1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the SelectionDAG::LegalizeVectors method.
11 // The vector legalizer looks for vector operations which might need to be
12 // scalarized and legalizes them. This is a separate step from Legalize because
13 // scalarizing can introduce illegal types. For example, suppose we have an
14 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition
15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
16 // operation, which introduces nodes with the illegal type i64 which must be
17 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
18 // the operation must be unrolled, which introduces nodes with the illegal
19 // type i8 which must be promoted.
21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
22 // or operations that happen to take a vector which are custom-lowered;
23 // the legalization for such operations never produces nodes
24 // with illegal types, so it's okay to put off legalizing them until
25 // SelectionDAG::Legalize runs.
27 //===----------------------------------------------------------------------===//
29 #include "llvm/ADT/APInt.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/SelectionDAG.h"
35 #include "llvm/CodeGen/SelectionDAGNodes.h"
36 #include "llvm/CodeGen/TargetLowering.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/MachineValueType.h"
43 #include "llvm/Support/MathExtras.h"
51 #define DEBUG_TYPE "legalizevectorops"
55 class VectorLegalizer
{
57 const TargetLowering
&TLI
;
58 bool Changed
= false; // Keep track of whether anything changed
60 /// For nodes that are of legal width, and that have more than one use, this
61 /// map indicates what regularized operand to use. This allows us to avoid
62 /// legalizing the same thing more than once.
63 SmallDenseMap
<SDValue
, SDValue
, 64> LegalizedNodes
;
65 /// Adds a node to the translation cache.
66 void AddLegalizedOperand(SDValue From
, SDValue To
) {
67 LegalizedNodes
.insert(std::make_pair(From
, To
));
68 // If someone requests legalization of the new node, return itself.
70 LegalizedNodes
.insert(std::make_pair(To
, To
));
73 /// Legalizes the given node.
74 SDValue
LegalizeOp(SDValue Op
);
76 /// Assuming the node is legal, "legalize" the results.
77 SDValue
TranslateLegalizeResults(SDValue Op
, SDValue Result
);
79 /// Implements unrolling a VSETCC.
80 SDValue
UnrollVSETCC(SDValue Op
);
82 /// Implement expand-based legalization of vector operations.
84 /// This is just a high-level routine to dispatch to specific code paths for
85 /// operations to legalize them.
86 SDValue
Expand(SDValue Op
);
88 /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if
89 /// FP_TO_SINT isn't legal.
90 SDValue
ExpandFP_TO_UINT(SDValue Op
);
92 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
93 /// SINT_TO_FLOAT and SHR on vectors isn't legal.
94 SDValue
ExpandUINT_TO_FLOAT(SDValue Op
);
96 /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
97 SDValue
ExpandSEXTINREG(SDValue Op
);
99 /// Implement expansion for ANY_EXTEND_VECTOR_INREG.
101 /// Shuffles the low lanes of the operand into place and bitcasts to the proper
102 /// type. The contents of the bits in the extended part of each element are
104 SDValue
ExpandANY_EXTEND_VECTOR_INREG(SDValue Op
);
106 /// Implement expansion for SIGN_EXTEND_VECTOR_INREG.
108 /// Shuffles the low lanes of the operand into place, bitcasts to the proper
109 /// type, then shifts left and arithmetic shifts right to introduce a sign
111 SDValue
ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op
);
113 /// Implement expansion for ZERO_EXTEND_VECTOR_INREG.
115 /// Shuffles the low lanes of the operand into place and blends zeros into
116 /// the remaining lanes, finally bitcasting to the proper type.
117 SDValue
ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op
);
119 /// Implement expand-based legalization of ABS vector operations.
120 /// If following expanding is legal/custom then do it:
121 /// (ABS x) --> (XOR (ADD x, (SRA x, sizeof(x)-1)), (SRA x, sizeof(x)-1))
122 /// else unroll the operation.
123 SDValue
ExpandABS(SDValue Op
);
125 /// Expand bswap of vectors into a shuffle if legal.
126 SDValue
ExpandBSWAP(SDValue Op
);
128 /// Implement vselect in terms of XOR, AND, OR when blend is not
129 /// supported by the target.
130 SDValue
ExpandVSELECT(SDValue Op
);
131 SDValue
ExpandSELECT(SDValue Op
);
132 SDValue
ExpandLoad(SDValue Op
);
133 SDValue
ExpandStore(SDValue Op
);
134 SDValue
ExpandFNEG(SDValue Op
);
135 SDValue
ExpandFSUB(SDValue Op
);
136 SDValue
ExpandBITREVERSE(SDValue Op
);
137 SDValue
ExpandCTPOP(SDValue Op
);
138 SDValue
ExpandCTLZ(SDValue Op
);
139 SDValue
ExpandCTTZ(SDValue Op
);
140 SDValue
ExpandFunnelShift(SDValue Op
);
141 SDValue
ExpandROT(SDValue Op
);
142 SDValue
ExpandFMINNUM_FMAXNUM(SDValue Op
);
143 SDValue
ExpandUADDSUBO(SDValue Op
);
144 SDValue
ExpandSADDSUBO(SDValue Op
);
145 SDValue
ExpandMULO(SDValue Op
);
146 SDValue
ExpandAddSubSat(SDValue Op
);
147 SDValue
ExpandFixedPointMul(SDValue Op
);
148 SDValue
ExpandStrictFPOp(SDValue Op
);
150 /// Implements vector promotion.
152 /// This is essentially just bitcasting the operands to a different type and
153 /// bitcasting the result back to the original type.
154 SDValue
Promote(SDValue Op
);
156 /// Implements [SU]INT_TO_FP vector promotion.
158 /// This is a [zs]ext of the input operand to a larger integer type.
159 SDValue
PromoteINT_TO_FP(SDValue Op
);
161 /// Implements FP_TO_[SU]INT vector promotion of the result type.
163 /// It is promoted to a larger integer type. The result is then
164 /// truncated back to the original type.
165 SDValue
PromoteFP_TO_INT(SDValue Op
);
168 VectorLegalizer(SelectionDAG
& dag
) :
169 DAG(dag
), TLI(dag
.getTargetLoweringInfo()) {}
171 /// Begin legalizer the vector operations in the DAG.
175 } // end anonymous namespace
177 bool VectorLegalizer::Run() {
178 // Before we start legalizing vector nodes, check if there are any vectors.
179 bool HasVectors
= false;
180 for (SelectionDAG::allnodes_iterator I
= DAG
.allnodes_begin(),
181 E
= std::prev(DAG
.allnodes_end()); I
!= std::next(E
); ++I
) {
182 // Check if the values of the nodes contain vectors. We don't need to check
183 // the operands because we are going to check their values at some point.
184 for (SDNode::value_iterator J
= I
->value_begin(), E
= I
->value_end();
186 HasVectors
|= J
->isVector();
188 // If we found a vector node we can start the legalization.
193 // If this basic block has no vectors then no need to legalize vectors.
197 // The legalize process is inherently a bottom-up recursive process (users
198 // legalize their uses before themselves). Given infinite stack space, we
199 // could just start legalizing on the root and traverse the whole graph. In
200 // practice however, this causes us to run out of stack space on large basic
201 // blocks. To avoid this problem, compute an ordering of the nodes where each
202 // node is only legalized after all of its operands are legalized.
203 DAG
.AssignTopologicalOrder();
204 for (SelectionDAG::allnodes_iterator I
= DAG
.allnodes_begin(),
205 E
= std::prev(DAG
.allnodes_end()); I
!= std::next(E
); ++I
)
206 LegalizeOp(SDValue(&*I
, 0));
208 // Finally, it's possible the root changed. Get the new root.
209 SDValue OldRoot
= DAG
.getRoot();
210 assert(LegalizedNodes
.count(OldRoot
) && "Root didn't get legalized?");
211 DAG
.setRoot(LegalizedNodes
[OldRoot
]);
213 LegalizedNodes
.clear();
215 // Remove dead nodes now.
216 DAG
.RemoveDeadNodes();
221 SDValue
VectorLegalizer::TranslateLegalizeResults(SDValue Op
, SDValue Result
) {
222 // Generic legalization: just pass the operand through.
223 for (unsigned i
= 0, e
= Op
.getNode()->getNumValues(); i
!= e
; ++i
)
224 AddLegalizedOperand(Op
.getValue(i
), Result
.getValue(i
));
225 return Result
.getValue(Op
.getResNo());
228 SDValue
VectorLegalizer::LegalizeOp(SDValue Op
) {
229 // Note that LegalizeOp may be reentered even from single-use nodes, which
230 // means that we always must cache transformed nodes.
231 DenseMap
<SDValue
, SDValue
>::iterator I
= LegalizedNodes
.find(Op
);
232 if (I
!= LegalizedNodes
.end()) return I
->second
;
234 SDNode
* Node
= Op
.getNode();
236 // Legalize the operands
237 SmallVector
<SDValue
, 8> Ops
;
238 for (const SDValue
&Op
: Node
->op_values())
239 Ops
.push_back(LegalizeOp(Op
));
241 SDValue Result
= SDValue(DAG
.UpdateNodeOperands(Op
.getNode(), Ops
),
244 if (Op
.getOpcode() == ISD::LOAD
) {
245 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
.getNode());
246 ISD::LoadExtType ExtType
= LD
->getExtensionType();
247 if (LD
->getMemoryVT().isVector() && ExtType
!= ISD::NON_EXTLOAD
) {
248 LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: ";
250 switch (TLI
.getLoadExtAction(LD
->getExtensionType(), LD
->getValueType(0),
251 LD
->getMemoryVT())) {
252 default: llvm_unreachable("This action is not supported yet!");
253 case TargetLowering::Legal
:
254 return TranslateLegalizeResults(Op
, Result
);
255 case TargetLowering::Custom
:
256 if (SDValue Lowered
= TLI
.LowerOperation(Result
, DAG
)) {
257 assert(Lowered
->getNumValues() == Op
->getNumValues() &&
258 "Unexpected number of results");
259 if (Lowered
!= Result
) {
260 // Make sure the new code is also legal.
261 Lowered
= LegalizeOp(Lowered
);
264 return TranslateLegalizeResults(Op
, Lowered
);
267 case TargetLowering::Expand
:
269 return ExpandLoad(Op
);
272 } else if (Op
.getOpcode() == ISD::STORE
) {
273 StoreSDNode
*ST
= cast
<StoreSDNode
>(Op
.getNode());
274 EVT StVT
= ST
->getMemoryVT();
275 MVT ValVT
= ST
->getValue().getSimpleValueType();
276 if (StVT
.isVector() && ST
->isTruncatingStore()) {
277 LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: ";
279 switch (TLI
.getTruncStoreAction(ValVT
, StVT
)) {
280 default: llvm_unreachable("This action is not supported yet!");
281 case TargetLowering::Legal
:
282 return TranslateLegalizeResults(Op
, Result
);
283 case TargetLowering::Custom
: {
284 SDValue Lowered
= TLI
.LowerOperation(Result
, DAG
);
285 if (Lowered
!= Result
) {
286 // Make sure the new code is also legal.
287 Lowered
= LegalizeOp(Lowered
);
290 return TranslateLegalizeResults(Op
, Lowered
);
292 case TargetLowering::Expand
:
294 return ExpandStore(Op
);
299 bool HasVectorValueOrOp
= false;
300 for (auto J
= Node
->value_begin(), E
= Node
->value_end(); J
!= E
; ++J
)
301 HasVectorValueOrOp
|= J
->isVector();
302 for (const SDValue
&Op
: Node
->op_values())
303 HasVectorValueOrOp
|= Op
.getValueType().isVector();
305 if (!HasVectorValueOrOp
)
306 return TranslateLegalizeResults(Op
, Result
);
308 TargetLowering::LegalizeAction Action
= TargetLowering::Legal
;
309 switch (Op
.getOpcode()) {
311 return TranslateLegalizeResults(Op
, Result
);
312 case ISD::STRICT_FADD
:
313 case ISD::STRICT_FSUB
:
314 case ISD::STRICT_FMUL
:
315 case ISD::STRICT_FDIV
:
316 case ISD::STRICT_FREM
:
317 case ISD::STRICT_FSQRT
:
318 case ISD::STRICT_FMA
:
319 case ISD::STRICT_FPOW
:
320 case ISD::STRICT_FPOWI
:
321 case ISD::STRICT_FSIN
:
322 case ISD::STRICT_FCOS
:
323 case ISD::STRICT_FEXP
:
324 case ISD::STRICT_FEXP2
:
325 case ISD::STRICT_FLOG
:
326 case ISD::STRICT_FLOG10
:
327 case ISD::STRICT_FLOG2
:
328 case ISD::STRICT_FRINT
:
329 case ISD::STRICT_FNEARBYINT
:
330 case ISD::STRICT_FMAXNUM
:
331 case ISD::STRICT_FMINNUM
:
332 case ISD::STRICT_FCEIL
:
333 case ISD::STRICT_FFLOOR
:
334 case ISD::STRICT_FROUND
:
335 case ISD::STRICT_FTRUNC
:
336 case ISD::STRICT_FP_ROUND
:
337 case ISD::STRICT_FP_EXTEND
:
338 // These pseudo-ops get legalized as if they were their non-strict
339 // equivalent. For instance, if ISD::FSQRT is legal then ISD::STRICT_FSQRT
340 // is also legal, but if ISD::FSQRT requires expansion then so does
341 // ISD::STRICT_FSQRT.
342 Action
= TLI
.getStrictFPOperationAction(Node
->getOpcode(),
343 Node
->getValueType(0));
373 case ISD::BITREVERSE
:
376 case ISD::CTLZ_ZERO_UNDEF
:
377 case ISD::CTTZ_ZERO_UNDEF
:
383 case ISD::ZERO_EXTEND
:
384 case ISD::ANY_EXTEND
:
386 case ISD::SIGN_EXTEND
:
387 case ISD::FP_TO_SINT
:
388 case ISD::FP_TO_UINT
:
393 case ISD::FMINNUM_IEEE
:
394 case ISD::FMAXNUM_IEEE
:
411 case ISD::FNEARBYINT
:
417 case ISD::SIGN_EXTEND_INREG
:
418 case ISD::ANY_EXTEND_VECTOR_INREG
:
419 case ISD::SIGN_EXTEND_VECTOR_INREG
:
420 case ISD::ZERO_EXTEND_VECTOR_INREG
:
433 case ISD::FCANONICALIZE
:
438 Action
= TLI
.getOperationAction(Node
->getOpcode(), Node
->getValueType(0));
441 case ISD::SMULFIXSAT
:
443 unsigned Scale
= Node
->getConstantOperandVal(2);
444 Action
= TLI
.getFixedPointOperationAction(Node
->getOpcode(),
445 Node
->getValueType(0), Scale
);
448 case ISD::FP_ROUND_INREG
:
449 Action
= TLI
.getOperationAction(Node
->getOpcode(),
450 cast
<VTSDNode
>(Node
->getOperand(1))->getVT());
452 case ISD::SINT_TO_FP
:
453 case ISD::UINT_TO_FP
:
454 case ISD::VECREDUCE_ADD
:
455 case ISD::VECREDUCE_MUL
:
456 case ISD::VECREDUCE_AND
:
457 case ISD::VECREDUCE_OR
:
458 case ISD::VECREDUCE_XOR
:
459 case ISD::VECREDUCE_SMAX
:
460 case ISD::VECREDUCE_SMIN
:
461 case ISD::VECREDUCE_UMAX
:
462 case ISD::VECREDUCE_UMIN
:
463 case ISD::VECREDUCE_FADD
:
464 case ISD::VECREDUCE_FMUL
:
465 case ISD::VECREDUCE_FMAX
:
466 case ISD::VECREDUCE_FMIN
:
467 Action
= TLI
.getOperationAction(Node
->getOpcode(),
468 Node
->getOperand(0).getValueType());
472 LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node
->dump(&DAG
));
475 default: llvm_unreachable("This action is not supported yet!");
476 case TargetLowering::Promote
:
477 Result
= Promote(Op
);
480 case TargetLowering::Legal
:
481 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
483 case TargetLowering::Custom
: {
484 LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
485 if (SDValue Tmp1
= TLI
.LowerOperation(Op
, DAG
)) {
486 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
490 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
493 case TargetLowering::Expand
:
497 // Make sure that the generated code is itself legal.
499 Result
= LegalizeOp(Result
);
503 // Note that LegalizeOp may be reentered even from single-use nodes, which
504 // means that we always must cache transformed nodes.
505 AddLegalizedOperand(Op
, Result
);
509 SDValue
VectorLegalizer::Promote(SDValue Op
) {
510 // For a few operations there is a specific concept for promotion based on
511 // the operand's type.
512 switch (Op
.getOpcode()) {
513 case ISD::SINT_TO_FP
:
514 case ISD::UINT_TO_FP
:
515 // "Promote" the operation by extending the operand.
516 return PromoteINT_TO_FP(Op
);
517 case ISD::FP_TO_UINT
:
518 case ISD::FP_TO_SINT
:
519 // Promote the operation by extending the operand.
520 return PromoteFP_TO_INT(Op
);
523 // There are currently two cases of vector promotion:
524 // 1) Bitcasting a vector of integers to a different type to a vector of the
525 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
526 // 2) Extending a vector of floats to a vector of the same number of larger
527 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
528 MVT VT
= Op
.getSimpleValueType();
529 assert(Op
.getNode()->getNumValues() == 1 &&
530 "Can't promote a vector with multiple results!");
531 MVT NVT
= TLI
.getTypeToPromoteTo(Op
.getOpcode(), VT
);
533 SmallVector
<SDValue
, 4> Operands(Op
.getNumOperands());
535 for (unsigned j
= 0; j
!= Op
.getNumOperands(); ++j
) {
536 if (Op
.getOperand(j
).getValueType().isVector())
539 .getVectorElementType()
540 .isFloatingPoint() &&
541 NVT
.isVector() && NVT
.getVectorElementType().isFloatingPoint())
542 Operands
[j
] = DAG
.getNode(ISD::FP_EXTEND
, dl
, NVT
, Op
.getOperand(j
));
544 Operands
[j
] = DAG
.getNode(ISD::BITCAST
, dl
, NVT
, Op
.getOperand(j
));
546 Operands
[j
] = Op
.getOperand(j
);
549 Op
= DAG
.getNode(Op
.getOpcode(), dl
, NVT
, Operands
, Op
.getNode()->getFlags());
550 if ((VT
.isFloatingPoint() && NVT
.isFloatingPoint()) ||
551 (VT
.isVector() && VT
.getVectorElementType().isFloatingPoint() &&
552 NVT
.isVector() && NVT
.getVectorElementType().isFloatingPoint()))
553 return DAG
.getNode(ISD::FP_ROUND
, dl
, VT
, Op
, DAG
.getIntPtrConstant(0, dl
));
555 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Op
);
558 SDValue
VectorLegalizer::PromoteINT_TO_FP(SDValue Op
) {
559 // INT_TO_FP operations may require the input operand be promoted even
560 // when the type is otherwise legal.
561 MVT VT
= Op
.getOperand(0).getSimpleValueType();
562 MVT NVT
= TLI
.getTypeToPromoteTo(Op
.getOpcode(), VT
);
563 assert(NVT
.getVectorNumElements() == VT
.getVectorNumElements() &&
564 "Vectors have different number of elements!");
567 SmallVector
<SDValue
, 4> Operands(Op
.getNumOperands());
569 unsigned Opc
= Op
.getOpcode() == ISD::UINT_TO_FP
? ISD::ZERO_EXTEND
:
571 for (unsigned j
= 0; j
!= Op
.getNumOperands(); ++j
) {
572 if (Op
.getOperand(j
).getValueType().isVector())
573 Operands
[j
] = DAG
.getNode(Opc
, dl
, NVT
, Op
.getOperand(j
));
575 Operands
[j
] = Op
.getOperand(j
);
578 return DAG
.getNode(Op
.getOpcode(), dl
, Op
.getValueType(), Operands
);
581 // For FP_TO_INT we promote the result type to a vector type with wider
582 // elements and then truncate the result. This is different from the default
583 // PromoteVector which uses bitcast to promote thus assumning that the
584 // promoted vector type has the same overall size.
585 SDValue
VectorLegalizer::PromoteFP_TO_INT(SDValue Op
) {
586 MVT VT
= Op
.getSimpleValueType();
587 MVT NVT
= TLI
.getTypeToPromoteTo(Op
.getOpcode(), VT
);
588 assert(NVT
.getVectorNumElements() == VT
.getVectorNumElements() &&
589 "Vectors have different number of elements!");
591 unsigned NewOpc
= Op
->getOpcode();
592 // Change FP_TO_UINT to FP_TO_SINT if possible.
593 // TODO: Should we only do this if FP_TO_UINT itself isn't legal?
594 if (NewOpc
== ISD::FP_TO_UINT
&&
595 TLI
.isOperationLegalOrCustom(ISD::FP_TO_SINT
, NVT
))
596 NewOpc
= ISD::FP_TO_SINT
;
599 SDValue Promoted
= DAG
.getNode(NewOpc
, dl
, NVT
, Op
.getOperand(0));
601 // Assert that the converted value fits in the original type. If it doesn't
602 // (eg: because the value being converted is too big), then the result of the
603 // original operation was undefined anyway, so the assert is still correct.
604 Promoted
= DAG
.getNode(Op
->getOpcode() == ISD::FP_TO_UINT
? ISD::AssertZext
607 DAG
.getValueType(VT
.getScalarType()));
608 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Promoted
);
611 SDValue
VectorLegalizer::ExpandLoad(SDValue Op
) {
612 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
.getNode());
614 EVT SrcVT
= LD
->getMemoryVT();
615 EVT SrcEltVT
= SrcVT
.getScalarType();
616 unsigned NumElem
= SrcVT
.getVectorNumElements();
620 if (SrcVT
.getVectorNumElements() > 1 && !SrcEltVT
.isByteSized()) {
623 SmallVector
<SDValue
, 8> Vals
;
624 SmallVector
<SDValue
, 8> LoadChains
;
626 EVT DstEltVT
= LD
->getValueType(0).getScalarType();
627 SDValue Chain
= LD
->getChain();
628 SDValue BasePTR
= LD
->getBasePtr();
629 ISD::LoadExtType ExtType
= LD
->getExtensionType();
631 // When elements in a vector is not byte-addressable, we cannot directly
632 // load each element by advancing pointer, which could only address bytes.
633 // Instead, we load all significant words, mask bits off, and concatenate
634 // them to form each element. Finally, they are extended to destination
635 // scalar type to build the destination vector.
636 EVT WideVT
= TLI
.getPointerTy(DAG
.getDataLayout());
638 assert(WideVT
.isRound() &&
639 "Could not handle the sophisticated case when the widest integer is"
641 assert(WideVT
.bitsGE(SrcEltVT
) &&
642 "Type is not legalized?");
644 unsigned WideBytes
= WideVT
.getStoreSize();
646 unsigned RemainingBytes
= SrcVT
.getStoreSize();
647 SmallVector
<SDValue
, 8> LoadVals
;
648 while (RemainingBytes
> 0) {
650 unsigned LoadBytes
= WideBytes
;
652 if (RemainingBytes
>= LoadBytes
) {
654 DAG
.getLoad(WideVT
, dl
, Chain
, BasePTR
,
655 LD
->getPointerInfo().getWithOffset(Offset
),
656 MinAlign(LD
->getAlignment(), Offset
),
657 LD
->getMemOperand()->getFlags(), LD
->getAAInfo());
660 while (RemainingBytes
< LoadBytes
) {
661 LoadBytes
>>= 1; // Reduce the load size by half.
662 LoadVT
= EVT::getIntegerVT(*DAG
.getContext(), LoadBytes
<< 3);
665 DAG
.getExtLoad(ISD::EXTLOAD
, dl
, WideVT
, Chain
, BasePTR
,
666 LD
->getPointerInfo().getWithOffset(Offset
), LoadVT
,
667 MinAlign(LD
->getAlignment(), Offset
),
668 LD
->getMemOperand()->getFlags(), LD
->getAAInfo());
671 RemainingBytes
-= LoadBytes
;
674 BasePTR
= DAG
.getObjectPtrOffset(dl
, BasePTR
, LoadBytes
);
676 LoadVals
.push_back(ScalarLoad
.getValue(0));
677 LoadChains
.push_back(ScalarLoad
.getValue(1));
680 unsigned BitOffset
= 0;
681 unsigned WideIdx
= 0;
682 unsigned WideBits
= WideVT
.getSizeInBits();
684 // Extract bits, pack and extend/trunc them into destination type.
685 unsigned SrcEltBits
= SrcEltVT
.getSizeInBits();
686 SDValue SrcEltBitMask
= DAG
.getConstant(
687 APInt::getLowBitsSet(WideBits
, SrcEltBits
), dl
, WideVT
);
689 for (unsigned Idx
= 0; Idx
!= NumElem
; ++Idx
) {
690 assert(BitOffset
< WideBits
&& "Unexpected offset!");
692 SDValue ShAmt
= DAG
.getConstant(
693 BitOffset
, dl
, TLI
.getShiftAmountTy(WideVT
, DAG
.getDataLayout()));
694 SDValue Lo
= DAG
.getNode(ISD::SRL
, dl
, WideVT
, LoadVals
[WideIdx
], ShAmt
);
696 BitOffset
+= SrcEltBits
;
697 if (BitOffset
>= WideBits
) {
699 BitOffset
-= WideBits
;
701 ShAmt
= DAG
.getConstant(
702 SrcEltBits
- BitOffset
, dl
,
703 TLI
.getShiftAmountTy(WideVT
, DAG
.getDataLayout()));
705 DAG
.getNode(ISD::SHL
, dl
, WideVT
, LoadVals
[WideIdx
], ShAmt
);
706 Lo
= DAG
.getNode(ISD::OR
, dl
, WideVT
, Lo
, Hi
);
710 Lo
= DAG
.getNode(ISD::AND
, dl
, WideVT
, Lo
, SrcEltBitMask
);
713 default: llvm_unreachable("Unknown extended-load op!");
715 Lo
= DAG
.getAnyExtOrTrunc(Lo
, dl
, DstEltVT
);
718 Lo
= DAG
.getZExtOrTrunc(Lo
, dl
, DstEltVT
);
722 DAG
.getConstant(WideBits
- SrcEltBits
, dl
,
723 TLI
.getShiftAmountTy(WideVT
, DAG
.getDataLayout()));
724 Lo
= DAG
.getNode(ISD::SHL
, dl
, WideVT
, Lo
, ShAmt
);
725 Lo
= DAG
.getNode(ISD::SRA
, dl
, WideVT
, Lo
, ShAmt
);
726 Lo
= DAG
.getSExtOrTrunc(Lo
, dl
, DstEltVT
);
732 NewChain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, LoadChains
);
733 Value
= DAG
.getBuildVector(Op
.getNode()->getValueType(0), dl
, Vals
);
735 SDValue Scalarized
= TLI
.scalarizeVectorLoad(LD
, DAG
);
736 // Skip past MERGE_VALUE node if known.
737 if (Scalarized
->getOpcode() == ISD::MERGE_VALUES
) {
738 NewChain
= Scalarized
.getOperand(1);
739 Value
= Scalarized
.getOperand(0);
741 NewChain
= Scalarized
.getValue(1);
742 Value
= Scalarized
.getValue(0);
746 AddLegalizedOperand(Op
.getValue(0), Value
);
747 AddLegalizedOperand(Op
.getValue(1), NewChain
);
749 return (Op
.getResNo() ? NewChain
: Value
);
752 SDValue
VectorLegalizer::ExpandStore(SDValue Op
) {
753 StoreSDNode
*ST
= cast
<StoreSDNode
>(Op
.getNode());
754 SDValue TF
= TLI
.scalarizeVectorStore(ST
, DAG
);
755 AddLegalizedOperand(Op
, TF
);
759 SDValue
VectorLegalizer::Expand(SDValue Op
) {
760 switch (Op
->getOpcode()) {
761 case ISD::SIGN_EXTEND_INREG
:
762 return ExpandSEXTINREG(Op
);
763 case ISD::ANY_EXTEND_VECTOR_INREG
:
764 return ExpandANY_EXTEND_VECTOR_INREG(Op
);
765 case ISD::SIGN_EXTEND_VECTOR_INREG
:
766 return ExpandSIGN_EXTEND_VECTOR_INREG(Op
);
767 case ISD::ZERO_EXTEND_VECTOR_INREG
:
768 return ExpandZERO_EXTEND_VECTOR_INREG(Op
);
770 return ExpandBSWAP(Op
);
772 return ExpandVSELECT(Op
);
774 return ExpandSELECT(Op
);
775 case ISD::FP_TO_UINT
:
776 return ExpandFP_TO_UINT(Op
);
777 case ISD::UINT_TO_FP
:
778 return ExpandUINT_TO_FLOAT(Op
);
780 return ExpandFNEG(Op
);
782 return ExpandFSUB(Op
);
784 return UnrollVSETCC(Op
);
786 return ExpandABS(Op
);
787 case ISD::BITREVERSE
:
788 return ExpandBITREVERSE(Op
);
790 return ExpandCTPOP(Op
);
792 case ISD::CTLZ_ZERO_UNDEF
:
793 return ExpandCTLZ(Op
);
795 case ISD::CTTZ_ZERO_UNDEF
:
796 return ExpandCTTZ(Op
);
799 return ExpandFunnelShift(Op
);
802 return ExpandROT(Op
);
805 return ExpandFMINNUM_FMAXNUM(Op
);
808 return ExpandUADDSUBO(Op
);
811 return ExpandSADDSUBO(Op
);
814 return ExpandMULO(Op
);
819 return ExpandAddSubSat(Op
);
822 return ExpandFixedPointMul(Op
);
823 case ISD::STRICT_FADD
:
824 case ISD::STRICT_FSUB
:
825 case ISD::STRICT_FMUL
:
826 case ISD::STRICT_FDIV
:
827 case ISD::STRICT_FREM
:
828 case ISD::STRICT_FSQRT
:
829 case ISD::STRICT_FMA
:
830 case ISD::STRICT_FPOW
:
831 case ISD::STRICT_FPOWI
:
832 case ISD::STRICT_FSIN
:
833 case ISD::STRICT_FCOS
:
834 case ISD::STRICT_FEXP
:
835 case ISD::STRICT_FEXP2
:
836 case ISD::STRICT_FLOG
:
837 case ISD::STRICT_FLOG10
:
838 case ISD::STRICT_FLOG2
:
839 case ISD::STRICT_FRINT
:
840 case ISD::STRICT_FNEARBYINT
:
841 case ISD::STRICT_FMAXNUM
:
842 case ISD::STRICT_FMINNUM
:
843 case ISD::STRICT_FCEIL
:
844 case ISD::STRICT_FFLOOR
:
845 case ISD::STRICT_FROUND
:
846 case ISD::STRICT_FTRUNC
:
847 return ExpandStrictFPOp(Op
);
848 case ISD::VECREDUCE_ADD
:
849 case ISD::VECREDUCE_MUL
:
850 case ISD::VECREDUCE_AND
:
851 case ISD::VECREDUCE_OR
:
852 case ISD::VECREDUCE_XOR
:
853 case ISD::VECREDUCE_SMAX
:
854 case ISD::VECREDUCE_SMIN
:
855 case ISD::VECREDUCE_UMAX
:
856 case ISD::VECREDUCE_UMIN
:
857 case ISD::VECREDUCE_FADD
:
858 case ISD::VECREDUCE_FMUL
:
859 case ISD::VECREDUCE_FMAX
:
860 case ISD::VECREDUCE_FMIN
:
861 return TLI
.expandVecReduce(Op
.getNode(), DAG
);
863 return DAG
.UnrollVectorOp(Op
.getNode());
867 SDValue
VectorLegalizer::ExpandSELECT(SDValue Op
) {
868 // Lower a select instruction where the condition is a scalar and the
869 // operands are vectors. Lower this select to VSELECT and implement it
870 // using XOR AND OR. The selector bit is broadcasted.
871 EVT VT
= Op
.getValueType();
874 SDValue Mask
= Op
.getOperand(0);
875 SDValue Op1
= Op
.getOperand(1);
876 SDValue Op2
= Op
.getOperand(2);
878 assert(VT
.isVector() && !Mask
.getValueType().isVector()
879 && Op1
.getValueType() == Op2
.getValueType() && "Invalid type");
881 // If we can't even use the basic vector operations of
882 // AND,OR,XOR, we will have to scalarize the op.
883 // Notice that the operation may be 'promoted' which means that it is
884 // 'bitcasted' to another type which is handled.
885 // Also, we need to be able to construct a splat vector using BUILD_VECTOR.
886 if (TLI
.getOperationAction(ISD::AND
, VT
) == TargetLowering::Expand
||
887 TLI
.getOperationAction(ISD::XOR
, VT
) == TargetLowering::Expand
||
888 TLI
.getOperationAction(ISD::OR
, VT
) == TargetLowering::Expand
||
889 TLI
.getOperationAction(ISD::BUILD_VECTOR
, VT
) == TargetLowering::Expand
)
890 return DAG
.UnrollVectorOp(Op
.getNode());
892 // Generate a mask operand.
893 EVT MaskTy
= VT
.changeVectorElementTypeToInteger();
895 // What is the size of each element in the vector mask.
896 EVT BitTy
= MaskTy
.getScalarType();
898 Mask
= DAG
.getSelect(DL
, BitTy
, Mask
,
899 DAG
.getConstant(APInt::getAllOnesValue(BitTy
.getSizeInBits()), DL
,
901 DAG
.getConstant(0, DL
, BitTy
));
903 // Broadcast the mask so that the entire vector is all-one or all zero.
904 Mask
= DAG
.getSplatBuildVector(MaskTy
, DL
, Mask
);
906 // Bitcast the operands to be the same type as the mask.
907 // This is needed when we select between FP types because
908 // the mask is a vector of integers.
909 Op1
= DAG
.getNode(ISD::BITCAST
, DL
, MaskTy
, Op1
);
910 Op2
= DAG
.getNode(ISD::BITCAST
, DL
, MaskTy
, Op2
);
912 SDValue AllOnes
= DAG
.getConstant(
913 APInt::getAllOnesValue(BitTy
.getSizeInBits()), DL
, MaskTy
);
914 SDValue NotMask
= DAG
.getNode(ISD::XOR
, DL
, MaskTy
, Mask
, AllOnes
);
916 Op1
= DAG
.getNode(ISD::AND
, DL
, MaskTy
, Op1
, Mask
);
917 Op2
= DAG
.getNode(ISD::AND
, DL
, MaskTy
, Op2
, NotMask
);
918 SDValue Val
= DAG
.getNode(ISD::OR
, DL
, MaskTy
, Op1
, Op2
);
919 return DAG
.getNode(ISD::BITCAST
, DL
, Op
.getValueType(), Val
);
922 SDValue
VectorLegalizer::ExpandSEXTINREG(SDValue Op
) {
923 EVT VT
= Op
.getValueType();
925 // Make sure that the SRA and SHL instructions are available.
926 if (TLI
.getOperationAction(ISD::SRA
, VT
) == TargetLowering::Expand
||
927 TLI
.getOperationAction(ISD::SHL
, VT
) == TargetLowering::Expand
)
928 return DAG
.UnrollVectorOp(Op
.getNode());
931 EVT OrigTy
= cast
<VTSDNode
>(Op
->getOperand(1))->getVT();
933 unsigned BW
= VT
.getScalarSizeInBits();
934 unsigned OrigBW
= OrigTy
.getScalarSizeInBits();
935 SDValue ShiftSz
= DAG
.getConstant(BW
- OrigBW
, DL
, VT
);
937 Op
= Op
.getOperand(0);
938 Op
= DAG
.getNode(ISD::SHL
, DL
, VT
, Op
, ShiftSz
);
939 return DAG
.getNode(ISD::SRA
, DL
, VT
, Op
, ShiftSz
);
942 // Generically expand a vector anyext in register to a shuffle of the relevant
943 // lanes into the appropriate locations, with other lanes left undef.
944 SDValue
VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op
) {
946 EVT VT
= Op
.getValueType();
947 int NumElements
= VT
.getVectorNumElements();
948 SDValue Src
= Op
.getOperand(0);
949 EVT SrcVT
= Src
.getValueType();
950 int NumSrcElements
= SrcVT
.getVectorNumElements();
952 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
953 // into a larger vector type.
954 if (SrcVT
.bitsLE(VT
)) {
955 assert((VT
.getSizeInBits() % SrcVT
.getScalarSizeInBits()) == 0 &&
956 "ANY_EXTEND_VECTOR_INREG vector size mismatch");
957 NumSrcElements
= VT
.getSizeInBits() / SrcVT
.getScalarSizeInBits();
958 SrcVT
= EVT::getVectorVT(*DAG
.getContext(), SrcVT
.getScalarType(),
961 ISD::INSERT_SUBVECTOR
, DL
, SrcVT
, DAG
.getUNDEF(SrcVT
), Src
,
962 DAG
.getConstant(0, DL
, TLI
.getVectorIdxTy(DAG
.getDataLayout())));
965 // Build a base mask of undef shuffles.
966 SmallVector
<int, 16> ShuffleMask
;
967 ShuffleMask
.resize(NumSrcElements
, -1);
969 // Place the extended lanes into the correct locations.
970 int ExtLaneScale
= NumSrcElements
/ NumElements
;
971 int EndianOffset
= DAG
.getDataLayout().isBigEndian() ? ExtLaneScale
- 1 : 0;
972 for (int i
= 0; i
< NumElements
; ++i
)
973 ShuffleMask
[i
* ExtLaneScale
+ EndianOffset
] = i
;
976 ISD::BITCAST
, DL
, VT
,
977 DAG
.getVectorShuffle(SrcVT
, DL
, Src
, DAG
.getUNDEF(SrcVT
), ShuffleMask
));
980 SDValue
VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op
) {
982 EVT VT
= Op
.getValueType();
983 SDValue Src
= Op
.getOperand(0);
984 EVT SrcVT
= Src
.getValueType();
986 // First build an any-extend node which can be legalized above when we
987 // recurse through it.
988 Op
= DAG
.getNode(ISD::ANY_EXTEND_VECTOR_INREG
, DL
, VT
, Src
);
990 // Now we need sign extend. Do this by shifting the elements. Even if these
991 // aren't legal operations, they have a better chance of being legalized
992 // without full scalarization than the sign extension does.
993 unsigned EltWidth
= VT
.getScalarSizeInBits();
994 unsigned SrcEltWidth
= SrcVT
.getScalarSizeInBits();
995 SDValue ShiftAmount
= DAG
.getConstant(EltWidth
- SrcEltWidth
, DL
, VT
);
996 return DAG
.getNode(ISD::SRA
, DL
, VT
,
997 DAG
.getNode(ISD::SHL
, DL
, VT
, Op
, ShiftAmount
),
1001 // Generically expand a vector zext in register to a shuffle of the relevant
1002 // lanes into the appropriate locations, a blend of zero into the high bits,
1003 // and a bitcast to the wider element type.
1004 SDValue
VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op
) {
1006 EVT VT
= Op
.getValueType();
1007 int NumElements
= VT
.getVectorNumElements();
1008 SDValue Src
= Op
.getOperand(0);
1009 EVT SrcVT
= Src
.getValueType();
1010 int NumSrcElements
= SrcVT
.getVectorNumElements();
1012 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
1013 // into a larger vector type.
1014 if (SrcVT
.bitsLE(VT
)) {
1015 assert((VT
.getSizeInBits() % SrcVT
.getScalarSizeInBits()) == 0 &&
1016 "ZERO_EXTEND_VECTOR_INREG vector size mismatch");
1017 NumSrcElements
= VT
.getSizeInBits() / SrcVT
.getScalarSizeInBits();
1018 SrcVT
= EVT::getVectorVT(*DAG
.getContext(), SrcVT
.getScalarType(),
1021 ISD::INSERT_SUBVECTOR
, DL
, SrcVT
, DAG
.getUNDEF(SrcVT
), Src
,
1022 DAG
.getConstant(0, DL
, TLI
.getVectorIdxTy(DAG
.getDataLayout())));
1025 // Build up a zero vector to blend into this one.
1026 SDValue Zero
= DAG
.getConstant(0, DL
, SrcVT
);
1028 // Shuffle the incoming lanes into the correct position, and pull all other
1029 // lanes from the zero vector.
1030 SmallVector
<int, 16> ShuffleMask
;
1031 ShuffleMask
.reserve(NumSrcElements
);
1032 for (int i
= 0; i
< NumSrcElements
; ++i
)
1033 ShuffleMask
.push_back(i
);
1035 int ExtLaneScale
= NumSrcElements
/ NumElements
;
1036 int EndianOffset
= DAG
.getDataLayout().isBigEndian() ? ExtLaneScale
- 1 : 0;
1037 for (int i
= 0; i
< NumElements
; ++i
)
1038 ShuffleMask
[i
* ExtLaneScale
+ EndianOffset
] = NumSrcElements
+ i
;
1040 return DAG
.getNode(ISD::BITCAST
, DL
, VT
,
1041 DAG
.getVectorShuffle(SrcVT
, DL
, Zero
, Src
, ShuffleMask
));
1044 static void createBSWAPShuffleMask(EVT VT
, SmallVectorImpl
<int> &ShuffleMask
) {
1045 int ScalarSizeInBytes
= VT
.getScalarSizeInBits() / 8;
1046 for (int I
= 0, E
= VT
.getVectorNumElements(); I
!= E
; ++I
)
1047 for (int J
= ScalarSizeInBytes
- 1; J
>= 0; --J
)
1048 ShuffleMask
.push_back((I
* ScalarSizeInBytes
) + J
);
1051 SDValue
VectorLegalizer::ExpandBSWAP(SDValue Op
) {
1052 EVT VT
= Op
.getValueType();
1054 // Generate a byte wise shuffle mask for the BSWAP.
1055 SmallVector
<int, 16> ShuffleMask
;
1056 createBSWAPShuffleMask(VT
, ShuffleMask
);
1057 EVT ByteVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::i8
, ShuffleMask
.size());
1059 // Only emit a shuffle if the mask is legal.
1060 if (!TLI
.isShuffleMaskLegal(ShuffleMask
, ByteVT
))
1061 return DAG
.UnrollVectorOp(Op
.getNode());
1064 Op
= DAG
.getNode(ISD::BITCAST
, DL
, ByteVT
, Op
.getOperand(0));
1065 Op
= DAG
.getVectorShuffle(ByteVT
, DL
, Op
, DAG
.getUNDEF(ByteVT
), ShuffleMask
);
1066 return DAG
.getNode(ISD::BITCAST
, DL
, VT
, Op
);
1069 SDValue
VectorLegalizer::ExpandBITREVERSE(SDValue Op
) {
1070 EVT VT
= Op
.getValueType();
1072 // If we have the scalar operation, it's probably cheaper to unroll it.
1073 if (TLI
.isOperationLegalOrCustom(ISD::BITREVERSE
, VT
.getScalarType()))
1074 return DAG
.UnrollVectorOp(Op
.getNode());
1076 // If the vector element width is a whole number of bytes, test if its legal
1077 // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
1078 // vector. This greatly reduces the number of bit shifts necessary.
1079 unsigned ScalarSizeInBits
= VT
.getScalarSizeInBits();
1080 if (ScalarSizeInBits
> 8 && (ScalarSizeInBits
% 8) == 0) {
1081 SmallVector
<int, 16> BSWAPMask
;
1082 createBSWAPShuffleMask(VT
, BSWAPMask
);
1084 EVT ByteVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::i8
, BSWAPMask
.size());
1085 if (TLI
.isShuffleMaskLegal(BSWAPMask
, ByteVT
) &&
1086 (TLI
.isOperationLegalOrCustom(ISD::BITREVERSE
, ByteVT
) ||
1087 (TLI
.isOperationLegalOrCustom(ISD::SHL
, ByteVT
) &&
1088 TLI
.isOperationLegalOrCustom(ISD::SRL
, ByteVT
) &&
1089 TLI
.isOperationLegalOrCustomOrPromote(ISD::AND
, ByteVT
) &&
1090 TLI
.isOperationLegalOrCustomOrPromote(ISD::OR
, ByteVT
)))) {
1092 Op
= DAG
.getNode(ISD::BITCAST
, DL
, ByteVT
, Op
.getOperand(0));
1093 Op
= DAG
.getVectorShuffle(ByteVT
, DL
, Op
, DAG
.getUNDEF(ByteVT
),
1095 Op
= DAG
.getNode(ISD::BITREVERSE
, DL
, ByteVT
, Op
);
1096 return DAG
.getNode(ISD::BITCAST
, DL
, VT
, Op
);
1100 // If we have the appropriate vector bit operations, it is better to use them
1101 // than unrolling and expanding each component.
1102 if (!TLI
.isOperationLegalOrCustom(ISD::SHL
, VT
) ||
1103 !TLI
.isOperationLegalOrCustom(ISD::SRL
, VT
) ||
1104 !TLI
.isOperationLegalOrCustomOrPromote(ISD::AND
, VT
) ||
1105 !TLI
.isOperationLegalOrCustomOrPromote(ISD::OR
, VT
))
1106 return DAG
.UnrollVectorOp(Op
.getNode());
1108 // Let LegalizeDAG handle this later.
1112 SDValue
VectorLegalizer::ExpandVSELECT(SDValue Op
) {
1113 // Implement VSELECT in terms of XOR, AND, OR
1114 // on platforms which do not support blend natively.
1117 SDValue Mask
= Op
.getOperand(0);
1118 SDValue Op1
= Op
.getOperand(1);
1119 SDValue Op2
= Op
.getOperand(2);
1121 EVT VT
= Mask
.getValueType();
1123 // If we can't even use the basic vector operations of
1124 // AND,OR,XOR, we will have to scalarize the op.
1125 // Notice that the operation may be 'promoted' which means that it is
1126 // 'bitcasted' to another type which is handled.
1127 // This operation also isn't safe with AND, OR, XOR when the boolean
1128 // type is 0/1 as we need an all ones vector constant to mask with.
1129 // FIXME: Sign extend 1 to all ones if thats legal on the target.
1130 if (TLI
.getOperationAction(ISD::AND
, VT
) == TargetLowering::Expand
||
1131 TLI
.getOperationAction(ISD::XOR
, VT
) == TargetLowering::Expand
||
1132 TLI
.getOperationAction(ISD::OR
, VT
) == TargetLowering::Expand
||
1133 TLI
.getBooleanContents(Op1
.getValueType()) !=
1134 TargetLowering::ZeroOrNegativeOneBooleanContent
)
1135 return DAG
.UnrollVectorOp(Op
.getNode());
1137 // If the mask and the type are different sizes, unroll the vector op. This
1138 // can occur when getSetCCResultType returns something that is different in
1139 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
1140 if (VT
.getSizeInBits() != Op1
.getValueSizeInBits())
1141 return DAG
.UnrollVectorOp(Op
.getNode());
1143 // Bitcast the operands to be the same type as the mask.
1144 // This is needed when we select between FP types because
1145 // the mask is a vector of integers.
1146 Op1
= DAG
.getNode(ISD::BITCAST
, DL
, VT
, Op1
);
1147 Op2
= DAG
.getNode(ISD::BITCAST
, DL
, VT
, Op2
);
1149 SDValue AllOnes
= DAG
.getConstant(
1150 APInt::getAllOnesValue(VT
.getScalarSizeInBits()), DL
, VT
);
1151 SDValue NotMask
= DAG
.getNode(ISD::XOR
, DL
, VT
, Mask
, AllOnes
);
1153 Op1
= DAG
.getNode(ISD::AND
, DL
, VT
, Op1
, Mask
);
1154 Op2
= DAG
.getNode(ISD::AND
, DL
, VT
, Op2
, NotMask
);
1155 SDValue Val
= DAG
.getNode(ISD::OR
, DL
, VT
, Op1
, Op2
);
1156 return DAG
.getNode(ISD::BITCAST
, DL
, Op
.getValueType(), Val
);
1159 SDValue
VectorLegalizer::ExpandABS(SDValue Op
) {
1160 // Attempt to expand using TargetLowering.
1162 if (TLI
.expandABS(Op
.getNode(), Result
, DAG
))
1165 // Otherwise go ahead and unroll.
1166 return DAG
.UnrollVectorOp(Op
.getNode());
1169 SDValue
VectorLegalizer::ExpandFP_TO_UINT(SDValue Op
) {
1170 // Attempt to expand using TargetLowering.
1172 if (TLI
.expandFP_TO_UINT(Op
.getNode(), Result
, DAG
))
1175 // Otherwise go ahead and unroll.
1176 return DAG
.UnrollVectorOp(Op
.getNode());
1179 SDValue
VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op
) {
1180 EVT VT
= Op
.getOperand(0).getValueType();
1183 // Attempt to expand using TargetLowering.
1185 if (TLI
.expandUINT_TO_FP(Op
.getNode(), Result
, DAG
))
1188 // Make sure that the SINT_TO_FP and SRL instructions are available.
1189 if (TLI
.getOperationAction(ISD::SINT_TO_FP
, VT
) == TargetLowering::Expand
||
1190 TLI
.getOperationAction(ISD::SRL
, VT
) == TargetLowering::Expand
)
1191 return DAG
.UnrollVectorOp(Op
.getNode());
1193 unsigned BW
= VT
.getScalarSizeInBits();
1194 assert((BW
== 64 || BW
== 32) &&
1195 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
1197 SDValue HalfWord
= DAG
.getConstant(BW
/ 2, DL
, VT
);
1199 // Constants to clear the upper part of the word.
1200 // Notice that we can also use SHL+SHR, but using a constant is slightly
1202 uint64_t HWMask
= (BW
== 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
1203 SDValue HalfWordMask
= DAG
.getConstant(HWMask
, DL
, VT
);
1205 // Two to the power of half-word-size.
1206 SDValue TWOHW
= DAG
.getConstantFP(1ULL << (BW
/ 2), DL
, Op
.getValueType());
1208 // Clear upper part of LO, lower HI
1209 SDValue HI
= DAG
.getNode(ISD::SRL
, DL
, VT
, Op
.getOperand(0), HalfWord
);
1210 SDValue LO
= DAG
.getNode(ISD::AND
, DL
, VT
, Op
.getOperand(0), HalfWordMask
);
1212 // Convert hi and lo to floats
1213 // Convert the hi part back to the upper values
1214 // TODO: Can any fast-math-flags be set on these nodes?
1215 SDValue fHI
= DAG
.getNode(ISD::SINT_TO_FP
, DL
, Op
.getValueType(), HI
);
1216 fHI
= DAG
.getNode(ISD::FMUL
, DL
, Op
.getValueType(), fHI
, TWOHW
);
1217 SDValue fLO
= DAG
.getNode(ISD::SINT_TO_FP
, DL
, Op
.getValueType(), LO
);
1219 // Add the two halves
1220 return DAG
.getNode(ISD::FADD
, DL
, Op
.getValueType(), fHI
, fLO
);
1223 SDValue
VectorLegalizer::ExpandFNEG(SDValue Op
) {
1224 if (TLI
.isOperationLegalOrCustom(ISD::FSUB
, Op
.getValueType())) {
1226 SDValue Zero
= DAG
.getConstantFP(-0.0, DL
, Op
.getValueType());
1227 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
1228 return DAG
.getNode(ISD::FSUB
, DL
, Op
.getValueType(),
1229 Zero
, Op
.getOperand(0));
1231 return DAG
.UnrollVectorOp(Op
.getNode());
1234 SDValue
VectorLegalizer::ExpandFSUB(SDValue Op
) {
1235 // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
1236 // we can defer this to operation legalization where it will be lowered as
1238 EVT VT
= Op
.getValueType();
1239 if (TLI
.isOperationLegalOrCustom(ISD::FNEG
, VT
) &&
1240 TLI
.isOperationLegalOrCustom(ISD::FADD
, VT
))
1241 return Op
; // Defer to LegalizeDAG
1243 return DAG
.UnrollVectorOp(Op
.getNode());
1246 SDValue
VectorLegalizer::ExpandCTPOP(SDValue Op
) {
1248 if (TLI
.expandCTPOP(Op
.getNode(), Result
, DAG
))
1251 return DAG
.UnrollVectorOp(Op
.getNode());
1254 SDValue
VectorLegalizer::ExpandCTLZ(SDValue Op
) {
1256 if (TLI
.expandCTLZ(Op
.getNode(), Result
, DAG
))
1259 return DAG
.UnrollVectorOp(Op
.getNode());
1262 SDValue
VectorLegalizer::ExpandCTTZ(SDValue Op
) {
1264 if (TLI
.expandCTTZ(Op
.getNode(), Result
, DAG
))
1267 return DAG
.UnrollVectorOp(Op
.getNode());
1270 SDValue
VectorLegalizer::ExpandFunnelShift(SDValue Op
) {
1272 if (TLI
.expandFunnelShift(Op
.getNode(), Result
, DAG
))
1275 return DAG
.UnrollVectorOp(Op
.getNode());
1278 SDValue
VectorLegalizer::ExpandROT(SDValue Op
) {
1280 if (TLI
.expandROT(Op
.getNode(), Result
, DAG
))
1283 return DAG
.UnrollVectorOp(Op
.getNode());
1286 SDValue
VectorLegalizer::ExpandFMINNUM_FMAXNUM(SDValue Op
) {
1287 if (SDValue Expanded
= TLI
.expandFMINNUM_FMAXNUM(Op
.getNode(), DAG
))
1289 return DAG
.UnrollVectorOp(Op
.getNode());
1292 SDValue
VectorLegalizer::ExpandUADDSUBO(SDValue Op
) {
1293 SDValue Result
, Overflow
;
1294 TLI
.expandUADDSUBO(Op
.getNode(), Result
, Overflow
, DAG
);
1296 if (Op
.getResNo() == 0) {
1297 AddLegalizedOperand(Op
.getValue(1), LegalizeOp(Overflow
));
1300 AddLegalizedOperand(Op
.getValue(0), LegalizeOp(Result
));
1305 SDValue
VectorLegalizer::ExpandSADDSUBO(SDValue Op
) {
1306 SDValue Result
, Overflow
;
1307 TLI
.expandSADDSUBO(Op
.getNode(), Result
, Overflow
, DAG
);
1309 if (Op
.getResNo() == 0) {
1310 AddLegalizedOperand(Op
.getValue(1), LegalizeOp(Overflow
));
1313 AddLegalizedOperand(Op
.getValue(0), LegalizeOp(Result
));
1318 SDValue
VectorLegalizer::ExpandMULO(SDValue Op
) {
1319 SDValue Result
, Overflow
;
1320 if (!TLI
.expandMULO(Op
.getNode(), Result
, Overflow
, DAG
))
1321 std::tie(Result
, Overflow
) = DAG
.UnrollVectorOverflowOp(Op
.getNode());
1323 if (Op
.getResNo() == 0) {
1324 AddLegalizedOperand(Op
.getValue(1), LegalizeOp(Overflow
));
1327 AddLegalizedOperand(Op
.getValue(0), LegalizeOp(Result
));
1332 SDValue
VectorLegalizer::ExpandAddSubSat(SDValue Op
) {
1333 if (SDValue Expanded
= TLI
.expandAddSubSat(Op
.getNode(), DAG
))
1335 return DAG
.UnrollVectorOp(Op
.getNode());
1338 SDValue
VectorLegalizer::ExpandFixedPointMul(SDValue Op
) {
1339 if (SDValue Expanded
= TLI
.expandFixedPointMul(Op
.getNode(), DAG
))
1341 return DAG
.UnrollVectorOp(Op
.getNode());
1344 SDValue
VectorLegalizer::ExpandStrictFPOp(SDValue Op
) {
1345 EVT VT
= Op
.getValueType();
1346 EVT EltVT
= VT
.getVectorElementType();
1347 unsigned NumElems
= VT
.getVectorNumElements();
1348 unsigned NumOpers
= Op
.getNumOperands();
1349 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
1350 EVT ValueVTs
[] = {EltVT
, MVT::Other
};
1351 SDValue Chain
= Op
.getOperand(0);
1354 SmallVector
<SDValue
, 32> OpValues
;
1355 SmallVector
<SDValue
, 32> OpChains
;
1356 for (unsigned i
= 0; i
< NumElems
; ++i
) {
1357 SmallVector
<SDValue
, 4> Opers
;
1358 SDValue Idx
= DAG
.getConstant(i
, dl
,
1359 TLI
.getVectorIdxTy(DAG
.getDataLayout()));
1361 // The Chain is the first operand.
1362 Opers
.push_back(Chain
);
1364 // Now process the remaining operands.
1365 for (unsigned j
= 1; j
< NumOpers
; ++j
) {
1366 SDValue Oper
= Op
.getOperand(j
);
1367 EVT OperVT
= Oper
.getValueType();
1369 if (OperVT
.isVector())
1370 Oper
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
,
1371 OperVT
.getVectorElementType(), Oper
, Idx
);
1373 Opers
.push_back(Oper
);
1376 SDValue ScalarOp
= DAG
.getNode(Op
->getOpcode(), dl
, ValueVTs
, Opers
);
1378 OpValues
.push_back(ScalarOp
.getValue(0));
1379 OpChains
.push_back(ScalarOp
.getValue(1));
1382 SDValue Result
= DAG
.getBuildVector(VT
, dl
, OpValues
);
1383 SDValue NewChain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, OpChains
);
1385 AddLegalizedOperand(Op
.getValue(0), Result
);
1386 AddLegalizedOperand(Op
.getValue(1), NewChain
);
1388 return Op
.getResNo() ? NewChain
: Result
;
1391 SDValue
VectorLegalizer::UnrollVSETCC(SDValue Op
) {
1392 EVT VT
= Op
.getValueType();
1393 unsigned NumElems
= VT
.getVectorNumElements();
1394 EVT EltVT
= VT
.getVectorElementType();
1395 SDValue LHS
= Op
.getOperand(0), RHS
= Op
.getOperand(1), CC
= Op
.getOperand(2);
1396 EVT TmpEltVT
= LHS
.getValueType().getVectorElementType();
1398 SmallVector
<SDValue
, 8> Ops(NumElems
);
1399 for (unsigned i
= 0; i
< NumElems
; ++i
) {
1400 SDValue LHSElem
= DAG
.getNode(
1401 ISD::EXTRACT_VECTOR_ELT
, dl
, TmpEltVT
, LHS
,
1402 DAG
.getConstant(i
, dl
, TLI
.getVectorIdxTy(DAG
.getDataLayout())));
1403 SDValue RHSElem
= DAG
.getNode(
1404 ISD::EXTRACT_VECTOR_ELT
, dl
, TmpEltVT
, RHS
,
1405 DAG
.getConstant(i
, dl
, TLI
.getVectorIdxTy(DAG
.getDataLayout())));
1406 Ops
[i
] = DAG
.getNode(ISD::SETCC
, dl
,
1407 TLI
.getSetCCResultType(DAG
.getDataLayout(),
1408 *DAG
.getContext(), TmpEltVT
),
1409 LHSElem
, RHSElem
, CC
);
1410 Ops
[i
] = DAG
.getSelect(dl
, EltVT
, Ops
[i
],
1411 DAG
.getConstant(APInt::getAllOnesValue
1412 (EltVT
.getSizeInBits()), dl
, EltVT
),
1413 DAG
.getConstant(0, dl
, EltVT
));
1415 return DAG
.getBuildVector(VT
, dl
, Ops
);
1418 bool SelectionDAG::LegalizeVectors() {
1419 return VectorLegalizer(*this).Run();