1 //===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass performs global common subexpression elimination on machine
10 // instructions using a scoped hash table based value numbering scheme. It
11 // must be run while the machine function is still in SSA form.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/ScopedHashTable.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
25 #include "llvm/CodeGen/MachineDominators.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/Passes.h"
32 #include "llvm/CodeGen/TargetInstrInfo.h"
33 #include "llvm/CodeGen/TargetOpcodes.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/TargetSubtargetInfo.h"
36 #include "llvm/MC/MCInstrDesc.h"
37 #include "llvm/MC/MCRegisterInfo.h"
38 #include "llvm/Pass.h"
39 #include "llvm/Support/Allocator.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/RecyclingAllocator.h"
42 #include "llvm/Support/raw_ostream.h"
50 #define DEBUG_TYPE "machine-cse"
52 STATISTIC(NumCoalesces
, "Number of copies coalesced");
53 STATISTIC(NumCSEs
, "Number of common subexpression eliminated");
54 STATISTIC(NumPREs
, "Number of partial redundant expression"
55 " transformed to fully redundant");
56 STATISTIC(NumPhysCSEs
,
57 "Number of physreg referencing common subexpr eliminated");
58 STATISTIC(NumCrossBBCSEs
,
59 "Number of cross-MBB physreg referencing CS eliminated");
60 STATISTIC(NumCommutes
, "Number of copies coalesced after commuting");
64 class MachineCSE
: public MachineFunctionPass
{
65 const TargetInstrInfo
*TII
;
66 const TargetRegisterInfo
*TRI
;
68 MachineDominatorTree
*DT
;
69 MachineRegisterInfo
*MRI
;
70 MachineBlockFrequencyInfo
*MBFI
;
73 static char ID
; // Pass identification
75 MachineCSE() : MachineFunctionPass(ID
) {
76 initializeMachineCSEPass(*PassRegistry::getPassRegistry());
79 bool runOnMachineFunction(MachineFunction
&MF
) override
;
81 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
83 MachineFunctionPass::getAnalysisUsage(AU
);
84 AU
.addRequired
<AAResultsWrapperPass
>();
85 AU
.addPreservedID(MachineLoopInfoID
);
86 AU
.addRequired
<MachineDominatorTree
>();
87 AU
.addPreserved
<MachineDominatorTree
>();
88 AU
.addRequired
<MachineBlockFrequencyInfo
>();
89 AU
.addPreserved
<MachineBlockFrequencyInfo
>();
92 void releaseMemory() override
{
99 using AllocatorTy
= RecyclingAllocator
<BumpPtrAllocator
,
100 ScopedHashTableVal
<MachineInstr
*, unsigned>>;
102 ScopedHashTable
<MachineInstr
*, unsigned, MachineInstrExpressionTrait
,
104 using ScopeType
= ScopedHTType::ScopeTy
;
105 using PhysDefVector
= SmallVector
<std::pair
<unsigned, unsigned>, 2>;
107 unsigned LookAheadLimit
= 0;
108 DenseMap
<MachineBasicBlock
*, ScopeType
*> ScopeMap
;
109 DenseMap
<MachineInstr
*, MachineBasicBlock
*, MachineInstrExpressionTrait
>
112 SmallVector
<MachineInstr
*, 64> Exps
;
115 bool PerformTrivialCopyPropagation(MachineInstr
*MI
,
116 MachineBasicBlock
*MBB
);
117 bool isPhysDefTriviallyDead(unsigned Reg
,
118 MachineBasicBlock::const_iterator I
,
119 MachineBasicBlock::const_iterator E
) const;
120 bool hasLivePhysRegDefUses(const MachineInstr
*MI
,
121 const MachineBasicBlock
*MBB
,
122 SmallSet
<unsigned, 8> &PhysRefs
,
123 PhysDefVector
&PhysDefs
, bool &PhysUseDef
) const;
124 bool PhysRegDefsReach(MachineInstr
*CSMI
, MachineInstr
*MI
,
125 SmallSet
<unsigned, 8> &PhysRefs
,
126 PhysDefVector
&PhysDefs
, bool &NonLocal
) const;
127 bool isCSECandidate(MachineInstr
*MI
);
128 bool isProfitableToCSE(unsigned CSReg
, unsigned Reg
,
129 MachineBasicBlock
*CSBB
, MachineInstr
*MI
);
130 void EnterScope(MachineBasicBlock
*MBB
);
131 void ExitScope(MachineBasicBlock
*MBB
);
132 bool ProcessBlockCSE(MachineBasicBlock
*MBB
);
133 void ExitScopeIfDone(MachineDomTreeNode
*Node
,
134 DenseMap
<MachineDomTreeNode
*, unsigned> &OpenChildren
);
135 bool PerformCSE(MachineDomTreeNode
*Node
);
137 bool isPRECandidate(MachineInstr
*MI
);
138 bool ProcessBlockPRE(MachineDominatorTree
*MDT
, MachineBasicBlock
*MBB
);
139 bool PerformSimplePRE(MachineDominatorTree
*DT
);
140 /// Heuristics to see if it's beneficial to move common computations of MBB
141 /// and MBB1 to CandidateBB.
142 bool isBeneficalToHoistInto(MachineBasicBlock
*CandidateBB
,
143 MachineBasicBlock
*MBB
,
144 MachineBasicBlock
*MBB1
);
147 } // end anonymous namespace
149 char MachineCSE::ID
= 0;
151 char &llvm::MachineCSEID
= MachineCSE::ID
;
153 INITIALIZE_PASS_BEGIN(MachineCSE
, DEBUG_TYPE
,
154 "Machine Common Subexpression Elimination", false, false)
155 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree
)
156 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
157 INITIALIZE_PASS_END(MachineCSE
, DEBUG_TYPE
,
158 "Machine Common Subexpression Elimination", false, false)
160 /// The source register of a COPY machine instruction can be propagated to all
161 /// its users, and this propagation could increase the probability of finding
162 /// common subexpressions. If the COPY has only one user, the COPY itself can
164 bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr
*MI
,
165 MachineBasicBlock
*MBB
) {
166 bool Changed
= false;
167 for (MachineOperand
&MO
: MI
->operands()) {
168 if (!MO
.isReg() || !MO
.isUse())
170 unsigned Reg
= MO
.getReg();
171 if (!TargetRegisterInfo::isVirtualRegister(Reg
))
173 bool OnlyOneUse
= MRI
->hasOneNonDBGUse(Reg
);
174 MachineInstr
*DefMI
= MRI
->getVRegDef(Reg
);
175 if (!DefMI
->isCopy())
177 unsigned SrcReg
= DefMI
->getOperand(1).getReg();
178 if (!TargetRegisterInfo::isVirtualRegister(SrcReg
))
180 if (DefMI
->getOperand(0).getSubReg())
182 // FIXME: We should trivially coalesce subregister copies to expose CSE
183 // opportunities on instructions with truncated operands (see
184 // cse-add-with-overflow.ll). This can be done here as follows:
186 // RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC,
188 // MO.substVirtReg(SrcReg, SrcSubReg, *TRI);
190 // The 2-addr pass has been updated to handle coalesced subregs. However,
191 // some machine-specific code still can't handle it.
192 // To handle it properly we also need a way find a constrained subregister
193 // class given a super-reg class and subreg index.
194 if (DefMI
->getOperand(1).getSubReg())
196 if (!MRI
->constrainRegAttrs(SrcReg
, Reg
))
198 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI
);
199 LLVM_DEBUG(dbgs() << "*** to: " << *MI
);
201 // Update matching debug values.
202 DefMI
->changeDebugValuesDefReg(SrcReg
);
204 // Propagate SrcReg of copies to MI.
206 MRI
->clearKillFlags(SrcReg
);
207 // Coalesce single use copies.
209 DefMI
->eraseFromParent();
219 MachineCSE::isPhysDefTriviallyDead(unsigned Reg
,
220 MachineBasicBlock::const_iterator I
,
221 MachineBasicBlock::const_iterator E
) const {
222 unsigned LookAheadLeft
= LookAheadLimit
;
223 while (LookAheadLeft
) {
224 // Skip over dbg_value's.
225 I
= skipDebugInstructionsForward(I
, E
);
228 // Reached end of block, we don't know if register is dead or not.
231 bool SeenDef
= false;
232 for (const MachineOperand
&MO
: I
->operands()) {
233 if (MO
.isRegMask() && MO
.clobbersPhysReg(Reg
))
235 if (!MO
.isReg() || !MO
.getReg())
237 if (!TRI
->regsOverlap(MO
.getReg(), Reg
))
245 // See a def of Reg (or an alias) before encountering any use, it's
255 static bool isCallerPreservedOrConstPhysReg(unsigned Reg
,
256 const MachineFunction
&MF
,
257 const TargetRegisterInfo
&TRI
) {
258 // MachineRegisterInfo::isConstantPhysReg directly called by
259 // MachineRegisterInfo::isCallerPreservedOrConstPhysReg expects the
260 // reserved registers to be frozen. That doesn't cause a problem post-ISel as
261 // most (if not all) targets freeze reserved registers right after ISel.
263 // It does cause issues mid-GlobalISel, however, hence the additional
264 // reservedRegsFrozen check.
265 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
266 return TRI
.isCallerPreservedPhysReg(Reg
, MF
) ||
267 (MRI
.reservedRegsFrozen() && MRI
.isConstantPhysReg(Reg
));
270 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write
271 /// physical registers (except for dead defs of physical registers). It also
272 /// returns the physical register def by reference if it's the only one and the
273 /// instruction does not uses a physical register.
274 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr
*MI
,
275 const MachineBasicBlock
*MBB
,
276 SmallSet
<unsigned, 8> &PhysRefs
,
277 PhysDefVector
&PhysDefs
,
278 bool &PhysUseDef
) const {
279 // First, add all uses to PhysRefs.
280 for (const MachineOperand
&MO
: MI
->operands()) {
281 if (!MO
.isReg() || MO
.isDef())
283 unsigned Reg
= MO
.getReg();
286 if (TargetRegisterInfo::isVirtualRegister(Reg
))
288 // Reading either caller preserved or constant physregs is ok.
289 if (!isCallerPreservedOrConstPhysReg(Reg
, *MI
->getMF(), *TRI
))
290 for (MCRegAliasIterator
AI(Reg
, TRI
, true); AI
.isValid(); ++AI
)
291 PhysRefs
.insert(*AI
);
294 // Next, collect all defs into PhysDefs. If any is already in PhysRefs
295 // (which currently contains only uses), set the PhysUseDef flag.
297 MachineBasicBlock::const_iterator I
= MI
; I
= std::next(I
);
298 for (const auto &MOP
: llvm::enumerate(MI
->operands())) {
299 const MachineOperand
&MO
= MOP
.value();
300 if (!MO
.isReg() || !MO
.isDef())
302 unsigned Reg
= MO
.getReg();
305 if (TargetRegisterInfo::isVirtualRegister(Reg
))
307 // Check against PhysRefs even if the def is "dead".
308 if (PhysRefs
.count(Reg
))
310 // If the def is dead, it's ok. But the def may not marked "dead". That's
311 // common since this pass is run before livevariables. We can scan
312 // forward a few instructions and check if it is obviously dead.
313 if (!MO
.isDead() && !isPhysDefTriviallyDead(Reg
, I
, MBB
->end()))
314 PhysDefs
.push_back(std::make_pair(MOP
.index(), Reg
));
317 // Finally, add all defs to PhysRefs as well.
318 for (unsigned i
= 0, e
= PhysDefs
.size(); i
!= e
; ++i
)
319 for (MCRegAliasIterator
AI(PhysDefs
[i
].second
, TRI
, true); AI
.isValid();
321 PhysRefs
.insert(*AI
);
323 return !PhysRefs
.empty();
326 bool MachineCSE::PhysRegDefsReach(MachineInstr
*CSMI
, MachineInstr
*MI
,
327 SmallSet
<unsigned, 8> &PhysRefs
,
328 PhysDefVector
&PhysDefs
,
329 bool &NonLocal
) const {
330 // For now conservatively returns false if the common subexpression is
331 // not in the same basic block as the given instruction. The only exception
332 // is if the common subexpression is in the sole predecessor block.
333 const MachineBasicBlock
*MBB
= MI
->getParent();
334 const MachineBasicBlock
*CSMBB
= CSMI
->getParent();
336 bool CrossMBB
= false;
338 if (MBB
->pred_size() != 1 || *MBB
->pred_begin() != CSMBB
)
341 for (unsigned i
= 0, e
= PhysDefs
.size(); i
!= e
; ++i
) {
342 if (MRI
->isAllocatable(PhysDefs
[i
].second
) ||
343 MRI
->isReserved(PhysDefs
[i
].second
))
344 // Avoid extending live range of physical registers if they are
345 //allocatable or reserved.
350 MachineBasicBlock::const_iterator I
= CSMI
; I
= std::next(I
);
351 MachineBasicBlock::const_iterator E
= MI
;
352 MachineBasicBlock::const_iterator EE
= CSMBB
->end();
353 unsigned LookAheadLeft
= LookAheadLimit
;
354 while (LookAheadLeft
) {
355 // Skip over dbg_value's.
356 while (I
!= E
&& I
!= EE
&& I
->isDebugInstr())
360 assert(CrossMBB
&& "Reaching end-of-MBB without finding MI?");
372 for (const MachineOperand
&MO
: I
->operands()) {
373 // RegMasks go on instructions like calls that clobber lots of physregs.
374 // Don't attempt to CSE across such an instruction.
377 if (!MO
.isReg() || !MO
.isDef())
379 unsigned MOReg
= MO
.getReg();
380 if (TargetRegisterInfo::isVirtualRegister(MOReg
))
382 if (PhysRefs
.count(MOReg
))
393 bool MachineCSE::isCSECandidate(MachineInstr
*MI
) {
394 if (MI
->isPosition() || MI
->isPHI() || MI
->isImplicitDef() || MI
->isKill() ||
395 MI
->isInlineAsm() || MI
->isDebugInstr())
399 if (MI
->isCopyLike())
402 // Ignore stuff that we obviously can't move.
403 if (MI
->mayStore() || MI
->isCall() || MI
->isTerminator() ||
404 MI
->mayRaiseFPException() || MI
->hasUnmodeledSideEffects())
408 // Okay, this instruction does a load. As a refinement, we allow the target
409 // to decide whether the loaded value is actually a constant. If so, we can
410 // actually use it as a load.
411 if (!MI
->isDereferenceableInvariantLoad(AA
))
412 // FIXME: we should be able to hoist loads with no other side effects if
413 // there are no other instructions which can change memory in this loop.
414 // This is a trivial form of alias analysis.
418 // Ignore stack guard loads, otherwise the register that holds CSEed value may
419 // be spilled and get loaded back with corrupted data.
420 if (MI
->getOpcode() == TargetOpcode::LOAD_STACK_GUARD
)
426 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
427 /// common expression that defines Reg. CSBB is basic block where CSReg is
429 bool MachineCSE::isProfitableToCSE(unsigned CSReg
, unsigned Reg
,
430 MachineBasicBlock
*CSBB
, MachineInstr
*MI
) {
431 // FIXME: Heuristics that works around the lack the live range splitting.
433 // If CSReg is used at all uses of Reg, CSE should not increase register
434 // pressure of CSReg.
435 bool MayIncreasePressure
= true;
436 if (TargetRegisterInfo::isVirtualRegister(CSReg
) &&
437 TargetRegisterInfo::isVirtualRegister(Reg
)) {
438 MayIncreasePressure
= false;
439 SmallPtrSet
<MachineInstr
*, 8> CSUses
;
440 for (MachineInstr
&MI
: MRI
->use_nodbg_instructions(CSReg
)) {
443 for (MachineInstr
&MI
: MRI
->use_nodbg_instructions(Reg
)) {
444 if (!CSUses
.count(&MI
)) {
445 MayIncreasePressure
= true;
450 if (!MayIncreasePressure
) return true;
452 // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
453 // an immediate predecessor. We don't want to increase register pressure and
454 // end up causing other computation to be spilled.
455 if (TII
->isAsCheapAsAMove(*MI
)) {
456 MachineBasicBlock
*BB
= MI
->getParent();
457 if (CSBB
!= BB
&& !CSBB
->isSuccessor(BB
))
461 // Heuristics #2: If the expression doesn't not use a vr and the only use
462 // of the redundant computation are copies, do not cse.
463 bool HasVRegUse
= false;
464 for (const MachineOperand
&MO
: MI
->operands()) {
465 if (MO
.isReg() && MO
.isUse() &&
466 TargetRegisterInfo::isVirtualRegister(MO
.getReg())) {
472 bool HasNonCopyUse
= false;
473 for (MachineInstr
&MI
: MRI
->use_nodbg_instructions(Reg
)) {
475 if (!MI
.isCopyLike()) {
476 HasNonCopyUse
= true;
484 // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
485 // it unless the defined value is already used in the BB of the new use.
487 for (MachineInstr
&UseMI
: MRI
->use_nodbg_instructions(CSReg
)) {
488 HasPHI
|= UseMI
.isPHI();
489 if (UseMI
.getParent() == MI
->getParent())
496 void MachineCSE::EnterScope(MachineBasicBlock
*MBB
) {
497 LLVM_DEBUG(dbgs() << "Entering: " << MBB
->getName() << '\n');
498 ScopeType
*Scope
= new ScopeType(VNT
);
499 ScopeMap
[MBB
] = Scope
;
502 void MachineCSE::ExitScope(MachineBasicBlock
*MBB
) {
503 LLVM_DEBUG(dbgs() << "Exiting: " << MBB
->getName() << '\n');
504 DenseMap
<MachineBasicBlock
*, ScopeType
*>::iterator SI
= ScopeMap
.find(MBB
);
505 assert(SI
!= ScopeMap
.end());
510 bool MachineCSE::ProcessBlockCSE(MachineBasicBlock
*MBB
) {
511 bool Changed
= false;
513 SmallVector
<std::pair
<unsigned, unsigned>, 8> CSEPairs
;
514 SmallVector
<unsigned, 2> ImplicitDefsToUpdate
;
515 SmallVector
<unsigned, 2> ImplicitDefs
;
516 for (MachineBasicBlock::iterator I
= MBB
->begin(), E
= MBB
->end(); I
!= E
; ) {
517 MachineInstr
*MI
= &*I
;
520 if (!isCSECandidate(MI
))
523 bool FoundCSE
= VNT
.count(MI
);
525 // Using trivial copy propagation to find more CSE opportunities.
526 if (PerformTrivialCopyPropagation(MI
, MBB
)) {
529 // After coalescing MI itself may become a copy.
530 if (MI
->isCopyLike())
533 // Try again to see if CSE is possible.
534 FoundCSE
= VNT
.count(MI
);
538 // Commute commutable instructions.
539 bool Commuted
= false;
540 if (!FoundCSE
&& MI
->isCommutable()) {
541 if (MachineInstr
*NewMI
= TII
->commuteInstruction(*MI
)) {
543 FoundCSE
= VNT
.count(NewMI
);
545 // New instruction. It doesn't need to be kept.
546 NewMI
->eraseFromParent();
548 } else if (!FoundCSE
)
549 // MI was changed but it didn't help, commute it back!
550 (void)TII
->commuteInstruction(*MI
);
554 // If the instruction defines physical registers and the values *may* be
555 // used, then it's not safe to replace it with a common subexpression.
556 // It's also not safe if the instruction uses physical registers.
557 bool CrossMBBPhysDef
= false;
558 SmallSet
<unsigned, 8> PhysRefs
;
559 PhysDefVector PhysDefs
;
560 bool PhysUseDef
= false;
561 if (FoundCSE
&& hasLivePhysRegDefUses(MI
, MBB
, PhysRefs
,
562 PhysDefs
, PhysUseDef
)) {
565 // ... Unless the CS is local or is in the sole predecessor block
566 // and it also defines the physical register which is not clobbered
567 // in between and the physical register uses were not clobbered.
568 // This can never be the case if the instruction both uses and
569 // defines the same physical register, which was detected above.
571 unsigned CSVN
= VNT
.lookup(MI
);
572 MachineInstr
*CSMI
= Exps
[CSVN
];
573 if (PhysRegDefsReach(CSMI
, MI
, PhysRefs
, PhysDefs
, CrossMBBPhysDef
))
579 VNT
.insert(MI
, CurrVN
++);
584 // Found a common subexpression, eliminate it.
585 unsigned CSVN
= VNT
.lookup(MI
);
586 MachineInstr
*CSMI
= Exps
[CSVN
];
587 LLVM_DEBUG(dbgs() << "Examining: " << *MI
);
588 LLVM_DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI
);
590 // Check if it's profitable to perform this CSE.
592 unsigned NumDefs
= MI
->getNumDefs();
594 for (unsigned i
= 0, e
= MI
->getNumOperands(); NumDefs
&& i
!= e
; ++i
) {
595 MachineOperand
&MO
= MI
->getOperand(i
);
596 if (!MO
.isReg() || !MO
.isDef())
598 unsigned OldReg
= MO
.getReg();
599 unsigned NewReg
= CSMI
->getOperand(i
).getReg();
601 // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
602 // we should make sure it is not dead at CSMI.
603 if (MO
.isImplicit() && !MO
.isDead() && CSMI
->getOperand(i
).isDead())
604 ImplicitDefsToUpdate
.push_back(i
);
606 // Keep track of implicit defs of CSMI and MI, to clear possibly
607 // made-redundant kill flags.
608 if (MO
.isImplicit() && !MO
.isDead() && OldReg
== NewReg
)
609 ImplicitDefs
.push_back(OldReg
);
611 if (OldReg
== NewReg
) {
616 assert(TargetRegisterInfo::isVirtualRegister(OldReg
) &&
617 TargetRegisterInfo::isVirtualRegister(NewReg
) &&
618 "Do not CSE physical register defs!");
620 if (!isProfitableToCSE(NewReg
, OldReg
, CSMI
->getParent(), MI
)) {
621 LLVM_DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
626 // Don't perform CSE if the result of the new instruction cannot exist
627 // within the constraints (register class, bank, or low-level type) of
628 // the old instruction.
629 if (!MRI
->constrainRegAttrs(NewReg
, OldReg
)) {
631 dbgs() << "*** Not the same register constraints, avoid CSE!\n");
636 CSEPairs
.push_back(std::make_pair(OldReg
, NewReg
));
640 // Actually perform the elimination.
642 for (std::pair
<unsigned, unsigned> &CSEPair
: CSEPairs
) {
643 unsigned OldReg
= CSEPair
.first
;
644 unsigned NewReg
= CSEPair
.second
;
645 // OldReg may have been unused but is used now, clear the Dead flag
646 MachineInstr
*Def
= MRI
->getUniqueVRegDef(NewReg
);
647 assert(Def
!= nullptr && "CSEd register has no unique definition?");
648 Def
->clearRegisterDeads(NewReg
);
649 // Replace with NewReg and clear kill flags which may be wrong now.
650 MRI
->replaceRegWith(OldReg
, NewReg
);
651 MRI
->clearKillFlags(NewReg
);
654 // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
655 // we should make sure it is not dead at CSMI.
656 for (unsigned ImplicitDefToUpdate
: ImplicitDefsToUpdate
)
657 CSMI
->getOperand(ImplicitDefToUpdate
).setIsDead(false);
658 for (auto PhysDef
: PhysDefs
)
659 if (!MI
->getOperand(PhysDef
.first
).isDead())
660 CSMI
->getOperand(PhysDef
.first
).setIsDead(false);
662 // Go through implicit defs of CSMI and MI, and clear the kill flags on
663 // their uses in all the instructions between CSMI and MI.
664 // We might have made some of the kill flags redundant, consider:
665 // subs ... implicit-def %nzcv <- CSMI
666 // csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore
667 // subs ... implicit-def %nzcv <- MI, to be eliminated
668 // csinc ... implicit killed %nzcv
669 // Since we eliminated MI, and reused a register imp-def'd by CSMI
670 // (here %nzcv), that register, if it was killed before MI, should have
671 // that kill flag removed, because it's lifetime was extended.
672 if (CSMI
->getParent() == MI
->getParent()) {
673 for (MachineBasicBlock::iterator II
= CSMI
, IE
= MI
; II
!= IE
; ++II
)
674 for (auto ImplicitDef
: ImplicitDefs
)
675 if (MachineOperand
*MO
= II
->findRegisterUseOperand(
676 ImplicitDef
, /*isKill=*/true, TRI
))
677 MO
->setIsKill(false);
679 // If the instructions aren't in the same BB, bail out and clear the
680 // kill flag on all uses of the imp-def'd register.
681 for (auto ImplicitDef
: ImplicitDefs
)
682 MRI
->clearKillFlags(ImplicitDef
);
685 if (CrossMBBPhysDef
) {
686 // Add physical register defs now coming in from a predecessor to MBB
688 while (!PhysDefs
.empty()) {
689 auto LiveIn
= PhysDefs
.pop_back_val();
690 if (!MBB
->isLiveIn(LiveIn
.second
))
691 MBB
->addLiveIn(LiveIn
.second
);
696 MI
->eraseFromParent();
698 if (!PhysRefs
.empty())
704 VNT
.insert(MI
, CurrVN
++);
708 ImplicitDefsToUpdate
.clear();
709 ImplicitDefs
.clear();
715 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
716 /// dominator tree node if its a leaf or all of its children are done. Walk
717 /// up the dominator tree to destroy ancestors which are now done.
719 MachineCSE::ExitScopeIfDone(MachineDomTreeNode
*Node
,
720 DenseMap
<MachineDomTreeNode
*, unsigned> &OpenChildren
) {
721 if (OpenChildren
[Node
])
725 ExitScope(Node
->getBlock());
727 // Now traverse upwards to pop ancestors whose offsprings are all done.
728 while (MachineDomTreeNode
*Parent
= Node
->getIDom()) {
729 unsigned Left
= --OpenChildren
[Parent
];
732 ExitScope(Parent
->getBlock());
737 bool MachineCSE::PerformCSE(MachineDomTreeNode
*Node
) {
738 SmallVector
<MachineDomTreeNode
*, 32> Scopes
;
739 SmallVector
<MachineDomTreeNode
*, 8> WorkList
;
740 DenseMap
<MachineDomTreeNode
*, unsigned> OpenChildren
;
744 // Perform a DFS walk to determine the order of visit.
745 WorkList
.push_back(Node
);
747 Node
= WorkList
.pop_back_val();
748 Scopes
.push_back(Node
);
749 const std::vector
<MachineDomTreeNode
*> &Children
= Node
->getChildren();
750 OpenChildren
[Node
] = Children
.size();
751 for (MachineDomTreeNode
*Child
: Children
)
752 WorkList
.push_back(Child
);
753 } while (!WorkList
.empty());
756 bool Changed
= false;
757 for (MachineDomTreeNode
*Node
: Scopes
) {
758 MachineBasicBlock
*MBB
= Node
->getBlock();
760 Changed
|= ProcessBlockCSE(MBB
);
761 // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
762 ExitScopeIfDone(Node
, OpenChildren
);
768 // We use stronger checks for PRE candidate rather than for CSE ones to embrace
769 // checks inside ProcessBlockCSE(), not only inside isCSECandidate(). This helps
770 // to exclude instrs created by PRE that won't be CSEed later.
771 bool MachineCSE::isPRECandidate(MachineInstr
*MI
) {
772 if (!isCSECandidate(MI
) ||
773 MI
->isNotDuplicable() ||
775 MI
->isAsCheapAsAMove() ||
776 MI
->getNumDefs() != 1 ||
777 MI
->getNumExplicitDefs() != 1)
780 for (auto def
: MI
->defs())
781 if (!TRI
->isVirtualRegister(def
.getReg()))
784 for (auto use
: MI
->uses())
785 if (use
.isReg() && !TRI
->isVirtualRegister(use
.getReg()))
791 bool MachineCSE::ProcessBlockPRE(MachineDominatorTree
*DT
,
792 MachineBasicBlock
*MBB
) {
793 bool Changed
= false;
794 for (MachineBasicBlock::iterator I
= MBB
->begin(), E
= MBB
->end(); I
!= E
;) {
795 MachineInstr
*MI
= &*I
;
798 if (!isPRECandidate(MI
))
801 if (!PREMap
.count(MI
)) {
806 auto MBB1
= PREMap
[MI
];
808 !DT
->properlyDominates(MBB
, MBB1
) &&
809 "MBB cannot properly dominate MBB1 while DFS through dominators tree!");
810 auto CMBB
= DT
->findNearestCommonDominator(MBB
, MBB1
);
811 if (!CMBB
->isLegalToHoistInto())
814 if (!isBeneficalToHoistInto(CMBB
, MBB
, MBB1
))
817 // Two instrs are partial redundant if their basic blocks are reachable
818 // from one to another but one doesn't dominate another.
820 auto BB
= MBB
->getBasicBlock(), BB1
= MBB1
->getBasicBlock();
821 if (BB
!= nullptr && BB1
!= nullptr &&
822 (isPotentiallyReachable(BB1
, BB
) ||
823 isPotentiallyReachable(BB
, BB1
))) {
825 assert(MI
->getOperand(0).isDef() &&
826 "First operand of instr with one explicit def must be this def");
827 unsigned VReg
= MI
->getOperand(0).getReg();
828 unsigned NewReg
= MRI
->cloneVirtualRegister(VReg
);
829 if (!isProfitableToCSE(NewReg
, VReg
, CMBB
, MI
))
831 MachineInstr
&NewMI
=
832 TII
->duplicate(*CMBB
, CMBB
->getFirstTerminator(), *MI
);
833 NewMI
.getOperand(0).setReg(NewReg
);
844 // This simple PRE (partial redundancy elimination) pass doesn't actually
845 // eliminate partial redundancy but transforms it to full redundancy,
846 // anticipating that the next CSE step will eliminate this created redundancy.
847 // If CSE doesn't eliminate this, than created instruction will remain dead
848 // and eliminated later by Remove Dead Machine Instructions pass.
849 bool MachineCSE::PerformSimplePRE(MachineDominatorTree
*DT
) {
850 SmallVector
<MachineDomTreeNode
*, 32> BBs
;
853 bool Changed
= false;
854 BBs
.push_back(DT
->getRootNode());
856 auto Node
= BBs
.pop_back_val();
857 const std::vector
<MachineDomTreeNode
*> &Children
= Node
->getChildren();
858 for (MachineDomTreeNode
*Child
: Children
)
859 BBs
.push_back(Child
);
861 MachineBasicBlock
*MBB
= Node
->getBlock();
862 Changed
|= ProcessBlockPRE(DT
, MBB
);
864 } while (!BBs
.empty());
869 bool MachineCSE::isBeneficalToHoistInto(MachineBasicBlock
*CandidateBB
,
870 MachineBasicBlock
*MBB
,
871 MachineBasicBlock
*MBB1
) {
872 if (CandidateBB
->getParent()->getFunction().hasMinSize())
874 assert(DT
->dominates(CandidateBB
, MBB
) && "CandidateBB should dominate MBB");
875 assert(DT
->dominates(CandidateBB
, MBB1
) &&
876 "CandidateBB should dominate MBB1");
877 return MBFI
->getBlockFreq(CandidateBB
) <=
878 MBFI
->getBlockFreq(MBB
) + MBFI
->getBlockFreq(MBB1
);
881 bool MachineCSE::runOnMachineFunction(MachineFunction
&MF
) {
882 if (skipFunction(MF
.getFunction()))
885 TII
= MF
.getSubtarget().getInstrInfo();
886 TRI
= MF
.getSubtarget().getRegisterInfo();
887 MRI
= &MF
.getRegInfo();
888 AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
889 DT
= &getAnalysis
<MachineDominatorTree
>();
890 MBFI
= &getAnalysis
<MachineBlockFrequencyInfo
>();
891 LookAheadLimit
= TII
->getMachineCSELookAheadLimit();
892 bool ChangedPRE
, ChangedCSE
;
893 ChangedPRE
= PerformSimplePRE(DT
);
894 ChangedCSE
= PerformCSE(DT
->getRootNode());
895 return ChangedPRE
|| ChangedCSE
;