1 //===- LegalizeDAG.cpp - Implement SelectionDAG::Legalize -----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the SelectionDAG::Legalize method.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ADT/APFloat.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/CodeGen/ISDOpcodes.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineJumpTableInfo.h"
23 #include "llvm/CodeGen/MachineMemOperand.h"
24 #include "llvm/CodeGen/RuntimeLibcalls.h"
25 #include "llvm/CodeGen/SelectionDAG.h"
26 #include "llvm/CodeGen/SelectionDAGNodes.h"
27 #include "llvm/CodeGen/TargetFrameLowering.h"
28 #include "llvm/CodeGen/TargetLowering.h"
29 #include "llvm/CodeGen/TargetSubtargetInfo.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/Metadata.h"
37 #include "llvm/IR/Type.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/Compiler.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/MachineValueType.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Target/TargetMachine.h"
46 #include "llvm/Target/TargetOptions.h"
55 #define DEBUG_TYPE "legalizedag"
59 /// Keeps track of state when getting the sign of a floating-point value as an
61 struct FloatSignAsInt
{
66 MachinePointerInfo IntPointerInfo
;
67 MachinePointerInfo FloatPointerInfo
;
73 //===----------------------------------------------------------------------===//
74 /// This takes an arbitrary SelectionDAG as input and
75 /// hacks on it until the target machine can handle it. This involves
76 /// eliminating value sizes the machine cannot handle (promoting small sizes to
77 /// large sizes or splitting up large values into small values) as well as
78 /// eliminating operations the machine cannot handle.
80 /// This code also does a small amount of optimization and recognition of idioms
81 /// as part of its processing. For example, if a target does not support a
82 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
83 /// will attempt merge setcc and brc instructions into brcc's.
84 class SelectionDAGLegalize
{
85 const TargetMachine
&TM
;
86 const TargetLowering
&TLI
;
89 /// The set of nodes which have already been legalized. We hold a
90 /// reference to it in order to update as necessary on node deletion.
91 SmallPtrSetImpl
<SDNode
*> &LegalizedNodes
;
93 /// A set of all the nodes updated during legalization.
94 SmallSetVector
<SDNode
*, 16> *UpdatedNodes
;
96 EVT
getSetCCResultType(EVT VT
) const {
97 return TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
100 // Libcall insertion helpers.
103 SelectionDAGLegalize(SelectionDAG
&DAG
,
104 SmallPtrSetImpl
<SDNode
*> &LegalizedNodes
,
105 SmallSetVector
<SDNode
*, 16> *UpdatedNodes
= nullptr)
106 : TM(DAG
.getTarget()), TLI(DAG
.getTargetLoweringInfo()), DAG(DAG
),
107 LegalizedNodes(LegalizedNodes
), UpdatedNodes(UpdatedNodes
) {}
109 /// Legalizes the given operation.
110 void LegalizeOp(SDNode
*Node
);
113 SDValue
OptimizeFloatStore(StoreSDNode
*ST
);
115 void LegalizeLoadOps(SDNode
*Node
);
116 void LegalizeStoreOps(SDNode
*Node
);
118 /// Some targets cannot handle a variable
119 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it
120 /// is necessary to spill the vector being inserted into to memory, perform
121 /// the insert there, and then read the result back.
122 SDValue
PerformInsertVectorEltInMemory(SDValue Vec
, SDValue Val
, SDValue Idx
,
124 SDValue
ExpandINSERT_VECTOR_ELT(SDValue Vec
, SDValue Val
, SDValue Idx
,
127 /// Return a vector shuffle operation which
128 /// performs the same shuffe in terms of order or result bytes, but on a type
129 /// whose vector element type is narrower than the original shuffle type.
130 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
131 SDValue
ShuffleWithNarrowerEltType(EVT NVT
, EVT VT
, const SDLoc
&dl
,
132 SDValue N1
, SDValue N2
,
133 ArrayRef
<int> Mask
) const;
135 bool LegalizeSetCCCondCode(EVT VT
, SDValue
&LHS
, SDValue
&RHS
, SDValue
&CC
,
136 bool &NeedInvert
, const SDLoc
&dl
);
138 SDValue
ExpandLibCall(RTLIB::Libcall LC
, SDNode
*Node
, bool isSigned
);
140 std::pair
<SDValue
, SDValue
> ExpandChainLibCall(RTLIB::Libcall LC
,
141 SDNode
*Node
, bool isSigned
);
142 SDValue
ExpandFPLibCall(SDNode
*Node
, RTLIB::Libcall Call_F32
,
143 RTLIB::Libcall Call_F64
, RTLIB::Libcall Call_F80
,
144 RTLIB::Libcall Call_F128
,
145 RTLIB::Libcall Call_PPCF128
);
146 SDValue
ExpandIntLibCall(SDNode
*Node
, bool isSigned
,
147 RTLIB::Libcall Call_I8
,
148 RTLIB::Libcall Call_I16
,
149 RTLIB::Libcall Call_I32
,
150 RTLIB::Libcall Call_I64
,
151 RTLIB::Libcall Call_I128
);
152 SDValue
ExpandArgFPLibCall(SDNode
*Node
,
153 RTLIB::Libcall Call_F32
, RTLIB::Libcall Call_F64
,
154 RTLIB::Libcall Call_F80
, RTLIB::Libcall Call_F128
,
155 RTLIB::Libcall Call_PPCF128
);
156 void ExpandDivRemLibCall(SDNode
*Node
, SmallVectorImpl
<SDValue
> &Results
);
157 void ExpandSinCosLibCall(SDNode
*Node
, SmallVectorImpl
<SDValue
> &Results
);
159 SDValue
EmitStackConvert(SDValue SrcOp
, EVT SlotVT
, EVT DestVT
,
161 SDValue
EmitStackConvert(SDValue SrcOp
, EVT SlotVT
, EVT DestVT
,
162 const SDLoc
&dl
, SDValue ChainIn
);
163 SDValue
ExpandBUILD_VECTOR(SDNode
*Node
);
164 SDValue
ExpandSCALAR_TO_VECTOR(SDNode
*Node
);
165 void ExpandDYNAMIC_STACKALLOC(SDNode
*Node
,
166 SmallVectorImpl
<SDValue
> &Results
);
167 void getSignAsIntValue(FloatSignAsInt
&State
, const SDLoc
&DL
,
168 SDValue Value
) const;
169 SDValue
modifySignAsInt(const FloatSignAsInt
&State
, const SDLoc
&DL
,
170 SDValue NewIntValue
) const;
171 SDValue
ExpandFCOPYSIGN(SDNode
*Node
) const;
172 SDValue
ExpandFABS(SDNode
*Node
) const;
173 SDValue
ExpandLegalINT_TO_FP(bool isSigned
, SDValue Op0
, EVT DestVT
,
175 SDValue
PromoteLegalINT_TO_FP(SDValue LegalOp
, EVT DestVT
, bool isSigned
,
177 SDValue
PromoteLegalFP_TO_INT(SDValue LegalOp
, EVT DestVT
, bool isSigned
,
180 SDValue
ExpandBITREVERSE(SDValue Op
, const SDLoc
&dl
);
181 SDValue
ExpandBSWAP(SDValue Op
, const SDLoc
&dl
);
183 SDValue
ExpandExtractFromVectorThroughStack(SDValue Op
);
184 SDValue
ExpandInsertToVectorThroughStack(SDValue Op
);
185 SDValue
ExpandVectorBuildThroughStack(SDNode
* Node
);
187 SDValue
ExpandConstantFP(ConstantFPSDNode
*CFP
, bool UseCP
);
188 SDValue
ExpandConstant(ConstantSDNode
*CP
);
190 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall
191 bool ExpandNode(SDNode
*Node
);
192 void ConvertNodeToLibcall(SDNode
*Node
);
193 void PromoteNode(SDNode
*Node
);
196 // Node replacement helpers
198 void ReplacedNode(SDNode
*N
) {
199 LegalizedNodes
.erase(N
);
201 UpdatedNodes
->insert(N
);
204 void ReplaceNode(SDNode
*Old
, SDNode
*New
) {
205 LLVM_DEBUG(dbgs() << " ... replacing: "; Old
->dump(&DAG
);
206 dbgs() << " with: "; New
->dump(&DAG
));
208 assert(Old
->getNumValues() == New
->getNumValues() &&
209 "Replacing one node with another that produces a different number "
211 DAG
.ReplaceAllUsesWith(Old
, New
);
213 UpdatedNodes
->insert(New
);
217 void ReplaceNode(SDValue Old
, SDValue New
) {
218 LLVM_DEBUG(dbgs() << " ... replacing: "; Old
->dump(&DAG
);
219 dbgs() << " with: "; New
->dump(&DAG
));
221 DAG
.ReplaceAllUsesWith(Old
, New
);
223 UpdatedNodes
->insert(New
.getNode());
224 ReplacedNode(Old
.getNode());
227 void ReplaceNode(SDNode
*Old
, const SDValue
*New
) {
228 LLVM_DEBUG(dbgs() << " ... replacing: "; Old
->dump(&DAG
));
230 DAG
.ReplaceAllUsesWith(Old
, New
);
231 for (unsigned i
= 0, e
= Old
->getNumValues(); i
!= e
; ++i
) {
232 LLVM_DEBUG(dbgs() << (i
== 0 ? " with: " : " and: ");
235 UpdatedNodes
->insert(New
[i
].getNode());
241 } // end anonymous namespace
243 /// Return a vector shuffle operation which
244 /// performs the same shuffle in terms of order or result bytes, but on a type
245 /// whose vector element type is narrower than the original shuffle type.
246 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
247 SDValue
SelectionDAGLegalize::ShuffleWithNarrowerEltType(
248 EVT NVT
, EVT VT
, const SDLoc
&dl
, SDValue N1
, SDValue N2
,
249 ArrayRef
<int> Mask
) const {
250 unsigned NumMaskElts
= VT
.getVectorNumElements();
251 unsigned NumDestElts
= NVT
.getVectorNumElements();
252 unsigned NumEltsGrowth
= NumDestElts
/ NumMaskElts
;
254 assert(NumEltsGrowth
&& "Cannot promote to vector type with fewer elts!");
256 if (NumEltsGrowth
== 1)
257 return DAG
.getVectorShuffle(NVT
, dl
, N1
, N2
, Mask
);
259 SmallVector
<int, 8> NewMask
;
260 for (unsigned i
= 0; i
!= NumMaskElts
; ++i
) {
262 for (unsigned j
= 0; j
!= NumEltsGrowth
; ++j
) {
264 NewMask
.push_back(-1);
266 NewMask
.push_back(Idx
* NumEltsGrowth
+ j
);
269 assert(NewMask
.size() == NumDestElts
&& "Non-integer NumEltsGrowth?");
270 assert(TLI
.isShuffleMaskLegal(NewMask
, NVT
) && "Shuffle not legal?");
271 return DAG
.getVectorShuffle(NVT
, dl
, N1
, N2
, NewMask
);
274 /// Expands the ConstantFP node to an integer constant or
275 /// a load from the constant pool.
277 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode
*CFP
, bool UseCP
) {
281 // If a FP immediate is precise when represented as a float and if the
282 // target can do an extending load from float to double, we put it into
283 // the constant pool as a float, even if it's is statically typed as a
284 // double. This shrinks FP constants and canonicalizes them for targets where
285 // an FP extending load is the same cost as a normal load (such as on the x87
286 // fp stack or PPC FP unit).
287 EVT VT
= CFP
->getValueType(0);
288 ConstantFP
*LLVMC
= const_cast<ConstantFP
*>(CFP
->getConstantFPValue());
290 assert((VT
== MVT::f64
|| VT
== MVT::f32
) && "Invalid type expansion");
291 return DAG
.getConstant(LLVMC
->getValueAPF().bitcastToAPInt(), dl
,
292 (VT
== MVT::f64
) ? MVT::i64
: MVT::i32
);
295 APFloat APF
= CFP
->getValueAPF();
299 // We don't want to shrink SNaNs. Converting the SNaN back to its real type
300 // can cause it to be changed into a QNaN on some platforms (e.g. on SystemZ).
301 if (!APF
.isSignaling()) {
302 while (SVT
!= MVT::f32
&& SVT
!= MVT::f16
) {
303 SVT
= (MVT::SimpleValueType
)(SVT
.getSimpleVT().SimpleTy
- 1);
304 if (ConstantFPSDNode::isValueValidForType(SVT
, APF
) &&
305 // Only do this if the target has a native EXTLOAD instruction from
307 TLI
.isLoadExtLegal(ISD::EXTLOAD
, OrigVT
, SVT
) &&
308 TLI
.ShouldShrinkFPConstant(OrigVT
)) {
309 Type
*SType
= SVT
.getTypeForEVT(*DAG
.getContext());
310 LLVMC
= cast
<ConstantFP
>(ConstantExpr::getFPTrunc(LLVMC
, SType
));
318 DAG
.getConstantPool(LLVMC
, TLI
.getPointerTy(DAG
.getDataLayout()));
319 unsigned Alignment
= cast
<ConstantPoolSDNode
>(CPIdx
)->getAlignment();
321 SDValue Result
= DAG
.getExtLoad(
322 ISD::EXTLOAD
, dl
, OrigVT
, DAG
.getEntryNode(), CPIdx
,
323 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()), VT
,
327 SDValue Result
= DAG
.getLoad(
328 OrigVT
, dl
, DAG
.getEntryNode(), CPIdx
,
329 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()), Alignment
);
333 /// Expands the Constant node to a load from the constant pool.
334 SDValue
SelectionDAGLegalize::ExpandConstant(ConstantSDNode
*CP
) {
336 EVT VT
= CP
->getValueType(0);
337 SDValue CPIdx
= DAG
.getConstantPool(CP
->getConstantIntValue(),
338 TLI
.getPointerTy(DAG
.getDataLayout()));
339 unsigned Alignment
= cast
<ConstantPoolSDNode
>(CPIdx
)->getAlignment();
340 SDValue Result
= DAG
.getLoad(
341 VT
, dl
, DAG
.getEntryNode(), CPIdx
,
342 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()), Alignment
);
346 /// Some target cannot handle a variable insertion index for the
347 /// INSERT_VECTOR_ELT instruction. In this case, it
348 /// is necessary to spill the vector being inserted into to memory, perform
349 /// the insert there, and then read the result back.
350 SDValue
SelectionDAGLegalize::PerformInsertVectorEltInMemory(SDValue Vec
,
358 // If the target doesn't support this, we have to spill the input vector
359 // to a temporary stack slot, update the element, then reload it. This is
360 // badness. We could also load the value into a vector register (either
361 // with a "move to register" or "extload into register" instruction, then
362 // permute it into place, if the idx is a constant and if the idx is
363 // supported by the target.
364 EVT VT
= Tmp1
.getValueType();
365 EVT EltVT
= VT
.getVectorElementType();
366 SDValue StackPtr
= DAG
.CreateStackTemporary(VT
);
368 int SPFI
= cast
<FrameIndexSDNode
>(StackPtr
.getNode())->getIndex();
371 SDValue Ch
= DAG
.getStore(
372 DAG
.getEntryNode(), dl
, Tmp1
, StackPtr
,
373 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), SPFI
));
375 SDValue StackPtr2
= TLI
.getVectorElementPointer(DAG
, StackPtr
, VT
, Tmp3
);
377 // Store the scalar value.
378 Ch
= DAG
.getTruncStore(Ch
, dl
, Tmp2
, StackPtr2
, MachinePointerInfo(), EltVT
);
379 // Load the updated vector.
380 return DAG
.getLoad(VT
, dl
, Ch
, StackPtr
, MachinePointerInfo::getFixedStack(
381 DAG
.getMachineFunction(), SPFI
));
384 SDValue
SelectionDAGLegalize::ExpandINSERT_VECTOR_ELT(SDValue Vec
, SDValue Val
,
387 if (ConstantSDNode
*InsertPos
= dyn_cast
<ConstantSDNode
>(Idx
)) {
388 // SCALAR_TO_VECTOR requires that the type of the value being inserted
389 // match the element type of the vector being created, except for
390 // integers in which case the inserted value can be over width.
391 EVT EltVT
= Vec
.getValueType().getVectorElementType();
392 if (Val
.getValueType() == EltVT
||
393 (EltVT
.isInteger() && Val
.getValueType().bitsGE(EltVT
))) {
394 SDValue ScVec
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
,
395 Vec
.getValueType(), Val
);
397 unsigned NumElts
= Vec
.getValueType().getVectorNumElements();
398 // We generate a shuffle of InVec and ScVec, so the shuffle mask
399 // should be 0,1,2,3,4,5... with the appropriate element replaced with
401 SmallVector
<int, 8> ShufOps
;
402 for (unsigned i
= 0; i
!= NumElts
; ++i
)
403 ShufOps
.push_back(i
!= InsertPos
->getZExtValue() ? i
: NumElts
);
405 return DAG
.getVectorShuffle(Vec
.getValueType(), dl
, Vec
, ScVec
, ShufOps
);
408 return PerformInsertVectorEltInMemory(Vec
, Val
, Idx
, dl
);
411 SDValue
SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode
* ST
) {
412 LLVM_DEBUG(dbgs() << "Optimizing float store operations\n");
413 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
414 // FIXME: We shouldn't do this for TargetConstantFP's.
415 // FIXME: move this to the DAG Combiner! Note that we can't regress due
416 // to phase ordering between legalized code and the dag combiner. This
417 // probably means that we need to integrate dag combiner and legalizer
419 // We generally can't do this one for long doubles.
420 SDValue Chain
= ST
->getChain();
421 SDValue Ptr
= ST
->getBasePtr();
422 unsigned Alignment
= ST
->getAlignment();
423 MachineMemOperand::Flags MMOFlags
= ST
->getMemOperand()->getFlags();
424 AAMDNodes AAInfo
= ST
->getAAInfo();
426 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(ST
->getValue())) {
427 if (CFP
->getValueType(0) == MVT::f32
&&
428 TLI
.isTypeLegal(MVT::i32
)) {
429 SDValue Con
= DAG
.getConstant(CFP
->getValueAPF().
430 bitcastToAPInt().zextOrTrunc(32),
431 SDLoc(CFP
), MVT::i32
);
432 return DAG
.getStore(Chain
, dl
, Con
, Ptr
, ST
->getPointerInfo(), Alignment
,
436 if (CFP
->getValueType(0) == MVT::f64
) {
437 // If this target supports 64-bit registers, do a single 64-bit store.
438 if (TLI
.isTypeLegal(MVT::i64
)) {
439 SDValue Con
= DAG
.getConstant(CFP
->getValueAPF().bitcastToAPInt().
440 zextOrTrunc(64), SDLoc(CFP
), MVT::i64
);
441 return DAG
.getStore(Chain
, dl
, Con
, Ptr
, ST
->getPointerInfo(),
442 Alignment
, MMOFlags
, AAInfo
);
445 if (TLI
.isTypeLegal(MVT::i32
) && !ST
->isVolatile()) {
446 // Otherwise, if the target supports 32-bit registers, use 2 32-bit
447 // stores. If the target supports neither 32- nor 64-bits, this
448 // xform is certainly not worth it.
449 const APInt
&IntVal
= CFP
->getValueAPF().bitcastToAPInt();
450 SDValue Lo
= DAG
.getConstant(IntVal
.trunc(32), dl
, MVT::i32
);
451 SDValue Hi
= DAG
.getConstant(IntVal
.lshr(32).trunc(32), dl
, MVT::i32
);
452 if (DAG
.getDataLayout().isBigEndian())
455 Lo
= DAG
.getStore(Chain
, dl
, Lo
, Ptr
, ST
->getPointerInfo(), Alignment
,
457 Ptr
= DAG
.getNode(ISD::ADD
, dl
, Ptr
.getValueType(), Ptr
,
458 DAG
.getConstant(4, dl
, Ptr
.getValueType()));
459 Hi
= DAG
.getStore(Chain
, dl
, Hi
, Ptr
,
460 ST
->getPointerInfo().getWithOffset(4),
461 MinAlign(Alignment
, 4U), MMOFlags
, AAInfo
);
463 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
, Hi
);
467 return SDValue(nullptr, 0);
470 void SelectionDAGLegalize::LegalizeStoreOps(SDNode
*Node
) {
471 StoreSDNode
*ST
= cast
<StoreSDNode
>(Node
);
472 SDValue Chain
= ST
->getChain();
473 SDValue Ptr
= ST
->getBasePtr();
476 unsigned Alignment
= ST
->getAlignment();
477 MachineMemOperand::Flags MMOFlags
= ST
->getMemOperand()->getFlags();
478 AAMDNodes AAInfo
= ST
->getAAInfo();
480 if (!ST
->isTruncatingStore()) {
481 LLVM_DEBUG(dbgs() << "Legalizing store operation\n");
482 if (SDNode
*OptStore
= OptimizeFloatStore(ST
).getNode()) {
483 ReplaceNode(ST
, OptStore
);
487 SDValue Value
= ST
->getValue();
488 MVT VT
= Value
.getSimpleValueType();
489 switch (TLI
.getOperationAction(ISD::STORE
, VT
)) {
490 default: llvm_unreachable("This action is not supported yet!");
491 case TargetLowering::Legal
: {
492 // If this is an unaligned store and the target doesn't support it,
494 EVT MemVT
= ST
->getMemoryVT();
495 const DataLayout
&DL
= DAG
.getDataLayout();
496 if (!TLI
.allowsMemoryAccess(*DAG
.getContext(), DL
, MemVT
,
497 *ST
->getMemOperand())) {
498 LLVM_DEBUG(dbgs() << "Expanding unsupported unaligned store\n");
499 SDValue Result
= TLI
.expandUnalignedStore(ST
, DAG
);
500 ReplaceNode(SDValue(ST
, 0), Result
);
502 LLVM_DEBUG(dbgs() << "Legal store\n");
505 case TargetLowering::Custom
: {
506 LLVM_DEBUG(dbgs() << "Trying custom lowering\n");
507 SDValue Res
= TLI
.LowerOperation(SDValue(Node
, 0), DAG
);
508 if (Res
&& Res
!= SDValue(Node
, 0))
509 ReplaceNode(SDValue(Node
, 0), Res
);
512 case TargetLowering::Promote
: {
513 MVT NVT
= TLI
.getTypeToPromoteTo(ISD::STORE
, VT
);
514 assert(NVT
.getSizeInBits() == VT
.getSizeInBits() &&
515 "Can only promote stores to same size type");
516 Value
= DAG
.getNode(ISD::BITCAST
, dl
, NVT
, Value
);
518 DAG
.getStore(Chain
, dl
, Value
, Ptr
, ST
->getPointerInfo(),
519 Alignment
, MMOFlags
, AAInfo
);
520 ReplaceNode(SDValue(Node
, 0), Result
);
527 LLVM_DEBUG(dbgs() << "Legalizing truncating store operations\n");
528 SDValue Value
= ST
->getValue();
529 EVT StVT
= ST
->getMemoryVT();
530 unsigned StWidth
= StVT
.getSizeInBits();
531 auto &DL
= DAG
.getDataLayout();
533 if (StWidth
!= StVT
.getStoreSizeInBits()) {
534 // Promote to a byte-sized store with upper bits zero if not
535 // storing an integral number of bytes. For example, promote
536 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
537 EVT NVT
= EVT::getIntegerVT(*DAG
.getContext(),
538 StVT
.getStoreSizeInBits());
539 Value
= DAG
.getZeroExtendInReg(Value
, dl
, StVT
);
541 DAG
.getTruncStore(Chain
, dl
, Value
, Ptr
, ST
->getPointerInfo(), NVT
,
542 Alignment
, MMOFlags
, AAInfo
);
543 ReplaceNode(SDValue(Node
, 0), Result
);
544 } else if (StWidth
& (StWidth
- 1)) {
545 // If not storing a power-of-2 number of bits, expand as two stores.
546 assert(!StVT
.isVector() && "Unsupported truncstore!");
547 unsigned LogStWidth
= Log2_32(StWidth
);
548 assert(LogStWidth
< 32);
549 unsigned RoundWidth
= 1 << LogStWidth
;
550 assert(RoundWidth
< StWidth
);
551 unsigned ExtraWidth
= StWidth
- RoundWidth
;
552 assert(ExtraWidth
< RoundWidth
);
553 assert(!(RoundWidth
% 8) && !(ExtraWidth
% 8) &&
554 "Store size not an integral number of bytes!");
555 EVT RoundVT
= EVT::getIntegerVT(*DAG
.getContext(), RoundWidth
);
556 EVT ExtraVT
= EVT::getIntegerVT(*DAG
.getContext(), ExtraWidth
);
558 unsigned IncrementSize
;
560 if (DL
.isLittleEndian()) {
561 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
562 // Store the bottom RoundWidth bits.
563 Lo
= DAG
.getTruncStore(Chain
, dl
, Value
, Ptr
, ST
->getPointerInfo(),
564 RoundVT
, Alignment
, MMOFlags
, AAInfo
);
566 // Store the remaining ExtraWidth bits.
567 IncrementSize
= RoundWidth
/ 8;
568 Ptr
= DAG
.getNode(ISD::ADD
, dl
, Ptr
.getValueType(), Ptr
,
569 DAG
.getConstant(IncrementSize
, dl
,
570 Ptr
.getValueType()));
572 ISD::SRL
, dl
, Value
.getValueType(), Value
,
573 DAG
.getConstant(RoundWidth
, dl
,
574 TLI
.getShiftAmountTy(Value
.getValueType(), DL
)));
575 Hi
= DAG
.getTruncStore(
577 ST
->getPointerInfo().getWithOffset(IncrementSize
), ExtraVT
,
578 MinAlign(Alignment
, IncrementSize
), MMOFlags
, AAInfo
);
580 // Big endian - avoid unaligned stores.
581 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
582 // Store the top RoundWidth bits.
584 ISD::SRL
, dl
, Value
.getValueType(), Value
,
585 DAG
.getConstant(ExtraWidth
, dl
,
586 TLI
.getShiftAmountTy(Value
.getValueType(), DL
)));
587 Hi
= DAG
.getTruncStore(Chain
, dl
, Hi
, Ptr
, ST
->getPointerInfo(),
588 RoundVT
, Alignment
, MMOFlags
, AAInfo
);
590 // Store the remaining ExtraWidth bits.
591 IncrementSize
= RoundWidth
/ 8;
592 Ptr
= DAG
.getNode(ISD::ADD
, dl
, Ptr
.getValueType(), Ptr
,
593 DAG
.getConstant(IncrementSize
, dl
,
594 Ptr
.getValueType()));
595 Lo
= DAG
.getTruncStore(
596 Chain
, dl
, Value
, Ptr
,
597 ST
->getPointerInfo().getWithOffset(IncrementSize
), ExtraVT
,
598 MinAlign(Alignment
, IncrementSize
), MMOFlags
, AAInfo
);
601 // The order of the stores doesn't matter.
602 SDValue Result
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
, Hi
);
603 ReplaceNode(SDValue(Node
, 0), Result
);
605 switch (TLI
.getTruncStoreAction(ST
->getValue().getValueType(), StVT
)) {
606 default: llvm_unreachable("This action is not supported yet!");
607 case TargetLowering::Legal
: {
608 EVT MemVT
= ST
->getMemoryVT();
609 // If this is an unaligned store and the target doesn't support it,
611 if (!TLI
.allowsMemoryAccess(*DAG
.getContext(), DL
, MemVT
,
612 *ST
->getMemOperand())) {
613 SDValue Result
= TLI
.expandUnalignedStore(ST
, DAG
);
614 ReplaceNode(SDValue(ST
, 0), Result
);
618 case TargetLowering::Custom
: {
619 SDValue Res
= TLI
.LowerOperation(SDValue(Node
, 0), DAG
);
620 if (Res
&& Res
!= SDValue(Node
, 0))
621 ReplaceNode(SDValue(Node
, 0), Res
);
624 case TargetLowering::Expand
:
625 assert(!StVT
.isVector() &&
626 "Vector Stores are handled in LegalizeVectorOps");
630 // TRUNCSTORE:i16 i32 -> STORE i16
631 if (TLI
.isTypeLegal(StVT
)) {
632 Value
= DAG
.getNode(ISD::TRUNCATE
, dl
, StVT
, Value
);
633 Result
= DAG
.getStore(Chain
, dl
, Value
, Ptr
, ST
->getPointerInfo(),
634 Alignment
, MMOFlags
, AAInfo
);
636 // The in-memory type isn't legal. Truncate to the type it would promote
637 // to, and then do a truncstore.
638 Value
= DAG
.getNode(ISD::TRUNCATE
, dl
,
639 TLI
.getTypeToTransformTo(*DAG
.getContext(), StVT
),
641 Result
= DAG
.getTruncStore(Chain
, dl
, Value
, Ptr
, ST
->getPointerInfo(),
642 StVT
, Alignment
, MMOFlags
, AAInfo
);
645 ReplaceNode(SDValue(Node
, 0), Result
);
651 void SelectionDAGLegalize::LegalizeLoadOps(SDNode
*Node
) {
652 LoadSDNode
*LD
= cast
<LoadSDNode
>(Node
);
653 SDValue Chain
= LD
->getChain(); // The chain.
654 SDValue Ptr
= LD
->getBasePtr(); // The base pointer.
655 SDValue Value
; // The value returned by the load op.
658 ISD::LoadExtType ExtType
= LD
->getExtensionType();
659 if (ExtType
== ISD::NON_EXTLOAD
) {
660 LLVM_DEBUG(dbgs() << "Legalizing non-extending load operation\n");
661 MVT VT
= Node
->getSimpleValueType(0);
662 SDValue RVal
= SDValue(Node
, 0);
663 SDValue RChain
= SDValue(Node
, 1);
665 switch (TLI
.getOperationAction(Node
->getOpcode(), VT
)) {
666 default: llvm_unreachable("This action is not supported yet!");
667 case TargetLowering::Legal
: {
668 EVT MemVT
= LD
->getMemoryVT();
669 const DataLayout
&DL
= DAG
.getDataLayout();
670 // If this is an unaligned load and the target doesn't support it,
672 if (!TLI
.allowsMemoryAccess(*DAG
.getContext(), DL
, MemVT
,
673 *LD
->getMemOperand())) {
674 std::tie(RVal
, RChain
) = TLI
.expandUnalignedLoad(LD
, DAG
);
678 case TargetLowering::Custom
:
679 if (SDValue Res
= TLI
.LowerOperation(RVal
, DAG
)) {
681 RChain
= Res
.getValue(1);
685 case TargetLowering::Promote
: {
686 MVT NVT
= TLI
.getTypeToPromoteTo(Node
->getOpcode(), VT
);
687 assert(NVT
.getSizeInBits() == VT
.getSizeInBits() &&
688 "Can only promote loads to same size type");
690 SDValue Res
= DAG
.getLoad(NVT
, dl
, Chain
, Ptr
, LD
->getMemOperand());
691 RVal
= DAG
.getNode(ISD::BITCAST
, dl
, VT
, Res
);
692 RChain
= Res
.getValue(1);
696 if (RChain
.getNode() != Node
) {
697 assert(RVal
.getNode() != Node
&& "Load must be completely replaced");
698 DAG
.ReplaceAllUsesOfValueWith(SDValue(Node
, 0), RVal
);
699 DAG
.ReplaceAllUsesOfValueWith(SDValue(Node
, 1), RChain
);
701 UpdatedNodes
->insert(RVal
.getNode());
702 UpdatedNodes
->insert(RChain
.getNode());
709 LLVM_DEBUG(dbgs() << "Legalizing extending load operation\n");
710 EVT SrcVT
= LD
->getMemoryVT();
711 unsigned SrcWidth
= SrcVT
.getSizeInBits();
712 unsigned Alignment
= LD
->getAlignment();
713 MachineMemOperand::Flags MMOFlags
= LD
->getMemOperand()->getFlags();
714 AAMDNodes AAInfo
= LD
->getAAInfo();
716 if (SrcWidth
!= SrcVT
.getStoreSizeInBits() &&
717 // Some targets pretend to have an i1 loading operation, and actually
718 // load an i8. This trick is correct for ZEXTLOAD because the top 7
719 // bits are guaranteed to be zero; it helps the optimizers understand
720 // that these bits are zero. It is also useful for EXTLOAD, since it
721 // tells the optimizers that those bits are undefined. It would be
722 // nice to have an effective generic way of getting these benefits...
723 // Until such a way is found, don't insist on promoting i1 here.
725 TLI
.getLoadExtAction(ExtType
, Node
->getValueType(0), MVT::i1
) ==
726 TargetLowering::Promote
)) {
727 // Promote to a byte-sized load if not loading an integral number of
728 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
729 unsigned NewWidth
= SrcVT
.getStoreSizeInBits();
730 EVT NVT
= EVT::getIntegerVT(*DAG
.getContext(), NewWidth
);
733 // The extra bits are guaranteed to be zero, since we stored them that
734 // way. A zext load from NVT thus automatically gives zext from SrcVT.
736 ISD::LoadExtType NewExtType
=
737 ExtType
== ISD::ZEXTLOAD
? ISD::ZEXTLOAD
: ISD::EXTLOAD
;
740 DAG
.getExtLoad(NewExtType
, dl
, Node
->getValueType(0), Chain
, Ptr
,
741 LD
->getPointerInfo(), NVT
, Alignment
, MMOFlags
, AAInfo
);
743 Ch
= Result
.getValue(1); // The chain.
745 if (ExtType
== ISD::SEXTLOAD
)
746 // Having the top bits zero doesn't help when sign extending.
747 Result
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
,
748 Result
.getValueType(),
749 Result
, DAG
.getValueType(SrcVT
));
750 else if (ExtType
== ISD::ZEXTLOAD
|| NVT
== Result
.getValueType())
751 // All the top bits are guaranteed to be zero - inform the optimizers.
752 Result
= DAG
.getNode(ISD::AssertZext
, dl
,
753 Result
.getValueType(), Result
,
754 DAG
.getValueType(SrcVT
));
758 } else if (SrcWidth
& (SrcWidth
- 1)) {
759 // If not loading a power-of-2 number of bits, expand as two loads.
760 assert(!SrcVT
.isVector() && "Unsupported extload!");
761 unsigned LogSrcWidth
= Log2_32(SrcWidth
);
762 assert(LogSrcWidth
< 32);
763 unsigned RoundWidth
= 1 << LogSrcWidth
;
764 assert(RoundWidth
< SrcWidth
);
765 unsigned ExtraWidth
= SrcWidth
- RoundWidth
;
766 assert(ExtraWidth
< RoundWidth
);
767 assert(!(RoundWidth
% 8) && !(ExtraWidth
% 8) &&
768 "Load size not an integral number of bytes!");
769 EVT RoundVT
= EVT::getIntegerVT(*DAG
.getContext(), RoundWidth
);
770 EVT ExtraVT
= EVT::getIntegerVT(*DAG
.getContext(), ExtraWidth
);
772 unsigned IncrementSize
;
773 auto &DL
= DAG
.getDataLayout();
775 if (DL
.isLittleEndian()) {
776 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
777 // Load the bottom RoundWidth bits.
778 Lo
= DAG
.getExtLoad(ISD::ZEXTLOAD
, dl
, Node
->getValueType(0), Chain
, Ptr
,
779 LD
->getPointerInfo(), RoundVT
, Alignment
, MMOFlags
,
782 // Load the remaining ExtraWidth bits.
783 IncrementSize
= RoundWidth
/ 8;
784 Ptr
= DAG
.getNode(ISD::ADD
, dl
, Ptr
.getValueType(), Ptr
,
785 DAG
.getConstant(IncrementSize
, dl
,
786 Ptr
.getValueType()));
787 Hi
= DAG
.getExtLoad(ExtType
, dl
, Node
->getValueType(0), Chain
, Ptr
,
788 LD
->getPointerInfo().getWithOffset(IncrementSize
),
789 ExtraVT
, MinAlign(Alignment
, IncrementSize
), MMOFlags
,
792 // Build a factor node to remember that this load is independent of
794 Ch
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
.getValue(1),
797 // Move the top bits to the right place.
799 ISD::SHL
, dl
, Hi
.getValueType(), Hi
,
800 DAG
.getConstant(RoundWidth
, dl
,
801 TLI
.getShiftAmountTy(Hi
.getValueType(), DL
)));
803 // Join the hi and lo parts.
804 Value
= DAG
.getNode(ISD::OR
, dl
, Node
->getValueType(0), Lo
, Hi
);
806 // Big endian - avoid unaligned loads.
807 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
808 // Load the top RoundWidth bits.
809 Hi
= DAG
.getExtLoad(ExtType
, dl
, Node
->getValueType(0), Chain
, Ptr
,
810 LD
->getPointerInfo(), RoundVT
, Alignment
, MMOFlags
,
813 // Load the remaining ExtraWidth bits.
814 IncrementSize
= RoundWidth
/ 8;
815 Ptr
= DAG
.getNode(ISD::ADD
, dl
, Ptr
.getValueType(), Ptr
,
816 DAG
.getConstant(IncrementSize
, dl
,
817 Ptr
.getValueType()));
818 Lo
= DAG
.getExtLoad(ISD::ZEXTLOAD
, dl
, Node
->getValueType(0), Chain
, Ptr
,
819 LD
->getPointerInfo().getWithOffset(IncrementSize
),
820 ExtraVT
, MinAlign(Alignment
, IncrementSize
), MMOFlags
,
823 // Build a factor node to remember that this load is independent of
825 Ch
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
.getValue(1),
828 // Move the top bits to the right place.
830 ISD::SHL
, dl
, Hi
.getValueType(), Hi
,
831 DAG
.getConstant(ExtraWidth
, dl
,
832 TLI
.getShiftAmountTy(Hi
.getValueType(), DL
)));
834 // Join the hi and lo parts.
835 Value
= DAG
.getNode(ISD::OR
, dl
, Node
->getValueType(0), Lo
, Hi
);
840 bool isCustom
= false;
841 switch (TLI
.getLoadExtAction(ExtType
, Node
->getValueType(0),
842 SrcVT
.getSimpleVT())) {
843 default: llvm_unreachable("This action is not supported yet!");
844 case TargetLowering::Custom
:
847 case TargetLowering::Legal
:
848 Value
= SDValue(Node
, 0);
849 Chain
= SDValue(Node
, 1);
852 if (SDValue Res
= TLI
.LowerOperation(SDValue(Node
, 0), DAG
)) {
854 Chain
= Res
.getValue(1);
857 // If this is an unaligned load and the target doesn't support it,
859 EVT MemVT
= LD
->getMemoryVT();
860 const DataLayout
&DL
= DAG
.getDataLayout();
861 if (!TLI
.allowsMemoryAccess(*DAG
.getContext(), DL
, MemVT
,
862 *LD
->getMemOperand())) {
863 std::tie(Value
, Chain
) = TLI
.expandUnalignedLoad(LD
, DAG
);
868 case TargetLowering::Expand
: {
869 EVT DestVT
= Node
->getValueType(0);
870 if (!TLI
.isLoadExtLegal(ISD::EXTLOAD
, DestVT
, SrcVT
)) {
871 // If the source type is not legal, see if there is a legal extload to
872 // an intermediate type that we can then extend further.
873 EVT LoadVT
= TLI
.getRegisterType(SrcVT
.getSimpleVT());
874 if (TLI
.isTypeLegal(SrcVT
) || // Same as SrcVT == LoadVT?
875 TLI
.isLoadExtLegal(ExtType
, LoadVT
, SrcVT
)) {
876 // If we are loading a legal type, this is a non-extload followed by a
878 ISD::LoadExtType MidExtType
=
879 (LoadVT
== SrcVT
) ? ISD::NON_EXTLOAD
: ExtType
;
881 SDValue Load
= DAG
.getExtLoad(MidExtType
, dl
, LoadVT
, Chain
, Ptr
,
882 SrcVT
, LD
->getMemOperand());
884 ISD::getExtForLoadExtType(SrcVT
.isFloatingPoint(), ExtType
);
885 Value
= DAG
.getNode(ExtendOp
, dl
, Node
->getValueType(0), Load
);
886 Chain
= Load
.getValue(1);
890 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the
891 // normal undefined upper bits behavior to allow using an in-reg extend
892 // with the illegal FP type, so load as an integer and do the
893 // from-integer conversion.
894 if (SrcVT
.getScalarType() == MVT::f16
) {
895 EVT ISrcVT
= SrcVT
.changeTypeToInteger();
896 EVT IDestVT
= DestVT
.changeTypeToInteger();
897 EVT LoadVT
= TLI
.getRegisterType(IDestVT
.getSimpleVT());
899 SDValue Result
= DAG
.getExtLoad(ISD::ZEXTLOAD
, dl
, LoadVT
,
901 LD
->getMemOperand());
902 Value
= DAG
.getNode(ISD::FP16_TO_FP
, dl
, DestVT
, Result
);
903 Chain
= Result
.getValue(1);
908 assert(!SrcVT
.isVector() &&
909 "Vector Loads are handled in LegalizeVectorOps");
911 // FIXME: This does not work for vectors on most targets. Sign-
912 // and zero-extend operations are currently folded into extending
913 // loads, whether they are legal or not, and then we end up here
914 // without any support for legalizing them.
915 assert(ExtType
!= ISD::EXTLOAD
&&
916 "EXTLOAD should always be supported!");
917 // Turn the unsupported load into an EXTLOAD followed by an
918 // explicit zero/sign extend inreg.
919 SDValue Result
= DAG
.getExtLoad(ISD::EXTLOAD
, dl
,
920 Node
->getValueType(0),
922 LD
->getMemOperand());
924 if (ExtType
== ISD::SEXTLOAD
)
925 ValRes
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
,
926 Result
.getValueType(),
927 Result
, DAG
.getValueType(SrcVT
));
929 ValRes
= DAG
.getZeroExtendInReg(Result
, dl
, SrcVT
.getScalarType());
931 Chain
= Result
.getValue(1);
937 // Since loads produce two values, make sure to remember that we legalized
939 if (Chain
.getNode() != Node
) {
940 assert(Value
.getNode() != Node
&& "Load must be completely replaced");
941 DAG
.ReplaceAllUsesOfValueWith(SDValue(Node
, 0), Value
);
942 DAG
.ReplaceAllUsesOfValueWith(SDValue(Node
, 1), Chain
);
944 UpdatedNodes
->insert(Value
.getNode());
945 UpdatedNodes
->insert(Chain
.getNode());
951 /// Return a legal replacement for the given operation, with all legal operands.
952 void SelectionDAGLegalize::LegalizeOp(SDNode
*Node
) {
953 LLVM_DEBUG(dbgs() << "\nLegalizing: "; Node
->dump(&DAG
));
955 // Allow illegal target nodes and illegal registers.
956 if (Node
->getOpcode() == ISD::TargetConstant
||
957 Node
->getOpcode() == ISD::Register
)
961 for (unsigned i
= 0, e
= Node
->getNumValues(); i
!= e
; ++i
)
962 assert((TLI
.getTypeAction(*DAG
.getContext(), Node
->getValueType(i
)) ==
963 TargetLowering::TypeLegal
||
964 TLI
.isTypeLegal(Node
->getValueType(i
))) &&
965 "Unexpected illegal type!");
967 for (const SDValue
&Op
: Node
->op_values())
968 assert((TLI
.getTypeAction(*DAG
.getContext(), Op
.getValueType()) ==
969 TargetLowering::TypeLegal
||
970 TLI
.isTypeLegal(Op
.getValueType()) ||
971 Op
.getOpcode() == ISD::TargetConstant
||
972 Op
.getOpcode() == ISD::Register
) &&
973 "Unexpected illegal type!");
976 // Figure out the correct action; the way to query this varies by opcode
977 TargetLowering::LegalizeAction Action
= TargetLowering::Legal
;
978 bool SimpleFinishLegalizing
= true;
979 switch (Node
->getOpcode()) {
980 case ISD::INTRINSIC_W_CHAIN
:
981 case ISD::INTRINSIC_WO_CHAIN
:
982 case ISD::INTRINSIC_VOID
:
984 Action
= TLI
.getOperationAction(Node
->getOpcode(), MVT::Other
);
986 case ISD::GET_DYNAMIC_AREA_OFFSET
:
987 Action
= TLI
.getOperationAction(Node
->getOpcode(),
988 Node
->getValueType(0));
991 Action
= TLI
.getOperationAction(Node
->getOpcode(),
992 Node
->getValueType(0));
993 if (Action
!= TargetLowering::Promote
)
994 Action
= TLI
.getOperationAction(Node
->getOpcode(), MVT::Other
);
996 case ISD::FP_TO_FP16
:
997 case ISD::SINT_TO_FP
:
998 case ISD::UINT_TO_FP
:
999 case ISD::EXTRACT_VECTOR_ELT
:
1004 Action
= TLI
.getOperationAction(Node
->getOpcode(),
1005 Node
->getOperand(0).getValueType());
1007 case ISD::FP_ROUND_INREG
:
1008 case ISD::SIGN_EXTEND_INREG
: {
1009 EVT InnerType
= cast
<VTSDNode
>(Node
->getOperand(1))->getVT();
1010 Action
= TLI
.getOperationAction(Node
->getOpcode(), InnerType
);
1013 case ISD::ATOMIC_STORE
:
1014 Action
= TLI
.getOperationAction(Node
->getOpcode(),
1015 Node
->getOperand(2).getValueType());
1017 case ISD::SELECT_CC
:
1020 unsigned CCOperand
= Node
->getOpcode() == ISD::SELECT_CC
? 4 :
1021 Node
->getOpcode() == ISD::SETCC
? 2 : 1;
1022 unsigned CompareOperand
= Node
->getOpcode() == ISD::BR_CC
? 2 : 0;
1023 MVT OpVT
= Node
->getOperand(CompareOperand
).getSimpleValueType();
1024 ISD::CondCode CCCode
=
1025 cast
<CondCodeSDNode
>(Node
->getOperand(CCOperand
))->get();
1026 Action
= TLI
.getCondCodeAction(CCCode
, OpVT
);
1027 if (Action
== TargetLowering::Legal
) {
1028 if (Node
->getOpcode() == ISD::SELECT_CC
)
1029 Action
= TLI
.getOperationAction(Node
->getOpcode(),
1030 Node
->getValueType(0));
1032 Action
= TLI
.getOperationAction(Node
->getOpcode(), OpVT
);
1038 // FIXME: Model these properly. LOAD and STORE are complicated, and
1039 // STORE expects the unlegalized operand in some cases.
1040 SimpleFinishLegalizing
= false;
1042 case ISD::CALLSEQ_START
:
1043 case ISD::CALLSEQ_END
:
1044 // FIXME: This shouldn't be necessary. These nodes have special properties
1045 // dealing with the recursive nature of legalization. Removing this
1046 // special case should be done as part of making LegalizeDAG non-recursive.
1047 SimpleFinishLegalizing
= false;
1049 case ISD::EXTRACT_ELEMENT
:
1050 case ISD::FLT_ROUNDS_
:
1051 case ISD::MERGE_VALUES
:
1052 case ISD::EH_RETURN
:
1053 case ISD::FRAME_TO_ARGS_OFFSET
:
1054 case ISD::EH_DWARF_CFA
:
1055 case ISD::EH_SJLJ_SETJMP
:
1056 case ISD::EH_SJLJ_LONGJMP
:
1057 case ISD::EH_SJLJ_SETUP_DISPATCH
:
1058 // These operations lie about being legal: when they claim to be legal,
1059 // they should actually be expanded.
1060 Action
= TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0));
1061 if (Action
== TargetLowering::Legal
)
1062 Action
= TargetLowering::Expand
;
1064 case ISD::INIT_TRAMPOLINE
:
1065 case ISD::ADJUST_TRAMPOLINE
:
1066 case ISD::FRAMEADDR
:
1067 case ISD::RETURNADDR
:
1068 case ISD::ADDROFRETURNADDR
:
1069 case ISD::SPONENTRY
:
1070 // These operations lie about being legal: when they claim to be legal,
1071 // they should actually be custom-lowered.
1072 Action
= TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0));
1073 if (Action
== TargetLowering::Legal
)
1074 Action
= TargetLowering::Custom
;
1076 case ISD::READCYCLECOUNTER
:
1077 // READCYCLECOUNTER returns an i64, even if type legalization might have
1078 // expanded that to several smaller types.
1079 Action
= TLI
.getOperationAction(Node
->getOpcode(), MVT::i64
);
1081 case ISD::READ_REGISTER
:
1082 case ISD::WRITE_REGISTER
:
1083 // Named register is legal in the DAG, but blocked by register name
1084 // selection if not implemented by target (to chose the correct register)
1085 // They'll be converted to Copy(To/From)Reg.
1086 Action
= TargetLowering::Legal
;
1088 case ISD::DEBUGTRAP
:
1089 Action
= TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0));
1090 if (Action
== TargetLowering::Expand
) {
1091 // replace ISD::DEBUGTRAP with ISD::TRAP
1093 NewVal
= DAG
.getNode(ISD::TRAP
, SDLoc(Node
), Node
->getVTList(),
1094 Node
->getOperand(0));
1095 ReplaceNode(Node
, NewVal
.getNode());
1096 LegalizeOp(NewVal
.getNode());
1100 case ISD::STRICT_FADD
:
1101 case ISD::STRICT_FSUB
:
1102 case ISD::STRICT_FMUL
:
1103 case ISD::STRICT_FDIV
:
1104 case ISD::STRICT_FREM
:
1105 case ISD::STRICT_FSQRT
:
1106 case ISD::STRICT_FMA
:
1107 case ISD::STRICT_FPOW
:
1108 case ISD::STRICT_FPOWI
:
1109 case ISD::STRICT_FSIN
:
1110 case ISD::STRICT_FCOS
:
1111 case ISD::STRICT_FEXP
:
1112 case ISD::STRICT_FEXP2
:
1113 case ISD::STRICT_FLOG
:
1114 case ISD::STRICT_FLOG10
:
1115 case ISD::STRICT_FLOG2
:
1116 case ISD::STRICT_FRINT
:
1117 case ISD::STRICT_FNEARBYINT
:
1118 case ISD::STRICT_FMAXNUM
:
1119 case ISD::STRICT_FMINNUM
:
1120 case ISD::STRICT_FCEIL
:
1121 case ISD::STRICT_FFLOOR
:
1122 case ISD::STRICT_FROUND
:
1123 case ISD::STRICT_FTRUNC
:
1124 case ISD::STRICT_FP_ROUND
:
1125 case ISD::STRICT_FP_EXTEND
:
1126 // These pseudo-ops get legalized as if they were their non-strict
1127 // equivalent. For instance, if ISD::FSQRT is legal then ISD::STRICT_FSQRT
1128 // is also legal, but if ISD::FSQRT requires expansion then so does
1129 // ISD::STRICT_FSQRT.
1130 Action
= TLI
.getStrictFPOperationAction(Node
->getOpcode(),
1131 Node
->getValueType(0));
1136 case ISD::USUBSAT
: {
1137 Action
= TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0));
1141 case ISD::SMULFIXSAT
:
1142 case ISD::UMULFIX
: {
1143 unsigned Scale
= Node
->getConstantOperandVal(2);
1144 Action
= TLI
.getFixedPointOperationAction(Node
->getOpcode(),
1145 Node
->getValueType(0), Scale
);
1149 Action
= TLI
.getOperationAction(Node
->getOpcode(),
1150 cast
<MaskedScatterSDNode
>(Node
)->getValue().getValueType());
1153 Action
= TLI
.getOperationAction(Node
->getOpcode(),
1154 cast
<MaskedStoreSDNode
>(Node
)->getValue().getValueType());
1156 case ISD::VECREDUCE_FADD
:
1157 case ISD::VECREDUCE_FMUL
:
1158 case ISD::VECREDUCE_ADD
:
1159 case ISD::VECREDUCE_MUL
:
1160 case ISD::VECREDUCE_AND
:
1161 case ISD::VECREDUCE_OR
:
1162 case ISD::VECREDUCE_XOR
:
1163 case ISD::VECREDUCE_SMAX
:
1164 case ISD::VECREDUCE_SMIN
:
1165 case ISD::VECREDUCE_UMAX
:
1166 case ISD::VECREDUCE_UMIN
:
1167 case ISD::VECREDUCE_FMAX
:
1168 case ISD::VECREDUCE_FMIN
:
1169 Action
= TLI
.getOperationAction(
1170 Node
->getOpcode(), Node
->getOperand(0).getValueType());
1173 if (Node
->getOpcode() >= ISD::BUILTIN_OP_END
) {
1174 Action
= TargetLowering::Legal
;
1176 Action
= TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0));
1181 if (SimpleFinishLegalizing
) {
1182 SDNode
*NewNode
= Node
;
1183 switch (Node
->getOpcode()) {
1190 // Legalizing shifts/rotates requires adjusting the shift amount
1191 // to the appropriate width.
1192 SDValue Op0
= Node
->getOperand(0);
1193 SDValue Op1
= Node
->getOperand(1);
1194 if (!Op1
.getValueType().isVector()) {
1195 SDValue SAO
= DAG
.getShiftAmountOperand(Op0
.getValueType(), Op1
);
1196 // The getShiftAmountOperand() may create a new operand node or
1197 // return the existing one. If new operand is created we need
1198 // to update the parent node.
1199 // Do not try to legalize SAO here! It will be automatically legalized
1200 // in the next round.
1202 NewNode
= DAG
.UpdateNodeOperands(Node
, Op0
, SAO
);
1208 case ISD::SRL_PARTS
:
1209 case ISD::SRA_PARTS
:
1210 case ISD::SHL_PARTS
: {
1211 // Legalizing shifts/rotates requires adjusting the shift amount
1212 // to the appropriate width.
1213 SDValue Op0
= Node
->getOperand(0);
1214 SDValue Op1
= Node
->getOperand(1);
1215 SDValue Op2
= Node
->getOperand(2);
1216 if (!Op2
.getValueType().isVector()) {
1217 SDValue SAO
= DAG
.getShiftAmountOperand(Op0
.getValueType(), Op2
);
1218 // The getShiftAmountOperand() may create a new operand node or
1219 // return the existing one. If new operand is created we need
1220 // to update the parent node.
1222 NewNode
= DAG
.UpdateNodeOperands(Node
, Op0
, Op1
, SAO
);
1228 if (NewNode
!= Node
) {
1229 ReplaceNode(Node
, NewNode
);
1233 case TargetLowering::Legal
:
1234 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
1236 case TargetLowering::Custom
:
1237 LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
1238 // FIXME: The handling for custom lowering with multiple results is
1240 if (SDValue Res
= TLI
.LowerOperation(SDValue(Node
, 0), DAG
)) {
1241 if (!(Res
.getNode() != Node
|| Res
.getResNo() != 0))
1244 if (Node
->getNumValues() == 1) {
1245 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
1246 // We can just directly replace this node with the lowered value.
1247 ReplaceNode(SDValue(Node
, 0), Res
);
1251 SmallVector
<SDValue
, 8> ResultVals
;
1252 for (unsigned i
= 0, e
= Node
->getNumValues(); i
!= e
; ++i
)
1253 ResultVals
.push_back(Res
.getValue(i
));
1254 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
1255 ReplaceNode(Node
, ResultVals
.data());
1258 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
1260 case TargetLowering::Expand
:
1261 if (ExpandNode(Node
))
1264 case TargetLowering::LibCall
:
1265 ConvertNodeToLibcall(Node
);
1267 case TargetLowering::Promote
:
1273 switch (Node
->getOpcode()) {
1280 llvm_unreachable("Do not know how to legalize this operator!");
1282 case ISD::CALLSEQ_START
:
1283 case ISD::CALLSEQ_END
:
1286 return LegalizeLoadOps(Node
);
1288 return LegalizeStoreOps(Node
);
1292 SDValue
SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op
) {
1293 SDValue Vec
= Op
.getOperand(0);
1294 SDValue Idx
= Op
.getOperand(1);
1297 // Before we generate a new store to a temporary stack slot, see if there is
1298 // already one that we can use. There often is because when we scalarize
1299 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole
1300 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in
1301 // the vector. If all are expanded here, we don't want one store per vector
1304 // Caches for hasPredecessorHelper
1305 SmallPtrSet
<const SDNode
*, 32> Visited
;
1306 SmallVector
<const SDNode
*, 16> Worklist
;
1307 Visited
.insert(Op
.getNode());
1308 Worklist
.push_back(Idx
.getNode());
1309 SDValue StackPtr
, Ch
;
1310 for (SDNode::use_iterator UI
= Vec
.getNode()->use_begin(),
1311 UE
= Vec
.getNode()->use_end(); UI
!= UE
; ++UI
) {
1313 if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(User
)) {
1314 if (ST
->isIndexed() || ST
->isTruncatingStore() ||
1315 ST
->getValue() != Vec
)
1318 // Make sure that nothing else could have stored into the destination of
1320 if (!ST
->getChain().reachesChainWithoutSideEffects(DAG
.getEntryNode()))
1323 // If the index is dependent on the store we will introduce a cycle when
1324 // creating the load (the load uses the index, and by replacing the chain
1325 // we will make the index dependent on the load). Also, the store might be
1326 // dependent on the extractelement and introduce a cycle when creating
1328 if (SDNode::hasPredecessorHelper(ST
, Visited
, Worklist
) ||
1329 ST
->hasPredecessor(Op
.getNode()))
1332 StackPtr
= ST
->getBasePtr();
1333 Ch
= SDValue(ST
, 0);
1338 EVT VecVT
= Vec
.getValueType();
1340 if (!Ch
.getNode()) {
1341 // Store the value to a temporary stack slot, then LOAD the returned part.
1342 StackPtr
= DAG
.CreateStackTemporary(VecVT
);
1343 Ch
= DAG
.getStore(DAG
.getEntryNode(), dl
, Vec
, StackPtr
,
1344 MachinePointerInfo());
1347 StackPtr
= TLI
.getVectorElementPointer(DAG
, StackPtr
, VecVT
, Idx
);
1351 if (Op
.getValueType().isVector())
1353 DAG
.getLoad(Op
.getValueType(), dl
, Ch
, StackPtr
, MachinePointerInfo());
1355 NewLoad
= DAG
.getExtLoad(ISD::EXTLOAD
, dl
, Op
.getValueType(), Ch
, StackPtr
,
1356 MachinePointerInfo(),
1357 VecVT
.getVectorElementType());
1359 // Replace the chain going out of the store, by the one out of the load.
1360 DAG
.ReplaceAllUsesOfValueWith(Ch
, SDValue(NewLoad
.getNode(), 1));
1362 // We introduced a cycle though, so update the loads operands, making sure
1363 // to use the original store's chain as an incoming chain.
1364 SmallVector
<SDValue
, 6> NewLoadOperands(NewLoad
->op_begin(),
1366 NewLoadOperands
[0] = Ch
;
1368 SDValue(DAG
.UpdateNodeOperands(NewLoad
.getNode(), NewLoadOperands
), 0);
1372 SDValue
SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op
) {
1373 assert(Op
.getValueType().isVector() && "Non-vector insert subvector!");
1375 SDValue Vec
= Op
.getOperand(0);
1376 SDValue Part
= Op
.getOperand(1);
1377 SDValue Idx
= Op
.getOperand(2);
1380 // Store the value to a temporary stack slot, then LOAD the returned part.
1381 EVT VecVT
= Vec
.getValueType();
1382 SDValue StackPtr
= DAG
.CreateStackTemporary(VecVT
);
1383 int FI
= cast
<FrameIndexSDNode
>(StackPtr
.getNode())->getIndex();
1384 MachinePointerInfo PtrInfo
=
1385 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
);
1387 // First store the whole vector.
1388 SDValue Ch
= DAG
.getStore(DAG
.getEntryNode(), dl
, Vec
, StackPtr
, PtrInfo
);
1390 // Then store the inserted part.
1391 SDValue SubStackPtr
= TLI
.getVectorElementPointer(DAG
, StackPtr
, VecVT
, Idx
);
1393 // Store the subvector.
1394 Ch
= DAG
.getStore(Ch
, dl
, Part
, SubStackPtr
, MachinePointerInfo());
1396 // Finally, load the updated vector.
1397 return DAG
.getLoad(Op
.getValueType(), dl
, Ch
, StackPtr
, PtrInfo
);
1400 SDValue
SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode
* Node
) {
1401 // We can't handle this case efficiently. Allocate a sufficiently
1402 // aligned object on the stack, store each element into it, then load
1403 // the result as a vector.
1404 // Create the stack frame object.
1405 EVT VT
= Node
->getValueType(0);
1406 EVT EltVT
= VT
.getVectorElementType();
1408 SDValue FIPtr
= DAG
.CreateStackTemporary(VT
);
1409 int FI
= cast
<FrameIndexSDNode
>(FIPtr
.getNode())->getIndex();
1410 MachinePointerInfo PtrInfo
=
1411 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
);
1413 // Emit a store of each element to the stack slot.
1414 SmallVector
<SDValue
, 8> Stores
;
1415 unsigned TypeByteSize
= EltVT
.getSizeInBits() / 8;
1416 assert(TypeByteSize
> 0 && "Vector element type too small for stack store!");
1417 // Store (in the right endianness) the elements to memory.
1418 for (unsigned i
= 0, e
= Node
->getNumOperands(); i
!= e
; ++i
) {
1419 // Ignore undef elements.
1420 if (Node
->getOperand(i
).isUndef()) continue;
1422 unsigned Offset
= TypeByteSize
*i
;
1424 SDValue Idx
= DAG
.getConstant(Offset
, dl
, FIPtr
.getValueType());
1425 Idx
= DAG
.getNode(ISD::ADD
, dl
, FIPtr
.getValueType(), FIPtr
, Idx
);
1427 // If the destination vector element type is narrower than the source
1428 // element type, only store the bits necessary.
1429 if (EltVT
.bitsLT(Node
->getOperand(i
).getValueType().getScalarType())) {
1430 Stores
.push_back(DAG
.getTruncStore(DAG
.getEntryNode(), dl
,
1431 Node
->getOperand(i
), Idx
,
1432 PtrInfo
.getWithOffset(Offset
), EltVT
));
1434 Stores
.push_back(DAG
.getStore(DAG
.getEntryNode(), dl
, Node
->getOperand(i
),
1435 Idx
, PtrInfo
.getWithOffset(Offset
)));
1439 if (!Stores
.empty()) // Not all undef elements?
1440 StoreChain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Stores
);
1442 StoreChain
= DAG
.getEntryNode();
1444 // Result is a load from the stack slot.
1445 return DAG
.getLoad(VT
, dl
, StoreChain
, FIPtr
, PtrInfo
);
1448 /// Bitcast a floating-point value to an integer value. Only bitcast the part
1449 /// containing the sign bit if the target has no integer value capable of
1450 /// holding all bits of the floating-point value.
1451 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt
&State
,
1453 SDValue Value
) const {
1454 EVT FloatVT
= Value
.getValueType();
1455 unsigned NumBits
= FloatVT
.getSizeInBits();
1456 State
.FloatVT
= FloatVT
;
1457 EVT IVT
= EVT::getIntegerVT(*DAG
.getContext(), NumBits
);
1458 // Convert to an integer of the same size.
1459 if (TLI
.isTypeLegal(IVT
)) {
1460 State
.IntValue
= DAG
.getNode(ISD::BITCAST
, DL
, IVT
, Value
);
1461 State
.SignMask
= APInt::getSignMask(NumBits
);
1462 State
.SignBit
= NumBits
- 1;
1466 auto &DataLayout
= DAG
.getDataLayout();
1467 // Store the float to memory, then load the sign part out as an integer.
1468 MVT LoadTy
= TLI
.getRegisterType(*DAG
.getContext(), MVT::i8
);
1469 // First create a temporary that is aligned for both the load and store.
1470 SDValue StackPtr
= DAG
.CreateStackTemporary(FloatVT
, LoadTy
);
1471 int FI
= cast
<FrameIndexSDNode
>(StackPtr
.getNode())->getIndex();
1472 // Then store the float to it.
1473 State
.FloatPtr
= StackPtr
;
1474 MachineFunction
&MF
= DAG
.getMachineFunction();
1475 State
.FloatPointerInfo
= MachinePointerInfo::getFixedStack(MF
, FI
);
1476 State
.Chain
= DAG
.getStore(DAG
.getEntryNode(), DL
, Value
, State
.FloatPtr
,
1477 State
.FloatPointerInfo
);
1480 if (DataLayout
.isBigEndian()) {
1481 assert(FloatVT
.isByteSized() && "Unsupported floating point type!");
1482 // Load out a legal integer with the same sign bit as the float.
1484 State
.IntPointerInfo
= State
.FloatPointerInfo
;
1486 // Advance the pointer so that the loaded byte will contain the sign bit.
1487 unsigned ByteOffset
= (FloatVT
.getSizeInBits() / 8) - 1;
1488 IntPtr
= DAG
.getNode(ISD::ADD
, DL
, StackPtr
.getValueType(), StackPtr
,
1489 DAG
.getConstant(ByteOffset
, DL
, StackPtr
.getValueType()));
1490 State
.IntPointerInfo
= MachinePointerInfo::getFixedStack(MF
, FI
,
1494 State
.IntPtr
= IntPtr
;
1495 State
.IntValue
= DAG
.getExtLoad(ISD::EXTLOAD
, DL
, LoadTy
, State
.Chain
, IntPtr
,
1496 State
.IntPointerInfo
, MVT::i8
);
1497 State
.SignMask
= APInt::getOneBitSet(LoadTy
.getSizeInBits(), 7);
1501 /// Replace the integer value produced by getSignAsIntValue() with a new value
1502 /// and cast the result back to a floating-point type.
1503 SDValue
SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt
&State
,
1505 SDValue NewIntValue
) const {
1507 return DAG
.getNode(ISD::BITCAST
, DL
, State
.FloatVT
, NewIntValue
);
1509 // Override the part containing the sign bit in the value stored on the stack.
1510 SDValue Chain
= DAG
.getTruncStore(State
.Chain
, DL
, NewIntValue
, State
.IntPtr
,
1511 State
.IntPointerInfo
, MVT::i8
);
1512 return DAG
.getLoad(State
.FloatVT
, DL
, Chain
, State
.FloatPtr
,
1513 State
.FloatPointerInfo
);
1516 SDValue
SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode
*Node
) const {
1518 SDValue Mag
= Node
->getOperand(0);
1519 SDValue Sign
= Node
->getOperand(1);
1521 // Get sign bit into an integer value.
1522 FloatSignAsInt SignAsInt
;
1523 getSignAsIntValue(SignAsInt
, DL
, Sign
);
1525 EVT IntVT
= SignAsInt
.IntValue
.getValueType();
1526 SDValue SignMask
= DAG
.getConstant(SignAsInt
.SignMask
, DL
, IntVT
);
1527 SDValue SignBit
= DAG
.getNode(ISD::AND
, DL
, IntVT
, SignAsInt
.IntValue
,
1530 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X)
1531 EVT FloatVT
= Mag
.getValueType();
1532 if (TLI
.isOperationLegalOrCustom(ISD::FABS
, FloatVT
) &&
1533 TLI
.isOperationLegalOrCustom(ISD::FNEG
, FloatVT
)) {
1534 SDValue AbsValue
= DAG
.getNode(ISD::FABS
, DL
, FloatVT
, Mag
);
1535 SDValue NegValue
= DAG
.getNode(ISD::FNEG
, DL
, FloatVT
, AbsValue
);
1536 SDValue Cond
= DAG
.getSetCC(DL
, getSetCCResultType(IntVT
), SignBit
,
1537 DAG
.getConstant(0, DL
, IntVT
), ISD::SETNE
);
1538 return DAG
.getSelect(DL
, FloatVT
, Cond
, NegValue
, AbsValue
);
1541 // Transform Mag value to integer, and clear the sign bit.
1542 FloatSignAsInt MagAsInt
;
1543 getSignAsIntValue(MagAsInt
, DL
, Mag
);
1544 EVT MagVT
= MagAsInt
.IntValue
.getValueType();
1545 SDValue ClearSignMask
= DAG
.getConstant(~MagAsInt
.SignMask
, DL
, MagVT
);
1546 SDValue ClearedSign
= DAG
.getNode(ISD::AND
, DL
, MagVT
, MagAsInt
.IntValue
,
1549 // Get the signbit at the right position for MagAsInt.
1550 int ShiftAmount
= SignAsInt
.SignBit
- MagAsInt
.SignBit
;
1551 EVT ShiftVT
= IntVT
;
1552 if (SignBit
.getValueSizeInBits() < ClearedSign
.getValueSizeInBits()) {
1553 SignBit
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, MagVT
, SignBit
);
1556 if (ShiftAmount
> 0) {
1557 SDValue ShiftCnst
= DAG
.getConstant(ShiftAmount
, DL
, ShiftVT
);
1558 SignBit
= DAG
.getNode(ISD::SRL
, DL
, ShiftVT
, SignBit
, ShiftCnst
);
1559 } else if (ShiftAmount
< 0) {
1560 SDValue ShiftCnst
= DAG
.getConstant(-ShiftAmount
, DL
, ShiftVT
);
1561 SignBit
= DAG
.getNode(ISD::SHL
, DL
, ShiftVT
, SignBit
, ShiftCnst
);
1563 if (SignBit
.getValueSizeInBits() > ClearedSign
.getValueSizeInBits()) {
1564 SignBit
= DAG
.getNode(ISD::TRUNCATE
, DL
, MagVT
, SignBit
);
1567 // Store the part with the modified sign and convert back to float.
1568 SDValue CopiedSign
= DAG
.getNode(ISD::OR
, DL
, MagVT
, ClearedSign
, SignBit
);
1569 return modifySignAsInt(MagAsInt
, DL
, CopiedSign
);
1572 SDValue
SelectionDAGLegalize::ExpandFABS(SDNode
*Node
) const {
1574 SDValue Value
= Node
->getOperand(0);
1576 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal.
1577 EVT FloatVT
= Value
.getValueType();
1578 if (TLI
.isOperationLegalOrCustom(ISD::FCOPYSIGN
, FloatVT
)) {
1579 SDValue Zero
= DAG
.getConstantFP(0.0, DL
, FloatVT
);
1580 return DAG
.getNode(ISD::FCOPYSIGN
, DL
, FloatVT
, Value
, Zero
);
1583 // Transform value to integer, clear the sign bit and transform back.
1584 FloatSignAsInt ValueAsInt
;
1585 getSignAsIntValue(ValueAsInt
, DL
, Value
);
1586 EVT IntVT
= ValueAsInt
.IntValue
.getValueType();
1587 SDValue ClearSignMask
= DAG
.getConstant(~ValueAsInt
.SignMask
, DL
, IntVT
);
1588 SDValue ClearedSign
= DAG
.getNode(ISD::AND
, DL
, IntVT
, ValueAsInt
.IntValue
,
1590 return modifySignAsInt(ValueAsInt
, DL
, ClearedSign
);
1593 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode
* Node
,
1594 SmallVectorImpl
<SDValue
> &Results
) {
1595 unsigned SPReg
= TLI
.getStackPointerRegisterToSaveRestore();
1596 assert(SPReg
&& "Target cannot require DYNAMIC_STACKALLOC expansion and"
1597 " not tell us which reg is the stack pointer!");
1599 EVT VT
= Node
->getValueType(0);
1600 SDValue Tmp1
= SDValue(Node
, 0);
1601 SDValue Tmp2
= SDValue(Node
, 1);
1602 SDValue Tmp3
= Node
->getOperand(2);
1603 SDValue Chain
= Tmp1
.getOperand(0);
1605 // Chain the dynamic stack allocation so that it doesn't modify the stack
1606 // pointer when other instructions are using the stack.
1607 Chain
= DAG
.getCALLSEQ_START(Chain
, 0, 0, dl
);
1609 SDValue Size
= Tmp2
.getOperand(1);
1610 SDValue SP
= DAG
.getCopyFromReg(Chain
, dl
, SPReg
, VT
);
1611 Chain
= SP
.getValue(1);
1612 unsigned Align
= cast
<ConstantSDNode
>(Tmp3
)->getZExtValue();
1613 unsigned StackAlign
=
1614 DAG
.getSubtarget().getFrameLowering()->getStackAlignment();
1615 Tmp1
= DAG
.getNode(ISD::SUB
, dl
, VT
, SP
, Size
); // Value
1616 if (Align
> StackAlign
)
1617 Tmp1
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp1
,
1618 DAG
.getConstant(-(uint64_t)Align
, dl
, VT
));
1619 Chain
= DAG
.getCopyToReg(Chain
, dl
, SPReg
, Tmp1
); // Output chain
1621 Tmp2
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(0, dl
, true),
1622 DAG
.getIntPtrConstant(0, dl
, true), SDValue(), dl
);
1624 Results
.push_back(Tmp1
);
1625 Results
.push_back(Tmp2
);
1628 /// Legalize a SETCC with given LHS and RHS and condition code CC on the current
1631 /// If the SETCC has been legalized using AND / OR, then the legalized node
1632 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert
1633 /// will be set to false.
1635 /// If the SETCC has been legalized by using getSetCCSwappedOperands(),
1636 /// then the values of LHS and RHS will be swapped, CC will be set to the
1637 /// new condition, and NeedInvert will be set to false.
1639 /// If the SETCC has been legalized using the inverse condcode, then LHS and
1640 /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert
1641 /// will be set to true. The caller must invert the result of the SETCC with
1642 /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect
1643 /// of a true/false result.
1645 /// \returns true if the SetCC has been legalized, false if it hasn't.
1646 bool SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT
, SDValue
&LHS
,
1647 SDValue
&RHS
, SDValue
&CC
,
1650 MVT OpVT
= LHS
.getSimpleValueType();
1651 ISD::CondCode CCCode
= cast
<CondCodeSDNode
>(CC
)->get();
1653 bool NeedSwap
= false;
1654 switch (TLI
.getCondCodeAction(CCCode
, OpVT
)) {
1655 default: llvm_unreachable("Unknown condition code action!");
1656 case TargetLowering::Legal
:
1659 case TargetLowering::Expand
: {
1660 ISD::CondCode InvCC
= ISD::getSetCCSwappedOperands(CCCode
);
1661 if (TLI
.isCondCodeLegalOrCustom(InvCC
, OpVT
)) {
1662 std::swap(LHS
, RHS
);
1663 CC
= DAG
.getCondCode(InvCC
);
1666 // Swapping operands didn't work. Try inverting the condition.
1667 InvCC
= getSetCCInverse(CCCode
, OpVT
.isInteger());
1668 if (!TLI
.isCondCodeLegalOrCustom(InvCC
, OpVT
)) {
1669 // If inverting the condition is not enough, try swapping operands
1671 InvCC
= ISD::getSetCCSwappedOperands(InvCC
);
1674 if (TLI
.isCondCodeLegalOrCustom(InvCC
, OpVT
)) {
1675 CC
= DAG
.getCondCode(InvCC
);
1678 std::swap(LHS
, RHS
);
1682 ISD::CondCode CC1
= ISD::SETCC_INVALID
, CC2
= ISD::SETCC_INVALID
;
1685 default: llvm_unreachable("Don't know how to expand this condition!");
1687 assert(TLI
.isCondCodeLegal(ISD::SETOEQ
, OpVT
)
1688 && "If SETO is expanded, SETOEQ must be legal!");
1689 CC1
= ISD::SETOEQ
; CC2
= ISD::SETOEQ
; Opc
= ISD::AND
; break;
1691 assert(TLI
.isCondCodeLegal(ISD::SETUNE
, OpVT
)
1692 && "If SETUO is expanded, SETUNE must be legal!");
1693 CC1
= ISD::SETUNE
; CC2
= ISD::SETUNE
; Opc
= ISD::OR
; break;
1706 // If we are floating point, assign and break, otherwise fall through.
1707 if (!OpVT
.isInteger()) {
1708 // We can use the 4th bit to tell if we are the unordered
1709 // or ordered version of the opcode.
1710 CC2
= ((unsigned)CCCode
& 0x8U
) ? ISD::SETUO
: ISD::SETO
;
1711 Opc
= ((unsigned)CCCode
& 0x8U
) ? ISD::OR
: ISD::AND
;
1712 CC1
= (ISD::CondCode
)(((int)CCCode
& 0x7) | 0x10);
1715 // Fallthrough if we are unsigned integer.
1723 // If all combinations of inverting the condition and swapping operands
1724 // didn't work then we have no means to expand the condition.
1725 llvm_unreachable("Don't know how to expand this condition!");
1728 SDValue SetCC1
, SetCC2
;
1729 if (CCCode
!= ISD::SETO
&& CCCode
!= ISD::SETUO
) {
1730 // If we aren't the ordered or unorder operation,
1731 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
1732 SetCC1
= DAG
.getSetCC(dl
, VT
, LHS
, RHS
, CC1
);
1733 SetCC2
= DAG
.getSetCC(dl
, VT
, LHS
, RHS
, CC2
);
1735 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
1736 SetCC1
= DAG
.getSetCC(dl
, VT
, LHS
, LHS
, CC1
);
1737 SetCC2
= DAG
.getSetCC(dl
, VT
, RHS
, RHS
, CC2
);
1739 LHS
= DAG
.getNode(Opc
, dl
, VT
, SetCC1
, SetCC2
);
1748 /// Emit a store/load combination to the stack. This stores
1749 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does
1750 /// a load from the stack slot to DestVT, extending it if needed.
1751 /// The resultant code need not be legal.
1752 SDValue
SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp
, EVT SlotVT
,
1753 EVT DestVT
, const SDLoc
&dl
) {
1754 return EmitStackConvert(SrcOp
, SlotVT
, DestVT
, dl
, DAG
.getEntryNode());
1757 SDValue
SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp
, EVT SlotVT
,
1758 EVT DestVT
, const SDLoc
&dl
,
1760 // Create the stack frame object.
1761 unsigned SrcAlign
= DAG
.getDataLayout().getPrefTypeAlignment(
1762 SrcOp
.getValueType().getTypeForEVT(*DAG
.getContext()));
1763 SDValue FIPtr
= DAG
.CreateStackTemporary(SlotVT
, SrcAlign
);
1765 FrameIndexSDNode
*StackPtrFI
= cast
<FrameIndexSDNode
>(FIPtr
);
1766 int SPFI
= StackPtrFI
->getIndex();
1767 MachinePointerInfo PtrInfo
=
1768 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), SPFI
);
1770 unsigned SrcSize
= SrcOp
.getValueSizeInBits();
1771 unsigned SlotSize
= SlotVT
.getSizeInBits();
1772 unsigned DestSize
= DestVT
.getSizeInBits();
1773 Type
*DestType
= DestVT
.getTypeForEVT(*DAG
.getContext());
1774 unsigned DestAlign
= DAG
.getDataLayout().getPrefTypeAlignment(DestType
);
1776 // Emit a store to the stack slot. Use a truncstore if the input value is
1777 // later than DestVT.
1780 if (SrcSize
> SlotSize
)
1781 Store
= DAG
.getTruncStore(Chain
, dl
, SrcOp
, FIPtr
, PtrInfo
,
1784 assert(SrcSize
== SlotSize
&& "Invalid store");
1786 DAG
.getStore(Chain
, dl
, SrcOp
, FIPtr
, PtrInfo
, SrcAlign
);
1789 // Result is a load from the stack slot.
1790 if (SlotSize
== DestSize
)
1791 return DAG
.getLoad(DestVT
, dl
, Store
, FIPtr
, PtrInfo
, DestAlign
);
1793 assert(SlotSize
< DestSize
&& "Unknown extension!");
1794 return DAG
.getExtLoad(ISD::EXTLOAD
, dl
, DestVT
, Store
, FIPtr
, PtrInfo
, SlotVT
,
1798 SDValue
SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode
*Node
) {
1800 // Create a vector sized/aligned stack slot, store the value to element #0,
1801 // then load the whole vector back out.
1802 SDValue StackPtr
= DAG
.CreateStackTemporary(Node
->getValueType(0));
1804 FrameIndexSDNode
*StackPtrFI
= cast
<FrameIndexSDNode
>(StackPtr
);
1805 int SPFI
= StackPtrFI
->getIndex();
1807 SDValue Ch
= DAG
.getTruncStore(
1808 DAG
.getEntryNode(), dl
, Node
->getOperand(0), StackPtr
,
1809 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), SPFI
),
1810 Node
->getValueType(0).getVectorElementType());
1812 Node
->getValueType(0), dl
, Ch
, StackPtr
,
1813 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), SPFI
));
1817 ExpandBVWithShuffles(SDNode
*Node
, SelectionDAG
&DAG
,
1818 const TargetLowering
&TLI
, SDValue
&Res
) {
1819 unsigned NumElems
= Node
->getNumOperands();
1821 EVT VT
= Node
->getValueType(0);
1823 // Try to group the scalars into pairs, shuffle the pairs together, then
1824 // shuffle the pairs of pairs together, etc. until the vector has
1825 // been built. This will work only if all of the necessary shuffle masks
1828 // We do this in two phases; first to check the legality of the shuffles,
1829 // and next, assuming that all shuffles are legal, to create the new nodes.
1830 for (int Phase
= 0; Phase
< 2; ++Phase
) {
1831 SmallVector
<std::pair
<SDValue
, SmallVector
<int, 16>>, 16> IntermedVals
,
1833 for (unsigned i
= 0; i
< NumElems
; ++i
) {
1834 SDValue V
= Node
->getOperand(i
);
1840 Vec
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, V
);
1841 IntermedVals
.push_back(std::make_pair(Vec
, SmallVector
<int, 16>(1, i
)));
1844 while (IntermedVals
.size() > 2) {
1845 NewIntermedVals
.clear();
1846 for (unsigned i
= 0, e
= (IntermedVals
.size() & ~1u); i
< e
; i
+= 2) {
1847 // This vector and the next vector are shuffled together (simply to
1848 // append the one to the other).
1849 SmallVector
<int, 16> ShuffleVec(NumElems
, -1);
1851 SmallVector
<int, 16> FinalIndices
;
1852 FinalIndices
.reserve(IntermedVals
[i
].second
.size() +
1853 IntermedVals
[i
+1].second
.size());
1856 for (unsigned j
= 0, f
= IntermedVals
[i
].second
.size(); j
!= f
;
1859 FinalIndices
.push_back(IntermedVals
[i
].second
[j
]);
1861 for (unsigned j
= 0, f
= IntermedVals
[i
+1].second
.size(); j
!= f
;
1863 ShuffleVec
[k
] = NumElems
+ j
;
1864 FinalIndices
.push_back(IntermedVals
[i
+1].second
[j
]);
1869 Shuffle
= DAG
.getVectorShuffle(VT
, dl
, IntermedVals
[i
].first
,
1870 IntermedVals
[i
+1].first
,
1872 else if (!TLI
.isShuffleMaskLegal(ShuffleVec
, VT
))
1874 NewIntermedVals
.push_back(
1875 std::make_pair(Shuffle
, std::move(FinalIndices
)));
1878 // If we had an odd number of defined values, then append the last
1879 // element to the array of new vectors.
1880 if ((IntermedVals
.size() & 1) != 0)
1881 NewIntermedVals
.push_back(IntermedVals
.back());
1883 IntermedVals
.swap(NewIntermedVals
);
1886 assert(IntermedVals
.size() <= 2 && IntermedVals
.size() > 0 &&
1887 "Invalid number of intermediate vectors");
1888 SDValue Vec1
= IntermedVals
[0].first
;
1890 if (IntermedVals
.size() > 1)
1891 Vec2
= IntermedVals
[1].first
;
1893 Vec2
= DAG
.getUNDEF(VT
);
1895 SmallVector
<int, 16> ShuffleVec(NumElems
, -1);
1896 for (unsigned i
= 0, e
= IntermedVals
[0].second
.size(); i
!= e
; ++i
)
1897 ShuffleVec
[IntermedVals
[0].second
[i
]] = i
;
1898 for (unsigned i
= 0, e
= IntermedVals
[1].second
.size(); i
!= e
; ++i
)
1899 ShuffleVec
[IntermedVals
[1].second
[i
]] = NumElems
+ i
;
1902 Res
= DAG
.getVectorShuffle(VT
, dl
, Vec1
, Vec2
, ShuffleVec
);
1903 else if (!TLI
.isShuffleMaskLegal(ShuffleVec
, VT
))
1910 /// Expand a BUILD_VECTOR node on targets that don't
1911 /// support the operation, but do support the resultant vector type.
1912 SDValue
SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode
*Node
) {
1913 unsigned NumElems
= Node
->getNumOperands();
1914 SDValue Value1
, Value2
;
1916 EVT VT
= Node
->getValueType(0);
1917 EVT OpVT
= Node
->getOperand(0).getValueType();
1918 EVT EltVT
= VT
.getVectorElementType();
1920 // If the only non-undef value is the low element, turn this into a
1921 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X.
1922 bool isOnlyLowElement
= true;
1923 bool MoreThanTwoValues
= false;
1924 bool isConstant
= true;
1925 for (unsigned i
= 0; i
< NumElems
; ++i
) {
1926 SDValue V
= Node
->getOperand(i
);
1930 isOnlyLowElement
= false;
1931 if (!isa
<ConstantFPSDNode
>(V
) && !isa
<ConstantSDNode
>(V
))
1934 if (!Value1
.getNode()) {
1936 } else if (!Value2
.getNode()) {
1939 } else if (V
!= Value1
&& V
!= Value2
) {
1940 MoreThanTwoValues
= true;
1944 if (!Value1
.getNode())
1945 return DAG
.getUNDEF(VT
);
1947 if (isOnlyLowElement
)
1948 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Node
->getOperand(0));
1950 // If all elements are constants, create a load from the constant pool.
1952 SmallVector
<Constant
*, 16> CV
;
1953 for (unsigned i
= 0, e
= NumElems
; i
!= e
; ++i
) {
1954 if (ConstantFPSDNode
*V
=
1955 dyn_cast
<ConstantFPSDNode
>(Node
->getOperand(i
))) {
1956 CV
.push_back(const_cast<ConstantFP
*>(V
->getConstantFPValue()));
1957 } else if (ConstantSDNode
*V
=
1958 dyn_cast
<ConstantSDNode
>(Node
->getOperand(i
))) {
1960 CV
.push_back(const_cast<ConstantInt
*>(V
->getConstantIntValue()));
1962 // If OpVT and EltVT don't match, EltVT is not legal and the
1963 // element values have been promoted/truncated earlier. Undo this;
1964 // we don't want a v16i8 to become a v16i32 for example.
1965 const ConstantInt
*CI
= V
->getConstantIntValue();
1966 CV
.push_back(ConstantInt::get(EltVT
.getTypeForEVT(*DAG
.getContext()),
1967 CI
->getZExtValue()));
1970 assert(Node
->getOperand(i
).isUndef());
1971 Type
*OpNTy
= EltVT
.getTypeForEVT(*DAG
.getContext());
1972 CV
.push_back(UndefValue::get(OpNTy
));
1975 Constant
*CP
= ConstantVector::get(CV
);
1977 DAG
.getConstantPool(CP
, TLI
.getPointerTy(DAG
.getDataLayout()));
1978 unsigned Alignment
= cast
<ConstantPoolSDNode
>(CPIdx
)->getAlignment();
1980 VT
, dl
, DAG
.getEntryNode(), CPIdx
,
1981 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()),
1985 SmallSet
<SDValue
, 16> DefinedValues
;
1986 for (unsigned i
= 0; i
< NumElems
; ++i
) {
1987 if (Node
->getOperand(i
).isUndef())
1989 DefinedValues
.insert(Node
->getOperand(i
));
1992 if (TLI
.shouldExpandBuildVectorWithShuffles(VT
, DefinedValues
.size())) {
1993 if (!MoreThanTwoValues
) {
1994 SmallVector
<int, 8> ShuffleVec(NumElems
, -1);
1995 for (unsigned i
= 0; i
< NumElems
; ++i
) {
1996 SDValue V
= Node
->getOperand(i
);
1999 ShuffleVec
[i
] = V
== Value1
? 0 : NumElems
;
2001 if (TLI
.isShuffleMaskLegal(ShuffleVec
, Node
->getValueType(0))) {
2002 // Get the splatted value into the low element of a vector register.
2003 SDValue Vec1
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Value1
);
2005 if (Value2
.getNode())
2006 Vec2
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Value2
);
2008 Vec2
= DAG
.getUNDEF(VT
);
2010 // Return shuffle(LowValVec, undef, <0,0,0,0>)
2011 return DAG
.getVectorShuffle(VT
, dl
, Vec1
, Vec2
, ShuffleVec
);
2015 if (ExpandBVWithShuffles(Node
, DAG
, TLI
, Res
))
2020 // Otherwise, we can't handle this case efficiently.
2021 return ExpandVectorBuildThroughStack(Node
);
2024 // Expand a node into a call to a libcall. If the result value
2025 // does not fit into a register, return the lo part and set the hi part to the
2026 // by-reg argument. If it does fit into a single register, return the result
2027 // and leave the Hi part unset.
2028 SDValue
SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC
, SDNode
*Node
,
2030 TargetLowering::ArgListTy Args
;
2031 TargetLowering::ArgListEntry Entry
;
2032 for (const SDValue
&Op
: Node
->op_values()) {
2033 EVT ArgVT
= Op
.getValueType();
2034 Type
*ArgTy
= ArgVT
.getTypeForEVT(*DAG
.getContext());
2037 Entry
.IsSExt
= TLI
.shouldSignExtendTypeInLibCall(ArgVT
, isSigned
);
2038 Entry
.IsZExt
= !TLI
.shouldSignExtendTypeInLibCall(ArgVT
, isSigned
);
2039 Args
.push_back(Entry
);
2041 SDValue Callee
= DAG
.getExternalSymbol(TLI
.getLibcallName(LC
),
2042 TLI
.getPointerTy(DAG
.getDataLayout()));
2044 EVT RetVT
= Node
->getValueType(0);
2045 Type
*RetTy
= RetVT
.getTypeForEVT(*DAG
.getContext());
2047 // By default, the input chain to this libcall is the entry node of the
2048 // function. If the libcall is going to be emitted as a tail call then
2049 // TLI.isUsedByReturnOnly will change it to the right chain if the return
2050 // node which is being folded has a non-entry input chain.
2051 SDValue InChain
= DAG
.getEntryNode();
2053 // isTailCall may be true since the callee does not reference caller stack
2054 // frame. Check if it's in the right position and that the return types match.
2055 SDValue TCChain
= InChain
;
2056 const Function
&F
= DAG
.getMachineFunction().getFunction();
2058 TLI
.isInTailCallPosition(DAG
, Node
, TCChain
) &&
2059 (RetTy
== F
.getReturnType() || F
.getReturnType()->isVoidTy());
2063 TargetLowering::CallLoweringInfo
CLI(DAG
);
2064 bool signExtend
= TLI
.shouldSignExtendTypeInLibCall(RetVT
, isSigned
);
2065 CLI
.setDebugLoc(SDLoc(Node
))
2067 .setLibCallee(TLI
.getLibcallCallingConv(LC
), RetTy
, Callee
,
2069 .setTailCall(isTailCall
)
2070 .setSExtResult(signExtend
)
2071 .setZExtResult(!signExtend
)
2072 .setIsPostTypeLegalization(true);
2074 std::pair
<SDValue
, SDValue
> CallInfo
= TLI
.LowerCallTo(CLI
);
2076 if (!CallInfo
.second
.getNode()) {
2077 LLVM_DEBUG(dbgs() << "Created tailcall: "; DAG
.getRoot().dump());
2078 // It's a tailcall, return the chain (which is the DAG root).
2079 return DAG
.getRoot();
2082 LLVM_DEBUG(dbgs() << "Created libcall: "; CallInfo
.first
.dump());
2083 return CallInfo
.first
;
2086 // Expand a node into a call to a libcall. Similar to
2087 // ExpandLibCall except that the first operand is the in-chain.
2088 std::pair
<SDValue
, SDValue
>
2089 SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC
,
2092 SDValue InChain
= Node
->getOperand(0);
2094 TargetLowering::ArgListTy Args
;
2095 TargetLowering::ArgListEntry Entry
;
2096 for (unsigned i
= 1, e
= Node
->getNumOperands(); i
!= e
; ++i
) {
2097 EVT ArgVT
= Node
->getOperand(i
).getValueType();
2098 Type
*ArgTy
= ArgVT
.getTypeForEVT(*DAG
.getContext());
2099 Entry
.Node
= Node
->getOperand(i
);
2101 Entry
.IsSExt
= isSigned
;
2102 Entry
.IsZExt
= !isSigned
;
2103 Args
.push_back(Entry
);
2105 SDValue Callee
= DAG
.getExternalSymbol(TLI
.getLibcallName(LC
),
2106 TLI
.getPointerTy(DAG
.getDataLayout()));
2108 Type
*RetTy
= Node
->getValueType(0).getTypeForEVT(*DAG
.getContext());
2110 TargetLowering::CallLoweringInfo
CLI(DAG
);
2111 CLI
.setDebugLoc(SDLoc(Node
))
2113 .setLibCallee(TLI
.getLibcallCallingConv(LC
), RetTy
, Callee
,
2115 .setSExtResult(isSigned
)
2116 .setZExtResult(!isSigned
);
2118 std::pair
<SDValue
, SDValue
> CallInfo
= TLI
.LowerCallTo(CLI
);
2123 SDValue
SelectionDAGLegalize::ExpandFPLibCall(SDNode
* Node
,
2124 RTLIB::Libcall Call_F32
,
2125 RTLIB::Libcall Call_F64
,
2126 RTLIB::Libcall Call_F80
,
2127 RTLIB::Libcall Call_F128
,
2128 RTLIB::Libcall Call_PPCF128
) {
2129 if (Node
->isStrictFPOpcode())
2130 Node
= DAG
.mutateStrictFPToFP(Node
);
2133 switch (Node
->getSimpleValueType(0).SimpleTy
) {
2134 default: llvm_unreachable("Unexpected request for libcall!");
2135 case MVT::f32
: LC
= Call_F32
; break;
2136 case MVT::f64
: LC
= Call_F64
; break;
2137 case MVT::f80
: LC
= Call_F80
; break;
2138 case MVT::f128
: LC
= Call_F128
; break;
2139 case MVT::ppcf128
: LC
= Call_PPCF128
; break;
2141 return ExpandLibCall(LC
, Node
, false);
2144 SDValue
SelectionDAGLegalize::ExpandIntLibCall(SDNode
* Node
, bool isSigned
,
2145 RTLIB::Libcall Call_I8
,
2146 RTLIB::Libcall Call_I16
,
2147 RTLIB::Libcall Call_I32
,
2148 RTLIB::Libcall Call_I64
,
2149 RTLIB::Libcall Call_I128
) {
2151 switch (Node
->getSimpleValueType(0).SimpleTy
) {
2152 default: llvm_unreachable("Unexpected request for libcall!");
2153 case MVT::i8
: LC
= Call_I8
; break;
2154 case MVT::i16
: LC
= Call_I16
; break;
2155 case MVT::i32
: LC
= Call_I32
; break;
2156 case MVT::i64
: LC
= Call_I64
; break;
2157 case MVT::i128
: LC
= Call_I128
; break;
2159 return ExpandLibCall(LC
, Node
, isSigned
);
2162 /// Expand the node to a libcall based on first argument type (for instance
2163 /// lround and its variant).
2164 SDValue
SelectionDAGLegalize::ExpandArgFPLibCall(SDNode
* Node
,
2165 RTLIB::Libcall Call_F32
,
2166 RTLIB::Libcall Call_F64
,
2167 RTLIB::Libcall Call_F80
,
2168 RTLIB::Libcall Call_F128
,
2169 RTLIB::Libcall Call_PPCF128
) {
2171 switch (Node
->getOperand(0).getValueType().getSimpleVT().SimpleTy
) {
2172 default: llvm_unreachable("Unexpected request for libcall!");
2173 case MVT::f32
: LC
= Call_F32
; break;
2174 case MVT::f64
: LC
= Call_F64
; break;
2175 case MVT::f80
: LC
= Call_F80
; break;
2176 case MVT::f128
: LC
= Call_F128
; break;
2177 case MVT::ppcf128
: LC
= Call_PPCF128
; break;
2180 return ExpandLibCall(LC
, Node
, false);
2183 /// Issue libcalls to __{u}divmod to compute div / rem pairs.
2185 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode
*Node
,
2186 SmallVectorImpl
<SDValue
> &Results
) {
2187 unsigned Opcode
= Node
->getOpcode();
2188 bool isSigned
= Opcode
== ISD::SDIVREM
;
2191 switch (Node
->getSimpleValueType(0).SimpleTy
) {
2192 default: llvm_unreachable("Unexpected request for libcall!");
2193 case MVT::i8
: LC
= isSigned
? RTLIB::SDIVREM_I8
: RTLIB::UDIVREM_I8
; break;
2194 case MVT::i16
: LC
= isSigned
? RTLIB::SDIVREM_I16
: RTLIB::UDIVREM_I16
; break;
2195 case MVT::i32
: LC
= isSigned
? RTLIB::SDIVREM_I32
: RTLIB::UDIVREM_I32
; break;
2196 case MVT::i64
: LC
= isSigned
? RTLIB::SDIVREM_I64
: RTLIB::UDIVREM_I64
; break;
2197 case MVT::i128
: LC
= isSigned
? RTLIB::SDIVREM_I128
:RTLIB::UDIVREM_I128
; break;
2200 // The input chain to this libcall is the entry node of the function.
2201 // Legalizing the call will automatically add the previous call to the
2203 SDValue InChain
= DAG
.getEntryNode();
2205 EVT RetVT
= Node
->getValueType(0);
2206 Type
*RetTy
= RetVT
.getTypeForEVT(*DAG
.getContext());
2208 TargetLowering::ArgListTy Args
;
2209 TargetLowering::ArgListEntry Entry
;
2210 for (const SDValue
&Op
: Node
->op_values()) {
2211 EVT ArgVT
= Op
.getValueType();
2212 Type
*ArgTy
= ArgVT
.getTypeForEVT(*DAG
.getContext());
2215 Entry
.IsSExt
= isSigned
;
2216 Entry
.IsZExt
= !isSigned
;
2217 Args
.push_back(Entry
);
2220 // Also pass the return address of the remainder.
2221 SDValue FIPtr
= DAG
.CreateStackTemporary(RetVT
);
2223 Entry
.Ty
= RetTy
->getPointerTo();
2224 Entry
.IsSExt
= isSigned
;
2225 Entry
.IsZExt
= !isSigned
;
2226 Args
.push_back(Entry
);
2228 SDValue Callee
= DAG
.getExternalSymbol(TLI
.getLibcallName(LC
),
2229 TLI
.getPointerTy(DAG
.getDataLayout()));
2232 TargetLowering::CallLoweringInfo
CLI(DAG
);
2235 .setLibCallee(TLI
.getLibcallCallingConv(LC
), RetTy
, Callee
,
2237 .setSExtResult(isSigned
)
2238 .setZExtResult(!isSigned
);
2240 std::pair
<SDValue
, SDValue
> CallInfo
= TLI
.LowerCallTo(CLI
);
2242 // Remainder is loaded back from the stack frame.
2244 DAG
.getLoad(RetVT
, dl
, CallInfo
.second
, FIPtr
, MachinePointerInfo());
2245 Results
.push_back(CallInfo
.first
);
2246 Results
.push_back(Rem
);
2249 /// Return true if sincos libcall is available.
2250 static bool isSinCosLibcallAvailable(SDNode
*Node
, const TargetLowering
&TLI
) {
2252 switch (Node
->getSimpleValueType(0).SimpleTy
) {
2253 default: llvm_unreachable("Unexpected request for libcall!");
2254 case MVT::f32
: LC
= RTLIB::SINCOS_F32
; break;
2255 case MVT::f64
: LC
= RTLIB::SINCOS_F64
; break;
2256 case MVT::f80
: LC
= RTLIB::SINCOS_F80
; break;
2257 case MVT::f128
: LC
= RTLIB::SINCOS_F128
; break;
2258 case MVT::ppcf128
: LC
= RTLIB::SINCOS_PPCF128
; break;
2260 return TLI
.getLibcallName(LC
) != nullptr;
2263 /// Only issue sincos libcall if both sin and cos are needed.
2264 static bool useSinCos(SDNode
*Node
) {
2265 unsigned OtherOpcode
= Node
->getOpcode() == ISD::FSIN
2266 ? ISD::FCOS
: ISD::FSIN
;
2268 SDValue Op0
= Node
->getOperand(0);
2269 for (SDNode::use_iterator UI
= Op0
.getNode()->use_begin(),
2270 UE
= Op0
.getNode()->use_end(); UI
!= UE
; ++UI
) {
2274 // The other user might have been turned into sincos already.
2275 if (User
->getOpcode() == OtherOpcode
|| User
->getOpcode() == ISD::FSINCOS
)
2281 /// Issue libcalls to sincos to compute sin / cos pairs.
2283 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode
*Node
,
2284 SmallVectorImpl
<SDValue
> &Results
) {
2286 switch (Node
->getSimpleValueType(0).SimpleTy
) {
2287 default: llvm_unreachable("Unexpected request for libcall!");
2288 case MVT::f32
: LC
= RTLIB::SINCOS_F32
; break;
2289 case MVT::f64
: LC
= RTLIB::SINCOS_F64
; break;
2290 case MVT::f80
: LC
= RTLIB::SINCOS_F80
; break;
2291 case MVT::f128
: LC
= RTLIB::SINCOS_F128
; break;
2292 case MVT::ppcf128
: LC
= RTLIB::SINCOS_PPCF128
; break;
2295 // The input chain to this libcall is the entry node of the function.
2296 // Legalizing the call will automatically add the previous call to the
2298 SDValue InChain
= DAG
.getEntryNode();
2300 EVT RetVT
= Node
->getValueType(0);
2301 Type
*RetTy
= RetVT
.getTypeForEVT(*DAG
.getContext());
2303 TargetLowering::ArgListTy Args
;
2304 TargetLowering::ArgListEntry Entry
;
2306 // Pass the argument.
2307 Entry
.Node
= Node
->getOperand(0);
2309 Entry
.IsSExt
= false;
2310 Entry
.IsZExt
= false;
2311 Args
.push_back(Entry
);
2313 // Pass the return address of sin.
2314 SDValue SinPtr
= DAG
.CreateStackTemporary(RetVT
);
2315 Entry
.Node
= SinPtr
;
2316 Entry
.Ty
= RetTy
->getPointerTo();
2317 Entry
.IsSExt
= false;
2318 Entry
.IsZExt
= false;
2319 Args
.push_back(Entry
);
2321 // Also pass the return address of the cos.
2322 SDValue CosPtr
= DAG
.CreateStackTemporary(RetVT
);
2323 Entry
.Node
= CosPtr
;
2324 Entry
.Ty
= RetTy
->getPointerTo();
2325 Entry
.IsSExt
= false;
2326 Entry
.IsZExt
= false;
2327 Args
.push_back(Entry
);
2329 SDValue Callee
= DAG
.getExternalSymbol(TLI
.getLibcallName(LC
),
2330 TLI
.getPointerTy(DAG
.getDataLayout()));
2333 TargetLowering::CallLoweringInfo
CLI(DAG
);
2334 CLI
.setDebugLoc(dl
).setChain(InChain
).setLibCallee(
2335 TLI
.getLibcallCallingConv(LC
), Type::getVoidTy(*DAG
.getContext()), Callee
,
2338 std::pair
<SDValue
, SDValue
> CallInfo
= TLI
.LowerCallTo(CLI
);
2341 DAG
.getLoad(RetVT
, dl
, CallInfo
.second
, SinPtr
, MachinePointerInfo()));
2343 DAG
.getLoad(RetVT
, dl
, CallInfo
.second
, CosPtr
, MachinePointerInfo()));
2346 /// This function is responsible for legalizing a
2347 /// INT_TO_FP operation of the specified operand when the target requests that
2348 /// we expand it. At this point, we know that the result and operand types are
2349 /// legal for the target.
2350 SDValue
SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned
, SDValue Op0
,
2353 EVT SrcVT
= Op0
.getValueType();
2355 // TODO: Should any fast-math-flags be set for the created nodes?
2356 LLVM_DEBUG(dbgs() << "Legalizing INT_TO_FP\n");
2357 if (SrcVT
== MVT::i32
&& TLI
.isTypeLegal(MVT::f64
)) {
2358 LLVM_DEBUG(dbgs() << "32-bit [signed|unsigned] integer to float/double "
2361 // Get the stack frame index of a 8 byte buffer.
2362 SDValue StackSlot
= DAG
.CreateStackTemporary(MVT::f64
);
2364 // word offset constant for Hi/Lo address computation
2365 SDValue WordOff
= DAG
.getConstant(sizeof(int), dl
,
2366 StackSlot
.getValueType());
2367 // set up Hi and Lo (into buffer) address based on endian
2368 SDValue Hi
= StackSlot
;
2369 SDValue Lo
= DAG
.getNode(ISD::ADD
, dl
, StackSlot
.getValueType(),
2370 StackSlot
, WordOff
);
2371 if (DAG
.getDataLayout().isLittleEndian())
2374 // if signed map to unsigned space
2377 // constant used to invert sign bit (signed to unsigned mapping)
2378 SDValue SignBit
= DAG
.getConstant(0x80000000u
, dl
, MVT::i32
);
2379 Op0Mapped
= DAG
.getNode(ISD::XOR
, dl
, MVT::i32
, Op0
, SignBit
);
2383 // store the lo of the constructed double - based on integer input
2384 SDValue Store1
= DAG
.getStore(DAG
.getEntryNode(), dl
, Op0Mapped
, Lo
,
2385 MachinePointerInfo());
2386 // initial hi portion of constructed double
2387 SDValue InitialHi
= DAG
.getConstant(0x43300000u
, dl
, MVT::i32
);
2388 // store the hi of the constructed double - biased exponent
2390 DAG
.getStore(Store1
, dl
, InitialHi
, Hi
, MachinePointerInfo());
2391 // load the constructed double
2393 DAG
.getLoad(MVT::f64
, dl
, Store2
, StackSlot
, MachinePointerInfo());
2394 // FP constant to bias correct the final result
2395 SDValue Bias
= DAG
.getConstantFP(isSigned
?
2396 BitsToDouble(0x4330000080000000ULL
) :
2397 BitsToDouble(0x4330000000000000ULL
),
2399 // subtract the bias
2400 SDValue Sub
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f64
, Load
, Bias
);
2402 SDValue Result
= DAG
.getFPExtendOrRound(Sub
, dl
, DestVT
);
2405 assert(!isSigned
&& "Legalize cannot Expand SINT_TO_FP for i64 yet");
2406 // Code below here assumes !isSigned without checking again.
2408 SDValue Tmp1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, DestVT
, Op0
);
2410 SDValue SignSet
= DAG
.getSetCC(dl
, getSetCCResultType(SrcVT
), Op0
,
2411 DAG
.getConstant(0, dl
, SrcVT
), ISD::SETLT
);
2412 SDValue Zero
= DAG
.getIntPtrConstant(0, dl
),
2413 Four
= DAG
.getIntPtrConstant(4, dl
);
2414 SDValue CstOffset
= DAG
.getSelect(dl
, Zero
.getValueType(),
2415 SignSet
, Four
, Zero
);
2417 // If the sign bit of the integer is set, the large number will be treated
2418 // as a negative number. To counteract this, the dynamic code adds an
2419 // offset depending on the data type.
2421 switch (SrcVT
.getSimpleVT().SimpleTy
) {
2422 default: llvm_unreachable("Unsupported integer type!");
2423 case MVT::i8
: FF
= 0x43800000ULL
; break; // 2^8 (as a float)
2424 case MVT::i16
: FF
= 0x47800000ULL
; break; // 2^16 (as a float)
2425 case MVT::i32
: FF
= 0x4F800000ULL
; break; // 2^32 (as a float)
2426 case MVT::i64
: FF
= 0x5F800000ULL
; break; // 2^64 (as a float)
2428 if (DAG
.getDataLayout().isLittleEndian())
2430 Constant
*FudgeFactor
= ConstantInt::get(
2431 Type::getInt64Ty(*DAG
.getContext()), FF
);
2434 DAG
.getConstantPool(FudgeFactor
, TLI
.getPointerTy(DAG
.getDataLayout()));
2435 unsigned Alignment
= cast
<ConstantPoolSDNode
>(CPIdx
)->getAlignment();
2436 CPIdx
= DAG
.getNode(ISD::ADD
, dl
, CPIdx
.getValueType(), CPIdx
, CstOffset
);
2437 Alignment
= std::min(Alignment
, 4u);
2439 if (DestVT
== MVT::f32
)
2440 FudgeInReg
= DAG
.getLoad(
2441 MVT::f32
, dl
, DAG
.getEntryNode(), CPIdx
,
2442 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()),
2445 SDValue Load
= DAG
.getExtLoad(
2446 ISD::EXTLOAD
, dl
, DestVT
, DAG
.getEntryNode(), CPIdx
,
2447 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()), MVT::f32
,
2449 HandleSDNode
Handle(Load
);
2450 LegalizeOp(Load
.getNode());
2451 FudgeInReg
= Handle
.getValue();
2454 return DAG
.getNode(ISD::FADD
, dl
, DestVT
, Tmp1
, FudgeInReg
);
2457 /// This function is responsible for legalizing a
2458 /// *INT_TO_FP operation of the specified operand when the target requests that
2459 /// we promote it. At this point, we know that the result and operand types are
2460 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2461 /// operation that takes a larger input.
2462 SDValue
SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp
, EVT DestVT
,
2465 // First step, figure out the appropriate *INT_TO_FP operation to use.
2466 EVT NewInTy
= LegalOp
.getValueType();
2468 unsigned OpToUse
= 0;
2470 // Scan for the appropriate larger type to use.
2472 NewInTy
= (MVT::SimpleValueType
)(NewInTy
.getSimpleVT().SimpleTy
+1);
2473 assert(NewInTy
.isInteger() && "Ran out of possibilities!");
2475 // If the target supports SINT_TO_FP of this type, use it.
2476 if (TLI
.isOperationLegalOrCustom(ISD::SINT_TO_FP
, NewInTy
)) {
2477 OpToUse
= ISD::SINT_TO_FP
;
2480 if (isSigned
) continue;
2482 // If the target supports UINT_TO_FP of this type, use it.
2483 if (TLI
.isOperationLegalOrCustom(ISD::UINT_TO_FP
, NewInTy
)) {
2484 OpToUse
= ISD::UINT_TO_FP
;
2488 // Otherwise, try a larger type.
2491 // Okay, we found the operation and type to use. Zero extend our input to the
2492 // desired type then run the operation on it.
2493 return DAG
.getNode(OpToUse
, dl
, DestVT
,
2494 DAG
.getNode(isSigned
? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
,
2495 dl
, NewInTy
, LegalOp
));
2498 /// This function is responsible for legalizing a
2499 /// FP_TO_*INT operation of the specified operand when the target requests that
2500 /// we promote it. At this point, we know that the result and operand types are
2501 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2502 /// operation that returns a larger result.
2503 SDValue
SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp
, EVT DestVT
,
2506 // First step, figure out the appropriate FP_TO*INT operation to use.
2507 EVT NewOutTy
= DestVT
;
2509 unsigned OpToUse
= 0;
2511 // Scan for the appropriate larger type to use.
2513 NewOutTy
= (MVT::SimpleValueType
)(NewOutTy
.getSimpleVT().SimpleTy
+1);
2514 assert(NewOutTy
.isInteger() && "Ran out of possibilities!");
2516 // A larger signed type can hold all unsigned values of the requested type,
2517 // so using FP_TO_SINT is valid
2518 if (TLI
.isOperationLegalOrCustom(ISD::FP_TO_SINT
, NewOutTy
)) {
2519 OpToUse
= ISD::FP_TO_SINT
;
2523 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT.
2524 if (!isSigned
&& TLI
.isOperationLegalOrCustom(ISD::FP_TO_UINT
, NewOutTy
)) {
2525 OpToUse
= ISD::FP_TO_UINT
;
2529 // Otherwise, try a larger type.
2532 // Okay, we found the operation and type to use.
2533 SDValue Operation
= DAG
.getNode(OpToUse
, dl
, NewOutTy
, LegalOp
);
2535 // Truncate the result of the extended FP_TO_*INT operation to the desired
2537 return DAG
.getNode(ISD::TRUNCATE
, dl
, DestVT
, Operation
);
2540 /// Legalize a BITREVERSE scalar/vector operation as a series of mask + shifts.
2541 SDValue
SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op
, const SDLoc
&dl
) {
2542 EVT VT
= Op
.getValueType();
2543 EVT SHVT
= TLI
.getShiftAmountTy(VT
, DAG
.getDataLayout());
2544 unsigned Sz
= VT
.getScalarSizeInBits();
2546 SDValue Tmp
, Tmp2
, Tmp3
;
2548 // If we can, perform BSWAP first and then the mask+swap the i4, then i2
2549 // and finally the i1 pairs.
2550 // TODO: We can easily support i4/i2 legal types if any target ever does.
2551 if (Sz
>= 8 && isPowerOf2_32(Sz
)) {
2552 // Create the masks - repeating the pattern every byte.
2553 APInt MaskHi4
= APInt::getSplat(Sz
, APInt(8, 0xF0));
2554 APInt MaskHi2
= APInt::getSplat(Sz
, APInt(8, 0xCC));
2555 APInt MaskHi1
= APInt::getSplat(Sz
, APInt(8, 0xAA));
2556 APInt MaskLo4
= APInt::getSplat(Sz
, APInt(8, 0x0F));
2557 APInt MaskLo2
= APInt::getSplat(Sz
, APInt(8, 0x33));
2558 APInt MaskLo1
= APInt::getSplat(Sz
, APInt(8, 0x55));
2560 // BSWAP if the type is wider than a single byte.
2561 Tmp
= (Sz
> 8 ? DAG
.getNode(ISD::BSWAP
, dl
, VT
, Op
) : Op
);
2563 // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4)
2564 Tmp2
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp
, DAG
.getConstant(MaskHi4
, dl
, VT
));
2565 Tmp3
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp
, DAG
.getConstant(MaskLo4
, dl
, VT
));
2566 Tmp2
= DAG
.getNode(ISD::SRL
, dl
, VT
, Tmp2
, DAG
.getConstant(4, dl
, SHVT
));
2567 Tmp3
= DAG
.getNode(ISD::SHL
, dl
, VT
, Tmp3
, DAG
.getConstant(4, dl
, SHVT
));
2568 Tmp
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp2
, Tmp3
);
2570 // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2)
2571 Tmp2
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp
, DAG
.getConstant(MaskHi2
, dl
, VT
));
2572 Tmp3
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp
, DAG
.getConstant(MaskLo2
, dl
, VT
));
2573 Tmp2
= DAG
.getNode(ISD::SRL
, dl
, VT
, Tmp2
, DAG
.getConstant(2, dl
, SHVT
));
2574 Tmp3
= DAG
.getNode(ISD::SHL
, dl
, VT
, Tmp3
, DAG
.getConstant(2, dl
, SHVT
));
2575 Tmp
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp2
, Tmp3
);
2577 // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1)
2578 Tmp2
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp
, DAG
.getConstant(MaskHi1
, dl
, VT
));
2579 Tmp3
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp
, DAG
.getConstant(MaskLo1
, dl
, VT
));
2580 Tmp2
= DAG
.getNode(ISD::SRL
, dl
, VT
, Tmp2
, DAG
.getConstant(1, dl
, SHVT
));
2581 Tmp3
= DAG
.getNode(ISD::SHL
, dl
, VT
, Tmp3
, DAG
.getConstant(1, dl
, SHVT
));
2582 Tmp
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp2
, Tmp3
);
2586 Tmp
= DAG
.getConstant(0, dl
, VT
);
2587 for (unsigned I
= 0, J
= Sz
-1; I
< Sz
; ++I
, --J
) {
2590 DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(J
- I
, dl
, SHVT
));
2593 DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(I
- J
, dl
, SHVT
));
2597 Tmp2
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp2
, DAG
.getConstant(Shift
, dl
, VT
));
2598 Tmp
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp
, Tmp2
);
2604 /// Open code the operations for BSWAP of the specified operation.
2605 SDValue
SelectionDAGLegalize::ExpandBSWAP(SDValue Op
, const SDLoc
&dl
) {
2606 EVT VT
= Op
.getValueType();
2607 EVT SHVT
= TLI
.getShiftAmountTy(VT
, DAG
.getDataLayout());
2608 SDValue Tmp1
, Tmp2
, Tmp3
, Tmp4
, Tmp5
, Tmp6
, Tmp7
, Tmp8
;
2609 switch (VT
.getSimpleVT().getScalarType().SimpleTy
) {
2610 default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2612 // Use a rotate by 8. This can be further expanded if necessary.
2613 return DAG
.getNode(ISD::ROTL
, dl
, VT
, Op
, DAG
.getConstant(8, dl
, SHVT
));
2615 Tmp4
= DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(24, dl
, SHVT
));
2616 Tmp3
= DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(8, dl
, SHVT
));
2617 Tmp2
= DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(8, dl
, SHVT
));
2618 Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(24, dl
, SHVT
));
2619 Tmp3
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp3
,
2620 DAG
.getConstant(0xFF0000, dl
, VT
));
2621 Tmp2
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp2
, DAG
.getConstant(0xFF00, dl
, VT
));
2622 Tmp4
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp4
, Tmp3
);
2623 Tmp2
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp2
, Tmp1
);
2624 return DAG
.getNode(ISD::OR
, dl
, VT
, Tmp4
, Tmp2
);
2626 Tmp8
= DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(56, dl
, SHVT
));
2627 Tmp7
= DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(40, dl
, SHVT
));
2628 Tmp6
= DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(24, dl
, SHVT
));
2629 Tmp5
= DAG
.getNode(ISD::SHL
, dl
, VT
, Op
, DAG
.getConstant(8, dl
, SHVT
));
2630 Tmp4
= DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(8, dl
, SHVT
));
2631 Tmp3
= DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(24, dl
, SHVT
));
2632 Tmp2
= DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(40, dl
, SHVT
));
2633 Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, DAG
.getConstant(56, dl
, SHVT
));
2634 Tmp7
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp7
,
2635 DAG
.getConstant(255ULL<<48, dl
, VT
));
2636 Tmp6
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp6
,
2637 DAG
.getConstant(255ULL<<40, dl
, VT
));
2638 Tmp5
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp5
,
2639 DAG
.getConstant(255ULL<<32, dl
, VT
));
2640 Tmp4
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp4
,
2641 DAG
.getConstant(255ULL<<24, dl
, VT
));
2642 Tmp3
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp3
,
2643 DAG
.getConstant(255ULL<<16, dl
, VT
));
2644 Tmp2
= DAG
.getNode(ISD::AND
, dl
, VT
, Tmp2
,
2645 DAG
.getConstant(255ULL<<8 , dl
, VT
));
2646 Tmp8
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp8
, Tmp7
);
2647 Tmp6
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp6
, Tmp5
);
2648 Tmp4
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp4
, Tmp3
);
2649 Tmp2
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp2
, Tmp1
);
2650 Tmp8
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp8
, Tmp6
);
2651 Tmp4
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp4
, Tmp2
);
2652 return DAG
.getNode(ISD::OR
, dl
, VT
, Tmp8
, Tmp4
);
2656 bool SelectionDAGLegalize::ExpandNode(SDNode
*Node
) {
2657 LLVM_DEBUG(dbgs() << "Trying to expand node\n");
2658 SmallVector
<SDValue
, 8> Results
;
2660 SDValue Tmp1
, Tmp2
, Tmp3
, Tmp4
;
2662 switch (Node
->getOpcode()) {
2664 if (TLI
.expandABS(Node
, Tmp1
, DAG
))
2665 Results
.push_back(Tmp1
);
2668 if (TLI
.expandCTPOP(Node
, Tmp1
, DAG
))
2669 Results
.push_back(Tmp1
);
2672 case ISD::CTLZ_ZERO_UNDEF
:
2673 if (TLI
.expandCTLZ(Node
, Tmp1
, DAG
))
2674 Results
.push_back(Tmp1
);
2677 case ISD::CTTZ_ZERO_UNDEF
:
2678 if (TLI
.expandCTTZ(Node
, Tmp1
, DAG
))
2679 Results
.push_back(Tmp1
);
2681 case ISD::BITREVERSE
:
2682 Results
.push_back(ExpandBITREVERSE(Node
->getOperand(0), dl
));
2685 Results
.push_back(ExpandBSWAP(Node
->getOperand(0), dl
));
2687 case ISD::FRAMEADDR
:
2688 case ISD::RETURNADDR
:
2689 case ISD::FRAME_TO_ARGS_OFFSET
:
2690 Results
.push_back(DAG
.getConstant(0, dl
, Node
->getValueType(0)));
2692 case ISD::EH_DWARF_CFA
: {
2693 SDValue CfaArg
= DAG
.getSExtOrTrunc(Node
->getOperand(0), dl
,
2694 TLI
.getPointerTy(DAG
.getDataLayout()));
2695 SDValue Offset
= DAG
.getNode(ISD::ADD
, dl
,
2696 CfaArg
.getValueType(),
2697 DAG
.getNode(ISD::FRAME_TO_ARGS_OFFSET
, dl
,
2698 CfaArg
.getValueType()),
2700 SDValue FA
= DAG
.getNode(
2701 ISD::FRAMEADDR
, dl
, TLI
.getPointerTy(DAG
.getDataLayout()),
2702 DAG
.getConstant(0, dl
, TLI
.getPointerTy(DAG
.getDataLayout())));
2703 Results
.push_back(DAG
.getNode(ISD::ADD
, dl
, FA
.getValueType(),
2707 case ISD::FLT_ROUNDS_
:
2708 Results
.push_back(DAG
.getConstant(1, dl
, Node
->getValueType(0)));
2710 case ISD::EH_RETURN
:
2714 case ISD::EH_SJLJ_LONGJMP
:
2715 // If the target didn't expand these, there's nothing to do, so just
2716 // preserve the chain and be done.
2717 Results
.push_back(Node
->getOperand(0));
2719 case ISD::READCYCLECOUNTER
:
2720 // If the target didn't expand this, just return 'zero' and preserve the
2722 Results
.append(Node
->getNumValues() - 1,
2723 DAG
.getConstant(0, dl
, Node
->getValueType(0)));
2724 Results
.push_back(Node
->getOperand(0));
2726 case ISD::EH_SJLJ_SETJMP
:
2727 // If the target didn't expand this, just return 'zero' and preserve the
2729 Results
.push_back(DAG
.getConstant(0, dl
, MVT::i32
));
2730 Results
.push_back(Node
->getOperand(0));
2732 case ISD::ATOMIC_LOAD
: {
2733 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
2734 SDValue Zero
= DAG
.getConstant(0, dl
, Node
->getValueType(0));
2735 SDVTList VTs
= DAG
.getVTList(Node
->getValueType(0), MVT::Other
);
2736 SDValue Swap
= DAG
.getAtomicCmpSwap(
2737 ISD::ATOMIC_CMP_SWAP
, dl
, cast
<AtomicSDNode
>(Node
)->getMemoryVT(), VTs
,
2738 Node
->getOperand(0), Node
->getOperand(1), Zero
, Zero
,
2739 cast
<AtomicSDNode
>(Node
)->getMemOperand());
2740 Results
.push_back(Swap
.getValue(0));
2741 Results
.push_back(Swap
.getValue(1));
2744 case ISD::ATOMIC_STORE
: {
2745 // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
2746 SDValue Swap
= DAG
.getAtomic(ISD::ATOMIC_SWAP
, dl
,
2747 cast
<AtomicSDNode
>(Node
)->getMemoryVT(),
2748 Node
->getOperand(0),
2749 Node
->getOperand(1), Node
->getOperand(2),
2750 cast
<AtomicSDNode
>(Node
)->getMemOperand());
2751 Results
.push_back(Swap
.getValue(1));
2754 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS
: {
2755 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and
2756 // splits out the success value as a comparison. Expanding the resulting
2757 // ATOMIC_CMP_SWAP will produce a libcall.
2758 SDVTList VTs
= DAG
.getVTList(Node
->getValueType(0), MVT::Other
);
2759 SDValue Res
= DAG
.getAtomicCmpSwap(
2760 ISD::ATOMIC_CMP_SWAP
, dl
, cast
<AtomicSDNode
>(Node
)->getMemoryVT(), VTs
,
2761 Node
->getOperand(0), Node
->getOperand(1), Node
->getOperand(2),
2762 Node
->getOperand(3), cast
<MemSDNode
>(Node
)->getMemOperand());
2764 SDValue ExtRes
= Res
;
2766 SDValue RHS
= Node
->getOperand(1);
2768 EVT AtomicType
= cast
<AtomicSDNode
>(Node
)->getMemoryVT();
2769 EVT OuterType
= Node
->getValueType(0);
2770 switch (TLI
.getExtendForAtomicOps()) {
2771 case ISD::SIGN_EXTEND
:
2772 LHS
= DAG
.getNode(ISD::AssertSext
, dl
, OuterType
, Res
,
2773 DAG
.getValueType(AtomicType
));
2774 RHS
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, OuterType
,
2775 Node
->getOperand(2), DAG
.getValueType(AtomicType
));
2778 case ISD::ZERO_EXTEND
:
2779 LHS
= DAG
.getNode(ISD::AssertZext
, dl
, OuterType
, Res
,
2780 DAG
.getValueType(AtomicType
));
2781 RHS
= DAG
.getZeroExtendInReg(Node
->getOperand(2), dl
, AtomicType
);
2784 case ISD::ANY_EXTEND
:
2785 LHS
= DAG
.getZeroExtendInReg(Res
, dl
, AtomicType
);
2786 RHS
= DAG
.getZeroExtendInReg(Node
->getOperand(2), dl
, AtomicType
);
2789 llvm_unreachable("Invalid atomic op extension");
2793 DAG
.getSetCC(dl
, Node
->getValueType(1), LHS
, RHS
, ISD::SETEQ
);
2795 Results
.push_back(ExtRes
.getValue(0));
2796 Results
.push_back(Success
);
2797 Results
.push_back(Res
.getValue(1));
2800 case ISD::DYNAMIC_STACKALLOC
:
2801 ExpandDYNAMIC_STACKALLOC(Node
, Results
);
2803 case ISD::MERGE_VALUES
:
2804 for (unsigned i
= 0; i
< Node
->getNumValues(); i
++)
2805 Results
.push_back(Node
->getOperand(i
));
2808 EVT VT
= Node
->getValueType(0);
2810 Results
.push_back(DAG
.getConstant(0, dl
, VT
));
2812 assert(VT
.isFloatingPoint() && "Unknown value type!");
2813 Results
.push_back(DAG
.getConstantFP(0, dl
, VT
));
2817 case ISD::STRICT_FP_ROUND
:
2818 Tmp1
= EmitStackConvert(Node
->getOperand(1),
2819 Node
->getValueType(0),
2820 Node
->getValueType(0), dl
, Node
->getOperand(0));
2821 ReplaceNode(Node
, Tmp1
.getNode());
2822 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_ROUND node\n");
2826 Tmp1
= EmitStackConvert(Node
->getOperand(0),
2827 Node
->getValueType(0),
2828 Node
->getValueType(0), dl
);
2829 Results
.push_back(Tmp1
);
2831 case ISD::STRICT_FP_EXTEND
:
2832 Tmp1
= EmitStackConvert(Node
->getOperand(1),
2833 Node
->getOperand(1).getValueType(),
2834 Node
->getValueType(0), dl
, Node
->getOperand(0));
2835 ReplaceNode(Node
, Tmp1
.getNode());
2836 LLVM_DEBUG(dbgs() << "Successfully expanded STRICT_FP_EXTEND node\n");
2838 case ISD::FP_EXTEND
:
2839 Tmp1
= EmitStackConvert(Node
->getOperand(0),
2840 Node
->getOperand(0).getValueType(),
2841 Node
->getValueType(0), dl
);
2842 Results
.push_back(Tmp1
);
2844 case ISD::SIGN_EXTEND_INREG
: {
2845 EVT ExtraVT
= cast
<VTSDNode
>(Node
->getOperand(1))->getVT();
2846 EVT VT
= Node
->getValueType(0);
2848 // An in-register sign-extend of a boolean is a negation:
2849 // 'true' (1) sign-extended is -1.
2850 // 'false' (0) sign-extended is 0.
2851 // However, we must mask the high bits of the source operand because the
2852 // SIGN_EXTEND_INREG does not guarantee that the high bits are already zero.
2854 // TODO: Do this for vectors too?
2855 if (ExtraVT
.getSizeInBits() == 1) {
2856 SDValue One
= DAG
.getConstant(1, dl
, VT
);
2857 SDValue And
= DAG
.getNode(ISD::AND
, dl
, VT
, Node
->getOperand(0), One
);
2858 SDValue Zero
= DAG
.getConstant(0, dl
, VT
);
2859 SDValue Neg
= DAG
.getNode(ISD::SUB
, dl
, VT
, Zero
, And
);
2860 Results
.push_back(Neg
);
2864 // NOTE: we could fall back on load/store here too for targets without
2865 // SRA. However, it is doubtful that any exist.
2866 EVT ShiftAmountTy
= TLI
.getShiftAmountTy(VT
, DAG
.getDataLayout());
2867 unsigned BitsDiff
= VT
.getScalarSizeInBits() -
2868 ExtraVT
.getScalarSizeInBits();
2869 SDValue ShiftCst
= DAG
.getConstant(BitsDiff
, dl
, ShiftAmountTy
);
2870 Tmp1
= DAG
.getNode(ISD::SHL
, dl
, Node
->getValueType(0),
2871 Node
->getOperand(0), ShiftCst
);
2872 Tmp1
= DAG
.getNode(ISD::SRA
, dl
, Node
->getValueType(0), Tmp1
, ShiftCst
);
2873 Results
.push_back(Tmp1
);
2876 case ISD::FP_ROUND_INREG
: {
2877 // The only way we can lower this is to turn it into a TRUNCSTORE,
2878 // EXTLOAD pair, targeting a temporary location (a stack slot).
2880 // NOTE: there is a choice here between constantly creating new stack
2881 // slots and always reusing the same one. We currently always create
2882 // new ones, as reuse may inhibit scheduling.
2883 EVT ExtraVT
= cast
<VTSDNode
>(Node
->getOperand(1))->getVT();
2884 Tmp1
= EmitStackConvert(Node
->getOperand(0), ExtraVT
,
2885 Node
->getValueType(0), dl
);
2886 Results
.push_back(Tmp1
);
2889 case ISD::UINT_TO_FP
:
2890 if (TLI
.expandUINT_TO_FP(Node
, Tmp1
, DAG
)) {
2891 Results
.push_back(Tmp1
);
2895 case ISD::SINT_TO_FP
:
2896 Tmp1
= ExpandLegalINT_TO_FP(Node
->getOpcode() == ISD::SINT_TO_FP
,
2897 Node
->getOperand(0), Node
->getValueType(0), dl
);
2898 Results
.push_back(Tmp1
);
2900 case ISD::FP_TO_SINT
:
2901 if (TLI
.expandFP_TO_SINT(Node
, Tmp1
, DAG
))
2902 Results
.push_back(Tmp1
);
2904 case ISD::FP_TO_UINT
:
2905 if (TLI
.expandFP_TO_UINT(Node
, Tmp1
, DAG
))
2906 Results
.push_back(Tmp1
);
2909 Results
.push_back(ExpandArgFPLibCall(Node
, RTLIB::LROUND_F32
,
2910 RTLIB::LROUND_F64
, RTLIB::LROUND_F80
,
2912 RTLIB::LROUND_PPCF128
));
2915 Results
.push_back(ExpandArgFPLibCall(Node
, RTLIB::LLROUND_F32
,
2916 RTLIB::LLROUND_F64
, RTLIB::LLROUND_F80
,
2917 RTLIB::LLROUND_F128
,
2918 RTLIB::LLROUND_PPCF128
));
2921 Results
.push_back(ExpandArgFPLibCall(Node
, RTLIB::LRINT_F32
,
2922 RTLIB::LRINT_F64
, RTLIB::LRINT_F80
,
2924 RTLIB::LRINT_PPCF128
));
2927 Results
.push_back(ExpandArgFPLibCall(Node
, RTLIB::LLRINT_F32
,
2928 RTLIB::LLRINT_F64
, RTLIB::LLRINT_F80
,
2930 RTLIB::LLRINT_PPCF128
));
2933 Results
.push_back(DAG
.expandVAArg(Node
));
2934 Results
.push_back(Results
[0].getValue(1));
2937 Results
.push_back(DAG
.expandVACopy(Node
));
2939 case ISD::EXTRACT_VECTOR_ELT
:
2940 if (Node
->getOperand(0).getValueType().getVectorNumElements() == 1)
2941 // This must be an access of the only element. Return it.
2942 Tmp1
= DAG
.getNode(ISD::BITCAST
, dl
, Node
->getValueType(0),
2943 Node
->getOperand(0));
2945 Tmp1
= ExpandExtractFromVectorThroughStack(SDValue(Node
, 0));
2946 Results
.push_back(Tmp1
);
2948 case ISD::EXTRACT_SUBVECTOR
:
2949 Results
.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node
, 0)));
2951 case ISD::INSERT_SUBVECTOR
:
2952 Results
.push_back(ExpandInsertToVectorThroughStack(SDValue(Node
, 0)));
2954 case ISD::CONCAT_VECTORS
:
2955 Results
.push_back(ExpandVectorBuildThroughStack(Node
));
2957 case ISD::SCALAR_TO_VECTOR
:
2958 Results
.push_back(ExpandSCALAR_TO_VECTOR(Node
));
2960 case ISD::INSERT_VECTOR_ELT
:
2961 Results
.push_back(ExpandINSERT_VECTOR_ELT(Node
->getOperand(0),
2962 Node
->getOperand(1),
2963 Node
->getOperand(2), dl
));
2965 case ISD::VECTOR_SHUFFLE
: {
2966 SmallVector
<int, 32> NewMask
;
2967 ArrayRef
<int> Mask
= cast
<ShuffleVectorSDNode
>(Node
)->getMask();
2969 EVT VT
= Node
->getValueType(0);
2970 EVT EltVT
= VT
.getVectorElementType();
2971 SDValue Op0
= Node
->getOperand(0);
2972 SDValue Op1
= Node
->getOperand(1);
2973 if (!TLI
.isTypeLegal(EltVT
)) {
2974 EVT NewEltVT
= TLI
.getTypeToTransformTo(*DAG
.getContext(), EltVT
);
2976 // BUILD_VECTOR operands are allowed to be wider than the element type.
2977 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept
2979 if (NewEltVT
.bitsLT(EltVT
)) {
2980 // Convert shuffle node.
2981 // If original node was v4i64 and the new EltVT is i32,
2982 // cast operands to v8i32 and re-build the mask.
2984 // Calculate new VT, the size of the new VT should be equal to original.
2986 EVT::getVectorVT(*DAG
.getContext(), NewEltVT
,
2987 VT
.getSizeInBits() / NewEltVT
.getSizeInBits());
2988 assert(NewVT
.bitsEq(VT
));
2990 // cast operands to new VT
2991 Op0
= DAG
.getNode(ISD::BITCAST
, dl
, NewVT
, Op0
);
2992 Op1
= DAG
.getNode(ISD::BITCAST
, dl
, NewVT
, Op1
);
2994 // Convert the shuffle mask
2995 unsigned int factor
=
2996 NewVT
.getVectorNumElements()/VT
.getVectorNumElements();
2998 // EltVT gets smaller
3001 for (unsigned i
= 0; i
< VT
.getVectorNumElements(); ++i
) {
3003 for (unsigned fi
= 0; fi
< factor
; ++fi
)
3004 NewMask
.push_back(Mask
[i
]);
3007 for (unsigned fi
= 0; fi
< factor
; ++fi
)
3008 NewMask
.push_back(Mask
[i
]*factor
+fi
);
3016 unsigned NumElems
= VT
.getVectorNumElements();
3017 SmallVector
<SDValue
, 16> Ops
;
3018 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
3020 Ops
.push_back(DAG
.getUNDEF(EltVT
));
3023 unsigned Idx
= Mask
[i
];
3025 Ops
.push_back(DAG
.getNode(
3026 ISD::EXTRACT_VECTOR_ELT
, dl
, EltVT
, Op0
,
3027 DAG
.getConstant(Idx
, dl
, TLI
.getVectorIdxTy(DAG
.getDataLayout()))));
3029 Ops
.push_back(DAG
.getNode(
3030 ISD::EXTRACT_VECTOR_ELT
, dl
, EltVT
, Op1
,
3031 DAG
.getConstant(Idx
- NumElems
, dl
,
3032 TLI
.getVectorIdxTy(DAG
.getDataLayout()))));
3035 Tmp1
= DAG
.getBuildVector(VT
, dl
, Ops
);
3036 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
3037 Tmp1
= DAG
.getNode(ISD::BITCAST
, dl
, Node
->getValueType(0), Tmp1
);
3038 Results
.push_back(Tmp1
);
3041 case ISD::EXTRACT_ELEMENT
: {
3042 EVT OpTy
= Node
->getOperand(0).getValueType();
3043 if (cast
<ConstantSDNode
>(Node
->getOperand(1))->getZExtValue()) {
3045 Tmp1
= DAG
.getNode(ISD::SRL
, dl
, OpTy
, Node
->getOperand(0),
3046 DAG
.getConstant(OpTy
.getSizeInBits() / 2, dl
,
3047 TLI
.getShiftAmountTy(
3048 Node
->getOperand(0).getValueType(),
3049 DAG
.getDataLayout())));
3050 Tmp1
= DAG
.getNode(ISD::TRUNCATE
, dl
, Node
->getValueType(0), Tmp1
);
3053 Tmp1
= DAG
.getNode(ISD::TRUNCATE
, dl
, Node
->getValueType(0),
3054 Node
->getOperand(0));
3056 Results
.push_back(Tmp1
);
3059 case ISD::STACKSAVE
:
3060 // Expand to CopyFromReg if the target set
3061 // StackPointerRegisterToSaveRestore.
3062 if (unsigned SP
= TLI
.getStackPointerRegisterToSaveRestore()) {
3063 Results
.push_back(DAG
.getCopyFromReg(Node
->getOperand(0), dl
, SP
,
3064 Node
->getValueType(0)));
3065 Results
.push_back(Results
[0].getValue(1));
3067 Results
.push_back(DAG
.getUNDEF(Node
->getValueType(0)));
3068 Results
.push_back(Node
->getOperand(0));
3071 case ISD::STACKRESTORE
:
3072 // Expand to CopyToReg if the target set
3073 // StackPointerRegisterToSaveRestore.
3074 if (unsigned SP
= TLI
.getStackPointerRegisterToSaveRestore()) {
3075 Results
.push_back(DAG
.getCopyToReg(Node
->getOperand(0), dl
, SP
,
3076 Node
->getOperand(1)));
3078 Results
.push_back(Node
->getOperand(0));
3081 case ISD::GET_DYNAMIC_AREA_OFFSET
:
3082 Results
.push_back(DAG
.getConstant(0, dl
, Node
->getValueType(0)));
3083 Results
.push_back(Results
[0].getValue(0));
3085 case ISD::FCOPYSIGN
:
3086 Results
.push_back(ExpandFCOPYSIGN(Node
));
3089 // Expand Y = FNEG(X) -> Y = SUB -0.0, X
3090 Tmp1
= DAG
.getConstantFP(-0.0, dl
, Node
->getValueType(0));
3091 // TODO: If FNEG has fast-math-flags, propagate them to the FSUB.
3092 Tmp1
= DAG
.getNode(ISD::FSUB
, dl
, Node
->getValueType(0), Tmp1
,
3093 Node
->getOperand(0));
3094 Results
.push_back(Tmp1
);
3097 Results
.push_back(ExpandFABS(Node
));
3103 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
3105 switch (Node
->getOpcode()) {
3106 default: llvm_unreachable("How did we get here?");
3107 case ISD::SMAX
: Pred
= ISD::SETGT
; break;
3108 case ISD::SMIN
: Pred
= ISD::SETLT
; break;
3109 case ISD::UMAX
: Pred
= ISD::SETUGT
; break;
3110 case ISD::UMIN
: Pred
= ISD::SETULT
; break;
3112 Tmp1
= Node
->getOperand(0);
3113 Tmp2
= Node
->getOperand(1);
3114 Tmp1
= DAG
.getSelectCC(dl
, Tmp1
, Tmp2
, Tmp1
, Tmp2
, Pred
);
3115 Results
.push_back(Tmp1
);
3119 case ISD::FMAXNUM
: {
3120 if (SDValue Expanded
= TLI
.expandFMINNUM_FMAXNUM(Node
, DAG
))
3121 Results
.push_back(Expanded
);
3126 EVT VT
= Node
->getValueType(0);
3127 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin /
3128 // fcos which share the same operand and both are used.
3129 if ((TLI
.isOperationLegalOrCustom(ISD::FSINCOS
, VT
) ||
3130 isSinCosLibcallAvailable(Node
, TLI
))
3131 && useSinCos(Node
)) {
3132 SDVTList VTs
= DAG
.getVTList(VT
, VT
);
3133 Tmp1
= DAG
.getNode(ISD::FSINCOS
, dl
, VTs
, Node
->getOperand(0));
3134 if (Node
->getOpcode() == ISD::FCOS
)
3135 Tmp1
= Tmp1
.getValue(1);
3136 Results
.push_back(Tmp1
);
3141 llvm_unreachable("Illegal fmad should never be formed");
3143 case ISD::FP16_TO_FP
:
3144 if (Node
->getValueType(0) != MVT::f32
) {
3145 // We can extend to types bigger than f32 in two steps without changing
3146 // the result. Since "f16 -> f32" is much more commonly available, give
3147 // CodeGen the option of emitting that before resorting to a libcall.
3149 DAG
.getNode(ISD::FP16_TO_FP
, dl
, MVT::f32
, Node
->getOperand(0));
3151 DAG
.getNode(ISD::FP_EXTEND
, dl
, Node
->getValueType(0), Res
));
3154 case ISD::FP_TO_FP16
:
3155 LLVM_DEBUG(dbgs() << "Legalizing FP_TO_FP16\n");
3156 if (!TLI
.useSoftFloat() && TM
.Options
.UnsafeFPMath
) {
3157 SDValue Op
= Node
->getOperand(0);
3158 MVT SVT
= Op
.getSimpleValueType();
3159 if ((SVT
== MVT::f64
|| SVT
== MVT::f80
) &&
3160 TLI
.isOperationLegalOrCustom(ISD::FP_TO_FP16
, MVT::f32
)) {
3161 // Under fastmath, we can expand this node into a fround followed by
3162 // a float-half conversion.
3163 SDValue FloatVal
= DAG
.getNode(ISD::FP_ROUND
, dl
, MVT::f32
, Op
,
3164 DAG
.getIntPtrConstant(0, dl
));
3166 DAG
.getNode(ISD::FP_TO_FP16
, dl
, Node
->getValueType(0), FloatVal
));
3170 case ISD::ConstantFP
: {
3171 ConstantFPSDNode
*CFP
= cast
<ConstantFPSDNode
>(Node
);
3172 // Check to see if this FP immediate is already legal.
3173 // If this is a legal constant, turn it into a TargetConstantFP node.
3174 if (!TLI
.isFPImmLegal(CFP
->getValueAPF(), Node
->getValueType(0),
3175 DAG
.getMachineFunction().getFunction().hasOptSize()))
3176 Results
.push_back(ExpandConstantFP(CFP
, true));
3179 case ISD::Constant
: {
3180 ConstantSDNode
*CP
= cast
<ConstantSDNode
>(Node
);
3181 Results
.push_back(ExpandConstant(CP
));
3185 EVT VT
= Node
->getValueType(0);
3186 if (TLI
.isOperationLegalOrCustom(ISD::FADD
, VT
) &&
3187 TLI
.isOperationLegalOrCustom(ISD::FNEG
, VT
)) {
3188 const SDNodeFlags Flags
= Node
->getFlags();
3189 Tmp1
= DAG
.getNode(ISD::FNEG
, dl
, VT
, Node
->getOperand(1));
3190 Tmp1
= DAG
.getNode(ISD::FADD
, dl
, VT
, Node
->getOperand(0), Tmp1
, Flags
);
3191 Results
.push_back(Tmp1
);
3196 EVT VT
= Node
->getValueType(0);
3197 assert(TLI
.isOperationLegalOrCustom(ISD::ADD
, VT
) &&
3198 TLI
.isOperationLegalOrCustom(ISD::XOR
, VT
) &&
3199 "Don't know how to expand this subtraction!");
3200 Tmp1
= DAG
.getNode(ISD::XOR
, dl
, VT
, Node
->getOperand(1),
3201 DAG
.getConstant(APInt::getAllOnesValue(VT
.getSizeInBits()), dl
,
3203 Tmp1
= DAG
.getNode(ISD::ADD
, dl
, VT
, Tmp1
, DAG
.getConstant(1, dl
, VT
));
3204 Results
.push_back(DAG
.getNode(ISD::ADD
, dl
, VT
, Node
->getOperand(0), Tmp1
));
3209 EVT VT
= Node
->getValueType(0);
3210 bool isSigned
= Node
->getOpcode() == ISD::SREM
;
3211 unsigned DivOpc
= isSigned
? ISD::SDIV
: ISD::UDIV
;
3212 unsigned DivRemOpc
= isSigned
? ISD::SDIVREM
: ISD::UDIVREM
;
3213 Tmp2
= Node
->getOperand(0);
3214 Tmp3
= Node
->getOperand(1);
3215 if (TLI
.isOperationLegalOrCustom(DivRemOpc
, VT
)) {
3216 SDVTList VTs
= DAG
.getVTList(VT
, VT
);
3217 Tmp1
= DAG
.getNode(DivRemOpc
, dl
, VTs
, Tmp2
, Tmp3
).getValue(1);
3218 Results
.push_back(Tmp1
);
3219 } else if (TLI
.isOperationLegalOrCustom(DivOpc
, VT
)) {
3221 Tmp1
= DAG
.getNode(DivOpc
, dl
, VT
, Tmp2
, Tmp3
);
3222 Tmp1
= DAG
.getNode(ISD::MUL
, dl
, VT
, Tmp1
, Tmp3
);
3223 Tmp1
= DAG
.getNode(ISD::SUB
, dl
, VT
, Tmp2
, Tmp1
);
3224 Results
.push_back(Tmp1
);
3230 bool isSigned
= Node
->getOpcode() == ISD::SDIV
;
3231 unsigned DivRemOpc
= isSigned
? ISD::SDIVREM
: ISD::UDIVREM
;
3232 EVT VT
= Node
->getValueType(0);
3233 if (TLI
.isOperationLegalOrCustom(DivRemOpc
, VT
)) {
3234 SDVTList VTs
= DAG
.getVTList(VT
, VT
);
3235 Tmp1
= DAG
.getNode(DivRemOpc
, dl
, VTs
, Node
->getOperand(0),
3236 Node
->getOperand(1));
3237 Results
.push_back(Tmp1
);
3243 unsigned ExpandOpcode
=
3244 Node
->getOpcode() == ISD::MULHU
? ISD::UMUL_LOHI
: ISD::SMUL_LOHI
;
3245 EVT VT
= Node
->getValueType(0);
3246 SDVTList VTs
= DAG
.getVTList(VT
, VT
);
3248 Tmp1
= DAG
.getNode(ExpandOpcode
, dl
, VTs
, Node
->getOperand(0),
3249 Node
->getOperand(1));
3250 Results
.push_back(Tmp1
.getValue(1));
3253 case ISD::UMUL_LOHI
:
3254 case ISD::SMUL_LOHI
: {
3255 SDValue LHS
= Node
->getOperand(0);
3256 SDValue RHS
= Node
->getOperand(1);
3257 MVT VT
= LHS
.getSimpleValueType();
3258 unsigned MULHOpcode
=
3259 Node
->getOpcode() == ISD::UMUL_LOHI
? ISD::MULHU
: ISD::MULHS
;
3261 if (TLI
.isOperationLegalOrCustom(MULHOpcode
, VT
)) {
3262 Results
.push_back(DAG
.getNode(ISD::MUL
, dl
, VT
, LHS
, RHS
));
3263 Results
.push_back(DAG
.getNode(MULHOpcode
, dl
, VT
, LHS
, RHS
));
3267 SmallVector
<SDValue
, 4> Halves
;
3268 EVT HalfType
= EVT(VT
).getHalfSizedIntegerVT(*DAG
.getContext());
3269 assert(TLI
.isTypeLegal(HalfType
));
3270 if (TLI
.expandMUL_LOHI(Node
->getOpcode(), VT
, Node
, LHS
, RHS
, Halves
,
3272 TargetLowering::MulExpansionKind::Always
)) {
3273 for (unsigned i
= 0; i
< 2; ++i
) {
3274 SDValue Lo
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, Halves
[2 * i
]);
3275 SDValue Hi
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, VT
, Halves
[2 * i
+ 1]);
3276 SDValue Shift
= DAG
.getConstant(
3277 HalfType
.getScalarSizeInBits(), dl
,
3278 TLI
.getShiftAmountTy(HalfType
, DAG
.getDataLayout()));
3279 Hi
= DAG
.getNode(ISD::SHL
, dl
, VT
, Hi
, Shift
);
3280 Results
.push_back(DAG
.getNode(ISD::OR
, dl
, VT
, Lo
, Hi
));
3287 EVT VT
= Node
->getValueType(0);
3288 SDVTList VTs
= DAG
.getVTList(VT
, VT
);
3289 // See if multiply or divide can be lowered using two-result operations.
3290 // We just need the low half of the multiply; try both the signed
3291 // and unsigned forms. If the target supports both SMUL_LOHI and
3292 // UMUL_LOHI, form a preference by checking which forms of plain
3293 // MULH it supports.
3294 bool HasSMUL_LOHI
= TLI
.isOperationLegalOrCustom(ISD::SMUL_LOHI
, VT
);
3295 bool HasUMUL_LOHI
= TLI
.isOperationLegalOrCustom(ISD::UMUL_LOHI
, VT
);
3296 bool HasMULHS
= TLI
.isOperationLegalOrCustom(ISD::MULHS
, VT
);
3297 bool HasMULHU
= TLI
.isOperationLegalOrCustom(ISD::MULHU
, VT
);
3298 unsigned OpToUse
= 0;
3299 if (HasSMUL_LOHI
&& !HasMULHS
) {
3300 OpToUse
= ISD::SMUL_LOHI
;
3301 } else if (HasUMUL_LOHI
&& !HasMULHU
) {
3302 OpToUse
= ISD::UMUL_LOHI
;
3303 } else if (HasSMUL_LOHI
) {
3304 OpToUse
= ISD::SMUL_LOHI
;
3305 } else if (HasUMUL_LOHI
) {
3306 OpToUse
= ISD::UMUL_LOHI
;
3309 Results
.push_back(DAG
.getNode(OpToUse
, dl
, VTs
, Node
->getOperand(0),
3310 Node
->getOperand(1)));
3315 EVT HalfType
= VT
.getHalfSizedIntegerVT(*DAG
.getContext());
3316 if (TLI
.isOperationLegalOrCustom(ISD::ZERO_EXTEND
, VT
) &&
3317 TLI
.isOperationLegalOrCustom(ISD::ANY_EXTEND
, VT
) &&
3318 TLI
.isOperationLegalOrCustom(ISD::SHL
, VT
) &&
3319 TLI
.isOperationLegalOrCustom(ISD::OR
, VT
) &&
3320 TLI
.expandMUL(Node
, Lo
, Hi
, HalfType
, DAG
,
3321 TargetLowering::MulExpansionKind::OnlyLegalOrCustom
)) {
3322 Lo
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, Lo
);
3323 Hi
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, VT
, Hi
);
3325 DAG
.getConstant(HalfType
.getSizeInBits(), dl
,
3326 TLI
.getShiftAmountTy(HalfType
, DAG
.getDataLayout()));
3327 Hi
= DAG
.getNode(ISD::SHL
, dl
, VT
, Hi
, Shift
);
3328 Results
.push_back(DAG
.getNode(ISD::OR
, dl
, VT
, Lo
, Hi
));
3334 if (TLI
.expandFunnelShift(Node
, Tmp1
, DAG
))
3335 Results
.push_back(Tmp1
);
3339 if (TLI
.expandROT(Node
, Tmp1
, DAG
))
3340 Results
.push_back(Tmp1
);
3346 Results
.push_back(TLI
.expandAddSubSat(Node
, DAG
));
3349 case ISD::SMULFIXSAT
:
3351 Results
.push_back(TLI
.expandFixedPointMul(Node
, DAG
));
3354 case ISD::SUBCARRY
: {
3355 SDValue LHS
= Node
->getOperand(0);
3356 SDValue RHS
= Node
->getOperand(1);
3357 SDValue Carry
= Node
->getOperand(2);
3359 bool IsAdd
= Node
->getOpcode() == ISD::ADDCARRY
;
3361 // Initial add of the 2 operands.
3362 unsigned Op
= IsAdd
? ISD::ADD
: ISD::SUB
;
3363 EVT VT
= LHS
.getValueType();
3364 SDValue Sum
= DAG
.getNode(Op
, dl
, VT
, LHS
, RHS
);
3366 // Initial check for overflow.
3367 EVT CarryType
= Node
->getValueType(1);
3368 EVT SetCCType
= getSetCCResultType(Node
->getValueType(0));
3369 ISD::CondCode CC
= IsAdd
? ISD::SETULT
: ISD::SETUGT
;
3370 SDValue Overflow
= DAG
.getSetCC(dl
, SetCCType
, Sum
, LHS
, CC
);
3372 // Add of the sum and the carry.
3374 DAG
.getZeroExtendInReg(DAG
.getZExtOrTrunc(Carry
, dl
, VT
), dl
, MVT::i1
);
3375 SDValue Sum2
= DAG
.getNode(Op
, dl
, VT
, Sum
, CarryExt
);
3377 // Second check for overflow. If we are adding, we can only overflow if the
3378 // initial sum is all 1s ang the carry is set, resulting in a new sum of 0.
3379 // If we are subtracting, we can only overflow if the initial sum is 0 and
3380 // the carry is set, resulting in a new sum of all 1s.
3381 SDValue Zero
= DAG
.getConstant(0, dl
, VT
);
3383 IsAdd
? DAG
.getSetCC(dl
, SetCCType
, Sum2
, Zero
, ISD::SETEQ
)
3384 : DAG
.getSetCC(dl
, SetCCType
, Sum
, Zero
, ISD::SETEQ
);
3385 Overflow2
= DAG
.getNode(ISD::AND
, dl
, SetCCType
, Overflow2
,
3386 DAG
.getZExtOrTrunc(Carry
, dl
, SetCCType
));
3388 SDValue ResultCarry
=
3389 DAG
.getNode(ISD::OR
, dl
, SetCCType
, Overflow
, Overflow2
);
3391 Results
.push_back(Sum2
);
3392 Results
.push_back(DAG
.getBoolExtOrTrunc(ResultCarry
, dl
, CarryType
, VT
));
3397 SDValue Result
, Overflow
;
3398 TLI
.expandSADDSUBO(Node
, Result
, Overflow
, DAG
);
3399 Results
.push_back(Result
);
3400 Results
.push_back(Overflow
);
3405 SDValue Result
, Overflow
;
3406 TLI
.expandUADDSUBO(Node
, Result
, Overflow
, DAG
);
3407 Results
.push_back(Result
);
3408 Results
.push_back(Overflow
);
3413 SDValue Result
, Overflow
;
3414 if (TLI
.expandMULO(Node
, Result
, Overflow
, DAG
)) {
3415 Results
.push_back(Result
);
3416 Results
.push_back(Overflow
);
3420 case ISD::BUILD_PAIR
: {
3421 EVT PairTy
= Node
->getValueType(0);
3422 Tmp1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, PairTy
, Node
->getOperand(0));
3423 Tmp2
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, PairTy
, Node
->getOperand(1));
3425 ISD::SHL
, dl
, PairTy
, Tmp2
,
3426 DAG
.getConstant(PairTy
.getSizeInBits() / 2, dl
,
3427 TLI
.getShiftAmountTy(PairTy
, DAG
.getDataLayout())));
3428 Results
.push_back(DAG
.getNode(ISD::OR
, dl
, PairTy
, Tmp1
, Tmp2
));
3432 Tmp1
= Node
->getOperand(0);
3433 Tmp2
= Node
->getOperand(1);
3434 Tmp3
= Node
->getOperand(2);
3435 if (Tmp1
.getOpcode() == ISD::SETCC
) {
3436 Tmp1
= DAG
.getSelectCC(dl
, Tmp1
.getOperand(0), Tmp1
.getOperand(1),
3438 cast
<CondCodeSDNode
>(Tmp1
.getOperand(2))->get());
3440 Tmp1
= DAG
.getSelectCC(dl
, Tmp1
,
3441 DAG
.getConstant(0, dl
, Tmp1
.getValueType()),
3442 Tmp2
, Tmp3
, ISD::SETNE
);
3444 Tmp1
->setFlags(Node
->getFlags());
3445 Results
.push_back(Tmp1
);
3448 SDValue Chain
= Node
->getOperand(0);
3449 SDValue Table
= Node
->getOperand(1);
3450 SDValue Index
= Node
->getOperand(2);
3452 const DataLayout
&TD
= DAG
.getDataLayout();
3453 EVT PTy
= TLI
.getPointerTy(TD
);
3455 unsigned EntrySize
=
3456 DAG
.getMachineFunction().getJumpTableInfo()->getEntrySize(TD
);
3458 // For power-of-two jumptable entry sizes convert multiplication to a shift.
3459 // This transformation needs to be done here since otherwise the MIPS
3460 // backend will end up emitting a three instruction multiply sequence
3461 // instead of a single shift and MSP430 will call a runtime function.
3462 if (llvm::isPowerOf2_32(EntrySize
))
3463 Index
= DAG
.getNode(
3464 ISD::SHL
, dl
, Index
.getValueType(), Index
,
3465 DAG
.getConstant(llvm::Log2_32(EntrySize
), dl
, Index
.getValueType()));
3467 Index
= DAG
.getNode(ISD::MUL
, dl
, Index
.getValueType(), Index
,
3468 DAG
.getConstant(EntrySize
, dl
, Index
.getValueType()));
3469 SDValue Addr
= DAG
.getNode(ISD::ADD
, dl
, Index
.getValueType(),
3472 EVT MemVT
= EVT::getIntegerVT(*DAG
.getContext(), EntrySize
* 8);
3473 SDValue LD
= DAG
.getExtLoad(
3474 ISD::SEXTLOAD
, dl
, PTy
, Chain
, Addr
,
3475 MachinePointerInfo::getJumpTable(DAG
.getMachineFunction()), MemVT
);
3477 if (TLI
.isJumpTableRelative()) {
3478 // For PIC, the sequence is:
3479 // BRIND(load(Jumptable + index) + RelocBase)
3480 // RelocBase can be JumpTable, GOT or some sort of global base.
3481 Addr
= DAG
.getNode(ISD::ADD
, dl
, PTy
, Addr
,
3482 TLI
.getPICJumpTableRelocBase(Table
, DAG
));
3485 Tmp1
= TLI
.expandIndirectJTBranch(dl
, LD
.getValue(1), Addr
, DAG
);
3486 Results
.push_back(Tmp1
);
3490 // Expand brcond's setcc into its constituent parts and create a BR_CC
3492 Tmp1
= Node
->getOperand(0);
3493 Tmp2
= Node
->getOperand(1);
3494 if (Tmp2
.getOpcode() == ISD::SETCC
) {
3495 Tmp1
= DAG
.getNode(ISD::BR_CC
, dl
, MVT::Other
,
3496 Tmp1
, Tmp2
.getOperand(2),
3497 Tmp2
.getOperand(0), Tmp2
.getOperand(1),
3498 Node
->getOperand(2));
3500 // We test only the i1 bit. Skip the AND if UNDEF or another AND.
3501 if (Tmp2
.isUndef() ||
3502 (Tmp2
.getOpcode() == ISD::AND
&&
3503 isa
<ConstantSDNode
>(Tmp2
.getOperand(1)) &&
3504 cast
<ConstantSDNode
>(Tmp2
.getOperand(1))->getZExtValue() == 1))
3507 Tmp3
= DAG
.getNode(ISD::AND
, dl
, Tmp2
.getValueType(), Tmp2
,
3508 DAG
.getConstant(1, dl
, Tmp2
.getValueType()));
3509 Tmp1
= DAG
.getNode(ISD::BR_CC
, dl
, MVT::Other
, Tmp1
,
3510 DAG
.getCondCode(ISD::SETNE
), Tmp3
,
3511 DAG
.getConstant(0, dl
, Tmp3
.getValueType()),
3512 Node
->getOperand(2));
3514 Results
.push_back(Tmp1
);
3517 Tmp1
= Node
->getOperand(0);
3518 Tmp2
= Node
->getOperand(1);
3519 Tmp3
= Node
->getOperand(2);
3520 bool Legalized
= LegalizeSetCCCondCode(Node
->getValueType(0), Tmp1
, Tmp2
,
3521 Tmp3
, NeedInvert
, dl
);
3524 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3525 // condition code, create a new SETCC node.
3527 Tmp1
= DAG
.getNode(ISD::SETCC
, dl
, Node
->getValueType(0),
3528 Tmp1
, Tmp2
, Tmp3
, Node
->getFlags());
3530 // If we expanded the SETCC by inverting the condition code, then wrap
3531 // the existing SETCC in a NOT to restore the intended condition.
3533 Tmp1
= DAG
.getLogicalNOT(dl
, Tmp1
, Tmp1
->getValueType(0));
3535 Results
.push_back(Tmp1
);
3539 // Otherwise, SETCC for the given comparison type must be completely
3540 // illegal; expand it into a SELECT_CC.
3541 EVT VT
= Node
->getValueType(0);
3543 switch (TLI
.getBooleanContents(Tmp1
.getValueType())) {
3544 case TargetLowering::ZeroOrOneBooleanContent
:
3545 case TargetLowering::UndefinedBooleanContent
:
3548 case TargetLowering::ZeroOrNegativeOneBooleanContent
:
3552 Tmp1
= DAG
.getNode(ISD::SELECT_CC
, dl
, VT
, Tmp1
, Tmp2
,
3553 DAG
.getConstant(TrueValue
, dl
, VT
),
3554 DAG
.getConstant(0, dl
, VT
),
3556 Tmp1
->setFlags(Node
->getFlags());
3557 Results
.push_back(Tmp1
);
3560 case ISD::SELECT_CC
: {
3561 Tmp1
= Node
->getOperand(0); // LHS
3562 Tmp2
= Node
->getOperand(1); // RHS
3563 Tmp3
= Node
->getOperand(2); // True
3564 Tmp4
= Node
->getOperand(3); // False
3565 EVT VT
= Node
->getValueType(0);
3566 SDValue CC
= Node
->getOperand(4);
3567 ISD::CondCode CCOp
= cast
<CondCodeSDNode
>(CC
)->get();
3569 if (TLI
.isCondCodeLegalOrCustom(CCOp
, Tmp1
.getSimpleValueType())) {
3570 // If the condition code is legal, then we need to expand this
3571 // node using SETCC and SELECT.
3572 EVT CmpVT
= Tmp1
.getValueType();
3573 assert(!TLI
.isOperationExpand(ISD::SELECT
, VT
) &&
3574 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be "
3576 EVT CCVT
= getSetCCResultType(CmpVT
);
3577 SDValue Cond
= DAG
.getNode(ISD::SETCC
, dl
, CCVT
, Tmp1
, Tmp2
, CC
, Node
->getFlags());
3578 Results
.push_back(DAG
.getSelect(dl
, VT
, Cond
, Tmp3
, Tmp4
));
3582 // SELECT_CC is legal, so the condition code must not be.
3583 bool Legalized
= false;
3584 // Try to legalize by inverting the condition. This is for targets that
3585 // might support an ordered version of a condition, but not the unordered
3586 // version (or vice versa).
3587 ISD::CondCode InvCC
= ISD::getSetCCInverse(CCOp
,
3588 Tmp1
.getValueType().isInteger());
3589 if (TLI
.isCondCodeLegalOrCustom(InvCC
, Tmp1
.getSimpleValueType())) {
3590 // Use the new condition code and swap true and false
3592 Tmp1
= DAG
.getSelectCC(dl
, Tmp1
, Tmp2
, Tmp4
, Tmp3
, InvCC
);
3593 Tmp1
->setFlags(Node
->getFlags());
3595 // If The inverse is not legal, then try to swap the arguments using
3596 // the inverse condition code.
3597 ISD::CondCode SwapInvCC
= ISD::getSetCCSwappedOperands(InvCC
);
3598 if (TLI
.isCondCodeLegalOrCustom(SwapInvCC
, Tmp1
.getSimpleValueType())) {
3599 // The swapped inverse condition is legal, so swap true and false,
3602 Tmp1
= DAG
.getSelectCC(dl
, Tmp2
, Tmp1
, Tmp4
, Tmp3
, SwapInvCC
);
3603 Tmp1
->setFlags(Node
->getFlags());
3608 Legalized
= LegalizeSetCCCondCode(
3609 getSetCCResultType(Tmp1
.getValueType()), Tmp1
, Tmp2
, CC
, NeedInvert
,
3612 assert(Legalized
&& "Can't legalize SELECT_CC with legal condition!");
3614 // If we expanded the SETCC by inverting the condition code, then swap
3615 // the True/False operands to match.
3617 std::swap(Tmp3
, Tmp4
);
3619 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the
3620 // condition code, create a new SELECT_CC node.
3622 Tmp1
= DAG
.getNode(ISD::SELECT_CC
, dl
, Node
->getValueType(0),
3623 Tmp1
, Tmp2
, Tmp3
, Tmp4
, CC
);
3625 Tmp2
= DAG
.getConstant(0, dl
, Tmp1
.getValueType());
3626 CC
= DAG
.getCondCode(ISD::SETNE
);
3627 Tmp1
= DAG
.getNode(ISD::SELECT_CC
, dl
, Node
->getValueType(0), Tmp1
,
3628 Tmp2
, Tmp3
, Tmp4
, CC
);
3630 Tmp1
->setFlags(Node
->getFlags());
3632 Results
.push_back(Tmp1
);
3636 Tmp1
= Node
->getOperand(0); // Chain
3637 Tmp2
= Node
->getOperand(2); // LHS
3638 Tmp3
= Node
->getOperand(3); // RHS
3639 Tmp4
= Node
->getOperand(1); // CC
3641 bool Legalized
= LegalizeSetCCCondCode(getSetCCResultType(
3642 Tmp2
.getValueType()), Tmp2
, Tmp3
, Tmp4
, NeedInvert
, dl
);
3644 assert(Legalized
&& "Can't legalize BR_CC with legal condition!");
3646 assert(!NeedInvert
&& "Don't know how to invert BR_CC!");
3648 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC
3650 if (Tmp4
.getNode()) {
3651 Tmp1
= DAG
.getNode(ISD::BR_CC
, dl
, Node
->getValueType(0), Tmp1
,
3652 Tmp4
, Tmp2
, Tmp3
, Node
->getOperand(4));
3654 Tmp3
= DAG
.getConstant(0, dl
, Tmp2
.getValueType());
3655 Tmp4
= DAG
.getCondCode(ISD::SETNE
);
3656 Tmp1
= DAG
.getNode(ISD::BR_CC
, dl
, Node
->getValueType(0), Tmp1
, Tmp4
,
3657 Tmp2
, Tmp3
, Node
->getOperand(4));
3659 Results
.push_back(Tmp1
);
3662 case ISD::BUILD_VECTOR
:
3663 Results
.push_back(ExpandBUILD_VECTOR(Node
));
3668 // Scalarize vector SRA/SRL/SHL.
3669 EVT VT
= Node
->getValueType(0);
3670 assert(VT
.isVector() && "Unable to legalize non-vector shift");
3671 assert(TLI
.isTypeLegal(VT
.getScalarType())&& "Element type must be legal");
3672 unsigned NumElem
= VT
.getVectorNumElements();
3674 SmallVector
<SDValue
, 8> Scalars
;
3675 for (unsigned Idx
= 0; Idx
< NumElem
; Idx
++) {
3676 SDValue Ex
= DAG
.getNode(
3677 ISD::EXTRACT_VECTOR_ELT
, dl
, VT
.getScalarType(), Node
->getOperand(0),
3678 DAG
.getConstant(Idx
, dl
, TLI
.getVectorIdxTy(DAG
.getDataLayout())));
3679 SDValue Sh
= DAG
.getNode(
3680 ISD::EXTRACT_VECTOR_ELT
, dl
, VT
.getScalarType(), Node
->getOperand(1),
3681 DAG
.getConstant(Idx
, dl
, TLI
.getVectorIdxTy(DAG
.getDataLayout())));
3682 Scalars
.push_back(DAG
.getNode(Node
->getOpcode(), dl
,
3683 VT
.getScalarType(), Ex
, Sh
));
3686 SDValue Result
= DAG
.getBuildVector(Node
->getValueType(0), dl
, Scalars
);
3687 ReplaceNode(SDValue(Node
, 0), Result
);
3690 case ISD::VECREDUCE_FADD
:
3691 case ISD::VECREDUCE_FMUL
:
3692 case ISD::VECREDUCE_ADD
:
3693 case ISD::VECREDUCE_MUL
:
3694 case ISD::VECREDUCE_AND
:
3695 case ISD::VECREDUCE_OR
:
3696 case ISD::VECREDUCE_XOR
:
3697 case ISD::VECREDUCE_SMAX
:
3698 case ISD::VECREDUCE_SMIN
:
3699 case ISD::VECREDUCE_UMAX
:
3700 case ISD::VECREDUCE_UMIN
:
3701 case ISD::VECREDUCE_FMAX
:
3702 case ISD::VECREDUCE_FMIN
:
3703 Results
.push_back(TLI
.expandVecReduce(Node
, DAG
));
3705 case ISD::GLOBAL_OFFSET_TABLE
:
3706 case ISD::GlobalAddress
:
3707 case ISD::GlobalTLSAddress
:
3708 case ISD::ExternalSymbol
:
3709 case ISD::ConstantPool
:
3710 case ISD::JumpTable
:
3711 case ISD::INTRINSIC_W_CHAIN
:
3712 case ISD::INTRINSIC_WO_CHAIN
:
3713 case ISD::INTRINSIC_VOID
:
3714 // FIXME: Custom lowering for these operations shouldn't return null!
3718 // Replace the original node with the legalized result.
3719 if (Results
.empty()) {
3720 LLVM_DEBUG(dbgs() << "Cannot expand node\n");
3724 LLVM_DEBUG(dbgs() << "Successfully expanded node\n");
3725 ReplaceNode(Node
, Results
.data());
3729 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode
*Node
) {
3730 LLVM_DEBUG(dbgs() << "Trying to convert node to libcall\n");
3731 SmallVector
<SDValue
, 8> Results
;
3733 // FIXME: Check flags on the node to see if we can use a finite call.
3734 bool CanUseFiniteLibCall
= TM
.Options
.NoInfsFPMath
&& TM
.Options
.NoNaNsFPMath
;
3735 unsigned Opc
= Node
->getOpcode();
3737 case ISD::ATOMIC_FENCE
: {
3738 // If the target didn't lower this, lower it to '__sync_synchronize()' call
3739 // FIXME: handle "fence singlethread" more efficiently.
3740 TargetLowering::ArgListTy Args
;
3742 TargetLowering::CallLoweringInfo
CLI(DAG
);
3744 .setChain(Node
->getOperand(0))
3746 CallingConv::C
, Type::getVoidTy(*DAG
.getContext()),
3747 DAG
.getExternalSymbol("__sync_synchronize",
3748 TLI
.getPointerTy(DAG
.getDataLayout())),
3751 std::pair
<SDValue
, SDValue
> CallResult
= TLI
.LowerCallTo(CLI
);
3753 Results
.push_back(CallResult
.second
);
3756 // By default, atomic intrinsics are marked Legal and lowered. Targets
3757 // which don't support them directly, however, may want libcalls, in which
3758 // case they mark them Expand, and we get here.
3759 case ISD::ATOMIC_SWAP
:
3760 case ISD::ATOMIC_LOAD_ADD
:
3761 case ISD::ATOMIC_LOAD_SUB
:
3762 case ISD::ATOMIC_LOAD_AND
:
3763 case ISD::ATOMIC_LOAD_CLR
:
3764 case ISD::ATOMIC_LOAD_OR
:
3765 case ISD::ATOMIC_LOAD_XOR
:
3766 case ISD::ATOMIC_LOAD_NAND
:
3767 case ISD::ATOMIC_LOAD_MIN
:
3768 case ISD::ATOMIC_LOAD_MAX
:
3769 case ISD::ATOMIC_LOAD_UMIN
:
3770 case ISD::ATOMIC_LOAD_UMAX
:
3771 case ISD::ATOMIC_CMP_SWAP
: {
3772 MVT VT
= cast
<AtomicSDNode
>(Node
)->getMemoryVT().getSimpleVT();
3773 RTLIB::Libcall LC
= RTLIB::getSYNC(Opc
, VT
);
3774 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&& "Unexpected atomic op or value type!");
3776 std::pair
<SDValue
, SDValue
> Tmp
= ExpandChainLibCall(LC
, Node
, false);
3777 Results
.push_back(Tmp
.first
);
3778 Results
.push_back(Tmp
.second
);
3782 // If this operation is not supported, lower it to 'abort()' call
3783 TargetLowering::ArgListTy Args
;
3784 TargetLowering::CallLoweringInfo
CLI(DAG
);
3786 .setChain(Node
->getOperand(0))
3787 .setLibCallee(CallingConv::C
, Type::getVoidTy(*DAG
.getContext()),
3788 DAG
.getExternalSymbol(
3789 "abort", TLI
.getPointerTy(DAG
.getDataLayout())),
3791 std::pair
<SDValue
, SDValue
> CallResult
= TLI
.LowerCallTo(CLI
);
3793 Results
.push_back(CallResult
.second
);
3797 case ISD::STRICT_FMINNUM
:
3798 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::FMIN_F32
, RTLIB::FMIN_F64
,
3799 RTLIB::FMIN_F80
, RTLIB::FMIN_F128
,
3800 RTLIB::FMIN_PPCF128
));
3803 case ISD::STRICT_FMAXNUM
:
3804 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::FMAX_F32
, RTLIB::FMAX_F64
,
3805 RTLIB::FMAX_F80
, RTLIB::FMAX_F128
,
3806 RTLIB::FMAX_PPCF128
));
3809 case ISD::STRICT_FSQRT
:
3810 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::SQRT_F32
, RTLIB::SQRT_F64
,
3811 RTLIB::SQRT_F80
, RTLIB::SQRT_F128
,
3812 RTLIB::SQRT_PPCF128
));
3815 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::CBRT_F32
, RTLIB::CBRT_F64
,
3816 RTLIB::CBRT_F80
, RTLIB::CBRT_F128
,
3817 RTLIB::CBRT_PPCF128
));
3820 case ISD::STRICT_FSIN
:
3821 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::SIN_F32
, RTLIB::SIN_F64
,
3822 RTLIB::SIN_F80
, RTLIB::SIN_F128
,
3823 RTLIB::SIN_PPCF128
));
3826 case ISD::STRICT_FCOS
:
3827 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::COS_F32
, RTLIB::COS_F64
,
3828 RTLIB::COS_F80
, RTLIB::COS_F128
,
3829 RTLIB::COS_PPCF128
));
3832 // Expand into sincos libcall.
3833 ExpandSinCosLibCall(Node
, Results
);
3836 case ISD::STRICT_FLOG
:
3837 if (CanUseFiniteLibCall
&& DAG
.getLibInfo().has(LibFunc_log_finite
))
3838 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::LOG_FINITE_F32
,
3839 RTLIB::LOG_FINITE_F64
,
3840 RTLIB::LOG_FINITE_F80
,
3841 RTLIB::LOG_FINITE_F128
,
3842 RTLIB::LOG_FINITE_PPCF128
));
3844 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::LOG_F32
, RTLIB::LOG_F64
,
3845 RTLIB::LOG_F80
, RTLIB::LOG_F128
,
3846 RTLIB::LOG_PPCF128
));
3849 case ISD::STRICT_FLOG2
:
3850 if (CanUseFiniteLibCall
&& DAG
.getLibInfo().has(LibFunc_log2_finite
))
3851 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::LOG2_FINITE_F32
,
3852 RTLIB::LOG2_FINITE_F64
,
3853 RTLIB::LOG2_FINITE_F80
,
3854 RTLIB::LOG2_FINITE_F128
,
3855 RTLIB::LOG2_FINITE_PPCF128
));
3857 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::LOG2_F32
, RTLIB::LOG2_F64
,
3858 RTLIB::LOG2_F80
, RTLIB::LOG2_F128
,
3859 RTLIB::LOG2_PPCF128
));
3862 case ISD::STRICT_FLOG10
:
3863 if (CanUseFiniteLibCall
&& DAG
.getLibInfo().has(LibFunc_log10_finite
))
3864 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::LOG10_FINITE_F32
,
3865 RTLIB::LOG10_FINITE_F64
,
3866 RTLIB::LOG10_FINITE_F80
,
3867 RTLIB::LOG10_FINITE_F128
,
3868 RTLIB::LOG10_FINITE_PPCF128
));
3870 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::LOG10_F32
, RTLIB::LOG10_F64
,
3871 RTLIB::LOG10_F80
, RTLIB::LOG10_F128
,
3872 RTLIB::LOG10_PPCF128
));
3875 case ISD::STRICT_FEXP
:
3876 if (CanUseFiniteLibCall
&& DAG
.getLibInfo().has(LibFunc_exp_finite
))
3877 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::EXP_FINITE_F32
,
3878 RTLIB::EXP_FINITE_F64
,
3879 RTLIB::EXP_FINITE_F80
,
3880 RTLIB::EXP_FINITE_F128
,
3881 RTLIB::EXP_FINITE_PPCF128
));
3883 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::EXP_F32
, RTLIB::EXP_F64
,
3884 RTLIB::EXP_F80
, RTLIB::EXP_F128
,
3885 RTLIB::EXP_PPCF128
));
3888 case ISD::STRICT_FEXP2
:
3889 if (CanUseFiniteLibCall
&& DAG
.getLibInfo().has(LibFunc_exp2_finite
))
3890 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::EXP2_FINITE_F32
,
3891 RTLIB::EXP2_FINITE_F64
,
3892 RTLIB::EXP2_FINITE_F80
,
3893 RTLIB::EXP2_FINITE_F128
,
3894 RTLIB::EXP2_FINITE_PPCF128
));
3896 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::EXP2_F32
, RTLIB::EXP2_F64
,
3897 RTLIB::EXP2_F80
, RTLIB::EXP2_F128
,
3898 RTLIB::EXP2_PPCF128
));
3901 case ISD::STRICT_FTRUNC
:
3902 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::TRUNC_F32
, RTLIB::TRUNC_F64
,
3903 RTLIB::TRUNC_F80
, RTLIB::TRUNC_F128
,
3904 RTLIB::TRUNC_PPCF128
));
3907 case ISD::STRICT_FFLOOR
:
3908 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::FLOOR_F32
, RTLIB::FLOOR_F64
,
3909 RTLIB::FLOOR_F80
, RTLIB::FLOOR_F128
,
3910 RTLIB::FLOOR_PPCF128
));
3913 case ISD::STRICT_FCEIL
:
3914 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::CEIL_F32
, RTLIB::CEIL_F64
,
3915 RTLIB::CEIL_F80
, RTLIB::CEIL_F128
,
3916 RTLIB::CEIL_PPCF128
));
3919 case ISD::STRICT_FRINT
:
3920 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::RINT_F32
, RTLIB::RINT_F64
,
3921 RTLIB::RINT_F80
, RTLIB::RINT_F128
,
3922 RTLIB::RINT_PPCF128
));
3924 case ISD::FNEARBYINT
:
3925 case ISD::STRICT_FNEARBYINT
:
3926 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::NEARBYINT_F32
,
3927 RTLIB::NEARBYINT_F64
,
3928 RTLIB::NEARBYINT_F80
,
3929 RTLIB::NEARBYINT_F128
,
3930 RTLIB::NEARBYINT_PPCF128
));
3933 case ISD::STRICT_FROUND
:
3934 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::ROUND_F32
,
3938 RTLIB::ROUND_PPCF128
));
3941 case ISD::STRICT_FPOWI
:
3942 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::POWI_F32
, RTLIB::POWI_F64
,
3943 RTLIB::POWI_F80
, RTLIB::POWI_F128
,
3944 RTLIB::POWI_PPCF128
));
3947 case ISD::STRICT_FPOW
:
3948 if (CanUseFiniteLibCall
&& DAG
.getLibInfo().has(LibFunc_pow_finite
))
3949 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::POW_FINITE_F32
,
3950 RTLIB::POW_FINITE_F64
,
3951 RTLIB::POW_FINITE_F80
,
3952 RTLIB::POW_FINITE_F128
,
3953 RTLIB::POW_FINITE_PPCF128
));
3955 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::POW_F32
, RTLIB::POW_F64
,
3956 RTLIB::POW_F80
, RTLIB::POW_F128
,
3957 RTLIB::POW_PPCF128
));
3960 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::DIV_F32
, RTLIB::DIV_F64
,
3961 RTLIB::DIV_F80
, RTLIB::DIV_F128
,
3962 RTLIB::DIV_PPCF128
));
3965 case ISD::STRICT_FREM
:
3966 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::REM_F32
, RTLIB::REM_F64
,
3967 RTLIB::REM_F80
, RTLIB::REM_F128
,
3968 RTLIB::REM_PPCF128
));
3971 case ISD::STRICT_FMA
:
3972 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::FMA_F32
, RTLIB::FMA_F64
,
3973 RTLIB::FMA_F80
, RTLIB::FMA_F128
,
3974 RTLIB::FMA_PPCF128
));
3977 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::ADD_F32
, RTLIB::ADD_F64
,
3978 RTLIB::ADD_F80
, RTLIB::ADD_F128
,
3979 RTLIB::ADD_PPCF128
));
3982 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::MUL_F32
, RTLIB::MUL_F64
,
3983 RTLIB::MUL_F80
, RTLIB::MUL_F128
,
3984 RTLIB::MUL_PPCF128
));
3986 case ISD::FP16_TO_FP
:
3987 if (Node
->getValueType(0) == MVT::f32
) {
3988 Results
.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32
, Node
, false));
3991 case ISD::FP_TO_FP16
: {
3993 RTLIB::getFPROUND(Node
->getOperand(0).getValueType(), MVT::f16
);
3994 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&& "Unable to expand fp_to_fp16");
3995 Results
.push_back(ExpandLibCall(LC
, Node
, false));
3999 Results
.push_back(ExpandFPLibCall(Node
, RTLIB::SUB_F32
, RTLIB::SUB_F64
,
4000 RTLIB::SUB_F80
, RTLIB::SUB_F128
,
4001 RTLIB::SUB_PPCF128
));
4004 Results
.push_back(ExpandIntLibCall(Node
, true,
4006 RTLIB::SREM_I16
, RTLIB::SREM_I32
,
4007 RTLIB::SREM_I64
, RTLIB::SREM_I128
));
4010 Results
.push_back(ExpandIntLibCall(Node
, false,
4012 RTLIB::UREM_I16
, RTLIB::UREM_I32
,
4013 RTLIB::UREM_I64
, RTLIB::UREM_I128
));
4016 Results
.push_back(ExpandIntLibCall(Node
, true,
4018 RTLIB::SDIV_I16
, RTLIB::SDIV_I32
,
4019 RTLIB::SDIV_I64
, RTLIB::SDIV_I128
));
4022 Results
.push_back(ExpandIntLibCall(Node
, false,
4024 RTLIB::UDIV_I16
, RTLIB::UDIV_I32
,
4025 RTLIB::UDIV_I64
, RTLIB::UDIV_I128
));
4029 // Expand into divrem libcall
4030 ExpandDivRemLibCall(Node
, Results
);
4033 Results
.push_back(ExpandIntLibCall(Node
, false,
4035 RTLIB::MUL_I16
, RTLIB::MUL_I32
,
4036 RTLIB::MUL_I64
, RTLIB::MUL_I128
));
4038 case ISD::CTLZ_ZERO_UNDEF
:
4039 switch (Node
->getSimpleValueType(0).SimpleTy
) {
4041 llvm_unreachable("LibCall explicitly requested, but not available");
4043 Results
.push_back(ExpandLibCall(RTLIB::CTLZ_I32
, Node
, false));
4046 Results
.push_back(ExpandLibCall(RTLIB::CTLZ_I64
, Node
, false));
4049 Results
.push_back(ExpandLibCall(RTLIB::CTLZ_I128
, Node
, false));
4055 // Replace the original node with the legalized result.
4056 if (!Results
.empty()) {
4057 LLVM_DEBUG(dbgs() << "Successfully converted node to libcall\n");
4058 ReplaceNode(Node
, Results
.data());
4060 LLVM_DEBUG(dbgs() << "Could not convert node to libcall\n");
4063 // Determine the vector type to use in place of an original scalar element when
4064 // promoting equally sized vectors.
4065 static MVT
getPromotedVectorElementType(const TargetLowering
&TLI
,
4066 MVT EltVT
, MVT NewEltVT
) {
4067 unsigned OldEltsPerNewElt
= EltVT
.getSizeInBits() / NewEltVT
.getSizeInBits();
4068 MVT MidVT
= MVT::getVectorVT(NewEltVT
, OldEltsPerNewElt
);
4069 assert(TLI
.isTypeLegal(MidVT
) && "unexpected");
4073 void SelectionDAGLegalize::PromoteNode(SDNode
*Node
) {
4074 LLVM_DEBUG(dbgs() << "Trying to promote node\n");
4075 SmallVector
<SDValue
, 8> Results
;
4076 MVT OVT
= Node
->getSimpleValueType(0);
4077 if (Node
->getOpcode() == ISD::UINT_TO_FP
||
4078 Node
->getOpcode() == ISD::SINT_TO_FP
||
4079 Node
->getOpcode() == ISD::SETCC
||
4080 Node
->getOpcode() == ISD::EXTRACT_VECTOR_ELT
||
4081 Node
->getOpcode() == ISD::INSERT_VECTOR_ELT
) {
4082 OVT
= Node
->getOperand(0).getSimpleValueType();
4084 if (Node
->getOpcode() == ISD::BR_CC
)
4085 OVT
= Node
->getOperand(2).getSimpleValueType();
4086 MVT NVT
= TLI
.getTypeToPromoteTo(Node
->getOpcode(), OVT
);
4088 SDValue Tmp1
, Tmp2
, Tmp3
;
4089 switch (Node
->getOpcode()) {
4091 case ISD::CTTZ_ZERO_UNDEF
:
4093 case ISD::CTLZ_ZERO_UNDEF
:
4095 // Zero extend the argument.
4096 Tmp1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, NVT
, Node
->getOperand(0));
4097 if (Node
->getOpcode() == ISD::CTTZ
) {
4098 // The count is the same in the promoted type except if the original
4099 // value was zero. This can be handled by setting the bit just off
4100 // the top of the original type.
4101 auto TopBit
= APInt::getOneBitSet(NVT
.getSizeInBits(),
4102 OVT
.getSizeInBits());
4103 Tmp1
= DAG
.getNode(ISD::OR
, dl
, NVT
, Tmp1
,
4104 DAG
.getConstant(TopBit
, dl
, NVT
));
4106 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
4107 // already the correct result.
4108 Tmp1
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
);
4109 if (Node
->getOpcode() == ISD::CTLZ
||
4110 Node
->getOpcode() == ISD::CTLZ_ZERO_UNDEF
) {
4111 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
4112 Tmp1
= DAG
.getNode(ISD::SUB
, dl
, NVT
, Tmp1
,
4113 DAG
.getConstant(NVT
.getSizeInBits() -
4114 OVT
.getSizeInBits(), dl
, NVT
));
4116 Results
.push_back(DAG
.getNode(ISD::TRUNCATE
, dl
, OVT
, Tmp1
));
4118 case ISD::BITREVERSE
:
4120 unsigned DiffBits
= NVT
.getSizeInBits() - OVT
.getSizeInBits();
4121 Tmp1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, NVT
, Node
->getOperand(0));
4122 Tmp1
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
);
4124 ISD::SRL
, dl
, NVT
, Tmp1
,
4125 DAG
.getConstant(DiffBits
, dl
,
4126 TLI
.getShiftAmountTy(NVT
, DAG
.getDataLayout())));
4128 Results
.push_back(DAG
.getNode(ISD::TRUNCATE
, dl
, OVT
, Tmp1
));
4131 case ISD::FP_TO_UINT
:
4132 case ISD::FP_TO_SINT
:
4133 Tmp1
= PromoteLegalFP_TO_INT(Node
->getOperand(0), Node
->getValueType(0),
4134 Node
->getOpcode() == ISD::FP_TO_SINT
, dl
);
4135 Results
.push_back(Tmp1
);
4137 case ISD::UINT_TO_FP
:
4138 case ISD::SINT_TO_FP
:
4139 Tmp1
= PromoteLegalINT_TO_FP(Node
->getOperand(0), Node
->getValueType(0),
4140 Node
->getOpcode() == ISD::SINT_TO_FP
, dl
);
4141 Results
.push_back(Tmp1
);
4144 SDValue Chain
= Node
->getOperand(0); // Get the chain.
4145 SDValue Ptr
= Node
->getOperand(1); // Get the pointer.
4148 if (OVT
.isVector()) {
4149 TruncOp
= ISD::BITCAST
;
4151 assert(OVT
.isInteger()
4152 && "VAARG promotion is supported only for vectors or integer types");
4153 TruncOp
= ISD::TRUNCATE
;
4156 // Perform the larger operation, then convert back
4157 Tmp1
= DAG
.getVAArg(NVT
, dl
, Chain
, Ptr
, Node
->getOperand(2),
4158 Node
->getConstantOperandVal(3));
4159 Chain
= Tmp1
.getValue(1);
4161 Tmp2
= DAG
.getNode(TruncOp
, dl
, OVT
, Tmp1
);
4163 // Modified the chain result - switch anything that used the old chain to
4165 DAG
.ReplaceAllUsesOfValueWith(SDValue(Node
, 0), Tmp2
);
4166 DAG
.ReplaceAllUsesOfValueWith(SDValue(Node
, 1), Chain
);
4168 UpdatedNodes
->insert(Tmp2
.getNode());
4169 UpdatedNodes
->insert(Chain
.getNode());
4182 unsigned ExtOp
, TruncOp
;
4183 if (OVT
.isVector()) {
4184 ExtOp
= ISD::BITCAST
;
4185 TruncOp
= ISD::BITCAST
;
4187 assert(OVT
.isInteger() && "Cannot promote logic operation");
4189 switch (Node
->getOpcode()) {
4191 ExtOp
= ISD::ANY_EXTEND
;
4195 ExtOp
= ISD::SIGN_EXTEND
;
4199 ExtOp
= ISD::ZERO_EXTEND
;
4202 TruncOp
= ISD::TRUNCATE
;
4204 // Promote each of the values to the new type.
4205 Tmp1
= DAG
.getNode(ExtOp
, dl
, NVT
, Node
->getOperand(0));
4206 Tmp2
= DAG
.getNode(ExtOp
, dl
, NVT
, Node
->getOperand(1));
4207 // Perform the larger operation, then convert back
4208 Tmp1
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
, Tmp2
);
4209 Results
.push_back(DAG
.getNode(TruncOp
, dl
, OVT
, Tmp1
));
4212 case ISD::UMUL_LOHI
:
4213 case ISD::SMUL_LOHI
: {
4214 // Promote to a multiply in a wider integer type.
4215 unsigned ExtOp
= Node
->getOpcode() == ISD::UMUL_LOHI
? ISD::ZERO_EXTEND
4217 Tmp1
= DAG
.getNode(ExtOp
, dl
, NVT
, Node
->getOperand(0));
4218 Tmp2
= DAG
.getNode(ExtOp
, dl
, NVT
, Node
->getOperand(1));
4219 Tmp1
= DAG
.getNode(ISD::MUL
, dl
, NVT
, Tmp1
, Tmp2
);
4221 auto &DL
= DAG
.getDataLayout();
4222 unsigned OriginalSize
= OVT
.getScalarSizeInBits();
4224 ISD::SRL
, dl
, NVT
, Tmp1
,
4225 DAG
.getConstant(OriginalSize
, dl
, TLI
.getScalarShiftAmountTy(DL
, NVT
)));
4226 Results
.push_back(DAG
.getNode(ISD::TRUNCATE
, dl
, OVT
, Tmp1
));
4227 Results
.push_back(DAG
.getNode(ISD::TRUNCATE
, dl
, OVT
, Tmp2
));
4231 unsigned ExtOp
, TruncOp
;
4232 if (Node
->getValueType(0).isVector() ||
4233 Node
->getValueType(0).getSizeInBits() == NVT
.getSizeInBits()) {
4234 ExtOp
= ISD::BITCAST
;
4235 TruncOp
= ISD::BITCAST
;
4236 } else if (Node
->getValueType(0).isInteger()) {
4237 ExtOp
= ISD::ANY_EXTEND
;
4238 TruncOp
= ISD::TRUNCATE
;
4240 ExtOp
= ISD::FP_EXTEND
;
4241 TruncOp
= ISD::FP_ROUND
;
4243 Tmp1
= Node
->getOperand(0);
4244 // Promote each of the values to the new type.
4245 Tmp2
= DAG
.getNode(ExtOp
, dl
, NVT
, Node
->getOperand(1));
4246 Tmp3
= DAG
.getNode(ExtOp
, dl
, NVT
, Node
->getOperand(2));
4247 // Perform the larger operation, then round down.
4248 Tmp1
= DAG
.getSelect(dl
, NVT
, Tmp1
, Tmp2
, Tmp3
);
4249 Tmp1
->setFlags(Node
->getFlags());
4250 if (TruncOp
!= ISD::FP_ROUND
)
4251 Tmp1
= DAG
.getNode(TruncOp
, dl
, Node
->getValueType(0), Tmp1
);
4253 Tmp1
= DAG
.getNode(TruncOp
, dl
, Node
->getValueType(0), Tmp1
,
4254 DAG
.getIntPtrConstant(0, dl
));
4255 Results
.push_back(Tmp1
);
4258 case ISD::VECTOR_SHUFFLE
: {
4259 ArrayRef
<int> Mask
= cast
<ShuffleVectorSDNode
>(Node
)->getMask();
4261 // Cast the two input vectors.
4262 Tmp1
= DAG
.getNode(ISD::BITCAST
, dl
, NVT
, Node
->getOperand(0));
4263 Tmp2
= DAG
.getNode(ISD::BITCAST
, dl
, NVT
, Node
->getOperand(1));
4265 // Convert the shuffle mask to the right # elements.
4266 Tmp1
= ShuffleWithNarrowerEltType(NVT
, OVT
, dl
, Tmp1
, Tmp2
, Mask
);
4267 Tmp1
= DAG
.getNode(ISD::BITCAST
, dl
, OVT
, Tmp1
);
4268 Results
.push_back(Tmp1
);
4272 unsigned ExtOp
= ISD::FP_EXTEND
;
4273 if (NVT
.isInteger()) {
4274 ISD::CondCode CCCode
=
4275 cast
<CondCodeSDNode
>(Node
->getOperand(2))->get();
4276 ExtOp
= isSignedIntSetCC(CCCode
) ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
4278 Tmp1
= DAG
.getNode(ExtOp
, dl
, NVT
, Node
->getOperand(0));
4279 Tmp2
= DAG
.getNode(ExtOp
, dl
, NVT
, Node
->getOperand(1));
4280 Results
.push_back(DAG
.getNode(ISD::SETCC
, dl
, Node
->getValueType(0), Tmp1
,
4281 Tmp2
, Node
->getOperand(2), Node
->getFlags()));
4285 unsigned ExtOp
= ISD::FP_EXTEND
;
4286 if (NVT
.isInteger()) {
4287 ISD::CondCode CCCode
=
4288 cast
<CondCodeSDNode
>(Node
->getOperand(1))->get();
4289 ExtOp
= isSignedIntSetCC(CCCode
) ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
4291 Tmp1
= DAG
.getNode(ExtOp
, dl
, NVT
, Node
->getOperand(2));
4292 Tmp2
= DAG
.getNode(ExtOp
, dl
, NVT
, Node
->getOperand(3));
4293 Results
.push_back(DAG
.getNode(ISD::BR_CC
, dl
, Node
->getValueType(0),
4294 Node
->getOperand(0), Node
->getOperand(1),
4295 Tmp1
, Tmp2
, Node
->getOperand(4)));
4306 Tmp1
= DAG
.getNode(ISD::FP_EXTEND
, dl
, NVT
, Node
->getOperand(0));
4307 Tmp2
= DAG
.getNode(ISD::FP_EXTEND
, dl
, NVT
, Node
->getOperand(1));
4308 Tmp3
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
, Tmp2
,
4310 Results
.push_back(DAG
.getNode(ISD::FP_ROUND
, dl
, OVT
,
4311 Tmp3
, DAG
.getIntPtrConstant(0, dl
)));
4314 Tmp1
= DAG
.getNode(ISD::FP_EXTEND
, dl
, NVT
, Node
->getOperand(0));
4315 Tmp2
= DAG
.getNode(ISD::FP_EXTEND
, dl
, NVT
, Node
->getOperand(1));
4316 Tmp3
= DAG
.getNode(ISD::FP_EXTEND
, dl
, NVT
, Node
->getOperand(2));
4318 DAG
.getNode(ISD::FP_ROUND
, dl
, OVT
,
4319 DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
, Tmp2
, Tmp3
),
4320 DAG
.getIntPtrConstant(0, dl
)));
4322 case ISD::FCOPYSIGN
:
4324 Tmp1
= DAG
.getNode(ISD::FP_EXTEND
, dl
, NVT
, Node
->getOperand(0));
4325 Tmp2
= Node
->getOperand(1);
4326 Tmp3
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
, Tmp2
);
4328 // fcopysign doesn't change anything but the sign bit, so
4329 // (fp_round (fcopysign (fpext a), b))
4331 // (fp_round (fpext a))
4332 // which is a no-op. Mark it as a TRUNCating FP_ROUND.
4333 const bool isTrunc
= (Node
->getOpcode() == ISD::FCOPYSIGN
);
4334 Results
.push_back(DAG
.getNode(ISD::FP_ROUND
, dl
, OVT
,
4335 Tmp3
, DAG
.getIntPtrConstant(isTrunc
, dl
)));
4341 case ISD::FNEARBYINT
:
4354 Tmp1
= DAG
.getNode(ISD::FP_EXTEND
, dl
, NVT
, Node
->getOperand(0));
4355 Tmp2
= DAG
.getNode(Node
->getOpcode(), dl
, NVT
, Tmp1
);
4356 Results
.push_back(DAG
.getNode(ISD::FP_ROUND
, dl
, OVT
,
4357 Tmp2
, DAG
.getIntPtrConstant(0, dl
)));
4359 case ISD::BUILD_VECTOR
: {
4360 MVT EltVT
= OVT
.getVectorElementType();
4361 MVT NewEltVT
= NVT
.getVectorElementType();
4363 // Handle bitcasts to a different vector type with the same total bit size
4365 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32
4367 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y))
4369 assert(NVT
.isVector() && OVT
.getSizeInBits() == NVT
.getSizeInBits() &&
4370 "Invalid promote type for build_vector");
4371 assert(NewEltVT
.bitsLT(EltVT
) && "not handled");
4373 MVT MidVT
= getPromotedVectorElementType(TLI
, EltVT
, NewEltVT
);
4375 SmallVector
<SDValue
, 8> NewOps
;
4376 for (unsigned I
= 0, E
= Node
->getNumOperands(); I
!= E
; ++I
) {
4377 SDValue Op
= Node
->getOperand(I
);
4378 NewOps
.push_back(DAG
.getNode(ISD::BITCAST
, SDLoc(Op
), MidVT
, Op
));
4382 SDValue Concat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SL
, NVT
, NewOps
);
4383 SDValue CvtVec
= DAG
.getNode(ISD::BITCAST
, SL
, OVT
, Concat
);
4384 Results
.push_back(CvtVec
);
4387 case ISD::EXTRACT_VECTOR_ELT
: {
4388 MVT EltVT
= OVT
.getVectorElementType();
4389 MVT NewEltVT
= NVT
.getVectorElementType();
4391 // Handle bitcasts to a different vector type with the same total bit size.
4393 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32
4395 // v4i32:castx = bitcast x:v2i64
4398 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
4399 // (i32 (extract_vector_elt castx, (2 * y + 1)))
4402 assert(NVT
.isVector() && OVT
.getSizeInBits() == NVT
.getSizeInBits() &&
4403 "Invalid promote type for extract_vector_elt");
4404 assert(NewEltVT
.bitsLT(EltVT
) && "not handled");
4406 MVT MidVT
= getPromotedVectorElementType(TLI
, EltVT
, NewEltVT
);
4407 unsigned NewEltsPerOldElt
= MidVT
.getVectorNumElements();
4409 SDValue Idx
= Node
->getOperand(1);
4410 EVT IdxVT
= Idx
.getValueType();
4412 SDValue Factor
= DAG
.getConstant(NewEltsPerOldElt
, SL
, IdxVT
);
4413 SDValue NewBaseIdx
= DAG
.getNode(ISD::MUL
, SL
, IdxVT
, Idx
, Factor
);
4415 SDValue CastVec
= DAG
.getNode(ISD::BITCAST
, SL
, NVT
, Node
->getOperand(0));
4417 SmallVector
<SDValue
, 8> NewOps
;
4418 for (unsigned I
= 0; I
< NewEltsPerOldElt
; ++I
) {
4419 SDValue IdxOffset
= DAG
.getConstant(I
, SL
, IdxVT
);
4420 SDValue TmpIdx
= DAG
.getNode(ISD::ADD
, SL
, IdxVT
, NewBaseIdx
, IdxOffset
);
4422 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, NewEltVT
,
4424 NewOps
.push_back(Elt
);
4427 SDValue NewVec
= DAG
.getBuildVector(MidVT
, SL
, NewOps
);
4428 Results
.push_back(DAG
.getNode(ISD::BITCAST
, SL
, EltVT
, NewVec
));
4431 case ISD::INSERT_VECTOR_ELT
: {
4432 MVT EltVT
= OVT
.getVectorElementType();
4433 MVT NewEltVT
= NVT
.getVectorElementType();
4435 // Handle bitcasts to a different vector type with the same total bit size
4437 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32
4439 // v4i32:castx = bitcast x:v2i64
4440 // v2i32:casty = bitcast y:i64
4443 // (v4i32 insert_vector_elt
4444 // (v4i32 insert_vector_elt v4i32:castx,
4445 // (extract_vector_elt casty, 0), 2 * z),
4446 // (extract_vector_elt casty, 1), (2 * z + 1))
4448 assert(NVT
.isVector() && OVT
.getSizeInBits() == NVT
.getSizeInBits() &&
4449 "Invalid promote type for insert_vector_elt");
4450 assert(NewEltVT
.bitsLT(EltVT
) && "not handled");
4452 MVT MidVT
= getPromotedVectorElementType(TLI
, EltVT
, NewEltVT
);
4453 unsigned NewEltsPerOldElt
= MidVT
.getVectorNumElements();
4455 SDValue Val
= Node
->getOperand(1);
4456 SDValue Idx
= Node
->getOperand(2);
4457 EVT IdxVT
= Idx
.getValueType();
4460 SDValue Factor
= DAG
.getConstant(NewEltsPerOldElt
, SDLoc(), IdxVT
);
4461 SDValue NewBaseIdx
= DAG
.getNode(ISD::MUL
, SL
, IdxVT
, Idx
, Factor
);
4463 SDValue CastVec
= DAG
.getNode(ISD::BITCAST
, SL
, NVT
, Node
->getOperand(0));
4464 SDValue CastVal
= DAG
.getNode(ISD::BITCAST
, SL
, MidVT
, Val
);
4466 SDValue NewVec
= CastVec
;
4467 for (unsigned I
= 0; I
< NewEltsPerOldElt
; ++I
) {
4468 SDValue IdxOffset
= DAG
.getConstant(I
, SL
, IdxVT
);
4469 SDValue InEltIdx
= DAG
.getNode(ISD::ADD
, SL
, IdxVT
, NewBaseIdx
, IdxOffset
);
4471 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, NewEltVT
,
4472 CastVal
, IdxOffset
);
4474 NewVec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, SL
, NVT
,
4475 NewVec
, Elt
, InEltIdx
);
4478 Results
.push_back(DAG
.getNode(ISD::BITCAST
, SL
, OVT
, NewVec
));
4481 case ISD::SCALAR_TO_VECTOR
: {
4482 MVT EltVT
= OVT
.getVectorElementType();
4483 MVT NewEltVT
= NVT
.getVectorElementType();
4485 // Handle bitcasts to different vector type with the same total bit size.
4487 // e.g. v2i64 = scalar_to_vector x:i64
4489 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef)
4492 MVT MidVT
= getPromotedVectorElementType(TLI
, EltVT
, NewEltVT
);
4493 SDValue Val
= Node
->getOperand(0);
4496 SDValue CastVal
= DAG
.getNode(ISD::BITCAST
, SL
, MidVT
, Val
);
4497 SDValue Undef
= DAG
.getUNDEF(MidVT
);
4499 SmallVector
<SDValue
, 8> NewElts
;
4500 NewElts
.push_back(CastVal
);
4501 for (unsigned I
= 1, NElts
= OVT
.getVectorNumElements(); I
!= NElts
; ++I
)
4502 NewElts
.push_back(Undef
);
4504 SDValue Concat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SL
, NVT
, NewElts
);
4505 SDValue CvtVec
= DAG
.getNode(ISD::BITCAST
, SL
, OVT
, Concat
);
4506 Results
.push_back(CvtVec
);
4509 case ISD::ATOMIC_SWAP
: {
4510 AtomicSDNode
*AM
= cast
<AtomicSDNode
>(Node
);
4512 SDValue CastVal
= DAG
.getNode(ISD::BITCAST
, SL
, NVT
, AM
->getVal());
4513 assert(NVT
.getSizeInBits() == OVT
.getSizeInBits() &&
4514 "unexpected promotion type");
4515 assert(AM
->getMemoryVT().getSizeInBits() == NVT
.getSizeInBits() &&
4516 "unexpected atomic_swap with illegal type");
4519 = DAG
.getAtomic(ISD::ATOMIC_SWAP
, SL
, NVT
,
4520 DAG
.getVTList(NVT
, MVT::Other
),
4521 { AM
->getChain(), AM
->getBasePtr(), CastVal
},
4522 AM
->getMemOperand());
4523 Results
.push_back(DAG
.getNode(ISD::BITCAST
, SL
, OVT
, NewAtomic
));
4524 Results
.push_back(NewAtomic
.getValue(1));
4529 // Replace the original node with the legalized result.
4530 if (!Results
.empty()) {
4531 LLVM_DEBUG(dbgs() << "Successfully promoted node\n");
4532 ReplaceNode(Node
, Results
.data());
4534 LLVM_DEBUG(dbgs() << "Could not promote node\n");
4537 /// This is the entry point for the file.
4538 void SelectionDAG::Legalize() {
4539 AssignTopologicalOrder();
4541 SmallPtrSet
<SDNode
*, 16> LegalizedNodes
;
4542 // Use a delete listener to remove nodes which were deleted during
4543 // legalization from LegalizeNodes. This is needed to handle the situation
4544 // where a new node is allocated by the object pool to the same address of a
4545 // previously deleted node.
4546 DAGNodeDeletedListener
DeleteListener(
4548 [&LegalizedNodes
](SDNode
*N
, SDNode
*E
) { LegalizedNodes
.erase(N
); });
4550 SelectionDAGLegalize
Legalizer(*this, LegalizedNodes
);
4552 // Visit all the nodes. We start in topological order, so that we see
4553 // nodes with their original operands intact. Legalization can produce
4554 // new nodes which may themselves need to be legalized. Iterate until all
4555 // nodes have been legalized.
4557 bool AnyLegalized
= false;
4558 for (auto NI
= allnodes_end(); NI
!= allnodes_begin();) {
4562 if (N
->use_empty() && N
!= getRoot().getNode()) {
4568 if (LegalizedNodes
.insert(N
).second
) {
4569 AnyLegalized
= true;
4570 Legalizer
.LegalizeOp(N
);
4572 if (N
->use_empty() && N
!= getRoot().getNode()) {
4583 // Remove dead nodes now.
4587 bool SelectionDAG::LegalizeOp(SDNode
*N
,
4588 SmallSetVector
<SDNode
*, 16> &UpdatedNodes
) {
4589 SmallPtrSet
<SDNode
*, 16> LegalizedNodes
;
4590 SelectionDAGLegalize
Legalizer(*this, LegalizedNodes
, &UpdatedNodes
);
4592 // Directly insert the node in question, and legalize it. This will recurse
4593 // as needed through operands.
4594 LegalizedNodes
.insert(N
);
4595 Legalizer
.LegalizeOp(N
);
4597 return LegalizedNodes
.count(N
);