[InstCombine] Remove insertRangeTest code that handles the equality case.
[llvm-complete.git] / lib / CodeGen / GlobalISel / LegalizerInfo.cpp
blob6e1de95b32774bd42bf5da62b33ebee783d0d261
1 //===- lib/CodeGen/GlobalISel/LegalizerInfo.cpp - Legalizer ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implement an interface to specify and query how an illegal operation on a
10 // given type should be expanded.
12 // Issues to be resolved:
13 // + Make it fast.
14 // + Support weird types like i3, <7 x i3>, ...
15 // + Operations with more than one type (ICMP, CMPXCHG, intrinsics, ...)
17 //===----------------------------------------------------------------------===//
19 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
20 #include "llvm/ADT/SmallBitVector.h"
21 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineOperand.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/TargetOpcodes.h"
26 #include "llvm/MC/MCInstrDesc.h"
27 #include "llvm/MC/MCInstrInfo.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/LowLevelTypeImpl.h"
31 #include "llvm/Support/MathExtras.h"
32 #include <algorithm>
33 #include <map>
35 using namespace llvm;
36 using namespace LegalizeActions;
38 #define DEBUG_TYPE "legalizer-info"
40 cl::opt<bool> llvm::DisableGISelLegalityCheck(
41 "disable-gisel-legality-check",
42 cl::desc("Don't verify that MIR is fully legal between GlobalISel passes"),
43 cl::Hidden);
45 raw_ostream &llvm::operator<<(raw_ostream &OS, LegalizeAction Action) {
46 switch (Action) {
47 case Legal:
48 OS << "Legal";
49 break;
50 case NarrowScalar:
51 OS << "NarrowScalar";
52 break;
53 case WidenScalar:
54 OS << "WidenScalar";
55 break;
56 case FewerElements:
57 OS << "FewerElements";
58 break;
59 case MoreElements:
60 OS << "MoreElements";
61 break;
62 case Lower:
63 OS << "Lower";
64 break;
65 case Libcall:
66 OS << "Libcall";
67 break;
68 case Custom:
69 OS << "Custom";
70 break;
71 case Unsupported:
72 OS << "Unsupported";
73 break;
74 case NotFound:
75 OS << "NotFound";
76 break;
77 case UseLegacyRules:
78 OS << "UseLegacyRules";
79 break;
81 return OS;
84 raw_ostream &LegalityQuery::print(raw_ostream &OS) const {
85 OS << Opcode << ", Tys={";
86 for (const auto &Type : Types) {
87 OS << Type << ", ";
89 OS << "}, Opcode=";
91 OS << Opcode << ", MMOs={";
92 for (const auto &MMODescr : MMODescrs) {
93 OS << MMODescr.SizeInBits << ", ";
95 OS << "}";
97 return OS;
100 #ifndef NDEBUG
101 // Make sure the rule won't (trivially) loop forever.
102 static bool hasNoSimpleLoops(const LegalizeRule &Rule, const LegalityQuery &Q,
103 const std::pair<unsigned, LLT> &Mutation) {
104 switch (Rule.getAction()) {
105 case Custom:
106 case Lower:
107 case MoreElements:
108 case FewerElements:
109 break;
110 default:
111 return Q.Types[Mutation.first] != Mutation.second;
113 return true;
116 // Make sure the returned mutation makes sense for the match type.
117 static bool mutationIsSane(const LegalizeRule &Rule,
118 const LegalityQuery &Q,
119 std::pair<unsigned, LLT> Mutation) {
120 // If the user wants a custom mutation, then we can't really say much about
121 // it. Return true, and trust that they're doing the right thing.
122 if (Rule.getAction() == Custom)
123 return true;
125 const unsigned TypeIdx = Mutation.first;
126 const LLT OldTy = Q.Types[TypeIdx];
127 const LLT NewTy = Mutation.second;
129 switch (Rule.getAction()) {
130 case FewerElements:
131 case MoreElements: {
132 if (!OldTy.isVector())
133 return false;
135 if (NewTy.isVector()) {
136 if (Rule.getAction() == FewerElements) {
137 // Make sure the element count really decreased.
138 if (NewTy.getNumElements() >= OldTy.getNumElements())
139 return false;
140 } else {
141 // Make sure the element count really increased.
142 if (NewTy.getNumElements() <= OldTy.getNumElements())
143 return false;
147 // Make sure the element type didn't change.
148 return NewTy.getScalarType() == OldTy.getElementType();
150 case NarrowScalar:
151 case WidenScalar: {
152 if (OldTy.isVector()) {
153 // Number of elements should not change.
154 if (!NewTy.isVector() || OldTy.getNumElements() != NewTy.getNumElements())
155 return false;
156 } else {
157 // Both types must be vectors
158 if (NewTy.isVector())
159 return false;
162 if (Rule.getAction() == NarrowScalar) {
163 // Make sure the size really decreased.
164 if (NewTy.getScalarSizeInBits() >= OldTy.getScalarSizeInBits())
165 return false;
166 } else {
167 // Make sure the size really increased.
168 if (NewTy.getScalarSizeInBits() <= OldTy.getScalarSizeInBits())
169 return false;
172 return true;
174 default:
175 return true;
178 #endif
180 LegalizeActionStep LegalizeRuleSet::apply(const LegalityQuery &Query) const {
181 LLVM_DEBUG(dbgs() << "Applying legalizer ruleset to: "; Query.print(dbgs());
182 dbgs() << "\n");
183 if (Rules.empty()) {
184 LLVM_DEBUG(dbgs() << ".. fallback to legacy rules (no rules defined)\n");
185 return {LegalizeAction::UseLegacyRules, 0, LLT{}};
187 for (const LegalizeRule &Rule : Rules) {
188 if (Rule.match(Query)) {
189 LLVM_DEBUG(dbgs() << ".. match\n");
190 std::pair<unsigned, LLT> Mutation = Rule.determineMutation(Query);
191 LLVM_DEBUG(dbgs() << ".. .. " << Rule.getAction() << ", "
192 << Mutation.first << ", " << Mutation.second << "\n");
193 assert(mutationIsSane(Rule, Query, Mutation) &&
194 "legality mutation invalid for match");
195 assert(hasNoSimpleLoops(Rule, Query, Mutation) && "Simple loop detected");
196 return {Rule.getAction(), Mutation.first, Mutation.second};
197 } else
198 LLVM_DEBUG(dbgs() << ".. no match\n");
200 LLVM_DEBUG(dbgs() << ".. unsupported\n");
201 return {LegalizeAction::Unsupported, 0, LLT{}};
204 bool LegalizeRuleSet::verifyTypeIdxsCoverage(unsigned NumTypeIdxs) const {
205 #ifndef NDEBUG
206 if (Rules.empty()) {
207 LLVM_DEBUG(
208 dbgs() << ".. type index coverage check SKIPPED: no rules defined\n");
209 return true;
211 const int64_t FirstUncovered = TypeIdxsCovered.find_first_unset();
212 if (FirstUncovered < 0) {
213 LLVM_DEBUG(dbgs() << ".. type index coverage check SKIPPED:"
214 " user-defined predicate detected\n");
215 return true;
217 const bool AllCovered = (FirstUncovered >= NumTypeIdxs);
218 LLVM_DEBUG(dbgs() << ".. the first uncovered type index: " << FirstUncovered
219 << ", " << (AllCovered ? "OK" : "FAIL") << "\n");
220 return AllCovered;
221 #else
222 return true;
223 #endif
226 LegalizerInfo::LegalizerInfo() : TablesInitialized(false) {
227 // Set defaults.
228 // FIXME: these two (G_ANYEXT and G_TRUNC?) can be legalized to the
229 // fundamental load/store Jakob proposed. Once loads & stores are supported.
230 setScalarAction(TargetOpcode::G_ANYEXT, 1, {{1, Legal}});
231 setScalarAction(TargetOpcode::G_ZEXT, 1, {{1, Legal}});
232 setScalarAction(TargetOpcode::G_SEXT, 1, {{1, Legal}});
233 setScalarAction(TargetOpcode::G_TRUNC, 0, {{1, Legal}});
234 setScalarAction(TargetOpcode::G_TRUNC, 1, {{1, Legal}});
236 setScalarAction(TargetOpcode::G_INTRINSIC, 0, {{1, Legal}});
237 setScalarAction(TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS, 0, {{1, Legal}});
239 setLegalizeScalarToDifferentSizeStrategy(
240 TargetOpcode::G_IMPLICIT_DEF, 0, narrowToSmallerAndUnsupportedIfTooSmall);
241 setLegalizeScalarToDifferentSizeStrategy(
242 TargetOpcode::G_ADD, 0, widenToLargerTypesAndNarrowToLargest);
243 setLegalizeScalarToDifferentSizeStrategy(
244 TargetOpcode::G_OR, 0, widenToLargerTypesAndNarrowToLargest);
245 setLegalizeScalarToDifferentSizeStrategy(
246 TargetOpcode::G_LOAD, 0, narrowToSmallerAndUnsupportedIfTooSmall);
247 setLegalizeScalarToDifferentSizeStrategy(
248 TargetOpcode::G_STORE, 0, narrowToSmallerAndUnsupportedIfTooSmall);
250 setLegalizeScalarToDifferentSizeStrategy(
251 TargetOpcode::G_BRCOND, 0, widenToLargerTypesUnsupportedOtherwise);
252 setLegalizeScalarToDifferentSizeStrategy(
253 TargetOpcode::G_INSERT, 0, narrowToSmallerAndUnsupportedIfTooSmall);
254 setLegalizeScalarToDifferentSizeStrategy(
255 TargetOpcode::G_EXTRACT, 0, narrowToSmallerAndUnsupportedIfTooSmall);
256 setLegalizeScalarToDifferentSizeStrategy(
257 TargetOpcode::G_EXTRACT, 1, narrowToSmallerAndUnsupportedIfTooSmall);
258 setScalarAction(TargetOpcode::G_FNEG, 0, {{1, Lower}});
261 void LegalizerInfo::computeTables() {
262 assert(TablesInitialized == false);
264 for (unsigned OpcodeIdx = 0; OpcodeIdx <= LastOp - FirstOp; ++OpcodeIdx) {
265 const unsigned Opcode = FirstOp + OpcodeIdx;
266 for (unsigned TypeIdx = 0; TypeIdx != SpecifiedActions[OpcodeIdx].size();
267 ++TypeIdx) {
268 // 0. Collect information specified through the setAction API, i.e.
269 // for specific bit sizes.
270 // For scalar types:
271 SizeAndActionsVec ScalarSpecifiedActions;
272 // For pointer types:
273 std::map<uint16_t, SizeAndActionsVec> AddressSpace2SpecifiedActions;
274 // For vector types:
275 std::map<uint16_t, SizeAndActionsVec> ElemSize2SpecifiedActions;
276 for (auto LLT2Action : SpecifiedActions[OpcodeIdx][TypeIdx]) {
277 const LLT Type = LLT2Action.first;
278 const LegalizeAction Action = LLT2Action.second;
280 auto SizeAction = std::make_pair(Type.getSizeInBits(), Action);
281 if (Type.isPointer())
282 AddressSpace2SpecifiedActions[Type.getAddressSpace()].push_back(
283 SizeAction);
284 else if (Type.isVector())
285 ElemSize2SpecifiedActions[Type.getElementType().getSizeInBits()]
286 .push_back(SizeAction);
287 else
288 ScalarSpecifiedActions.push_back(SizeAction);
291 // 1. Handle scalar types
293 // Decide how to handle bit sizes for which no explicit specification
294 // was given.
295 SizeChangeStrategy S = &unsupportedForDifferentSizes;
296 if (TypeIdx < ScalarSizeChangeStrategies[OpcodeIdx].size() &&
297 ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr)
298 S = ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx];
299 llvm::sort(ScalarSpecifiedActions);
300 checkPartialSizeAndActionsVector(ScalarSpecifiedActions);
301 setScalarAction(Opcode, TypeIdx, S(ScalarSpecifiedActions));
304 // 2. Handle pointer types
305 for (auto PointerSpecifiedActions : AddressSpace2SpecifiedActions) {
306 llvm::sort(PointerSpecifiedActions.second);
307 checkPartialSizeAndActionsVector(PointerSpecifiedActions.second);
308 // For pointer types, we assume that there isn't a meaningfull way
309 // to change the number of bits used in the pointer.
310 setPointerAction(
311 Opcode, TypeIdx, PointerSpecifiedActions.first,
312 unsupportedForDifferentSizes(PointerSpecifiedActions.second));
315 // 3. Handle vector types
316 SizeAndActionsVec ElementSizesSeen;
317 for (auto VectorSpecifiedActions : ElemSize2SpecifiedActions) {
318 llvm::sort(VectorSpecifiedActions.second);
319 const uint16_t ElementSize = VectorSpecifiedActions.first;
320 ElementSizesSeen.push_back({ElementSize, Legal});
321 checkPartialSizeAndActionsVector(VectorSpecifiedActions.second);
322 // For vector types, we assume that the best way to adapt the number
323 // of elements is to the next larger number of elements type for which
324 // the vector type is legal, unless there is no such type. In that case,
325 // legalize towards a vector type with a smaller number of elements.
326 SizeAndActionsVec NumElementsActions;
327 for (SizeAndAction BitsizeAndAction : VectorSpecifiedActions.second) {
328 assert(BitsizeAndAction.first % ElementSize == 0);
329 const uint16_t NumElements = BitsizeAndAction.first / ElementSize;
330 NumElementsActions.push_back({NumElements, BitsizeAndAction.second});
332 setVectorNumElementAction(
333 Opcode, TypeIdx, ElementSize,
334 moreToWiderTypesAndLessToWidest(NumElementsActions));
336 llvm::sort(ElementSizesSeen);
337 SizeChangeStrategy VectorElementSizeChangeStrategy =
338 &unsupportedForDifferentSizes;
339 if (TypeIdx < VectorElementSizeChangeStrategies[OpcodeIdx].size() &&
340 VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr)
341 VectorElementSizeChangeStrategy =
342 VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx];
343 setScalarInVectorAction(
344 Opcode, TypeIdx, VectorElementSizeChangeStrategy(ElementSizesSeen));
348 TablesInitialized = true;
351 // FIXME: inefficient implementation for now. Without ComputeValueVTs we're
352 // probably going to need specialized lookup structures for various types before
353 // we have any hope of doing well with something like <13 x i3>. Even the common
354 // cases should do better than what we have now.
355 std::pair<LegalizeAction, LLT>
356 LegalizerInfo::getAspectAction(const InstrAspect &Aspect) const {
357 assert(TablesInitialized && "backend forgot to call computeTables");
358 // These *have* to be implemented for now, they're the fundamental basis of
359 // how everything else is transformed.
360 if (Aspect.Type.isScalar() || Aspect.Type.isPointer())
361 return findScalarLegalAction(Aspect);
362 assert(Aspect.Type.isVector());
363 return findVectorLegalAction(Aspect);
366 /// Helper function to get LLT for the given type index.
367 static LLT getTypeFromTypeIdx(const MachineInstr &MI,
368 const MachineRegisterInfo &MRI, unsigned OpIdx,
369 unsigned TypeIdx) {
370 assert(TypeIdx < MI.getNumOperands() && "Unexpected TypeIdx");
371 // G_UNMERGE_VALUES has variable number of operands, but there is only
372 // one source type and one destination type as all destinations must be the
373 // same type. So, get the last operand if TypeIdx == 1.
374 if (MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && TypeIdx == 1)
375 return MRI.getType(MI.getOperand(MI.getNumOperands() - 1).getReg());
376 return MRI.getType(MI.getOperand(OpIdx).getReg());
379 unsigned LegalizerInfo::getOpcodeIdxForOpcode(unsigned Opcode) const {
380 assert(Opcode >= FirstOp && Opcode <= LastOp && "Unsupported opcode");
381 return Opcode - FirstOp;
384 unsigned LegalizerInfo::getActionDefinitionsIdx(unsigned Opcode) const {
385 unsigned OpcodeIdx = getOpcodeIdxForOpcode(Opcode);
386 if (unsigned Alias = RulesForOpcode[OpcodeIdx].getAlias()) {
387 LLVM_DEBUG(dbgs() << ".. opcode " << Opcode << " is aliased to " << Alias
388 << "\n");
389 OpcodeIdx = getOpcodeIdxForOpcode(Alias);
390 LLVM_DEBUG(dbgs() << ".. opcode " << Alias << " is aliased to "
391 << RulesForOpcode[OpcodeIdx].getAlias() << "\n");
392 assert(RulesForOpcode[OpcodeIdx].getAlias() == 0 && "Cannot chain aliases");
395 return OpcodeIdx;
398 const LegalizeRuleSet &
399 LegalizerInfo::getActionDefinitions(unsigned Opcode) const {
400 unsigned OpcodeIdx = getActionDefinitionsIdx(Opcode);
401 return RulesForOpcode[OpcodeIdx];
404 LegalizeRuleSet &LegalizerInfo::getActionDefinitionsBuilder(unsigned Opcode) {
405 unsigned OpcodeIdx = getActionDefinitionsIdx(Opcode);
406 auto &Result = RulesForOpcode[OpcodeIdx];
407 assert(!Result.isAliasedByAnother() && "Modifying this opcode will modify aliases");
408 return Result;
411 LegalizeRuleSet &LegalizerInfo::getActionDefinitionsBuilder(
412 std::initializer_list<unsigned> Opcodes) {
413 unsigned Representative = *Opcodes.begin();
415 assert(!empty(Opcodes) && Opcodes.begin() + 1 != Opcodes.end() &&
416 "Initializer list must have at least two opcodes");
418 for (auto I = Opcodes.begin() + 1, E = Opcodes.end(); I != E; ++I)
419 aliasActionDefinitions(Representative, *I);
421 auto &Return = getActionDefinitionsBuilder(Representative);
422 Return.setIsAliasedByAnother();
423 return Return;
426 void LegalizerInfo::aliasActionDefinitions(unsigned OpcodeTo,
427 unsigned OpcodeFrom) {
428 assert(OpcodeTo != OpcodeFrom && "Cannot alias to self");
429 assert(OpcodeTo >= FirstOp && OpcodeTo <= LastOp && "Unsupported opcode");
430 const unsigned OpcodeFromIdx = getOpcodeIdxForOpcode(OpcodeFrom);
431 RulesForOpcode[OpcodeFromIdx].aliasTo(OpcodeTo);
434 LegalizeActionStep
435 LegalizerInfo::getAction(const LegalityQuery &Query) const {
436 LegalizeActionStep Step = getActionDefinitions(Query.Opcode).apply(Query);
437 if (Step.Action != LegalizeAction::UseLegacyRules) {
438 return Step;
441 for (unsigned i = 0; i < Query.Types.size(); ++i) {
442 auto Action = getAspectAction({Query.Opcode, i, Query.Types[i]});
443 if (Action.first != Legal) {
444 LLVM_DEBUG(dbgs() << ".. (legacy) Type " << i << " Action="
445 << Action.first << ", " << Action.second << "\n");
446 return {Action.first, i, Action.second};
447 } else
448 LLVM_DEBUG(dbgs() << ".. (legacy) Type " << i << " Legal\n");
450 LLVM_DEBUG(dbgs() << ".. (legacy) Legal\n");
451 return {Legal, 0, LLT{}};
454 LegalizeActionStep
455 LegalizerInfo::getAction(const MachineInstr &MI,
456 const MachineRegisterInfo &MRI) const {
457 SmallVector<LLT, 2> Types;
458 SmallBitVector SeenTypes(8);
459 const MCOperandInfo *OpInfo = MI.getDesc().OpInfo;
460 // FIXME: probably we'll need to cache the results here somehow?
461 for (unsigned i = 0; i < MI.getDesc().getNumOperands(); ++i) {
462 if (!OpInfo[i].isGenericType())
463 continue;
465 // We must only record actions once for each TypeIdx; otherwise we'd
466 // try to legalize operands multiple times down the line.
467 unsigned TypeIdx = OpInfo[i].getGenericTypeIndex();
468 if (SeenTypes[TypeIdx])
469 continue;
471 SeenTypes.set(TypeIdx);
473 LLT Ty = getTypeFromTypeIdx(MI, MRI, i, TypeIdx);
474 Types.push_back(Ty);
477 SmallVector<LegalityQuery::MemDesc, 2> MemDescrs;
478 for (const auto &MMO : MI.memoperands())
479 MemDescrs.push_back({8 * MMO->getSize() /* in bits */,
480 8 * MMO->getAlignment(),
481 MMO->getOrdering()});
483 return getAction({MI.getOpcode(), Types, MemDescrs});
486 bool LegalizerInfo::isLegal(const MachineInstr &MI,
487 const MachineRegisterInfo &MRI) const {
488 return getAction(MI, MRI).Action == Legal;
491 bool LegalizerInfo::isLegalOrCustom(const MachineInstr &MI,
492 const MachineRegisterInfo &MRI) const {
493 auto Action = getAction(MI, MRI).Action;
494 // If the action is custom, it may not necessarily modify the instruction,
495 // so we have to assume it's legal.
496 return Action == Legal || Action == Custom;
499 bool LegalizerInfo::legalizeCustom(MachineInstr &MI, MachineRegisterInfo &MRI,
500 MachineIRBuilder &MIRBuilder,
501 GISelChangeObserver &Observer) const {
502 return false;
505 LegalizerInfo::SizeAndActionsVec
506 LegalizerInfo::increaseToLargerTypesAndDecreaseToLargest(
507 const SizeAndActionsVec &v, LegalizeAction IncreaseAction,
508 LegalizeAction DecreaseAction) {
509 SizeAndActionsVec result;
510 unsigned LargestSizeSoFar = 0;
511 if (v.size() >= 1 && v[0].first != 1)
512 result.push_back({1, IncreaseAction});
513 for (size_t i = 0; i < v.size(); ++i) {
514 result.push_back(v[i]);
515 LargestSizeSoFar = v[i].first;
516 if (i + 1 < v.size() && v[i + 1].first != v[i].first + 1) {
517 result.push_back({LargestSizeSoFar + 1, IncreaseAction});
518 LargestSizeSoFar = v[i].first + 1;
521 result.push_back({LargestSizeSoFar + 1, DecreaseAction});
522 return result;
525 LegalizerInfo::SizeAndActionsVec
526 LegalizerInfo::decreaseToSmallerTypesAndIncreaseToSmallest(
527 const SizeAndActionsVec &v, LegalizeAction DecreaseAction,
528 LegalizeAction IncreaseAction) {
529 SizeAndActionsVec result;
530 if (v.size() == 0 || v[0].first != 1)
531 result.push_back({1, IncreaseAction});
532 for (size_t i = 0; i < v.size(); ++i) {
533 result.push_back(v[i]);
534 if (i + 1 == v.size() || v[i + 1].first != v[i].first + 1) {
535 result.push_back({v[i].first + 1, DecreaseAction});
538 return result;
541 LegalizerInfo::SizeAndAction
542 LegalizerInfo::findAction(const SizeAndActionsVec &Vec, const uint32_t Size) {
543 assert(Size >= 1);
544 // Find the last element in Vec that has a bitsize equal to or smaller than
545 // the requested bit size.
546 // That is the element just before the first element that is bigger than Size.
547 auto It = partition_point(
548 Vec, [=](const SizeAndAction &A) { return A.first <= Size; });
549 assert(It != Vec.begin() && "Does Vec not start with size 1?");
550 int VecIdx = It - Vec.begin() - 1;
552 LegalizeAction Action = Vec[VecIdx].second;
553 switch (Action) {
554 case Legal:
555 case Lower:
556 case Libcall:
557 case Custom:
558 return {Size, Action};
559 case FewerElements:
560 // FIXME: is this special case still needed and correct?
561 // Special case for scalarization:
562 if (Vec == SizeAndActionsVec({{1, FewerElements}}))
563 return {1, FewerElements};
564 LLVM_FALLTHROUGH;
565 case NarrowScalar: {
566 // The following needs to be a loop, as for now, we do allow needing to
567 // go over "Unsupported" bit sizes before finding a legalizable bit size.
568 // e.g. (s8, WidenScalar), (s9, Unsupported), (s32, Legal). if Size==8,
569 // we need to iterate over s9, and then to s32 to return (s32, Legal).
570 // If we want to get rid of the below loop, we should have stronger asserts
571 // when building the SizeAndActionsVecs, probably not allowing
572 // "Unsupported" unless at the ends of the vector.
573 for (int i = VecIdx - 1; i >= 0; --i)
574 if (!needsLegalizingToDifferentSize(Vec[i].second) &&
575 Vec[i].second != Unsupported)
576 return {Vec[i].first, Action};
577 llvm_unreachable("");
579 case WidenScalar:
580 case MoreElements: {
581 // See above, the following needs to be a loop, at least for now.
582 for (std::size_t i = VecIdx + 1; i < Vec.size(); ++i)
583 if (!needsLegalizingToDifferentSize(Vec[i].second) &&
584 Vec[i].second != Unsupported)
585 return {Vec[i].first, Action};
586 llvm_unreachable("");
588 case Unsupported:
589 return {Size, Unsupported};
590 case NotFound:
591 case UseLegacyRules:
592 llvm_unreachable("NotFound");
594 llvm_unreachable("Action has an unknown enum value");
597 std::pair<LegalizeAction, LLT>
598 LegalizerInfo::findScalarLegalAction(const InstrAspect &Aspect) const {
599 assert(Aspect.Type.isScalar() || Aspect.Type.isPointer());
600 if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp)
601 return {NotFound, LLT()};
602 const unsigned OpcodeIdx = getOpcodeIdxForOpcode(Aspect.Opcode);
603 if (Aspect.Type.isPointer() &&
604 AddrSpace2PointerActions[OpcodeIdx].find(Aspect.Type.getAddressSpace()) ==
605 AddrSpace2PointerActions[OpcodeIdx].end()) {
606 return {NotFound, LLT()};
608 const SmallVector<SizeAndActionsVec, 1> &Actions =
609 Aspect.Type.isPointer()
610 ? AddrSpace2PointerActions[OpcodeIdx]
611 .find(Aspect.Type.getAddressSpace())
612 ->second
613 : ScalarActions[OpcodeIdx];
614 if (Aspect.Idx >= Actions.size())
615 return {NotFound, LLT()};
616 const SizeAndActionsVec &Vec = Actions[Aspect.Idx];
617 // FIXME: speed up this search, e.g. by using a results cache for repeated
618 // queries?
619 auto SizeAndAction = findAction(Vec, Aspect.Type.getSizeInBits());
620 return {SizeAndAction.second,
621 Aspect.Type.isScalar() ? LLT::scalar(SizeAndAction.first)
622 : LLT::pointer(Aspect.Type.getAddressSpace(),
623 SizeAndAction.first)};
626 std::pair<LegalizeAction, LLT>
627 LegalizerInfo::findVectorLegalAction(const InstrAspect &Aspect) const {
628 assert(Aspect.Type.isVector());
629 // First legalize the vector element size, then legalize the number of
630 // lanes in the vector.
631 if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp)
632 return {NotFound, Aspect.Type};
633 const unsigned OpcodeIdx = getOpcodeIdxForOpcode(Aspect.Opcode);
634 const unsigned TypeIdx = Aspect.Idx;
635 if (TypeIdx >= ScalarInVectorActions[OpcodeIdx].size())
636 return {NotFound, Aspect.Type};
637 const SizeAndActionsVec &ElemSizeVec =
638 ScalarInVectorActions[OpcodeIdx][TypeIdx];
640 LLT IntermediateType;
641 auto ElementSizeAndAction =
642 findAction(ElemSizeVec, Aspect.Type.getScalarSizeInBits());
643 IntermediateType =
644 LLT::vector(Aspect.Type.getNumElements(), ElementSizeAndAction.first);
645 if (ElementSizeAndAction.second != Legal)
646 return {ElementSizeAndAction.second, IntermediateType};
648 auto i = NumElements2Actions[OpcodeIdx].find(
649 IntermediateType.getScalarSizeInBits());
650 if (i == NumElements2Actions[OpcodeIdx].end()) {
651 return {NotFound, IntermediateType};
653 const SizeAndActionsVec &NumElementsVec = (*i).second[TypeIdx];
654 auto NumElementsAndAction =
655 findAction(NumElementsVec, IntermediateType.getNumElements());
656 return {NumElementsAndAction.second,
657 LLT::vector(NumElementsAndAction.first,
658 IntermediateType.getScalarSizeInBits())};
661 bool LegalizerInfo::legalizeIntrinsic(MachineInstr &MI,
662 MachineRegisterInfo &MRI,
663 MachineIRBuilder &MIRBuilder) const {
664 return true;
667 /// \pre Type indices of every opcode form a dense set starting from 0.
668 void LegalizerInfo::verify(const MCInstrInfo &MII) const {
669 #ifndef NDEBUG
670 std::vector<unsigned> FailedOpcodes;
671 for (unsigned Opcode = FirstOp; Opcode <= LastOp; ++Opcode) {
672 const MCInstrDesc &MCID = MII.get(Opcode);
673 const unsigned NumTypeIdxs = std::accumulate(
674 MCID.opInfo_begin(), MCID.opInfo_end(), 0U,
675 [](unsigned Acc, const MCOperandInfo &OpInfo) {
676 return OpInfo.isGenericType()
677 ? std::max(OpInfo.getGenericTypeIndex() + 1U, Acc)
678 : Acc;
680 LLVM_DEBUG(dbgs() << MII.getName(Opcode) << " (opcode " << Opcode
681 << "): " << NumTypeIdxs << " type ind"
682 << (NumTypeIdxs == 1 ? "ex" : "ices") << "\n");
683 const LegalizeRuleSet &RuleSet = getActionDefinitions(Opcode);
684 if (!RuleSet.verifyTypeIdxsCoverage(NumTypeIdxs))
685 FailedOpcodes.push_back(Opcode);
687 if (!FailedOpcodes.empty()) {
688 errs() << "The following opcodes have ill-defined legalization rules:";
689 for (unsigned Opcode : FailedOpcodes)
690 errs() << " " << MII.getName(Opcode);
691 errs() << "\n";
693 report_fatal_error("ill-defined LegalizerInfo"
694 ", try -debug-only=legalizer-info for details");
696 #endif
699 #ifndef NDEBUG
700 // FIXME: This should be in the MachineVerifier, but it can't use the
701 // LegalizerInfo as it's currently in the separate GlobalISel library.
702 // Note that RegBankSelected property already checked in the verifier
703 // has the same layering problem, but we only use inline methods so
704 // end up not needing to link against the GlobalISel library.
705 const MachineInstr *llvm::machineFunctionIsIllegal(const MachineFunction &MF) {
706 if (const LegalizerInfo *MLI = MF.getSubtarget().getLegalizerInfo()) {
707 const MachineRegisterInfo &MRI = MF.getRegInfo();
708 for (const MachineBasicBlock &MBB : MF)
709 for (const MachineInstr &MI : MBB)
710 if (isPreISelGenericOpcode(MI.getOpcode()) &&
711 !MLI->isLegalOrCustom(MI, MRI))
712 return &MI;
714 return nullptr;
716 #endif