1 //===- ImplicitNullChecks.cpp - Fold null checks into memory accesses -----===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass turns explicit null checks of the form
18 // faulting_load_op("movl (%r10), %esi", throw_npe)
21 // With the help of a runtime that understands the .fault_maps section,
22 // faulting_load_op branches to throw_npe if executing movl (%r10), %esi incurs
24 // Store and LoadStore are also supported.
26 //===----------------------------------------------------------------------===//
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/None.h"
30 #include "llvm/ADT/Optional.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/Analysis/AliasAnalysis.h"
35 #include "llvm/Analysis/MemoryLocation.h"
36 #include "llvm/CodeGen/FaultMaps.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineFunctionPass.h"
40 #include "llvm/CodeGen/MachineInstr.h"
41 #include "llvm/CodeGen/MachineInstrBuilder.h"
42 #include "llvm/CodeGen/MachineMemOperand.h"
43 #include "llvm/CodeGen/MachineOperand.h"
44 #include "llvm/CodeGen/MachineRegisterInfo.h"
45 #include "llvm/CodeGen/PseudoSourceValue.h"
46 #include "llvm/CodeGen/TargetInstrInfo.h"
47 #include "llvm/CodeGen/TargetOpcodes.h"
48 #include "llvm/CodeGen/TargetRegisterInfo.h"
49 #include "llvm/CodeGen/TargetSubtargetInfo.h"
50 #include "llvm/IR/BasicBlock.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/MC/MCInstrDesc.h"
54 #include "llvm/MC/MCRegisterInfo.h"
55 #include "llvm/Pass.h"
56 #include "llvm/Support/CommandLine.h"
63 static cl::opt
<int> PageSize("imp-null-check-page-size",
64 cl::desc("The page size of the target in bytes"),
65 cl::init(4096), cl::Hidden
);
67 static cl::opt
<unsigned> MaxInstsToConsider(
68 "imp-null-max-insts-to-consider",
69 cl::desc("The max number of instructions to consider hoisting loads over "
70 "(the algorithm is quadratic over this number)"),
71 cl::Hidden
, cl::init(8));
73 #define DEBUG_TYPE "implicit-null-checks"
75 STATISTIC(NumImplicitNullChecks
,
76 "Number of explicit null checks made implicit");
80 class ImplicitNullChecks
: public MachineFunctionPass
{
81 /// Return true if \c computeDependence can process \p MI.
82 static bool canHandle(const MachineInstr
*MI
);
84 /// Helper function for \c computeDependence. Return true if \p A
85 /// and \p B do not have any dependences between them, and can be
86 /// re-ordered without changing program semantics.
87 bool canReorder(const MachineInstr
*A
, const MachineInstr
*B
);
89 /// A data type for representing the result computed by \c
90 /// computeDependence. States whether it is okay to reorder the
91 /// instruction passed to \c computeDependence with at most one
93 struct DependenceResult
{
94 /// Can we actually re-order \p MI with \p Insts (see \c
95 /// computeDependence).
98 /// If non-None, then an instruction in \p Insts that also must be
100 Optional
<ArrayRef
<MachineInstr
*>::iterator
> PotentialDependence
;
102 /*implicit*/ DependenceResult(
104 Optional
<ArrayRef
<MachineInstr
*>::iterator
> PotentialDependence
)
105 : CanReorder(CanReorder
), PotentialDependence(PotentialDependence
) {
106 assert((!PotentialDependence
|| CanReorder
) &&
107 "!CanReorder && PotentialDependence.hasValue() not allowed!");
111 /// Compute a result for the following question: can \p MI be
112 /// re-ordered from after \p Insts to before it.
114 /// \c canHandle should return true for all instructions in \p
116 DependenceResult
computeDependence(const MachineInstr
*MI
,
117 ArrayRef
<MachineInstr
*> Block
);
119 /// Represents one null check that can be made implicit.
121 // The memory operation the null check can be folded into.
122 MachineInstr
*MemOperation
;
124 // The instruction actually doing the null check (Ptr != 0).
125 MachineInstr
*CheckOperation
;
127 // The block the check resides in.
128 MachineBasicBlock
*CheckBlock
;
130 // The block branched to if the pointer is non-null.
131 MachineBasicBlock
*NotNullSucc
;
133 // The block branched to if the pointer is null.
134 MachineBasicBlock
*NullSucc
;
136 // If this is non-null, then MemOperation has a dependency on this
137 // instruction; and it needs to be hoisted to execute before MemOperation.
138 MachineInstr
*OnlyDependency
;
141 explicit NullCheck(MachineInstr
*memOperation
, MachineInstr
*checkOperation
,
142 MachineBasicBlock
*checkBlock
,
143 MachineBasicBlock
*notNullSucc
,
144 MachineBasicBlock
*nullSucc
,
145 MachineInstr
*onlyDependency
)
146 : MemOperation(memOperation
), CheckOperation(checkOperation
),
147 CheckBlock(checkBlock
), NotNullSucc(notNullSucc
), NullSucc(nullSucc
),
148 OnlyDependency(onlyDependency
) {}
150 MachineInstr
*getMemOperation() const { return MemOperation
; }
152 MachineInstr
*getCheckOperation() const { return CheckOperation
; }
154 MachineBasicBlock
*getCheckBlock() const { return CheckBlock
; }
156 MachineBasicBlock
*getNotNullSucc() const { return NotNullSucc
; }
158 MachineBasicBlock
*getNullSucc() const { return NullSucc
; }
160 MachineInstr
*getOnlyDependency() const { return OnlyDependency
; }
163 const TargetInstrInfo
*TII
= nullptr;
164 const TargetRegisterInfo
*TRI
= nullptr;
165 AliasAnalysis
*AA
= nullptr;
166 MachineFrameInfo
*MFI
= nullptr;
168 bool analyzeBlockForNullChecks(MachineBasicBlock
&MBB
,
169 SmallVectorImpl
<NullCheck
> &NullCheckList
);
170 MachineInstr
*insertFaultingInstr(MachineInstr
*MI
, MachineBasicBlock
*MBB
,
171 MachineBasicBlock
*HandlerMBB
);
172 void rewriteNullChecks(ArrayRef
<NullCheck
> NullCheckList
);
177 AR_WillAliasEverything
180 /// Returns AR_NoAlias if \p MI memory operation does not alias with
181 /// \p PrevMI, AR_MayAlias if they may alias and AR_WillAliasEverything if
182 /// they may alias and any further memory operation may alias with \p PrevMI.
183 AliasResult
areMemoryOpsAliased(const MachineInstr
&MI
,
184 const MachineInstr
*PrevMI
) const;
186 enum SuitabilityResult
{
192 /// Return SR_Suitable if \p MI a memory operation that can be used to
193 /// implicitly null check the value in \p PointerReg, SR_Unsuitable if
194 /// \p MI cannot be used to null check and SR_Impossible if there is
195 /// no sense to continue lookup due to any other instruction will not be able
196 /// to be used. \p PrevInsts is the set of instruction seen since
197 /// the explicit null check on \p PointerReg.
198 SuitabilityResult
isSuitableMemoryOp(const MachineInstr
&MI
,
200 ArrayRef
<MachineInstr
*> PrevInsts
);
202 /// Return true if \p FaultingMI can be hoisted from after the
203 /// instructions in \p InstsSeenSoFar to before them. Set \p Dependence to a
204 /// non-null value if we also need to (and legally can) hoist a depedency.
205 bool canHoistInst(MachineInstr
*FaultingMI
, unsigned PointerReg
,
206 ArrayRef
<MachineInstr
*> InstsSeenSoFar
,
207 MachineBasicBlock
*NullSucc
, MachineInstr
*&Dependence
);
212 ImplicitNullChecks() : MachineFunctionPass(ID
) {
213 initializeImplicitNullChecksPass(*PassRegistry::getPassRegistry());
216 bool runOnMachineFunction(MachineFunction
&MF
) override
;
218 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
219 AU
.addRequired
<AAResultsWrapperPass
>();
220 MachineFunctionPass::getAnalysisUsage(AU
);
223 MachineFunctionProperties
getRequiredProperties() const override
{
224 return MachineFunctionProperties().set(
225 MachineFunctionProperties::Property::NoVRegs
);
229 } // end anonymous namespace
231 bool ImplicitNullChecks::canHandle(const MachineInstr
*MI
) {
232 if (MI
->isCall() || MI
->mayRaiseFPException() ||
233 MI
->hasUnmodeledSideEffects())
235 auto IsRegMask
= [](const MachineOperand
&MO
) { return MO
.isRegMask(); };
238 assert(!llvm::any_of(MI
->operands(), IsRegMask
) &&
239 "Calls were filtered out above!");
241 auto IsUnordered
= [](MachineMemOperand
*MMO
) { return MMO
->isUnordered(); };
242 return llvm::all_of(MI
->memoperands(), IsUnordered
);
245 ImplicitNullChecks::DependenceResult
246 ImplicitNullChecks::computeDependence(const MachineInstr
*MI
,
247 ArrayRef
<MachineInstr
*> Block
) {
248 assert(llvm::all_of(Block
, canHandle
) && "Check this first!");
249 assert(!is_contained(Block
, MI
) && "Block must be exclusive of MI!");
251 Optional
<ArrayRef
<MachineInstr
*>::iterator
> Dep
;
253 for (auto I
= Block
.begin(), E
= Block
.end(); I
!= E
; ++I
) {
254 if (canReorder(*I
, MI
))
258 // Found one possible dependency, keep track of it.
261 // We found two dependencies, so bail out.
262 return {false, None
};
269 bool ImplicitNullChecks::canReorder(const MachineInstr
*A
,
270 const MachineInstr
*B
) {
271 assert(canHandle(A
) && canHandle(B
) && "Precondition!");
273 // canHandle makes sure that we _can_ correctly analyze the dependencies
274 // between A and B here -- for instance, we should not be dealing with heap
275 // load-store dependencies here.
277 for (auto MOA
: A
->operands()) {
278 if (!(MOA
.isReg() && MOA
.getReg()))
281 unsigned RegA
= MOA
.getReg();
282 for (auto MOB
: B
->operands()) {
283 if (!(MOB
.isReg() && MOB
.getReg()))
286 unsigned RegB
= MOB
.getReg();
288 if (TRI
->regsOverlap(RegA
, RegB
) && (MOA
.isDef() || MOB
.isDef()))
296 bool ImplicitNullChecks::runOnMachineFunction(MachineFunction
&MF
) {
297 TII
= MF
.getSubtarget().getInstrInfo();
298 TRI
= MF
.getRegInfo().getTargetRegisterInfo();
299 MFI
= &MF
.getFrameInfo();
300 AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
302 SmallVector
<NullCheck
, 16> NullCheckList
;
305 analyzeBlockForNullChecks(MBB
, NullCheckList
);
307 if (!NullCheckList
.empty())
308 rewriteNullChecks(NullCheckList
);
310 return !NullCheckList
.empty();
313 // Return true if any register aliasing \p Reg is live-in into \p MBB.
314 static bool AnyAliasLiveIn(const TargetRegisterInfo
*TRI
,
315 MachineBasicBlock
*MBB
, unsigned Reg
) {
316 for (MCRegAliasIterator
AR(Reg
, TRI
, /*IncludeSelf*/ true); AR
.isValid();
318 if (MBB
->isLiveIn(*AR
))
323 ImplicitNullChecks::AliasResult
324 ImplicitNullChecks::areMemoryOpsAliased(const MachineInstr
&MI
,
325 const MachineInstr
*PrevMI
) const {
326 // If it is not memory access, skip the check.
327 if (!(PrevMI
->mayStore() || PrevMI
->mayLoad()))
329 // Load-Load may alias
330 if (!(MI
.mayStore() || PrevMI
->mayStore()))
332 // We lost info, conservatively alias. If it was store then no sense to
333 // continue because we won't be able to check against it further.
334 if (MI
.memoperands_empty())
335 return MI
.mayStore() ? AR_WillAliasEverything
: AR_MayAlias
;
336 if (PrevMI
->memoperands_empty())
337 return PrevMI
->mayStore() ? AR_WillAliasEverything
: AR_MayAlias
;
339 for (MachineMemOperand
*MMO1
: MI
.memoperands()) {
340 // MMO1 should have a value due it comes from operation we'd like to use
341 // as implicit null check.
342 assert(MMO1
->getValue() && "MMO1 should have a Value!");
343 for (MachineMemOperand
*MMO2
: PrevMI
->memoperands()) {
344 if (const PseudoSourceValue
*PSV
= MMO2
->getPseudoValue()) {
345 if (PSV
->mayAlias(MFI
))
349 llvm::AliasResult AAResult
=
350 AA
->alias(MemoryLocation(MMO1
->getValue(), LocationSize::unknown(),
352 MemoryLocation(MMO2
->getValue(), LocationSize::unknown(),
354 if (AAResult
!= NoAlias
)
361 ImplicitNullChecks::SuitabilityResult
362 ImplicitNullChecks::isSuitableMemoryOp(const MachineInstr
&MI
,
364 ArrayRef
<MachineInstr
*> PrevInsts
) {
366 const MachineOperand
*BaseOp
;
368 if (!TII
->getMemOperandWithOffset(MI
, BaseOp
, Offset
, TRI
) ||
369 !BaseOp
->isReg() || BaseOp
->getReg() != PointerReg
)
370 return SR_Unsuitable
;
372 // We want the mem access to be issued at a sane offset from PointerReg,
373 // so that if PointerReg is null then the access reliably page faults.
374 if (!((MI
.mayLoad() || MI
.mayStore()) && !MI
.isPredicable() &&
375 -PageSize
< Offset
&& Offset
< PageSize
))
376 return SR_Unsuitable
;
378 // Finally, check whether the current memory access aliases with previous one.
379 for (auto *PrevMI
: PrevInsts
) {
380 AliasResult AR
= areMemoryOpsAliased(MI
, PrevMI
);
381 if (AR
== AR_WillAliasEverything
)
382 return SR_Impossible
;
383 if (AR
== AR_MayAlias
)
384 return SR_Unsuitable
;
389 bool ImplicitNullChecks::canHoistInst(MachineInstr
*FaultingMI
,
391 ArrayRef
<MachineInstr
*> InstsSeenSoFar
,
392 MachineBasicBlock
*NullSucc
,
393 MachineInstr
*&Dependence
) {
394 auto DepResult
= computeDependence(FaultingMI
, InstsSeenSoFar
);
395 if (!DepResult
.CanReorder
)
398 if (!DepResult
.PotentialDependence
) {
399 Dependence
= nullptr;
403 auto DependenceItr
= *DepResult
.PotentialDependence
;
404 auto *DependenceMI
= *DependenceItr
;
406 // We don't want to reason about speculating loads. Note -- at this point
407 // we should have already filtered out all of the other non-speculatable
408 // things, like calls and stores.
409 // We also do not want to hoist stores because it might change the memory
410 // while the FaultingMI may result in faulting.
411 assert(canHandle(DependenceMI
) && "Should never have reached here!");
412 if (DependenceMI
->mayLoadOrStore())
415 for (auto &DependenceMO
: DependenceMI
->operands()) {
416 if (!(DependenceMO
.isReg() && DependenceMO
.getReg()))
419 // Make sure that we won't clobber any live ins to the sibling block by
420 // hoisting Dependency. For instance, we can't hoist INST to before the
421 // null check (even if it safe, and does not violate any dependencies in
422 // the non_null_block) if %rdx is live in to _null_block.
430 // This restriction does not apply to the faulting load inst because in
431 // case the pointer loaded from is in the null page, the load will not
432 // semantically execute, and affect machine state. That is, if the load
433 // was loading into %rax and it faults, the value of %rax should stay the
434 // same as it would have been had the load not have executed and we'd have
435 // branched to NullSucc directly.
436 if (AnyAliasLiveIn(TRI
, NullSucc
, DependenceMO
.getReg()))
439 // The Dependency can't be re-defining the base register -- then we won't
440 // get the memory operation on the address we want. This is already
441 // checked in \c IsSuitableMemoryOp.
442 assert(!(DependenceMO
.isDef() &&
443 TRI
->regsOverlap(DependenceMO
.getReg(), PointerReg
)) &&
444 "Should have been checked before!");
448 computeDependence(DependenceMI
, {InstsSeenSoFar
.begin(), DependenceItr
});
450 if (!DepDepResult
.CanReorder
|| DepDepResult
.PotentialDependence
)
453 Dependence
= DependenceMI
;
457 /// Analyze MBB to check if its terminating branch can be turned into an
458 /// implicit null check. If yes, append a description of the said null check to
459 /// NullCheckList and return true, else return false.
460 bool ImplicitNullChecks::analyzeBlockForNullChecks(
461 MachineBasicBlock
&MBB
, SmallVectorImpl
<NullCheck
> &NullCheckList
) {
462 using MachineBranchPredicate
= TargetInstrInfo::MachineBranchPredicate
;
464 MDNode
*BranchMD
= nullptr;
465 if (auto *BB
= MBB
.getBasicBlock())
466 BranchMD
= BB
->getTerminator()->getMetadata(LLVMContext::MD_make_implicit
);
471 MachineBranchPredicate MBP
;
473 if (TII
->analyzeBranchPredicate(MBB
, MBP
, true))
476 // Is the predicate comparing an integer to zero?
477 if (!(MBP
.LHS
.isReg() && MBP
.RHS
.isImm() && MBP
.RHS
.getImm() == 0 &&
478 (MBP
.Predicate
== MachineBranchPredicate::PRED_NE
||
479 MBP
.Predicate
== MachineBranchPredicate::PRED_EQ
)))
482 // If we cannot erase the test instruction itself, then making the null check
483 // implicit does not buy us much.
484 if (!MBP
.SingleUseCondition
)
487 MachineBasicBlock
*NotNullSucc
, *NullSucc
;
489 if (MBP
.Predicate
== MachineBranchPredicate::PRED_NE
) {
490 NotNullSucc
= MBP
.TrueDest
;
491 NullSucc
= MBP
.FalseDest
;
493 NotNullSucc
= MBP
.FalseDest
;
494 NullSucc
= MBP
.TrueDest
;
497 // We handle the simplest case for now. We can potentially do better by using
498 // the machine dominator tree.
499 if (NotNullSucc
->pred_size() != 1)
502 // To prevent the invalid transformation of the following code:
515 // faulting_load_op("movl (%rax), %r10", throw_npe)
518 // we must ensure that there are no instructions between the 'test' and
519 // conditional jump that modify %rax.
520 const unsigned PointerReg
= MBP
.LHS
.getReg();
522 assert(MBP
.ConditionDef
->getParent() == &MBB
&& "Should be in basic block");
524 for (auto I
= MBB
.rbegin(); MBP
.ConditionDef
!= &*I
; ++I
)
525 if (I
->modifiesRegister(PointerReg
, TRI
))
528 // Starting with a code fragment like:
534 // callq throw_NullPointerException
540 // Def = Load (%rax + <offset>)
544 // we want to end up with
546 // Def = FaultingLoad (%rax + <offset>), LblNull
547 // jmp LblNotNull ;; explicit or fallthrough
555 // callq throw_NullPointerException
558 // To see why this is legal, consider the two possibilities:
560 // 1. %rax is null: since we constrain <offset> to be less than PageSize, the
561 // load instruction dereferences the null page, causing a segmentation
564 // 2. %rax is not null: in this case we know that the load cannot fault, as
565 // otherwise the load would've faulted in the original program too and the
566 // original program would've been undefined.
568 // This reasoning cannot be extended to justify hoisting through arbitrary
569 // control flow. For instance, in the example below (in pseudo-C)
571 // if (ptr == null) { throw_npe(); unreachable; }
572 // if (some_cond) { return 42; }
573 // v = ptr->field; // LD
576 // we cannot (without code duplication) use the load marked "LD" to null check
577 // ptr -- clause (2) above does not apply in this case. In the above program
578 // the safety of ptr->field can be dependent on some_cond; and, for instance,
579 // ptr could be some non-null invalid reference that never gets loaded from
580 // because some_cond is always true.
582 SmallVector
<MachineInstr
*, 8> InstsSeenSoFar
;
584 for (auto &MI
: *NotNullSucc
) {
585 if (!canHandle(&MI
) || InstsSeenSoFar
.size() >= MaxInstsToConsider
)
588 MachineInstr
*Dependence
;
589 SuitabilityResult SR
= isSuitableMemoryOp(MI
, PointerReg
, InstsSeenSoFar
);
590 if (SR
== SR_Impossible
)
592 if (SR
== SR_Suitable
&&
593 canHoistInst(&MI
, PointerReg
, InstsSeenSoFar
, NullSucc
, Dependence
)) {
594 NullCheckList
.emplace_back(&MI
, MBP
.ConditionDef
, &MBB
, NotNullSucc
,
595 NullSucc
, Dependence
);
599 // If MI re-defines the PointerReg then we cannot move further.
600 if (llvm::any_of(MI
.operands(), [&](MachineOperand
&MO
) {
601 return MO
.isReg() && MO
.getReg() && MO
.isDef() &&
602 TRI
->regsOverlap(MO
.getReg(), PointerReg
);
605 InstsSeenSoFar
.push_back(&MI
);
611 /// Wrap a machine instruction, MI, into a FAULTING machine instruction.
612 /// The FAULTING instruction does the same load/store as MI
613 /// (defining the same register), and branches to HandlerMBB if the mem access
614 /// faults. The FAULTING instruction is inserted at the end of MBB.
615 MachineInstr
*ImplicitNullChecks::insertFaultingInstr(
616 MachineInstr
*MI
, MachineBasicBlock
*MBB
, MachineBasicBlock
*HandlerMBB
) {
617 const unsigned NoRegister
= 0; // Guaranteed to be the NoRegister value for
621 unsigned NumDefs
= MI
->getDesc().getNumDefs();
622 assert(NumDefs
<= 1 && "other cases unhandled!");
624 unsigned DefReg
= NoRegister
;
626 DefReg
= MI
->getOperand(0).getReg();
627 assert(NumDefs
== 1 && "expected exactly one def!");
630 FaultMaps::FaultKind FK
;
633 MI
->mayStore() ? FaultMaps::FaultingLoadStore
: FaultMaps::FaultingLoad
;
635 FK
= FaultMaps::FaultingStore
;
637 auto MIB
= BuildMI(MBB
, DL
, TII
->get(TargetOpcode::FAULTING_OP
), DefReg
)
640 .addImm(MI
->getOpcode());
642 for (auto &MO
: MI
->uses()) {
644 MachineOperand NewMO
= MO
;
646 NewMO
.setIsKill(false);
648 assert(MO
.isDef() && "Expected def or use");
649 NewMO
.setIsDead(false);
657 MIB
.setMemRefs(MI
->memoperands());
662 /// Rewrite the null checks in NullCheckList into implicit null checks.
663 void ImplicitNullChecks::rewriteNullChecks(
664 ArrayRef
<ImplicitNullChecks::NullCheck
> NullCheckList
) {
667 for (auto &NC
: NullCheckList
) {
668 // Remove the conditional branch dependent on the null check.
669 unsigned BranchesRemoved
= TII
->removeBranch(*NC
.getCheckBlock());
670 (void)BranchesRemoved
;
671 assert(BranchesRemoved
> 0 && "expected at least one branch!");
673 if (auto *DepMI
= NC
.getOnlyDependency()) {
674 DepMI
->removeFromParent();
675 NC
.getCheckBlock()->insert(NC
.getCheckBlock()->end(), DepMI
);
678 // Insert a faulting instruction where the conditional branch was
679 // originally. We check earlier ensures that this bit of code motion
680 // is legal. We do not touch the successors list for any basic block
681 // since we haven't changed control flow, we've just made it implicit.
682 MachineInstr
*FaultingInstr
= insertFaultingInstr(
683 NC
.getMemOperation(), NC
.getCheckBlock(), NC
.getNullSucc());
684 // Now the values defined by MemOperation, if any, are live-in of
685 // the block of MemOperation.
686 // The original operation may define implicit-defs alongside
688 MachineBasicBlock
*MBB
= NC
.getMemOperation()->getParent();
689 for (const MachineOperand
&MO
: FaultingInstr
->operands()) {
690 if (!MO
.isReg() || !MO
.isDef())
692 unsigned Reg
= MO
.getReg();
693 if (!Reg
|| MBB
->isLiveIn(Reg
))
698 if (auto *DepMI
= NC
.getOnlyDependency()) {
699 for (auto &MO
: DepMI
->operands()) {
700 if (!MO
.isReg() || !MO
.getReg() || !MO
.isDef())
702 if (!NC
.getNotNullSucc()->isLiveIn(MO
.getReg()))
703 NC
.getNotNullSucc()->addLiveIn(MO
.getReg());
707 NC
.getMemOperation()->eraseFromParent();
708 NC
.getCheckOperation()->eraseFromParent();
710 // Insert an *unconditional* branch to not-null successor.
711 TII
->insertBranch(*NC
.getCheckBlock(), NC
.getNotNullSucc(), nullptr,
714 NumImplicitNullChecks
++;
718 char ImplicitNullChecks::ID
= 0;
720 char &llvm::ImplicitNullChecksID
= ImplicitNullChecks::ID
;
722 INITIALIZE_PASS_BEGIN(ImplicitNullChecks
, DEBUG_TYPE
,
723 "Implicit null checks", false, false)
724 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
725 INITIALIZE_PASS_END(ImplicitNullChecks
, DEBUG_TYPE
,
726 "Implicit null checks", false, false)