[InstCombine] Remove insertRangeTest code that handles the equality case.
[llvm-complete.git] / lib / CodeGen / SelectionDAG / LegalizeDAG.cpp
blobbf817f00f83da29e09687a213d33a89e768c97f8
1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::Legalize method.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ADT/APFloat.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/CodeGen/ISDOpcodes.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineJumpTableInfo.h"
23 #include "llvm/CodeGen/MachineMemOperand.h"
24 #include "llvm/CodeGen/RuntimeLibcalls.h"
25 #include "llvm/CodeGen/SelectionDAG.h"
26 #include "llvm/CodeGen/SelectionDAGNodes.h"
27 #include "llvm/CodeGen/TargetFrameLowering.h"
28 #include "llvm/CodeGen/TargetLowering.h"
29 #include "llvm/CodeGen/TargetSubtargetInfo.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/Metadata.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/Compiler.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/MachineValueType.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Target/TargetMachine.h"
46 #include "llvm/Target/TargetOptions.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <cstdint>
50 #include <tuple>
51 #include <utility>
53 using namespace llvm;
55 #define DEBUG_TYPE "legalizedag"
57 namespace {
59 /// Keeps track of state when getting the sign of a floating-point value as an
60 /// integer.
61 struct FloatSignAsInt {
62 EVT FloatVT;
63 SDValue Chain;
64 SDValue FloatPtr;
65 SDValue IntPtr;
66 MachinePointerInfo IntPointerInfo;
67 MachinePointerInfo FloatPointerInfo;
68 SDValue IntValue;
69 APInt SignMask;
70 uint8_t SignBit;
73 //===----------------------------------------------------------------------===//
74 /// This takes an arbitrary SelectionDAG as input and
75 /// hacks on it until the target machine can handle it. This involves
76 /// eliminating value sizes the machine cannot handle (promoting small sizes to
77 /// large sizes or splitting up large values into small values) as well as
78 /// eliminating operations the machine cannot handle.
79 ///
80 /// This code also does a small amount of optimization and recognition of idioms
81 /// as part of its processing. For example, if a target does not support a
82 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
83 /// will attempt merge setcc and brc instructions into brcc's.
84 class SelectionDAGLegalize {
85 const TargetMachine &TM;
86 const TargetLowering &TLI;
87 SelectionDAG &DAG;
89 /// The set of nodes which have already been legalized. We hold a
90 /// reference to it in order to update as necessary on node deletion.
91 SmallPtrSetImpl<SDNode *> &LegalizedNodes;
93 /// A set of all the nodes updated during legalization.
94 SmallSetVector<SDNode *, 16> *UpdatedNodes;
96 EVT getSetCCResultType(EVT VT) const {
97 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
100 // Libcall insertion helpers.
102 public:
103 SelectionDAGLegalize(SelectionDAG &DAG,
104 SmallPtrSetImpl<SDNode *> &LegalizedNodes,
105 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr)
106 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG),
107 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {}
109 /// Legalizes the given operation.
110 void LegalizeOp(SDNode *Node);
112 private:
113 SDValue OptimizeFloatStore(StoreSDNode *ST);
115 void LegalizeLoadOps(SDNode *Node);
116 void LegalizeStoreOps(SDNode *Node);
118 /// Some targets cannot handle a variable
119 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
120 /// is necessary to spill the vector being inserted into to memory, perform
121 /// the insert there, and then read the result back.
122 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
123 const SDLoc &dl);
124 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx,
125 const SDLoc &dl);
127 /// Return a vector shuffle operation which
128 /// performs the same shuffe in terms of order or result bytes, but on a type
129 /// whose vector element type is narrower than the original shuffle type.
130 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
131 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, const SDLoc &dl,
132 SDValue N1, SDValue N2,
133 ArrayRef<int> Mask) const;
135 bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
136 bool &NeedInvert, const SDLoc &dl);
138 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
140 std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
141 SDNode *Node, bool isSigned);
142 SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
143 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
144 RTLIB::Libcall Call_F128,
145 RTLIB::Libcall Call_PPCF128);
146 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
147 RTLIB::Libcall Call_I8,
148 RTLIB::Libcall Call_I16,
149 RTLIB::Libcall Call_I32,
150 RTLIB::Libcall Call_I64,
151 RTLIB::Libcall Call_I128);
152 SDValue ExpandArgFPLibCall(SDNode *Node,
153 RTLIB::Libcall Call_F32, RTLIB::Libcall Call_F64,
154 RTLIB::Libcall Call_F80, RTLIB::Libcall Call_F128,
155 RTLIB::Libcall Call_PPCF128);
156 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
157 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
159 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT,
160 const SDLoc &dl);
161 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT,
162 const SDLoc &dl, SDValue ChainIn);
163 SDValue ExpandBUILD_VECTOR(SDNode *Node);
164 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
165 void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
166 SmallVectorImpl<SDValue> &Results);
167 void getSignAsIntValue(FloatSignAsInt &State, const SDLoc &DL,
168 SDValue Value) const;
169 SDValue modifySignAsInt(const FloatSignAsInt &State, const SDLoc &DL,
170 SDValue NewIntValue) const;
171 SDValue ExpandFCOPYSIGN(SDNode *Node) const;
172 SDValue ExpandFABS(SDNode *Node) const;
173 SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue Op0, EVT DestVT,
174 const SDLoc &dl);
175 SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
176 const SDLoc &dl);
177 SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
178 const SDLoc &dl);
180 SDValue ExpandBITREVERSE(SDValue Op, const SDLoc &dl);
181 SDValue ExpandBSWAP(SDValue Op, const SDLoc &dl);
183 SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
184 SDValue ExpandInsertToVectorThroughStack(SDValue Op);
185 SDValue ExpandVectorBuildThroughStack(SDNode* Node);
187 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP);
188 SDValue ExpandConstant(ConstantSDNode *CP);
190 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall
191 bool ExpandNode(SDNode *Node);
192 void ConvertNodeToLibcall(SDNode *Node);
193 void PromoteNode(SDNode *Node);
195 public:
196 // Node replacement helpers
198 void ReplacedNode(SDNode *N) {
199 LegalizedNodes.erase(N);
200 if (UpdatedNodes)
201 UpdatedNodes->insert(N);
204 void ReplaceNode(SDNode *Old, SDNode *New) {
205 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
206 dbgs() << " with: "; New->dump(&DAG));
208 assert(Old->getNumValues() == New->getNumValues() &&
209 "Replacing one node with another that produces a different number "
210 "of values!");
211 DAG.ReplaceAllUsesWith(Old, New);
212 if (UpdatedNodes)
213 UpdatedNodes->insert(New);
214 ReplacedNode(Old);
217 void ReplaceNode(SDValue Old, SDValue New) {
218 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG);
219 dbgs() << " with: "; New->dump(&DAG));
221 DAG.ReplaceAllUsesWith(Old, New);
222 if (UpdatedNodes)
223 UpdatedNodes->insert(New.getNode());
224 ReplacedNode(Old.getNode());
227 void ReplaceNode(SDNode *Old, const SDValue *New) {
228 LLVM_DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG));
230 DAG.ReplaceAllUsesWith(Old, New);
231 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) {
232 LLVM_DEBUG(dbgs() << (i == 0 ? " with: " : " and: ");
233 New[i]->dump(&DAG));
234 if (UpdatedNodes)
235 UpdatedNodes->insert(New[i].getNode());
237 ReplacedNode(Old);
241 } // end anonymous namespace
243 /// Return a vector shuffle operation which
244 /// performs the same shuffle in terms of order or result bytes, but on a type
245 /// whose vector element type is narrower than the original shuffle type.
246 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
247 SDValue SelectionDAGLegalize::ShuffleWithNarrowerEltType(
248 EVT NVT, EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
249 ArrayRef<int> Mask) const {
250 unsigned NumMaskElts = VT.getVectorNumElements();
251 unsigned NumDestElts = NVT.getVectorNumElements();
252 unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
254 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
256 if (NumEltsGrowth == 1)
257 return DAG.getVectorShuffle(NVT, dl, N1, N2, Mask);
259 SmallVector<int, 8> NewMask;
260 for (unsigned i = 0; i != NumMaskElts; ++i) {
261 int Idx = Mask[i];
262 for (unsigned j = 0; j != NumEltsGrowth; ++j) {
263 if (Idx < 0)
264 NewMask.push_back(-1);
265 else
266 NewMask.push_back(Idx * NumEltsGrowth + j);
269 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
270 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
271 return DAG.getVectorShuffle(NVT, dl, N1, N2, NewMask);
274 /// Expands the ConstantFP node to an integer constant or
275 /// a load from the constant pool.
276 SDValue
277 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
278 bool Extend = false;
279 SDLoc dl(CFP);
281 // If a FP immediate is precise when represented as a float and if the
282 // target can do an extending load from float to double, we put it into
283 // the constant pool as a float, even if it's is statically typed as a
284 // double. This shrinks FP constants and canonicalizes them for targets where
285 // an FP extending load is the same cost as a normal load (such as on the x87
286 // fp stack or PPC FP unit).
287 EVT VT = CFP->getValueType(0);
288 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
289 if (!UseCP) {
290 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
291 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl,
292 (VT == MVT::f64) ? MVT::i64 : MVT::i32);
295 APFloat APF = CFP->getValueAPF();
296 EVT OrigVT = VT;
297 EVT SVT = VT;
299 // We don't want to shrink SNaNs. Converting the SNaN back to its real type
300 // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ).
301 if (!APF.isSignaling()) {
302 while (SVT != MVT::f32 && SVT != MVT::f16) {
303 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
304 if (ConstantFPSDNode::isValueValidForType(SVT, APF) &&
305 // Only do this if the target has a native EXTLOAD instruction from
306 // smaller type.
307 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) &&
308 TLI.ShouldShrinkFPConstant(OrigVT)) {
309 Type *SType = SVT.getTypeForEVT(*DAG.getContext());
310 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
311 VT = SVT;
312 Extend = true;
317 SDValue CPIdx =
318 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout()));
319 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
320 if (Extend) {
321 SDValue Result = DAG.getExtLoad(
322 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx,
323 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT,
324 Alignment);
325 return Result;
327 SDValue Result = DAG.getLoad(
328 OrigVT, dl, DAG.getEntryNode(), CPIdx,
329 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment);
330 return Result;
333 /// Expands the Constant node to a load from the constant pool.
334 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) {
335 SDLoc dl(CP);
336 EVT VT = CP->getValueType(0);
337 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(),
338 TLI.getPointerTy(DAG.getDataLayout()));
339 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
340 SDValue Result = DAG.getLoad(
341 VT, dl, DAG.getEntryNode(), CPIdx,
342 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), Alignment);
343 return Result;
346 /// Some target cannot handle a variable insertion index for the
347 /// INSERT_VECTOR_ELT instruction. In this case, it
348 /// is necessary to spill the vector being inserted into to memory, perform
349 /// the insert there, and then read the result back.
350 SDValue SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec,
351 SDValue Val,
352 SDValue Idx,
353 const SDLoc &dl) {
354 SDValue Tmp1 = Vec;
355 SDValue Tmp2 = Val;
356 SDValue Tmp3 = Idx;
358 // If the target doesn't support this, we have to spill the input vector
359 // to a temporary stack slot, update the element, then reload it. This is
360 // badness. We could also load the value into a vector register (either
361 // with a "move to register" or "extload into register" instruction, then
362 // permute it into place, if the idx is a constant and if the idx is
363 // supported by the target.
364 EVT VT = Tmp1.getValueType();
365 EVT EltVT = VT.getVectorElementType();
366 SDValue StackPtr = DAG.CreateStackTemporary(VT);
368 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
370 // Store the vector.
371 SDValue Ch = DAG.getStore(
372 DAG.getEntryNode(), dl, Tmp1, StackPtr,
373 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI));
375 SDValue StackPtr2 = TLI.getVectorElementPointer(DAG, StackPtr, VT, Tmp3);
377 // Store the scalar value.
378 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT);
379 // Load the updated vector.
380 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack(
381 DAG.getMachineFunction(), SPFI));
384 SDValue SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
385 SDValue Idx,
386 const SDLoc &dl) {
387 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
388 // SCALAR_TO_VECTOR requires that the type of the value being inserted
389 // match the element type of the vector being created, except for
390 // integers in which case the inserted value can be over width.
391 EVT EltVT = Vec.getValueType().getVectorElementType();
392 if (Val.getValueType() == EltVT ||
393 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
394 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
395 Vec.getValueType(), Val);
397 unsigned NumElts = Vec.getValueType().getVectorNumElements();
398 // We generate a shuffle of InVec and ScVec, so the shuffle mask
399 // should be 0,1,2,3,4,5... with the appropriate element replaced with
400 // elt 0 of the RHS.
401 SmallVector<int, 8> ShufOps;
402 for (unsigned i = 0; i != NumElts; ++i)
403 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
405 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, ShufOps);
408 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
411 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
412 LLVM_DEBUG(dbgs() << "Optimizing float store operations\n");
413 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
414 // FIXME: We shouldn't do this for TargetConstantFP's.
415 // FIXME: move this to the DAG Combiner! Note that we can't regress due
416 // to phase ordering between legalized code and the dag combiner. This
417 // probably means that we need to integrate dag combiner and legalizer
418 // together.
419 // We generally can't do this one for long doubles.
420 SDValue Chain = ST->getChain();
421 SDValue Ptr = ST->getBasePtr();
422 unsigned Alignment = ST->getAlignment();
423 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
424 AAMDNodes AAInfo = ST->getAAInfo();
425 SDLoc dl(ST);
426 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
427 if (CFP->getValueType(0) == MVT::f32 &&
428 TLI.isTypeLegal(MVT::i32)) {
429 SDValue Con = DAG.getConstant(CFP->getValueAPF().
430 bitcastToAPInt().zextOrTrunc(32),
431 SDLoc(CFP), MVT::i32);
432 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), Alignment,
433 MMOFlags, AAInfo);
436 if (CFP->getValueType(0) == MVT::f64) {
437 // If this target supports 64-bit registers, do a single 64-bit store.
438 if (TLI.isTypeLegal(MVT::i64)) {
439 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
440 zextOrTrunc(64), SDLoc(CFP), MVT::i64);
441 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(),
442 Alignment, MMOFlags, AAInfo);
445 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
446 // Otherwise, if the target supports 32-bit registers, use 2 32-bit
447 // stores. If the target supports neither 32- nor 64-bits, this
448 // xform is certainly not worth it.
449 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt();
450 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32);
451 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32);
452 if (DAG.getDataLayout().isBigEndian())
453 std::swap(Lo, Hi);
455 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), Alignment,
456 MMOFlags, AAInfo);
457 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
458 DAG.getConstant(4, dl, Ptr.getValueType()));
459 Hi = DAG.getStore(Chain, dl, Hi, Ptr,
460 ST->getPointerInfo().getWithOffset(4),
461 MinAlign(Alignment, 4U), MMOFlags, AAInfo);
463 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
467 return SDValue(nullptr, 0);
470 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) {
471 StoreSDNode *ST = cast<StoreSDNode>(Node);
472 SDValue Chain = ST->getChain();
473 SDValue Ptr = ST->getBasePtr();
474 SDLoc dl(Node);
476 unsigned Alignment = ST->getAlignment();
477 MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
478 AAMDNodes AAInfo = ST->getAAInfo();
480 if (!ST->isTruncatingStore()) {
481 LLVM_DEBUG(dbgs() << "Legalizing store operation\n");
482 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
483 ReplaceNode(ST, OptStore);
484 return;
487 SDValue Value = ST->getValue();
488 MVT VT = Value.getSimpleValueType();
489 switch (TLI.getOperationAction(ISD::STORE, VT)) {
490 default: llvm_unreachable("This action is not supported yet!");
491 case TargetLowering::Legal: {
492 // If this is an unaligned store and the target doesn't support it,
493 // expand it.
494 EVT MemVT = ST->getMemoryVT();
495 const DataLayout &DL = DAG.getDataLayout();
496 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT,
497 *ST->getMemOperand())) {
498 LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n");
499 SDValue Result = TLI.expandUnalignedStore(ST, DAG);
500 ReplaceNode(SDValue(ST, 0), Result);
501 } else
502 LLVM_DEBUG(dbgs() << "Legal store\n");
503 break;
505 case TargetLowering::Custom: {
506 LLVM_DEBUG(dbgs() << "Trying custom lowering\n");
507 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
508 if (Res && Res != SDValue(Node, 0))
509 ReplaceNode(SDValue(Node, 0), Res);
510 return;
512 case TargetLowering::Promote: {
513 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT);
514 assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
515 "Can only promote stores to same size type");
516 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value);
517 SDValue Result =
518 DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
519 Alignment, MMOFlags, AAInfo);
520 ReplaceNode(SDValue(Node, 0), Result);
521 break;
524 return;
527 LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n");
528 SDValue Value = ST->getValue();
529 EVT StVT = ST->getMemoryVT();
530 unsigned StWidth = StVT.getSizeInBits();
531 auto &DL = DAG.getDataLayout();
533 if (StWidth != StVT.getStoreSizeInBits()) {
534 // Promote to a byte-sized store with upper bits zero if not
535 // storing an integral number of bytes. For example, promote
536 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
537 EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
538 StVT.getStoreSizeInBits());
539 Value = DAG.getZeroExtendInReg(Value, dl, StVT);
540 SDValue Result =
541 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), NVT,
542 Alignment, MMOFlags, AAInfo);
543 ReplaceNode(SDValue(Node, 0), Result);
544 } else if (StWidth & (StWidth - 1)) {
545 // If not storing a power-of-2 number of bits, expand as two stores.
546 assert(!StVT.isVector() && "Unsupported truncstore!");
547 unsigned LogStWidth = Log2_32(StWidth);
548 assert(LogStWidth < 32);
549 unsigned RoundWidth = 1 << LogStWidth;
550 assert(RoundWidth < StWidth);
551 unsigned ExtraWidth = StWidth - RoundWidth;
552 assert(ExtraWidth < RoundWidth);
553 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
554 "Store size not an integral number of bytes!");
555 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
556 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
557 SDValue Lo, Hi;
558 unsigned IncrementSize;
560 if (DL.isLittleEndian()) {
561 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
562 // Store the bottom RoundWidth bits.
563 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
564 RoundVT, Alignment, MMOFlags, AAInfo);
566 // Store the remaining ExtraWidth bits.
567 IncrementSize = RoundWidth / 8;
568 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
569 DAG.getConstant(IncrementSize, dl,
570 Ptr.getValueType()));
571 Hi = DAG.getNode(
572 ISD::SRL, dl, Value.getValueType(), Value,
573 DAG.getConstant(RoundWidth, dl,
574 TLI.getShiftAmountTy(Value.getValueType(), DL)));
575 Hi = DAG.getTruncStore(
576 Chain, dl, Hi, Ptr,
577 ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT,
578 MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo);
579 } else {
580 // Big endian - avoid unaligned stores.
581 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
582 // Store the top RoundWidth bits.
583 Hi = DAG.getNode(
584 ISD::SRL, dl, Value.getValueType(), Value,
585 DAG.getConstant(ExtraWidth, dl,
586 TLI.getShiftAmountTy(Value.getValueType(), DL)));
587 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(),
588 RoundVT, Alignment, MMOFlags, AAInfo);
590 // Store the remaining ExtraWidth bits.
591 IncrementSize = RoundWidth / 8;
592 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
593 DAG.getConstant(IncrementSize, dl,
594 Ptr.getValueType()));
595 Lo = DAG.getTruncStore(
596 Chain, dl, Value, Ptr,
597 ST->getPointerInfo().getWithOffset(IncrementSize), ExtraVT,
598 MinAlign(Alignment, IncrementSize), MMOFlags, AAInfo);
601 // The order of the stores doesn't matter.
602 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
603 ReplaceNode(SDValue(Node, 0), Result);
604 } else {
605 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
606 default: llvm_unreachable("This action is not supported yet!");
607 case TargetLowering::Legal: {
608 EVT MemVT = ST->getMemoryVT();
609 // If this is an unaligned store and the target doesn't support it,
610 // expand it.
611 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT,
612 *ST->getMemOperand())) {
613 SDValue Result = TLI.expandUnalignedStore(ST, DAG);
614 ReplaceNode(SDValue(ST, 0), Result);
616 break;
618 case TargetLowering::Custom: {
619 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG);
620 if (Res && Res != SDValue(Node, 0))
621 ReplaceNode(SDValue(Node, 0), Res);
622 return;
624 case TargetLowering::Expand:
625 assert(!StVT.isVector() &&
626 "Vector Stores are handled in LegalizeVectorOps");
628 SDValue Result;
630 // TRUNCSTORE:i16 i32 -> STORE i16
631 if (TLI.isTypeLegal(StVT)) {
632 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value);
633 Result = DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
634 Alignment, MMOFlags, AAInfo);
635 } else {
636 // The in-memory type isn't legal. Truncate to the type it would promote
637 // to, and then do a truncstore.
638 Value = DAG.getNode(ISD::TRUNCATE, dl,
639 TLI.getTypeToTransformTo(*DAG.getContext(), StVT),
640 Value);
641 Result = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(),
642 StVT, Alignment, MMOFlags, AAInfo);
645 ReplaceNode(SDValue(Node, 0), Result);
646 break;
651 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) {
652 LoadSDNode *LD = cast<LoadSDNode>(Node);
653 SDValue Chain = LD->getChain(); // The chain.
654 SDValue Ptr = LD->getBasePtr(); // The base pointer.
655 SDValue Value; // The value returned by the load op.
656 SDLoc dl(Node);
658 ISD::LoadExtType ExtType = LD->getExtensionType();
659 if (ExtType == ISD::NON_EXTLOAD) {
660 LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n");
661 MVT VT = Node->getSimpleValueType(0);
662 SDValue RVal = SDValue(Node, 0);
663 SDValue RChain = SDValue(Node, 1);
665 switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
666 default: llvm_unreachable("This action is not supported yet!");
667 case TargetLowering::Legal: {
668 EVT MemVT = LD->getMemoryVT();
669 const DataLayout &DL = DAG.getDataLayout();
670 // If this is an unaligned load and the target doesn't support it,
671 // expand it.
672 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT,
673 *LD->getMemOperand())) {
674 std::tie(RVal, RChain) = TLI.expandUnalignedLoad(LD, DAG);
676 break;
678 case TargetLowering::Custom:
679 if (SDValue Res = TLI.LowerOperation(RVal, DAG)) {
680 RVal = Res;
681 RChain = Res.getValue(1);
683 break;
685 case TargetLowering::Promote: {
686 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
687 assert(NVT.getSizeInBits() == VT.getSizeInBits() &&
688 "Can only promote loads to same size type");
690 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand());
691 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res);
692 RChain = Res.getValue(1);
693 break;
696 if (RChain.getNode() != Node) {
697 assert(RVal.getNode() != Node && "Load must be completely replaced");
698 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal);
699 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain);
700 if (UpdatedNodes) {
701 UpdatedNodes->insert(RVal.getNode());
702 UpdatedNodes->insert(RChain.getNode());
704 ReplacedNode(Node);
706 return;
709 LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n");
710 EVT SrcVT = LD->getMemoryVT();
711 unsigned SrcWidth = SrcVT.getSizeInBits();
712 unsigned Alignment = LD->getAlignment();
713 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags();
714 AAMDNodes AAInfo = LD->getAAInfo();
716 if (SrcWidth != SrcVT.getStoreSizeInBits() &&
717 // Some targets pretend to have an i1 loading operation, and actually
718 // load an i8. This trick is correct for ZEXTLOAD because the top 7
719 // bits are guaranteed to be zero; it helps the optimizers understand
720 // that these bits are zero. It is also useful for EXTLOAD, since it
721 // tells the optimizers that those bits are undefined. It would be
722 // nice to have an effective generic way of getting these benefits...
723 // Until such a way is found, don't insist on promoting i1 here.
724 (SrcVT != MVT::i1 ||
725 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) ==
726 TargetLowering::Promote)) {
727 // Promote to a byte-sized load if not loading an integral number of
728 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
729 unsigned NewWidth = SrcVT.getStoreSizeInBits();
730 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
731 SDValue Ch;
733 // The extra bits are guaranteed to be zero, since we stored them that
734 // way. A zext load from NVT thus automatically gives zext from SrcVT.
736 ISD::LoadExtType NewExtType =
737 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
739 SDValue Result =
740 DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), Chain, Ptr,
741 LD->getPointerInfo(), NVT, Alignment, MMOFlags, AAInfo);
743 Ch = Result.getValue(1); // The chain.
745 if (ExtType == ISD::SEXTLOAD)
746 // Having the top bits zero doesn't help when sign extending.
747 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
748 Result.getValueType(),
749 Result, DAG.getValueType(SrcVT));
750 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
751 // All the top bits are guaranteed to be zero - inform the optimizers.
752 Result = DAG.getNode(ISD::AssertZext, dl,
753 Result.getValueType(), Result,
754 DAG.getValueType(SrcVT));
756 Value = Result;
757 Chain = Ch;
758 } else if (SrcWidth & (SrcWidth - 1)) {
759 // If not loading a power-of-2 number of bits, expand as two loads.
760 assert(!SrcVT.isVector() && "Unsupported extload!");
761 unsigned LogSrcWidth = Log2_32(SrcWidth);
762 assert(LogSrcWidth < 32);
763 unsigned RoundWidth = 1 << LogSrcWidth;
764 assert(RoundWidth < SrcWidth);
765 unsigned ExtraWidth = SrcWidth - RoundWidth;
766 assert(ExtraWidth < RoundWidth);
767 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
768 "Load size not an integral number of bytes!");
769 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
770 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
771 SDValue Lo, Hi, Ch;
772 unsigned IncrementSize;
773 auto &DL = DAG.getDataLayout();
775 if (DL.isLittleEndian()) {
776 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
777 // Load the bottom RoundWidth bits.
778 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr,
779 LD->getPointerInfo(), RoundVT, Alignment, MMOFlags,
780 AAInfo);
782 // Load the remaining ExtraWidth bits.
783 IncrementSize = RoundWidth / 8;
784 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
785 DAG.getConstant(IncrementSize, dl,
786 Ptr.getValueType()));
787 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
788 LD->getPointerInfo().getWithOffset(IncrementSize),
789 ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags,
790 AAInfo);
792 // Build a factor node to remember that this load is independent of
793 // the other one.
794 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
795 Hi.getValue(1));
797 // Move the top bits to the right place.
798 Hi = DAG.getNode(
799 ISD::SHL, dl, Hi.getValueType(), Hi,
800 DAG.getConstant(RoundWidth, dl,
801 TLI.getShiftAmountTy(Hi.getValueType(), DL)));
803 // Join the hi and lo parts.
804 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
805 } else {
806 // Big endian - avoid unaligned loads.
807 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
808 // Load the top RoundWidth bits.
809 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr,
810 LD->getPointerInfo(), RoundVT, Alignment, MMOFlags,
811 AAInfo);
813 // Load the remaining ExtraWidth bits.
814 IncrementSize = RoundWidth / 8;
815 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
816 DAG.getConstant(IncrementSize, dl,
817 Ptr.getValueType()));
818 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), Chain, Ptr,
819 LD->getPointerInfo().getWithOffset(IncrementSize),
820 ExtraVT, MinAlign(Alignment, IncrementSize), MMOFlags,
821 AAInfo);
823 // Build a factor node to remember that this load is independent of
824 // the other one.
825 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
826 Hi.getValue(1));
828 // Move the top bits to the right place.
829 Hi = DAG.getNode(
830 ISD::SHL, dl, Hi.getValueType(), Hi,
831 DAG.getConstant(ExtraWidth, dl,
832 TLI.getShiftAmountTy(Hi.getValueType(), DL)));
834 // Join the hi and lo parts.
835 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
838 Chain = Ch;
839 } else {
840 bool isCustom = false;
841 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0),
842 SrcVT.getSimpleVT())) {
843 default: llvm_unreachable("This action is not supported yet!");
844 case TargetLowering::Custom:
845 isCustom = true;
846 LLVM_FALLTHROUGH;
847 case TargetLowering::Legal:
848 Value = SDValue(Node, 0);
849 Chain = SDValue(Node, 1);
851 if (isCustom) {
852 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) {
853 Value = Res;
854 Chain = Res.getValue(1);
856 } else {
857 // If this is an unaligned load and the target doesn't support it,
858 // expand it.
859 EVT MemVT = LD->getMemoryVT();
860 const DataLayout &DL = DAG.getDataLayout();
861 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT,
862 *LD->getMemOperand())) {
863 std::tie(Value, Chain) = TLI.expandUnalignedLoad(LD, DAG);
866 break;
868 case TargetLowering::Expand: {
869 EVT DestVT = Node->getValueType(0);
870 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) {
871 // If the source type is not legal, see if there is a legal extload to
872 // an intermediate type that we can then extend further.
873 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT());
874 if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT?
875 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) {
876 // If we are loading a legal type, this is a non-extload followed by a
877 // full extend.
878 ISD::LoadExtType MidExtType =
879 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType;
881 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr,
882 SrcVT, LD->getMemOperand());
883 unsigned ExtendOp =
884 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType);
885 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
886 Chain = Load.getValue(1);
887 break;
890 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the
891 // normal undefined upper bits behavior to allow using an in-reg extend
892 // with the illegal FP type, so load as an integer and do the
893 // from-integer conversion.
894 if (SrcVT.getScalarType() == MVT::f16) {
895 EVT ISrcVT = SrcVT.changeTypeToInteger();
896 EVT IDestVT = DestVT.changeTypeToInteger();
897 EVT LoadVT = TLI.getRegisterType(IDestVT.getSimpleVT());
899 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, LoadVT,
900 Chain, Ptr, ISrcVT,
901 LD->getMemOperand());
902 Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result);
903 Chain = Result.getValue(1);
904 break;
908 assert(!SrcVT.isVector() &&
909 "Vector Loads are handled in LegalizeVectorOps");
911 // FIXME: This does not work for vectors on most targets. Sign-
912 // and zero-extend operations are currently folded into extending
913 // loads, whether they are legal or not, and then we end up here
914 // without any support for legalizing them.
915 assert(ExtType != ISD::EXTLOAD &&
916 "EXTLOAD should always be supported!");
917 // Turn the unsupported load into an EXTLOAD followed by an
918 // explicit zero/sign extend inreg.
919 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl,
920 Node->getValueType(0),
921 Chain, Ptr, SrcVT,
922 LD->getMemOperand());
923 SDValue ValRes;
924 if (ExtType == ISD::SEXTLOAD)
925 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
926 Result.getValueType(),
927 Result, DAG.getValueType(SrcVT));
928 else
929 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType());
930 Value = ValRes;
931 Chain = Result.getValue(1);
932 break;
937 // Since loads produce two values, make sure to remember that we legalized
938 // both of them.
939 if (Chain.getNode() != Node) {
940 assert(Value.getNode() != Node && "Load must be completely replaced");
941 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value);
942 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
943 if (UpdatedNodes) {
944 UpdatedNodes->insert(Value.getNode());
945 UpdatedNodes->insert(Chain.getNode());
947 ReplacedNode(Node);
951 /// Return a legal replacement for the given operation, with all legal operands.
952 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
953 LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG));
955 // Allow illegal target nodes and illegal registers.
956 if (Node->getOpcode() == ISD::TargetConstant ||
957 Node->getOpcode() == ISD::Register)
958 return;
960 #ifndef NDEBUG
961 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
962 assert((TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
963 TargetLowering::TypeLegal ||
964 TLI.isTypeLegal(Node->getValueType(i))) &&
965 "Unexpected illegal type!");
967 for (const SDValue &Op : Node->op_values())
968 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) ==
969 TargetLowering::TypeLegal ||
970 TLI.isTypeLegal(Op.getValueType()) ||
971 Op.getOpcode() == ISD::TargetConstant ||
972 Op.getOpcode() == ISD::Register) &&
973 "Unexpected illegal type!");
974 #endif
976 // Figure out the correct action; the way to query this varies by opcode
977 TargetLowering::LegalizeAction Action = TargetLowering::Legal;
978 bool SimpleFinishLegalizing = true;
979 switch (Node->getOpcode()) {
980 case ISD::INTRINSIC_W_CHAIN:
981 case ISD::INTRINSIC_WO_CHAIN:
982 case ISD::INTRINSIC_VOID:
983 case ISD::STACKSAVE:
984 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
985 break;
986 case ISD::GET_DYNAMIC_AREA_OFFSET:
987 Action = TLI.getOperationAction(Node->getOpcode(),
988 Node->getValueType(0));
989 break;
990 case ISD::VAARG:
991 Action = TLI.getOperationAction(Node->getOpcode(),
992 Node->getValueType(0));
993 if (Action != TargetLowering::Promote)
994 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
995 break;
996 case ISD::FP_TO_FP16:
997 case ISD::SINT_TO_FP:
998 case ISD::UINT_TO_FP:
999 case ISD::EXTRACT_VECTOR_ELT:
1000 case ISD::LROUND:
1001 case ISD::LLROUND:
1002 case ISD::LRINT:
1003 case ISD::LLRINT:
1004 Action = TLI.getOperationAction(Node->getOpcode(),
1005 Node->getOperand(0).getValueType());
1006 break;
1007 case ISD::FP_ROUND_INREG:
1008 case ISD::SIGN_EXTEND_INREG: {
1009 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
1010 Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
1011 break;
1013 case ISD::ATOMIC_STORE:
1014 Action = TLI.getOperationAction(Node->getOpcode(),
1015 Node->getOperand(2).getValueType());
1016 break;
1017 case ISD::SELECT_CC:
1018 case ISD::SETCC:
1019 case ISD::BR_CC: {
1020 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
1021 Node->getOpcode() == ISD::SETCC ? 2 : 1;
1022 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
1023 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType();
1024 ISD::CondCode CCCode =
1025 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
1026 Action = TLI.getCondCodeAction(CCCode, OpVT);
1027 if (Action == TargetLowering::Legal) {
1028 if (Node->getOpcode() == ISD::SELECT_CC)
1029 Action = TLI.getOperationAction(Node->getOpcode(),
1030 Node->getValueType(0));
1031 else
1032 Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
1034 break;
1036 case ISD::LOAD:
1037 case ISD::STORE:
1038 // FIXME: Model these properly. LOAD and STORE are complicated, and
1039 // STORE expects the unlegalized operand in some cases.
1040 SimpleFinishLegalizing = false;
1041 break;
1042 case ISD::CALLSEQ_START:
1043 case ISD::CALLSEQ_END:
1044 // FIXME: This shouldn't be necessary. These nodes have special properties
1045 // dealing with the recursive nature of legalization. Removing this
1046 // special case should be done as part of making LegalizeDAG non-recursive.
1047 SimpleFinishLegalizing = false;
1048 break;
1049 case ISD::EXTRACT_ELEMENT:
1050 case ISD::FLT_ROUNDS_:
1051 case ISD::MERGE_VALUES:
1052 case ISD::EH_RETURN:
1053 case ISD::FRAME_TO_ARGS_OFFSET:
1054 case ISD::EH_DWARF_CFA:
1055 case ISD::EH_SJLJ_SETJMP:
1056 case ISD::EH_SJLJ_LONGJMP:
1057 case ISD::EH_SJLJ_SETUP_DISPATCH:
1058 // These operations lie about being legal: when they claim to be legal,
1059 // they should actually be expanded.
1060 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1061 if (Action == TargetLowering::Legal)
1062 Action = TargetLowering::Expand;
1063 break;
1064 case ISD::INIT_TRAMPOLINE:
1065 case ISD::ADJUST_TRAMPOLINE:
1066 case ISD::FRAMEADDR:
1067 case ISD::RETURNADDR:
1068 case ISD::ADDROFRETURNADDR:
1069 case ISD::SPONENTRY:
1070 // These operations lie about being legal: when they claim to be legal,
1071 // they should actually be custom-lowered.
1072 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1073 if (Action == TargetLowering::Legal)
1074 Action = TargetLowering::Custom;
1075 break;
1076 case ISD::READCYCLECOUNTER:
1077 // READCYCLECOUNTER returns an i64, even if type legalization might have
1078 // expanded that to several smaller types.
1079 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64);
1080 break;
1081 case ISD::READ_REGISTER:
1082 case ISD::WRITE_REGISTER:
1083 // Named register is legal in the DAG, but blocked by register name
1084 // selection if not implemented by target (to chose the correct register)
1085 // They'll be converted to Copy(To/From)Reg.
1086 Action = TargetLowering::Legal;
1087 break;
1088 case ISD::DEBUGTRAP:
1089 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1090 if (Action == TargetLowering::Expand) {
1091 // replace ISD::DEBUGTRAP with ISD::TRAP
1092 SDValue NewVal;
1093 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(),
1094 Node->getOperand(0));
1095 ReplaceNode(Node, NewVal.getNode());
1096 LegalizeOp(NewVal.getNode());
1097 return;
1099 break;
1100 case ISD::STRICT_FADD:
1101 case ISD::STRICT_FSUB:
1102 case ISD::STRICT_FMUL:
1103 case ISD::STRICT_FDIV:
1104 case ISD::STRICT_FREM:
1105 case ISD::STRICT_FSQRT:
1106 case ISD::STRICT_FMA:
1107 case ISD::STRICT_FPOW:
1108 case ISD::STRICT_FPOWI:
1109 case ISD::STRICT_FSIN:
1110 case ISD::STRICT_FCOS:
1111 case ISD::STRICT_FEXP:
1112 case ISD::STRICT_FEXP2:
1113 case ISD::STRICT_FLOG:
1114 case ISD::STRICT_FLOG10:
1115 case ISD::STRICT_FLOG2:
1116 case ISD::STRICT_FRINT:
1117 case ISD::STRICT_FNEARBYINT:
1118 case ISD::STRICT_FMAXNUM:
1119 case ISD::STRICT_FMINNUM:
1120 case ISD::STRICT_FCEIL:
1121 case ISD::STRICT_FFLOOR:
1122 case ISD::STRICT_FROUND:
1123 case ISD::STRICT_FTRUNC:
1124 case ISD::STRICT_FP_ROUND:
1125 case ISD::STRICT_FP_EXTEND:
1126 // These pseudo-ops get legalized as if they were their non-strict
1127 // equivalent. For instance, if ISD::FSQRT is legal then ISD::STRICT_FSQRT
1128 // is also legal, but if ISD::FSQRT requires expansion then so does
1129 // ISD::STRICT_FSQRT.
1130 Action = TLI.getStrictFPOperationAction(Node->getOpcode(),
1131 Node->getValueType(0));
1132 break;
1133 case ISD::SADDSAT:
1134 case ISD::UADDSAT:
1135 case ISD::SSUBSAT:
1136 case ISD::USUBSAT: {
1137 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1138 break;
1140 case ISD::SMULFIX:
1141 case ISD::SMULFIXSAT:
1142 case ISD::UMULFIX: {
1143 unsigned Scale = Node->getConstantOperandVal(2);
1144 Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
1145 Node->getValueType(0), Scale);
1146 break;
1148 case ISD::MSCATTER:
1149 Action = TLI.getOperationAction(Node->getOpcode(),
1150 cast<MaskedScatterSDNode>(Node)->getValue().getValueType());
1151 break;
1152 case ISD::MSTORE:
1153 Action = TLI.getOperationAction(Node->getOpcode(),
1154 cast<MaskedStoreSDNode>(Node)->getValue().getValueType());
1155 break;
1156 case ISD::VECREDUCE_FADD:
1157 case ISD::VECREDUCE_FMUL:
1158 case ISD::VECREDUCE_ADD:
1159 case ISD::VECREDUCE_MUL:
1160 case ISD::VECREDUCE_AND:
1161 case ISD::VECREDUCE_OR:
1162 case ISD::VECREDUCE_XOR:
1163 case ISD::VECREDUCE_SMAX:
1164 case ISD::VECREDUCE_SMIN:
1165 case ISD::VECREDUCE_UMAX:
1166 case ISD::VECREDUCE_UMIN:
1167 case ISD::VECREDUCE_FMAX:
1168 case ISD::VECREDUCE_FMIN:
1169 Action = TLI.getOperationAction(
1170 Node->getOpcode(), Node->getOperand(0).getValueType());
1171 break;
1172 default:
1173 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
1174 Action = TargetLowering::Legal;
1175 } else {
1176 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
1178 break;
1181 if (SimpleFinishLegalizing) {
1182 SDNode *NewNode = Node;
1183 switch (Node->getOpcode()) {
1184 default: break;
1185 case ISD::SHL:
1186 case ISD::SRL:
1187 case ISD::SRA:
1188 case ISD::ROTL:
1189 case ISD::ROTR: {
1190 // Legalizing shifts/rotates requires adjusting the shift amount
1191 // to the appropriate width.
1192 SDValue Op0 = Node->getOperand(0);
1193 SDValue Op1 = Node->getOperand(1);
1194 if (!Op1.getValueType().isVector()) {
1195 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op1);
1196 // The getShiftAmountOperand() may create a new operand node or
1197 // return the existing one. If new operand is created we need
1198 // to update the parent node.
1199 // Do not try to legalize SAO here! It will be automatically legalized
1200 // in the next round.
1201 if (SAO != Op1)
1202 NewNode = DAG.UpdateNodeOperands(Node, Op0, SAO);
1205 break;
1206 case ISD::FSHL:
1207 case ISD::FSHR:
1208 case ISD::SRL_PARTS:
1209 case ISD::SRA_PARTS:
1210 case ISD::SHL_PARTS: {
1211 // Legalizing shifts/rotates requires adjusting the shift amount
1212 // to the appropriate width.
1213 SDValue Op0 = Node->getOperand(0);
1214 SDValue Op1 = Node->getOperand(1);
1215 SDValue Op2 = Node->getOperand(2);
1216 if (!Op2.getValueType().isVector()) {
1217 SDValue SAO = DAG.getShiftAmountOperand(Op0.getValueType(), Op2);
1218 // The getShiftAmountOperand() may create a new operand node or
1219 // return the existing one. If new operand is created we need
1220 // to update the parent node.
1221 if (SAO != Op2)
1222 NewNode = DAG.UpdateNodeOperands(Node, Op0, Op1, SAO);
1224 break;
1228 if (NewNode != Node) {
1229 ReplaceNode(Node, NewNode);
1230 Node = NewNode;
1232 switch (Action) {
1233 case TargetLowering::Legal:
1234 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
1235 return;
1236 case TargetLowering::Custom:
1237 LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
1238 // FIXME: The handling for custom lowering with multiple results is
1239 // a complete mess.
1240 if (SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG)) {
1241 if (!(Res.getNode() != Node || Res.getResNo() != 0))
1242 return;
1244 if (Node->getNumValues() == 1) {
1245 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
1246 // We can just directly replace this node with the lowered value.
1247 ReplaceNode(SDValue(Node, 0), Res);
1248 return;
1251 SmallVector<SDValue, 8> ResultVals;
1252 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
1253 ResultVals.push_back(Res.getValue(i));
1254 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
1255 ReplaceNode(Node, ResultVals.data());
1256 return;
1258 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
1259 LLVM_FALLTHROUGH;
1260 case TargetLowering::Expand:
1261 if (ExpandNode(Node))
1262 return;
1263 LLVM_FALLTHROUGH;
1264 case TargetLowering::LibCall:
1265 ConvertNodeToLibcall(Node);
1266 return;
1267 case TargetLowering::Promote:
1268 PromoteNode(Node);
1269 return;
1273 switch (Node->getOpcode()) {
1274 default:
1275 #ifndef NDEBUG
1276 dbgs() << "NODE: ";
1277 Node->dump( &DAG);
1278 dbgs() << "\n";
1279 #endif
1280 llvm_unreachable("Do not know how to legalize this operator!");
1282 case ISD::CALLSEQ_START:
1283 case ISD::CALLSEQ_END:
1284 break;
1285 case ISD::LOAD:
1286 return LegalizeLoadOps(Node);
1287 case ISD::STORE:
1288 return LegalizeStoreOps(Node);
1292 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1293 SDValue Vec = Op.getOperand(0);
1294 SDValue Idx = Op.getOperand(1);
1295 SDLoc dl(Op);
1297 // Before we generate a new store to a temporary stack slot, see if there is
1298 // already one that we can use. There often is because when we scalarize
1299 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole
1300 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in
1301 // the vector. If all are expanded here, we don't want one store per vector
1302 // element.
1304 // Caches for hasPredecessorHelper
1305 SmallPtrSet<const SDNode *, 32> Visited;
1306 SmallVector<const SDNode *, 16> Worklist;
1307 Visited.insert(Op.getNode());
1308 Worklist.push_back(Idx.getNode());
1309 SDValue StackPtr, Ch;
1310 for (SDNode::use_iterator UI = Vec.getNode()->use_begin(),
1311 UE = Vec.getNode()->use_end(); UI != UE; ++UI) {
1312 SDNode *User = *UI;
1313 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) {
1314 if (ST->isIndexed() || ST->isTruncatingStore() ||
1315 ST->getValue() != Vec)
1316 continue;
1318 // Make sure that nothing else could have stored into the destination of
1319 // this store.
1320 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode()))
1321 continue;
1323 // If the index is dependent on the store we will introduce a cycle when
1324 // creating the load (the load uses the index, and by replacing the chain
1325 // we will make the index dependent on the load). Also, the store might be
1326 // dependent on the extractelement and introduce a cycle when creating
1327 // the load.
1328 if (SDNode::hasPredecessorHelper(ST, Visited, Worklist) ||
1329 ST->hasPredecessor(Op.getNode()))
1330 continue;
1332 StackPtr = ST->getBasePtr();
1333 Ch = SDValue(ST, 0);
1334 break;
1338 EVT VecVT = Vec.getValueType();
1340 if (!Ch.getNode()) {
1341 // Store the value to a temporary stack slot, then LOAD the returned part.
1342 StackPtr = DAG.CreateStackTemporary(VecVT);
1343 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1344 MachinePointerInfo());
1347 StackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);
1349 SDValue NewLoad;
1351 if (Op.getValueType().isVector())
1352 NewLoad =
1353 DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, MachinePointerInfo());
1354 else
1355 NewLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1356 MachinePointerInfo(),
1357 VecVT.getVectorElementType());
1359 // Replace the chain going out of the store, by the one out of the load.
1360 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1));
1362 // We introduced a cycle though, so update the loads operands, making sure
1363 // to use the original store's chain as an incoming chain.
1364 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(),
1365 NewLoad->op_end());
1366 NewLoadOperands[0] = Ch;
1367 NewLoad =
1368 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0);
1369 return NewLoad;
1372 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
1373 assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
1375 SDValue Vec = Op.getOperand(0);
1376 SDValue Part = Op.getOperand(1);
1377 SDValue Idx = Op.getOperand(2);
1378 SDLoc dl(Op);
1380 // Store the value to a temporary stack slot, then LOAD the returned part.
1381 EVT VecVT = Vec.getValueType();
1382 SDValue StackPtr = DAG.CreateStackTemporary(VecVT);
1383 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1384 MachinePointerInfo PtrInfo =
1385 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
1387 // First store the whole vector.
1388 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo);
1390 // Then store the inserted part.
1391 SDValue SubStackPtr = TLI.getVectorElementPointer(DAG, StackPtr, VecVT, Idx);
1393 // Store the subvector.
1394 Ch = DAG.getStore(Ch, dl, Part, SubStackPtr, MachinePointerInfo());
1396 // Finally, load the updated vector.
1397 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo);
1400 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1401 // We can't handle this case efficiently. Allocate a sufficiently
1402 // aligned object on the stack, store each element into it, then load
1403 // the result as a vector.
1404 // Create the stack frame object.
1405 EVT VT = Node->getValueType(0);
1406 EVT EltVT = VT.getVectorElementType();
1407 SDLoc dl(Node);
1408 SDValue FIPtr = DAG.CreateStackTemporary(VT);
1409 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1410 MachinePointerInfo PtrInfo =
1411 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
1413 // Emit a store of each element to the stack slot.
1414 SmallVector<SDValue, 8> Stores;
1415 unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1416 assert(TypeByteSize > 0 && "Vector element type too small for stack store!");
1417 // Store (in the right endianness) the elements to memory.
1418 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1419 // Ignore undef elements.
1420 if (Node->getOperand(i).isUndef()) continue;
1422 unsigned Offset = TypeByteSize*i;
1424 SDValue Idx = DAG.getConstant(Offset, dl, FIPtr.getValueType());
1425 Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1427 // If the destination vector element type is narrower than the source
1428 // element type, only store the bits necessary.
1429 if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1430 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1431 Node->getOperand(i), Idx,
1432 PtrInfo.getWithOffset(Offset), EltVT));
1433 } else
1434 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, Node->getOperand(i),
1435 Idx, PtrInfo.getWithOffset(Offset)));
1438 SDValue StoreChain;
1439 if (!Stores.empty()) // Not all undef elements?
1440 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
1441 else
1442 StoreChain = DAG.getEntryNode();
1444 // Result is a load from the stack slot.
1445 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo);
1448 /// Bitcast a floating-point value to an integer value. Only bitcast the part
1449 /// containing the sign bit if the target has no integer value capable of
1450 /// holding all bits of the floating-point value.
1451 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State,
1452 const SDLoc &DL,
1453 SDValue Value) const {
1454 EVT FloatVT = Value.getValueType();
1455 unsigned NumBits = FloatVT.getSizeInBits();
1456 State.FloatVT = FloatVT;
1457 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
1458 // Convert to an integer of the same size.
1459 if (TLI.isTypeLegal(IVT)) {
1460 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value);
1461 State.SignMask = APInt::getSignMask(NumBits);
1462 State.SignBit = NumBits - 1;
1463 return;
1466 auto &DataLayout = DAG.getDataLayout();
1467 // Store the float to memory, then load the sign part out as an integer.
1468 MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8);
1469 // First create a temporary that is aligned for both the load and store.
1470 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1471 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1472 // Then store the float to it.
1473 State.FloatPtr = StackPtr;
1474 MachineFunction &MF = DAG.getMachineFunction();
1475 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI);
1476 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr,
1477 State.FloatPointerInfo);
1479 SDValue IntPtr;
1480 if (DataLayout.isBigEndian()) {
1481 assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1482 // Load out a legal integer with the same sign bit as the float.
1483 IntPtr = StackPtr;
1484 State.IntPointerInfo = State.FloatPointerInfo;
1485 } else {
1486 // Advance the pointer so that the loaded byte will contain the sign bit.
1487 unsigned ByteOffset = (FloatVT.getSizeInBits() / 8) - 1;
1488 IntPtr = DAG.getNode(ISD::ADD, DL, StackPtr.getValueType(), StackPtr,
1489 DAG.getConstant(ByteOffset, DL, StackPtr.getValueType()));
1490 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI,
1491 ByteOffset);
1494 State.IntPtr = IntPtr;
1495 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, IntPtr,
1496 State.IntPointerInfo, MVT::i8);
1497 State.SignMask = APInt::getOneBitSet(LoadTy.getSizeInBits(), 7);
1498 State.SignBit = 7;
1501 /// Replace the integer value produced by getSignAsIntValue() with a new value
1502 /// and cast the result back to a floating-point type.
1503 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State,
1504 const SDLoc &DL,
1505 SDValue NewIntValue) const {
1506 if (!State.Chain)
1507 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue);
1509 // Override the part containing the sign bit in the value stored on the stack.
1510 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr,
1511 State.IntPointerInfo, MVT::i8);
1512 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr,
1513 State.FloatPointerInfo);
1516 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const {
1517 SDLoc DL(Node);
1518 SDValue Mag = Node->getOperand(0);
1519 SDValue Sign = Node->getOperand(1);
1521 // Get sign bit into an integer value.
1522 FloatSignAsInt SignAsInt;
1523 getSignAsIntValue(SignAsInt, DL, Sign);
1525 EVT IntVT = SignAsInt.IntValue.getValueType();
1526 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT);
1527 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue,
1528 SignMask);
1530 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X)
1531 EVT FloatVT = Mag.getValueType();
1532 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) &&
1533 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) {
1534 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag);
1535 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue);
1536 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit,
1537 DAG.getConstant(0, DL, IntVT), ISD::SETNE);
1538 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue);
1541 // Transform Mag value to integer, and clear the sign bit.
1542 FloatSignAsInt MagAsInt;
1543 getSignAsIntValue(MagAsInt, DL, Mag);
1544 EVT MagVT = MagAsInt.IntValue.getValueType();
1545 SDValue ClearSignMask = DAG.getConstant(~MagAsInt.SignMask, DL, MagVT);
1546 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, MagVT, MagAsInt.IntValue,
1547 ClearSignMask);
1549 // Get the signbit at the right position for MagAsInt.
1550 int ShiftAmount = SignAsInt.SignBit - MagAsInt.SignBit;
1551 EVT ShiftVT = IntVT;
1552 if (SignBit.getValueSizeInBits() < ClearedSign.getValueSizeInBits()) {
1553 SignBit = DAG.getNode(ISD::ZERO_EXTEND, DL, MagVT, SignBit);
1554 ShiftVT = MagVT;
1556 if (ShiftAmount > 0) {
1557 SDValue ShiftCnst = DAG.getConstant(ShiftAmount, DL, ShiftVT);
1558 SignBit = DAG.getNode(ISD::SRL, DL, ShiftVT, SignBit, ShiftCnst);
1559 } else if (ShiftAmount < 0) {
1560 SDValue ShiftCnst = DAG.getConstant(-ShiftAmount, DL, ShiftVT);
1561 SignBit = DAG.getNode(ISD::SHL, DL, ShiftVT, SignBit, ShiftCnst);
1563 if (SignBit.getValueSizeInBits() > ClearedSign.getValueSizeInBits()) {
1564 SignBit = DAG.getNode(ISD::TRUNCATE, DL, MagVT, SignBit);
1567 // Store the part with the modified sign and convert back to float.
1568 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, MagVT, ClearedSign, SignBit);
1569 return modifySignAsInt(MagAsInt, DL, CopiedSign);
1572 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const {
1573 SDLoc DL(Node);
1574 SDValue Value = Node->getOperand(0);
1576 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal.
1577 EVT FloatVT = Value.getValueType();
1578 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) {
1579 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT);
1580 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero);
1583 // Transform value to integer, clear the sign bit and transform back.
1584 FloatSignAsInt ValueAsInt;
1585 getSignAsIntValue(ValueAsInt, DL, Value);
1586 EVT IntVT = ValueAsInt.IntValue.getValueType();
1587 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT);
1588 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue,
1589 ClearSignMask);
1590 return modifySignAsInt(ValueAsInt, DL, ClearedSign);
1593 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1594 SmallVectorImpl<SDValue> &Results) {
1595 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1596 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1597 " not tell us which reg is the stack pointer!");
1598 SDLoc dl(Node);
1599 EVT VT = Node->getValueType(0);
1600 SDValue Tmp1 = SDValue(Node, 0);
1601 SDValue Tmp2 = SDValue(Node, 1);
1602 SDValue Tmp3 = Node->getOperand(2);
1603 SDValue Chain = Tmp1.getOperand(0);
1605 // Chain the dynamic stack allocation so that it doesn't modify the stack
1606 // pointer when other instructions are using the stack.
1607 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
1609 SDValue Size = Tmp2.getOperand(1);
1610 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1611 Chain = SP.getValue(1);
1612 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1613 unsigned StackAlign =
1614 DAG.getSubtarget().getFrameLowering()->getStackAlignment();
1615 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
1616 if (Align > StackAlign)
1617 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
1618 DAG.getConstant(-(uint64_t)Align, dl, VT));
1619 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain
1621 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
1622 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
1624 Results.push_back(Tmp1);
1625 Results.push_back(Tmp2);
1628 /// Legalize a SETCC with given LHS and RHS and condition code CC on the current
1629 /// target.
1631 /// If the SETCC has been legalized using AND / OR, then the legalized node
1632 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert
1633 /// will be set to false.
1635 /// If the SETCC has been legalized by using getSetCCSwappedOperands(),
1636 /// then the values of LHS and RHS will be swapped, CC will be set to the
1637 /// new condition, and NeedInvert will be set to false.
1639 /// If the SETCC has been legalized using the inverse condcode, then LHS and
1640 /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert
1641 /// will be set to true. The caller must invert the result of the SETCC with
1642 /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect
1643 /// of a true/false result.
1645 /// \returns true if the SetCC has been legalized, false if it hasn't.
1646 bool SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT, SDValue &LHS,
1647 SDValue &RHS, SDValue &CC,
1648 bool &NeedInvert,
1649 const SDLoc &dl) {
1650 MVT OpVT = LHS.getSimpleValueType();
1651 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1652 NeedInvert = false;
1653 bool NeedSwap = false;
1654 switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1655 default: llvm_unreachable("Unknown condition code action!");
1656 case TargetLowering::Legal:
1657 // Nothing to do.
1658 break;
1659 case TargetLowering::Expand: {
1660 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
1661 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
1662 std::swap(LHS, RHS);
1663 CC = DAG.getCondCode(InvCC);
1664 return true;
1666 // Swapping operands didn't work. Try inverting the condition.
1667 InvCC = getSetCCInverse(CCCode, OpVT.isInteger());
1668 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
1669 // If inverting the condition is not enough, try swapping operands
1670 // on top of it.
1671 InvCC = ISD::getSetCCSwappedOperands(InvCC);
1672 NeedSwap = true;
1674 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
1675 CC = DAG.getCondCode(InvCC);
1676 NeedInvert = true;
1677 if (NeedSwap)
1678 std::swap(LHS, RHS);
1679 return true;
1682 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1683 unsigned Opc = 0;
1684 switch (CCCode) {
1685 default: llvm_unreachable("Don't know how to expand this condition!");
1686 case ISD::SETO:
1687 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT)
1688 && "If SETO is expanded, SETOEQ must be legal!");
1689 CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break;
1690 case ISD::SETUO:
1691 assert(TLI.isCondCodeLegal(ISD::SETUNE, OpVT)
1692 && "If SETUO is expanded, SETUNE must be legal!");
1693 CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR; break;
1694 case ISD::SETOEQ:
1695 case ISD::SETOGT:
1696 case ISD::SETOGE:
1697 case ISD::SETOLT:
1698 case ISD::SETOLE:
1699 case ISD::SETONE:
1700 case ISD::SETUEQ:
1701 case ISD::SETUNE:
1702 case ISD::SETUGT:
1703 case ISD::SETUGE:
1704 case ISD::SETULT:
1705 case ISD::SETULE:
1706 // If we are floating point, assign and break, otherwise fall through.
1707 if (!OpVT.isInteger()) {
1708 // We can use the 4th bit to tell if we are the unordered
1709 // or ordered version of the opcode.
1710 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
1711 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
1712 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
1713 break;
1715 // Fallthrough if we are unsigned integer.
1716 LLVM_FALLTHROUGH;
1717 case ISD::SETLE:
1718 case ISD::SETGT:
1719 case ISD::SETGE:
1720 case ISD::SETLT:
1721 case ISD::SETNE:
1722 case ISD::SETEQ:
1723 // If all combinations of inverting the condition and swapping operands
1724 // didn't work then we have no means to expand the condition.
1725 llvm_unreachable("Don't know how to expand this condition!");
1728 SDValue SetCC1, SetCC2;
1729 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
1730 // If we aren't the ordered or unorder operation,
1731 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
1732 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1733 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1734 } else {
1735 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
1736 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1);
1737 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2);
1739 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1740 RHS = SDValue();
1741 CC = SDValue();
1742 return true;
1745 return false;
1748 /// Emit a store/load combination to the stack. This stores
1749 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does
1750 /// a load from the stack slot to DestVT, extending it if needed.
1751 /// The resultant code need not be legal.
1752 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT,
1753 EVT DestVT, const SDLoc &dl) {
1754 return EmitStackConvert(SrcOp, SlotVT, DestVT, dl, DAG.getEntryNode());
1757 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, EVT SlotVT,
1758 EVT DestVT, const SDLoc &dl,
1759 SDValue Chain) {
1760 // Create the stack frame object.
1761 unsigned SrcAlign = DAG.getDataLayout().getPrefTypeAlignment(
1762 SrcOp.getValueType().getTypeForEVT(*DAG.getContext()));
1763 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1765 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1766 int SPFI = StackPtrFI->getIndex();
1767 MachinePointerInfo PtrInfo =
1768 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
1770 unsigned SrcSize = SrcOp.getValueSizeInBits();
1771 unsigned SlotSize = SlotVT.getSizeInBits();
1772 unsigned DestSize = DestVT.getSizeInBits();
1773 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1774 unsigned DestAlign = DAG.getDataLayout().getPrefTypeAlignment(DestType);
1776 // Emit a store to the stack slot. Use a truncstore if the input value is
1777 // later than DestVT.
1778 SDValue Store;
1780 if (SrcSize > SlotSize)
1781 Store = DAG.getTruncStore(Chain, dl, SrcOp, FIPtr, PtrInfo,
1782 SlotVT, SrcAlign);
1783 else {
1784 assert(SrcSize == SlotSize && "Invalid store");
1785 Store =
1786 DAG.getStore(Chain, dl, SrcOp, FIPtr, PtrInfo, SrcAlign);
1789 // Result is a load from the stack slot.
1790 if (SlotSize == DestSize)
1791 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, DestAlign);
1793 assert(SlotSize < DestSize && "Unknown extension!");
1794 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, PtrInfo, SlotVT,
1795 DestAlign);
1798 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1799 SDLoc dl(Node);
1800 // Create a vector sized/aligned stack slot, store the value to element #0,
1801 // then load the whole vector back out.
1802 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1804 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1805 int SPFI = StackPtrFI->getIndex();
1807 SDValue Ch = DAG.getTruncStore(
1808 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr,
1809 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI),
1810 Node->getValueType(0).getVectorElementType());
1811 return DAG.getLoad(
1812 Node->getValueType(0), dl, Ch, StackPtr,
1813 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI));
1816 static bool
1817 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG,
1818 const TargetLowering &TLI, SDValue &Res) {
1819 unsigned NumElems = Node->getNumOperands();
1820 SDLoc dl(Node);
1821 EVT VT = Node->getValueType(0);
1823 // Try to group the scalars into pairs, shuffle the pairs together, then
1824 // shuffle the pairs of pairs together, etc. until the vector has
1825 // been built. This will work only if all of the necessary shuffle masks
1826 // are legal.
1828 // We do this in two phases; first to check the legality of the shuffles,
1829 // and next, assuming that all shuffles are legal, to create the new nodes.
1830 for (int Phase = 0; Phase < 2; ++Phase) {
1831 SmallVector<std::pair<SDValue, SmallVector<int, 16>>, 16> IntermedVals,
1832 NewIntermedVals;
1833 for (unsigned i = 0; i < NumElems; ++i) {
1834 SDValue V = Node->getOperand(i);
1835 if (V.isUndef())
1836 continue;
1838 SDValue Vec;
1839 if (Phase)
1840 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V);
1841 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i)));
1844 while (IntermedVals.size() > 2) {
1845 NewIntermedVals.clear();
1846 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) {
1847 // This vector and the next vector are shuffled together (simply to
1848 // append the one to the other).
1849 SmallVector<int, 16> ShuffleVec(NumElems, -1);
1851 SmallVector<int, 16> FinalIndices;
1852 FinalIndices.reserve(IntermedVals[i].second.size() +
1853 IntermedVals[i+1].second.size());
1855 int k = 0;
1856 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f;
1857 ++j, ++k) {
1858 ShuffleVec[k] = j;
1859 FinalIndices.push_back(IntermedVals[i].second[j]);
1861 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f;
1862 ++j, ++k) {
1863 ShuffleVec[k] = NumElems + j;
1864 FinalIndices.push_back(IntermedVals[i+1].second[j]);
1867 SDValue Shuffle;
1868 if (Phase)
1869 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first,
1870 IntermedVals[i+1].first,
1871 ShuffleVec);
1872 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
1873 return false;
1874 NewIntermedVals.push_back(
1875 std::make_pair(Shuffle, std::move(FinalIndices)));
1878 // If we had an odd number of defined values, then append the last
1879 // element to the array of new vectors.
1880 if ((IntermedVals.size() & 1) != 0)
1881 NewIntermedVals.push_back(IntermedVals.back());
1883 IntermedVals.swap(NewIntermedVals);
1886 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 &&
1887 "Invalid number of intermediate vectors");
1888 SDValue Vec1 = IntermedVals[0].first;
1889 SDValue Vec2;
1890 if (IntermedVals.size() > 1)
1891 Vec2 = IntermedVals[1].first;
1892 else if (Phase)
1893 Vec2 = DAG.getUNDEF(VT);
1895 SmallVector<int, 16> ShuffleVec(NumElems, -1);
1896 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i)
1897 ShuffleVec[IntermedVals[0].second[i]] = i;
1898 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i)
1899 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i;
1901 if (Phase)
1902 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec);
1903 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT))
1904 return false;
1907 return true;
1910 /// Expand a BUILD_VECTOR node on targets that don't
1911 /// support the operation, but do support the resultant vector type.
1912 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1913 unsigned NumElems = Node->getNumOperands();
1914 SDValue Value1, Value2;
1915 SDLoc dl(Node);
1916 EVT VT = Node->getValueType(0);
1917 EVT OpVT = Node->getOperand(0).getValueType();
1918 EVT EltVT = VT.getVectorElementType();
1920 // If the only non-undef value is the low element, turn this into a
1921 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X.
1922 bool isOnlyLowElement = true;
1923 bool MoreThanTwoValues = false;
1924 bool isConstant = true;
1925 for (unsigned i = 0; i < NumElems; ++i) {
1926 SDValue V = Node->getOperand(i);
1927 if (V.isUndef())
1928 continue;
1929 if (i > 0)
1930 isOnlyLowElement = false;
1931 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1932 isConstant = false;
1934 if (!Value1.getNode()) {
1935 Value1 = V;
1936 } else if (!Value2.getNode()) {
1937 if (V != Value1)
1938 Value2 = V;
1939 } else if (V != Value1 && V != Value2) {
1940 MoreThanTwoValues = true;
1944 if (!Value1.getNode())
1945 return DAG.getUNDEF(VT);
1947 if (isOnlyLowElement)
1948 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1950 // If all elements are constants, create a load from the constant pool.
1951 if (isConstant) {
1952 SmallVector<Constant*, 16> CV;
1953 for (unsigned i = 0, e = NumElems; i != e; ++i) {
1954 if (ConstantFPSDNode *V =
1955 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1956 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1957 } else if (ConstantSDNode *V =
1958 dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1959 if (OpVT==EltVT)
1960 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1961 else {
1962 // If OpVT and EltVT don't match, EltVT is not legal and the
1963 // element values have been promoted/truncated earlier. Undo this;
1964 // we don't want a v16i8 to become a v16i32 for example.
1965 const ConstantInt *CI = V->getConstantIntValue();
1966 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1967 CI->getZExtValue()));
1969 } else {
1970 assert(Node->getOperand(i).isUndef());
1971 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1972 CV.push_back(UndefValue::get(OpNTy));
1975 Constant *CP = ConstantVector::get(CV);
1976 SDValue CPIdx =
1977 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout()));
1978 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1979 return DAG.getLoad(
1980 VT, dl, DAG.getEntryNode(), CPIdx,
1981 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
1982 Alignment);
1985 SmallSet<SDValue, 16> DefinedValues;
1986 for (unsigned i = 0; i < NumElems; ++i) {
1987 if (Node->getOperand(i).isUndef())
1988 continue;
1989 DefinedValues.insert(Node->getOperand(i));
1992 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) {
1993 if (!MoreThanTwoValues) {
1994 SmallVector<int, 8> ShuffleVec(NumElems, -1);
1995 for (unsigned i = 0; i < NumElems; ++i) {
1996 SDValue V = Node->getOperand(i);
1997 if (V.isUndef())
1998 continue;
1999 ShuffleVec[i] = V == Value1 ? 0 : NumElems;
2001 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
2002 // Get the splatted value into the low element of a vector register.
2003 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
2004 SDValue Vec2;
2005 if (Value2.getNode())
2006 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
2007 else
2008 Vec2 = DAG.getUNDEF(VT);
2010 // Return shuffle(LowValVec, undef, <0,0,0,0>)
2011 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec);
2013 } else {
2014 SDValue Res;
2015 if (ExpandBVWithShuffles(Node, DAG, TLI, Res))
2016 return Res;
2020 // Otherwise, we can't handle this case efficiently.
2021 return ExpandVectorBuildThroughStack(Node);
2024 // Expand a node into a call to a libcall. If the result value
2025 // does not fit into a register, return the lo part and set the hi part to the
2026 // by-reg argument. If it does fit into a single register, return the result
2027 // and leave the Hi part unset.
2028 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
2029 bool isSigned) {
2030 TargetLowering::ArgListTy Args;
2031 TargetLowering::ArgListEntry Entry;
2032 for (const SDValue &Op : Node->op_values()) {
2033 EVT ArgVT = Op.getValueType();
2034 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2035 Entry.Node = Op;
2036 Entry.Ty = ArgTy;
2037 Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned);
2038 Entry.IsZExt = !TLI.shouldSignExtendTypeInLibCall(ArgVT, isSigned);
2039 Args.push_back(Entry);
2041 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2042 TLI.getPointerTy(DAG.getDataLayout()));
2044 EVT RetVT = Node->getValueType(0);
2045 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2047 // By default, the input chain to this libcall is the entry node of the
2048 // function. If the libcall is going to be emitted as a tail call then
2049 // TLI.isUsedByReturnOnly will change it to the right chain if the return
2050 // node which is being folded has a non-entry input chain.
2051 SDValue InChain = DAG.getEntryNode();
2053 // isTailCall may be true since the callee does not reference caller stack
2054 // frame. Check if it's in the right position and that the return types match.
2055 SDValue TCChain = InChain;
2056 const Function &F = DAG.getMachineFunction().getFunction();
2057 bool isTailCall =
2058 TLI.isInTailCallPosition(DAG, Node, TCChain) &&
2059 (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy());
2060 if (isTailCall)
2061 InChain = TCChain;
2063 TargetLowering::CallLoweringInfo CLI(DAG);
2064 bool signExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, isSigned);
2065 CLI.setDebugLoc(SDLoc(Node))
2066 .setChain(InChain)
2067 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
2068 std::move(Args))
2069 .setTailCall(isTailCall)
2070 .setSExtResult(signExtend)
2071 .setZExtResult(!signExtend)
2072 .setIsPostTypeLegalization(true);
2074 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2076 if (!CallInfo.second.getNode()) {
2077 LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG.getRoot().dump());
2078 // It's a tailcall, return the chain (which is the DAG root).
2079 return DAG.getRoot();
2082 LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo.first.dump());
2083 return CallInfo.first;
2086 // Expand a node into a call to a libcall. Similar to
2087 // ExpandLibCall except that the first operand is the in-chain.
2088 std::pair<SDValue, SDValue>
2089 SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
2090 SDNode *Node,
2091 bool isSigned) {
2092 SDValue InChain = Node->getOperand(0);
2094 TargetLowering::ArgListTy Args;
2095 TargetLowering::ArgListEntry Entry;
2096 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
2097 EVT ArgVT = Node->getOperand(i).getValueType();
2098 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2099 Entry.Node = Node->getOperand(i);
2100 Entry.Ty = ArgTy;
2101 Entry.IsSExt = isSigned;
2102 Entry.IsZExt = !isSigned;
2103 Args.push_back(Entry);
2105 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2106 TLI.getPointerTy(DAG.getDataLayout()));
2108 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
2110 TargetLowering::CallLoweringInfo CLI(DAG);
2111 CLI.setDebugLoc(SDLoc(Node))
2112 .setChain(InChain)
2113 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
2114 std::move(Args))
2115 .setSExtResult(isSigned)
2116 .setZExtResult(!isSigned);
2118 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2120 return CallInfo;
2123 SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
2124 RTLIB::Libcall Call_F32,
2125 RTLIB::Libcall Call_F64,
2126 RTLIB::Libcall Call_F80,
2127 RTLIB::Libcall Call_F128,
2128 RTLIB::Libcall Call_PPCF128) {
2129 if (Node->isStrictFPOpcode())
2130 Node = DAG.mutateStrictFPToFP(Node);
2132 RTLIB::Libcall LC;
2133 switch (Node->getSimpleValueType(0).SimpleTy) {
2134 default: llvm_unreachable("Unexpected request for libcall!");
2135 case MVT::f32: LC = Call_F32; break;
2136 case MVT::f64: LC = Call_F64; break;
2137 case MVT::f80: LC = Call_F80; break;
2138 case MVT::f128: LC = Call_F128; break;
2139 case MVT::ppcf128: LC = Call_PPCF128; break;
2141 return ExpandLibCall(LC, Node, false);
2144 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
2145 RTLIB::Libcall Call_I8,
2146 RTLIB::Libcall Call_I16,
2147 RTLIB::Libcall Call_I32,
2148 RTLIB::Libcall Call_I64,
2149 RTLIB::Libcall Call_I128) {
2150 RTLIB::Libcall LC;
2151 switch (Node->getSimpleValueType(0).SimpleTy) {
2152 default: llvm_unreachable("Unexpected request for libcall!");
2153 case MVT::i8: LC = Call_I8; break;
2154 case MVT::i16: LC = Call_I16; break;
2155 case MVT::i32: LC = Call_I32; break;
2156 case MVT::i64: LC = Call_I64; break;
2157 case MVT::i128: LC = Call_I128; break;
2159 return ExpandLibCall(LC, Node, isSigned);
2162 /// Expand the node to a libcall based on first argument type (for instance
2163 /// lround and its variant).
2164 SDValue SelectionDAGLegalize::ExpandArgFPLibCall(SDNode* Node,
2165 RTLIB::Libcall Call_F32,
2166 RTLIB::Libcall Call_F64,
2167 RTLIB::Libcall Call_F80,
2168 RTLIB::Libcall Call_F128,
2169 RTLIB::Libcall Call_PPCF128) {
2170 RTLIB::Libcall LC;
2171 switch (Node->getOperand(0).getValueType().getSimpleVT().SimpleTy) {
2172 default: llvm_unreachable("Unexpected request for libcall!");
2173 case MVT::f32: LC = Call_F32; break;
2174 case MVT::f64: LC = Call_F64; break;
2175 case MVT::f80: LC = Call_F80; break;
2176 case MVT::f128: LC = Call_F128; break;
2177 case MVT::ppcf128: LC = Call_PPCF128; break;
2180 return ExpandLibCall(LC, Node, false);
2183 /// Issue libcalls to __{u}divmod to compute div / rem pairs.
2184 void
2185 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
2186 SmallVectorImpl<SDValue> &Results) {
2187 unsigned Opcode = Node->getOpcode();
2188 bool isSigned = Opcode == ISD::SDIVREM;
2190 RTLIB::Libcall LC;
2191 switch (Node->getSimpleValueType(0).SimpleTy) {
2192 default: llvm_unreachable("Unexpected request for libcall!");
2193 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
2194 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
2195 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
2196 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
2197 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
2200 // The input chain to this libcall is the entry node of the function.
2201 // Legalizing the call will automatically add the previous call to the
2202 // dependence.
2203 SDValue InChain = DAG.getEntryNode();
2205 EVT RetVT = Node->getValueType(0);
2206 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2208 TargetLowering::ArgListTy Args;
2209 TargetLowering::ArgListEntry Entry;
2210 for (const SDValue &Op : Node->op_values()) {
2211 EVT ArgVT = Op.getValueType();
2212 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
2213 Entry.Node = Op;
2214 Entry.Ty = ArgTy;
2215 Entry.IsSExt = isSigned;
2216 Entry.IsZExt = !isSigned;
2217 Args.push_back(Entry);
2220 // Also pass the return address of the remainder.
2221 SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
2222 Entry.Node = FIPtr;
2223 Entry.Ty = RetTy->getPointerTo();
2224 Entry.IsSExt = isSigned;
2225 Entry.IsZExt = !isSigned;
2226 Args.push_back(Entry);
2228 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2229 TLI.getPointerTy(DAG.getDataLayout()));
2231 SDLoc dl(Node);
2232 TargetLowering::CallLoweringInfo CLI(DAG);
2233 CLI.setDebugLoc(dl)
2234 .setChain(InChain)
2235 .setLibCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee,
2236 std::move(Args))
2237 .setSExtResult(isSigned)
2238 .setZExtResult(!isSigned);
2240 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2242 // Remainder is loaded back from the stack frame.
2243 SDValue Rem =
2244 DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, MachinePointerInfo());
2245 Results.push_back(CallInfo.first);
2246 Results.push_back(Rem);
2249 /// Return true if sincos libcall is available.
2250 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) {
2251 RTLIB::Libcall LC;
2252 switch (Node->getSimpleValueType(0).SimpleTy) {
2253 default: llvm_unreachable("Unexpected request for libcall!");
2254 case MVT::f32: LC = RTLIB::SINCOS_F32; break;
2255 case MVT::f64: LC = RTLIB::SINCOS_F64; break;
2256 case MVT::f80: LC = RTLIB::SINCOS_F80; break;
2257 case MVT::f128: LC = RTLIB::SINCOS_F128; break;
2258 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2260 return TLI.getLibcallName(LC) != nullptr;
2263 /// Only issue sincos libcall if both sin and cos are needed.
2264 static bool useSinCos(SDNode *Node) {
2265 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN
2266 ? ISD::FCOS : ISD::FSIN;
2268 SDValue Op0 = Node->getOperand(0);
2269 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
2270 UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
2271 SDNode *User = *UI;
2272 if (User == Node)
2273 continue;
2274 // The other user might have been turned into sincos already.
2275 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS)
2276 return true;
2278 return false;
2281 /// Issue libcalls to sincos to compute sin / cos pairs.
2282 void
2283 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node,
2284 SmallVectorImpl<SDValue> &Results) {
2285 RTLIB::Libcall LC;
2286 switch (Node->getSimpleValueType(0).SimpleTy) {
2287 default: llvm_unreachable("Unexpected request for libcall!");
2288 case MVT::f32: LC = RTLIB::SINCOS_F32; break;
2289 case MVT::f64: LC = RTLIB::SINCOS_F64; break;
2290 case MVT::f80: LC = RTLIB::SINCOS_F80; break;
2291 case MVT::f128: LC = RTLIB::SINCOS_F128; break;
2292 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break;
2295 // The input chain to this libcall is the entry node of the function.
2296 // Legalizing the call will automatically add the previous call to the
2297 // dependence.
2298 SDValue InChain = DAG.getEntryNode();
2300 EVT RetVT = Node->getValueType(0);
2301 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
2303 TargetLowering::ArgListTy Args;
2304 TargetLowering::ArgListEntry Entry;
2306 // Pass the argument.
2307 Entry.Node = Node->getOperand(0);
2308 Entry.Ty = RetTy;
2309 Entry.IsSExt = false;
2310 Entry.IsZExt = false;
2311 Args.push_back(Entry);
2313 // Pass the return address of sin.
2314 SDValue SinPtr = DAG.CreateStackTemporary(RetVT);
2315 Entry.Node = SinPtr;
2316 Entry.Ty = RetTy->getPointerTo();
2317 Entry.IsSExt = false;
2318 Entry.IsZExt = false;
2319 Args.push_back(Entry);
2321 // Also pass the return address of the cos.
2322 SDValue CosPtr = DAG.CreateStackTemporary(RetVT);
2323 Entry.Node = CosPtr;
2324 Entry.Ty = RetTy->getPointerTo();
2325 Entry.IsSExt = false;
2326 Entry.IsZExt = false;
2327 Args.push_back(Entry);
2329 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2330 TLI.getPointerTy(DAG.getDataLayout()));
2332 SDLoc dl(Node);
2333 TargetLowering::CallLoweringInfo CLI(DAG);
2334 CLI.setDebugLoc(dl).setChain(InChain).setLibCallee(
2335 TLI.getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()), Callee,
2336 std::move(Args));
2338 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2340 Results.push_back(
2341 DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, MachinePointerInfo()));
2342 Results.push_back(
2343 DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, MachinePointerInfo()));
2346 /// This function is responsible for legalizing a
2347 /// INT_TO_FP operation of the specified operand when the target requests that
2348 /// we expand it. At this point, we know that the result and operand types are
2349 /// legal for the target.
2350 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, SDValue Op0,
2351 EVT DestVT,
2352 const SDLoc &dl) {
2353 EVT SrcVT = Op0.getValueType();
2355 // TODO: Should any fast-math-flags be set for the created nodes?
2356 LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n");
2357 if (SrcVT == MVT::i32 && TLI.isTypeLegal(MVT::f64)) {
2358 LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double "
2359 "expansion\n");
2361 // Get the stack frame index of a 8 byte buffer.
2362 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2364 // word offset constant for Hi/Lo address computation
2365 SDValue WordOff = DAG.getConstant(sizeof(int), dl,
2366 StackSlot.getValueType());
2367 // set up Hi and Lo (into buffer) address based on endian
2368 SDValue Hi = StackSlot;
2369 SDValue Lo = DAG.getNode(ISD::ADD, dl, StackSlot.getValueType(),
2370 StackSlot, WordOff);
2371 if (DAG.getDataLayout().isLittleEndian())
2372 std::swap(Hi, Lo);
2374 // if signed map to unsigned space
2375 SDValue Op0Mapped;
2376 if (isSigned) {
2377 // constant used to invert sign bit (signed to unsigned mapping)
2378 SDValue SignBit = DAG.getConstant(0x80000000u, dl, MVT::i32);
2379 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2380 } else {
2381 Op0Mapped = Op0;
2383 // store the lo of the constructed double - based on integer input
2384 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op0Mapped, Lo,
2385 MachinePointerInfo());
2386 // initial hi portion of constructed double
2387 SDValue InitialHi = DAG.getConstant(0x43300000u, dl, MVT::i32);
2388 // store the hi of the constructed double - biased exponent
2389 SDValue Store2 =
2390 DAG.getStore(Store1, dl, InitialHi, Hi, MachinePointerInfo());
2391 // load the constructed double
2392 SDValue Load =
2393 DAG.getLoad(MVT::f64, dl, Store2, StackSlot, MachinePointerInfo());
2394 // FP constant to bias correct the final result
2395 SDValue Bias = DAG.getConstantFP(isSigned ?
2396 BitsToDouble(0x4330000080000000ULL) :
2397 BitsToDouble(0x4330000000000000ULL),
2398 dl, MVT::f64);
2399 // subtract the bias
2400 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2401 // final result
2402 SDValue Result = DAG.getFPExtendOrRound(Sub, dl, DestVT);
2403 return Result;
2405 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2406 // Code below here assumes !isSigned without checking again.
2408 SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2410 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(SrcVT), Op0,
2411 DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
2412 SDValue Zero = DAG.getIntPtrConstant(0, dl),
2413 Four = DAG.getIntPtrConstant(4, dl);
2414 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(),
2415 SignSet, Four, Zero);
2417 // If the sign bit of the integer is set, the large number will be treated
2418 // as a negative number. To counteract this, the dynamic code adds an
2419 // offset depending on the data type.
2420 uint64_t FF;
2421 switch (SrcVT.getSimpleVT().SimpleTy) {
2422 default: llvm_unreachable("Unsupported integer type!");
2423 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float)
2424 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float)
2425 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float)
2426 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float)
2428 if (DAG.getDataLayout().isLittleEndian())
2429 FF <<= 32;
2430 Constant *FudgeFactor = ConstantInt::get(
2431 Type::getInt64Ty(*DAG.getContext()), FF);
2433 SDValue CPIdx =
2434 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout()));
2435 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2436 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset);
2437 Alignment = std::min(Alignment, 4u);
2438 SDValue FudgeInReg;
2439 if (DestVT == MVT::f32)
2440 FudgeInReg = DAG.getLoad(
2441 MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2442 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
2443 Alignment);
2444 else {
2445 SDValue Load = DAG.getExtLoad(
2446 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx,
2447 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32,
2448 Alignment);
2449 HandleSDNode Handle(Load);
2450 LegalizeOp(Load.getNode());
2451 FudgeInReg = Handle.getValue();
2454 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2457 /// This function is responsible for legalizing a
2458 /// *INT_TO_FP operation of the specified operand when the target requests that
2459 /// we promote it. At this point, we know that the result and operand types are
2460 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2461 /// operation that takes a larger input.
2462 SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT,
2463 bool isSigned,
2464 const SDLoc &dl) {
2465 // First step, figure out the appropriate *INT_TO_FP operation to use.
2466 EVT NewInTy = LegalOp.getValueType();
2468 unsigned OpToUse = 0;
2470 // Scan for the appropriate larger type to use.
2471 while (true) {
2472 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2473 assert(NewInTy.isInteger() && "Ran out of possibilities!");
2475 // If the target supports SINT_TO_FP of this type, use it.
2476 if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2477 OpToUse = ISD::SINT_TO_FP;
2478 break;
2480 if (isSigned) continue;
2482 // If the target supports UINT_TO_FP of this type, use it.
2483 if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2484 OpToUse = ISD::UINT_TO_FP;
2485 break;
2488 // Otherwise, try a larger type.
2491 // Okay, we found the operation and type to use. Zero extend our input to the
2492 // desired type then run the operation on it.
2493 return DAG.getNode(OpToUse, dl, DestVT,
2494 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2495 dl, NewInTy, LegalOp));
2498 /// This function is responsible for legalizing a
2499 /// FP_TO_*INT operation of the specified operand when the target requests that
2500 /// we promote it. At this point, we know that the result and operand types are
2501 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2502 /// operation that returns a larger result.
2503 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT,
2504 bool isSigned,
2505 const SDLoc &dl) {
2506 // First step, figure out the appropriate FP_TO*INT operation to use.
2507 EVT NewOutTy = DestVT;
2509 unsigned OpToUse = 0;
2511 // Scan for the appropriate larger type to use.
2512 while (true) {
2513 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2514 assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2516 // A larger signed type can hold all unsigned values of the requested type,
2517 // so using FP_TO_SINT is valid
2518 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2519 OpToUse = ISD::FP_TO_SINT;
2520 break;
2523 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT.
2524 if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2525 OpToUse = ISD::FP_TO_UINT;
2526 break;
2529 // Otherwise, try a larger type.
2532 // Okay, we found the operation and type to use.
2533 SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2535 // Truncate the result of the extended FP_TO_*INT operation to the desired
2536 // size.
2537 return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2540 /// Legalize a BITREVERSE scalar/vector operation as a series of mask + shifts.
2541 SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, const SDLoc &dl) {
2542 EVT VT = Op.getValueType();
2543 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2544 unsigned Sz = VT.getScalarSizeInBits();
2546 SDValue Tmp, Tmp2, Tmp3;
2548 // If we can, perform BSWAP first and then the mask+swap the i4, then i2
2549 // and finally the i1 pairs.
2550 // TODO: We can easily support i4/i2 legal types if any target ever does.
2551 if (Sz >= 8 && isPowerOf2_32(Sz)) {
2552 // Create the masks - repeating the pattern every byte.
2553 APInt MaskHi4 = APInt::getSplat(Sz, APInt(8, 0xF0));
2554 APInt MaskHi2 = APInt::getSplat(Sz, APInt(8, 0xCC));
2555 APInt MaskHi1 = APInt::getSplat(Sz, APInt(8, 0xAA));
2556 APInt MaskLo4 = APInt::getSplat(Sz, APInt(8, 0x0F));
2557 APInt MaskLo2 = APInt::getSplat(Sz, APInt(8, 0x33));
2558 APInt MaskLo1 = APInt::getSplat(Sz, APInt(8, 0x55));
2560 // BSWAP if the type is wider than a single byte.
2561 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
2563 // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4)
2564 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT));
2565 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT));
2566 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT));
2567 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
2568 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
2570 // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2)
2571 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT));
2572 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT));
2573 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT));
2574 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
2575 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
2577 // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1)
2578 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT));
2579 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT));
2580 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT));
2581 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
2582 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
2583 return Tmp;
2586 Tmp = DAG.getConstant(0, dl, VT);
2587 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
2588 if (I < J)
2589 Tmp2 =
2590 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
2591 else
2592 Tmp2 =
2593 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
2595 APInt Shift(Sz, 1);
2596 Shift <<= J;
2597 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
2598 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
2601 return Tmp;
2604 /// Open code the operations for BSWAP of the specified operation.
2605 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, const SDLoc &dl) {
2606 EVT VT = Op.getValueType();
2607 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2608 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2609 switch (VT.getSimpleVT().getScalarType().SimpleTy) {
2610 default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2611 case MVT::i16:
2612 // Use a rotate by 8. This can be further expanded if necessary.
2613 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2614 case MVT::i32:
2615 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2616 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2617 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2618 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2619 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
2620 DAG.getConstant(0xFF0000, dl, VT));
2621 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
2622 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2623 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2624 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2625 case MVT::i64:
2626 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
2627 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
2628 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2629 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2630 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
2631 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
2632 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
2633 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
2634 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
2635 DAG.getConstant(255ULL<<48, dl, VT));
2636 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
2637 DAG.getConstant(255ULL<<40, dl, VT));
2638 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
2639 DAG.getConstant(255ULL<<32, dl, VT));
2640 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
2641 DAG.getConstant(255ULL<<24, dl, VT));
2642 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
2643 DAG.getConstant(255ULL<<16, dl, VT));
2644 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
2645 DAG.getConstant(255ULL<<8 , dl, VT));
2646 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2647 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2648 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2649 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2650 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2651 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2652 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2656 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) {
2657 LLVM_DEBUG(dbgs() << "Trying to expand node\n");
2658 SmallVector<SDValue, 8> Results;
2659 SDLoc dl(Node);
2660 SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2661 bool NeedInvert;
2662 switch (Node->getOpcode()) {
2663 case ISD::ABS:
2664 if (TLI.expandABS(Node, Tmp1, DAG))
2665 Results.push_back(Tmp1);
2666 break;
2667 case ISD::CTPOP:
2668 if (TLI.expandCTPOP(Node, Tmp1, DAG))
2669 Results.push_back(Tmp1);
2670 break;
2671 case ISD::CTLZ:
2672 case ISD::CTLZ_ZERO_UNDEF:
2673 if (TLI.expandCTLZ(Node, Tmp1, DAG))
2674 Results.push_back(Tmp1);
2675 break;
2676 case ISD::CTTZ:
2677 case ISD::CTTZ_ZERO_UNDEF:
2678 if (TLI.expandCTTZ(Node, Tmp1, DAG))
2679 Results.push_back(Tmp1);
2680 break;
2681 case ISD::BITREVERSE:
2682 Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl));
2683 break;
2684 case ISD::BSWAP:
2685 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2686 break;
2687 case ISD::FRAMEADDR:
2688 case ISD::RETURNADDR:
2689 case ISD::FRAME_TO_ARGS_OFFSET:
2690 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
2691 break;
2692 case ISD::EH_DWARF_CFA: {
2693 SDValue CfaArg = DAG.getSExtOrTrunc(Node->getOperand(0), dl,
2694 TLI.getPointerTy(DAG.getDataLayout()));
2695 SDValue Offset = DAG.getNode(ISD::ADD, dl,
2696 CfaArg.getValueType(),
2697 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl,
2698 CfaArg.getValueType()),
2699 CfaArg);
2700 SDValue FA = DAG.getNode(
2701 ISD::FRAMEADDR, dl, TLI.getPointerTy(DAG.getDataLayout()),
2702 DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())));
2703 Results.push_back(DAG.getNode(ISD::ADD, dl, FA.getValueType(),
2704 FA, Offset));
2705 break;
2707 case ISD::FLT_ROUNDS_:
2708 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0)));
2709 break;
2710 case ISD::EH_RETURN:
2711 case ISD::EH_LABEL:
2712 case ISD::PREFETCH:
2713 case ISD::VAEND:
2714 case ISD::EH_SJLJ_LONGJMP:
2715 // If the target didn't expand these, there's nothing to do, so just
2716 // preserve the chain and be done.
2717 Results.push_back(Node->getOperand(0));
2718 break;
2719 case ISD::READCYCLECOUNTER:
2720 // If the target didn't expand this, just return 'zero' and preserve the
2721 // chain.
2722 Results.append(Node->getNumValues() - 1,
2723 DAG.getConstant(0, dl, Node->getValueType(0)));
2724 Results.push_back(Node->getOperand(0));
2725 break;
2726 case ISD::EH_SJLJ_SETJMP:
2727 // If the target didn't expand this, just return 'zero' and preserve the
2728 // chain.
2729 Results.push_back(DAG.getConstant(0, dl, MVT::i32));
2730 Results.push_back(Node->getOperand(0));
2731 break;
2732 case ISD::ATOMIC_LOAD: {
2733 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
2734 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0));
2735 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
2736 SDValue Swap = DAG.getAtomicCmpSwap(
2737 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
2738 Node->getOperand(0), Node->getOperand(1), Zero, Zero,
2739 cast<AtomicSDNode>(Node)->getMemOperand());
2740 Results.push_back(Swap.getValue(0));
2741 Results.push_back(Swap.getValue(1));
2742 break;
2744 case ISD::ATOMIC_STORE: {
2745 // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
2746 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
2747 cast<AtomicSDNode>(Node)->getMemoryVT(),
2748 Node->getOperand(0),
2749 Node->getOperand(1), Node->getOperand(2),
2750 cast<AtomicSDNode>(Node)->getMemOperand());
2751 Results.push_back(Swap.getValue(1));
2752 break;
2754 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
2755 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and
2756 // splits out the success value as a comparison. Expanding the resulting
2757 // ATOMIC_CMP_SWAP will produce a libcall.
2758 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other);
2759 SDValue Res = DAG.getAtomicCmpSwap(
2760 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs,
2761 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2),
2762 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand());
2764 SDValue ExtRes = Res;
2765 SDValue LHS = Res;
2766 SDValue RHS = Node->getOperand(1);
2768 EVT AtomicType = cast<AtomicSDNode>(Node)->getMemoryVT();
2769 EVT OuterType = Node->getValueType(0);
2770 switch (TLI.getExtendForAtomicOps()) {
2771 case ISD::SIGN_EXTEND:
2772 LHS = DAG.getNode(ISD::AssertSext, dl, OuterType, Res,
2773 DAG.getValueType(AtomicType));
2774 RHS = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, OuterType,
2775 Node->getOperand(2), DAG.getValueType(AtomicType));
2776 ExtRes = LHS;
2777 break;
2778 case ISD::ZERO_EXTEND:
2779 LHS = DAG.getNode(ISD::AssertZext, dl, OuterType, Res,
2780 DAG.getValueType(AtomicType));
2781 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType);
2782 ExtRes = LHS;
2783 break;
2784 case ISD::ANY_EXTEND:
2785 LHS = DAG.getZeroExtendInReg(Res, dl, AtomicType);
2786 RHS = DAG.getZeroExtendInReg(Node->getOperand(2), dl, AtomicType);
2787 break;
2788 default:
2789 llvm_unreachable("Invalid atomic op extension");
2792 SDValue Success =
2793 DAG.getSetCC(dl, Node->getValueType(1), LHS, RHS, ISD::SETEQ);
2795 Results.push_back(ExtRes.getValue(0));
2796 Results.push_back(Success);
2797 Results.push_back(Res.getValue(1));
2798 break;
2800 case ISD::DYNAMIC_STACKALLOC:
2801 ExpandDYNAMIC_STACKALLOC(Node, Results);
2802 break;
2803 case ISD::MERGE_VALUES:
2804 for (unsigned i = 0; i < Node->getNumValues(); i++)
2805 Results.push_back(Node->getOperand(i));
2806 break;
2807 case ISD::UNDEF: {
2808 EVT VT = Node->getValueType(0);
2809 if (VT.isInteger())
2810 Results.push_back(DAG.getConstant(0, dl, VT));
2811 else {
2812 assert(VT.isFloatingPoint() && "Unknown value type!");
2813 Results.push_back(DAG.getConstantFP(0, dl, VT));
2815 break;
2817 case ISD::STRICT_FP_ROUND:
2818 Tmp1 = EmitStackConvert(Node->getOperand(1),
2819 Node->getValueType(0),
2820 Node->getValueType(0), dl, Node->getOperand(0));
2821 ReplaceNode(Node, Tmp1.getNode());
2822 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n");
2823 return true;
2824 case ISD::FP_ROUND:
2825 case ISD::BITCAST:
2826 Tmp1 = EmitStackConvert(Node->getOperand(0),
2827 Node->getValueType(0),
2828 Node->getValueType(0), dl);
2829 Results.push_back(Tmp1);
2830 break;
2831 case ISD::STRICT_FP_EXTEND:
2832 Tmp1 = EmitStackConvert(Node->getOperand(1),
2833 Node->getOperand(1).getValueType(),
2834 Node->getValueType(0), dl, Node->getOperand(0));
2835 ReplaceNode(Node, Tmp1.getNode());
2836 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n");
2837 return true;
2838 case ISD::FP_EXTEND:
2839 Tmp1 = EmitStackConvert(Node->getOperand(0),
2840 Node->getOperand(0).getValueType(),
2841 Node->getValueType(0), dl);
2842 Results.push_back(Tmp1);
2843 break;
2844 case ISD::SIGN_EXTEND_INREG: {
2845 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2846 EVT VT = Node->getValueType(0);
2848 // An in-register sign-extend of a boolean is a negation:
2849 // 'true' (1) sign-extended is -1.
2850 // 'false' (0) sign-extended is 0.
2851 // However, we must mask the high bits of the source operand because the
2852 // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero.
2854 // TODO: Do this for vectors too?
2855 if (ExtraVT.getSizeInBits() == 1) {
2856 SDValue One = DAG.getConstant(1, dl, VT);
2857 SDValue And = DAG.getNode(ISD::AND, dl, VT, Node->getOperand(0), One);
2858 SDValue Zero = DAG.getConstant(0, dl, VT);
2859 SDValue Neg = DAG.getNode(ISD::SUB, dl, VT, Zero, And);
2860 Results.push_back(Neg);
2861 break;
2864 // NOTE: we could fall back on load/store here too for targets without
2865 // SRA. However, it is doubtful that any exist.
2866 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
2867 unsigned BitsDiff = VT.getScalarSizeInBits() -
2868 ExtraVT.getScalarSizeInBits();
2869 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy);
2870 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2871 Node->getOperand(0), ShiftCst);
2872 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2873 Results.push_back(Tmp1);
2874 break;
2876 case ISD::FP_ROUND_INREG: {
2877 // The only way we can lower this is to turn it into a TRUNCSTORE,
2878 // EXTLOAD pair, targeting a temporary location (a stack slot).
2880 // NOTE: there is a choice here between constantly creating new stack
2881 // slots and always reusing the same one. We currently always create
2882 // new ones, as reuse may inhibit scheduling.
2883 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2884 Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2885 Node->getValueType(0), dl);
2886 Results.push_back(Tmp1);
2887 break;
2889 case ISD::UINT_TO_FP:
2890 if (TLI.expandUINT_TO_FP(Node, Tmp1, DAG)) {
2891 Results.push_back(Tmp1);
2892 break;
2894 LLVM_FALLTHROUGH;
2895 case ISD::SINT_TO_FP:
2896 Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2897 Node->getOperand(0), Node->getValueType(0), dl);
2898 Results.push_back(Tmp1);
2899 break;
2900 case ISD::FP_TO_SINT:
2901 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG))
2902 Results.push_back(Tmp1);
2903 break;
2904 case ISD::FP_TO_UINT:
2905 if (TLI.expandFP_TO_UINT(Node, Tmp1, DAG))
2906 Results.push_back(Tmp1);
2907 break;
2908 case ISD::LROUND:
2909 Results.push_back(ExpandArgFPLibCall(Node, RTLIB::LROUND_F32,
2910 RTLIB::LROUND_F64, RTLIB::LROUND_F80,
2911 RTLIB::LROUND_F128,
2912 RTLIB::LROUND_PPCF128));
2913 break;
2914 case ISD::LLROUND:
2915 Results.push_back(ExpandArgFPLibCall(Node, RTLIB::LLROUND_F32,
2916 RTLIB::LLROUND_F64, RTLIB::LLROUND_F80,
2917 RTLIB::LLROUND_F128,
2918 RTLIB::LLROUND_PPCF128));
2919 break;
2920 case ISD::LRINT:
2921 Results.push_back(ExpandArgFPLibCall(Node, RTLIB::LRINT_F32,
2922 RTLIB::LRINT_F64, RTLIB::LRINT_F80,
2923 RTLIB::LRINT_F128,
2924 RTLIB::LRINT_PPCF128));
2925 break;
2926 case ISD::LLRINT:
2927 Results.push_back(ExpandArgFPLibCall(Node, RTLIB::LLRINT_F32,
2928 RTLIB::LLRINT_F64, RTLIB::LLRINT_F80,
2929 RTLIB::LLRINT_F128,
2930 RTLIB::LLRINT_PPCF128));
2931 break;
2932 case ISD::VAARG:
2933 Results.push_back(DAG.expandVAArg(Node));
2934 Results.push_back(Results[0].getValue(1));
2935 break;
2936 case ISD::VACOPY:
2937 Results.push_back(DAG.expandVACopy(Node));
2938 break;
2939 case ISD::EXTRACT_VECTOR_ELT:
2940 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2941 // This must be an access of the only element. Return it.
2942 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
2943 Node->getOperand(0));
2944 else
2945 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2946 Results.push_back(Tmp1);
2947 break;
2948 case ISD::EXTRACT_SUBVECTOR:
2949 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2950 break;
2951 case ISD::INSERT_SUBVECTOR:
2952 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
2953 break;
2954 case ISD::CONCAT_VECTORS:
2955 Results.push_back(ExpandVectorBuildThroughStack(Node));
2956 break;
2957 case ISD::SCALAR_TO_VECTOR:
2958 Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2959 break;
2960 case ISD::INSERT_VECTOR_ELT:
2961 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2962 Node->getOperand(1),
2963 Node->getOperand(2), dl));
2964 break;
2965 case ISD::VECTOR_SHUFFLE: {
2966 SmallVector<int, 32> NewMask;
2967 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
2969 EVT VT = Node->getValueType(0);
2970 EVT EltVT = VT.getVectorElementType();
2971 SDValue Op0 = Node->getOperand(0);
2972 SDValue Op1 = Node->getOperand(1);
2973 if (!TLI.isTypeLegal(EltVT)) {
2974 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
2976 // BUILD_VECTOR operands are allowed to be wider than the element type.
2977 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept
2978 // it.
2979 if (NewEltVT.bitsLT(EltVT)) {
2980 // Convert shuffle node.
2981 // If original node was v4i64 and the new EltVT is i32,
2982 // cast operands to v8i32 and re-build the mask.
2984 // Calculate new VT, the size of the new VT should be equal to original.
2985 EVT NewVT =
2986 EVT::getVectorVT(*DAG.getContext(), NewEltVT,
2987 VT.getSizeInBits() / NewEltVT.getSizeInBits());
2988 assert(NewVT.bitsEq(VT));
2990 // cast operands to new VT
2991 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0);
2992 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1);
2994 // Convert the shuffle mask
2995 unsigned int factor =
2996 NewVT.getVectorNumElements()/VT.getVectorNumElements();
2998 // EltVT gets smaller
2999 assert(factor > 0);
3001 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
3002 if (Mask[i] < 0) {
3003 for (unsigned fi = 0; fi < factor; ++fi)
3004 NewMask.push_back(Mask[i]);
3006 else {
3007 for (unsigned fi = 0; fi < factor; ++fi)
3008 NewMask.push_back(Mask[i]*factor+fi);
3011 Mask = NewMask;
3012 VT = NewVT;
3014 EltVT = NewEltVT;
3016 unsigned NumElems = VT.getVectorNumElements();
3017 SmallVector<SDValue, 16> Ops;
3018 for (unsigned i = 0; i != NumElems; ++i) {
3019 if (Mask[i] < 0) {
3020 Ops.push_back(DAG.getUNDEF(EltVT));
3021 continue;
3023 unsigned Idx = Mask[i];
3024 if (Idx < NumElems)
3025 Ops.push_back(DAG.getNode(
3026 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
3027 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))));
3028 else
3029 Ops.push_back(DAG.getNode(
3030 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1,
3031 DAG.getConstant(Idx - NumElems, dl,
3032 TLI.getVectorIdxTy(DAG.getDataLayout()))));
3035 Tmp1 = DAG.getBuildVector(VT, dl, Ops);
3036 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
3037 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1);
3038 Results.push_back(Tmp1);
3039 break;
3041 case ISD::EXTRACT_ELEMENT: {
3042 EVT OpTy = Node->getOperand(0).getValueType();
3043 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
3044 // 1 -> Hi
3045 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
3046 DAG.getConstant(OpTy.getSizeInBits() / 2, dl,
3047 TLI.getShiftAmountTy(
3048 Node->getOperand(0).getValueType(),
3049 DAG.getDataLayout())));
3050 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
3051 } else {
3052 // 0 -> Lo
3053 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
3054 Node->getOperand(0));
3056 Results.push_back(Tmp1);
3057 break;
3059 case ISD::STACKSAVE:
3060 // Expand to CopyFromReg if the target set
3061 // StackPointerRegisterToSaveRestore.
3062 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3063 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
3064 Node->getValueType(0)));
3065 Results.push_back(Results[0].getValue(1));
3066 } else {
3067 Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
3068 Results.push_back(Node->getOperand(0));
3070 break;
3071 case ISD::STACKRESTORE:
3072 // Expand to CopyToReg if the target set
3073 // StackPointerRegisterToSaveRestore.
3074 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
3075 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
3076 Node->getOperand(1)));
3077 } else {
3078 Results.push_back(Node->getOperand(0));
3080 break;
3081 case ISD::GET_DYNAMIC_AREA_OFFSET:
3082 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0)));
3083 Results.push_back(Results[0].getValue(0));
3084 break;
3085 case ISD::FCOPYSIGN:
3086 Results.push_back(ExpandFCOPYSIGN(Node));
3087 break;
3088 case ISD::FNEG:
3089 // Expand Y = FNEG(X) -> Y = SUB -0.0, X
3090 Tmp1 = DAG.getConstantFP(-0.0, dl, Node->getValueType(0));
3091 // TODO: If FNEG has fast-math-flags, propagate them to the FSUB.
3092 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
3093 Node->getOperand(0));
3094 Results.push_back(Tmp1);
3095 break;
3096 case ISD::FABS:
3097 Results.push_back(ExpandFABS(Node));
3098 break;
3099 case ISD::SMIN:
3100 case ISD::SMAX:
3101 case ISD::UMIN:
3102 case ISD::UMAX: {
3103 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
3104 ISD::CondCode Pred;
3105 switch (Node->getOpcode()) {
3106 default: llvm_unreachable("How did we get here?");
3107 case ISD::SMAX: Pred = ISD::SETGT; break;
3108 case ISD::SMIN: Pred = ISD::SETLT; break;
3109 case ISD::UMAX: Pred = ISD::SETUGT; break;
3110 case ISD::UMIN: Pred = ISD::SETULT; break;
3112 Tmp1 = Node->getOperand(0);
3113 Tmp2 = Node->getOperand(1);
3114 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred);
3115 Results.push_back(Tmp1);
3116 break;
3118 case ISD::FMINNUM:
3119 case ISD::FMAXNUM: {
3120 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Node, DAG))
3121 Results.push_back(Expanded);
3122 break;
3124 case ISD::FSIN:
3125 case ISD::FCOS: {
3126 EVT VT = Node->getValueType(0);
3127 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin /
3128 // fcos which share the same operand and both are used.
3129 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) ||
3130 isSinCosLibcallAvailable(Node, TLI))
3131 && useSinCos(Node)) {
3132 SDVTList VTs = DAG.getVTList(VT, VT);
3133 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0));
3134 if (Node->getOpcode() == ISD::FCOS)
3135 Tmp1 = Tmp1.getValue(1);
3136 Results.push_back(Tmp1);
3138 break;
3140 case ISD::FMAD:
3141 llvm_unreachable("Illegal fmad should never be formed");
3143 case ISD::FP16_TO_FP:
3144 if (Node->getValueType(0) != MVT::f32) {
3145 // We can extend to types bigger than f32 in two steps without changing
3146 // the result. Since "f16 -> f32" is much more commonly available, give
3147 // CodeGen the option of emitting that before resorting to a libcall.
3148 SDValue Res =
3149 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0));
3150 Results.push_back(
3151 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res));
3153 break;
3154 case ISD::FP_TO_FP16:
3155 LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n");
3156 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) {
3157 SDValue Op = Node->getOperand(0);
3158 MVT SVT = Op.getSimpleValueType();
3159 if ((SVT == MVT::f64 || SVT == MVT::f80) &&
3160 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) {
3161 // Under fastmath, we can expand this node into a fround followed by
3162 // a float-half conversion.
3163 SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op,
3164 DAG.getIntPtrConstant(0, dl));
3165 Results.push_back(
3166 DAG.getNode(ISD::FP_TO_FP16, dl, Node->getValueType(0), FloatVal));
3169 break;
3170 case ISD::ConstantFP: {
3171 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
3172 // Check to see if this FP immediate is already legal.
3173 // If this is a legal constant, turn it into a TargetConstantFP node.
3174 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0),
3175 DAG.getMachineFunction().getFunction().hasOptSize()))
3176 Results.push_back(ExpandConstantFP(CFP, true));
3177 break;
3179 case ISD::Constant: {
3180 ConstantSDNode *CP = cast<ConstantSDNode>(Node);
3181 Results.push_back(ExpandConstant(CP));
3182 break;
3184 case ISD::FSUB: {
3185 EVT VT = Node->getValueType(0);
3186 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) &&
3187 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) {
3188 const SDNodeFlags Flags = Node->getFlags();
3189 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1));
3190 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags);
3191 Results.push_back(Tmp1);
3193 break;
3195 case ISD::SUB: {
3196 EVT VT = Node->getValueType(0);
3197 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
3198 TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
3199 "Don't know how to expand this subtraction!");
3200 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
3201 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
3202 VT));
3203 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT));
3204 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
3205 break;
3207 case ISD::UREM:
3208 case ISD::SREM: {
3209 EVT VT = Node->getValueType(0);
3210 bool isSigned = Node->getOpcode() == ISD::SREM;
3211 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
3212 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3213 Tmp2 = Node->getOperand(0);
3214 Tmp3 = Node->getOperand(1);
3215 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
3216 SDVTList VTs = DAG.getVTList(VT, VT);
3217 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
3218 Results.push_back(Tmp1);
3219 } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
3220 // X % Y -> X-X/Y*Y
3221 Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
3222 Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
3223 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
3224 Results.push_back(Tmp1);
3226 break;
3228 case ISD::UDIV:
3229 case ISD::SDIV: {
3230 bool isSigned = Node->getOpcode() == ISD::SDIV;
3231 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3232 EVT VT = Node->getValueType(0);
3233 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) {
3234 SDVTList VTs = DAG.getVTList(VT, VT);
3235 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3236 Node->getOperand(1));
3237 Results.push_back(Tmp1);
3239 break;
3241 case ISD::MULHU:
3242 case ISD::MULHS: {
3243 unsigned ExpandOpcode =
3244 Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : ISD::SMUL_LOHI;
3245 EVT VT = Node->getValueType(0);
3246 SDVTList VTs = DAG.getVTList(VT, VT);
3248 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3249 Node->getOperand(1));
3250 Results.push_back(Tmp1.getValue(1));
3251 break;
3253 case ISD::UMUL_LOHI:
3254 case ISD::SMUL_LOHI: {
3255 SDValue LHS = Node->getOperand(0);
3256 SDValue RHS = Node->getOperand(1);
3257 MVT VT = LHS.getSimpleValueType();
3258 unsigned MULHOpcode =
3259 Node->getOpcode() == ISD::UMUL_LOHI ? ISD::MULHU : ISD::MULHS;
3261 if (TLI.isOperationLegalOrCustom(MULHOpcode, VT)) {
3262 Results.push_back(DAG.getNode(ISD::MUL, dl, VT, LHS, RHS));
3263 Results.push_back(DAG.getNode(MULHOpcode, dl, VT, LHS, RHS));
3264 break;
3267 SmallVector<SDValue, 4> Halves;
3268 EVT HalfType = EVT(VT).getHalfSizedIntegerVT(*DAG.getContext());
3269 assert(TLI.isTypeLegal(HalfType));
3270 if (TLI.expandMUL_LOHI(Node->getOpcode(), VT, Node, LHS, RHS, Halves,
3271 HalfType, DAG,
3272 TargetLowering::MulExpansionKind::Always)) {
3273 for (unsigned i = 0; i < 2; ++i) {
3274 SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Halves[2 * i]);
3275 SDValue Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Halves[2 * i + 1]);
3276 SDValue Shift = DAG.getConstant(
3277 HalfType.getScalarSizeInBits(), dl,
3278 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
3279 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3280 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
3282 break;
3284 break;
3286 case ISD::MUL: {
3287 EVT VT = Node->getValueType(0);
3288 SDVTList VTs = DAG.getVTList(VT, VT);
3289 // See if multiply or divide can be lowered using two-result operations.
3290 // We just need the low half of the multiply; try both the signed
3291 // and unsigned forms. If the target supports both SMUL_LOHI and
3292 // UMUL_LOHI, form a preference by checking which forms of plain
3293 // MULH it supports.
3294 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3295 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3296 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3297 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3298 unsigned OpToUse = 0;
3299 if (HasSMUL_LOHI && !HasMULHS) {
3300 OpToUse = ISD::SMUL_LOHI;
3301 } else if (HasUMUL_LOHI && !HasMULHU) {
3302 OpToUse = ISD::UMUL_LOHI;
3303 } else if (HasSMUL_LOHI) {
3304 OpToUse = ISD::SMUL_LOHI;
3305 } else if (HasUMUL_LOHI) {
3306 OpToUse = ISD::UMUL_LOHI;
3308 if (OpToUse) {
3309 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3310 Node->getOperand(1)));
3311 break;
3314 SDValue Lo, Hi;
3315 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext());
3316 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) &&
3317 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) &&
3318 TLI.isOperationLegalOrCustom(ISD::SHL, VT) &&
3319 TLI.isOperationLegalOrCustom(ISD::OR, VT) &&
3320 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG,
3321 TargetLowering::MulExpansionKind::OnlyLegalOrCustom)) {
3322 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
3323 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi);
3324 SDValue Shift =
3325 DAG.getConstant(HalfType.getSizeInBits(), dl,
3326 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout()));
3327 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3328 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi));
3330 break;
3332 case ISD::FSHL:
3333 case ISD::FSHR:
3334 if (TLI.expandFunnelShift(Node, Tmp1, DAG))
3335 Results.push_back(Tmp1);
3336 break;
3337 case ISD::ROTL:
3338 case ISD::ROTR:
3339 if (TLI.expandROT(Node, Tmp1, DAG))
3340 Results.push_back(Tmp1);
3341 break;
3342 case ISD::SADDSAT:
3343 case ISD::UADDSAT:
3344 case ISD::SSUBSAT:
3345 case ISD::USUBSAT:
3346 Results.push_back(TLI.expandAddSubSat(Node, DAG));
3347 break;
3348 case ISD::SMULFIX:
3349 case ISD::SMULFIXSAT:
3350 case ISD::UMULFIX:
3351 Results.push_back(TLI.expandFixedPointMul(Node, DAG));
3352 break;
3353 case ISD::ADDCARRY:
3354 case ISD::SUBCARRY: {
3355 SDValue LHS = Node->getOperand(0);
3356 SDValue RHS = Node->getOperand(1);
3357 SDValue Carry = Node->getOperand(2);
3359 bool IsAdd = Node->getOpcode() == ISD::ADDCARRY;
3361 // Initial add of the 2 operands.
3362 unsigned Op = IsAdd ? ISD::ADD : ISD::SUB;
3363 EVT VT = LHS.getValueType();
3364 SDValue Sum = DAG.getNode(Op, dl, VT, LHS, RHS);
3366 // Initial check for overflow.
3367 EVT CarryType = Node->getValueType(1);
3368 EVT SetCCType = getSetCCResultType(Node->getValueType(0));
3369 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
3370 SDValue Overflow = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC);
3372 // Add of the sum and the carry.
3373 SDValue CarryExt =
3374 DAG.getZeroExtendInReg(DAG.getZExtOrTrunc(Carry, dl, VT), dl, MVT::i1);
3375 SDValue Sum2 = DAG.getNode(Op, dl, VT, Sum, CarryExt);
3377 // Second check for overflow. If we are adding, we can only overflow if the
3378 // initial sum is all 1s ang the carry is set, resulting in a new sum of 0.
3379 // If we are subtracting, we can only overflow if the initial sum is 0 and
3380 // the carry is set, resulting in a new sum of all 1s.
3381 SDValue Zero = DAG.getConstant(0, dl, VT);
3382 SDValue Overflow2 =
3383 IsAdd ? DAG.getSetCC(dl, SetCCType, Sum2, Zero, ISD::SETEQ)
3384 : DAG.getSetCC(dl, SetCCType, Sum, Zero, ISD::SETEQ);
3385 Overflow2 = DAG.getNode(ISD::AND, dl, SetCCType, Overflow2,
3386 DAG.getZExtOrTrunc(Carry, dl, SetCCType));
3388 SDValue ResultCarry =
3389 DAG.getNode(ISD::OR, dl, SetCCType, Overflow, Overflow2);
3391 Results.push_back(Sum2);
3392 Results.push_back(DAG.getBoolExtOrTrunc(ResultCarry, dl, CarryType, VT));
3393 break;
3395 case ISD::SADDO:
3396 case ISD::SSUBO: {
3397 SDValue Result, Overflow;
3398 TLI.expandSADDSUBO(Node, Result, Overflow, DAG);
3399 Results.push_back(Result);
3400 Results.push_back(Overflow);
3401 break;
3403 case ISD::UADDO:
3404 case ISD::USUBO: {
3405 SDValue Result, Overflow;
3406 TLI.expandUADDSUBO(Node, Result, Overflow, DAG);
3407 Results.push_back(Result);
3408 Results.push_back(Overflow);
3409 break;
3411 case ISD::UMULO:
3412 case ISD::SMULO: {
3413 SDValue Result, Overflow;
3414 if (TLI.expandMULO(Node, Result, Overflow, DAG)) {
3415 Results.push_back(Result);
3416 Results.push_back(Overflow);
3418 break;
3420 case ISD::BUILD_PAIR: {
3421 EVT PairTy = Node->getValueType(0);
3422 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3423 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3424 Tmp2 = DAG.getNode(
3425 ISD::SHL, dl, PairTy, Tmp2,
3426 DAG.getConstant(PairTy.getSizeInBits() / 2, dl,
3427 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout())));
3428 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3429 break;
3431 case ISD::SELECT:
3432 Tmp1 = Node->getOperand(0);
3433 Tmp2 = Node->getOperand(1);
3434 Tmp3 = Node->getOperand(2);
3435 if (Tmp1.getOpcode() == ISD::SETCC) {
3436 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3437 Tmp2, Tmp3,
3438 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3439 } else {
3440 Tmp1 = DAG.getSelectCC(dl, Tmp1,
3441 DAG.getConstant(0, dl, Tmp1.getValueType()),
3442 Tmp2, Tmp3, ISD::SETNE);
3444 Tmp1->setFlags(Node->getFlags());
3445 Results.push_back(Tmp1);
3446 break;
3447 case ISD::BR_JT: {
3448 SDValue Chain = Node->getOperand(0);
3449 SDValue Table = Node->getOperand(1);
3450 SDValue Index = Node->getOperand(2);
3452 const DataLayout &TD = DAG.getDataLayout();
3453 EVT PTy = TLI.getPointerTy(TD);
3455 unsigned EntrySize =
3456 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3458 // For power-of-two jumptable entry sizes convert multiplication to a shift.
3459 // This transformation needs to be done here since otherwise the MIPS
3460 // backend will end up emitting a three instruction multiply sequence
3461 // instead of a single shift and MSP430 will call a runtime function.
3462 if (llvm::isPowerOf2_32(EntrySize))
3463 Index = DAG.getNode(
3464 ISD::SHL, dl, Index.getValueType(), Index,
3465 DAG.getConstant(llvm::Log2_32(EntrySize), dl, Index.getValueType()));
3466 else
3467 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index,
3468 DAG.getConstant(EntrySize, dl, Index.getValueType()));
3469 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(),
3470 Index, Table);
3472 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3473 SDValue LD = DAG.getExtLoad(
3474 ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3475 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT);
3476 Addr = LD;
3477 if (TLI.isJumpTableRelative()) {
3478 // For PIC, the sequence is:
3479 // BRIND(load(Jumptable + index) + RelocBase)
3480 // RelocBase can be JumpTable, GOT or some sort of global base.
3481 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3482 TLI.getPICJumpTableRelocBase(Table, DAG));
3485 Tmp1 = TLI.expandIndirectJTBranch(dl, LD.getValue(1), Addr, DAG);
3486 Results.push_back(Tmp1);
3487 break;
3489 case ISD::BRCOND:
3490 // Expand brcond's setcc into its constituent parts and create a BR_CC
3491 // Node.
3492 Tmp1 = Node->getOperand(0);
3493 Tmp2 = Node->getOperand(1);
3494 if (Tmp2.getOpcode() == ISD::SETCC) {
3495 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3496 Tmp1, Tmp2.getOperand(2),
3497 Tmp2.getOperand(0), Tmp2.getOperand(1),
3498 Node->getOperand(2));
3499 } else {
3500 // We test only the i1 bit. Skip the AND if UNDEF or another AND.
3501 if (Tmp2.isUndef() ||
3502 (Tmp2.getOpcode() == ISD::AND &&
3503 isa<ConstantSDNode>(Tmp2.getOperand(1)) &&
3504 cast<ConstantSDNode>(Tmp2.getOperand(1))->getZExtValue() == 1))
3505 Tmp3 = Tmp2;
3506 else
3507 Tmp3 = DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
3508 DAG.getConstant(1, dl, Tmp2.getValueType()));
3509 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3510 DAG.getCondCode(ISD::SETNE), Tmp3,
3511 DAG.getConstant(0, dl, Tmp3.getValueType()),
3512 Node->getOperand(2));
3514 Results.push_back(Tmp1);
3515 break;
3516 case ISD::SETCC: {
3517 Tmp1 = Node->getOperand(0);
3518 Tmp2 = Node->getOperand(1);
3519 Tmp3 = Node->getOperand(2);
3520 bool Legalized = LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2,
3521 Tmp3, NeedInvert, dl);
3523 if (Legalized) {
3524 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3525 // condition code, create a new SETCC node.
3526 if (Tmp3.getNode())
3527 Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3528 Tmp1, Tmp2, Tmp3, Node->getFlags());
3530 // If we expanded the SETCC by inverting the condition code, then wrap
3531 // the existing SETCC in a NOT to restore the intended condition.
3532 if (NeedInvert)
3533 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0));
3535 Results.push_back(Tmp1);
3536 break;
3539 // Otherwise, SETCC for the given comparison type must be completely
3540 // illegal; expand it into a SELECT_CC.
3541 EVT VT = Node->getValueType(0);
3542 int TrueValue;
3543 switch (TLI.getBooleanContents(Tmp1.getValueType())) {
3544 case TargetLowering::ZeroOrOneBooleanContent:
3545 case TargetLowering::UndefinedBooleanContent:
3546 TrueValue = 1;
3547 break;
3548 case TargetLowering::ZeroOrNegativeOneBooleanContent:
3549 TrueValue = -1;
3550 break;
3552 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3553 DAG.getConstant(TrueValue, dl, VT),
3554 DAG.getConstant(0, dl, VT),
3555 Tmp3);
3556 Tmp1->setFlags(Node->getFlags());
3557 Results.push_back(Tmp1);
3558 break;
3560 case ISD::SELECT_CC: {
3561 Tmp1 = Node->getOperand(0); // LHS
3562 Tmp2 = Node->getOperand(1); // RHS
3563 Tmp3 = Node->getOperand(2); // True
3564 Tmp4 = Node->getOperand(3); // False
3565 EVT VT = Node->getValueType(0);
3566 SDValue CC = Node->getOperand(4);
3567 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get();
3569 if (TLI.isCondCodeLegalOrCustom(CCOp, Tmp1.getSimpleValueType())) {
3570 // If the condition code is legal, then we need to expand this
3571 // node using SETCC and SELECT.
3572 EVT CmpVT = Tmp1.getValueType();
3573 assert(!TLI.isOperationExpand(ISD::SELECT, VT) &&
3574 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be "
3575 "expanded.");
3576 EVT CCVT = getSetCCResultType(CmpVT);
3577 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC, Node->getFlags());
3578 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4));
3579 break;
3582 // SELECT_CC is legal, so the condition code must not be.
3583 bool Legalized = false;
3584 // Try to legalize by inverting the condition. This is for targets that
3585 // might support an ordered version of a condition, but not the unordered
3586 // version (or vice versa).
3587 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp,
3588 Tmp1.getValueType().isInteger());
3589 if (TLI.isCondCodeLegalOrCustom(InvCC, Tmp1.getSimpleValueType())) {
3590 // Use the new condition code and swap true and false
3591 Legalized = true;
3592 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC);
3593 Tmp1->setFlags(Node->getFlags());
3594 } else {
3595 // If The inverse is not legal, then try to swap the arguments using
3596 // the inverse condition code.
3597 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC);
3598 if (TLI.isCondCodeLegalOrCustom(SwapInvCC, Tmp1.getSimpleValueType())) {
3599 // The swapped inverse condition is legal, so swap true and false,
3600 // lhs and rhs.
3601 Legalized = true;
3602 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC);
3603 Tmp1->setFlags(Node->getFlags());
3607 if (!Legalized) {
3608 Legalized = LegalizeSetCCCondCode(
3609 getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, NeedInvert,
3610 dl);
3612 assert(Legalized && "Can't legalize SELECT_CC with legal condition!");
3614 // If we expanded the SETCC by inverting the condition code, then swap
3615 // the True/False operands to match.
3616 if (NeedInvert)
3617 std::swap(Tmp3, Tmp4);
3619 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3620 // condition code, create a new SELECT_CC node.
3621 if (CC.getNode()) {
3622 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0),
3623 Tmp1, Tmp2, Tmp3, Tmp4, CC);
3624 } else {
3625 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType());
3626 CC = DAG.getCondCode(ISD::SETNE);
3627 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1,
3628 Tmp2, Tmp3, Tmp4, CC);
3630 Tmp1->setFlags(Node->getFlags());
3632 Results.push_back(Tmp1);
3633 break;
3635 case ISD::BR_CC: {
3636 Tmp1 = Node->getOperand(0); // Chain
3637 Tmp2 = Node->getOperand(2); // LHS
3638 Tmp3 = Node->getOperand(3); // RHS
3639 Tmp4 = Node->getOperand(1); // CC
3641 bool Legalized = LegalizeSetCCCondCode(getSetCCResultType(
3642 Tmp2.getValueType()), Tmp2, Tmp3, Tmp4, NeedInvert, dl);
3643 (void)Legalized;
3644 assert(Legalized && "Can't legalize BR_CC with legal condition!");
3646 assert(!NeedInvert && "Don't know how to invert BR_CC!");
3648 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC
3649 // node.
3650 if (Tmp4.getNode()) {
3651 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1,
3652 Tmp4, Tmp2, Tmp3, Node->getOperand(4));
3653 } else {
3654 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType());
3655 Tmp4 = DAG.getCondCode(ISD::SETNE);
3656 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4,
3657 Tmp2, Tmp3, Node->getOperand(4));
3659 Results.push_back(Tmp1);
3660 break;
3662 case ISD::BUILD_VECTOR:
3663 Results.push_back(ExpandBUILD_VECTOR(Node));
3664 break;
3665 case ISD::SRA:
3666 case ISD::SRL:
3667 case ISD::SHL: {
3668 // Scalarize vector SRA/SRL/SHL.
3669 EVT VT = Node->getValueType(0);
3670 assert(VT.isVector() && "Unable to legalize non-vector shift");
3671 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal");
3672 unsigned NumElem = VT.getVectorNumElements();
3674 SmallVector<SDValue, 8> Scalars;
3675 for (unsigned Idx = 0; Idx < NumElem; Idx++) {
3676 SDValue Ex = DAG.getNode(
3677 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(0),
3678 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
3679 SDValue Sh = DAG.getNode(
3680 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(1),
3681 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
3682 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl,
3683 VT.getScalarType(), Ex, Sh));
3686 SDValue Result = DAG.getBuildVector(Node->getValueType(0), dl, Scalars);
3687 ReplaceNode(SDValue(Node, 0), Result);
3688 break;
3690 case ISD::VECREDUCE_FADD:
3691 case ISD::VECREDUCE_FMUL:
3692 case ISD::VECREDUCE_ADD:
3693 case ISD::VECREDUCE_MUL:
3694 case ISD::VECREDUCE_AND:
3695 case ISD::VECREDUCE_OR:
3696 case ISD::VECREDUCE_XOR:
3697 case ISD::VECREDUCE_SMAX:
3698 case ISD::VECREDUCE_SMIN:
3699 case ISD::VECREDUCE_UMAX:
3700 case ISD::VECREDUCE_UMIN:
3701 case ISD::VECREDUCE_FMAX:
3702 case ISD::VECREDUCE_FMIN:
3703 Results.push_back(TLI.expandVecReduce(Node, DAG));
3704 break;
3705 case ISD::GLOBAL_OFFSET_TABLE:
3706 case ISD::GlobalAddress:
3707 case ISD::GlobalTLSAddress:
3708 case ISD::ExternalSymbol:
3709 case ISD::ConstantPool:
3710 case ISD::JumpTable:
3711 case ISD::INTRINSIC_W_CHAIN:
3712 case ISD::INTRINSIC_WO_CHAIN:
3713 case ISD::INTRINSIC_VOID:
3714 // FIXME: Custom lowering for these operations shouldn't return null!
3715 break;
3718 // Replace the original node with the legalized result.
3719 if (Results.empty()) {
3720 LLVM_DEBUG(dbgs() << "Cannot expand node\n");
3721 return false;
3724 LLVM_DEBUG(dbgs() << "Successfully expanded node\n");
3725 ReplaceNode(Node, Results.data());
3726 return true;
3729 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) {
3730 LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n");
3731 SmallVector<SDValue, 8> Results;
3732 SDLoc dl(Node);
3733 // FIXME: Check flags on the node to see if we can use a finite call.
3734 bool CanUseFiniteLibCall = TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath;
3735 unsigned Opc = Node->getOpcode();
3736 switch (Opc) {
3737 case ISD::ATOMIC_FENCE: {
3738 // If the target didn't lower this, lower it to '__sync_synchronize()' call
3739 // FIXME: handle "fence singlethread" more efficiently.
3740 TargetLowering::ArgListTy Args;
3742 TargetLowering::CallLoweringInfo CLI(DAG);
3743 CLI.setDebugLoc(dl)
3744 .setChain(Node->getOperand(0))
3745 .setLibCallee(
3746 CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3747 DAG.getExternalSymbol("__sync_synchronize",
3748 TLI.getPointerTy(DAG.getDataLayout())),
3749 std::move(Args));
3751 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
3753 Results.push_back(CallResult.second);
3754 break;
3756 // By default, atomic intrinsics are marked Legal and lowered. Targets
3757 // which don't support them directly, however, may want libcalls, in which
3758 // case they mark them Expand, and we get here.
3759 case ISD::ATOMIC_SWAP:
3760 case ISD::ATOMIC_LOAD_ADD:
3761 case ISD::ATOMIC_LOAD_SUB:
3762 case ISD::ATOMIC_LOAD_AND:
3763 case ISD::ATOMIC_LOAD_CLR:
3764 case ISD::ATOMIC_LOAD_OR:
3765 case ISD::ATOMIC_LOAD_XOR:
3766 case ISD::ATOMIC_LOAD_NAND:
3767 case ISD::ATOMIC_LOAD_MIN:
3768 case ISD::ATOMIC_LOAD_MAX:
3769 case ISD::ATOMIC_LOAD_UMIN:
3770 case ISD::ATOMIC_LOAD_UMAX:
3771 case ISD::ATOMIC_CMP_SWAP: {
3772 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
3773 RTLIB::Libcall LC = RTLIB::getSYNC(Opc, VT);
3774 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!");
3776 std::pair<SDValue, SDValue> Tmp = ExpandChainLibCall(LC, Node, false);
3777 Results.push_back(Tmp.first);
3778 Results.push_back(Tmp.second);
3779 break;
3781 case ISD::TRAP: {
3782 // If this operation is not supported, lower it to 'abort()' call
3783 TargetLowering::ArgListTy Args;
3784 TargetLowering::CallLoweringInfo CLI(DAG);
3785 CLI.setDebugLoc(dl)
3786 .setChain(Node->getOperand(0))
3787 .setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3788 DAG.getExternalSymbol(
3789 "abort", TLI.getPointerTy(DAG.getDataLayout())),
3790 std::move(Args));
3791 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
3793 Results.push_back(CallResult.second);
3794 break;
3796 case ISD::FMINNUM:
3797 case ISD::STRICT_FMINNUM:
3798 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64,
3799 RTLIB::FMIN_F80, RTLIB::FMIN_F128,
3800 RTLIB::FMIN_PPCF128));
3801 break;
3802 case ISD::FMAXNUM:
3803 case ISD::STRICT_FMAXNUM:
3804 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64,
3805 RTLIB::FMAX_F80, RTLIB::FMAX_F128,
3806 RTLIB::FMAX_PPCF128));
3807 break;
3808 case ISD::FSQRT:
3809 case ISD::STRICT_FSQRT:
3810 Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
3811 RTLIB::SQRT_F80, RTLIB::SQRT_F128,
3812 RTLIB::SQRT_PPCF128));
3813 break;
3814 case ISD::FCBRT:
3815 Results.push_back(ExpandFPLibCall(Node, RTLIB::CBRT_F32, RTLIB::CBRT_F64,
3816 RTLIB::CBRT_F80, RTLIB::CBRT_F128,
3817 RTLIB::CBRT_PPCF128));
3818 break;
3819 case ISD::FSIN:
3820 case ISD::STRICT_FSIN:
3821 Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
3822 RTLIB::SIN_F80, RTLIB::SIN_F128,
3823 RTLIB::SIN_PPCF128));
3824 break;
3825 case ISD::FCOS:
3826 case ISD::STRICT_FCOS:
3827 Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
3828 RTLIB::COS_F80, RTLIB::COS_F128,
3829 RTLIB::COS_PPCF128));
3830 break;
3831 case ISD::FSINCOS:
3832 // Expand into sincos libcall.
3833 ExpandSinCosLibCall(Node, Results);
3834 break;
3835 case ISD::FLOG:
3836 case ISD::STRICT_FLOG:
3837 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log_finite))
3838 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_FINITE_F32,
3839 RTLIB::LOG_FINITE_F64,
3840 RTLIB::LOG_FINITE_F80,
3841 RTLIB::LOG_FINITE_F128,
3842 RTLIB::LOG_FINITE_PPCF128));
3843 else
3844 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
3845 RTLIB::LOG_F80, RTLIB::LOG_F128,
3846 RTLIB::LOG_PPCF128));
3847 break;
3848 case ISD::FLOG2:
3849 case ISD::STRICT_FLOG2:
3850 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log2_finite))
3851 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_FINITE_F32,
3852 RTLIB::LOG2_FINITE_F64,
3853 RTLIB::LOG2_FINITE_F80,
3854 RTLIB::LOG2_FINITE_F128,
3855 RTLIB::LOG2_FINITE_PPCF128));
3856 else
3857 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
3858 RTLIB::LOG2_F80, RTLIB::LOG2_F128,
3859 RTLIB::LOG2_PPCF128));
3860 break;
3861 case ISD::FLOG10:
3862 case ISD::STRICT_FLOG10:
3863 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_log10_finite))
3864 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_FINITE_F32,
3865 RTLIB::LOG10_FINITE_F64,
3866 RTLIB::LOG10_FINITE_F80,
3867 RTLIB::LOG10_FINITE_F128,
3868 RTLIB::LOG10_FINITE_PPCF128));
3869 else
3870 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
3871 RTLIB::LOG10_F80, RTLIB::LOG10_F128,
3872 RTLIB::LOG10_PPCF128));
3873 break;
3874 case ISD::FEXP:
3875 case ISD::STRICT_FEXP:
3876 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_exp_finite))
3877 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_FINITE_F32,
3878 RTLIB::EXP_FINITE_F64,
3879 RTLIB::EXP_FINITE_F80,
3880 RTLIB::EXP_FINITE_F128,
3881 RTLIB::EXP_FINITE_PPCF128));
3882 else
3883 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
3884 RTLIB::EXP_F80, RTLIB::EXP_F128,
3885 RTLIB::EXP_PPCF128));
3886 break;
3887 case ISD::FEXP2:
3888 case ISD::STRICT_FEXP2:
3889 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_exp2_finite))
3890 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_FINITE_F32,
3891 RTLIB::EXP2_FINITE_F64,
3892 RTLIB::EXP2_FINITE_F80,
3893 RTLIB::EXP2_FINITE_F128,
3894 RTLIB::EXP2_FINITE_PPCF128));
3895 else
3896 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
3897 RTLIB::EXP2_F80, RTLIB::EXP2_F128,
3898 RTLIB::EXP2_PPCF128));
3899 break;
3900 case ISD::FTRUNC:
3901 case ISD::STRICT_FTRUNC:
3902 Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
3903 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128,
3904 RTLIB::TRUNC_PPCF128));
3905 break;
3906 case ISD::FFLOOR:
3907 case ISD::STRICT_FFLOOR:
3908 Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
3909 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128,
3910 RTLIB::FLOOR_PPCF128));
3911 break;
3912 case ISD::FCEIL:
3913 case ISD::STRICT_FCEIL:
3914 Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
3915 RTLIB::CEIL_F80, RTLIB::CEIL_F128,
3916 RTLIB::CEIL_PPCF128));
3917 break;
3918 case ISD::FRINT:
3919 case ISD::STRICT_FRINT:
3920 Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
3921 RTLIB::RINT_F80, RTLIB::RINT_F128,
3922 RTLIB::RINT_PPCF128));
3923 break;
3924 case ISD::FNEARBYINT:
3925 case ISD::STRICT_FNEARBYINT:
3926 Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
3927 RTLIB::NEARBYINT_F64,
3928 RTLIB::NEARBYINT_F80,
3929 RTLIB::NEARBYINT_F128,
3930 RTLIB::NEARBYINT_PPCF128));
3931 break;
3932 case ISD::FROUND:
3933 case ISD::STRICT_FROUND:
3934 Results.push_back(ExpandFPLibCall(Node, RTLIB::ROUND_F32,
3935 RTLIB::ROUND_F64,
3936 RTLIB::ROUND_F80,
3937 RTLIB::ROUND_F128,
3938 RTLIB::ROUND_PPCF128));
3939 break;
3940 case ISD::FPOWI:
3941 case ISD::STRICT_FPOWI:
3942 Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
3943 RTLIB::POWI_F80, RTLIB::POWI_F128,
3944 RTLIB::POWI_PPCF128));
3945 break;
3946 case ISD::FPOW:
3947 case ISD::STRICT_FPOW:
3948 if (CanUseFiniteLibCall && DAG.getLibInfo().has(LibFunc_pow_finite))
3949 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_FINITE_F32,
3950 RTLIB::POW_FINITE_F64,
3951 RTLIB::POW_FINITE_F80,
3952 RTLIB::POW_FINITE_F128,
3953 RTLIB::POW_FINITE_PPCF128));
3954 else
3955 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
3956 RTLIB::POW_F80, RTLIB::POW_F128,
3957 RTLIB::POW_PPCF128));
3958 break;
3959 case ISD::FDIV:
3960 Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
3961 RTLIB::DIV_F80, RTLIB::DIV_F128,
3962 RTLIB::DIV_PPCF128));
3963 break;
3964 case ISD::FREM:
3965 case ISD::STRICT_FREM:
3966 Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
3967 RTLIB::REM_F80, RTLIB::REM_F128,
3968 RTLIB::REM_PPCF128));
3969 break;
3970 case ISD::FMA:
3971 case ISD::STRICT_FMA:
3972 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
3973 RTLIB::FMA_F80, RTLIB::FMA_F128,
3974 RTLIB::FMA_PPCF128));
3975 break;
3976 case ISD::FADD:
3977 Results.push_back(ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64,
3978 RTLIB::ADD_F80, RTLIB::ADD_F128,
3979 RTLIB::ADD_PPCF128));
3980 break;
3981 case ISD::FMUL:
3982 Results.push_back(ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64,
3983 RTLIB::MUL_F80, RTLIB::MUL_F128,
3984 RTLIB::MUL_PPCF128));
3985 break;
3986 case ISD::FP16_TO_FP:
3987 if (Node->getValueType(0) == MVT::f32) {
3988 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
3990 break;
3991 case ISD::FP_TO_FP16: {
3992 RTLIB::Libcall LC =
3993 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16);
3994 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16");
3995 Results.push_back(ExpandLibCall(LC, Node, false));
3996 break;
3998 case ISD::FSUB:
3999 Results.push_back(ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64,
4000 RTLIB::SUB_F80, RTLIB::SUB_F128,
4001 RTLIB::SUB_PPCF128));
4002 break;
4003 case ISD::SREM:
4004 Results.push_back(ExpandIntLibCall(Node, true,
4005 RTLIB::SREM_I8,
4006 RTLIB::SREM_I16, RTLIB::SREM_I32,
4007 RTLIB::SREM_I64, RTLIB::SREM_I128));
4008 break;
4009 case ISD::UREM:
4010 Results.push_back(ExpandIntLibCall(Node, false,
4011 RTLIB::UREM_I8,
4012 RTLIB::UREM_I16, RTLIB::UREM_I32,
4013 RTLIB::UREM_I64, RTLIB::UREM_I128));
4014 break;
4015 case ISD::SDIV:
4016 Results.push_back(ExpandIntLibCall(Node, true,
4017 RTLIB::SDIV_I8,
4018 RTLIB::SDIV_I16, RTLIB::SDIV_I32,
4019 RTLIB::SDIV_I64, RTLIB::SDIV_I128));
4020 break;
4021 case ISD::UDIV:
4022 Results.push_back(ExpandIntLibCall(Node, false,
4023 RTLIB::UDIV_I8,
4024 RTLIB::UDIV_I16, RTLIB::UDIV_I32,
4025 RTLIB::UDIV_I64, RTLIB::UDIV_I128));
4026 break;
4027 case ISD::SDIVREM:
4028 case ISD::UDIVREM:
4029 // Expand into divrem libcall
4030 ExpandDivRemLibCall(Node, Results);
4031 break;
4032 case ISD::MUL:
4033 Results.push_back(ExpandIntLibCall(Node, false,
4034 RTLIB::MUL_I8,
4035 RTLIB::MUL_I16, RTLIB::MUL_I32,
4036 RTLIB::MUL_I64, RTLIB::MUL_I128));
4037 break;
4038 case ISD::CTLZ_ZERO_UNDEF:
4039 switch (Node->getSimpleValueType(0).SimpleTy) {
4040 default:
4041 llvm_unreachable("LibCall explicitly requested, but not available");
4042 case MVT::i32:
4043 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I32, Node, false));
4044 break;
4045 case MVT::i64:
4046 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I64, Node, false));
4047 break;
4048 case MVT::i128:
4049 Results.push_back(ExpandLibCall(RTLIB::CTLZ_I128, Node, false));
4050 break;
4052 break;
4055 // Replace the original node with the legalized result.
4056 if (!Results.empty()) {
4057 LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n");
4058 ReplaceNode(Node, Results.data());
4059 } else
4060 LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n");
4063 // Determine the vector type to use in place of an original scalar element when
4064 // promoting equally sized vectors.
4065 static MVT getPromotedVectorElementType(const TargetLowering &TLI,
4066 MVT EltVT, MVT NewEltVT) {
4067 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits();
4068 MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt);
4069 assert(TLI.isTypeLegal(MidVT) && "unexpected");
4070 return MidVT;
4073 void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
4074 LLVM_DEBUG(dbgs() << "Trying to promote node\n");
4075 SmallVector<SDValue, 8> Results;
4076 MVT OVT = Node->getSimpleValueType(0);
4077 if (Node->getOpcode() == ISD::UINT_TO_FP ||
4078 Node->getOpcode() == ISD::SINT_TO_FP ||
4079 Node->getOpcode() == ISD::SETCC ||
4080 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
4081 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) {
4082 OVT = Node->getOperand(0).getSimpleValueType();
4084 if (Node->getOpcode() == ISD::BR_CC)
4085 OVT = Node->getOperand(2).getSimpleValueType();
4086 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
4087 SDLoc dl(Node);
4088 SDValue Tmp1, Tmp2, Tmp3;
4089 switch (Node->getOpcode()) {
4090 case ISD::CTTZ:
4091 case ISD::CTTZ_ZERO_UNDEF:
4092 case ISD::CTLZ:
4093 case ISD::CTLZ_ZERO_UNDEF:
4094 case ISD::CTPOP:
4095 // Zero extend the argument.
4096 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4097 if (Node->getOpcode() == ISD::CTTZ) {
4098 // The count is the same in the promoted type except if the original
4099 // value was zero. This can be handled by setting the bit just off
4100 // the top of the original type.
4101 auto TopBit = APInt::getOneBitSet(NVT.getSizeInBits(),
4102 OVT.getSizeInBits());
4103 Tmp1 = DAG.getNode(ISD::OR, dl, NVT, Tmp1,
4104 DAG.getConstant(TopBit, dl, NVT));
4106 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
4107 // already the correct result.
4108 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4109 if (Node->getOpcode() == ISD::CTLZ ||
4110 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) {
4111 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
4112 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
4113 DAG.getConstant(NVT.getSizeInBits() -
4114 OVT.getSizeInBits(), dl, NVT));
4116 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4117 break;
4118 case ISD::BITREVERSE:
4119 case ISD::BSWAP: {
4120 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
4121 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
4122 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4123 Tmp1 = DAG.getNode(
4124 ISD::SRL, dl, NVT, Tmp1,
4125 DAG.getConstant(DiffBits, dl,
4126 TLI.getShiftAmountTy(NVT, DAG.getDataLayout())));
4128 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4129 break;
4131 case ISD::FP_TO_UINT:
4132 case ISD::FP_TO_SINT:
4133 Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
4134 Node->getOpcode() == ISD::FP_TO_SINT, dl);
4135 Results.push_back(Tmp1);
4136 break;
4137 case ISD::UINT_TO_FP:
4138 case ISD::SINT_TO_FP:
4139 Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
4140 Node->getOpcode() == ISD::SINT_TO_FP, dl);
4141 Results.push_back(Tmp1);
4142 break;
4143 case ISD::VAARG: {
4144 SDValue Chain = Node->getOperand(0); // Get the chain.
4145 SDValue Ptr = Node->getOperand(1); // Get the pointer.
4147 unsigned TruncOp;
4148 if (OVT.isVector()) {
4149 TruncOp = ISD::BITCAST;
4150 } else {
4151 assert(OVT.isInteger()
4152 && "VAARG promotion is supported only for vectors or integer types");
4153 TruncOp = ISD::TRUNCATE;
4156 // Perform the larger operation, then convert back
4157 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2),
4158 Node->getConstantOperandVal(3));
4159 Chain = Tmp1.getValue(1);
4161 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1);
4163 // Modified the chain result - switch anything that used the old chain to
4164 // use the new one.
4165 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2);
4166 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
4167 if (UpdatedNodes) {
4168 UpdatedNodes->insert(Tmp2.getNode());
4169 UpdatedNodes->insert(Chain.getNode());
4171 ReplacedNode(Node);
4172 break;
4174 case ISD::MUL:
4175 case ISD::SDIV:
4176 case ISD::SREM:
4177 case ISD::UDIV:
4178 case ISD::UREM:
4179 case ISD::AND:
4180 case ISD::OR:
4181 case ISD::XOR: {
4182 unsigned ExtOp, TruncOp;
4183 if (OVT.isVector()) {
4184 ExtOp = ISD::BITCAST;
4185 TruncOp = ISD::BITCAST;
4186 } else {
4187 assert(OVT.isInteger() && "Cannot promote logic operation");
4189 switch (Node->getOpcode()) {
4190 default:
4191 ExtOp = ISD::ANY_EXTEND;
4192 break;
4193 case ISD::SDIV:
4194 case ISD::SREM:
4195 ExtOp = ISD::SIGN_EXTEND;
4196 break;
4197 case ISD::UDIV:
4198 case ISD::UREM:
4199 ExtOp = ISD::ZERO_EXTEND;
4200 break;
4202 TruncOp = ISD::TRUNCATE;
4204 // Promote each of the values to the new type.
4205 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4206 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4207 // Perform the larger operation, then convert back
4208 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4209 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
4210 break;
4212 case ISD::UMUL_LOHI:
4213 case ISD::SMUL_LOHI: {
4214 // Promote to a multiply in a wider integer type.
4215 unsigned ExtOp = Node->getOpcode() == ISD::UMUL_LOHI ? ISD::ZERO_EXTEND
4216 : ISD::SIGN_EXTEND;
4217 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4218 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4219 Tmp1 = DAG.getNode(ISD::MUL, dl, NVT, Tmp1, Tmp2);
4221 auto &DL = DAG.getDataLayout();
4222 unsigned OriginalSize = OVT.getScalarSizeInBits();
4223 Tmp2 = DAG.getNode(
4224 ISD::SRL, dl, NVT, Tmp1,
4225 DAG.getConstant(OriginalSize, dl, TLI.getScalarShiftAmountTy(DL, NVT)));
4226 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
4227 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp2));
4228 break;
4230 case ISD::SELECT: {
4231 unsigned ExtOp, TruncOp;
4232 if (Node->getValueType(0).isVector() ||
4233 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) {
4234 ExtOp = ISD::BITCAST;
4235 TruncOp = ISD::BITCAST;
4236 } else if (Node->getValueType(0).isInteger()) {
4237 ExtOp = ISD::ANY_EXTEND;
4238 TruncOp = ISD::TRUNCATE;
4239 } else {
4240 ExtOp = ISD::FP_EXTEND;
4241 TruncOp = ISD::FP_ROUND;
4243 Tmp1 = Node->getOperand(0);
4244 // Promote each of the values to the new type.
4245 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4246 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4247 // Perform the larger operation, then round down.
4248 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3);
4249 Tmp1->setFlags(Node->getFlags());
4250 if (TruncOp != ISD::FP_ROUND)
4251 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
4252 else
4253 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
4254 DAG.getIntPtrConstant(0, dl));
4255 Results.push_back(Tmp1);
4256 break;
4258 case ISD::VECTOR_SHUFFLE: {
4259 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
4261 // Cast the two input vectors.
4262 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
4263 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
4265 // Convert the shuffle mask to the right # elements.
4266 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
4267 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
4268 Results.push_back(Tmp1);
4269 break;
4271 case ISD::SETCC: {
4272 unsigned ExtOp = ISD::FP_EXTEND;
4273 if (NVT.isInteger()) {
4274 ISD::CondCode CCCode =
4275 cast<CondCodeSDNode>(Node->getOperand(2))->get();
4276 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4278 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
4279 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
4280 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), Tmp1,
4281 Tmp2, Node->getOperand(2), Node->getFlags()));
4282 break;
4284 case ISD::BR_CC: {
4285 unsigned ExtOp = ISD::FP_EXTEND;
4286 if (NVT.isInteger()) {
4287 ISD::CondCode CCCode =
4288 cast<CondCodeSDNode>(Node->getOperand(1))->get();
4289 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4291 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
4292 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3));
4293 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0),
4294 Node->getOperand(0), Node->getOperand(1),
4295 Tmp1, Tmp2, Node->getOperand(4)));
4296 break;
4298 case ISD::FADD:
4299 case ISD::FSUB:
4300 case ISD::FMUL:
4301 case ISD::FDIV:
4302 case ISD::FREM:
4303 case ISD::FMINNUM:
4304 case ISD::FMAXNUM:
4305 case ISD::FPOW:
4306 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4307 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4308 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2,
4309 Node->getFlags());
4310 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4311 Tmp3, DAG.getIntPtrConstant(0, dl)));
4312 break;
4313 case ISD::FMA:
4314 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4315 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
4316 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2));
4317 Results.push_back(
4318 DAG.getNode(ISD::FP_ROUND, dl, OVT,
4319 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3),
4320 DAG.getIntPtrConstant(0, dl)));
4321 break;
4322 case ISD::FCOPYSIGN:
4323 case ISD::FPOWI: {
4324 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4325 Tmp2 = Node->getOperand(1);
4326 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
4328 // fcopysign doesn't change anything but the sign bit, so
4329 // (fp_round (fcopysign (fpext a), b))
4330 // is as precise as
4331 // (fp_round (fpext a))
4332 // which is a no-op. Mark it as a TRUNCating FP_ROUND.
4333 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN);
4334 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4335 Tmp3, DAG.getIntPtrConstant(isTrunc, dl)));
4336 break;
4338 case ISD::FFLOOR:
4339 case ISD::FCEIL:
4340 case ISD::FRINT:
4341 case ISD::FNEARBYINT:
4342 case ISD::FROUND:
4343 case ISD::FTRUNC:
4344 case ISD::FNEG:
4345 case ISD::FSQRT:
4346 case ISD::FSIN:
4347 case ISD::FCOS:
4348 case ISD::FLOG:
4349 case ISD::FLOG2:
4350 case ISD::FLOG10:
4351 case ISD::FABS:
4352 case ISD::FEXP:
4353 case ISD::FEXP2:
4354 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
4355 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
4356 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
4357 Tmp2, DAG.getIntPtrConstant(0, dl)));
4358 break;
4359 case ISD::BUILD_VECTOR: {
4360 MVT EltVT = OVT.getVectorElementType();
4361 MVT NewEltVT = NVT.getVectorElementType();
4363 // Handle bitcasts to a different vector type with the same total bit size
4365 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32
4366 // =>
4367 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y))
4369 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4370 "Invalid promote type for build_vector");
4371 assert(NewEltVT.bitsLT(EltVT) && "not handled");
4373 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4375 SmallVector<SDValue, 8> NewOps;
4376 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) {
4377 SDValue Op = Node->getOperand(I);
4378 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op));
4381 SDLoc SL(Node);
4382 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps);
4383 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
4384 Results.push_back(CvtVec);
4385 break;
4387 case ISD::EXTRACT_VECTOR_ELT: {
4388 MVT EltVT = OVT.getVectorElementType();
4389 MVT NewEltVT = NVT.getVectorElementType();
4391 // Handle bitcasts to a different vector type with the same total bit size.
4393 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32
4394 // =>
4395 // v4i32:castx = bitcast x:v2i64
4397 // i64 = bitcast
4398 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
4399 // (i32 (extract_vector_elt castx, (2 * y + 1)))
4402 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4403 "Invalid promote type for extract_vector_elt");
4404 assert(NewEltVT.bitsLT(EltVT) && "not handled");
4406 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4407 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
4409 SDValue Idx = Node->getOperand(1);
4410 EVT IdxVT = Idx.getValueType();
4411 SDLoc SL(Node);
4412 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT);
4413 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
4415 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
4417 SmallVector<SDValue, 8> NewOps;
4418 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
4419 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
4420 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
4422 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
4423 CastVec, TmpIdx);
4424 NewOps.push_back(Elt);
4427 SDValue NewVec = DAG.getBuildVector(MidVT, SL, NewOps);
4428 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec));
4429 break;
4431 case ISD::INSERT_VECTOR_ELT: {
4432 MVT EltVT = OVT.getVectorElementType();
4433 MVT NewEltVT = NVT.getVectorElementType();
4435 // Handle bitcasts to a different vector type with the same total bit size
4437 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32
4438 // =>
4439 // v4i32:castx = bitcast x:v2i64
4440 // v2i32:casty = bitcast y:i64
4442 // v2i64 = bitcast
4443 // (v4i32 insert_vector_elt
4444 // (v4i32 insert_vector_elt v4i32:castx,
4445 // (extract_vector_elt casty, 0), 2 * z),
4446 // (extract_vector_elt casty, 1), (2 * z + 1))
4448 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() &&
4449 "Invalid promote type for insert_vector_elt");
4450 assert(NewEltVT.bitsLT(EltVT) && "not handled");
4452 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4453 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements();
4455 SDValue Val = Node->getOperand(1);
4456 SDValue Idx = Node->getOperand(2);
4457 EVT IdxVT = Idx.getValueType();
4458 SDLoc SL(Node);
4460 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT);
4461 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor);
4463 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0));
4464 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
4466 SDValue NewVec = CastVec;
4467 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
4468 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT);
4469 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset);
4471 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT,
4472 CastVal, IdxOffset);
4474 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT,
4475 NewVec, Elt, InEltIdx);
4478 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec));
4479 break;
4481 case ISD::SCALAR_TO_VECTOR: {
4482 MVT EltVT = OVT.getVectorElementType();
4483 MVT NewEltVT = NVT.getVectorElementType();
4485 // Handle bitcasts to different vector type with the same total bit size.
4487 // e.g. v2i64 = scalar_to_vector x:i64
4488 // =>
4489 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef)
4492 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT);
4493 SDValue Val = Node->getOperand(0);
4494 SDLoc SL(Node);
4496 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val);
4497 SDValue Undef = DAG.getUNDEF(MidVT);
4499 SmallVector<SDValue, 8> NewElts;
4500 NewElts.push_back(CastVal);
4501 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I)
4502 NewElts.push_back(Undef);
4504 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts);
4505 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat);
4506 Results.push_back(CvtVec);
4507 break;
4509 case ISD::ATOMIC_SWAP: {
4510 AtomicSDNode *AM = cast<AtomicSDNode>(Node);
4511 SDLoc SL(Node);
4512 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NVT, AM->getVal());
4513 assert(NVT.getSizeInBits() == OVT.getSizeInBits() &&
4514 "unexpected promotion type");
4515 assert(AM->getMemoryVT().getSizeInBits() == NVT.getSizeInBits() &&
4516 "unexpected atomic_swap with illegal type");
4518 SDValue NewAtomic
4519 = DAG.getAtomic(ISD::ATOMIC_SWAP, SL, NVT,
4520 DAG.getVTList(NVT, MVT::Other),
4521 { AM->getChain(), AM->getBasePtr(), CastVal },
4522 AM->getMemOperand());
4523 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewAtomic));
4524 Results.push_back(NewAtomic.getValue(1));
4525 break;
4529 // Replace the original node with the legalized result.
4530 if (!Results.empty()) {
4531 LLVM_DEBUG(dbgs() << "Successfully promoted node\n");
4532 ReplaceNode(Node, Results.data());
4533 } else
4534 LLVM_DEBUG(dbgs() << "Could not promote node\n");
4537 /// This is the entry point for the file.
4538 void SelectionDAG::Legalize() {
4539 AssignTopologicalOrder();
4541 SmallPtrSet<SDNode *, 16> LegalizedNodes;
4542 // Use a delete listener to remove nodes which were deleted during
4543 // legalization from LegalizeNodes. This is needed to handle the situation
4544 // where a new node is allocated by the object pool to the same address of a
4545 // previously deleted node.
4546 DAGNodeDeletedListener DeleteListener(
4547 *this,
4548 [&LegalizedNodes](SDNode *N, SDNode *E) { LegalizedNodes.erase(N); });
4550 SelectionDAGLegalize Legalizer(*this, LegalizedNodes);
4552 // Visit all the nodes. We start in topological order, so that we see
4553 // nodes with their original operands intact. Legalization can produce
4554 // new nodes which may themselves need to be legalized. Iterate until all
4555 // nodes have been legalized.
4556 while (true) {
4557 bool AnyLegalized = false;
4558 for (auto NI = allnodes_end(); NI != allnodes_begin();) {
4559 --NI;
4561 SDNode *N = &*NI;
4562 if (N->use_empty() && N != getRoot().getNode()) {
4563 ++NI;
4564 DeleteNode(N);
4565 continue;
4568 if (LegalizedNodes.insert(N).second) {
4569 AnyLegalized = true;
4570 Legalizer.LegalizeOp(N);
4572 if (N->use_empty() && N != getRoot().getNode()) {
4573 ++NI;
4574 DeleteNode(N);
4578 if (!AnyLegalized)
4579 break;
4583 // Remove dead nodes now.
4584 RemoveDeadNodes();
4587 bool SelectionDAG::LegalizeOp(SDNode *N,
4588 SmallSetVector<SDNode *, 16> &UpdatedNodes) {
4589 SmallPtrSet<SDNode *, 16> LegalizedNodes;
4590 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes);
4592 // Directly insert the node in question, and legalize it. This will recurse
4593 // as needed through operands.
4594 LegalizedNodes.insert(N);
4595 Legalizer.LegalizeOp(N);
4597 return LegalizedNodes.count(N);