[InstCombine] Remove insertRangeTest code that handles the equality case.
[llvm-complete.git] / lib / CodeGen / SelectionDAG / LegalizeVectorOps.cpp
blob10b8b705869e4b86ed87ca6577cc9219f134e455
1 //===- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SelectionDAG::LegalizeVectors method.
11 // The vector legalizer looks for vector operations which might need to be
12 // scalarized and legalizes them. This is a separate step from Legalize because
13 // scalarizing can introduce illegal types. For example, suppose we have an
14 // ISD::SDIV of type v2i64 on x86-32. The type is legal (for example, addition
15 // on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
16 // operation, which introduces nodes with the illegal type i64 which must be
17 // expanded. Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
18 // the operation must be unrolled, which introduces nodes with the illegal
19 // type i8 which must be promoted.
21 // This does not legalize vector manipulations like ISD::BUILD_VECTOR,
22 // or operations that happen to take a vector which are custom-lowered;
23 // the legalization for such operations never produces nodes
24 // with illegal types, so it's okay to put off legalizing them until
25 // SelectionDAG::Legalize runs.
27 //===----------------------------------------------------------------------===//
29 #include "llvm/ADT/APInt.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/SelectionDAG.h"
35 #include "llvm/CodeGen/SelectionDAGNodes.h"
36 #include "llvm/CodeGen/TargetLowering.h"
37 #include "llvm/CodeGen/ValueTypes.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/MachineValueType.h"
43 #include "llvm/Support/MathExtras.h"
44 #include <cassert>
45 #include <cstdint>
46 #include <iterator>
47 #include <utility>
49 using namespace llvm;
51 #define DEBUG_TYPE "legalizevectorops"
53 namespace {
55 class VectorLegalizer {
56 SelectionDAG& DAG;
57 const TargetLowering &TLI;
58 bool Changed = false; // Keep track of whether anything changed
60 /// For nodes that are of legal width, and that have more than one use, this
61 /// map indicates what regularized operand to use. This allows us to avoid
62 /// legalizing the same thing more than once.
63 SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;
65 /// Adds a node to the translation cache.
66 void AddLegalizedOperand(SDValue From, SDValue To) {
67 LegalizedNodes.insert(std::make_pair(From, To));
68 // If someone requests legalization of the new node, return itself.
69 if (From != To)
70 LegalizedNodes.insert(std::make_pair(To, To));
73 /// Legalizes the given node.
74 SDValue LegalizeOp(SDValue Op);
76 /// Assuming the node is legal, "legalize" the results.
77 SDValue TranslateLegalizeResults(SDValue Op, SDValue Result);
79 /// Implements unrolling a VSETCC.
80 SDValue UnrollVSETCC(SDValue Op);
82 /// Implement expand-based legalization of vector operations.
83 ///
84 /// This is just a high-level routine to dispatch to specific code paths for
85 /// operations to legalize them.
86 SDValue Expand(SDValue Op);
88 /// Implements expansion for FP_TO_UINT; falls back to UnrollVectorOp if
89 /// FP_TO_SINT isn't legal.
90 SDValue ExpandFP_TO_UINT(SDValue Op);
92 /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
93 /// SINT_TO_FLOAT and SHR on vectors isn't legal.
94 SDValue ExpandUINT_TO_FLOAT(SDValue Op);
96 /// Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
97 SDValue ExpandSEXTINREG(SDValue Op);
99 /// Implement expansion for ANY_EXTEND_VECTOR_INREG.
101 /// Shuffles the low lanes of the operand into place and bitcasts to the proper
102 /// type. The contents of the bits in the extended part of each element are
103 /// undef.
104 SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op);
106 /// Implement expansion for SIGN_EXTEND_VECTOR_INREG.
108 /// Shuffles the low lanes of the operand into place, bitcasts to the proper
109 /// type, then shifts left and arithmetic shifts right to introduce a sign
110 /// extension.
111 SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op);
113 /// Implement expansion for ZERO_EXTEND_VECTOR_INREG.
115 /// Shuffles the low lanes of the operand into place and blends zeros into
116 /// the remaining lanes, finally bitcasting to the proper type.
117 SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op);
119 /// Implement expand-based legalization of ABS vector operations.
120 /// If following expanding is legal/custom then do it:
121 /// (ABS x) --> (XOR (ADD x, (SRA x, sizeof(x)-1)), (SRA x, sizeof(x)-1))
122 /// else unroll the operation.
123 SDValue ExpandABS(SDValue Op);
125 /// Expand bswap of vectors into a shuffle if legal.
126 SDValue ExpandBSWAP(SDValue Op);
128 /// Implement vselect in terms of XOR, AND, OR when blend is not
129 /// supported by the target.
130 SDValue ExpandVSELECT(SDValue Op);
131 SDValue ExpandSELECT(SDValue Op);
132 SDValue ExpandLoad(SDValue Op);
133 SDValue ExpandStore(SDValue Op);
134 SDValue ExpandFNEG(SDValue Op);
135 SDValue ExpandFSUB(SDValue Op);
136 SDValue ExpandBITREVERSE(SDValue Op);
137 SDValue ExpandCTPOP(SDValue Op);
138 SDValue ExpandCTLZ(SDValue Op);
139 SDValue ExpandCTTZ(SDValue Op);
140 SDValue ExpandFunnelShift(SDValue Op);
141 SDValue ExpandROT(SDValue Op);
142 SDValue ExpandFMINNUM_FMAXNUM(SDValue Op);
143 SDValue ExpandUADDSUBO(SDValue Op);
144 SDValue ExpandSADDSUBO(SDValue Op);
145 SDValue ExpandMULO(SDValue Op);
146 SDValue ExpandAddSubSat(SDValue Op);
147 SDValue ExpandFixedPointMul(SDValue Op);
148 SDValue ExpandStrictFPOp(SDValue Op);
150 /// Implements vector promotion.
152 /// This is essentially just bitcasting the operands to a different type and
153 /// bitcasting the result back to the original type.
154 SDValue Promote(SDValue Op);
156 /// Implements [SU]INT_TO_FP vector promotion.
158 /// This is a [zs]ext of the input operand to a larger integer type.
159 SDValue PromoteINT_TO_FP(SDValue Op);
161 /// Implements FP_TO_[SU]INT vector promotion of the result type.
163 /// It is promoted to a larger integer type. The result is then
164 /// truncated back to the original type.
165 SDValue PromoteFP_TO_INT(SDValue Op);
167 public:
168 VectorLegalizer(SelectionDAG& dag) :
169 DAG(dag), TLI(dag.getTargetLoweringInfo()) {}
171 /// Begin legalizer the vector operations in the DAG.
172 bool Run();
175 } // end anonymous namespace
177 bool VectorLegalizer::Run() {
178 // Before we start legalizing vector nodes, check if there are any vectors.
179 bool HasVectors = false;
180 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
181 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
182 // Check if the values of the nodes contain vectors. We don't need to check
183 // the operands because we are going to check their values at some point.
184 for (SDNode::value_iterator J = I->value_begin(), E = I->value_end();
185 J != E; ++J)
186 HasVectors |= J->isVector();
188 // If we found a vector node we can start the legalization.
189 if (HasVectors)
190 break;
193 // If this basic block has no vectors then no need to legalize vectors.
194 if (!HasVectors)
195 return false;
197 // The legalize process is inherently a bottom-up recursive process (users
198 // legalize their uses before themselves). Given infinite stack space, we
199 // could just start legalizing on the root and traverse the whole graph. In
200 // practice however, this causes us to run out of stack space on large basic
201 // blocks. To avoid this problem, compute an ordering of the nodes where each
202 // node is only legalized after all of its operands are legalized.
203 DAG.AssignTopologicalOrder();
204 for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
205 E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
206 LegalizeOp(SDValue(&*I, 0));
208 // Finally, it's possible the root changed. Get the new root.
209 SDValue OldRoot = DAG.getRoot();
210 assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
211 DAG.setRoot(LegalizedNodes[OldRoot]);
213 LegalizedNodes.clear();
215 // Remove dead nodes now.
216 DAG.RemoveDeadNodes();
218 return Changed;
221 SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) {
222 // Generic legalization: just pass the operand through.
223 for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i)
224 AddLegalizedOperand(Op.getValue(i), Result.getValue(i));
225 return Result.getValue(Op.getResNo());
228 SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
229 // Note that LegalizeOp may be reentered even from single-use nodes, which
230 // means that we always must cache transformed nodes.
231 DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
232 if (I != LegalizedNodes.end()) return I->second;
234 SDNode* Node = Op.getNode();
236 // Legalize the operands
237 SmallVector<SDValue, 8> Ops;
238 for (const SDValue &Op : Node->op_values())
239 Ops.push_back(LegalizeOp(Op));
241 SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops),
242 Op.getResNo());
244 if (Op.getOpcode() == ISD::LOAD) {
245 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
246 ISD::LoadExtType ExtType = LD->getExtensionType();
247 if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD) {
248 LLVM_DEBUG(dbgs() << "\nLegalizing extending vector load: ";
249 Node->dump(&DAG));
250 switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0),
251 LD->getMemoryVT())) {
252 default: llvm_unreachable("This action is not supported yet!");
253 case TargetLowering::Legal:
254 return TranslateLegalizeResults(Op, Result);
255 case TargetLowering::Custom:
256 if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) {
257 assert(Lowered->getNumValues() == Op->getNumValues() &&
258 "Unexpected number of results");
259 if (Lowered != Result) {
260 // Make sure the new code is also legal.
261 Lowered = LegalizeOp(Lowered);
262 Changed = true;
264 return TranslateLegalizeResults(Op, Lowered);
266 LLVM_FALLTHROUGH;
267 case TargetLowering::Expand:
268 Changed = true;
269 return ExpandLoad(Op);
272 } else if (Op.getOpcode() == ISD::STORE) {
273 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
274 EVT StVT = ST->getMemoryVT();
275 MVT ValVT = ST->getValue().getSimpleValueType();
276 if (StVT.isVector() && ST->isTruncatingStore()) {
277 LLVM_DEBUG(dbgs() << "\nLegalizing truncating vector store: ";
278 Node->dump(&DAG));
279 switch (TLI.getTruncStoreAction(ValVT, StVT)) {
280 default: llvm_unreachable("This action is not supported yet!");
281 case TargetLowering::Legal:
282 return TranslateLegalizeResults(Op, Result);
283 case TargetLowering::Custom: {
284 SDValue Lowered = TLI.LowerOperation(Result, DAG);
285 if (Lowered != Result) {
286 // Make sure the new code is also legal.
287 Lowered = LegalizeOp(Lowered);
288 Changed = true;
290 return TranslateLegalizeResults(Op, Lowered);
292 case TargetLowering::Expand:
293 Changed = true;
294 return ExpandStore(Op);
299 bool HasVectorValueOrOp = false;
300 for (auto J = Node->value_begin(), E = Node->value_end(); J != E; ++J)
301 HasVectorValueOrOp |= J->isVector();
302 for (const SDValue &Op : Node->op_values())
303 HasVectorValueOrOp |= Op.getValueType().isVector();
305 if (!HasVectorValueOrOp)
306 return TranslateLegalizeResults(Op, Result);
308 TargetLowering::LegalizeAction Action = TargetLowering::Legal;
309 switch (Op.getOpcode()) {
310 default:
311 return TranslateLegalizeResults(Op, Result);
312 case ISD::STRICT_FADD:
313 case ISD::STRICT_FSUB:
314 case ISD::STRICT_FMUL:
315 case ISD::STRICT_FDIV:
316 case ISD::STRICT_FREM:
317 case ISD::STRICT_FSQRT:
318 case ISD::STRICT_FMA:
319 case ISD::STRICT_FPOW:
320 case ISD::STRICT_FPOWI:
321 case ISD::STRICT_FSIN:
322 case ISD::STRICT_FCOS:
323 case ISD::STRICT_FEXP:
324 case ISD::STRICT_FEXP2:
325 case ISD::STRICT_FLOG:
326 case ISD::STRICT_FLOG10:
327 case ISD::STRICT_FLOG2:
328 case ISD::STRICT_FRINT:
329 case ISD::STRICT_FNEARBYINT:
330 case ISD::STRICT_FMAXNUM:
331 case ISD::STRICT_FMINNUM:
332 case ISD::STRICT_FCEIL:
333 case ISD::STRICT_FFLOOR:
334 case ISD::STRICT_FROUND:
335 case ISD::STRICT_FTRUNC:
336 case ISD::STRICT_FP_ROUND:
337 case ISD::STRICT_FP_EXTEND:
338 // These pseudo-ops get legalized as if they were their non-strict
339 // equivalent. For instance, if ISD::FSQRT is legal then ISD::STRICT_FSQRT
340 // is also legal, but if ISD::FSQRT requires expansion then so does
341 // ISD::STRICT_FSQRT.
342 Action = TLI.getStrictFPOperationAction(Node->getOpcode(),
343 Node->getValueType(0));
344 break;
345 case ISD::ADD:
346 case ISD::SUB:
347 case ISD::MUL:
348 case ISD::MULHS:
349 case ISD::MULHU:
350 case ISD::SDIV:
351 case ISD::UDIV:
352 case ISD::SREM:
353 case ISD::UREM:
354 case ISD::SDIVREM:
355 case ISD::UDIVREM:
356 case ISD::FADD:
357 case ISD::FSUB:
358 case ISD::FMUL:
359 case ISD::FDIV:
360 case ISD::FREM:
361 case ISD::AND:
362 case ISD::OR:
363 case ISD::XOR:
364 case ISD::SHL:
365 case ISD::SRA:
366 case ISD::SRL:
367 case ISD::FSHL:
368 case ISD::FSHR:
369 case ISD::ROTL:
370 case ISD::ROTR:
371 case ISD::ABS:
372 case ISD::BSWAP:
373 case ISD::BITREVERSE:
374 case ISD::CTLZ:
375 case ISD::CTTZ:
376 case ISD::CTLZ_ZERO_UNDEF:
377 case ISD::CTTZ_ZERO_UNDEF:
378 case ISD::CTPOP:
379 case ISD::SELECT:
380 case ISD::VSELECT:
381 case ISD::SELECT_CC:
382 case ISD::SETCC:
383 case ISD::ZERO_EXTEND:
384 case ISD::ANY_EXTEND:
385 case ISD::TRUNCATE:
386 case ISD::SIGN_EXTEND:
387 case ISD::FP_TO_SINT:
388 case ISD::FP_TO_UINT:
389 case ISD::FNEG:
390 case ISD::FABS:
391 case ISD::FMINNUM:
392 case ISD::FMAXNUM:
393 case ISD::FMINNUM_IEEE:
394 case ISD::FMAXNUM_IEEE:
395 case ISD::FMINIMUM:
396 case ISD::FMAXIMUM:
397 case ISD::FCOPYSIGN:
398 case ISD::FSQRT:
399 case ISD::FSIN:
400 case ISD::FCOS:
401 case ISD::FPOWI:
402 case ISD::FPOW:
403 case ISD::FLOG:
404 case ISD::FLOG2:
405 case ISD::FLOG10:
406 case ISD::FEXP:
407 case ISD::FEXP2:
408 case ISD::FCEIL:
409 case ISD::FTRUNC:
410 case ISD::FRINT:
411 case ISD::FNEARBYINT:
412 case ISD::FROUND:
413 case ISD::FFLOOR:
414 case ISD::FP_ROUND:
415 case ISD::FP_EXTEND:
416 case ISD::FMA:
417 case ISD::SIGN_EXTEND_INREG:
418 case ISD::ANY_EXTEND_VECTOR_INREG:
419 case ISD::SIGN_EXTEND_VECTOR_INREG:
420 case ISD::ZERO_EXTEND_VECTOR_INREG:
421 case ISD::SMIN:
422 case ISD::SMAX:
423 case ISD::UMIN:
424 case ISD::UMAX:
425 case ISD::SMUL_LOHI:
426 case ISD::UMUL_LOHI:
427 case ISD::SADDO:
428 case ISD::UADDO:
429 case ISD::SSUBO:
430 case ISD::USUBO:
431 case ISD::SMULO:
432 case ISD::UMULO:
433 case ISD::FCANONICALIZE:
434 case ISD::SADDSAT:
435 case ISD::UADDSAT:
436 case ISD::SSUBSAT:
437 case ISD::USUBSAT:
438 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
439 break;
440 case ISD::SMULFIX:
441 case ISD::SMULFIXSAT:
442 case ISD::UMULFIX: {
443 unsigned Scale = Node->getConstantOperandVal(2);
444 Action = TLI.getFixedPointOperationAction(Node->getOpcode(),
445 Node->getValueType(0), Scale);
446 break;
448 case ISD::FP_ROUND_INREG:
449 Action = TLI.getOperationAction(Node->getOpcode(),
450 cast<VTSDNode>(Node->getOperand(1))->getVT());
451 break;
452 case ISD::SINT_TO_FP:
453 case ISD::UINT_TO_FP:
454 case ISD::VECREDUCE_ADD:
455 case ISD::VECREDUCE_MUL:
456 case ISD::VECREDUCE_AND:
457 case ISD::VECREDUCE_OR:
458 case ISD::VECREDUCE_XOR:
459 case ISD::VECREDUCE_SMAX:
460 case ISD::VECREDUCE_SMIN:
461 case ISD::VECREDUCE_UMAX:
462 case ISD::VECREDUCE_UMIN:
463 case ISD::VECREDUCE_FADD:
464 case ISD::VECREDUCE_FMUL:
465 case ISD::VECREDUCE_FMAX:
466 case ISD::VECREDUCE_FMIN:
467 Action = TLI.getOperationAction(Node->getOpcode(),
468 Node->getOperand(0).getValueType());
469 break;
472 LLVM_DEBUG(dbgs() << "\nLegalizing vector op: "; Node->dump(&DAG));
474 switch (Action) {
475 default: llvm_unreachable("This action is not supported yet!");
476 case TargetLowering::Promote:
477 Result = Promote(Op);
478 Changed = true;
479 break;
480 case TargetLowering::Legal:
481 LLVM_DEBUG(dbgs() << "Legal node: nothing to do\n");
482 break;
483 case TargetLowering::Custom: {
484 LLVM_DEBUG(dbgs() << "Trying custom legalization\n");
485 if (SDValue Tmp1 = TLI.LowerOperation(Op, DAG)) {
486 LLVM_DEBUG(dbgs() << "Successfully custom legalized node\n");
487 Result = Tmp1;
488 break;
490 LLVM_DEBUG(dbgs() << "Could not custom legalize node\n");
491 LLVM_FALLTHROUGH;
493 case TargetLowering::Expand:
494 Result = Expand(Op);
497 // Make sure that the generated code is itself legal.
498 if (Result != Op) {
499 Result = LegalizeOp(Result);
500 Changed = true;
503 // Note that LegalizeOp may be reentered even from single-use nodes, which
504 // means that we always must cache transformed nodes.
505 AddLegalizedOperand(Op, Result);
506 return Result;
509 SDValue VectorLegalizer::Promote(SDValue Op) {
510 // For a few operations there is a specific concept for promotion based on
511 // the operand's type.
512 switch (Op.getOpcode()) {
513 case ISD::SINT_TO_FP:
514 case ISD::UINT_TO_FP:
515 // "Promote" the operation by extending the operand.
516 return PromoteINT_TO_FP(Op);
517 case ISD::FP_TO_UINT:
518 case ISD::FP_TO_SINT:
519 // Promote the operation by extending the operand.
520 return PromoteFP_TO_INT(Op);
523 // There are currently two cases of vector promotion:
524 // 1) Bitcasting a vector of integers to a different type to a vector of the
525 // same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
526 // 2) Extending a vector of floats to a vector of the same number of larger
527 // floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
528 MVT VT = Op.getSimpleValueType();
529 assert(Op.getNode()->getNumValues() == 1 &&
530 "Can't promote a vector with multiple results!");
531 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
532 SDLoc dl(Op);
533 SmallVector<SDValue, 4> Operands(Op.getNumOperands());
535 for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
536 if (Op.getOperand(j).getValueType().isVector())
537 if (Op.getOperand(j)
538 .getValueType()
539 .getVectorElementType()
540 .isFloatingPoint() &&
541 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
542 Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j));
543 else
544 Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j));
545 else
546 Operands[j] = Op.getOperand(j);
549 Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags());
550 if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
551 (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
552 NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
553 return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl));
554 else
555 return DAG.getNode(ISD::BITCAST, dl, VT, Op);
558 SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) {
559 // INT_TO_FP operations may require the input operand be promoted even
560 // when the type is otherwise legal.
561 MVT VT = Op.getOperand(0).getSimpleValueType();
562 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
563 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
564 "Vectors have different number of elements!");
566 SDLoc dl(Op);
567 SmallVector<SDValue, 4> Operands(Op.getNumOperands());
569 unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND :
570 ISD::SIGN_EXTEND;
571 for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
572 if (Op.getOperand(j).getValueType().isVector())
573 Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j));
574 else
575 Operands[j] = Op.getOperand(j);
578 return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands);
581 // For FP_TO_INT we promote the result type to a vector type with wider
582 // elements and then truncate the result. This is different from the default
583 // PromoteVector which uses bitcast to promote thus assumning that the
584 // promoted vector type has the same overall size.
585 SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op) {
586 MVT VT = Op.getSimpleValueType();
587 MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
588 assert(NVT.getVectorNumElements() == VT.getVectorNumElements() &&
589 "Vectors have different number of elements!");
591 unsigned NewOpc = Op->getOpcode();
592 // Change FP_TO_UINT to FP_TO_SINT if possible.
593 // TODO: Should we only do this if FP_TO_UINT itself isn't legal?
594 if (NewOpc == ISD::FP_TO_UINT &&
595 TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NVT))
596 NewOpc = ISD::FP_TO_SINT;
598 SDLoc dl(Op);
599 SDValue Promoted = DAG.getNode(NewOpc, dl, NVT, Op.getOperand(0));
601 // Assert that the converted value fits in the original type. If it doesn't
602 // (eg: because the value being converted is too big), then the result of the
603 // original operation was undefined anyway, so the assert is still correct.
604 Promoted = DAG.getNode(Op->getOpcode() == ISD::FP_TO_UINT ? ISD::AssertZext
605 : ISD::AssertSext,
606 dl, NVT, Promoted,
607 DAG.getValueType(VT.getScalarType()));
608 return DAG.getNode(ISD::TRUNCATE, dl, VT, Promoted);
611 SDValue VectorLegalizer::ExpandLoad(SDValue Op) {
612 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
614 EVT SrcVT = LD->getMemoryVT();
615 EVT SrcEltVT = SrcVT.getScalarType();
616 unsigned NumElem = SrcVT.getVectorNumElements();
618 SDValue NewChain;
619 SDValue Value;
620 if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) {
621 SDLoc dl(Op);
623 SmallVector<SDValue, 8> Vals;
624 SmallVector<SDValue, 8> LoadChains;
626 EVT DstEltVT = LD->getValueType(0).getScalarType();
627 SDValue Chain = LD->getChain();
628 SDValue BasePTR = LD->getBasePtr();
629 ISD::LoadExtType ExtType = LD->getExtensionType();
631 // When elements in a vector is not byte-addressable, we cannot directly
632 // load each element by advancing pointer, which could only address bytes.
633 // Instead, we load all significant words, mask bits off, and concatenate
634 // them to form each element. Finally, they are extended to destination
635 // scalar type to build the destination vector.
636 EVT WideVT = TLI.getPointerTy(DAG.getDataLayout());
638 assert(WideVT.isRound() &&
639 "Could not handle the sophisticated case when the widest integer is"
640 " not power of 2.");
641 assert(WideVT.bitsGE(SrcEltVT) &&
642 "Type is not legalized?");
644 unsigned WideBytes = WideVT.getStoreSize();
645 unsigned Offset = 0;
646 unsigned RemainingBytes = SrcVT.getStoreSize();
647 SmallVector<SDValue, 8> LoadVals;
648 while (RemainingBytes > 0) {
649 SDValue ScalarLoad;
650 unsigned LoadBytes = WideBytes;
652 if (RemainingBytes >= LoadBytes) {
653 ScalarLoad =
654 DAG.getLoad(WideVT, dl, Chain, BasePTR,
655 LD->getPointerInfo().getWithOffset(Offset),
656 MinAlign(LD->getAlignment(), Offset),
657 LD->getMemOperand()->getFlags(), LD->getAAInfo());
658 } else {
659 EVT LoadVT = WideVT;
660 while (RemainingBytes < LoadBytes) {
661 LoadBytes >>= 1; // Reduce the load size by half.
662 LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3);
664 ScalarLoad =
665 DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR,
666 LD->getPointerInfo().getWithOffset(Offset), LoadVT,
667 MinAlign(LD->getAlignment(), Offset),
668 LD->getMemOperand()->getFlags(), LD->getAAInfo());
671 RemainingBytes -= LoadBytes;
672 Offset += LoadBytes;
674 BasePTR = DAG.getObjectPtrOffset(dl, BasePTR, LoadBytes);
676 LoadVals.push_back(ScalarLoad.getValue(0));
677 LoadChains.push_back(ScalarLoad.getValue(1));
680 unsigned BitOffset = 0;
681 unsigned WideIdx = 0;
682 unsigned WideBits = WideVT.getSizeInBits();
684 // Extract bits, pack and extend/trunc them into destination type.
685 unsigned SrcEltBits = SrcEltVT.getSizeInBits();
686 SDValue SrcEltBitMask = DAG.getConstant(
687 APInt::getLowBitsSet(WideBits, SrcEltBits), dl, WideVT);
689 for (unsigned Idx = 0; Idx != NumElem; ++Idx) {
690 assert(BitOffset < WideBits && "Unexpected offset!");
692 SDValue ShAmt = DAG.getConstant(
693 BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
694 SDValue Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt);
696 BitOffset += SrcEltBits;
697 if (BitOffset >= WideBits) {
698 WideIdx++;
699 BitOffset -= WideBits;
700 if (BitOffset > 0) {
701 ShAmt = DAG.getConstant(
702 SrcEltBits - BitOffset, dl,
703 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
704 SDValue Hi =
705 DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt);
706 Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi);
710 Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask);
712 switch (ExtType) {
713 default: llvm_unreachable("Unknown extended-load op!");
714 case ISD::EXTLOAD:
715 Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT);
716 break;
717 case ISD::ZEXTLOAD:
718 Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT);
719 break;
720 case ISD::SEXTLOAD:
721 ShAmt =
722 DAG.getConstant(WideBits - SrcEltBits, dl,
723 TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
724 Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt);
725 Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt);
726 Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT);
727 break;
729 Vals.push_back(Lo);
732 NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
733 Value = DAG.getBuildVector(Op.getNode()->getValueType(0), dl, Vals);
734 } else {
735 SDValue Scalarized = TLI.scalarizeVectorLoad(LD, DAG);
736 // Skip past MERGE_VALUE node if known.
737 if (Scalarized->getOpcode() == ISD::MERGE_VALUES) {
738 NewChain = Scalarized.getOperand(1);
739 Value = Scalarized.getOperand(0);
740 } else {
741 NewChain = Scalarized.getValue(1);
742 Value = Scalarized.getValue(0);
746 AddLegalizedOperand(Op.getValue(0), Value);
747 AddLegalizedOperand(Op.getValue(1), NewChain);
749 return (Op.getResNo() ? NewChain : Value);
752 SDValue VectorLegalizer::ExpandStore(SDValue Op) {
753 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
754 SDValue TF = TLI.scalarizeVectorStore(ST, DAG);
755 AddLegalizedOperand(Op, TF);
756 return TF;
759 SDValue VectorLegalizer::Expand(SDValue Op) {
760 switch (Op->getOpcode()) {
761 case ISD::SIGN_EXTEND_INREG:
762 return ExpandSEXTINREG(Op);
763 case ISD::ANY_EXTEND_VECTOR_INREG:
764 return ExpandANY_EXTEND_VECTOR_INREG(Op);
765 case ISD::SIGN_EXTEND_VECTOR_INREG:
766 return ExpandSIGN_EXTEND_VECTOR_INREG(Op);
767 case ISD::ZERO_EXTEND_VECTOR_INREG:
768 return ExpandZERO_EXTEND_VECTOR_INREG(Op);
769 case ISD::BSWAP:
770 return ExpandBSWAP(Op);
771 case ISD::VSELECT:
772 return ExpandVSELECT(Op);
773 case ISD::SELECT:
774 return ExpandSELECT(Op);
775 case ISD::FP_TO_UINT:
776 return ExpandFP_TO_UINT(Op);
777 case ISD::UINT_TO_FP:
778 return ExpandUINT_TO_FLOAT(Op);
779 case ISD::FNEG:
780 return ExpandFNEG(Op);
781 case ISD::FSUB:
782 return ExpandFSUB(Op);
783 case ISD::SETCC:
784 return UnrollVSETCC(Op);
785 case ISD::ABS:
786 return ExpandABS(Op);
787 case ISD::BITREVERSE:
788 return ExpandBITREVERSE(Op);
789 case ISD::CTPOP:
790 return ExpandCTPOP(Op);
791 case ISD::CTLZ:
792 case ISD::CTLZ_ZERO_UNDEF:
793 return ExpandCTLZ(Op);
794 case ISD::CTTZ:
795 case ISD::CTTZ_ZERO_UNDEF:
796 return ExpandCTTZ(Op);
797 case ISD::FSHL:
798 case ISD::FSHR:
799 return ExpandFunnelShift(Op);
800 case ISD::ROTL:
801 case ISD::ROTR:
802 return ExpandROT(Op);
803 case ISD::FMINNUM:
804 case ISD::FMAXNUM:
805 return ExpandFMINNUM_FMAXNUM(Op);
806 case ISD::UADDO:
807 case ISD::USUBO:
808 return ExpandUADDSUBO(Op);
809 case ISD::SADDO:
810 case ISD::SSUBO:
811 return ExpandSADDSUBO(Op);
812 case ISD::UMULO:
813 case ISD::SMULO:
814 return ExpandMULO(Op);
815 case ISD::USUBSAT:
816 case ISD::SSUBSAT:
817 case ISD::UADDSAT:
818 case ISD::SADDSAT:
819 return ExpandAddSubSat(Op);
820 case ISD::SMULFIX:
821 case ISD::UMULFIX:
822 return ExpandFixedPointMul(Op);
823 case ISD::STRICT_FADD:
824 case ISD::STRICT_FSUB:
825 case ISD::STRICT_FMUL:
826 case ISD::STRICT_FDIV:
827 case ISD::STRICT_FREM:
828 case ISD::STRICT_FSQRT:
829 case ISD::STRICT_FMA:
830 case ISD::STRICT_FPOW:
831 case ISD::STRICT_FPOWI:
832 case ISD::STRICT_FSIN:
833 case ISD::STRICT_FCOS:
834 case ISD::STRICT_FEXP:
835 case ISD::STRICT_FEXP2:
836 case ISD::STRICT_FLOG:
837 case ISD::STRICT_FLOG10:
838 case ISD::STRICT_FLOG2:
839 case ISD::STRICT_FRINT:
840 case ISD::STRICT_FNEARBYINT:
841 case ISD::STRICT_FMAXNUM:
842 case ISD::STRICT_FMINNUM:
843 case ISD::STRICT_FCEIL:
844 case ISD::STRICT_FFLOOR:
845 case ISD::STRICT_FROUND:
846 case ISD::STRICT_FTRUNC:
847 return ExpandStrictFPOp(Op);
848 case ISD::VECREDUCE_ADD:
849 case ISD::VECREDUCE_MUL:
850 case ISD::VECREDUCE_AND:
851 case ISD::VECREDUCE_OR:
852 case ISD::VECREDUCE_XOR:
853 case ISD::VECREDUCE_SMAX:
854 case ISD::VECREDUCE_SMIN:
855 case ISD::VECREDUCE_UMAX:
856 case ISD::VECREDUCE_UMIN:
857 case ISD::VECREDUCE_FADD:
858 case ISD::VECREDUCE_FMUL:
859 case ISD::VECREDUCE_FMAX:
860 case ISD::VECREDUCE_FMIN:
861 return TLI.expandVecReduce(Op.getNode(), DAG);
862 default:
863 return DAG.UnrollVectorOp(Op.getNode());
867 SDValue VectorLegalizer::ExpandSELECT(SDValue Op) {
868 // Lower a select instruction where the condition is a scalar and the
869 // operands are vectors. Lower this select to VSELECT and implement it
870 // using XOR AND OR. The selector bit is broadcasted.
871 EVT VT = Op.getValueType();
872 SDLoc DL(Op);
874 SDValue Mask = Op.getOperand(0);
875 SDValue Op1 = Op.getOperand(1);
876 SDValue Op2 = Op.getOperand(2);
878 assert(VT.isVector() && !Mask.getValueType().isVector()
879 && Op1.getValueType() == Op2.getValueType() && "Invalid type");
881 // If we can't even use the basic vector operations of
882 // AND,OR,XOR, we will have to scalarize the op.
883 // Notice that the operation may be 'promoted' which means that it is
884 // 'bitcasted' to another type which is handled.
885 // Also, we need to be able to construct a splat vector using BUILD_VECTOR.
886 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
887 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
888 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
889 TLI.getOperationAction(ISD::BUILD_VECTOR, VT) == TargetLowering::Expand)
890 return DAG.UnrollVectorOp(Op.getNode());
892 // Generate a mask operand.
893 EVT MaskTy = VT.changeVectorElementTypeToInteger();
895 // What is the size of each element in the vector mask.
896 EVT BitTy = MaskTy.getScalarType();
898 Mask = DAG.getSelect(DL, BitTy, Mask,
899 DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL,
900 BitTy),
901 DAG.getConstant(0, DL, BitTy));
903 // Broadcast the mask so that the entire vector is all-one or all zero.
904 Mask = DAG.getSplatBuildVector(MaskTy, DL, Mask);
906 // Bitcast the operands to be the same type as the mask.
907 // This is needed when we select between FP types because
908 // the mask is a vector of integers.
909 Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
910 Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);
912 SDValue AllOnes = DAG.getConstant(
913 APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy);
914 SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);
916 Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
917 Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
918 SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
919 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
922 SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) {
923 EVT VT = Op.getValueType();
925 // Make sure that the SRA and SHL instructions are available.
926 if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
927 TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
928 return DAG.UnrollVectorOp(Op.getNode());
930 SDLoc DL(Op);
931 EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT();
933 unsigned BW = VT.getScalarSizeInBits();
934 unsigned OrigBW = OrigTy.getScalarSizeInBits();
935 SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);
937 Op = Op.getOperand(0);
938 Op = DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz);
939 return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
942 // Generically expand a vector anyext in register to a shuffle of the relevant
943 // lanes into the appropriate locations, with other lanes left undef.
944 SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) {
945 SDLoc DL(Op);
946 EVT VT = Op.getValueType();
947 int NumElements = VT.getVectorNumElements();
948 SDValue Src = Op.getOperand(0);
949 EVT SrcVT = Src.getValueType();
950 int NumSrcElements = SrcVT.getVectorNumElements();
952 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
953 // into a larger vector type.
954 if (SrcVT.bitsLE(VT)) {
955 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
956 "ANY_EXTEND_VECTOR_INREG vector size mismatch");
957 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
958 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
959 NumSrcElements);
960 Src = DAG.getNode(
961 ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), Src,
962 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
965 // Build a base mask of undef shuffles.
966 SmallVector<int, 16> ShuffleMask;
967 ShuffleMask.resize(NumSrcElements, -1);
969 // Place the extended lanes into the correct locations.
970 int ExtLaneScale = NumSrcElements / NumElements;
971 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
972 for (int i = 0; i < NumElements; ++i)
973 ShuffleMask[i * ExtLaneScale + EndianOffset] = i;
975 return DAG.getNode(
976 ISD::BITCAST, DL, VT,
977 DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
980 SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) {
981 SDLoc DL(Op);
982 EVT VT = Op.getValueType();
983 SDValue Src = Op.getOperand(0);
984 EVT SrcVT = Src.getValueType();
986 // First build an any-extend node which can be legalized above when we
987 // recurse through it.
988 Op = DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG, DL, VT, Src);
990 // Now we need sign extend. Do this by shifting the elements. Even if these
991 // aren't legal operations, they have a better chance of being legalized
992 // without full scalarization than the sign extension does.
993 unsigned EltWidth = VT.getScalarSizeInBits();
994 unsigned SrcEltWidth = SrcVT.getScalarSizeInBits();
995 SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
996 return DAG.getNode(ISD::SRA, DL, VT,
997 DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
998 ShiftAmount);
1001 // Generically expand a vector zext in register to a shuffle of the relevant
1002 // lanes into the appropriate locations, a blend of zero into the high bits,
1003 // and a bitcast to the wider element type.
1004 SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) {
1005 SDLoc DL(Op);
1006 EVT VT = Op.getValueType();
1007 int NumElements = VT.getVectorNumElements();
1008 SDValue Src = Op.getOperand(0);
1009 EVT SrcVT = Src.getValueType();
1010 int NumSrcElements = SrcVT.getVectorNumElements();
1012 // *_EXTEND_VECTOR_INREG SrcVT can be smaller than VT - so insert the vector
1013 // into a larger vector type.
1014 if (SrcVT.bitsLE(VT)) {
1015 assert((VT.getSizeInBits() % SrcVT.getScalarSizeInBits()) == 0 &&
1016 "ZERO_EXTEND_VECTOR_INREG vector size mismatch");
1017 NumSrcElements = VT.getSizeInBits() / SrcVT.getScalarSizeInBits();
1018 SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
1019 NumSrcElements);
1020 Src = DAG.getNode(
1021 ISD::INSERT_SUBVECTOR, DL, SrcVT, DAG.getUNDEF(SrcVT), Src,
1022 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
1025 // Build up a zero vector to blend into this one.
1026 SDValue Zero = DAG.getConstant(0, DL, SrcVT);
1028 // Shuffle the incoming lanes into the correct position, and pull all other
1029 // lanes from the zero vector.
1030 SmallVector<int, 16> ShuffleMask;
1031 ShuffleMask.reserve(NumSrcElements);
1032 for (int i = 0; i < NumSrcElements; ++i)
1033 ShuffleMask.push_back(i);
1035 int ExtLaneScale = NumSrcElements / NumElements;
1036 int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
1037 for (int i = 0; i < NumElements; ++i)
1038 ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;
1040 return DAG.getNode(ISD::BITCAST, DL, VT,
1041 DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
1044 static void createBSWAPShuffleMask(EVT VT, SmallVectorImpl<int> &ShuffleMask) {
1045 int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
1046 for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
1047 for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
1048 ShuffleMask.push_back((I * ScalarSizeInBytes) + J);
1051 SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) {
1052 EVT VT = Op.getValueType();
1054 // Generate a byte wise shuffle mask for the BSWAP.
1055 SmallVector<int, 16> ShuffleMask;
1056 createBSWAPShuffleMask(VT, ShuffleMask);
1057 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());
1059 // Only emit a shuffle if the mask is legal.
1060 if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT))
1061 return DAG.UnrollVectorOp(Op.getNode());
1063 SDLoc DL(Op);
1064 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
1065 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT), ShuffleMask);
1066 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
1069 SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) {
1070 EVT VT = Op.getValueType();
1072 // If we have the scalar operation, it's probably cheaper to unroll it.
1073 if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType()))
1074 return DAG.UnrollVectorOp(Op.getNode());
1076 // If the vector element width is a whole number of bytes, test if its legal
1077 // to BSWAP shuffle the bytes and then perform the BITREVERSE on the byte
1078 // vector. This greatly reduces the number of bit shifts necessary.
1079 unsigned ScalarSizeInBits = VT.getScalarSizeInBits();
1080 if (ScalarSizeInBits > 8 && (ScalarSizeInBits % 8) == 0) {
1081 SmallVector<int, 16> BSWAPMask;
1082 createBSWAPShuffleMask(VT, BSWAPMask);
1084 EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, BSWAPMask.size());
1085 if (TLI.isShuffleMaskLegal(BSWAPMask, ByteVT) &&
1086 (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, ByteVT) ||
1087 (TLI.isOperationLegalOrCustom(ISD::SHL, ByteVT) &&
1088 TLI.isOperationLegalOrCustom(ISD::SRL, ByteVT) &&
1089 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, ByteVT) &&
1090 TLI.isOperationLegalOrCustomOrPromote(ISD::OR, ByteVT)))) {
1091 SDLoc DL(Op);
1092 Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
1093 Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
1094 BSWAPMask);
1095 Op = DAG.getNode(ISD::BITREVERSE, DL, ByteVT, Op);
1096 return DAG.getNode(ISD::BITCAST, DL, VT, Op);
1100 // If we have the appropriate vector bit operations, it is better to use them
1101 // than unrolling and expanding each component.
1102 if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) ||
1103 !TLI.isOperationLegalOrCustom(ISD::SRL, VT) ||
1104 !TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
1105 !TLI.isOperationLegalOrCustomOrPromote(ISD::OR, VT))
1106 return DAG.UnrollVectorOp(Op.getNode());
1108 // Let LegalizeDAG handle this later.
1109 return Op;
1112 SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) {
1113 // Implement VSELECT in terms of XOR, AND, OR
1114 // on platforms which do not support blend natively.
1115 SDLoc DL(Op);
1117 SDValue Mask = Op.getOperand(0);
1118 SDValue Op1 = Op.getOperand(1);
1119 SDValue Op2 = Op.getOperand(2);
1121 EVT VT = Mask.getValueType();
1123 // If we can't even use the basic vector operations of
1124 // AND,OR,XOR, we will have to scalarize the op.
1125 // Notice that the operation may be 'promoted' which means that it is
1126 // 'bitcasted' to another type which is handled.
1127 // This operation also isn't safe with AND, OR, XOR when the boolean
1128 // type is 0/1 as we need an all ones vector constant to mask with.
1129 // FIXME: Sign extend 1 to all ones if thats legal on the target.
1130 if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
1131 TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
1132 TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
1133 TLI.getBooleanContents(Op1.getValueType()) !=
1134 TargetLowering::ZeroOrNegativeOneBooleanContent)
1135 return DAG.UnrollVectorOp(Op.getNode());
1137 // If the mask and the type are different sizes, unroll the vector op. This
1138 // can occur when getSetCCResultType returns something that is different in
1139 // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
1140 if (VT.getSizeInBits() != Op1.getValueSizeInBits())
1141 return DAG.UnrollVectorOp(Op.getNode());
1143 // Bitcast the operands to be the same type as the mask.
1144 // This is needed when we select between FP types because
1145 // the mask is a vector of integers.
1146 Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
1147 Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);
1149 SDValue AllOnes = DAG.getConstant(
1150 APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, VT);
1151 SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);
1153 Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
1154 Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
1155 SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
1156 return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
1159 SDValue VectorLegalizer::ExpandABS(SDValue Op) {
1160 // Attempt to expand using TargetLowering.
1161 SDValue Result;
1162 if (TLI.expandABS(Op.getNode(), Result, DAG))
1163 return Result;
1165 // Otherwise go ahead and unroll.
1166 return DAG.UnrollVectorOp(Op.getNode());
1169 SDValue VectorLegalizer::ExpandFP_TO_UINT(SDValue Op) {
1170 // Attempt to expand using TargetLowering.
1171 SDValue Result;
1172 if (TLI.expandFP_TO_UINT(Op.getNode(), Result, DAG))
1173 return Result;
1175 // Otherwise go ahead and unroll.
1176 return DAG.UnrollVectorOp(Op.getNode());
1179 SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) {
1180 EVT VT = Op.getOperand(0).getValueType();
1181 SDLoc DL(Op);
1183 // Attempt to expand using TargetLowering.
1184 SDValue Result;
1185 if (TLI.expandUINT_TO_FP(Op.getNode(), Result, DAG))
1186 return Result;
1188 // Make sure that the SINT_TO_FP and SRL instructions are available.
1189 if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand ||
1190 TLI.getOperationAction(ISD::SRL, VT) == TargetLowering::Expand)
1191 return DAG.UnrollVectorOp(Op.getNode());
1193 unsigned BW = VT.getScalarSizeInBits();
1194 assert((BW == 64 || BW == 32) &&
1195 "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");
1197 SDValue HalfWord = DAG.getConstant(BW / 2, DL, VT);
1199 // Constants to clear the upper part of the word.
1200 // Notice that we can also use SHL+SHR, but using a constant is slightly
1201 // faster on x86.
1202 uint64_t HWMask = (BW == 64) ? 0x00000000FFFFFFFF : 0x0000FFFF;
1203 SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);
1205 // Two to the power of half-word-size.
1206 SDValue TWOHW = DAG.getConstantFP(1ULL << (BW / 2), DL, Op.getValueType());
1208 // Clear upper part of LO, lower HI
1209 SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord);
1210 SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask);
1212 // Convert hi and lo to floats
1213 // Convert the hi part back to the upper values
1214 // TODO: Can any fast-math-flags be set on these nodes?
1215 SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI);
1216 fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW);
1217 SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO);
1219 // Add the two halves
1220 return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO);
1223 SDValue VectorLegalizer::ExpandFNEG(SDValue Op) {
1224 if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) {
1225 SDLoc DL(Op);
1226 SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType());
1227 // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
1228 return DAG.getNode(ISD::FSUB, DL, Op.getValueType(),
1229 Zero, Op.getOperand(0));
1231 return DAG.UnrollVectorOp(Op.getNode());
1234 SDValue VectorLegalizer::ExpandFSUB(SDValue Op) {
1235 // For floating-point values, (a-b) is the same as a+(-b). If FNEG is legal,
1236 // we can defer this to operation legalization where it will be lowered as
1237 // a+(-b).
1238 EVT VT = Op.getValueType();
1239 if (TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
1240 TLI.isOperationLegalOrCustom(ISD::FADD, VT))
1241 return Op; // Defer to LegalizeDAG
1243 return DAG.UnrollVectorOp(Op.getNode());
1246 SDValue VectorLegalizer::ExpandCTPOP(SDValue Op) {
1247 SDValue Result;
1248 if (TLI.expandCTPOP(Op.getNode(), Result, DAG))
1249 return Result;
1251 return DAG.UnrollVectorOp(Op.getNode());
1254 SDValue VectorLegalizer::ExpandCTLZ(SDValue Op) {
1255 SDValue Result;
1256 if (TLI.expandCTLZ(Op.getNode(), Result, DAG))
1257 return Result;
1259 return DAG.UnrollVectorOp(Op.getNode());
1262 SDValue VectorLegalizer::ExpandCTTZ(SDValue Op) {
1263 SDValue Result;
1264 if (TLI.expandCTTZ(Op.getNode(), Result, DAG))
1265 return Result;
1267 return DAG.UnrollVectorOp(Op.getNode());
1270 SDValue VectorLegalizer::ExpandFunnelShift(SDValue Op) {
1271 SDValue Result;
1272 if (TLI.expandFunnelShift(Op.getNode(), Result, DAG))
1273 return Result;
1275 return DAG.UnrollVectorOp(Op.getNode());
1278 SDValue VectorLegalizer::ExpandROT(SDValue Op) {
1279 SDValue Result;
1280 if (TLI.expandROT(Op.getNode(), Result, DAG))
1281 return Result;
1283 return DAG.UnrollVectorOp(Op.getNode());
1286 SDValue VectorLegalizer::ExpandFMINNUM_FMAXNUM(SDValue Op) {
1287 if (SDValue Expanded = TLI.expandFMINNUM_FMAXNUM(Op.getNode(), DAG))
1288 return Expanded;
1289 return DAG.UnrollVectorOp(Op.getNode());
1292 SDValue VectorLegalizer::ExpandUADDSUBO(SDValue Op) {
1293 SDValue Result, Overflow;
1294 TLI.expandUADDSUBO(Op.getNode(), Result, Overflow, DAG);
1296 if (Op.getResNo() == 0) {
1297 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Overflow));
1298 return Result;
1299 } else {
1300 AddLegalizedOperand(Op.getValue(0), LegalizeOp(Result));
1301 return Overflow;
1305 SDValue VectorLegalizer::ExpandSADDSUBO(SDValue Op) {
1306 SDValue Result, Overflow;
1307 TLI.expandSADDSUBO(Op.getNode(), Result, Overflow, DAG);
1309 if (Op.getResNo() == 0) {
1310 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Overflow));
1311 return Result;
1312 } else {
1313 AddLegalizedOperand(Op.getValue(0), LegalizeOp(Result));
1314 return Overflow;
1318 SDValue VectorLegalizer::ExpandMULO(SDValue Op) {
1319 SDValue Result, Overflow;
1320 if (!TLI.expandMULO(Op.getNode(), Result, Overflow, DAG))
1321 std::tie(Result, Overflow) = DAG.UnrollVectorOverflowOp(Op.getNode());
1323 if (Op.getResNo() == 0) {
1324 AddLegalizedOperand(Op.getValue(1), LegalizeOp(Overflow));
1325 return Result;
1326 } else {
1327 AddLegalizedOperand(Op.getValue(0), LegalizeOp(Result));
1328 return Overflow;
1332 SDValue VectorLegalizer::ExpandAddSubSat(SDValue Op) {
1333 if (SDValue Expanded = TLI.expandAddSubSat(Op.getNode(), DAG))
1334 return Expanded;
1335 return DAG.UnrollVectorOp(Op.getNode());
1338 SDValue VectorLegalizer::ExpandFixedPointMul(SDValue Op) {
1339 if (SDValue Expanded = TLI.expandFixedPointMul(Op.getNode(), DAG))
1340 return Expanded;
1341 return DAG.UnrollVectorOp(Op.getNode());
1344 SDValue VectorLegalizer::ExpandStrictFPOp(SDValue Op) {
1345 EVT VT = Op.getValueType();
1346 EVT EltVT = VT.getVectorElementType();
1347 unsigned NumElems = VT.getVectorNumElements();
1348 unsigned NumOpers = Op.getNumOperands();
1349 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1350 EVT ValueVTs[] = {EltVT, MVT::Other};
1351 SDValue Chain = Op.getOperand(0);
1352 SDLoc dl(Op);
1354 SmallVector<SDValue, 32> OpValues;
1355 SmallVector<SDValue, 32> OpChains;
1356 for (unsigned i = 0; i < NumElems; ++i) {
1357 SmallVector<SDValue, 4> Opers;
1358 SDValue Idx = DAG.getConstant(i, dl,
1359 TLI.getVectorIdxTy(DAG.getDataLayout()));
1361 // The Chain is the first operand.
1362 Opers.push_back(Chain);
1364 // Now process the remaining operands.
1365 for (unsigned j = 1; j < NumOpers; ++j) {
1366 SDValue Oper = Op.getOperand(j);
1367 EVT OperVT = Oper.getValueType();
1369 if (OperVT.isVector())
1370 Oper = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
1371 OperVT.getVectorElementType(), Oper, Idx);
1373 Opers.push_back(Oper);
1376 SDValue ScalarOp = DAG.getNode(Op->getOpcode(), dl, ValueVTs, Opers);
1378 OpValues.push_back(ScalarOp.getValue(0));
1379 OpChains.push_back(ScalarOp.getValue(1));
1382 SDValue Result = DAG.getBuildVector(VT, dl, OpValues);
1383 SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OpChains);
1385 AddLegalizedOperand(Op.getValue(0), Result);
1386 AddLegalizedOperand(Op.getValue(1), NewChain);
1388 return Op.getResNo() ? NewChain : Result;
1391 SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) {
1392 EVT VT = Op.getValueType();
1393 unsigned NumElems = VT.getVectorNumElements();
1394 EVT EltVT = VT.getVectorElementType();
1395 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2);
1396 EVT TmpEltVT = LHS.getValueType().getVectorElementType();
1397 SDLoc dl(Op);
1398 SmallVector<SDValue, 8> Ops(NumElems);
1399 for (unsigned i = 0; i < NumElems; ++i) {
1400 SDValue LHSElem = DAG.getNode(
1401 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
1402 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1403 SDValue RHSElem = DAG.getNode(
1404 ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
1405 DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
1406 Ops[i] = DAG.getNode(ISD::SETCC, dl,
1407 TLI.getSetCCResultType(DAG.getDataLayout(),
1408 *DAG.getContext(), TmpEltVT),
1409 LHSElem, RHSElem, CC);
1410 Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
1411 DAG.getConstant(APInt::getAllOnesValue
1412 (EltVT.getSizeInBits()), dl, EltVT),
1413 DAG.getConstant(0, dl, EltVT));
1415 return DAG.getBuildVector(VT, dl, Ops);
1418 bool SelectionDAG::LegalizeVectors() {
1419 return VectorLegalizer(*this).Run();