[InstCombine] Remove insertRangeTest code that handles the equality case.
[llvm-complete.git] / lib / CodeGen / MIRParser / MIParser.cpp
blobc0b800a0b870b280c46c6b49d053babdfcd67941
1 //===- MIParser.cpp - Machine instructions parser implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the parsing of machine instructions.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/MIRParser/MIParser.h"
14 #include "MILexer.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/MemoryLocation.h"
27 #include "llvm/AsmParser/Parser.h"
28 #include "llvm/AsmParser/SlotMapping.h"
29 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
30 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
31 #include "llvm/CodeGen/MIRPrinter.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineFrameInfo.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineInstrBuilder.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/MachineOperand.h"
39 #include "llvm/CodeGen/MachineRegisterInfo.h"
40 #include "llvm/CodeGen/TargetInstrInfo.h"
41 #include "llvm/CodeGen/TargetRegisterInfo.h"
42 #include "llvm/CodeGen/TargetSubtargetInfo.h"
43 #include "llvm/IR/BasicBlock.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/DebugInfoMetadata.h"
47 #include "llvm/IR/DebugLoc.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/Intrinsics.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/ModuleSlotTracker.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/IR/ValueSymbolTable.h"
58 #include "llvm/MC/LaneBitmask.h"
59 #include "llvm/MC/MCContext.h"
60 #include "llvm/MC/MCDwarf.h"
61 #include "llvm/MC/MCInstrDesc.h"
62 #include "llvm/MC/MCRegisterInfo.h"
63 #include "llvm/Support/AtomicOrdering.h"
64 #include "llvm/Support/BranchProbability.h"
65 #include "llvm/Support/Casting.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/LowLevelTypeImpl.h"
68 #include "llvm/Support/MemoryBuffer.h"
69 #include "llvm/Support/SMLoc.h"
70 #include "llvm/Support/SourceMgr.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include "llvm/Target/TargetIntrinsicInfo.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cctype>
77 #include <cstddef>
78 #include <cstdint>
79 #include <limits>
80 #include <string>
81 #include <utility>
83 using namespace llvm;
85 void PerTargetMIParsingState::setTarget(
86 const TargetSubtargetInfo &NewSubtarget) {
88 // If the subtarget changed, over conservatively assume everything is invalid.
89 if (&Subtarget == &NewSubtarget)
90 return;
92 Names2InstrOpCodes.clear();
93 Names2Regs.clear();
94 Names2RegMasks.clear();
95 Names2SubRegIndices.clear();
96 Names2TargetIndices.clear();
97 Names2DirectTargetFlags.clear();
98 Names2BitmaskTargetFlags.clear();
99 Names2MMOTargetFlags.clear();
101 initNames2RegClasses();
102 initNames2RegBanks();
105 void PerTargetMIParsingState::initNames2Regs() {
106 if (!Names2Regs.empty())
107 return;
109 // The '%noreg' register is the register 0.
110 Names2Regs.insert(std::make_pair("noreg", 0));
111 const auto *TRI = Subtarget.getRegisterInfo();
112 assert(TRI && "Expected target register info");
114 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
115 bool WasInserted =
116 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
117 .second;
118 (void)WasInserted;
119 assert(WasInserted && "Expected registers to be unique case-insensitively");
123 bool PerTargetMIParsingState::getRegisterByName(StringRef RegName,
124 unsigned &Reg) {
125 initNames2Regs();
126 auto RegInfo = Names2Regs.find(RegName);
127 if (RegInfo == Names2Regs.end())
128 return true;
129 Reg = RegInfo->getValue();
130 return false;
133 void PerTargetMIParsingState::initNames2InstrOpCodes() {
134 if (!Names2InstrOpCodes.empty())
135 return;
136 const auto *TII = Subtarget.getInstrInfo();
137 assert(TII && "Expected target instruction info");
138 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
139 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
142 bool PerTargetMIParsingState::parseInstrName(StringRef InstrName,
143 unsigned &OpCode) {
144 initNames2InstrOpCodes();
145 auto InstrInfo = Names2InstrOpCodes.find(InstrName);
146 if (InstrInfo == Names2InstrOpCodes.end())
147 return true;
148 OpCode = InstrInfo->getValue();
149 return false;
152 void PerTargetMIParsingState::initNames2RegMasks() {
153 if (!Names2RegMasks.empty())
154 return;
155 const auto *TRI = Subtarget.getRegisterInfo();
156 assert(TRI && "Expected target register info");
157 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
158 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
159 assert(RegMasks.size() == RegMaskNames.size());
160 for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
161 Names2RegMasks.insert(
162 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
165 const uint32_t *PerTargetMIParsingState::getRegMask(StringRef Identifier) {
166 initNames2RegMasks();
167 auto RegMaskInfo = Names2RegMasks.find(Identifier);
168 if (RegMaskInfo == Names2RegMasks.end())
169 return nullptr;
170 return RegMaskInfo->getValue();
173 void PerTargetMIParsingState::initNames2SubRegIndices() {
174 if (!Names2SubRegIndices.empty())
175 return;
176 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
177 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
178 Names2SubRegIndices.insert(
179 std::make_pair(TRI->getSubRegIndexName(I), I));
182 unsigned PerTargetMIParsingState::getSubRegIndex(StringRef Name) {
183 initNames2SubRegIndices();
184 auto SubRegInfo = Names2SubRegIndices.find(Name);
185 if (SubRegInfo == Names2SubRegIndices.end())
186 return 0;
187 return SubRegInfo->getValue();
190 void PerTargetMIParsingState::initNames2TargetIndices() {
191 if (!Names2TargetIndices.empty())
192 return;
193 const auto *TII = Subtarget.getInstrInfo();
194 assert(TII && "Expected target instruction info");
195 auto Indices = TII->getSerializableTargetIndices();
196 for (const auto &I : Indices)
197 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
200 bool PerTargetMIParsingState::getTargetIndex(StringRef Name, int &Index) {
201 initNames2TargetIndices();
202 auto IndexInfo = Names2TargetIndices.find(Name);
203 if (IndexInfo == Names2TargetIndices.end())
204 return true;
205 Index = IndexInfo->second;
206 return false;
209 void PerTargetMIParsingState::initNames2DirectTargetFlags() {
210 if (!Names2DirectTargetFlags.empty())
211 return;
213 const auto *TII = Subtarget.getInstrInfo();
214 assert(TII && "Expected target instruction info");
215 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
216 for (const auto &I : Flags)
217 Names2DirectTargetFlags.insert(
218 std::make_pair(StringRef(I.second), I.first));
221 bool PerTargetMIParsingState::getDirectTargetFlag(StringRef Name,
222 unsigned &Flag) {
223 initNames2DirectTargetFlags();
224 auto FlagInfo = Names2DirectTargetFlags.find(Name);
225 if (FlagInfo == Names2DirectTargetFlags.end())
226 return true;
227 Flag = FlagInfo->second;
228 return false;
231 void PerTargetMIParsingState::initNames2BitmaskTargetFlags() {
232 if (!Names2BitmaskTargetFlags.empty())
233 return;
235 const auto *TII = Subtarget.getInstrInfo();
236 assert(TII && "Expected target instruction info");
237 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
238 for (const auto &I : Flags)
239 Names2BitmaskTargetFlags.insert(
240 std::make_pair(StringRef(I.second), I.first));
243 bool PerTargetMIParsingState::getBitmaskTargetFlag(StringRef Name,
244 unsigned &Flag) {
245 initNames2BitmaskTargetFlags();
246 auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
247 if (FlagInfo == Names2BitmaskTargetFlags.end())
248 return true;
249 Flag = FlagInfo->second;
250 return false;
253 void PerTargetMIParsingState::initNames2MMOTargetFlags() {
254 if (!Names2MMOTargetFlags.empty())
255 return;
257 const auto *TII = Subtarget.getInstrInfo();
258 assert(TII && "Expected target instruction info");
259 auto Flags = TII->getSerializableMachineMemOperandTargetFlags();
260 for (const auto &I : Flags)
261 Names2MMOTargetFlags.insert(std::make_pair(StringRef(I.second), I.first));
264 bool PerTargetMIParsingState::getMMOTargetFlag(StringRef Name,
265 MachineMemOperand::Flags &Flag) {
266 initNames2MMOTargetFlags();
267 auto FlagInfo = Names2MMOTargetFlags.find(Name);
268 if (FlagInfo == Names2MMOTargetFlags.end())
269 return true;
270 Flag = FlagInfo->second;
271 return false;
274 void PerTargetMIParsingState::initNames2RegClasses() {
275 if (!Names2RegClasses.empty())
276 return;
278 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
279 for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; ++I) {
280 const auto *RC = TRI->getRegClass(I);
281 Names2RegClasses.insert(
282 std::make_pair(StringRef(TRI->getRegClassName(RC)).lower(), RC));
286 void PerTargetMIParsingState::initNames2RegBanks() {
287 if (!Names2RegBanks.empty())
288 return;
290 const RegisterBankInfo *RBI = Subtarget.getRegBankInfo();
291 // If the target does not support GlobalISel, we may not have a
292 // register bank info.
293 if (!RBI)
294 return;
296 for (unsigned I = 0, E = RBI->getNumRegBanks(); I < E; ++I) {
297 const auto &RegBank = RBI->getRegBank(I);
298 Names2RegBanks.insert(
299 std::make_pair(StringRef(RegBank.getName()).lower(), &RegBank));
303 const TargetRegisterClass *
304 PerTargetMIParsingState::getRegClass(StringRef Name) {
305 auto RegClassInfo = Names2RegClasses.find(Name);
306 if (RegClassInfo == Names2RegClasses.end())
307 return nullptr;
308 return RegClassInfo->getValue();
311 const RegisterBank *PerTargetMIParsingState::getRegBank(StringRef Name) {
312 auto RegBankInfo = Names2RegBanks.find(Name);
313 if (RegBankInfo == Names2RegBanks.end())
314 return nullptr;
315 return RegBankInfo->getValue();
318 PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
319 SourceMgr &SM, const SlotMapping &IRSlots, PerTargetMIParsingState &T)
320 : MF(MF), SM(&SM), IRSlots(IRSlots), Target(T) {
323 VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) {
324 auto I = VRegInfos.insert(std::make_pair(Num, nullptr));
325 if (I.second) {
326 MachineRegisterInfo &MRI = MF.getRegInfo();
327 VRegInfo *Info = new (Allocator) VRegInfo;
328 Info->VReg = MRI.createIncompleteVirtualRegister();
329 I.first->second = Info;
331 return *I.first->second;
334 VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) {
335 assert(RegName != "" && "Expected named reg.");
337 auto I = VRegInfosNamed.insert(std::make_pair(RegName.str(), nullptr));
338 if (I.second) {
339 VRegInfo *Info = new (Allocator) VRegInfo;
340 Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(RegName);
341 I.first->second = Info;
343 return *I.first->second;
346 namespace {
348 /// A wrapper struct around the 'MachineOperand' struct that includes a source
349 /// range and other attributes.
350 struct ParsedMachineOperand {
351 MachineOperand Operand;
352 StringRef::iterator Begin;
353 StringRef::iterator End;
354 Optional<unsigned> TiedDefIdx;
356 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
357 StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
358 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
359 if (TiedDefIdx)
360 assert(Operand.isReg() && Operand.isUse() &&
361 "Only used register operands can be tied");
365 class MIParser {
366 MachineFunction &MF;
367 SMDiagnostic &Error;
368 StringRef Source, CurrentSource;
369 MIToken Token;
370 PerFunctionMIParsingState &PFS;
371 /// Maps from slot numbers to function's unnamed basic blocks.
372 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
373 /// Maps from slot numbers to function's unnamed values.
374 DenseMap<unsigned, const Value *> Slots2Values;
376 public:
377 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
378 StringRef Source);
380 /// \p SkipChar gives the number of characters to skip before looking
381 /// for the next token.
382 void lex(unsigned SkipChar = 0);
384 /// Report an error at the current location with the given message.
386 /// This function always return true.
387 bool error(const Twine &Msg);
389 /// Report an error at the given location with the given message.
391 /// This function always return true.
392 bool error(StringRef::iterator Loc, const Twine &Msg);
394 bool
395 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
396 bool parseBasicBlocks();
397 bool parse(MachineInstr *&MI);
398 bool parseStandaloneMBB(MachineBasicBlock *&MBB);
399 bool parseStandaloneNamedRegister(unsigned &Reg);
400 bool parseStandaloneVirtualRegister(VRegInfo *&Info);
401 bool parseStandaloneRegister(unsigned &Reg);
402 bool parseStandaloneStackObject(int &FI);
403 bool parseStandaloneMDNode(MDNode *&Node);
405 bool
406 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
407 bool parseBasicBlock(MachineBasicBlock &MBB,
408 MachineBasicBlock *&AddFalthroughFrom);
409 bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
410 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
412 bool parseNamedRegister(unsigned &Reg);
413 bool parseVirtualRegister(VRegInfo *&Info);
414 bool parseNamedVirtualRegister(VRegInfo *&Info);
415 bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo);
416 bool parseRegisterFlag(unsigned &Flags);
417 bool parseRegisterClassOrBank(VRegInfo &RegInfo);
418 bool parseSubRegisterIndex(unsigned &SubReg);
419 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
420 bool parseRegisterOperand(MachineOperand &Dest,
421 Optional<unsigned> &TiedDefIdx, bool IsDef = false);
422 bool parseImmediateOperand(MachineOperand &Dest);
423 bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
424 const Constant *&C);
425 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
426 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
427 bool parseTypedImmediateOperand(MachineOperand &Dest);
428 bool parseFPImmediateOperand(MachineOperand &Dest);
429 bool parseMBBReference(MachineBasicBlock *&MBB);
430 bool parseMBBOperand(MachineOperand &Dest);
431 bool parseStackFrameIndex(int &FI);
432 bool parseStackObjectOperand(MachineOperand &Dest);
433 bool parseFixedStackFrameIndex(int &FI);
434 bool parseFixedStackObjectOperand(MachineOperand &Dest);
435 bool parseGlobalValue(GlobalValue *&GV);
436 bool parseGlobalAddressOperand(MachineOperand &Dest);
437 bool parseConstantPoolIndexOperand(MachineOperand &Dest);
438 bool parseSubRegisterIndexOperand(MachineOperand &Dest);
439 bool parseJumpTableIndexOperand(MachineOperand &Dest);
440 bool parseExternalSymbolOperand(MachineOperand &Dest);
441 bool parseMCSymbolOperand(MachineOperand &Dest);
442 bool parseMDNode(MDNode *&Node);
443 bool parseDIExpression(MDNode *&Expr);
444 bool parseDILocation(MDNode *&Expr);
445 bool parseMetadataOperand(MachineOperand &Dest);
446 bool parseCFIOffset(int &Offset);
447 bool parseCFIRegister(unsigned &Reg);
448 bool parseCFIEscapeValues(std::string& Values);
449 bool parseCFIOperand(MachineOperand &Dest);
450 bool parseIRBlock(BasicBlock *&BB, const Function &F);
451 bool parseBlockAddressOperand(MachineOperand &Dest);
452 bool parseIntrinsicOperand(MachineOperand &Dest);
453 bool parsePredicateOperand(MachineOperand &Dest);
454 bool parseTargetIndexOperand(MachineOperand &Dest);
455 bool parseCustomRegisterMaskOperand(MachineOperand &Dest);
456 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
457 bool parseMachineOperand(MachineOperand &Dest,
458 Optional<unsigned> &TiedDefIdx);
459 bool parseMachineOperandAndTargetFlags(MachineOperand &Dest,
460 Optional<unsigned> &TiedDefIdx);
461 bool parseOffset(int64_t &Offset);
462 bool parseAlignment(unsigned &Alignment);
463 bool parseAddrspace(unsigned &Addrspace);
464 bool parseOperandsOffset(MachineOperand &Op);
465 bool parseIRValue(const Value *&V);
466 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
467 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
468 bool parseMachinePointerInfo(MachinePointerInfo &Dest);
469 bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID);
470 bool parseOptionalAtomicOrdering(AtomicOrdering &Order);
471 bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
472 bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol);
474 private:
475 /// Convert the integer literal in the current token into an unsigned integer.
477 /// Return true if an error occurred.
478 bool getUnsigned(unsigned &Result);
480 /// Convert the integer literal in the current token into an uint64.
482 /// Return true if an error occurred.
483 bool getUint64(uint64_t &Result);
485 /// Convert the hexadecimal literal in the current token into an unsigned
486 /// APInt with a minimum bitwidth required to represent the value.
488 /// Return true if the literal does not represent an integer value.
489 bool getHexUint(APInt &Result);
491 /// If the current token is of the given kind, consume it and return false.
492 /// Otherwise report an error and return true.
493 bool expectAndConsume(MIToken::TokenKind TokenKind);
495 /// If the current token is of the given kind, consume it and return true.
496 /// Otherwise return false.
497 bool consumeIfPresent(MIToken::TokenKind TokenKind);
499 bool parseInstruction(unsigned &OpCode, unsigned &Flags);
501 bool assignRegisterTies(MachineInstr &MI,
502 ArrayRef<ParsedMachineOperand> Operands);
504 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
505 const MCInstrDesc &MCID);
507 const BasicBlock *getIRBlock(unsigned Slot);
508 const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
510 const Value *getIRValue(unsigned Slot);
512 /// Get or create an MCSymbol for a given name.
513 MCSymbol *getOrCreateMCSymbol(StringRef Name);
515 /// parseStringConstant
516 /// ::= StringConstant
517 bool parseStringConstant(std::string &Result);
520 } // end anonymous namespace
522 MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
523 StringRef Source)
524 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
527 void MIParser::lex(unsigned SkipChar) {
528 CurrentSource = lexMIToken(
529 CurrentSource.data() + SkipChar, Token,
530 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
533 bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
535 bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
536 const SourceMgr &SM = *PFS.SM;
537 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
538 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
539 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
540 // Create an ordinary diagnostic when the source manager's buffer is the
541 // source string.
542 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
543 return true;
545 // Create a diagnostic for a YAML string literal.
546 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
547 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
548 Source, None, None);
549 return true;
552 static const char *toString(MIToken::TokenKind TokenKind) {
553 switch (TokenKind) {
554 case MIToken::comma:
555 return "','";
556 case MIToken::equal:
557 return "'='";
558 case MIToken::colon:
559 return "':'";
560 case MIToken::lparen:
561 return "'('";
562 case MIToken::rparen:
563 return "')'";
564 default:
565 return "<unknown token>";
569 bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
570 if (Token.isNot(TokenKind))
571 return error(Twine("expected ") + toString(TokenKind));
572 lex();
573 return false;
576 bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
577 if (Token.isNot(TokenKind))
578 return false;
579 lex();
580 return true;
583 bool MIParser::parseBasicBlockDefinition(
584 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
585 assert(Token.is(MIToken::MachineBasicBlockLabel));
586 unsigned ID = 0;
587 if (getUnsigned(ID))
588 return true;
589 auto Loc = Token.location();
590 auto Name = Token.stringValue();
591 lex();
592 bool HasAddressTaken = false;
593 bool IsLandingPad = false;
594 unsigned Alignment = 0;
595 BasicBlock *BB = nullptr;
596 if (consumeIfPresent(MIToken::lparen)) {
597 do {
598 // TODO: Report an error when multiple same attributes are specified.
599 switch (Token.kind()) {
600 case MIToken::kw_address_taken:
601 HasAddressTaken = true;
602 lex();
603 break;
604 case MIToken::kw_landing_pad:
605 IsLandingPad = true;
606 lex();
607 break;
608 case MIToken::kw_align:
609 if (parseAlignment(Alignment))
610 return true;
611 break;
612 case MIToken::IRBlock:
613 // TODO: Report an error when both name and ir block are specified.
614 if (parseIRBlock(BB, MF.getFunction()))
615 return true;
616 lex();
617 break;
618 default:
619 break;
621 } while (consumeIfPresent(MIToken::comma));
622 if (expectAndConsume(MIToken::rparen))
623 return true;
625 if (expectAndConsume(MIToken::colon))
626 return true;
628 if (!Name.empty()) {
629 BB = dyn_cast_or_null<BasicBlock>(
630 MF.getFunction().getValueSymbolTable()->lookup(Name));
631 if (!BB)
632 return error(Loc, Twine("basic block '") + Name +
633 "' is not defined in the function '" +
634 MF.getName() + "'");
636 auto *MBB = MF.CreateMachineBasicBlock(BB);
637 MF.insert(MF.end(), MBB);
638 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
639 if (!WasInserted)
640 return error(Loc, Twine("redefinition of machine basic block with id #") +
641 Twine(ID));
642 if (Alignment)
643 MBB->setAlignment(Alignment);
644 if (HasAddressTaken)
645 MBB->setHasAddressTaken();
646 MBB->setIsEHPad(IsLandingPad);
647 return false;
650 bool MIParser::parseBasicBlockDefinitions(
651 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
652 lex();
653 // Skip until the first machine basic block.
654 while (Token.is(MIToken::Newline))
655 lex();
656 if (Token.isErrorOrEOF())
657 return Token.isError();
658 if (Token.isNot(MIToken::MachineBasicBlockLabel))
659 return error("expected a basic block definition before instructions");
660 unsigned BraceDepth = 0;
661 do {
662 if (parseBasicBlockDefinition(MBBSlots))
663 return true;
664 bool IsAfterNewline = false;
665 // Skip until the next machine basic block.
666 while (true) {
667 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
668 Token.isErrorOrEOF())
669 break;
670 else if (Token.is(MIToken::MachineBasicBlockLabel))
671 return error("basic block definition should be located at the start of "
672 "the line");
673 else if (consumeIfPresent(MIToken::Newline)) {
674 IsAfterNewline = true;
675 continue;
677 IsAfterNewline = false;
678 if (Token.is(MIToken::lbrace))
679 ++BraceDepth;
680 if (Token.is(MIToken::rbrace)) {
681 if (!BraceDepth)
682 return error("extraneous closing brace ('}')");
683 --BraceDepth;
685 lex();
687 // Verify that we closed all of the '{' at the end of a file or a block.
688 if (!Token.isError() && BraceDepth)
689 return error("expected '}'"); // FIXME: Report a note that shows '{'.
690 } while (!Token.isErrorOrEOF());
691 return Token.isError();
694 bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
695 assert(Token.is(MIToken::kw_liveins));
696 lex();
697 if (expectAndConsume(MIToken::colon))
698 return true;
699 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
700 return false;
701 do {
702 if (Token.isNot(MIToken::NamedRegister))
703 return error("expected a named register");
704 unsigned Reg = 0;
705 if (parseNamedRegister(Reg))
706 return true;
707 lex();
708 LaneBitmask Mask = LaneBitmask::getAll();
709 if (consumeIfPresent(MIToken::colon)) {
710 // Parse lane mask.
711 if (Token.isNot(MIToken::IntegerLiteral) &&
712 Token.isNot(MIToken::HexLiteral))
713 return error("expected a lane mask");
714 static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned),
715 "Use correct get-function for lane mask");
716 LaneBitmask::Type V;
717 if (getUnsigned(V))
718 return error("invalid lane mask value");
719 Mask = LaneBitmask(V);
720 lex();
722 MBB.addLiveIn(Reg, Mask);
723 } while (consumeIfPresent(MIToken::comma));
724 return false;
727 bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
728 assert(Token.is(MIToken::kw_successors));
729 lex();
730 if (expectAndConsume(MIToken::colon))
731 return true;
732 if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
733 return false;
734 do {
735 if (Token.isNot(MIToken::MachineBasicBlock))
736 return error("expected a machine basic block reference");
737 MachineBasicBlock *SuccMBB = nullptr;
738 if (parseMBBReference(SuccMBB))
739 return true;
740 lex();
741 unsigned Weight = 0;
742 if (consumeIfPresent(MIToken::lparen)) {
743 if (Token.isNot(MIToken::IntegerLiteral) &&
744 Token.isNot(MIToken::HexLiteral))
745 return error("expected an integer literal after '('");
746 if (getUnsigned(Weight))
747 return true;
748 lex();
749 if (expectAndConsume(MIToken::rparen))
750 return true;
752 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
753 } while (consumeIfPresent(MIToken::comma));
754 MBB.normalizeSuccProbs();
755 return false;
758 bool MIParser::parseBasicBlock(MachineBasicBlock &MBB,
759 MachineBasicBlock *&AddFalthroughFrom) {
760 // Skip the definition.
761 assert(Token.is(MIToken::MachineBasicBlockLabel));
762 lex();
763 if (consumeIfPresent(MIToken::lparen)) {
764 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
765 lex();
766 consumeIfPresent(MIToken::rparen);
768 consumeIfPresent(MIToken::colon);
770 // Parse the liveins and successors.
771 // N.B: Multiple lists of successors and liveins are allowed and they're
772 // merged into one.
773 // Example:
774 // liveins: %edi
775 // liveins: %esi
777 // is equivalent to
778 // liveins: %edi, %esi
779 bool ExplicitSuccessors = false;
780 while (true) {
781 if (Token.is(MIToken::kw_successors)) {
782 if (parseBasicBlockSuccessors(MBB))
783 return true;
784 ExplicitSuccessors = true;
785 } else if (Token.is(MIToken::kw_liveins)) {
786 if (parseBasicBlockLiveins(MBB))
787 return true;
788 } else if (consumeIfPresent(MIToken::Newline)) {
789 continue;
790 } else
791 break;
792 if (!Token.isNewlineOrEOF())
793 return error("expected line break at the end of a list");
794 lex();
797 // Parse the instructions.
798 bool IsInBundle = false;
799 MachineInstr *PrevMI = nullptr;
800 while (!Token.is(MIToken::MachineBasicBlockLabel) &&
801 !Token.is(MIToken::Eof)) {
802 if (consumeIfPresent(MIToken::Newline))
803 continue;
804 if (consumeIfPresent(MIToken::rbrace)) {
805 // The first parsing pass should verify that all closing '}' have an
806 // opening '{'.
807 assert(IsInBundle);
808 IsInBundle = false;
809 continue;
811 MachineInstr *MI = nullptr;
812 if (parse(MI))
813 return true;
814 MBB.insert(MBB.end(), MI);
815 if (IsInBundle) {
816 PrevMI->setFlag(MachineInstr::BundledSucc);
817 MI->setFlag(MachineInstr::BundledPred);
819 PrevMI = MI;
820 if (Token.is(MIToken::lbrace)) {
821 if (IsInBundle)
822 return error("nested instruction bundles are not allowed");
823 lex();
824 // This instruction is the start of the bundle.
825 MI->setFlag(MachineInstr::BundledSucc);
826 IsInBundle = true;
827 if (!Token.is(MIToken::Newline))
828 // The next instruction can be on the same line.
829 continue;
831 assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
832 lex();
835 // Construct successor list by searching for basic block machine operands.
836 if (!ExplicitSuccessors) {
837 SmallVector<MachineBasicBlock*,4> Successors;
838 bool IsFallthrough;
839 guessSuccessors(MBB, Successors, IsFallthrough);
840 for (MachineBasicBlock *Succ : Successors)
841 MBB.addSuccessor(Succ);
843 if (IsFallthrough) {
844 AddFalthroughFrom = &MBB;
845 } else {
846 MBB.normalizeSuccProbs();
850 return false;
853 bool MIParser::parseBasicBlocks() {
854 lex();
855 // Skip until the first machine basic block.
856 while (Token.is(MIToken::Newline))
857 lex();
858 if (Token.isErrorOrEOF())
859 return Token.isError();
860 // The first parsing pass should have verified that this token is a MBB label
861 // in the 'parseBasicBlockDefinitions' method.
862 assert(Token.is(MIToken::MachineBasicBlockLabel));
863 MachineBasicBlock *AddFalthroughFrom = nullptr;
864 do {
865 MachineBasicBlock *MBB = nullptr;
866 if (parseMBBReference(MBB))
867 return true;
868 if (AddFalthroughFrom) {
869 if (!AddFalthroughFrom->isSuccessor(MBB))
870 AddFalthroughFrom->addSuccessor(MBB);
871 AddFalthroughFrom->normalizeSuccProbs();
872 AddFalthroughFrom = nullptr;
874 if (parseBasicBlock(*MBB, AddFalthroughFrom))
875 return true;
876 // The method 'parseBasicBlock' should parse the whole block until the next
877 // block or the end of file.
878 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
879 } while (Token.isNot(MIToken::Eof));
880 return false;
883 bool MIParser::parse(MachineInstr *&MI) {
884 // Parse any register operands before '='
885 MachineOperand MO = MachineOperand::CreateImm(0);
886 SmallVector<ParsedMachineOperand, 8> Operands;
887 while (Token.isRegister() || Token.isRegisterFlag()) {
888 auto Loc = Token.location();
889 Optional<unsigned> TiedDefIdx;
890 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
891 return true;
892 Operands.push_back(
893 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
894 if (Token.isNot(MIToken::comma))
895 break;
896 lex();
898 if (!Operands.empty() && expectAndConsume(MIToken::equal))
899 return true;
901 unsigned OpCode, Flags = 0;
902 if (Token.isError() || parseInstruction(OpCode, Flags))
903 return true;
905 // Parse the remaining machine operands.
906 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_pre_instr_symbol) &&
907 Token.isNot(MIToken::kw_post_instr_symbol) &&
908 Token.isNot(MIToken::kw_debug_location) &&
909 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
910 auto Loc = Token.location();
911 Optional<unsigned> TiedDefIdx;
912 if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx))
913 return true;
914 if (OpCode == TargetOpcode::DBG_VALUE && MO.isReg())
915 MO.setIsDebug();
916 Operands.push_back(
917 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
918 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
919 Token.is(MIToken::lbrace))
920 break;
921 if (Token.isNot(MIToken::comma))
922 return error("expected ',' before the next machine operand");
923 lex();
926 MCSymbol *PreInstrSymbol = nullptr;
927 if (Token.is(MIToken::kw_pre_instr_symbol))
928 if (parsePreOrPostInstrSymbol(PreInstrSymbol))
929 return true;
930 MCSymbol *PostInstrSymbol = nullptr;
931 if (Token.is(MIToken::kw_post_instr_symbol))
932 if (parsePreOrPostInstrSymbol(PostInstrSymbol))
933 return true;
935 DebugLoc DebugLocation;
936 if (Token.is(MIToken::kw_debug_location)) {
937 lex();
938 MDNode *Node = nullptr;
939 if (Token.is(MIToken::exclaim)) {
940 if (parseMDNode(Node))
941 return true;
942 } else if (Token.is(MIToken::md_dilocation)) {
943 if (parseDILocation(Node))
944 return true;
945 } else
946 return error("expected a metadata node after 'debug-location'");
947 if (!isa<DILocation>(Node))
948 return error("referenced metadata is not a DILocation");
949 DebugLocation = DebugLoc(Node);
952 // Parse the machine memory operands.
953 SmallVector<MachineMemOperand *, 2> MemOperands;
954 if (Token.is(MIToken::coloncolon)) {
955 lex();
956 while (!Token.isNewlineOrEOF()) {
957 MachineMemOperand *MemOp = nullptr;
958 if (parseMachineMemoryOperand(MemOp))
959 return true;
960 MemOperands.push_back(MemOp);
961 if (Token.isNewlineOrEOF())
962 break;
963 if (Token.isNot(MIToken::comma))
964 return error("expected ',' before the next machine memory operand");
965 lex();
969 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
970 if (!MCID.isVariadic()) {
971 // FIXME: Move the implicit operand verification to the machine verifier.
972 if (verifyImplicitOperands(Operands, MCID))
973 return true;
976 // TODO: Check for extraneous machine operands.
977 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
978 MI->setFlags(Flags);
979 for (const auto &Operand : Operands)
980 MI->addOperand(MF, Operand.Operand);
981 if (assignRegisterTies(*MI, Operands))
982 return true;
983 if (PreInstrSymbol)
984 MI->setPreInstrSymbol(MF, PreInstrSymbol);
985 if (PostInstrSymbol)
986 MI->setPostInstrSymbol(MF, PostInstrSymbol);
987 if (!MemOperands.empty())
988 MI->setMemRefs(MF, MemOperands);
989 return false;
992 bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
993 lex();
994 if (Token.isNot(MIToken::MachineBasicBlock))
995 return error("expected a machine basic block reference");
996 if (parseMBBReference(MBB))
997 return true;
998 lex();
999 if (Token.isNot(MIToken::Eof))
1000 return error(
1001 "expected end of string after the machine basic block reference");
1002 return false;
1005 bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
1006 lex();
1007 if (Token.isNot(MIToken::NamedRegister))
1008 return error("expected a named register");
1009 if (parseNamedRegister(Reg))
1010 return true;
1011 lex();
1012 if (Token.isNot(MIToken::Eof))
1013 return error("expected end of string after the register reference");
1014 return false;
1017 bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
1018 lex();
1019 if (Token.isNot(MIToken::VirtualRegister))
1020 return error("expected a virtual register");
1021 if (parseVirtualRegister(Info))
1022 return true;
1023 lex();
1024 if (Token.isNot(MIToken::Eof))
1025 return error("expected end of string after the register reference");
1026 return false;
1029 bool MIParser::parseStandaloneRegister(unsigned &Reg) {
1030 lex();
1031 if (Token.isNot(MIToken::NamedRegister) &&
1032 Token.isNot(MIToken::VirtualRegister))
1033 return error("expected either a named or virtual register");
1035 VRegInfo *Info;
1036 if (parseRegister(Reg, Info))
1037 return true;
1039 lex();
1040 if (Token.isNot(MIToken::Eof))
1041 return error("expected end of string after the register reference");
1042 return false;
1045 bool MIParser::parseStandaloneStackObject(int &FI) {
1046 lex();
1047 if (Token.isNot(MIToken::StackObject))
1048 return error("expected a stack object");
1049 if (parseStackFrameIndex(FI))
1050 return true;
1051 if (Token.isNot(MIToken::Eof))
1052 return error("expected end of string after the stack object reference");
1053 return false;
1056 bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
1057 lex();
1058 if (Token.is(MIToken::exclaim)) {
1059 if (parseMDNode(Node))
1060 return true;
1061 } else if (Token.is(MIToken::md_diexpr)) {
1062 if (parseDIExpression(Node))
1063 return true;
1064 } else if (Token.is(MIToken::md_dilocation)) {
1065 if (parseDILocation(Node))
1066 return true;
1067 } else
1068 return error("expected a metadata node");
1069 if (Token.isNot(MIToken::Eof))
1070 return error("expected end of string after the metadata node");
1071 return false;
1074 static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
1075 assert(MO.isImplicit());
1076 return MO.isDef() ? "implicit-def" : "implicit";
1079 static std::string getRegisterName(const TargetRegisterInfo *TRI,
1080 unsigned Reg) {
1081 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg");
1082 return StringRef(TRI->getName(Reg)).lower();
1085 /// Return true if the parsed machine operands contain a given machine operand.
1086 static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
1087 ArrayRef<ParsedMachineOperand> Operands) {
1088 for (const auto &I : Operands) {
1089 if (ImplicitOperand.isIdenticalTo(I.Operand))
1090 return true;
1092 return false;
1095 bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
1096 const MCInstrDesc &MCID) {
1097 if (MCID.isCall())
1098 // We can't verify call instructions as they can contain arbitrary implicit
1099 // register and register mask operands.
1100 return false;
1102 // Gather all the expected implicit operands.
1103 SmallVector<MachineOperand, 4> ImplicitOperands;
1104 if (MCID.ImplicitDefs)
1105 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
1106 ImplicitOperands.push_back(
1107 MachineOperand::CreateReg(*ImpDefs, true, true));
1108 if (MCID.ImplicitUses)
1109 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
1110 ImplicitOperands.push_back(
1111 MachineOperand::CreateReg(*ImpUses, false, true));
1113 const auto *TRI = MF.getSubtarget().getRegisterInfo();
1114 assert(TRI && "Expected target register info");
1115 for (const auto &I : ImplicitOperands) {
1116 if (isImplicitOperandIn(I, Operands))
1117 continue;
1118 return error(Operands.empty() ? Token.location() : Operands.back().End,
1119 Twine("missing implicit register operand '") +
1120 printImplicitRegisterFlag(I) + " $" +
1121 getRegisterName(TRI, I.getReg()) + "'");
1123 return false;
1126 bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
1127 // Allow frame and fast math flags for OPCODE
1128 while (Token.is(MIToken::kw_frame_setup) ||
1129 Token.is(MIToken::kw_frame_destroy) ||
1130 Token.is(MIToken::kw_nnan) ||
1131 Token.is(MIToken::kw_ninf) ||
1132 Token.is(MIToken::kw_nsz) ||
1133 Token.is(MIToken::kw_arcp) ||
1134 Token.is(MIToken::kw_contract) ||
1135 Token.is(MIToken::kw_afn) ||
1136 Token.is(MIToken::kw_reassoc) ||
1137 Token.is(MIToken::kw_nuw) ||
1138 Token.is(MIToken::kw_nsw) ||
1139 Token.is(MIToken::kw_exact) ||
1140 Token.is(MIToken::kw_fpexcept)) {
1141 // Mine frame and fast math flags
1142 if (Token.is(MIToken::kw_frame_setup))
1143 Flags |= MachineInstr::FrameSetup;
1144 if (Token.is(MIToken::kw_frame_destroy))
1145 Flags |= MachineInstr::FrameDestroy;
1146 if (Token.is(MIToken::kw_nnan))
1147 Flags |= MachineInstr::FmNoNans;
1148 if (Token.is(MIToken::kw_ninf))
1149 Flags |= MachineInstr::FmNoInfs;
1150 if (Token.is(MIToken::kw_nsz))
1151 Flags |= MachineInstr::FmNsz;
1152 if (Token.is(MIToken::kw_arcp))
1153 Flags |= MachineInstr::FmArcp;
1154 if (Token.is(MIToken::kw_contract))
1155 Flags |= MachineInstr::FmContract;
1156 if (Token.is(MIToken::kw_afn))
1157 Flags |= MachineInstr::FmAfn;
1158 if (Token.is(MIToken::kw_reassoc))
1159 Flags |= MachineInstr::FmReassoc;
1160 if (Token.is(MIToken::kw_nuw))
1161 Flags |= MachineInstr::NoUWrap;
1162 if (Token.is(MIToken::kw_nsw))
1163 Flags |= MachineInstr::NoSWrap;
1164 if (Token.is(MIToken::kw_exact))
1165 Flags |= MachineInstr::IsExact;
1166 if (Token.is(MIToken::kw_fpexcept))
1167 Flags |= MachineInstr::FPExcept;
1169 lex();
1171 if (Token.isNot(MIToken::Identifier))
1172 return error("expected a machine instruction");
1173 StringRef InstrName = Token.stringValue();
1174 if (PFS.Target.parseInstrName(InstrName, OpCode))
1175 return error(Twine("unknown machine instruction name '") + InstrName + "'");
1176 lex();
1177 return false;
1180 bool MIParser::parseNamedRegister(unsigned &Reg) {
1181 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token");
1182 StringRef Name = Token.stringValue();
1183 if (PFS.Target.getRegisterByName(Name, Reg))
1184 return error(Twine("unknown register name '") + Name + "'");
1185 return false;
1188 bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) {
1189 assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token");
1190 StringRef Name = Token.stringValue();
1191 // TODO: Check that the VReg name is not the same as a physical register name.
1192 // If it is, then print a warning (when warnings are implemented).
1193 Info = &PFS.getVRegInfoNamed(Name);
1194 return false;
1197 bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
1198 if (Token.is(MIToken::NamedVirtualRegister))
1199 return parseNamedVirtualRegister(Info);
1200 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token");
1201 unsigned ID;
1202 if (getUnsigned(ID))
1203 return true;
1204 Info = &PFS.getVRegInfo(ID);
1205 return false;
1208 bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) {
1209 switch (Token.kind()) {
1210 case MIToken::underscore:
1211 Reg = 0;
1212 return false;
1213 case MIToken::NamedRegister:
1214 return parseNamedRegister(Reg);
1215 case MIToken::NamedVirtualRegister:
1216 case MIToken::VirtualRegister:
1217 if (parseVirtualRegister(Info))
1218 return true;
1219 Reg = Info->VReg;
1220 return false;
1221 // TODO: Parse other register kinds.
1222 default:
1223 llvm_unreachable("The current token should be a register");
1227 bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) {
1228 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore))
1229 return error("expected '_', register class, or register bank name");
1230 StringRef::iterator Loc = Token.location();
1231 StringRef Name = Token.stringValue();
1233 // Was it a register class?
1234 const TargetRegisterClass *RC = PFS.Target.getRegClass(Name);
1235 if (RC) {
1236 lex();
1238 switch (RegInfo.Kind) {
1239 case VRegInfo::UNKNOWN:
1240 case VRegInfo::NORMAL:
1241 RegInfo.Kind = VRegInfo::NORMAL;
1242 if (RegInfo.Explicit && RegInfo.D.RC != RC) {
1243 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
1244 return error(Loc, Twine("conflicting register classes, previously: ") +
1245 Twine(TRI.getRegClassName(RegInfo.D.RC)));
1247 RegInfo.D.RC = RC;
1248 RegInfo.Explicit = true;
1249 return false;
1251 case VRegInfo::GENERIC:
1252 case VRegInfo::REGBANK:
1253 return error(Loc, "register class specification on generic register");
1255 llvm_unreachable("Unexpected register kind");
1258 // Should be a register bank or a generic register.
1259 const RegisterBank *RegBank = nullptr;
1260 if (Name != "_") {
1261 RegBank = PFS.Target.getRegBank(Name);
1262 if (!RegBank)
1263 return error(Loc, "expected '_', register class, or register bank name");
1266 lex();
1268 switch (RegInfo.Kind) {
1269 case VRegInfo::UNKNOWN:
1270 case VRegInfo::GENERIC:
1271 case VRegInfo::REGBANK:
1272 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC;
1273 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank)
1274 return error(Loc, "conflicting generic register banks");
1275 RegInfo.D.RegBank = RegBank;
1276 RegInfo.Explicit = true;
1277 return false;
1279 case VRegInfo::NORMAL:
1280 return error(Loc, "register bank specification on normal register");
1282 llvm_unreachable("Unexpected register kind");
1285 bool MIParser::parseRegisterFlag(unsigned &Flags) {
1286 const unsigned OldFlags = Flags;
1287 switch (Token.kind()) {
1288 case MIToken::kw_implicit:
1289 Flags |= RegState::Implicit;
1290 break;
1291 case MIToken::kw_implicit_define:
1292 Flags |= RegState::ImplicitDefine;
1293 break;
1294 case MIToken::kw_def:
1295 Flags |= RegState::Define;
1296 break;
1297 case MIToken::kw_dead:
1298 Flags |= RegState::Dead;
1299 break;
1300 case MIToken::kw_killed:
1301 Flags |= RegState::Kill;
1302 break;
1303 case MIToken::kw_undef:
1304 Flags |= RegState::Undef;
1305 break;
1306 case MIToken::kw_internal:
1307 Flags |= RegState::InternalRead;
1308 break;
1309 case MIToken::kw_early_clobber:
1310 Flags |= RegState::EarlyClobber;
1311 break;
1312 case MIToken::kw_debug_use:
1313 Flags |= RegState::Debug;
1314 break;
1315 case MIToken::kw_renamable:
1316 Flags |= RegState::Renamable;
1317 break;
1318 default:
1319 llvm_unreachable("The current token should be a register flag");
1321 if (OldFlags == Flags)
1322 // We know that the same flag is specified more than once when the flags
1323 // weren't modified.
1324 return error("duplicate '" + Token.stringValue() + "' register flag");
1325 lex();
1326 return false;
1329 bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
1330 assert(Token.is(MIToken::dot));
1331 lex();
1332 if (Token.isNot(MIToken::Identifier))
1333 return error("expected a subregister index after '.'");
1334 auto Name = Token.stringValue();
1335 SubReg = PFS.Target.getSubRegIndex(Name);
1336 if (!SubReg)
1337 return error(Twine("use of unknown subregister index '") + Name + "'");
1338 lex();
1339 return false;
1342 bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
1343 if (!consumeIfPresent(MIToken::kw_tied_def))
1344 return true;
1345 if (Token.isNot(MIToken::IntegerLiteral))
1346 return error("expected an integer literal after 'tied-def'");
1347 if (getUnsigned(TiedDefIdx))
1348 return true;
1349 lex();
1350 if (expectAndConsume(MIToken::rparen))
1351 return true;
1352 return false;
1355 bool MIParser::assignRegisterTies(MachineInstr &MI,
1356 ArrayRef<ParsedMachineOperand> Operands) {
1357 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
1358 for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
1359 if (!Operands[I].TiedDefIdx)
1360 continue;
1361 // The parser ensures that this operand is a register use, so we just have
1362 // to check the tied-def operand.
1363 unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
1364 if (DefIdx >= E)
1365 return error(Operands[I].Begin,
1366 Twine("use of invalid tied-def operand index '" +
1367 Twine(DefIdx) + "'; instruction has only ") +
1368 Twine(E) + " operands");
1369 const auto &DefOperand = Operands[DefIdx].Operand;
1370 if (!DefOperand.isReg() || !DefOperand.isDef())
1371 // FIXME: add note with the def operand.
1372 return error(Operands[I].Begin,
1373 Twine("use of invalid tied-def operand index '") +
1374 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
1375 " isn't a defined register");
1376 // Check that the tied-def operand wasn't tied elsewhere.
1377 for (const auto &TiedPair : TiedRegisterPairs) {
1378 if (TiedPair.first == DefIdx)
1379 return error(Operands[I].Begin,
1380 Twine("the tied-def operand #") + Twine(DefIdx) +
1381 " is already tied with another register operand");
1383 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
1385 // FIXME: Verify that for non INLINEASM instructions, the def and use tied
1386 // indices must be less than tied max.
1387 for (const auto &TiedPair : TiedRegisterPairs)
1388 MI.tieOperands(TiedPair.first, TiedPair.second);
1389 return false;
1392 bool MIParser::parseRegisterOperand(MachineOperand &Dest,
1393 Optional<unsigned> &TiedDefIdx,
1394 bool IsDef) {
1395 unsigned Flags = IsDef ? RegState::Define : 0;
1396 while (Token.isRegisterFlag()) {
1397 if (parseRegisterFlag(Flags))
1398 return true;
1400 if (!Token.isRegister())
1401 return error("expected a register after register flags");
1402 unsigned Reg;
1403 VRegInfo *RegInfo;
1404 if (parseRegister(Reg, RegInfo))
1405 return true;
1406 lex();
1407 unsigned SubReg = 0;
1408 if (Token.is(MIToken::dot)) {
1409 if (parseSubRegisterIndex(SubReg))
1410 return true;
1411 if (!TargetRegisterInfo::isVirtualRegister(Reg))
1412 return error("subregister index expects a virtual register");
1414 if (Token.is(MIToken::colon)) {
1415 if (!TargetRegisterInfo::isVirtualRegister(Reg))
1416 return error("register class specification expects a virtual register");
1417 lex();
1418 if (parseRegisterClassOrBank(*RegInfo))
1419 return true;
1421 MachineRegisterInfo &MRI = MF.getRegInfo();
1422 if ((Flags & RegState::Define) == 0) {
1423 if (consumeIfPresent(MIToken::lparen)) {
1424 unsigned Idx;
1425 if (!parseRegisterTiedDefIndex(Idx))
1426 TiedDefIdx = Idx;
1427 else {
1428 // Try a redundant low-level type.
1429 LLT Ty;
1430 if (parseLowLevelType(Token.location(), Ty))
1431 return error("expected tied-def or low-level type after '('");
1433 if (expectAndConsume(MIToken::rparen))
1434 return true;
1436 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1437 return error("inconsistent type for generic virtual register");
1439 MRI.setType(Reg, Ty);
1442 } else if (consumeIfPresent(MIToken::lparen)) {
1443 // Virtual registers may have a tpe with GlobalISel.
1444 if (!TargetRegisterInfo::isVirtualRegister(Reg))
1445 return error("unexpected type on physical register");
1447 LLT Ty;
1448 if (parseLowLevelType(Token.location(), Ty))
1449 return true;
1451 if (expectAndConsume(MIToken::rparen))
1452 return true;
1454 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1455 return error("inconsistent type for generic virtual register");
1457 MRI.setType(Reg, Ty);
1458 } else if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1459 // Generic virtual registers must have a type.
1460 // If we end up here this means the type hasn't been specified and
1461 // this is bad!
1462 if (RegInfo->Kind == VRegInfo::GENERIC ||
1463 RegInfo->Kind == VRegInfo::REGBANK)
1464 return error("generic virtual registers must have a type");
1466 Dest = MachineOperand::CreateReg(
1467 Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1468 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1469 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
1470 Flags & RegState::InternalRead, Flags & RegState::Renamable);
1472 return false;
1475 bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1476 assert(Token.is(MIToken::IntegerLiteral));
1477 const APSInt &Int = Token.integerValue();
1478 if (Int.getMinSignedBits() > 64)
1479 return error("integer literal is too large to be an immediate operand");
1480 Dest = MachineOperand::CreateImm(Int.getExtValue());
1481 lex();
1482 return false;
1485 bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1486 const Constant *&C) {
1487 auto Source = StringValue.str(); // The source has to be null terminated.
1488 SMDiagnostic Err;
1489 C = parseConstantValue(Source, Err, *MF.getFunction().getParent(),
1490 &PFS.IRSlots);
1491 if (!C)
1492 return error(Loc + Err.getColumnNo(), Err.getMessage());
1493 return false;
1496 bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1497 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1498 return true;
1499 lex();
1500 return false;
1503 // See LLT implemntation for bit size limits.
1504 static bool verifyScalarSize(uint64_t Size) {
1505 return Size != 0 && isUInt<16>(Size);
1508 static bool verifyVectorElementCount(uint64_t NumElts) {
1509 return NumElts != 0 && isUInt<16>(NumElts);
1512 static bool verifyAddrSpace(uint64_t AddrSpace) {
1513 return isUInt<24>(AddrSpace);
1516 bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1517 if (Token.range().front() == 's' || Token.range().front() == 'p') {
1518 StringRef SizeStr = Token.range().drop_front();
1519 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1520 return error("expected integers after 's'/'p' type character");
1523 if (Token.range().front() == 's') {
1524 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1525 if (!verifyScalarSize(ScalarSize))
1526 return error("invalid size for scalar type");
1528 Ty = LLT::scalar(ScalarSize);
1529 lex();
1530 return false;
1531 } else if (Token.range().front() == 'p') {
1532 const DataLayout &DL = MF.getDataLayout();
1533 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue();
1534 if (!verifyAddrSpace(AS))
1535 return error("invalid address space number");
1537 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1538 lex();
1539 return false;
1542 // Now we're looking for a vector.
1543 if (Token.isNot(MIToken::less))
1544 return error(Loc,
1545 "expected sN, pA, <M x sN>, or <M x pA> for GlobalISel type");
1546 lex();
1548 if (Token.isNot(MIToken::IntegerLiteral))
1549 return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1550 uint64_t NumElements = Token.integerValue().getZExtValue();
1551 if (!verifyVectorElementCount(NumElements))
1552 return error("invalid number of vector elements");
1554 lex();
1556 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1557 return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1558 lex();
1560 if (Token.range().front() != 's' && Token.range().front() != 'p')
1561 return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1562 StringRef SizeStr = Token.range().drop_front();
1563 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1564 return error("expected integers after 's'/'p' type character");
1566 if (Token.range().front() == 's') {
1567 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1568 if (!verifyScalarSize(ScalarSize))
1569 return error("invalid size for scalar type");
1570 Ty = LLT::scalar(ScalarSize);
1571 } else if (Token.range().front() == 'p') {
1572 const DataLayout &DL = MF.getDataLayout();
1573 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue();
1574 if (!verifyAddrSpace(AS))
1575 return error("invalid address space number");
1577 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1578 } else
1579 return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1580 lex();
1582 if (Token.isNot(MIToken::greater))
1583 return error(Loc, "expected <M x sN> or <M x pA> for vector type");
1584 lex();
1586 Ty = LLT::vector(NumElements, Ty);
1587 return false;
1590 bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1591 assert(Token.is(MIToken::Identifier));
1592 StringRef TypeStr = Token.range();
1593 if (TypeStr.front() != 'i' && TypeStr.front() != 's' &&
1594 TypeStr.front() != 'p')
1595 return error(
1596 "a typed immediate operand should start with one of 'i', 's', or 'p'");
1597 StringRef SizeStr = Token.range().drop_front();
1598 if (SizeStr.size() == 0 || !llvm::all_of(SizeStr, isdigit))
1599 return error("expected integers after 'i'/'s'/'p' type character");
1601 auto Loc = Token.location();
1602 lex();
1603 if (Token.isNot(MIToken::IntegerLiteral)) {
1604 if (Token.isNot(MIToken::Identifier) ||
1605 !(Token.range() == "true" || Token.range() == "false"))
1606 return error("expected an integer literal");
1608 const Constant *C = nullptr;
1609 if (parseIRConstant(Loc, C))
1610 return true;
1611 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1612 return false;
1615 bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1616 auto Loc = Token.location();
1617 lex();
1618 if (Token.isNot(MIToken::FloatingPointLiteral) &&
1619 Token.isNot(MIToken::HexLiteral))
1620 return error("expected a floating point literal");
1621 const Constant *C = nullptr;
1622 if (parseIRConstant(Loc, C))
1623 return true;
1624 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1625 return false;
1628 bool MIParser::getUnsigned(unsigned &Result) {
1629 if (Token.hasIntegerValue()) {
1630 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
1631 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
1632 if (Val64 == Limit)
1633 return error("expected 32-bit integer (too large)");
1634 Result = Val64;
1635 return false;
1637 if (Token.is(MIToken::HexLiteral)) {
1638 APInt A;
1639 if (getHexUint(A))
1640 return true;
1641 if (A.getBitWidth() > 32)
1642 return error("expected 32-bit integer (too large)");
1643 Result = A.getZExtValue();
1644 return false;
1646 return true;
1649 bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1650 assert(Token.is(MIToken::MachineBasicBlock) ||
1651 Token.is(MIToken::MachineBasicBlockLabel));
1652 unsigned Number;
1653 if (getUnsigned(Number))
1654 return true;
1655 auto MBBInfo = PFS.MBBSlots.find(Number);
1656 if (MBBInfo == PFS.MBBSlots.end())
1657 return error(Twine("use of undefined machine basic block #") +
1658 Twine(Number));
1659 MBB = MBBInfo->second;
1660 // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once
1661 // we drop the <irname> from the bb.<id>.<irname> format.
1662 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1663 return error(Twine("the name of machine basic block #") + Twine(Number) +
1664 " isn't '" + Token.stringValue() + "'");
1665 return false;
1668 bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1669 MachineBasicBlock *MBB;
1670 if (parseMBBReference(MBB))
1671 return true;
1672 Dest = MachineOperand::CreateMBB(MBB);
1673 lex();
1674 return false;
1677 bool MIParser::parseStackFrameIndex(int &FI) {
1678 assert(Token.is(MIToken::StackObject));
1679 unsigned ID;
1680 if (getUnsigned(ID))
1681 return true;
1682 auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1683 if (ObjectInfo == PFS.StackObjectSlots.end())
1684 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1685 "'");
1686 StringRef Name;
1687 if (const auto *Alloca =
1688 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
1689 Name = Alloca->getName();
1690 if (!Token.stringValue().empty() && Token.stringValue() != Name)
1691 return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1692 "' isn't '" + Token.stringValue() + "'");
1693 lex();
1694 FI = ObjectInfo->second;
1695 return false;
1698 bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1699 int FI;
1700 if (parseStackFrameIndex(FI))
1701 return true;
1702 Dest = MachineOperand::CreateFI(FI);
1703 return false;
1706 bool MIParser::parseFixedStackFrameIndex(int &FI) {
1707 assert(Token.is(MIToken::FixedStackObject));
1708 unsigned ID;
1709 if (getUnsigned(ID))
1710 return true;
1711 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1712 if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1713 return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1714 Twine(ID) + "'");
1715 lex();
1716 FI = ObjectInfo->second;
1717 return false;
1720 bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1721 int FI;
1722 if (parseFixedStackFrameIndex(FI))
1723 return true;
1724 Dest = MachineOperand::CreateFI(FI);
1725 return false;
1728 bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1729 switch (Token.kind()) {
1730 case MIToken::NamedGlobalValue: {
1731 const Module *M = MF.getFunction().getParent();
1732 GV = M->getNamedValue(Token.stringValue());
1733 if (!GV)
1734 return error(Twine("use of undefined global value '") + Token.range() +
1735 "'");
1736 break;
1738 case MIToken::GlobalValue: {
1739 unsigned GVIdx;
1740 if (getUnsigned(GVIdx))
1741 return true;
1742 if (GVIdx >= PFS.IRSlots.GlobalValues.size())
1743 return error(Twine("use of undefined global value '@") + Twine(GVIdx) +
1744 "'");
1745 GV = PFS.IRSlots.GlobalValues[GVIdx];
1746 break;
1748 default:
1749 llvm_unreachable("The current token should be a global value");
1751 return false;
1754 bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1755 GlobalValue *GV = nullptr;
1756 if (parseGlobalValue(GV))
1757 return true;
1758 lex();
1759 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1760 if (parseOperandsOffset(Dest))
1761 return true;
1762 return false;
1765 bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1766 assert(Token.is(MIToken::ConstantPoolItem));
1767 unsigned ID;
1768 if (getUnsigned(ID))
1769 return true;
1770 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1771 if (ConstantInfo == PFS.ConstantPoolSlots.end())
1772 return error("use of undefined constant '%const." + Twine(ID) + "'");
1773 lex();
1774 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1775 if (parseOperandsOffset(Dest))
1776 return true;
1777 return false;
1780 bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1781 assert(Token.is(MIToken::JumpTableIndex));
1782 unsigned ID;
1783 if (getUnsigned(ID))
1784 return true;
1785 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1786 if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1787 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1788 lex();
1789 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1790 return false;
1793 bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1794 assert(Token.is(MIToken::ExternalSymbol));
1795 const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1796 lex();
1797 Dest = MachineOperand::CreateES(Symbol);
1798 if (parseOperandsOffset(Dest))
1799 return true;
1800 return false;
1803 bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) {
1804 assert(Token.is(MIToken::MCSymbol));
1805 MCSymbol *Symbol = getOrCreateMCSymbol(Token.stringValue());
1806 lex();
1807 Dest = MachineOperand::CreateMCSymbol(Symbol);
1808 if (parseOperandsOffset(Dest))
1809 return true;
1810 return false;
1813 bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
1814 assert(Token.is(MIToken::SubRegisterIndex));
1815 StringRef Name = Token.stringValue();
1816 unsigned SubRegIndex = PFS.Target.getSubRegIndex(Token.stringValue());
1817 if (SubRegIndex == 0)
1818 return error(Twine("unknown subregister index '") + Name + "'");
1819 lex();
1820 Dest = MachineOperand::CreateImm(SubRegIndex);
1821 return false;
1824 bool MIParser::parseMDNode(MDNode *&Node) {
1825 assert(Token.is(MIToken::exclaim));
1827 auto Loc = Token.location();
1828 lex();
1829 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1830 return error("expected metadata id after '!'");
1831 unsigned ID;
1832 if (getUnsigned(ID))
1833 return true;
1834 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1835 if (NodeInfo == PFS.IRSlots.MetadataNodes.end())
1836 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
1837 lex();
1838 Node = NodeInfo->second.get();
1839 return false;
1842 bool MIParser::parseDIExpression(MDNode *&Expr) {
1843 assert(Token.is(MIToken::md_diexpr));
1844 lex();
1846 // FIXME: Share this parsing with the IL parser.
1847 SmallVector<uint64_t, 8> Elements;
1849 if (expectAndConsume(MIToken::lparen))
1850 return true;
1852 if (Token.isNot(MIToken::rparen)) {
1853 do {
1854 if (Token.is(MIToken::Identifier)) {
1855 if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) {
1856 lex();
1857 Elements.push_back(Op);
1858 continue;
1860 if (unsigned Enc = dwarf::getAttributeEncoding(Token.stringValue())) {
1861 lex();
1862 Elements.push_back(Enc);
1863 continue;
1865 return error(Twine("invalid DWARF op '") + Token.stringValue() + "'");
1868 if (Token.isNot(MIToken::IntegerLiteral) ||
1869 Token.integerValue().isSigned())
1870 return error("expected unsigned integer");
1872 auto &U = Token.integerValue();
1873 if (U.ugt(UINT64_MAX))
1874 return error("element too large, limit is " + Twine(UINT64_MAX));
1875 Elements.push_back(U.getZExtValue());
1876 lex();
1878 } while (consumeIfPresent(MIToken::comma));
1881 if (expectAndConsume(MIToken::rparen))
1882 return true;
1884 Expr = DIExpression::get(MF.getFunction().getContext(), Elements);
1885 return false;
1888 bool MIParser::parseDILocation(MDNode *&Loc) {
1889 assert(Token.is(MIToken::md_dilocation));
1890 lex();
1892 bool HaveLine = false;
1893 unsigned Line = 0;
1894 unsigned Column = 0;
1895 MDNode *Scope = nullptr;
1896 MDNode *InlinedAt = nullptr;
1897 bool ImplicitCode = false;
1899 if (expectAndConsume(MIToken::lparen))
1900 return true;
1902 if (Token.isNot(MIToken::rparen)) {
1903 do {
1904 if (Token.is(MIToken::Identifier)) {
1905 if (Token.stringValue() == "line") {
1906 lex();
1907 if (expectAndConsume(MIToken::colon))
1908 return true;
1909 if (Token.isNot(MIToken::IntegerLiteral) ||
1910 Token.integerValue().isSigned())
1911 return error("expected unsigned integer");
1912 Line = Token.integerValue().getZExtValue();
1913 HaveLine = true;
1914 lex();
1915 continue;
1917 if (Token.stringValue() == "column") {
1918 lex();
1919 if (expectAndConsume(MIToken::colon))
1920 return true;
1921 if (Token.isNot(MIToken::IntegerLiteral) ||
1922 Token.integerValue().isSigned())
1923 return error("expected unsigned integer");
1924 Column = Token.integerValue().getZExtValue();
1925 lex();
1926 continue;
1928 if (Token.stringValue() == "scope") {
1929 lex();
1930 if (expectAndConsume(MIToken::colon))
1931 return true;
1932 if (parseMDNode(Scope))
1933 return error("expected metadata node");
1934 if (!isa<DIScope>(Scope))
1935 return error("expected DIScope node");
1936 continue;
1938 if (Token.stringValue() == "inlinedAt") {
1939 lex();
1940 if (expectAndConsume(MIToken::colon))
1941 return true;
1942 if (Token.is(MIToken::exclaim)) {
1943 if (parseMDNode(InlinedAt))
1944 return true;
1945 } else if (Token.is(MIToken::md_dilocation)) {
1946 if (parseDILocation(InlinedAt))
1947 return true;
1948 } else
1949 return error("expected metadata node");
1950 if (!isa<DILocation>(InlinedAt))
1951 return error("expected DILocation node");
1952 continue;
1954 if (Token.stringValue() == "isImplicitCode") {
1955 lex();
1956 if (expectAndConsume(MIToken::colon))
1957 return true;
1958 if (!Token.is(MIToken::Identifier))
1959 return error("expected true/false");
1960 // As far as I can see, we don't have any existing need for parsing
1961 // true/false in MIR yet. Do it ad-hoc until there's something else
1962 // that needs it.
1963 if (Token.stringValue() == "true")
1964 ImplicitCode = true;
1965 else if (Token.stringValue() == "false")
1966 ImplicitCode = false;
1967 else
1968 return error("expected true/false");
1969 lex();
1970 continue;
1973 return error(Twine("invalid DILocation argument '") +
1974 Token.stringValue() + "'");
1975 } while (consumeIfPresent(MIToken::comma));
1978 if (expectAndConsume(MIToken::rparen))
1979 return true;
1981 if (!HaveLine)
1982 return error("DILocation requires line number");
1983 if (!Scope)
1984 return error("DILocation requires a scope");
1986 Loc = DILocation::get(MF.getFunction().getContext(), Line, Column, Scope,
1987 InlinedAt, ImplicitCode);
1988 return false;
1991 bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
1992 MDNode *Node = nullptr;
1993 if (Token.is(MIToken::exclaim)) {
1994 if (parseMDNode(Node))
1995 return true;
1996 } else if (Token.is(MIToken::md_diexpr)) {
1997 if (parseDIExpression(Node))
1998 return true;
2000 Dest = MachineOperand::CreateMetadata(Node);
2001 return false;
2004 bool MIParser::parseCFIOffset(int &Offset) {
2005 if (Token.isNot(MIToken::IntegerLiteral))
2006 return error("expected a cfi offset");
2007 if (Token.integerValue().getMinSignedBits() > 32)
2008 return error("expected a 32 bit integer (the cfi offset is too large)");
2009 Offset = (int)Token.integerValue().getExtValue();
2010 lex();
2011 return false;
2014 bool MIParser::parseCFIRegister(unsigned &Reg) {
2015 if (Token.isNot(MIToken::NamedRegister))
2016 return error("expected a cfi register");
2017 unsigned LLVMReg;
2018 if (parseNamedRegister(LLVMReg))
2019 return true;
2020 const auto *TRI = MF.getSubtarget().getRegisterInfo();
2021 assert(TRI && "Expected target register info");
2022 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
2023 if (DwarfReg < 0)
2024 return error("invalid DWARF register");
2025 Reg = (unsigned)DwarfReg;
2026 lex();
2027 return false;
2030 bool MIParser::parseCFIEscapeValues(std::string &Values) {
2031 do {
2032 if (Token.isNot(MIToken::HexLiteral))
2033 return error("expected a hexadecimal literal");
2034 unsigned Value;
2035 if (getUnsigned(Value))
2036 return true;
2037 if (Value > UINT8_MAX)
2038 return error("expected a 8-bit integer (too large)");
2039 Values.push_back(static_cast<uint8_t>(Value));
2040 lex();
2041 } while (consumeIfPresent(MIToken::comma));
2042 return false;
2045 bool MIParser::parseCFIOperand(MachineOperand &Dest) {
2046 auto Kind = Token.kind();
2047 lex();
2048 int Offset;
2049 unsigned Reg;
2050 unsigned CFIIndex;
2051 switch (Kind) {
2052 case MIToken::kw_cfi_same_value:
2053 if (parseCFIRegister(Reg))
2054 return true;
2055 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
2056 break;
2057 case MIToken::kw_cfi_offset:
2058 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2059 parseCFIOffset(Offset))
2060 return true;
2061 CFIIndex =
2062 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
2063 break;
2064 case MIToken::kw_cfi_rel_offset:
2065 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2066 parseCFIOffset(Offset))
2067 return true;
2068 CFIIndex = MF.addFrameInst(
2069 MCCFIInstruction::createRelOffset(nullptr, Reg, Offset));
2070 break;
2071 case MIToken::kw_cfi_def_cfa_register:
2072 if (parseCFIRegister(Reg))
2073 return true;
2074 CFIIndex =
2075 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
2076 break;
2077 case MIToken::kw_cfi_def_cfa_offset:
2078 if (parseCFIOffset(Offset))
2079 return true;
2080 // NB: MCCFIInstruction::createDefCfaOffset negates the offset.
2081 CFIIndex = MF.addFrameInst(
2082 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
2083 break;
2084 case MIToken::kw_cfi_adjust_cfa_offset:
2085 if (parseCFIOffset(Offset))
2086 return true;
2087 CFIIndex = MF.addFrameInst(
2088 MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset));
2089 break;
2090 case MIToken::kw_cfi_def_cfa:
2091 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2092 parseCFIOffset(Offset))
2093 return true;
2094 // NB: MCCFIInstruction::createDefCfa negates the offset.
2095 CFIIndex =
2096 MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
2097 break;
2098 case MIToken::kw_cfi_remember_state:
2099 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr));
2100 break;
2101 case MIToken::kw_cfi_restore:
2102 if (parseCFIRegister(Reg))
2103 return true;
2104 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg));
2105 break;
2106 case MIToken::kw_cfi_restore_state:
2107 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr));
2108 break;
2109 case MIToken::kw_cfi_undefined:
2110 if (parseCFIRegister(Reg))
2111 return true;
2112 CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg));
2113 break;
2114 case MIToken::kw_cfi_register: {
2115 unsigned Reg2;
2116 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
2117 parseCFIRegister(Reg2))
2118 return true;
2120 CFIIndex =
2121 MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2));
2122 break;
2124 case MIToken::kw_cfi_window_save:
2125 CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr));
2126 break;
2127 case MIToken::kw_cfi_aarch64_negate_ra_sign_state:
2128 CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
2129 break;
2130 case MIToken::kw_cfi_escape: {
2131 std::string Values;
2132 if (parseCFIEscapeValues(Values))
2133 return true;
2134 CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values));
2135 break;
2137 default:
2138 // TODO: Parse the other CFI operands.
2139 llvm_unreachable("The current token should be a cfi operand");
2141 Dest = MachineOperand::CreateCFIIndex(CFIIndex);
2142 return false;
2145 bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
2146 switch (Token.kind()) {
2147 case MIToken::NamedIRBlock: {
2148 BB = dyn_cast_or_null<BasicBlock>(
2149 F.getValueSymbolTable()->lookup(Token.stringValue()));
2150 if (!BB)
2151 return error(Twine("use of undefined IR block '") + Token.range() + "'");
2152 break;
2154 case MIToken::IRBlock: {
2155 unsigned SlotNumber = 0;
2156 if (getUnsigned(SlotNumber))
2157 return true;
2158 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
2159 if (!BB)
2160 return error(Twine("use of undefined IR block '%ir-block.") +
2161 Twine(SlotNumber) + "'");
2162 break;
2164 default:
2165 llvm_unreachable("The current token should be an IR block reference");
2167 return false;
2170 bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
2171 assert(Token.is(MIToken::kw_blockaddress));
2172 lex();
2173 if (expectAndConsume(MIToken::lparen))
2174 return true;
2175 if (Token.isNot(MIToken::GlobalValue) &&
2176 Token.isNot(MIToken::NamedGlobalValue))
2177 return error("expected a global value");
2178 GlobalValue *GV = nullptr;
2179 if (parseGlobalValue(GV))
2180 return true;
2181 auto *F = dyn_cast<Function>(GV);
2182 if (!F)
2183 return error("expected an IR function reference");
2184 lex();
2185 if (expectAndConsume(MIToken::comma))
2186 return true;
2187 BasicBlock *BB = nullptr;
2188 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
2189 return error("expected an IR block reference");
2190 if (parseIRBlock(BB, *F))
2191 return true;
2192 lex();
2193 if (expectAndConsume(MIToken::rparen))
2194 return true;
2195 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
2196 if (parseOperandsOffset(Dest))
2197 return true;
2198 return false;
2201 bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
2202 assert(Token.is(MIToken::kw_intrinsic));
2203 lex();
2204 if (expectAndConsume(MIToken::lparen))
2205 return error("expected syntax intrinsic(@llvm.whatever)");
2207 if (Token.isNot(MIToken::NamedGlobalValue))
2208 return error("expected syntax intrinsic(@llvm.whatever)");
2210 std::string Name = Token.stringValue();
2211 lex();
2213 if (expectAndConsume(MIToken::rparen))
2214 return error("expected ')' to terminate intrinsic name");
2216 // Find out what intrinsic we're dealing with, first try the global namespace
2217 // and then the target's private intrinsics if that fails.
2218 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
2219 Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
2220 if (ID == Intrinsic::not_intrinsic && TII)
2221 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
2223 if (ID == Intrinsic::not_intrinsic)
2224 return error("unknown intrinsic name");
2225 Dest = MachineOperand::CreateIntrinsicID(ID);
2227 return false;
2230 bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
2231 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
2232 bool IsFloat = Token.is(MIToken::kw_floatpred);
2233 lex();
2235 if (expectAndConsume(MIToken::lparen))
2236 return error("expected syntax intpred(whatever) or floatpred(whatever");
2238 if (Token.isNot(MIToken::Identifier))
2239 return error("whatever");
2241 CmpInst::Predicate Pred;
2242 if (IsFloat) {
2243 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
2244 .Case("false", CmpInst::FCMP_FALSE)
2245 .Case("oeq", CmpInst::FCMP_OEQ)
2246 .Case("ogt", CmpInst::FCMP_OGT)
2247 .Case("oge", CmpInst::FCMP_OGE)
2248 .Case("olt", CmpInst::FCMP_OLT)
2249 .Case("ole", CmpInst::FCMP_OLE)
2250 .Case("one", CmpInst::FCMP_ONE)
2251 .Case("ord", CmpInst::FCMP_ORD)
2252 .Case("uno", CmpInst::FCMP_UNO)
2253 .Case("ueq", CmpInst::FCMP_UEQ)
2254 .Case("ugt", CmpInst::FCMP_UGT)
2255 .Case("uge", CmpInst::FCMP_UGE)
2256 .Case("ult", CmpInst::FCMP_ULT)
2257 .Case("ule", CmpInst::FCMP_ULE)
2258 .Case("une", CmpInst::FCMP_UNE)
2259 .Case("true", CmpInst::FCMP_TRUE)
2260 .Default(CmpInst::BAD_FCMP_PREDICATE);
2261 if (!CmpInst::isFPPredicate(Pred))
2262 return error("invalid floating-point predicate");
2263 } else {
2264 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
2265 .Case("eq", CmpInst::ICMP_EQ)
2266 .Case("ne", CmpInst::ICMP_NE)
2267 .Case("sgt", CmpInst::ICMP_SGT)
2268 .Case("sge", CmpInst::ICMP_SGE)
2269 .Case("slt", CmpInst::ICMP_SLT)
2270 .Case("sle", CmpInst::ICMP_SLE)
2271 .Case("ugt", CmpInst::ICMP_UGT)
2272 .Case("uge", CmpInst::ICMP_UGE)
2273 .Case("ult", CmpInst::ICMP_ULT)
2274 .Case("ule", CmpInst::ICMP_ULE)
2275 .Default(CmpInst::BAD_ICMP_PREDICATE);
2276 if (!CmpInst::isIntPredicate(Pred))
2277 return error("invalid integer predicate");
2280 lex();
2281 Dest = MachineOperand::CreatePredicate(Pred);
2282 if (expectAndConsume(MIToken::rparen))
2283 return error("predicate should be terminated by ')'.");
2285 return false;
2288 bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
2289 assert(Token.is(MIToken::kw_target_index));
2290 lex();
2291 if (expectAndConsume(MIToken::lparen))
2292 return true;
2293 if (Token.isNot(MIToken::Identifier))
2294 return error("expected the name of the target index");
2295 int Index = 0;
2296 if (PFS.Target.getTargetIndex(Token.stringValue(), Index))
2297 return error("use of undefined target index '" + Token.stringValue() + "'");
2298 lex();
2299 if (expectAndConsume(MIToken::rparen))
2300 return true;
2301 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
2302 if (parseOperandsOffset(Dest))
2303 return true;
2304 return false;
2307 bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) {
2308 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask");
2309 lex();
2310 if (expectAndConsume(MIToken::lparen))
2311 return true;
2313 uint32_t *Mask = MF.allocateRegMask();
2314 while (true) {
2315 if (Token.isNot(MIToken::NamedRegister))
2316 return error("expected a named register");
2317 unsigned Reg;
2318 if (parseNamedRegister(Reg))
2319 return true;
2320 lex();
2321 Mask[Reg / 32] |= 1U << (Reg % 32);
2322 // TODO: Report an error if the same register is used more than once.
2323 if (Token.isNot(MIToken::comma))
2324 break;
2325 lex();
2328 if (expectAndConsume(MIToken::rparen))
2329 return true;
2330 Dest = MachineOperand::CreateRegMask(Mask);
2331 return false;
2334 bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
2335 assert(Token.is(MIToken::kw_liveout));
2336 uint32_t *Mask = MF.allocateRegMask();
2337 lex();
2338 if (expectAndConsume(MIToken::lparen))
2339 return true;
2340 while (true) {
2341 if (Token.isNot(MIToken::NamedRegister))
2342 return error("expected a named register");
2343 unsigned Reg;
2344 if (parseNamedRegister(Reg))
2345 return true;
2346 lex();
2347 Mask[Reg / 32] |= 1U << (Reg % 32);
2348 // TODO: Report an error if the same register is used more than once.
2349 if (Token.isNot(MIToken::comma))
2350 break;
2351 lex();
2353 if (expectAndConsume(MIToken::rparen))
2354 return true;
2355 Dest = MachineOperand::CreateRegLiveOut(Mask);
2356 return false;
2359 bool MIParser::parseMachineOperand(MachineOperand &Dest,
2360 Optional<unsigned> &TiedDefIdx) {
2361 switch (Token.kind()) {
2362 case MIToken::kw_implicit:
2363 case MIToken::kw_implicit_define:
2364 case MIToken::kw_def:
2365 case MIToken::kw_dead:
2366 case MIToken::kw_killed:
2367 case MIToken::kw_undef:
2368 case MIToken::kw_internal:
2369 case MIToken::kw_early_clobber:
2370 case MIToken::kw_debug_use:
2371 case MIToken::kw_renamable:
2372 case MIToken::underscore:
2373 case MIToken::NamedRegister:
2374 case MIToken::VirtualRegister:
2375 case MIToken::NamedVirtualRegister:
2376 return parseRegisterOperand(Dest, TiedDefIdx);
2377 case MIToken::IntegerLiteral:
2378 return parseImmediateOperand(Dest);
2379 case MIToken::kw_half:
2380 case MIToken::kw_float:
2381 case MIToken::kw_double:
2382 case MIToken::kw_x86_fp80:
2383 case MIToken::kw_fp128:
2384 case MIToken::kw_ppc_fp128:
2385 return parseFPImmediateOperand(Dest);
2386 case MIToken::MachineBasicBlock:
2387 return parseMBBOperand(Dest);
2388 case MIToken::StackObject:
2389 return parseStackObjectOperand(Dest);
2390 case MIToken::FixedStackObject:
2391 return parseFixedStackObjectOperand(Dest);
2392 case MIToken::GlobalValue:
2393 case MIToken::NamedGlobalValue:
2394 return parseGlobalAddressOperand(Dest);
2395 case MIToken::ConstantPoolItem:
2396 return parseConstantPoolIndexOperand(Dest);
2397 case MIToken::JumpTableIndex:
2398 return parseJumpTableIndexOperand(Dest);
2399 case MIToken::ExternalSymbol:
2400 return parseExternalSymbolOperand(Dest);
2401 case MIToken::MCSymbol:
2402 return parseMCSymbolOperand(Dest);
2403 case MIToken::SubRegisterIndex:
2404 return parseSubRegisterIndexOperand(Dest);
2405 case MIToken::md_diexpr:
2406 case MIToken::exclaim:
2407 return parseMetadataOperand(Dest);
2408 case MIToken::kw_cfi_same_value:
2409 case MIToken::kw_cfi_offset:
2410 case MIToken::kw_cfi_rel_offset:
2411 case MIToken::kw_cfi_def_cfa_register:
2412 case MIToken::kw_cfi_def_cfa_offset:
2413 case MIToken::kw_cfi_adjust_cfa_offset:
2414 case MIToken::kw_cfi_escape:
2415 case MIToken::kw_cfi_def_cfa:
2416 case MIToken::kw_cfi_register:
2417 case MIToken::kw_cfi_remember_state:
2418 case MIToken::kw_cfi_restore:
2419 case MIToken::kw_cfi_restore_state:
2420 case MIToken::kw_cfi_undefined:
2421 case MIToken::kw_cfi_window_save:
2422 case MIToken::kw_cfi_aarch64_negate_ra_sign_state:
2423 return parseCFIOperand(Dest);
2424 case MIToken::kw_blockaddress:
2425 return parseBlockAddressOperand(Dest);
2426 case MIToken::kw_intrinsic:
2427 return parseIntrinsicOperand(Dest);
2428 case MIToken::kw_target_index:
2429 return parseTargetIndexOperand(Dest);
2430 case MIToken::kw_liveout:
2431 return parseLiveoutRegisterMaskOperand(Dest);
2432 case MIToken::kw_floatpred:
2433 case MIToken::kw_intpred:
2434 return parsePredicateOperand(Dest);
2435 case MIToken::Error:
2436 return true;
2437 case MIToken::Identifier:
2438 if (const auto *RegMask = PFS.Target.getRegMask(Token.stringValue())) {
2439 Dest = MachineOperand::CreateRegMask(RegMask);
2440 lex();
2441 break;
2442 } else if (Token.stringValue() == "CustomRegMask") {
2443 return parseCustomRegisterMaskOperand(Dest);
2444 } else
2445 return parseTypedImmediateOperand(Dest);
2446 default:
2447 // FIXME: Parse the MCSymbol machine operand.
2448 return error("expected a machine operand");
2450 return false;
2453 bool MIParser::parseMachineOperandAndTargetFlags(
2454 MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) {
2455 unsigned TF = 0;
2456 bool HasTargetFlags = false;
2457 if (Token.is(MIToken::kw_target_flags)) {
2458 HasTargetFlags = true;
2459 lex();
2460 if (expectAndConsume(MIToken::lparen))
2461 return true;
2462 if (Token.isNot(MIToken::Identifier))
2463 return error("expected the name of the target flag");
2464 if (PFS.Target.getDirectTargetFlag(Token.stringValue(), TF)) {
2465 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), TF))
2466 return error("use of undefined target flag '" + Token.stringValue() +
2467 "'");
2469 lex();
2470 while (Token.is(MIToken::comma)) {
2471 lex();
2472 if (Token.isNot(MIToken::Identifier))
2473 return error("expected the name of the target flag");
2474 unsigned BitFlag = 0;
2475 if (PFS.Target.getBitmaskTargetFlag(Token.stringValue(), BitFlag))
2476 return error("use of undefined target flag '" + Token.stringValue() +
2477 "'");
2478 // TODO: Report an error when using a duplicate bit target flag.
2479 TF |= BitFlag;
2480 lex();
2482 if (expectAndConsume(MIToken::rparen))
2483 return true;
2485 auto Loc = Token.location();
2486 if (parseMachineOperand(Dest, TiedDefIdx))
2487 return true;
2488 if (!HasTargetFlags)
2489 return false;
2490 if (Dest.isReg())
2491 return error(Loc, "register operands can't have target flags");
2492 Dest.setTargetFlags(TF);
2493 return false;
2496 bool MIParser::parseOffset(int64_t &Offset) {
2497 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
2498 return false;
2499 StringRef Sign = Token.range();
2500 bool IsNegative = Token.is(MIToken::minus);
2501 lex();
2502 if (Token.isNot(MIToken::IntegerLiteral))
2503 return error("expected an integer literal after '" + Sign + "'");
2504 if (Token.integerValue().getMinSignedBits() > 64)
2505 return error("expected 64-bit integer (too large)");
2506 Offset = Token.integerValue().getExtValue();
2507 if (IsNegative)
2508 Offset = -Offset;
2509 lex();
2510 return false;
2513 bool MIParser::parseAlignment(unsigned &Alignment) {
2514 assert(Token.is(MIToken::kw_align));
2515 lex();
2516 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2517 return error("expected an integer literal after 'align'");
2518 if (getUnsigned(Alignment))
2519 return true;
2520 lex();
2522 if (!isPowerOf2_32(Alignment))
2523 return error("expected a power-of-2 literal after 'align'");
2525 return false;
2528 bool MIParser::parseAddrspace(unsigned &Addrspace) {
2529 assert(Token.is(MIToken::kw_addrspace));
2530 lex();
2531 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2532 return error("expected an integer literal after 'addrspace'");
2533 if (getUnsigned(Addrspace))
2534 return true;
2535 lex();
2536 return false;
2539 bool MIParser::parseOperandsOffset(MachineOperand &Op) {
2540 int64_t Offset = 0;
2541 if (parseOffset(Offset))
2542 return true;
2543 Op.setOffset(Offset);
2544 return false;
2547 bool MIParser::parseIRValue(const Value *&V) {
2548 switch (Token.kind()) {
2549 case MIToken::NamedIRValue: {
2550 V = MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue());
2551 break;
2553 case MIToken::IRValue: {
2554 unsigned SlotNumber = 0;
2555 if (getUnsigned(SlotNumber))
2556 return true;
2557 V = getIRValue(SlotNumber);
2558 break;
2560 case MIToken::NamedGlobalValue:
2561 case MIToken::GlobalValue: {
2562 GlobalValue *GV = nullptr;
2563 if (parseGlobalValue(GV))
2564 return true;
2565 V = GV;
2566 break;
2568 case MIToken::QuotedIRValue: {
2569 const Constant *C = nullptr;
2570 if (parseIRConstant(Token.location(), Token.stringValue(), C))
2571 return true;
2572 V = C;
2573 break;
2575 default:
2576 llvm_unreachable("The current token should be an IR block reference");
2578 if (!V)
2579 return error(Twine("use of undefined IR value '") + Token.range() + "'");
2580 return false;
2583 bool MIParser::getUint64(uint64_t &Result) {
2584 if (Token.hasIntegerValue()) {
2585 if (Token.integerValue().getActiveBits() > 64)
2586 return error("expected 64-bit integer (too large)");
2587 Result = Token.integerValue().getZExtValue();
2588 return false;
2590 if (Token.is(MIToken::HexLiteral)) {
2591 APInt A;
2592 if (getHexUint(A))
2593 return true;
2594 if (A.getBitWidth() > 64)
2595 return error("expected 64-bit integer (too large)");
2596 Result = A.getZExtValue();
2597 return false;
2599 return true;
2602 bool MIParser::getHexUint(APInt &Result) {
2603 assert(Token.is(MIToken::HexLiteral));
2604 StringRef S = Token.range();
2605 assert(S[0] == '0' && tolower(S[1]) == 'x');
2606 // This could be a floating point literal with a special prefix.
2607 if (!isxdigit(S[2]))
2608 return true;
2609 StringRef V = S.substr(2);
2610 APInt A(V.size()*4, V, 16);
2612 // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make
2613 // sure it isn't the case before constructing result.
2614 unsigned NumBits = (A == 0) ? 32 : A.getActiveBits();
2615 Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords()));
2616 return false;
2619 bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
2620 const auto OldFlags = Flags;
2621 switch (Token.kind()) {
2622 case MIToken::kw_volatile:
2623 Flags |= MachineMemOperand::MOVolatile;
2624 break;
2625 case MIToken::kw_non_temporal:
2626 Flags |= MachineMemOperand::MONonTemporal;
2627 break;
2628 case MIToken::kw_dereferenceable:
2629 Flags |= MachineMemOperand::MODereferenceable;
2630 break;
2631 case MIToken::kw_invariant:
2632 Flags |= MachineMemOperand::MOInvariant;
2633 break;
2634 case MIToken::StringConstant: {
2635 MachineMemOperand::Flags TF;
2636 if (PFS.Target.getMMOTargetFlag(Token.stringValue(), TF))
2637 return error("use of undefined target MMO flag '" + Token.stringValue() +
2638 "'");
2639 Flags |= TF;
2640 break;
2642 default:
2643 llvm_unreachable("The current token should be a memory operand flag");
2645 if (OldFlags == Flags)
2646 // We know that the same flag is specified more than once when the flags
2647 // weren't modified.
2648 return error("duplicate '" + Token.stringValue() + "' memory operand flag");
2649 lex();
2650 return false;
2653 bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
2654 switch (Token.kind()) {
2655 case MIToken::kw_stack:
2656 PSV = MF.getPSVManager().getStack();
2657 break;
2658 case MIToken::kw_got:
2659 PSV = MF.getPSVManager().getGOT();
2660 break;
2661 case MIToken::kw_jump_table:
2662 PSV = MF.getPSVManager().getJumpTable();
2663 break;
2664 case MIToken::kw_constant_pool:
2665 PSV = MF.getPSVManager().getConstantPool();
2666 break;
2667 case MIToken::FixedStackObject: {
2668 int FI;
2669 if (parseFixedStackFrameIndex(FI))
2670 return true;
2671 PSV = MF.getPSVManager().getFixedStack(FI);
2672 // The token was already consumed, so use return here instead of break.
2673 return false;
2675 case MIToken::StackObject: {
2676 int FI;
2677 if (parseStackFrameIndex(FI))
2678 return true;
2679 PSV = MF.getPSVManager().getFixedStack(FI);
2680 // The token was already consumed, so use return here instead of break.
2681 return false;
2683 case MIToken::kw_call_entry:
2684 lex();
2685 switch (Token.kind()) {
2686 case MIToken::GlobalValue:
2687 case MIToken::NamedGlobalValue: {
2688 GlobalValue *GV = nullptr;
2689 if (parseGlobalValue(GV))
2690 return true;
2691 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
2692 break;
2694 case MIToken::ExternalSymbol:
2695 PSV = MF.getPSVManager().getExternalSymbolCallEntry(
2696 MF.createExternalSymbolName(Token.stringValue()));
2697 break;
2698 default:
2699 return error(
2700 "expected a global value or an external symbol after 'call-entry'");
2702 break;
2703 default:
2704 llvm_unreachable("The current token should be pseudo source value");
2706 lex();
2707 return false;
2710 bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
2711 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
2712 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
2713 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
2714 Token.is(MIToken::kw_call_entry)) {
2715 const PseudoSourceValue *PSV = nullptr;
2716 if (parseMemoryPseudoSourceValue(PSV))
2717 return true;
2718 int64_t Offset = 0;
2719 if (parseOffset(Offset))
2720 return true;
2721 Dest = MachinePointerInfo(PSV, Offset);
2722 return false;
2724 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
2725 Token.isNot(MIToken::GlobalValue) &&
2726 Token.isNot(MIToken::NamedGlobalValue) &&
2727 Token.isNot(MIToken::QuotedIRValue))
2728 return error("expected an IR value reference");
2729 const Value *V = nullptr;
2730 if (parseIRValue(V))
2731 return true;
2732 if (!V->getType()->isPointerTy())
2733 return error("expected a pointer IR value");
2734 lex();
2735 int64_t Offset = 0;
2736 if (parseOffset(Offset))
2737 return true;
2738 Dest = MachinePointerInfo(V, Offset);
2739 return false;
2742 bool MIParser::parseOptionalScope(LLVMContext &Context,
2743 SyncScope::ID &SSID) {
2744 SSID = SyncScope::System;
2745 if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") {
2746 lex();
2747 if (expectAndConsume(MIToken::lparen))
2748 return error("expected '(' in syncscope");
2750 std::string SSN;
2751 if (parseStringConstant(SSN))
2752 return true;
2754 SSID = Context.getOrInsertSyncScopeID(SSN);
2755 if (expectAndConsume(MIToken::rparen))
2756 return error("expected ')' in syncscope");
2759 return false;
2762 bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) {
2763 Order = AtomicOrdering::NotAtomic;
2764 if (Token.isNot(MIToken::Identifier))
2765 return false;
2767 Order = StringSwitch<AtomicOrdering>(Token.stringValue())
2768 .Case("unordered", AtomicOrdering::Unordered)
2769 .Case("monotonic", AtomicOrdering::Monotonic)
2770 .Case("acquire", AtomicOrdering::Acquire)
2771 .Case("release", AtomicOrdering::Release)
2772 .Case("acq_rel", AtomicOrdering::AcquireRelease)
2773 .Case("seq_cst", AtomicOrdering::SequentiallyConsistent)
2774 .Default(AtomicOrdering::NotAtomic);
2776 if (Order != AtomicOrdering::NotAtomic) {
2777 lex();
2778 return false;
2781 return error("expected an atomic scope, ordering or a size specification");
2784 bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
2785 if (expectAndConsume(MIToken::lparen))
2786 return true;
2787 MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
2788 while (Token.isMemoryOperandFlag()) {
2789 if (parseMemoryOperandFlag(Flags))
2790 return true;
2792 if (Token.isNot(MIToken::Identifier) ||
2793 (Token.stringValue() != "load" && Token.stringValue() != "store"))
2794 return error("expected 'load' or 'store' memory operation");
2795 if (Token.stringValue() == "load")
2796 Flags |= MachineMemOperand::MOLoad;
2797 else
2798 Flags |= MachineMemOperand::MOStore;
2799 lex();
2801 // Optional 'store' for operands that both load and store.
2802 if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") {
2803 Flags |= MachineMemOperand::MOStore;
2804 lex();
2807 // Optional synchronization scope.
2808 SyncScope::ID SSID;
2809 if (parseOptionalScope(MF.getFunction().getContext(), SSID))
2810 return true;
2812 // Up to two atomic orderings (cmpxchg provides guarantees on failure).
2813 AtomicOrdering Order, FailureOrder;
2814 if (parseOptionalAtomicOrdering(Order))
2815 return true;
2817 if (parseOptionalAtomicOrdering(FailureOrder))
2818 return true;
2820 if (Token.isNot(MIToken::IntegerLiteral) &&
2821 Token.isNot(MIToken::kw_unknown_size))
2822 return error("expected the size integer literal or 'unknown-size' after "
2823 "memory operation");
2824 uint64_t Size;
2825 if (Token.is(MIToken::IntegerLiteral)) {
2826 if (getUint64(Size))
2827 return true;
2828 } else if (Token.is(MIToken::kw_unknown_size)) {
2829 Size = MemoryLocation::UnknownSize;
2831 lex();
2833 MachinePointerInfo Ptr = MachinePointerInfo();
2834 if (Token.is(MIToken::Identifier)) {
2835 const char *Word =
2836 ((Flags & MachineMemOperand::MOLoad) &&
2837 (Flags & MachineMemOperand::MOStore))
2838 ? "on"
2839 : Flags & MachineMemOperand::MOLoad ? "from" : "into";
2840 if (Token.stringValue() != Word)
2841 return error(Twine("expected '") + Word + "'");
2842 lex();
2844 if (parseMachinePointerInfo(Ptr))
2845 return true;
2847 unsigned BaseAlignment = (Size != MemoryLocation::UnknownSize ? Size : 1);
2848 AAMDNodes AAInfo;
2849 MDNode *Range = nullptr;
2850 while (consumeIfPresent(MIToken::comma)) {
2851 switch (Token.kind()) {
2852 case MIToken::kw_align:
2853 if (parseAlignment(BaseAlignment))
2854 return true;
2855 break;
2856 case MIToken::kw_addrspace:
2857 if (parseAddrspace(Ptr.AddrSpace))
2858 return true;
2859 break;
2860 case MIToken::md_tbaa:
2861 lex();
2862 if (parseMDNode(AAInfo.TBAA))
2863 return true;
2864 break;
2865 case MIToken::md_alias_scope:
2866 lex();
2867 if (parseMDNode(AAInfo.Scope))
2868 return true;
2869 break;
2870 case MIToken::md_noalias:
2871 lex();
2872 if (parseMDNode(AAInfo.NoAlias))
2873 return true;
2874 break;
2875 case MIToken::md_range:
2876 lex();
2877 if (parseMDNode(Range))
2878 return true;
2879 break;
2880 // TODO: Report an error on duplicate metadata nodes.
2881 default:
2882 return error("expected 'align' or '!tbaa' or '!alias.scope' or "
2883 "'!noalias' or '!range'");
2886 if (expectAndConsume(MIToken::rparen))
2887 return true;
2888 Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range,
2889 SSID, Order, FailureOrder);
2890 return false;
2893 bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) {
2894 assert((Token.is(MIToken::kw_pre_instr_symbol) ||
2895 Token.is(MIToken::kw_post_instr_symbol)) &&
2896 "Invalid token for a pre- post-instruction symbol!");
2897 lex();
2898 if (Token.isNot(MIToken::MCSymbol))
2899 return error("expected a symbol after 'pre-instr-symbol'");
2900 Symbol = getOrCreateMCSymbol(Token.stringValue());
2901 lex();
2902 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
2903 Token.is(MIToken::lbrace))
2904 return false;
2905 if (Token.isNot(MIToken::comma))
2906 return error("expected ',' before the next machine operand");
2907 lex();
2908 return false;
2911 static void initSlots2BasicBlocks(
2912 const Function &F,
2913 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2914 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2915 MST.incorporateFunction(F);
2916 for (auto &BB : F) {
2917 if (BB.hasName())
2918 continue;
2919 int Slot = MST.getLocalSlot(&BB);
2920 if (Slot == -1)
2921 continue;
2922 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
2926 static const BasicBlock *getIRBlockFromSlot(
2927 unsigned Slot,
2928 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2929 auto BlockInfo = Slots2BasicBlocks.find(Slot);
2930 if (BlockInfo == Slots2BasicBlocks.end())
2931 return nullptr;
2932 return BlockInfo->second;
2935 const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
2936 if (Slots2BasicBlocks.empty())
2937 initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks);
2938 return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
2941 const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
2942 if (&F == &MF.getFunction())
2943 return getIRBlock(Slot);
2944 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
2945 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
2946 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
2949 static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
2950 DenseMap<unsigned, const Value *> &Slots2Values) {
2951 int Slot = MST.getLocalSlot(V);
2952 if (Slot == -1)
2953 return;
2954 Slots2Values.insert(std::make_pair(unsigned(Slot), V));
2957 /// Creates the mapping from slot numbers to function's unnamed IR values.
2958 static void initSlots2Values(const Function &F,
2959 DenseMap<unsigned, const Value *> &Slots2Values) {
2960 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2961 MST.incorporateFunction(F);
2962 for (const auto &Arg : F.args())
2963 mapValueToSlot(&Arg, MST, Slots2Values);
2964 for (const auto &BB : F) {
2965 mapValueToSlot(&BB, MST, Slots2Values);
2966 for (const auto &I : BB)
2967 mapValueToSlot(&I, MST, Slots2Values);
2971 const Value *MIParser::getIRValue(unsigned Slot) {
2972 if (Slots2Values.empty())
2973 initSlots2Values(MF.getFunction(), Slots2Values);
2974 auto ValueInfo = Slots2Values.find(Slot);
2975 if (ValueInfo == Slots2Values.end())
2976 return nullptr;
2977 return ValueInfo->second;
2980 MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) {
2981 // FIXME: Currently we can't recognize temporary or local symbols and call all
2982 // of the appropriate forms to create them. However, this handles basic cases
2983 // well as most of the special aspects are recognized by a prefix on their
2984 // name, and the input names should already be unique. For test cases, keeping
2985 // the symbol name out of the symbol table isn't terribly important.
2986 return MF.getContext().getOrCreateSymbol(Name);
2989 bool MIParser::parseStringConstant(std::string &Result) {
2990 if (Token.isNot(MIToken::StringConstant))
2991 return error("expected string constant");
2992 Result = Token.stringValue();
2993 lex();
2994 return false;
2997 bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
2998 StringRef Src,
2999 SMDiagnostic &Error) {
3000 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
3003 bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS,
3004 StringRef Src, SMDiagnostic &Error) {
3005 return MIParser(PFS, Error, Src).parseBasicBlocks();
3008 bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS,
3009 MachineBasicBlock *&MBB, StringRef Src,
3010 SMDiagnostic &Error) {
3011 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
3014 bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS,
3015 unsigned &Reg, StringRef Src,
3016 SMDiagnostic &Error) {
3017 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg);
3020 bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS,
3021 unsigned &Reg, StringRef Src,
3022 SMDiagnostic &Error) {
3023 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
3026 bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS,
3027 VRegInfo *&Info, StringRef Src,
3028 SMDiagnostic &Error) {
3029 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
3032 bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS,
3033 int &FI, StringRef Src,
3034 SMDiagnostic &Error) {
3035 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
3038 bool llvm::parseMDNode(PerFunctionMIParsingState &PFS,
3039 MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
3040 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);