor(SGV, [this, &LazilyAdded](GlobalValue &GV) {
936 maybeAdd(&GV);
937 LazilyAdded = true;
939 return LazilyAdded;
942 Expected<Constant *> IRLinker::linkGlobalValueProto(GlobalValue *SGV,
943 bool ForAlias) {
944 GlobalValue *DGV = getLinkedToGlobal(SGV);
946 bool ShouldLink = shouldLink(DGV, *SGV);
948 // just missing from map
949 if (ShouldLink) {
950 auto I = ValueMap.find(SGV);
951 if (I != ValueMap.end())
952 return cast<Constant>(I->second);
954 I = AliasValueMap.find(SGV);
955 if (I != AliasValueMap.end())
956 return cast<Constant>(I->second);
959 if (!ShouldLink && ForAlias)
960 DGV = nullptr;
962 // Handle the ultra special appending linkage case first.
963 assert(!DGV || SGV->hasAppendingLinkage() == DGV->hasAppendingLinkage());
964 if (SGV->hasAppendingLinkage())
965 return linkAppendingVarProto(cast_or_null<GlobalVariable>(DGV),
966 cast<GlobalVariable>(SGV));
968 GlobalValue *NewGV;
969 if (DGV && !ShouldLink) {
970 NewGV = DGV;
971 } else {
972 // If we are done linking global value bodies (i.e. we are performing
973 // metadata linking), don't link in the global value due to this
974 // reference, simply map it to null.
975 if (DoneLinkingBodies)
976 return nullptr;
978 NewGV = copyGlobalValueProto(SGV, ShouldLink || ForAlias);
979 if (ShouldLink || !ForAlias)
980 forceRenaming(NewGV, SGV->getName());
983 // Overloaded intrinsics have overloaded types names as part of their
984 // names. If we renamed overloaded types we should rename the intrinsic
985 // as well.
986 if (Function *F = dyn_cast<Function>(NewGV))
987 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F))
988 NewGV = Remangled.getValue();
990 if (ShouldLink || ForAlias) {
991 if (const Comdat *SC = SGV->getComdat()) {
992 if (auto *GO = dyn_cast<GlobalObject>(NewGV)) {
993 Comdat *DC = DstM.getOrInsertComdat(SC->getName());
994 DC->setSelectionKind(SC->getSelectionKind());
995 GO->setComdat(DC);
1000 if (!ShouldLink && ForAlias)
1001 NewGV->setLinkage(GlobalValue::InternalLinkage);
1003 Constant *C = NewGV;
1004 // Only create a bitcast if necessary. In particular, with
1005 // DebugTypeODRUniquing we may reach metadata in the destination module
1006 // containing a GV from the source module, in which case SGV will be
1007 // the same as DGV and NewGV, and TypeMap.get() will assert since it
1008 // assumes it is being invoked on a type in the source module.
1009 if (DGV && NewGV != SGV) {
1010 C = ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1011 NewGV, TypeMap.get(SGV->getType()));
1014 if (DGV && NewGV != DGV) {
1015 // Schedule "replace all uses with" to happen after materializing is
1016 // done. It is not safe to do it now, since ValueMapper may be holding
1017 // pointers to constants that will get deleted if RAUW runs.
1018 RAUWWorklist.push_back(std::make_pair(
1019 DGV,
1020 ConstantExpr::getPointerBitCastOrAddrSpaceCast(NewGV, DGV->getType())));
1023 return C;
1026 /// Update the initializers in the Dest module now that all globals that may be
1027 /// referenced are in Dest.
1028 void IRLinker::linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src) {
1029 // Figure out what the initializer looks like in the dest module.
1030 Mapper.scheduleMapGlobalInitializer(Dst, *Src.getInitializer());
1033 /// Copy the source function over into the dest function and fix up references
1034 /// to values. At this point we know that Dest is an external function, and
1035 /// that Src is not.
1036 Error IRLinker::linkFunctionBody(Function &Dst, Function &Src) {
1037 assert(Dst.isDeclaration() && !Src.isDeclaration());
1039 // Materialize if needed.
1040 if (Error Err = Src.materialize())
1041 return Err;
1043 // Link in the operands without remapping.
1044 if (Src.hasPrefixData())
1045 Dst.setPrefixData(Src.getPrefixData());
1046 if (Src.hasPrologueData())
1047 Dst.setPrologueData(Src.getPrologueData());
1048 if (Src.hasPersonalityFn())
1049 Dst.setPersonalityFn(Src.getPersonalityFn());
1051 // Copy over the metadata attachments without remapping.
1052 Dst.copyMetadata(&Src, 0);
1054 // Steal arguments and splice the body of Src into Dst.
1055 Dst.stealArgumentListFrom(Src);
1056 Dst.getBasicBlockList().splice(Dst.end(), Src.getBasicBlockList());
1058 // Everything has been moved over. Remap it.
1059 Mapper.scheduleRemapFunction(Dst);
1060 return Error::success();
1063 void IRLinker::linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src) {
1064 Mapper.scheduleMapGlobalAliasee(Dst, *Src.getAliasee(), AliasMCID);
1067 Error IRLinker::linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src) {
1068 if (auto *F = dyn_cast<Function>(&Src))
1069 return linkFunctionBody(cast<Function>(Dst), *F);
1070 if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) {
1071 linkGlobalVariable(cast<GlobalVariable>(Dst), *GVar);
1072 return Error::success();
1074 linkAliasBody(cast<GlobalAlias>(Dst), cast<GlobalAlias>(Src));
1075 return Error::success();
1078 void IRLinker::flushRAUWWorklist() {
1079 for (const auto Elem : RAUWWorklist) {
1080 GlobalValue *Old;
1081 Value *New;
1082 std::tie(Old, New) = Elem;
1084 Old->replaceAllUsesWith(New);
1085 Old->eraseFromParent();
1087 RAUWWorklist.clear();
1090 void IRLinker::prepareCompileUnitsForImport() {
1091 NamedMDNode *SrcCompileUnits = SrcM->getNamedMetadata("llvm.dbg.cu");
1092 if (!SrcCompileUnits)
1093 return;
1094 // When importing for ThinLTO, prevent importing of types listed on
1095 // the DICompileUnit that we don't need a copy of in the importing
1096 // module. They will be emitted by the originating module.
1097 for (unsigned I = 0, E = SrcCompileUnits->getNumOperands(); I != E; ++I) {
1098 auto *CU = cast<DICompileUnit>(SrcCompileUnits->getOperand(I));
1099 assert(CU && "Expected valid compile unit");
1100 // Enums, macros, and retained types don't need to be listed on the
1101 // imported DICompileUnit. This means they will only be imported
1102 // if reached from the mapped IR. Do this by setting their value map
1103 // entries to nullptr, which will automatically prevent their importing
1104 // when reached from the DICompileUnit during metadata mapping.
1105 ValueMap.MD()[CU->getRawEnumTypes()].reset(nullptr);
1106 ValueMap.MD()[CU->getRawMacros()].reset(nullptr);
1107 ValueMap.MD()[CU->getRawRetainedTypes()].reset(nullptr);
1108 // The original definition (or at least its debug info - if the variable is
1109 // internalized an optimized away) will remain in the source module, so
1110 // there's no need to import them.
1111 // If LLVM ever does more advanced optimizations on global variables
1112 // (removing/localizing write operations, for instance) that can track
1113 // through debug info, this decision may need to be revisited - but do so
1114 // with care when it comes to debug info size. Emitting small CUs containing
1115 // only a few imported entities into every destination module may be very
1116 // size inefficient.
1117 ValueMap.MD()[CU->getRawGlobalVariables()].reset(nullptr);
1119 // Imported entities only need to be mapped in if they have local
1120 // scope, as those might correspond to an imported entity inside a
1121 // function being imported (any locally scoped imported entities that
1122 // don't end up referenced by an imported function will not be emitted
1123 // into the object). Imported entities not in a local scope
1124 // (e.g. on the namespace) only need to be emitted by the originating
1125 // module. Create a list of the locally scoped imported entities, and
1126 // replace the source CUs imported entity list with the new list, so
1127 // only those are mapped in.
1128 // FIXME: Locally-scoped imported entities could be moved to the
1129 // functions they are local to instead of listing them on the CU, and
1130 // we would naturally only link in those needed by function importing.
1131 SmallVector<TrackingMDNodeRef, 4> AllImportedModules;
1132 bool ReplaceImportedEntities = false;
1133 for (auto *IE : CU->getImportedEntities()) {
1134 DIScope *Scope = IE->getScope();
1135 assert(Scope && "Invalid Scope encoding!");
1136 if (isa<DILocalScope>(Scope))
1137 AllImportedModules.emplace_back(IE);
1138 else
1139 ReplaceImportedEntities = true;
1141 if (ReplaceImportedEntities) {
1142 if (!AllImportedModules.empty())
1143 CU->replaceImportedEntities(MDTuple::get(
1144 CU->getContext(),
1145 SmallVector<Metadata *, 16>(AllImportedModules.begin(),
1146 AllImportedModules.end())));
1147 else
1148 // If there were no local scope imported entities, we can map
1149 // the whole list to nullptr.
1150 ValueMap.MD()[CU->getRawImportedEntities()].reset(nullptr);
1155 /// Insert all of the named MDNodes in Src into the Dest module.
1156 void IRLinker::linkNamedMDNodes() {
1157 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1158 for (const NamedMDNode &NMD : SrcM->named_metadata()) {
1159 // Don't link module flags here. Do them separately.
1160 if (&NMD == SrcModFlags)
1161 continue;
1162 NamedMDNode *DestNMD = DstM.getOrInsertNamedMetadata(NMD.getName());
1163 // Add Src elements into Dest node.
1164 for (const MDNode *Op : NMD.operands())
1165 DestNMD->addOperand(Mapper.mapMDNode(*Op));
1169 /// Merge the linker flags in Src into the Dest module.
1170 Error IRLinker::linkModuleFlagsMetadata() {
1171 // If the source module has no module flags, we are done.
1172 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1173 if (!SrcModFlags)
1174 return Error::success();
1176 // If the destination module doesn't have module flags yet, then just copy
1177 // over the source module's flags.
1178 NamedMDNode *DstModFlags = DstM.getOrInsertModuleFlagsMetadata();
1179 if (DstModFlags->getNumOperands() == 0) {
1180 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
1181 DstModFlags->addOperand(SrcModFlags->getOperand(I));
1183 return Error::success();
1186 // First build a map of the existing module flags and requirements.
1187 DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags;
1188 SmallSetVector<MDNode *, 16> Requirements;
1189 for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
1190 MDNode *Op = DstModFlags->getOperand(I);
1191 ConstantInt *Behavior = mdconst::extract<ConstantInt>(Op->getOperand(0));
1192 MDString *ID = cast<MDString>(Op->getOperand(1));
1194 if (Behavior->getZExtValue() == Module::Require) {
1195 Requirements.insert(cast<MDNode>(Op->getOperand(2)));
1196 } else {
1197 Flags[ID] = std::make_pair(Op, I);
1201 // Merge in the flags from the source module, and also collect its set of
1202 // requirements.
1203 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
1204 MDNode *SrcOp = SrcModFlags->getOperand(I);
1205 ConstantInt *SrcBehavior =
1206 mdconst::extract<ConstantInt>(SrcOp->getOperand(0));
1207 MDString *ID = cast<MDString>(SrcOp->getOperand(1));
1208 MDNode *DstOp;
1209 unsigned DstIndex;
1210 std::tie(DstOp, DstIndex) = Flags.lookup(ID);
1211 unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
1213 // If this is a requirement, add it and continue.
1214 if (SrcBehaviorValue == Module::Require) {
1215 // If the destination module does not already have this requirement, add
1216 // it.
1217 if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
1218 DstModFlags->addOperand(SrcOp);
1220 continue;
1223 // If there is no existing flag with this ID, just add it.
1224 if (!DstOp) {
1225 Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands());
1226 DstModFlags->addOperand(SrcOp);
1227 continue;
1230 // Otherwise, perform a merge.
1231 ConstantInt *DstBehavior =
1232 mdconst::extract<ConstantInt>(DstOp->getOperand(0));
1233 unsigned DstBehaviorValue = DstBehavior->getZExtValue();
1235 auto overrideDstValue = [&]() {
1236 DstModFlags->setOperand(DstIndex, SrcOp);
1237 Flags[ID].first = SrcOp;
1240 // If either flag has override behavior, handle it first.
1241 if (DstBehaviorValue == Module::Override) {
1242 // Diagnose inconsistent flags which both have override behavior.
1243 if (SrcBehaviorValue == Module::Override &&
1244 SrcOp->getOperand(2) != DstOp->getOperand(2))
1245 return stringErr("linking module flags '" + ID->getString() +
1246 "': IDs have conflicting override values in '" +
1247 SrcM->getModuleIdentifier() + "' and '" +
1248 DstM.getModuleIdentifier() + "'");
1249 continue;
1250 } else if (SrcBehaviorValue == Module::Override) {
1251 // Update the destination flag to that of the source.
1252 overrideDstValue();
1253 continue;
1256 // Diagnose inconsistent merge behavior types.
1257 if (SrcBehaviorValue != DstBehaviorValue)
1258 return stringErr("linking module flags '" + ID->getString() +
1259 "': IDs have conflicting behaviors in '" +
1260 SrcM->getModuleIdentifier() + "' and '" +
1261 DstM.getModuleIdentifier() + "'");
1263 auto replaceDstValue = [&](MDNode *New) {
1264 Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New};
1265 MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps);
1266 DstModFlags->setOperand(DstIndex, Flag);
1267 Flags[ID].first = Flag;
1270 // Perform the merge for standard behavior types.
1271 switch (SrcBehaviorValue) {
1272 case Module::Require:
1273 case Module::Override:
1274 llvm_unreachable("not possible");
1275 case Module::Error: {
1276 // Emit an error if the values differ.
1277 if (SrcOp->getOperand(2) != DstOp->getOperand(2))
1278 return stringErr("linking module flags '" + ID->getString() +
1279 "': IDs have conflicting values in '" +
1280 SrcM->getModuleIdentifier() + "' and '" +
1281 DstM.getModuleIdentifier() + "'");
1282 continue;
1284 case Module::Warning: {
1285 // Emit a warning if the values differ.
1286 if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1287 std::string str;
1288 raw_string_ostream(str)
1289 << "linking module flags '" << ID->getString()
1290 << "': IDs have conflicting values ('" << *SrcOp->getOperand(2)
1291 << "' from " << SrcM->getModuleIdentifier() << " with '"
1292 << *DstOp->getOperand(2) << "' from " << DstM.getModuleIdentifier()
1293 << ')';
1294 emitWarning(str);
1296 continue;
1298 case Module::Max: {
1299 ConstantInt *DstValue =
1300 mdconst::extract<ConstantInt>(DstOp->getOperand(2));
1301 ConstantInt *SrcValue =
1302 mdconst::extract<ConstantInt>(SrcOp->getOperand(2));
1303 if (SrcValue->getZExtValue() > DstValue->getZExtValue())
1304 overrideDstValue();
1305 break;
1307 case Module::Append: {
1308 MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
1309 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1310 SmallVector<Metadata *, 8> MDs;
1311 MDs.reserve(DstValue->getNumOperands() + SrcValue->getNumOperands());
1312 MDs.append(DstValue->op_begin(), DstValue->op_end());
1313 MDs.append(SrcValue->op_begin(), SrcValue->op_end());
1315 replaceDstValue(MDNode::get(DstM.getContext(), MDs));
1316 break;
1318 case Module::AppendUnique: {
1319 SmallSetVector<Metadata *, 16> Elts;
1320 MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
1321 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1322 Elts.insert(DstValue->op_begin(), DstValue->op_end());
1323 Elts.insert(SrcValue->op_begin(), SrcValue->op_end());
1325 replaceDstValue(MDNode::get(DstM.getContext(),
1326 makeArrayRef(Elts.begin(), Elts.end())));
1327 break;
1332 // Check all of the requirements.
1333 for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
1334 MDNode *Requirement = Requirements[I];
1335 MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1336 Metadata *ReqValue = Requirement->getOperand(1);
1338 MDNode *Op = Flags[Flag].first;
1339 if (!Op || Op->getOperand(2) != ReqValue)
1340 return stringErr("linking module flags '" + Flag->getString() +
1341 "': does not have the required value");
1343 return Error::success();
1346 /// Return InlineAsm adjusted with target-specific directives if required.
1347 /// For ARM and Thumb, we have to add directives to select the appropriate ISA
1348 /// to support mixing module-level inline assembly from ARM and Thumb modules.
1349 static std::string adjustInlineAsm(const std::string &InlineAsm,
1350 const Triple &Triple) {
1351 if (Triple.getArch() == Triple::thumb || Triple.getArch() == Triple::thumbeb)
1352 return ".text\n.balign 2\n.thumb\n" + InlineAsm;
1353 if (Triple.getArch() == Triple::arm || Triple.getArch() == Triple::armeb)
1354 return ".text\n.balign 4\n.arm\n" + InlineAsm;
1355 return InlineAsm;
1358 Error IRLinker::run() {
1359 // Ensure metadata materialized before value mapping.
1360 if (SrcM->getMaterializer())
1361 if (Error Err = SrcM->getMaterializer()->materializeMetadata())
1362 return Err;
1364 // Inherit the target data from the source module if the destination module
1365 // doesn't have one already.
1366 if (DstM.getDataLayout().isDefault())
1367 DstM.setDataLayout(SrcM->getDataLayout());
1369 if (SrcM->getDataLayout() != DstM.getDataLayout()) {
1370 emitWarning("Linking two modules of different data layouts: '" +
1371 SrcM->getModuleIdentifier() + "' is '" +
1372 SrcM->getDataLayoutStr() + "' whereas '" +
1373 DstM.getModuleIdentifier() + "' is '" +
1374 DstM.getDataLayoutStr() + "'\n");
1377 // Copy the target triple from the source to dest if the dest's is empty.
1378 if (DstM.getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
1379 DstM.setTargetTriple(SrcM->getTargetTriple());
1381 Triple SrcTriple(SrcM->getTargetTriple()), DstTriple(DstM.getTargetTriple());
1383 if (!SrcM->getTargetTriple().empty()&&
1384 !SrcTriple.isCompatibleWith(DstTriple))
1385 emitWarning("Linking two modules of different target triples: " +
1386 SrcM->getModuleIdentifier() + "' is '" +
1387 SrcM->getTargetTriple() + "' whereas '" +
1388 DstM.getModuleIdentifier() + "' is '" + DstM.getTargetTriple() +
1389 "'\n");
1391 DstM.setTargetTriple(SrcTriple.merge(DstTriple));
1393 // Append the module inline asm string.
1394 if (!IsPerformingImport && !SrcM->getModuleInlineAsm().empty()) {
1395 std::string SrcModuleInlineAsm = adjustInlineAsm(SrcM->getModuleInlineAsm(),
1396 SrcTriple);
1397 if (DstM.getModuleInlineAsm().empty())
1398 DstM.setModuleInlineAsm(SrcModuleInlineAsm);
1399 else
1400 DstM.setModuleInlineAsm(DstM.getModuleInlineAsm() + "\n" +
1401 SrcModuleInlineAsm);
1404 // Loop over all of the linked values to compute type mappings.
1405 computeTypeMapping();
1407 std::reverse(Worklist.begin(), Worklist.end());
1408 while (!Worklist.empty()) {
1409 GlobalValue *GV = Worklist.back();
1410 Worklist.pop_back();
1412 // Already mapped.
1413 if (ValueMap.find(GV) != ValueMap.end() ||
1414 AliasValueMap.find(GV) != AliasValueMap.end())
1415 continue;
1417 assert(!GV->isDeclaration());
1418 Mapper.mapValue(*GV);
1419 if (FoundError)
1420 return std::move(*FoundError);
1421 flushRAUWWorklist();
1424 // Note that we are done linking global value bodies. This prevents
1425 // metadata linking from creating new references.
1426 DoneLinkingBodies = true;
1427 Mapper.addFlags(RF_NullMapMissingGlobalValues);
1429 // Remap all of the named MDNodes in Src into the DstM module. We do this
1430 // after linking GlobalValues so that MDNodes that reference GlobalValues
1431 // are properly remapped.
1432 linkNamedMDNodes();
1434 // Merge the module flags into the DstM module.
1435 return linkModuleFlagsMetadata();
1438 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P)
1439 : ETypes(E), IsPacked(P) {}
1441 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST)
1442 : ETypes(ST->elements()), IsPacked(ST->isPacked()) {}
1444 bool IRMover::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const {
1445 return IsPacked == That.IsPacked && ETypes == That.ETypes;
1448 bool IRMover::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const {
1449 return !this->operator==(That);
1452 StructType *IRMover::StructTypeKeyInfo::getEmptyKey() {
1453 return DenseMapInfo<StructType *>::getEmptyKey();
1456 StructType *IRMover::StructTypeKeyInfo::getTombstoneKey() {
1457 return DenseMapInfo<StructType *>::getTombstoneKey();
1460 unsigned IRMover::StructTypeKeyInfo::getHashValue(const KeyTy &Key) {
1461 return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()),
1462 Key.IsPacked);
1465 unsigned IRMover::StructTypeKeyInfo::getHashValue(const StructType *ST) {
1466 return getHashValue(KeyTy(ST));
1469 bool IRMover::StructTypeKeyInfo::isEqual(const KeyTy &LHS,
1470 const StructType *RHS) {
1471 if (RHS == getEmptyKey() || RHS == getTombstoneKey())
1472 return false;
1473 return LHS == KeyTy(RHS);
1476 bool IRMover::StructTypeKeyInfo::isEqual(const StructType *LHS,
1477 const StructType *RHS) {
1478 if (RHS == getEmptyKey() || RHS == getTombstoneKey())
1479 return LHS == RHS;
1480 return KeyTy(LHS) == KeyTy(RHS);
1483 void IRMover::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) {
1484 assert(!Ty->isOpaque());
1485 NonOpaqueStructTypes.insert(Ty);
1488 void IRMover::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) {
1489 assert(!Ty->isOpaque());
1490 NonOpaqueStructTypes.insert(Ty);
1491 bool Removed = OpaqueStructTypes.erase(Ty);
1492 (void)Removed;
1493 assert(Removed);
1496 void IRMover::IdentifiedStructTypeSet::addOpaque(StructType *Ty) {
1497 assert(Ty->isOpaque());
1498 OpaqueStructTypes.insert(Ty);
1501 StructType *
1502 IRMover::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes,
1503 bool IsPacked) {
1504 IRMover::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked);
1505 auto I = NonOpaqueStructTypes.find_as(Key);
1506 return I == NonOpaqueStructTypes.end() ? nullptr : *I;
1509 bool IRMover::IdentifiedStructTypeSet::hasType(StructType *Ty) {
1510 if (Ty->isOpaque())
1511 return OpaqueStructTypes.count(Ty);
1512 auto I = NonOpaqueStructTypes.find(Ty);
1513 return I == NonOpaqueStructTypes.end() ? false : *I == Ty;
1516 IRMover::IRMover(Module &M) : Composite(M) {
1517 TypeFinder StructTypes;
1518 StructTypes.run(M, /* OnlyNamed */ false);
1519 for (StructType *Ty : StructTypes) {
1520 if (Ty->isOpaque())
1521 IdentifiedStructTypes.addOpaque(Ty);
1522 else
1523 IdentifiedStructTypes.addNonOpaque(Ty);
1525 // Self-map metadatas in the destination module. This is needed when
1526 // DebugTypeODRUniquing is enabled on the LLVMContext, since metadata in the
1527 // destination module may be reached from the source module.
1528 for (auto *MD : StructTypes.getVisitedMetadata()) {
1529 SharedMDs[MD].reset(const_cast<MDNode *>(MD));
1533 Error IRMover::move(
1534 std::unique_ptr<Module> Src, ArrayRef<GlobalValue *> ValuesToLink,
1535 std::function<void(GlobalValue &, ValueAdder Add)> AddLazyFor,
1536 bool IsPerformingImport) {
1537 IRLinker TheIRLinker(Composite, SharedMDs, IdentifiedStructTypes,
1538 std::move(Src), ValuesToLink, std::move(AddLazyFor),
1539 IsPerformingImport);
1540 Error E = TheIRLinker.run();
1541 Composite.dropTriviallyDeadConstantArrays();
1542 return E;