1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //===----------------------------------------------------------------------===//
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BranchProbabilityInfo.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/Loads.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/CodeGen/Analysis.h"
39 #include "llvm/CodeGen/FunctionLoweringInfo.h"
40 #include "llvm/CodeGen/GCMetadata.h"
41 #include "llvm/CodeGen/ISDOpcodes.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBuilder.h"
47 #include "llvm/CodeGen/MachineJumpTableInfo.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineModuleInfo.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RuntimeLibcalls.h"
53 #include "llvm/CodeGen/SelectionDAG.h"
54 #include "llvm/CodeGen/SelectionDAGNodes.h"
55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
56 #include "llvm/CodeGen/StackMaps.h"
57 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
58 #include "llvm/CodeGen/TargetFrameLowering.h"
59 #include "llvm/CodeGen/TargetInstrInfo.h"
60 #include "llvm/CodeGen/TargetLowering.h"
61 #include "llvm/CodeGen/TargetOpcodes.h"
62 #include "llvm/CodeGen/TargetRegisterInfo.h"
63 #include "llvm/CodeGen/TargetSubtargetInfo.h"
64 #include "llvm/CodeGen/ValueTypes.h"
65 #include "llvm/CodeGen/WinEHFuncInfo.h"
66 #include "llvm/IR/Argument.h"
67 #include "llvm/IR/Attributes.h"
68 #include "llvm/IR/BasicBlock.h"
69 #include "llvm/IR/CFG.h"
70 #include "llvm/IR/CallSite.h"
71 #include "llvm/IR/CallingConv.h"
72 #include "llvm/IR/Constant.h"
73 #include "llvm/IR/ConstantRange.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/DataLayout.h"
76 #include "llvm/IR/DebugInfoMetadata.h"
77 #include "llvm/IR/DebugLoc.h"
78 #include "llvm/IR/DerivedTypes.h"
79 #include "llvm/IR/Function.h"
80 #include "llvm/IR/GetElementPtrTypeIterator.h"
81 #include "llvm/IR/InlineAsm.h"
82 #include "llvm/IR/InstrTypes.h"
83 #include "llvm/IR/Instruction.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/IntrinsicInst.h"
86 #include "llvm/IR/Intrinsics.h"
87 #include "llvm/IR/LLVMContext.h"
88 #include "llvm/IR/Metadata.h"
89 #include "llvm/IR/Module.h"
90 #include "llvm/IR/Operator.h"
91 #include "llvm/IR/PatternMatch.h"
92 #include "llvm/IR/Statepoint.h"
93 #include "llvm/IR/Type.h"
94 #include "llvm/IR/User.h"
95 #include "llvm/IR/Value.h"
96 #include "llvm/MC/MCContext.h"
97 #include "llvm/MC/MCSymbol.h"
98 #include "llvm/Support/AtomicOrdering.h"
99 #include "llvm/Support/BranchProbability.h"
100 #include "llvm/Support/Casting.h"
101 #include "llvm/Support/CodeGen.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Compiler.h"
104 #include "llvm/Support/Debug.h"
105 #include "llvm/Support/ErrorHandling.h"
106 #include "llvm/Support/MachineValueType.h"
107 #include "llvm/Support/MathExtras.h"
108 #include "llvm/Support/raw_ostream.h"
109 #include "llvm/Target/TargetIntrinsicInfo.h"
110 #include "llvm/Target/TargetMachine.h"
111 #include "llvm/Target/TargetOptions.h"
112 #include "llvm/Transforms/Utils/Local.h"
125 using namespace llvm
;
126 using namespace PatternMatch
;
127 using namespace SwitchCG
;
129 #define DEBUG_TYPE "isel"
131 /// LimitFloatPrecision - Generate low-precision inline sequences for
132 /// some float libcalls (6, 8 or 12 bits).
133 static unsigned LimitFloatPrecision
;
135 static cl::opt
<unsigned, true>
136 LimitFPPrecision("limit-float-precision",
137 cl::desc("Generate low-precision inline sequences "
138 "for some float libcalls"),
139 cl::location(LimitFloatPrecision
), cl::Hidden
,
142 static cl::opt
<unsigned> SwitchPeelThreshold(
143 "switch-peel-threshold", cl::Hidden
, cl::init(66),
144 cl::desc("Set the case probability threshold for peeling the case from a "
145 "switch statement. A value greater than 100 will void this "
148 // Limit the width of DAG chains. This is important in general to prevent
149 // DAG-based analysis from blowing up. For example, alias analysis and
150 // load clustering may not complete in reasonable time. It is difficult to
151 // recognize and avoid this situation within each individual analysis, and
152 // future analyses are likely to have the same behavior. Limiting DAG width is
153 // the safe approach and will be especially important with global DAGs.
155 // MaxParallelChains default is arbitrarily high to avoid affecting
156 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
157 // sequence over this should have been converted to llvm.memcpy by the
158 // frontend. It is easy to induce this behavior with .ll code such as:
159 // %buffer = alloca [4096 x i8]
160 // %data = load [4096 x i8]* %argPtr
161 // store [4096 x i8] %data, [4096 x i8]* %buffer
162 static const unsigned MaxParallelChains
= 64;
164 // Return the calling convention if the Value passed requires ABI mangling as it
165 // is a parameter to a function or a return value from a function which is not
167 static Optional
<CallingConv::ID
> getABIRegCopyCC(const Value
*V
) {
168 if (auto *R
= dyn_cast
<ReturnInst
>(V
))
169 return R
->getParent()->getParent()->getCallingConv();
171 if (auto *CI
= dyn_cast
<CallInst
>(V
)) {
172 const bool IsInlineAsm
= CI
->isInlineAsm();
173 const bool IsIndirectFunctionCall
=
174 !IsInlineAsm
&& !CI
->getCalledFunction();
176 // It is possible that the call instruction is an inline asm statement or an
177 // indirect function call in which case the return value of
178 // getCalledFunction() would be nullptr.
179 const bool IsInstrinsicCall
=
180 !IsInlineAsm
&& !IsIndirectFunctionCall
&&
181 CI
->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic
;
183 if (!IsInlineAsm
&& !IsInstrinsicCall
)
184 return CI
->getCallingConv();
190 static SDValue
getCopyFromPartsVector(SelectionDAG
&DAG
, const SDLoc
&DL
,
191 const SDValue
*Parts
, unsigned NumParts
,
192 MVT PartVT
, EVT ValueVT
, const Value
*V
,
193 Optional
<CallingConv::ID
> CC
);
195 /// getCopyFromParts - Create a value that contains the specified legal parts
196 /// combined into the value they represent. If the parts combine to a type
197 /// larger than ValueVT then AssertOp can be used to specify whether the extra
198 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
199 /// (ISD::AssertSext).
200 static SDValue
getCopyFromParts(SelectionDAG
&DAG
, const SDLoc
&DL
,
201 const SDValue
*Parts
, unsigned NumParts
,
202 MVT PartVT
, EVT ValueVT
, const Value
*V
,
203 Optional
<CallingConv::ID
> CC
= None
,
204 Optional
<ISD::NodeType
> AssertOp
= None
) {
205 if (ValueVT
.isVector())
206 return getCopyFromPartsVector(DAG
, DL
, Parts
, NumParts
, PartVT
, ValueVT
, V
,
209 assert(NumParts
> 0 && "No parts to assemble!");
210 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
211 SDValue Val
= Parts
[0];
214 // Assemble the value from multiple parts.
215 if (ValueVT
.isInteger()) {
216 unsigned PartBits
= PartVT
.getSizeInBits();
217 unsigned ValueBits
= ValueVT
.getSizeInBits();
219 // Assemble the power of 2 part.
220 unsigned RoundParts
=
221 (NumParts
& (NumParts
- 1)) ? 1 << Log2_32(NumParts
) : NumParts
;
222 unsigned RoundBits
= PartBits
* RoundParts
;
223 EVT RoundVT
= RoundBits
== ValueBits
?
224 ValueVT
: EVT::getIntegerVT(*DAG
.getContext(), RoundBits
);
227 EVT HalfVT
= EVT::getIntegerVT(*DAG
.getContext(), RoundBits
/2);
229 if (RoundParts
> 2) {
230 Lo
= getCopyFromParts(DAG
, DL
, Parts
, RoundParts
/ 2,
232 Hi
= getCopyFromParts(DAG
, DL
, Parts
+ RoundParts
/ 2,
233 RoundParts
/ 2, PartVT
, HalfVT
, V
);
235 Lo
= DAG
.getNode(ISD::BITCAST
, DL
, HalfVT
, Parts
[0]);
236 Hi
= DAG
.getNode(ISD::BITCAST
, DL
, HalfVT
, Parts
[1]);
239 if (DAG
.getDataLayout().isBigEndian())
242 Val
= DAG
.getNode(ISD::BUILD_PAIR
, DL
, RoundVT
, Lo
, Hi
);
244 if (RoundParts
< NumParts
) {
245 // Assemble the trailing non-power-of-2 part.
246 unsigned OddParts
= NumParts
- RoundParts
;
247 EVT OddVT
= EVT::getIntegerVT(*DAG
.getContext(), OddParts
* PartBits
);
248 Hi
= getCopyFromParts(DAG
, DL
, Parts
+ RoundParts
, OddParts
, PartVT
,
251 // Combine the round and odd parts.
253 if (DAG
.getDataLayout().isBigEndian())
255 EVT TotalVT
= EVT::getIntegerVT(*DAG
.getContext(), NumParts
* PartBits
);
256 Hi
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, TotalVT
, Hi
);
258 DAG
.getNode(ISD::SHL
, DL
, TotalVT
, Hi
,
259 DAG
.getConstant(Lo
.getValueSizeInBits(), DL
,
260 TLI
.getPointerTy(DAG
.getDataLayout())));
261 Lo
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, TotalVT
, Lo
);
262 Val
= DAG
.getNode(ISD::OR
, DL
, TotalVT
, Lo
, Hi
);
264 } else if (PartVT
.isFloatingPoint()) {
265 // FP split into multiple FP parts (for ppcf128)
266 assert(ValueVT
== EVT(MVT::ppcf128
) && PartVT
== MVT::f64
&&
269 Lo
= DAG
.getNode(ISD::BITCAST
, DL
, EVT(MVT::f64
), Parts
[0]);
270 Hi
= DAG
.getNode(ISD::BITCAST
, DL
, EVT(MVT::f64
), Parts
[1]);
271 if (TLI
.hasBigEndianPartOrdering(ValueVT
, DAG
.getDataLayout()))
273 Val
= DAG
.getNode(ISD::BUILD_PAIR
, DL
, ValueVT
, Lo
, Hi
);
275 // FP split into integer parts (soft fp)
276 assert(ValueVT
.isFloatingPoint() && PartVT
.isInteger() &&
277 !PartVT
.isVector() && "Unexpected split");
278 EVT IntVT
= EVT::getIntegerVT(*DAG
.getContext(), ValueVT
.getSizeInBits());
279 Val
= getCopyFromParts(DAG
, DL
, Parts
, NumParts
, PartVT
, IntVT
, V
, CC
);
283 // There is now one part, held in Val. Correct it to match ValueVT.
284 // PartEVT is the type of the register class that holds the value.
285 // ValueVT is the type of the inline asm operation.
286 EVT PartEVT
= Val
.getValueType();
288 if (PartEVT
== ValueVT
)
291 if (PartEVT
.isInteger() && ValueVT
.isFloatingPoint() &&
292 ValueVT
.bitsLT(PartEVT
)) {
293 // For an FP value in an integer part, we need to truncate to the right
295 PartEVT
= EVT::getIntegerVT(*DAG
.getContext(), ValueVT
.getSizeInBits());
296 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, PartEVT
, Val
);
299 // Handle types that have the same size.
300 if (PartEVT
.getSizeInBits() == ValueVT
.getSizeInBits())
301 return DAG
.getNode(ISD::BITCAST
, DL
, ValueVT
, Val
);
303 // Handle types with different sizes.
304 if (PartEVT
.isInteger() && ValueVT
.isInteger()) {
305 if (ValueVT
.bitsLT(PartEVT
)) {
306 // For a truncate, see if we have any information to
307 // indicate whether the truncated bits will always be
308 // zero or sign-extension.
309 if (AssertOp
.hasValue())
310 Val
= DAG
.getNode(*AssertOp
, DL
, PartEVT
, Val
,
311 DAG
.getValueType(ValueVT
));
312 return DAG
.getNode(ISD::TRUNCATE
, DL
, ValueVT
, Val
);
314 return DAG
.getNode(ISD::ANY_EXTEND
, DL
, ValueVT
, Val
);
317 if (PartEVT
.isFloatingPoint() && ValueVT
.isFloatingPoint()) {
318 // FP_ROUND's are always exact here.
319 if (ValueVT
.bitsLT(Val
.getValueType()))
321 ISD::FP_ROUND
, DL
, ValueVT
, Val
,
322 DAG
.getTargetConstant(1, DL
, TLI
.getPointerTy(DAG
.getDataLayout())));
324 return DAG
.getNode(ISD::FP_EXTEND
, DL
, ValueVT
, Val
);
327 // Handle MMX to a narrower integer type by bitcasting MMX to integer and
329 if (PartEVT
== MVT::x86mmx
&& ValueVT
.isInteger() &&
330 ValueVT
.bitsLT(PartEVT
)) {
331 Val
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, Val
);
332 return DAG
.getNode(ISD::TRUNCATE
, DL
, ValueVT
, Val
);
335 report_fatal_error("Unknown mismatch in getCopyFromParts!");
338 static void diagnosePossiblyInvalidConstraint(LLVMContext
&Ctx
, const Value
*V
,
339 const Twine
&ErrMsg
) {
340 const Instruction
*I
= dyn_cast_or_null
<Instruction
>(V
);
342 return Ctx
.emitError(ErrMsg
);
344 const char *AsmError
= ", possible invalid constraint for vector type";
345 if (const CallInst
*CI
= dyn_cast
<CallInst
>(I
))
346 if (isa
<InlineAsm
>(CI
->getCalledValue()))
347 return Ctx
.emitError(I
, ErrMsg
+ AsmError
);
349 return Ctx
.emitError(I
, ErrMsg
);
352 /// getCopyFromPartsVector - Create a value that contains the specified legal
353 /// parts combined into the value they represent. If the parts combine to a
354 /// type larger than ValueVT then AssertOp can be used to specify whether the
355 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
356 /// ValueVT (ISD::AssertSext).
357 static SDValue
getCopyFromPartsVector(SelectionDAG
&DAG
, const SDLoc
&DL
,
358 const SDValue
*Parts
, unsigned NumParts
,
359 MVT PartVT
, EVT ValueVT
, const Value
*V
,
360 Optional
<CallingConv::ID
> CallConv
) {
361 assert(ValueVT
.isVector() && "Not a vector value");
362 assert(NumParts
> 0 && "No parts to assemble!");
363 const bool IsABIRegCopy
= CallConv
.hasValue();
365 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
366 SDValue Val
= Parts
[0];
368 // Handle a multi-element vector.
372 unsigned NumIntermediates
;
376 NumRegs
= TLI
.getVectorTypeBreakdownForCallingConv(
377 *DAG
.getContext(), CallConv
.getValue(), ValueVT
, IntermediateVT
,
378 NumIntermediates
, RegisterVT
);
381 TLI
.getVectorTypeBreakdown(*DAG
.getContext(), ValueVT
, IntermediateVT
,
382 NumIntermediates
, RegisterVT
);
385 assert(NumRegs
== NumParts
&& "Part count doesn't match vector breakdown!");
386 NumParts
= NumRegs
; // Silence a compiler warning.
387 assert(RegisterVT
== PartVT
&& "Part type doesn't match vector breakdown!");
388 assert(RegisterVT
.getSizeInBits() ==
389 Parts
[0].getSimpleValueType().getSizeInBits() &&
390 "Part type sizes don't match!");
392 // Assemble the parts into intermediate operands.
393 SmallVector
<SDValue
, 8> Ops(NumIntermediates
);
394 if (NumIntermediates
== NumParts
) {
395 // If the register was not expanded, truncate or copy the value,
397 for (unsigned i
= 0; i
!= NumParts
; ++i
)
398 Ops
[i
] = getCopyFromParts(DAG
, DL
, &Parts
[i
], 1,
399 PartVT
, IntermediateVT
, V
);
400 } else if (NumParts
> 0) {
401 // If the intermediate type was expanded, build the intermediate
402 // operands from the parts.
403 assert(NumParts
% NumIntermediates
== 0 &&
404 "Must expand into a divisible number of parts!");
405 unsigned Factor
= NumParts
/ NumIntermediates
;
406 for (unsigned i
= 0; i
!= NumIntermediates
; ++i
)
407 Ops
[i
] = getCopyFromParts(DAG
, DL
, &Parts
[i
* Factor
], Factor
,
408 PartVT
, IntermediateVT
, V
);
411 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
412 // intermediate operands.
414 EVT::getVectorVT(*DAG
.getContext(), IntermediateVT
.getScalarType(),
415 (IntermediateVT
.isVector()
416 ? IntermediateVT
.getVectorNumElements() * NumParts
417 : NumIntermediates
));
418 Val
= DAG
.getNode(IntermediateVT
.isVector() ? ISD::CONCAT_VECTORS
420 DL
, BuiltVectorTy
, Ops
);
423 // There is now one part, held in Val. Correct it to match ValueVT.
424 EVT PartEVT
= Val
.getValueType();
426 if (PartEVT
== ValueVT
)
429 if (PartEVT
.isVector()) {
430 // If the element type of the source/dest vectors are the same, but the
431 // parts vector has more elements than the value vector, then we have a
432 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the
434 if (PartEVT
.getVectorElementType() == ValueVT
.getVectorElementType()) {
435 assert(PartEVT
.getVectorNumElements() > ValueVT
.getVectorNumElements() &&
436 "Cannot narrow, it would be a lossy transformation");
438 ISD::EXTRACT_SUBVECTOR
, DL
, ValueVT
, Val
,
439 DAG
.getConstant(0, DL
, TLI
.getVectorIdxTy(DAG
.getDataLayout())));
442 // Vector/Vector bitcast.
443 if (ValueVT
.getSizeInBits() == PartEVT
.getSizeInBits())
444 return DAG
.getNode(ISD::BITCAST
, DL
, ValueVT
, Val
);
446 assert(PartEVT
.getVectorNumElements() == ValueVT
.getVectorNumElements() &&
447 "Cannot handle this kind of promotion");
448 // Promoted vector extract
449 return DAG
.getAnyExtOrTrunc(Val
, DL
, ValueVT
);
453 // Trivial bitcast if the types are the same size and the destination
454 // vector type is legal.
455 if (PartEVT
.getSizeInBits() == ValueVT
.getSizeInBits() &&
456 TLI
.isTypeLegal(ValueVT
))
457 return DAG
.getNode(ISD::BITCAST
, DL
, ValueVT
, Val
);
459 if (ValueVT
.getVectorNumElements() != 1) {
460 // Certain ABIs require that vectors are passed as integers. For vectors
461 // are the same size, this is an obvious bitcast.
462 if (ValueVT
.getSizeInBits() == PartEVT
.getSizeInBits()) {
463 return DAG
.getNode(ISD::BITCAST
, DL
, ValueVT
, Val
);
464 } else if (ValueVT
.getSizeInBits() < PartEVT
.getSizeInBits()) {
465 // Bitcast Val back the original type and extract the corresponding
467 unsigned Elts
= PartEVT
.getSizeInBits() / ValueVT
.getScalarSizeInBits();
468 EVT WiderVecType
= EVT::getVectorVT(*DAG
.getContext(),
469 ValueVT
.getVectorElementType(), Elts
);
470 Val
= DAG
.getBitcast(WiderVecType
, Val
);
472 ISD::EXTRACT_SUBVECTOR
, DL
, ValueVT
, Val
,
473 DAG
.getConstant(0, DL
, TLI
.getVectorIdxTy(DAG
.getDataLayout())));
476 diagnosePossiblyInvalidConstraint(
477 *DAG
.getContext(), V
, "non-trivial scalar-to-vector conversion");
478 return DAG
.getUNDEF(ValueVT
);
481 // Handle cases such as i8 -> <1 x i1>
482 EVT ValueSVT
= ValueVT
.getVectorElementType();
483 if (ValueVT
.getVectorNumElements() == 1 && ValueSVT
!= PartEVT
)
484 Val
= ValueVT
.isFloatingPoint() ? DAG
.getFPExtendOrRound(Val
, DL
, ValueSVT
)
485 : DAG
.getAnyExtOrTrunc(Val
, DL
, ValueSVT
);
487 return DAG
.getBuildVector(ValueVT
, DL
, Val
);
490 static void getCopyToPartsVector(SelectionDAG
&DAG
, const SDLoc
&dl
,
491 SDValue Val
, SDValue
*Parts
, unsigned NumParts
,
492 MVT PartVT
, const Value
*V
,
493 Optional
<CallingConv::ID
> CallConv
);
495 /// getCopyToParts - Create a series of nodes that contain the specified value
496 /// split into legal parts. If the parts contain more bits than Val, then, for
497 /// integers, ExtendKind can be used to specify how to generate the extra bits.
498 static void getCopyToParts(SelectionDAG
&DAG
, const SDLoc
&DL
, SDValue Val
,
499 SDValue
*Parts
, unsigned NumParts
, MVT PartVT
,
501 Optional
<CallingConv::ID
> CallConv
= None
,
502 ISD::NodeType ExtendKind
= ISD::ANY_EXTEND
) {
503 EVT ValueVT
= Val
.getValueType();
505 // Handle the vector case separately.
506 if (ValueVT
.isVector())
507 return getCopyToPartsVector(DAG
, DL
, Val
, Parts
, NumParts
, PartVT
, V
,
510 unsigned PartBits
= PartVT
.getSizeInBits();
511 unsigned OrigNumParts
= NumParts
;
512 assert(DAG
.getTargetLoweringInfo().isTypeLegal(PartVT
) &&
513 "Copying to an illegal type!");
518 assert(!ValueVT
.isVector() && "Vector case handled elsewhere");
519 EVT PartEVT
= PartVT
;
520 if (PartEVT
== ValueVT
) {
521 assert(NumParts
== 1 && "No-op copy with multiple parts!");
526 if (NumParts
* PartBits
> ValueVT
.getSizeInBits()) {
527 // If the parts cover more bits than the value has, promote the value.
528 if (PartVT
.isFloatingPoint() && ValueVT
.isFloatingPoint()) {
529 assert(NumParts
== 1 && "Do not know what to promote to!");
530 Val
= DAG
.getNode(ISD::FP_EXTEND
, DL
, PartVT
, Val
);
532 if (ValueVT
.isFloatingPoint()) {
533 // FP values need to be bitcast, then extended if they are being put
534 // into a larger container.
535 ValueVT
= EVT::getIntegerVT(*DAG
.getContext(), ValueVT
.getSizeInBits());
536 Val
= DAG
.getNode(ISD::BITCAST
, DL
, ValueVT
, Val
);
538 assert((PartVT
.isInteger() || PartVT
== MVT::x86mmx
) &&
539 ValueVT
.isInteger() &&
540 "Unknown mismatch!");
541 ValueVT
= EVT::getIntegerVT(*DAG
.getContext(), NumParts
* PartBits
);
542 Val
= DAG
.getNode(ExtendKind
, DL
, ValueVT
, Val
);
543 if (PartVT
== MVT::x86mmx
)
544 Val
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Val
);
546 } else if (PartBits
== ValueVT
.getSizeInBits()) {
547 // Different types of the same size.
548 assert(NumParts
== 1 && PartEVT
!= ValueVT
);
549 Val
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Val
);
550 } else if (NumParts
* PartBits
< ValueVT
.getSizeInBits()) {
551 // If the parts cover less bits than value has, truncate the value.
552 assert((PartVT
.isInteger() || PartVT
== MVT::x86mmx
) &&
553 ValueVT
.isInteger() &&
554 "Unknown mismatch!");
555 ValueVT
= EVT::getIntegerVT(*DAG
.getContext(), NumParts
* PartBits
);
556 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, ValueVT
, Val
);
557 if (PartVT
== MVT::x86mmx
)
558 Val
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Val
);
561 // The value may have changed - recompute ValueVT.
562 ValueVT
= Val
.getValueType();
563 assert(NumParts
* PartBits
== ValueVT
.getSizeInBits() &&
564 "Failed to tile the value with PartVT!");
567 if (PartEVT
!= ValueVT
) {
568 diagnosePossiblyInvalidConstraint(*DAG
.getContext(), V
,
569 "scalar-to-vector conversion failed");
570 Val
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Val
);
577 // Expand the value into multiple parts.
578 if (NumParts
& (NumParts
- 1)) {
579 // The number of parts is not a power of 2. Split off and copy the tail.
580 assert(PartVT
.isInteger() && ValueVT
.isInteger() &&
581 "Do not know what to expand to!");
582 unsigned RoundParts
= 1 << Log2_32(NumParts
);
583 unsigned RoundBits
= RoundParts
* PartBits
;
584 unsigned OddParts
= NumParts
- RoundParts
;
585 SDValue OddVal
= DAG
.getNode(ISD::SRL
, DL
, ValueVT
, Val
,
586 DAG
.getShiftAmountConstant(RoundBits
, ValueVT
, DL
, /*LegalTypes*/false));
588 getCopyToParts(DAG
, DL
, OddVal
, Parts
+ RoundParts
, OddParts
, PartVT
, V
,
591 if (DAG
.getDataLayout().isBigEndian())
592 // The odd parts were reversed by getCopyToParts - unreverse them.
593 std::reverse(Parts
+ RoundParts
, Parts
+ NumParts
);
595 NumParts
= RoundParts
;
596 ValueVT
= EVT::getIntegerVT(*DAG
.getContext(), NumParts
* PartBits
);
597 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, ValueVT
, Val
);
600 // The number of parts is a power of 2. Repeatedly bisect the value using
602 Parts
[0] = DAG
.getNode(ISD::BITCAST
, DL
,
603 EVT::getIntegerVT(*DAG
.getContext(),
604 ValueVT
.getSizeInBits()),
607 for (unsigned StepSize
= NumParts
; StepSize
> 1; StepSize
/= 2) {
608 for (unsigned i
= 0; i
< NumParts
; i
+= StepSize
) {
609 unsigned ThisBits
= StepSize
* PartBits
/ 2;
610 EVT ThisVT
= EVT::getIntegerVT(*DAG
.getContext(), ThisBits
);
611 SDValue
&Part0
= Parts
[i
];
612 SDValue
&Part1
= Parts
[i
+StepSize
/2];
614 Part1
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
,
615 ThisVT
, Part0
, DAG
.getIntPtrConstant(1, DL
));
616 Part0
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
,
617 ThisVT
, Part0
, DAG
.getIntPtrConstant(0, DL
));
619 if (ThisBits
== PartBits
&& ThisVT
!= PartVT
) {
620 Part0
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Part0
);
621 Part1
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Part1
);
626 if (DAG
.getDataLayout().isBigEndian())
627 std::reverse(Parts
, Parts
+ OrigNumParts
);
630 static SDValue
widenVectorToPartType(SelectionDAG
&DAG
,
631 SDValue Val
, const SDLoc
&DL
, EVT PartVT
) {
632 if (!PartVT
.isVector())
635 EVT ValueVT
= Val
.getValueType();
636 unsigned PartNumElts
= PartVT
.getVectorNumElements();
637 unsigned ValueNumElts
= ValueVT
.getVectorNumElements();
638 if (PartNumElts
> ValueNumElts
&&
639 PartVT
.getVectorElementType() == ValueVT
.getVectorElementType()) {
640 EVT ElementVT
= PartVT
.getVectorElementType();
641 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in
643 SmallVector
<SDValue
, 16> Ops
;
644 DAG
.ExtractVectorElements(Val
, Ops
);
645 SDValue EltUndef
= DAG
.getUNDEF(ElementVT
);
646 for (unsigned i
= ValueNumElts
, e
= PartNumElts
; i
!= e
; ++i
)
647 Ops
.push_back(EltUndef
);
649 // FIXME: Use CONCAT for 2x -> 4x.
650 return DAG
.getBuildVector(PartVT
, DL
, Ops
);
656 /// getCopyToPartsVector - Create a series of nodes that contain the specified
657 /// value split into legal parts.
658 static void getCopyToPartsVector(SelectionDAG
&DAG
, const SDLoc
&DL
,
659 SDValue Val
, SDValue
*Parts
, unsigned NumParts
,
660 MVT PartVT
, const Value
*V
,
661 Optional
<CallingConv::ID
> CallConv
) {
662 EVT ValueVT
= Val
.getValueType();
663 assert(ValueVT
.isVector() && "Not a vector");
664 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
665 const bool IsABIRegCopy
= CallConv
.hasValue();
668 EVT PartEVT
= PartVT
;
669 if (PartEVT
== ValueVT
) {
671 } else if (PartVT
.getSizeInBits() == ValueVT
.getSizeInBits()) {
672 // Bitconvert vector->vector case.
673 Val
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Val
);
674 } else if (SDValue Widened
= widenVectorToPartType(DAG
, Val
, DL
, PartVT
)) {
676 } else if (PartVT
.isVector() &&
677 PartEVT
.getVectorElementType().bitsGE(
678 ValueVT
.getVectorElementType()) &&
679 PartEVT
.getVectorNumElements() == ValueVT
.getVectorNumElements()) {
681 // Promoted vector extract
682 Val
= DAG
.getAnyExtOrTrunc(Val
, DL
, PartVT
);
684 if (ValueVT
.getVectorNumElements() == 1) {
686 ISD::EXTRACT_VECTOR_ELT
, DL
, PartVT
, Val
,
687 DAG
.getConstant(0, DL
, TLI
.getVectorIdxTy(DAG
.getDataLayout())));
689 assert(PartVT
.getSizeInBits() > ValueVT
.getSizeInBits() &&
690 "lossy conversion of vector to scalar type");
691 EVT IntermediateType
=
692 EVT::getIntegerVT(*DAG
.getContext(), ValueVT
.getSizeInBits());
693 Val
= DAG
.getBitcast(IntermediateType
, Val
);
694 Val
= DAG
.getAnyExtOrTrunc(Val
, DL
, PartVT
);
698 assert(Val
.getValueType() == PartVT
&& "Unexpected vector part value type");
703 // Handle a multi-element vector.
706 unsigned NumIntermediates
;
709 NumRegs
= TLI
.getVectorTypeBreakdownForCallingConv(
710 *DAG
.getContext(), CallConv
.getValue(), ValueVT
, IntermediateVT
,
711 NumIntermediates
, RegisterVT
);
714 TLI
.getVectorTypeBreakdown(*DAG
.getContext(), ValueVT
, IntermediateVT
,
715 NumIntermediates
, RegisterVT
);
718 assert(NumRegs
== NumParts
&& "Part count doesn't match vector breakdown!");
719 NumParts
= NumRegs
; // Silence a compiler warning.
720 assert(RegisterVT
== PartVT
&& "Part type doesn't match vector breakdown!");
722 unsigned IntermediateNumElts
= IntermediateVT
.isVector() ?
723 IntermediateVT
.getVectorNumElements() : 1;
725 // Convert the vector to the appropiate type if necessary.
726 unsigned DestVectorNoElts
= NumIntermediates
* IntermediateNumElts
;
728 EVT BuiltVectorTy
= EVT::getVectorVT(
729 *DAG
.getContext(), IntermediateVT
.getScalarType(), DestVectorNoElts
);
730 MVT IdxVT
= TLI
.getVectorIdxTy(DAG
.getDataLayout());
731 if (ValueVT
!= BuiltVectorTy
) {
732 if (SDValue Widened
= widenVectorToPartType(DAG
, Val
, DL
, BuiltVectorTy
))
735 Val
= DAG
.getNode(ISD::BITCAST
, DL
, BuiltVectorTy
, Val
);
738 // Split the vector into intermediate operands.
739 SmallVector
<SDValue
, 8> Ops(NumIntermediates
);
740 for (unsigned i
= 0; i
!= NumIntermediates
; ++i
) {
741 if (IntermediateVT
.isVector()) {
742 Ops
[i
] = DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, IntermediateVT
, Val
,
743 DAG
.getConstant(i
* IntermediateNumElts
, DL
, IdxVT
));
745 Ops
[i
] = DAG
.getNode(
746 ISD::EXTRACT_VECTOR_ELT
, DL
, IntermediateVT
, Val
,
747 DAG
.getConstant(i
, DL
, IdxVT
));
751 // Split the intermediate operands into legal parts.
752 if (NumParts
== NumIntermediates
) {
753 // If the register was not expanded, promote or copy the value,
755 for (unsigned i
= 0; i
!= NumParts
; ++i
)
756 getCopyToParts(DAG
, DL
, Ops
[i
], &Parts
[i
], 1, PartVT
, V
, CallConv
);
757 } else if (NumParts
> 0) {
758 // If the intermediate type was expanded, split each the value into
760 assert(NumIntermediates
!= 0 && "division by zero");
761 assert(NumParts
% NumIntermediates
== 0 &&
762 "Must expand into a divisible number of parts!");
763 unsigned Factor
= NumParts
/ NumIntermediates
;
764 for (unsigned i
= 0; i
!= NumIntermediates
; ++i
)
765 getCopyToParts(DAG
, DL
, Ops
[i
], &Parts
[i
* Factor
], Factor
, PartVT
, V
,
770 RegsForValue::RegsForValue(const SmallVector
<unsigned, 4> ®s
, MVT regvt
,
771 EVT valuevt
, Optional
<CallingConv::ID
> CC
)
772 : ValueVTs(1, valuevt
), RegVTs(1, regvt
), Regs(regs
),
773 RegCount(1, regs
.size()), CallConv(CC
) {}
775 RegsForValue::RegsForValue(LLVMContext
&Context
, const TargetLowering
&TLI
,
776 const DataLayout
&DL
, unsigned Reg
, Type
*Ty
,
777 Optional
<CallingConv::ID
> CC
) {
778 ComputeValueVTs(TLI
, DL
, Ty
, ValueVTs
);
782 for (EVT ValueVT
: ValueVTs
) {
785 ? TLI
.getNumRegistersForCallingConv(Context
, CC
.getValue(), ValueVT
)
786 : TLI
.getNumRegisters(Context
, ValueVT
);
789 ? TLI
.getRegisterTypeForCallingConv(Context
, CC
.getValue(), ValueVT
)
790 : TLI
.getRegisterType(Context
, ValueVT
);
791 for (unsigned i
= 0; i
!= NumRegs
; ++i
)
792 Regs
.push_back(Reg
+ i
);
793 RegVTs
.push_back(RegisterVT
);
794 RegCount
.push_back(NumRegs
);
799 SDValue
RegsForValue::getCopyFromRegs(SelectionDAG
&DAG
,
800 FunctionLoweringInfo
&FuncInfo
,
801 const SDLoc
&dl
, SDValue
&Chain
,
802 SDValue
*Flag
, const Value
*V
) const {
803 // A Value with type {} or [0 x %t] needs no registers.
804 if (ValueVTs
.empty())
807 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
809 // Assemble the legal parts into the final values.
810 SmallVector
<SDValue
, 4> Values(ValueVTs
.size());
811 SmallVector
<SDValue
, 8> Parts
;
812 for (unsigned Value
= 0, Part
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
813 // Copy the legal parts from the registers.
814 EVT ValueVT
= ValueVTs
[Value
];
815 unsigned NumRegs
= RegCount
[Value
];
816 MVT RegisterVT
= isABIMangled() ? TLI
.getRegisterTypeForCallingConv(
818 CallConv
.getValue(), RegVTs
[Value
])
821 Parts
.resize(NumRegs
);
822 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
825 P
= DAG
.getCopyFromReg(Chain
, dl
, Regs
[Part
+i
], RegisterVT
);
827 P
= DAG
.getCopyFromReg(Chain
, dl
, Regs
[Part
+i
], RegisterVT
, *Flag
);
828 *Flag
= P
.getValue(2);
831 Chain
= P
.getValue(1);
834 // If the source register was virtual and if we know something about it,
835 // add an assert node.
836 if (!TargetRegisterInfo::isVirtualRegister(Regs
[Part
+i
]) ||
837 !RegisterVT
.isInteger())
840 const FunctionLoweringInfo::LiveOutInfo
*LOI
=
841 FuncInfo
.GetLiveOutRegInfo(Regs
[Part
+i
]);
845 unsigned RegSize
= RegisterVT
.getScalarSizeInBits();
846 unsigned NumSignBits
= LOI
->NumSignBits
;
847 unsigned NumZeroBits
= LOI
->Known
.countMinLeadingZeros();
849 if (NumZeroBits
== RegSize
) {
850 // The current value is a zero.
851 // Explicitly express that as it would be easier for
852 // optimizations to kick in.
853 Parts
[i
] = DAG
.getConstant(0, dl
, RegisterVT
);
857 // FIXME: We capture more information than the dag can represent. For
858 // now, just use the tightest assertzext/assertsext possible.
860 EVT
FromVT(MVT::Other
);
862 FromVT
= EVT::getIntegerVT(*DAG
.getContext(), RegSize
- NumZeroBits
);
864 } else if (NumSignBits
> 1) {
866 EVT::getIntegerVT(*DAG
.getContext(), RegSize
- NumSignBits
+ 1);
871 // Add an assertion node.
872 assert(FromVT
!= MVT::Other
);
873 Parts
[i
] = DAG
.getNode(isSExt
? ISD::AssertSext
: ISD::AssertZext
, dl
,
874 RegisterVT
, P
, DAG
.getValueType(FromVT
));
877 Values
[Value
] = getCopyFromParts(DAG
, dl
, Parts
.begin(), NumRegs
,
878 RegisterVT
, ValueVT
, V
, CallConv
);
883 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, DAG
.getVTList(ValueVTs
), Values
);
886 void RegsForValue::getCopyToRegs(SDValue Val
, SelectionDAG
&DAG
,
887 const SDLoc
&dl
, SDValue
&Chain
, SDValue
*Flag
,
889 ISD::NodeType PreferredExtendType
) const {
890 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
891 ISD::NodeType ExtendKind
= PreferredExtendType
;
893 // Get the list of the values's legal parts.
894 unsigned NumRegs
= Regs
.size();
895 SmallVector
<SDValue
, 8> Parts(NumRegs
);
896 for (unsigned Value
= 0, Part
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
897 unsigned NumParts
= RegCount
[Value
];
899 MVT RegisterVT
= isABIMangled() ? TLI
.getRegisterTypeForCallingConv(
901 CallConv
.getValue(), RegVTs
[Value
])
904 if (ExtendKind
== ISD::ANY_EXTEND
&& TLI
.isZExtFree(Val
, RegisterVT
))
905 ExtendKind
= ISD::ZERO_EXTEND
;
907 getCopyToParts(DAG
, dl
, Val
.getValue(Val
.getResNo() + Value
), &Parts
[Part
],
908 NumParts
, RegisterVT
, V
, CallConv
, ExtendKind
);
912 // Copy the parts into the registers.
913 SmallVector
<SDValue
, 8> Chains(NumRegs
);
914 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
917 Part
= DAG
.getCopyToReg(Chain
, dl
, Regs
[i
], Parts
[i
]);
919 Part
= DAG
.getCopyToReg(Chain
, dl
, Regs
[i
], Parts
[i
], *Flag
);
920 *Flag
= Part
.getValue(1);
923 Chains
[i
] = Part
.getValue(0);
926 if (NumRegs
== 1 || Flag
)
927 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
928 // flagged to it. That is the CopyToReg nodes and the user are considered
929 // a single scheduling unit. If we create a TokenFactor and return it as
930 // chain, then the TokenFactor is both a predecessor (operand) of the
931 // user as well as a successor (the TF operands are flagged to the user).
932 // c1, f1 = CopyToReg
933 // c2, f2 = CopyToReg
934 // c3 = TokenFactor c1, c2
937 Chain
= Chains
[NumRegs
-1];
939 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Chains
);
942 void RegsForValue::AddInlineAsmOperands(unsigned Code
, bool HasMatching
,
943 unsigned MatchingIdx
, const SDLoc
&dl
,
945 std::vector
<SDValue
> &Ops
) const {
946 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
948 unsigned Flag
= InlineAsm::getFlagWord(Code
, Regs
.size());
950 Flag
= InlineAsm::getFlagWordForMatchingOp(Flag
, MatchingIdx
);
951 else if (!Regs
.empty() &&
952 TargetRegisterInfo::isVirtualRegister(Regs
.front())) {
953 // Put the register class of the virtual registers in the flag word. That
954 // way, later passes can recompute register class constraints for inline
955 // assembly as well as normal instructions.
956 // Don't do this for tied operands that can use the regclass information
958 const MachineRegisterInfo
&MRI
= DAG
.getMachineFunction().getRegInfo();
959 const TargetRegisterClass
*RC
= MRI
.getRegClass(Regs
.front());
960 Flag
= InlineAsm::getFlagWordForRegClass(Flag
, RC
->getID());
963 SDValue Res
= DAG
.getTargetConstant(Flag
, dl
, MVT::i32
);
966 if (Code
== InlineAsm::Kind_Clobber
) {
967 // Clobbers should always have a 1:1 mapping with registers, and may
968 // reference registers that have illegal (e.g. vector) types. Hence, we
969 // shouldn't try to apply any sort of splitting logic to them.
970 assert(Regs
.size() == RegVTs
.size() && Regs
.size() == ValueVTs
.size() &&
971 "No 1:1 mapping from clobbers to regs?");
972 unsigned SP
= TLI
.getStackPointerRegisterToSaveRestore();
974 for (unsigned I
= 0, E
= ValueVTs
.size(); I
!= E
; ++I
) {
975 Ops
.push_back(DAG
.getRegister(Regs
[I
], RegVTs
[I
]));
978 DAG
.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
979 "If we clobbered the stack pointer, MFI should know about it.");
984 for (unsigned Value
= 0, Reg
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
985 unsigned NumRegs
= TLI
.getNumRegisters(*DAG
.getContext(), ValueVTs
[Value
]);
986 MVT RegisterVT
= RegVTs
[Value
];
987 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
988 assert(Reg
< Regs
.size() && "Mismatch in # registers expected");
989 unsigned TheReg
= Regs
[Reg
++];
990 Ops
.push_back(DAG
.getRegister(TheReg
, RegisterVT
));
995 SmallVector
<std::pair
<unsigned, unsigned>, 4>
996 RegsForValue::getRegsAndSizes() const {
997 SmallVector
<std::pair
<unsigned, unsigned>, 4> OutVec
;
999 for (auto CountAndVT
: zip_first(RegCount
, RegVTs
)) {
1000 unsigned RegCount
= std::get
<0>(CountAndVT
);
1001 MVT RegisterVT
= std::get
<1>(CountAndVT
);
1002 unsigned RegisterSize
= RegisterVT
.getSizeInBits();
1003 for (unsigned E
= I
+ RegCount
; I
!= E
; ++I
)
1004 OutVec
.push_back(std::make_pair(Regs
[I
], RegisterSize
));
1009 void SelectionDAGBuilder::init(GCFunctionInfo
*gfi
, AliasAnalysis
*aa
,
1010 const TargetLibraryInfo
*li
) {
1014 DL
= &DAG
.getDataLayout();
1015 Context
= DAG
.getContext();
1016 LPadToCallSiteMap
.clear();
1017 SL
->init(DAG
.getTargetLoweringInfo(), TM
, DAG
.getDataLayout());
1020 void SelectionDAGBuilder::clear() {
1022 UnusedArgNodeMap
.clear();
1023 PendingLoads
.clear();
1024 PendingExports
.clear();
1026 HasTailCall
= false;
1027 SDNodeOrder
= LowestSDNodeOrder
;
1028 StatepointLowering
.clear();
1031 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1032 DanglingDebugInfoMap
.clear();
1035 SDValue
SelectionDAGBuilder::getRoot() {
1036 if (PendingLoads
.empty())
1037 return DAG
.getRoot();
1039 if (PendingLoads
.size() == 1) {
1040 SDValue Root
= PendingLoads
[0];
1042 PendingLoads
.clear();
1046 // Otherwise, we have to make a token factor node.
1047 SDValue Root
= DAG
.getTokenFactor(getCurSDLoc(), PendingLoads
);
1048 PendingLoads
.clear();
1053 SDValue
SelectionDAGBuilder::getControlRoot() {
1054 SDValue Root
= DAG
.getRoot();
1056 if (PendingExports
.empty())
1059 // Turn all of the CopyToReg chains into one factored node.
1060 if (Root
.getOpcode() != ISD::EntryToken
) {
1061 unsigned i
= 0, e
= PendingExports
.size();
1062 for (; i
!= e
; ++i
) {
1063 assert(PendingExports
[i
].getNode()->getNumOperands() > 1);
1064 if (PendingExports
[i
].getNode()->getOperand(0) == Root
)
1065 break; // Don't add the root if we already indirectly depend on it.
1069 PendingExports
.push_back(Root
);
1072 Root
= DAG
.getNode(ISD::TokenFactor
, getCurSDLoc(), MVT::Other
,
1074 PendingExports
.clear();
1079 void SelectionDAGBuilder::visit(const Instruction
&I
) {
1080 // Set up outgoing PHI node register values before emitting the terminator.
1081 if (I
.isTerminator()) {
1082 HandlePHINodesInSuccessorBlocks(I
.getParent());
1085 // Increase the SDNodeOrder if dealing with a non-debug instruction.
1086 if (!isa
<DbgInfoIntrinsic
>(I
))
1091 visit(I
.getOpcode(), I
);
1093 if (auto *FPMO
= dyn_cast
<FPMathOperator
>(&I
)) {
1094 // Propagate the fast-math-flags of this IR instruction to the DAG node that
1095 // maps to this instruction.
1096 // TODO: We could handle all flags (nsw, etc) here.
1097 // TODO: If an IR instruction maps to >1 node, only the final node will have
1099 if (SDNode
*Node
= getNodeForIRValue(&I
)) {
1100 SDNodeFlags IncomingFlags
;
1101 IncomingFlags
.copyFMF(*FPMO
);
1102 if (!Node
->getFlags().isDefined())
1103 Node
->setFlags(IncomingFlags
);
1105 Node
->intersectFlagsWith(IncomingFlags
);
1109 if (!I
.isTerminator() && !HasTailCall
&&
1110 !isStatepoint(&I
)) // statepoints handle their exports internally
1111 CopyToExportRegsIfNeeded(&I
);
1116 void SelectionDAGBuilder::visitPHI(const PHINode
&) {
1117 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1120 void SelectionDAGBuilder::visit(unsigned Opcode
, const User
&I
) {
1121 // Note: this doesn't use InstVisitor, because it has to work with
1122 // ConstantExpr's in addition to instructions.
1124 default: llvm_unreachable("Unknown instruction type encountered!");
1125 // Build the switch statement using the Instruction.def file.
1126 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1127 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1128 #include "llvm/IR/Instruction.def"
1132 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable
*Variable
,
1133 const DIExpression
*Expr
) {
1134 auto isMatchingDbgValue
= [&](DanglingDebugInfo
&DDI
) {
1135 const DbgValueInst
*DI
= DDI
.getDI();
1136 DIVariable
*DanglingVariable
= DI
->getVariable();
1137 DIExpression
*DanglingExpr
= DI
->getExpression();
1138 if (DanglingVariable
== Variable
&& Expr
->fragmentsOverlap(DanglingExpr
)) {
1139 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI
<< "\n");
1145 for (auto &DDIMI
: DanglingDebugInfoMap
) {
1146 DanglingDebugInfoVector
&DDIV
= DDIMI
.second
;
1148 // If debug info is to be dropped, run it through final checks to see
1149 // whether it can be salvaged.
1150 for (auto &DDI
: DDIV
)
1151 if (isMatchingDbgValue(DDI
))
1152 salvageUnresolvedDbgValue(DDI
);
1154 DDIV
.erase(remove_if(DDIV
, isMatchingDbgValue
), DDIV
.end());
1158 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1159 // generate the debug data structures now that we've seen its definition.
1160 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value
*V
,
1162 auto DanglingDbgInfoIt
= DanglingDebugInfoMap
.find(V
);
1163 if (DanglingDbgInfoIt
== DanglingDebugInfoMap
.end())
1166 DanglingDebugInfoVector
&DDIV
= DanglingDbgInfoIt
->second
;
1167 for (auto &DDI
: DDIV
) {
1168 const DbgValueInst
*DI
= DDI
.getDI();
1169 assert(DI
&& "Ill-formed DanglingDebugInfo");
1170 DebugLoc dl
= DDI
.getdl();
1171 unsigned ValSDNodeOrder
= Val
.getNode()->getIROrder();
1172 unsigned DbgSDNodeOrder
= DDI
.getSDNodeOrder();
1173 DILocalVariable
*Variable
= DI
->getVariable();
1174 DIExpression
*Expr
= DI
->getExpression();
1175 assert(Variable
->isValidLocationForIntrinsic(dl
) &&
1176 "Expected inlined-at fields to agree");
1178 if (Val
.getNode()) {
1179 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1180 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1181 // we couldn't resolve it directly when examining the DbgValue intrinsic
1182 // in the first place we should not be more successful here). Unless we
1183 // have some test case that prove this to be correct we should avoid
1184 // calling EmitFuncArgumentDbgValue here.
1185 if (!EmitFuncArgumentDbgValue(V
, Variable
, Expr
, dl
, false, Val
)) {
1186 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1187 << DbgSDNodeOrder
<< "] for:\n " << *DI
<< "\n");
1188 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val
.dump());
1189 // Increase the SDNodeOrder for the DbgValue here to make sure it is
1190 // inserted after the definition of Val when emitting the instructions
1191 // after ISel. An alternative could be to teach
1192 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1193 LLVM_DEBUG(if (ValSDNodeOrder
> DbgSDNodeOrder
) dbgs()
1194 << "changing SDNodeOrder from " << DbgSDNodeOrder
<< " to "
1195 << ValSDNodeOrder
<< "\n");
1196 SDV
= getDbgValue(Val
, Variable
, Expr
, dl
,
1197 std::max(DbgSDNodeOrder
, ValSDNodeOrder
));
1198 DAG
.AddDbgValue(SDV
, Val
.getNode(), false);
1200 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1201 << "in EmitFuncArgumentDbgValue\n");
1203 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI
<< "\n");
1205 UndefValue::get(DDI
.getDI()->getVariableLocation()->getType());
1207 DAG
.getConstantDbgValue(Variable
, Expr
, Undef
, dl
, DbgSDNodeOrder
);
1208 DAG
.AddDbgValue(SDV
, nullptr, false);
1214 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo
&DDI
) {
1215 Value
*V
= DDI
.getDI()->getValue();
1216 DILocalVariable
*Var
= DDI
.getDI()->getVariable();
1217 DIExpression
*Expr
= DDI
.getDI()->getExpression();
1218 DebugLoc DL
= DDI
.getdl();
1219 DebugLoc InstDL
= DDI
.getDI()->getDebugLoc();
1220 unsigned SDOrder
= DDI
.getSDNodeOrder();
1222 // Currently we consider only dbg.value intrinsics -- we tell the salvager
1223 // that DW_OP_stack_value is desired.
1224 assert(isa
<DbgValueInst
>(DDI
.getDI()));
1225 bool StackValue
= true;
1227 // Can this Value can be encoded without any further work?
1228 if (handleDebugValue(V
, Var
, Expr
, DL
, InstDL
, SDOrder
))
1231 // Attempt to salvage back through as many instructions as possible. Bail if
1232 // a non-instruction is seen, such as a constant expression or global
1233 // variable. FIXME: Further work could recover those too.
1234 while (isa
<Instruction
>(V
)) {
1235 Instruction
&VAsInst
= *cast
<Instruction
>(V
);
1236 DIExpression
*NewExpr
= salvageDebugInfoImpl(VAsInst
, Expr
, StackValue
);
1238 // If we cannot salvage any further, and haven't yet found a suitable debug
1239 // expression, bail out.
1243 // New value and expr now represent this debuginfo.
1244 V
= VAsInst
.getOperand(0);
1247 // Some kind of simplification occurred: check whether the operand of the
1248 // salvaged debug expression can be encoded in this DAG.
1249 if (handleDebugValue(V
, Var
, Expr
, DL
, InstDL
, SDOrder
)) {
1250 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n "
1251 << DDI
.getDI() << "\nBy stripping back to:\n " << V
);
1256 // This was the final opportunity to salvage this debug information, and it
1257 // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1258 // any earlier variable location.
1259 auto Undef
= UndefValue::get(DDI
.getDI()->getVariableLocation()->getType());
1260 auto SDV
= DAG
.getConstantDbgValue(Var
, Expr
, Undef
, DL
, SDNodeOrder
);
1261 DAG
.AddDbgValue(SDV
, nullptr, false);
1263 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI
.getDI()
1265 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI
.getDI()->getOperand(0)
1269 bool SelectionDAGBuilder::handleDebugValue(const Value
*V
, DILocalVariable
*Var
,
1270 DIExpression
*Expr
, DebugLoc dl
,
1271 DebugLoc InstDL
, unsigned Order
) {
1272 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
1274 if (isa
<ConstantInt
>(V
) || isa
<ConstantFP
>(V
) || isa
<UndefValue
>(V
) ||
1275 isa
<ConstantPointerNull
>(V
)) {
1276 SDV
= DAG
.getConstantDbgValue(Var
, Expr
, V
, dl
, SDNodeOrder
);
1277 DAG
.AddDbgValue(SDV
, nullptr, false);
1281 // If the Value is a frame index, we can create a FrameIndex debug value
1282 // without relying on the DAG at all.
1283 if (const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(V
)) {
1284 auto SI
= FuncInfo
.StaticAllocaMap
.find(AI
);
1285 if (SI
!= FuncInfo
.StaticAllocaMap
.end()) {
1287 DAG
.getFrameIndexDbgValue(Var
, Expr
, SI
->second
,
1288 /*IsIndirect*/ false, dl
, SDNodeOrder
);
1289 // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1290 // is still available even if the SDNode gets optimized out.
1291 DAG
.AddDbgValue(SDV
, nullptr, false);
1296 // Do not use getValue() in here; we don't want to generate code at
1297 // this point if it hasn't been done yet.
1298 SDValue N
= NodeMap
[V
];
1299 if (!N
.getNode() && isa
<Argument
>(V
)) // Check unused arguments map.
1300 N
= UnusedArgNodeMap
[V
];
1302 if (EmitFuncArgumentDbgValue(V
, Var
, Expr
, dl
, false, N
))
1304 SDV
= getDbgValue(N
, Var
, Expr
, dl
, SDNodeOrder
);
1305 DAG
.AddDbgValue(SDV
, N
.getNode(), false);
1309 // Special rules apply for the first dbg.values of parameter variables in a
1310 // function. Identify them by the fact they reference Argument Values, that
1311 // they're parameters, and they are parameters of the current function. We
1312 // need to let them dangle until they get an SDNode.
1313 bool IsParamOfFunc
= isa
<Argument
>(V
) && Var
->isParameter() &&
1314 !InstDL
.getInlinedAt();
1315 if (!IsParamOfFunc
) {
1316 // The value is not used in this block yet (or it would have an SDNode).
1317 // We still want the value to appear for the user if possible -- if it has
1318 // an associated VReg, we can refer to that instead.
1319 auto VMI
= FuncInfo
.ValueMap
.find(V
);
1320 if (VMI
!= FuncInfo
.ValueMap
.end()) {
1321 unsigned Reg
= VMI
->second
;
1322 // If this is a PHI node, it may be split up into several MI PHI nodes
1323 // (in FunctionLoweringInfo::set).
1324 RegsForValue
RFV(V
->getContext(), TLI
, DAG
.getDataLayout(), Reg
,
1325 V
->getType(), None
);
1326 if (RFV
.occupiesMultipleRegs()) {
1327 unsigned Offset
= 0;
1328 unsigned BitsToDescribe
= 0;
1329 if (auto VarSize
= Var
->getSizeInBits())
1330 BitsToDescribe
= *VarSize
;
1331 if (auto Fragment
= Expr
->getFragmentInfo())
1332 BitsToDescribe
= Fragment
->SizeInBits
;
1333 for (auto RegAndSize
: RFV
.getRegsAndSizes()) {
1334 unsigned RegisterSize
= RegAndSize
.second
;
1335 // Bail out if all bits are described already.
1336 if (Offset
>= BitsToDescribe
)
1338 unsigned FragmentSize
= (Offset
+ RegisterSize
> BitsToDescribe
)
1339 ? BitsToDescribe
- Offset
1341 auto FragmentExpr
= DIExpression::createFragmentExpression(
1342 Expr
, Offset
, FragmentSize
);
1345 SDV
= DAG
.getVRegDbgValue(Var
, *FragmentExpr
, RegAndSize
.first
,
1346 false, dl
, SDNodeOrder
);
1347 DAG
.AddDbgValue(SDV
, nullptr, false);
1348 Offset
+= RegisterSize
;
1351 SDV
= DAG
.getVRegDbgValue(Var
, Expr
, Reg
, false, dl
, SDNodeOrder
);
1352 DAG
.AddDbgValue(SDV
, nullptr, false);
1361 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1362 // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1363 for (auto &Pair
: DanglingDebugInfoMap
)
1364 for (auto &DDI
: Pair
.second
)
1365 salvageUnresolvedDbgValue(DDI
);
1366 clearDanglingDebugInfo();
1369 /// getCopyFromRegs - If there was virtual register allocated for the value V
1370 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1371 SDValue
SelectionDAGBuilder::getCopyFromRegs(const Value
*V
, Type
*Ty
) {
1372 DenseMap
<const Value
*, unsigned>::iterator It
= FuncInfo
.ValueMap
.find(V
);
1375 if (It
!= FuncInfo
.ValueMap
.end()) {
1376 unsigned InReg
= It
->second
;
1378 RegsForValue
RFV(*DAG
.getContext(), DAG
.getTargetLoweringInfo(),
1379 DAG
.getDataLayout(), InReg
, Ty
,
1380 None
); // This is not an ABI copy.
1381 SDValue Chain
= DAG
.getEntryNode();
1382 Result
= RFV
.getCopyFromRegs(DAG
, FuncInfo
, getCurSDLoc(), Chain
, nullptr,
1384 resolveDanglingDebugInfo(V
, Result
);
1390 /// getValue - Return an SDValue for the given Value.
1391 SDValue
SelectionDAGBuilder::getValue(const Value
*V
) {
1392 // If we already have an SDValue for this value, use it. It's important
1393 // to do this first, so that we don't create a CopyFromReg if we already
1394 // have a regular SDValue.
1395 SDValue
&N
= NodeMap
[V
];
1396 if (N
.getNode()) return N
;
1398 // If there's a virtual register allocated and initialized for this
1400 if (SDValue copyFromReg
= getCopyFromRegs(V
, V
->getType()))
1403 // Otherwise create a new SDValue and remember it.
1404 SDValue Val
= getValueImpl(V
);
1406 resolveDanglingDebugInfo(V
, Val
);
1410 // Return true if SDValue exists for the given Value
1411 bool SelectionDAGBuilder::findValue(const Value
*V
) const {
1412 return (NodeMap
.find(V
) != NodeMap
.end()) ||
1413 (FuncInfo
.ValueMap
.find(V
) != FuncInfo
.ValueMap
.end());
1416 /// getNonRegisterValue - Return an SDValue for the given Value, but
1417 /// don't look in FuncInfo.ValueMap for a virtual register.
1418 SDValue
SelectionDAGBuilder::getNonRegisterValue(const Value
*V
) {
1419 // If we already have an SDValue for this value, use it.
1420 SDValue
&N
= NodeMap
[V
];
1422 if (isa
<ConstantSDNode
>(N
) || isa
<ConstantFPSDNode
>(N
)) {
1423 // Remove the debug location from the node as the node is about to be used
1424 // in a location which may differ from the original debug location. This
1425 // is relevant to Constant and ConstantFP nodes because they can appear
1426 // as constant expressions inside PHI nodes.
1427 N
->setDebugLoc(DebugLoc());
1432 // Otherwise create a new SDValue and remember it.
1433 SDValue Val
= getValueImpl(V
);
1435 resolveDanglingDebugInfo(V
, Val
);
1439 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1440 /// Create an SDValue for the given value.
1441 SDValue
SelectionDAGBuilder::getValueImpl(const Value
*V
) {
1442 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
1444 if (const Constant
*C
= dyn_cast
<Constant
>(V
)) {
1445 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), V
->getType(), true);
1447 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(C
))
1448 return DAG
.getConstant(*CI
, getCurSDLoc(), VT
);
1450 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(C
))
1451 return DAG
.getGlobalAddress(GV
, getCurSDLoc(), VT
);
1453 if (isa
<ConstantPointerNull
>(C
)) {
1454 unsigned AS
= V
->getType()->getPointerAddressSpace();
1455 return DAG
.getConstant(0, getCurSDLoc(),
1456 TLI
.getPointerTy(DAG
.getDataLayout(), AS
));
1459 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(C
))
1460 return DAG
.getConstantFP(*CFP
, getCurSDLoc(), VT
);
1462 if (isa
<UndefValue
>(C
) && !V
->getType()->isAggregateType())
1463 return DAG
.getUNDEF(VT
);
1465 if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
)) {
1466 visit(CE
->getOpcode(), *CE
);
1467 SDValue N1
= NodeMap
[V
];
1468 assert(N1
.getNode() && "visit didn't populate the NodeMap!");
1472 if (isa
<ConstantStruct
>(C
) || isa
<ConstantArray
>(C
)) {
1473 SmallVector
<SDValue
, 4> Constants
;
1474 for (User::const_op_iterator OI
= C
->op_begin(), OE
= C
->op_end();
1476 SDNode
*Val
= getValue(*OI
).getNode();
1477 // If the operand is an empty aggregate, there are no values.
1479 // Add each leaf value from the operand to the Constants list
1480 // to form a flattened list of all the values.
1481 for (unsigned i
= 0, e
= Val
->getNumValues(); i
!= e
; ++i
)
1482 Constants
.push_back(SDValue(Val
, i
));
1485 return DAG
.getMergeValues(Constants
, getCurSDLoc());
1488 if (const ConstantDataSequential
*CDS
=
1489 dyn_cast
<ConstantDataSequential
>(C
)) {
1490 SmallVector
<SDValue
, 4> Ops
;
1491 for (unsigned i
= 0, e
= CDS
->getNumElements(); i
!= e
; ++i
) {
1492 SDNode
*Val
= getValue(CDS
->getElementAsConstant(i
)).getNode();
1493 // Add each leaf value from the operand to the Constants list
1494 // to form a flattened list of all the values.
1495 for (unsigned i
= 0, e
= Val
->getNumValues(); i
!= e
; ++i
)
1496 Ops
.push_back(SDValue(Val
, i
));
1499 if (isa
<ArrayType
>(CDS
->getType()))
1500 return DAG
.getMergeValues(Ops
, getCurSDLoc());
1501 return NodeMap
[V
] = DAG
.getBuildVector(VT
, getCurSDLoc(), Ops
);
1504 if (C
->getType()->isStructTy() || C
->getType()->isArrayTy()) {
1505 assert((isa
<ConstantAggregateZero
>(C
) || isa
<UndefValue
>(C
)) &&
1506 "Unknown struct or array constant!");
1508 SmallVector
<EVT
, 4> ValueVTs
;
1509 ComputeValueVTs(TLI
, DAG
.getDataLayout(), C
->getType(), ValueVTs
);
1510 unsigned NumElts
= ValueVTs
.size();
1512 return SDValue(); // empty struct
1513 SmallVector
<SDValue
, 4> Constants(NumElts
);
1514 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
1515 EVT EltVT
= ValueVTs
[i
];
1516 if (isa
<UndefValue
>(C
))
1517 Constants
[i
] = DAG
.getUNDEF(EltVT
);
1518 else if (EltVT
.isFloatingPoint())
1519 Constants
[i
] = DAG
.getConstantFP(0, getCurSDLoc(), EltVT
);
1521 Constants
[i
] = DAG
.getConstant(0, getCurSDLoc(), EltVT
);
1524 return DAG
.getMergeValues(Constants
, getCurSDLoc());
1527 if (const BlockAddress
*BA
= dyn_cast
<BlockAddress
>(C
))
1528 return DAG
.getBlockAddress(BA
, VT
);
1530 VectorType
*VecTy
= cast
<VectorType
>(V
->getType());
1531 unsigned NumElements
= VecTy
->getNumElements();
1533 // Now that we know the number and type of the elements, get that number of
1534 // elements into the Ops array based on what kind of constant it is.
1535 SmallVector
<SDValue
, 16> Ops
;
1536 if (const ConstantVector
*CV
= dyn_cast
<ConstantVector
>(C
)) {
1537 for (unsigned i
= 0; i
!= NumElements
; ++i
)
1538 Ops
.push_back(getValue(CV
->getOperand(i
)));
1540 assert(isa
<ConstantAggregateZero
>(C
) && "Unknown vector constant!");
1542 TLI
.getValueType(DAG
.getDataLayout(), VecTy
->getElementType());
1545 if (EltVT
.isFloatingPoint())
1546 Op
= DAG
.getConstantFP(0, getCurSDLoc(), EltVT
);
1548 Op
= DAG
.getConstant(0, getCurSDLoc(), EltVT
);
1549 Ops
.assign(NumElements
, Op
);
1552 // Create a BUILD_VECTOR node.
1553 return NodeMap
[V
] = DAG
.getBuildVector(VT
, getCurSDLoc(), Ops
);
1556 // If this is a static alloca, generate it as the frameindex instead of
1558 if (const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(V
)) {
1559 DenseMap
<const AllocaInst
*, int>::iterator SI
=
1560 FuncInfo
.StaticAllocaMap
.find(AI
);
1561 if (SI
!= FuncInfo
.StaticAllocaMap
.end())
1562 return DAG
.getFrameIndex(SI
->second
,
1563 TLI
.getFrameIndexTy(DAG
.getDataLayout()));
1566 // If this is an instruction which fast-isel has deferred, select it now.
1567 if (const Instruction
*Inst
= dyn_cast
<Instruction
>(V
)) {
1568 unsigned InReg
= FuncInfo
.InitializeRegForValue(Inst
);
1570 RegsForValue
RFV(*DAG
.getContext(), TLI
, DAG
.getDataLayout(), InReg
,
1571 Inst
->getType(), getABIRegCopyCC(V
));
1572 SDValue Chain
= DAG
.getEntryNode();
1573 return RFV
.getCopyFromRegs(DAG
, FuncInfo
, getCurSDLoc(), Chain
, nullptr, V
);
1576 llvm_unreachable("Can't get register for value!");
1579 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst
&I
) {
1580 auto Pers
= classifyEHPersonality(FuncInfo
.Fn
->getPersonalityFn());
1581 bool IsMSVCCXX
= Pers
== EHPersonality::MSVC_CXX
;
1582 bool IsCoreCLR
= Pers
== EHPersonality::CoreCLR
;
1583 bool IsSEH
= isAsynchronousEHPersonality(Pers
);
1584 bool IsWasmCXX
= Pers
== EHPersonality::Wasm_CXX
;
1585 MachineBasicBlock
*CatchPadMBB
= FuncInfo
.MBB
;
1587 CatchPadMBB
->setIsEHScopeEntry();
1588 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1589 if (IsMSVCCXX
|| IsCoreCLR
)
1590 CatchPadMBB
->setIsEHFuncletEntry();
1591 // Wasm does not need catchpads anymore
1593 DAG
.setRoot(DAG
.getNode(ISD::CATCHPAD
, getCurSDLoc(), MVT::Other
,
1597 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst
&I
) {
1598 // Update machine-CFG edge.
1599 MachineBasicBlock
*TargetMBB
= FuncInfo
.MBBMap
[I
.getSuccessor()];
1600 FuncInfo
.MBB
->addSuccessor(TargetMBB
);
1602 auto Pers
= classifyEHPersonality(FuncInfo
.Fn
->getPersonalityFn());
1603 bool IsSEH
= isAsynchronousEHPersonality(Pers
);
1605 // If this is not a fall-through branch or optimizations are switched off,
1607 if (TargetMBB
!= NextBlock(FuncInfo
.MBB
) ||
1608 TM
.getOptLevel() == CodeGenOpt::None
)
1609 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurSDLoc(), MVT::Other
,
1610 getControlRoot(), DAG
.getBasicBlock(TargetMBB
)));
1614 // Figure out the funclet membership for the catchret's successor.
1615 // This will be used by the FuncletLayout pass to determine how to order the
1617 // A 'catchret' returns to the outer scope's color.
1618 Value
*ParentPad
= I
.getCatchSwitchParentPad();
1619 const BasicBlock
*SuccessorColor
;
1620 if (isa
<ConstantTokenNone
>(ParentPad
))
1621 SuccessorColor
= &FuncInfo
.Fn
->getEntryBlock();
1623 SuccessorColor
= cast
<Instruction
>(ParentPad
)->getParent();
1624 assert(SuccessorColor
&& "No parent funclet for catchret!");
1625 MachineBasicBlock
*SuccessorColorMBB
= FuncInfo
.MBBMap
[SuccessorColor
];
1626 assert(SuccessorColorMBB
&& "No MBB for SuccessorColor!");
1628 // Create the terminator node.
1629 SDValue Ret
= DAG
.getNode(ISD::CATCHRET
, getCurSDLoc(), MVT::Other
,
1630 getControlRoot(), DAG
.getBasicBlock(TargetMBB
),
1631 DAG
.getBasicBlock(SuccessorColorMBB
));
1635 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst
&CPI
) {
1636 // Don't emit any special code for the cleanuppad instruction. It just marks
1637 // the start of an EH scope/funclet.
1638 FuncInfo
.MBB
->setIsEHScopeEntry();
1639 auto Pers
= classifyEHPersonality(FuncInfo
.Fn
->getPersonalityFn());
1640 if (Pers
!= EHPersonality::Wasm_CXX
) {
1641 FuncInfo
.MBB
->setIsEHFuncletEntry();
1642 FuncInfo
.MBB
->setIsCleanupFuncletEntry();
1646 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1647 // the control flow always stops at the single catch pad, as it does for a
1648 // cleanup pad. In case the exception caught is not of the types the catch pad
1649 // catches, it will be rethrown by a rethrow.
1650 static void findWasmUnwindDestinations(
1651 FunctionLoweringInfo
&FuncInfo
, const BasicBlock
*EHPadBB
,
1652 BranchProbability Prob
,
1653 SmallVectorImpl
<std::pair
<MachineBasicBlock
*, BranchProbability
>>
1656 const Instruction
*Pad
= EHPadBB
->getFirstNonPHI();
1657 if (isa
<CleanupPadInst
>(Pad
)) {
1658 // Stop on cleanup pads.
1659 UnwindDests
.emplace_back(FuncInfo
.MBBMap
[EHPadBB
], Prob
);
1660 UnwindDests
.back().first
->setIsEHScopeEntry();
1662 } else if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(Pad
)) {
1663 // Add the catchpad handlers to the possible destinations. We don't
1664 // continue to the unwind destination of the catchswitch for wasm.
1665 for (const BasicBlock
*CatchPadBB
: CatchSwitch
->handlers()) {
1666 UnwindDests
.emplace_back(FuncInfo
.MBBMap
[CatchPadBB
], Prob
);
1667 UnwindDests
.back().first
->setIsEHScopeEntry();
1676 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1677 /// many places it could ultimately go. In the IR, we have a single unwind
1678 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1679 /// This function skips over imaginary basic blocks that hold catchswitch
1680 /// instructions, and finds all the "real" machine
1681 /// basic block destinations. As those destinations may not be successors of
1682 /// EHPadBB, here we also calculate the edge probability to those destinations.
1683 /// The passed-in Prob is the edge probability to EHPadBB.
1684 static void findUnwindDestinations(
1685 FunctionLoweringInfo
&FuncInfo
, const BasicBlock
*EHPadBB
,
1686 BranchProbability Prob
,
1687 SmallVectorImpl
<std::pair
<MachineBasicBlock
*, BranchProbability
>>
1689 EHPersonality Personality
=
1690 classifyEHPersonality(FuncInfo
.Fn
->getPersonalityFn());
1691 bool IsMSVCCXX
= Personality
== EHPersonality::MSVC_CXX
;
1692 bool IsCoreCLR
= Personality
== EHPersonality::CoreCLR
;
1693 bool IsWasmCXX
= Personality
== EHPersonality::Wasm_CXX
;
1694 bool IsSEH
= isAsynchronousEHPersonality(Personality
);
1697 findWasmUnwindDestinations(FuncInfo
, EHPadBB
, Prob
, UnwindDests
);
1698 assert(UnwindDests
.size() <= 1 &&
1699 "There should be at most one unwind destination for wasm");
1704 const Instruction
*Pad
= EHPadBB
->getFirstNonPHI();
1705 BasicBlock
*NewEHPadBB
= nullptr;
1706 if (isa
<LandingPadInst
>(Pad
)) {
1707 // Stop on landingpads. They are not funclets.
1708 UnwindDests
.emplace_back(FuncInfo
.MBBMap
[EHPadBB
], Prob
);
1710 } else if (isa
<CleanupPadInst
>(Pad
)) {
1711 // Stop on cleanup pads. Cleanups are always funclet entries for all known
1713 UnwindDests
.emplace_back(FuncInfo
.MBBMap
[EHPadBB
], Prob
);
1714 UnwindDests
.back().first
->setIsEHScopeEntry();
1715 UnwindDests
.back().first
->setIsEHFuncletEntry();
1717 } else if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(Pad
)) {
1718 // Add the catchpad handlers to the possible destinations.
1719 for (const BasicBlock
*CatchPadBB
: CatchSwitch
->handlers()) {
1720 UnwindDests
.emplace_back(FuncInfo
.MBBMap
[CatchPadBB
], Prob
);
1721 // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1722 if (IsMSVCCXX
|| IsCoreCLR
)
1723 UnwindDests
.back().first
->setIsEHFuncletEntry();
1725 UnwindDests
.back().first
->setIsEHScopeEntry();
1727 NewEHPadBB
= CatchSwitch
->getUnwindDest();
1732 BranchProbabilityInfo
*BPI
= FuncInfo
.BPI
;
1733 if (BPI
&& NewEHPadBB
)
1734 Prob
*= BPI
->getEdgeProbability(EHPadBB
, NewEHPadBB
);
1735 EHPadBB
= NewEHPadBB
;
1739 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst
&I
) {
1740 // Update successor info.
1741 SmallVector
<std::pair
<MachineBasicBlock
*, BranchProbability
>, 1> UnwindDests
;
1742 auto UnwindDest
= I
.getUnwindDest();
1743 BranchProbabilityInfo
*BPI
= FuncInfo
.BPI
;
1744 BranchProbability UnwindDestProb
=
1746 ? BPI
->getEdgeProbability(FuncInfo
.MBB
->getBasicBlock(), UnwindDest
)
1747 : BranchProbability::getZero();
1748 findUnwindDestinations(FuncInfo
, UnwindDest
, UnwindDestProb
, UnwindDests
);
1749 for (auto &UnwindDest
: UnwindDests
) {
1750 UnwindDest
.first
->setIsEHPad();
1751 addSuccessorWithProb(FuncInfo
.MBB
, UnwindDest
.first
, UnwindDest
.second
);
1753 FuncInfo
.MBB
->normalizeSuccProbs();
1755 // Create the terminator node.
1757 DAG
.getNode(ISD::CLEANUPRET
, getCurSDLoc(), MVT::Other
, getControlRoot());
1761 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst
&CSI
) {
1762 report_fatal_error("visitCatchSwitch not yet implemented!");
1765 void SelectionDAGBuilder::visitRet(const ReturnInst
&I
) {
1766 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
1767 auto &DL
= DAG
.getDataLayout();
1768 SDValue Chain
= getControlRoot();
1769 SmallVector
<ISD::OutputArg
, 8> Outs
;
1770 SmallVector
<SDValue
, 8> OutVals
;
1772 // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1775 // %val = call <ty> @llvm.experimental.deoptimize()
1779 if (I
.getParent()->getTerminatingDeoptimizeCall()) {
1780 LowerDeoptimizingReturn();
1784 if (!FuncInfo
.CanLowerReturn
) {
1785 unsigned DemoteReg
= FuncInfo
.DemoteRegister
;
1786 const Function
*F
= I
.getParent()->getParent();
1788 // Emit a store of the return value through the virtual register.
1789 // Leave Outs empty so that LowerReturn won't try to load return
1790 // registers the usual way.
1791 SmallVector
<EVT
, 1> PtrValueVTs
;
1792 ComputeValueVTs(TLI
, DL
,
1793 F
->getReturnType()->getPointerTo(
1794 DAG
.getDataLayout().getAllocaAddrSpace()),
1797 SDValue RetPtr
= DAG
.getCopyFromReg(DAG
.getEntryNode(), getCurSDLoc(),
1798 DemoteReg
, PtrValueVTs
[0]);
1799 SDValue RetOp
= getValue(I
.getOperand(0));
1801 SmallVector
<EVT
, 4> ValueVTs
, MemVTs
;
1802 SmallVector
<uint64_t, 4> Offsets
;
1803 ComputeValueVTs(TLI
, DL
, I
.getOperand(0)->getType(), ValueVTs
, &MemVTs
,
1805 unsigned NumValues
= ValueVTs
.size();
1807 SmallVector
<SDValue
, 4> Chains(NumValues
);
1808 for (unsigned i
= 0; i
!= NumValues
; ++i
) {
1809 // An aggregate return value cannot wrap around the address space, so
1810 // offsets to its parts don't wrap either.
1811 SDValue Ptr
= DAG
.getObjectPtrOffset(getCurSDLoc(), RetPtr
, Offsets
[i
]);
1813 SDValue Val
= RetOp
.getValue(i
);
1814 if (MemVTs
[i
] != ValueVTs
[i
])
1815 Val
= DAG
.getPtrExtOrTrunc(Val
, getCurSDLoc(), MemVTs
[i
]);
1816 Chains
[i
] = DAG
.getStore(Chain
, getCurSDLoc(), Val
,
1817 // FIXME: better loc info would be nice.
1818 Ptr
, MachinePointerInfo::getUnknownStack(DAG
.getMachineFunction()));
1821 Chain
= DAG
.getNode(ISD::TokenFactor
, getCurSDLoc(),
1822 MVT::Other
, Chains
);
1823 } else if (I
.getNumOperands() != 0) {
1824 SmallVector
<EVT
, 4> ValueVTs
;
1825 ComputeValueVTs(TLI
, DL
, I
.getOperand(0)->getType(), ValueVTs
);
1826 unsigned NumValues
= ValueVTs
.size();
1828 SDValue RetOp
= getValue(I
.getOperand(0));
1830 const Function
*F
= I
.getParent()->getParent();
1832 bool NeedsRegBlock
= TLI
.functionArgumentNeedsConsecutiveRegisters(
1833 I
.getOperand(0)->getType(), F
->getCallingConv(),
1834 /*IsVarArg*/ false);
1836 ISD::NodeType ExtendKind
= ISD::ANY_EXTEND
;
1837 if (F
->getAttributes().hasAttribute(AttributeList::ReturnIndex
,
1839 ExtendKind
= ISD::SIGN_EXTEND
;
1840 else if (F
->getAttributes().hasAttribute(AttributeList::ReturnIndex
,
1842 ExtendKind
= ISD::ZERO_EXTEND
;
1844 LLVMContext
&Context
= F
->getContext();
1845 bool RetInReg
= F
->getAttributes().hasAttribute(
1846 AttributeList::ReturnIndex
, Attribute::InReg
);
1848 for (unsigned j
= 0; j
!= NumValues
; ++j
) {
1849 EVT VT
= ValueVTs
[j
];
1851 if (ExtendKind
!= ISD::ANY_EXTEND
&& VT
.isInteger())
1852 VT
= TLI
.getTypeForExtReturn(Context
, VT
, ExtendKind
);
1854 CallingConv::ID CC
= F
->getCallingConv();
1856 unsigned NumParts
= TLI
.getNumRegistersForCallingConv(Context
, CC
, VT
);
1857 MVT PartVT
= TLI
.getRegisterTypeForCallingConv(Context
, CC
, VT
);
1858 SmallVector
<SDValue
, 4> Parts(NumParts
);
1859 getCopyToParts(DAG
, getCurSDLoc(),
1860 SDValue(RetOp
.getNode(), RetOp
.getResNo() + j
),
1861 &Parts
[0], NumParts
, PartVT
, &I
, CC
, ExtendKind
);
1863 // 'inreg' on function refers to return value
1864 ISD::ArgFlagsTy Flags
= ISD::ArgFlagsTy();
1868 if (I
.getOperand(0)->getType()->isPointerTy()) {
1870 Flags
.setPointerAddrSpace(
1871 cast
<PointerType
>(I
.getOperand(0)->getType())->getAddressSpace());
1874 if (NeedsRegBlock
) {
1875 Flags
.setInConsecutiveRegs();
1876 if (j
== NumValues
- 1)
1877 Flags
.setInConsecutiveRegsLast();
1880 // Propagate extension type if any
1881 if (ExtendKind
== ISD::SIGN_EXTEND
)
1883 else if (ExtendKind
== ISD::ZERO_EXTEND
)
1886 for (unsigned i
= 0; i
< NumParts
; ++i
) {
1887 Outs
.push_back(ISD::OutputArg(Flags
, Parts
[i
].getValueType(),
1888 VT
, /*isfixed=*/true, 0, 0));
1889 OutVals
.push_back(Parts
[i
]);
1895 // Push in swifterror virtual register as the last element of Outs. This makes
1896 // sure swifterror virtual register will be returned in the swifterror
1897 // physical register.
1898 const Function
*F
= I
.getParent()->getParent();
1899 if (TLI
.supportSwiftError() &&
1900 F
->getAttributes().hasAttrSomewhere(Attribute::SwiftError
)) {
1901 assert(SwiftError
.getFunctionArg() && "Need a swift error argument");
1902 ISD::ArgFlagsTy Flags
= ISD::ArgFlagsTy();
1903 Flags
.setSwiftError();
1904 Outs
.push_back(ISD::OutputArg(Flags
, EVT(TLI
.getPointerTy(DL
)) /*vt*/,
1905 EVT(TLI
.getPointerTy(DL
)) /*argvt*/,
1906 true /*isfixed*/, 1 /*origidx*/,
1908 // Create SDNode for the swifterror virtual register.
1910 DAG
.getRegister(SwiftError
.getOrCreateVRegUseAt(
1911 &I
, FuncInfo
.MBB
, SwiftError
.getFunctionArg()),
1912 EVT(TLI
.getPointerTy(DL
))));
1915 bool isVarArg
= DAG
.getMachineFunction().getFunction().isVarArg();
1916 CallingConv::ID CallConv
=
1917 DAG
.getMachineFunction().getFunction().getCallingConv();
1918 Chain
= DAG
.getTargetLoweringInfo().LowerReturn(
1919 Chain
, CallConv
, isVarArg
, Outs
, OutVals
, getCurSDLoc(), DAG
);
1921 // Verify that the target's LowerReturn behaved as expected.
1922 assert(Chain
.getNode() && Chain
.getValueType() == MVT::Other
&&
1923 "LowerReturn didn't return a valid chain!");
1925 // Update the DAG with the new chain value resulting from return lowering.
1929 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1930 /// created for it, emit nodes to copy the value into the virtual
1932 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value
*V
) {
1934 if (V
->getType()->isEmptyTy())
1937 DenseMap
<const Value
*, unsigned>::iterator VMI
= FuncInfo
.ValueMap
.find(V
);
1938 if (VMI
!= FuncInfo
.ValueMap
.end()) {
1939 assert(!V
->use_empty() && "Unused value assigned virtual registers!");
1940 CopyValueToVirtualRegister(V
, VMI
->second
);
1944 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1945 /// the current basic block, add it to ValueMap now so that we'll get a
1947 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value
*V
) {
1948 // No need to export constants.
1949 if (!isa
<Instruction
>(V
) && !isa
<Argument
>(V
)) return;
1951 // Already exported?
1952 if (FuncInfo
.isExportedInst(V
)) return;
1954 unsigned Reg
= FuncInfo
.InitializeRegForValue(V
);
1955 CopyValueToVirtualRegister(V
, Reg
);
1958 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value
*V
,
1959 const BasicBlock
*FromBB
) {
1960 // The operands of the setcc have to be in this block. We don't know
1961 // how to export them from some other block.
1962 if (const Instruction
*VI
= dyn_cast
<Instruction
>(V
)) {
1963 // Can export from current BB.
1964 if (VI
->getParent() == FromBB
)
1967 // Is already exported, noop.
1968 return FuncInfo
.isExportedInst(V
);
1971 // If this is an argument, we can export it if the BB is the entry block or
1972 // if it is already exported.
1973 if (isa
<Argument
>(V
)) {
1974 if (FromBB
== &FromBB
->getParent()->getEntryBlock())
1977 // Otherwise, can only export this if it is already exported.
1978 return FuncInfo
.isExportedInst(V
);
1981 // Otherwise, constants can always be exported.
1985 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1987 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock
*Src
,
1988 const MachineBasicBlock
*Dst
) const {
1989 BranchProbabilityInfo
*BPI
= FuncInfo
.BPI
;
1990 const BasicBlock
*SrcBB
= Src
->getBasicBlock();
1991 const BasicBlock
*DstBB
= Dst
->getBasicBlock();
1993 // If BPI is not available, set the default probability as 1 / N, where N is
1994 // the number of successors.
1995 auto SuccSize
= std::max
<uint32_t>(succ_size(SrcBB
), 1);
1996 return BranchProbability(1, SuccSize
);
1998 return BPI
->getEdgeProbability(SrcBB
, DstBB
);
2001 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock
*Src
,
2002 MachineBasicBlock
*Dst
,
2003 BranchProbability Prob
) {
2005 Src
->addSuccessorWithoutProb(Dst
);
2007 if (Prob
.isUnknown())
2008 Prob
= getEdgeProbability(Src
, Dst
);
2009 Src
->addSuccessor(Dst
, Prob
);
2013 static bool InBlock(const Value
*V
, const BasicBlock
*BB
) {
2014 if (const Instruction
*I
= dyn_cast
<Instruction
>(V
))
2015 return I
->getParent() == BB
;
2019 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2020 /// This function emits a branch and is used at the leaves of an OR or an
2021 /// AND operator tree.
2023 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value
*Cond
,
2024 MachineBasicBlock
*TBB
,
2025 MachineBasicBlock
*FBB
,
2026 MachineBasicBlock
*CurBB
,
2027 MachineBasicBlock
*SwitchBB
,
2028 BranchProbability TProb
,
2029 BranchProbability FProb
,
2031 const BasicBlock
*BB
= CurBB
->getBasicBlock();
2033 // If the leaf of the tree is a comparison, merge the condition into
2035 if (const CmpInst
*BOp
= dyn_cast
<CmpInst
>(Cond
)) {
2036 // The operands of the cmp have to be in this block. We don't know
2037 // how to export them from some other block. If this is the first block
2038 // of the sequence, no exporting is needed.
2039 if (CurBB
== SwitchBB
||
2040 (isExportableFromCurrentBlock(BOp
->getOperand(0), BB
) &&
2041 isExportableFromCurrentBlock(BOp
->getOperand(1), BB
))) {
2042 ISD::CondCode Condition
;
2043 if (const ICmpInst
*IC
= dyn_cast
<ICmpInst
>(Cond
)) {
2044 ICmpInst::Predicate Pred
=
2045 InvertCond
? IC
->getInversePredicate() : IC
->getPredicate();
2046 Condition
= getICmpCondCode(Pred
);
2048 const FCmpInst
*FC
= cast
<FCmpInst
>(Cond
);
2049 FCmpInst::Predicate Pred
=
2050 InvertCond
? FC
->getInversePredicate() : FC
->getPredicate();
2051 Condition
= getFCmpCondCode(Pred
);
2052 if (TM
.Options
.NoNaNsFPMath
)
2053 Condition
= getFCmpCodeWithoutNaN(Condition
);
2056 CaseBlock
CB(Condition
, BOp
->getOperand(0), BOp
->getOperand(1), nullptr,
2057 TBB
, FBB
, CurBB
, getCurSDLoc(), TProb
, FProb
);
2058 SL
->SwitchCases
.push_back(CB
);
2063 // Create a CaseBlock record representing this branch.
2064 ISD::CondCode Opc
= InvertCond
? ISD::SETNE
: ISD::SETEQ
;
2065 CaseBlock
CB(Opc
, Cond
, ConstantInt::getTrue(*DAG
.getContext()),
2066 nullptr, TBB
, FBB
, CurBB
, getCurSDLoc(), TProb
, FProb
);
2067 SL
->SwitchCases
.push_back(CB
);
2070 void SelectionDAGBuilder::FindMergedConditions(const Value
*Cond
,
2071 MachineBasicBlock
*TBB
,
2072 MachineBasicBlock
*FBB
,
2073 MachineBasicBlock
*CurBB
,
2074 MachineBasicBlock
*SwitchBB
,
2075 Instruction::BinaryOps Opc
,
2076 BranchProbability TProb
,
2077 BranchProbability FProb
,
2079 // Skip over not part of the tree and remember to invert op and operands at
2082 if (match(Cond
, m_OneUse(m_Not(m_Value(NotCond
)))) &&
2083 InBlock(NotCond
, CurBB
->getBasicBlock())) {
2084 FindMergedConditions(NotCond
, TBB
, FBB
, CurBB
, SwitchBB
, Opc
, TProb
, FProb
,
2089 const Instruction
*BOp
= dyn_cast
<Instruction
>(Cond
);
2090 // Compute the effective opcode for Cond, taking into account whether it needs
2091 // to be inverted, e.g.
2092 // and (not (or A, B)), C
2094 // and (and (not A, not B), C)
2097 BOpc
= BOp
->getOpcode();
2099 if (BOpc
== Instruction::And
)
2100 BOpc
= Instruction::Or
;
2101 else if (BOpc
== Instruction::Or
)
2102 BOpc
= Instruction::And
;
2106 // If this node is not part of the or/and tree, emit it as a branch.
2107 if (!BOp
|| !(isa
<BinaryOperator
>(BOp
) || isa
<CmpInst
>(BOp
)) ||
2108 BOpc
!= unsigned(Opc
) || !BOp
->hasOneUse() ||
2109 BOp
->getParent() != CurBB
->getBasicBlock() ||
2110 !InBlock(BOp
->getOperand(0), CurBB
->getBasicBlock()) ||
2111 !InBlock(BOp
->getOperand(1), CurBB
->getBasicBlock())) {
2112 EmitBranchForMergedCondition(Cond
, TBB
, FBB
, CurBB
, SwitchBB
,
2113 TProb
, FProb
, InvertCond
);
2117 // Create TmpBB after CurBB.
2118 MachineFunction::iterator
BBI(CurBB
);
2119 MachineFunction
&MF
= DAG
.getMachineFunction();
2120 MachineBasicBlock
*TmpBB
= MF
.CreateMachineBasicBlock(CurBB
->getBasicBlock());
2121 CurBB
->getParent()->insert(++BBI
, TmpBB
);
2123 if (Opc
== Instruction::Or
) {
2124 // Codegen X | Y as:
2133 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2134 // The requirement is that
2135 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2136 // = TrueProb for original BB.
2137 // Assuming the original probabilities are A and B, one choice is to set
2138 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2139 // A/(1+B) and 2B/(1+B). This choice assumes that
2140 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2141 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2142 // TmpBB, but the math is more complicated.
2144 auto NewTrueProb
= TProb
/ 2;
2145 auto NewFalseProb
= TProb
/ 2 + FProb
;
2146 // Emit the LHS condition.
2147 FindMergedConditions(BOp
->getOperand(0), TBB
, TmpBB
, CurBB
, SwitchBB
, Opc
,
2148 NewTrueProb
, NewFalseProb
, InvertCond
);
2150 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2151 SmallVector
<BranchProbability
, 2> Probs
{TProb
/ 2, FProb
};
2152 BranchProbability::normalizeProbabilities(Probs
.begin(), Probs
.end());
2153 // Emit the RHS condition into TmpBB.
2154 FindMergedConditions(BOp
->getOperand(1), TBB
, FBB
, TmpBB
, SwitchBB
, Opc
,
2155 Probs
[0], Probs
[1], InvertCond
);
2157 assert(Opc
== Instruction::And
&& "Unknown merge op!");
2158 // Codegen X & Y as:
2166 // This requires creation of TmpBB after CurBB.
2168 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2169 // The requirement is that
2170 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2171 // = FalseProb for original BB.
2172 // Assuming the original probabilities are A and B, one choice is to set
2173 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2174 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2175 // TrueProb for BB1 * FalseProb for TmpBB.
2177 auto NewTrueProb
= TProb
+ FProb
/ 2;
2178 auto NewFalseProb
= FProb
/ 2;
2179 // Emit the LHS condition.
2180 FindMergedConditions(BOp
->getOperand(0), TmpBB
, FBB
, CurBB
, SwitchBB
, Opc
,
2181 NewTrueProb
, NewFalseProb
, InvertCond
);
2183 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2184 SmallVector
<BranchProbability
, 2> Probs
{TProb
, FProb
/ 2};
2185 BranchProbability::normalizeProbabilities(Probs
.begin(), Probs
.end());
2186 // Emit the RHS condition into TmpBB.
2187 FindMergedConditions(BOp
->getOperand(1), TBB
, FBB
, TmpBB
, SwitchBB
, Opc
,
2188 Probs
[0], Probs
[1], InvertCond
);
2192 /// If the set of cases should be emitted as a series of branches, return true.
2193 /// If we should emit this as a bunch of and/or'd together conditions, return
2196 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector
<CaseBlock
> &Cases
) {
2197 if (Cases
.size() != 2) return true;
2199 // If this is two comparisons of the same values or'd or and'd together, they
2200 // will get folded into a single comparison, so don't emit two blocks.
2201 if ((Cases
[0].CmpLHS
== Cases
[1].CmpLHS
&&
2202 Cases
[0].CmpRHS
== Cases
[1].CmpRHS
) ||
2203 (Cases
[0].CmpRHS
== Cases
[1].CmpLHS
&&
2204 Cases
[0].CmpLHS
== Cases
[1].CmpRHS
)) {
2208 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2209 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2210 if (Cases
[0].CmpRHS
== Cases
[1].CmpRHS
&&
2211 Cases
[0].CC
== Cases
[1].CC
&&
2212 isa
<Constant
>(Cases
[0].CmpRHS
) &&
2213 cast
<Constant
>(Cases
[0].CmpRHS
)->isNullValue()) {
2214 if (Cases
[0].CC
== ISD::SETEQ
&& Cases
[0].TrueBB
== Cases
[1].ThisBB
)
2216 if (Cases
[0].CC
== ISD::SETNE
&& Cases
[0].FalseBB
== Cases
[1].ThisBB
)
2223 void SelectionDAGBuilder::visitBr(const BranchInst
&I
) {
2224 MachineBasicBlock
*BrMBB
= FuncInfo
.MBB
;
2226 // Update machine-CFG edges.
2227 MachineBasicBlock
*Succ0MBB
= FuncInfo
.MBBMap
[I
.getSuccessor(0)];
2229 if (I
.isUnconditional()) {
2230 // Update machine-CFG edges.
2231 BrMBB
->addSuccessor(Succ0MBB
);
2233 // If this is not a fall-through branch or optimizations are switched off,
2235 if (Succ0MBB
!= NextBlock(BrMBB
) || TM
.getOptLevel() == CodeGenOpt::None
)
2236 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurSDLoc(),
2237 MVT::Other
, getControlRoot(),
2238 DAG
.getBasicBlock(Succ0MBB
)));
2243 // If this condition is one of the special cases we handle, do special stuff
2245 const Value
*CondVal
= I
.getCondition();
2246 MachineBasicBlock
*Succ1MBB
= FuncInfo
.MBBMap
[I
.getSuccessor(1)];
2248 // If this is a series of conditions that are or'd or and'd together, emit
2249 // this as a sequence of branches instead of setcc's with and/or operations.
2250 // As long as jumps are not expensive, this should improve performance.
2251 // For example, instead of something like:
2263 if (const BinaryOperator
*BOp
= dyn_cast
<BinaryOperator
>(CondVal
)) {
2264 Instruction::BinaryOps Opcode
= BOp
->getOpcode();
2265 if (!DAG
.getTargetLoweringInfo().isJumpExpensive() && BOp
->hasOneUse() &&
2266 !I
.getMetadata(LLVMContext::MD_unpredictable
) &&
2267 (Opcode
== Instruction::And
|| Opcode
== Instruction::Or
)) {
2268 FindMergedConditions(BOp
, Succ0MBB
, Succ1MBB
, BrMBB
, BrMBB
,
2270 getEdgeProbability(BrMBB
, Succ0MBB
),
2271 getEdgeProbability(BrMBB
, Succ1MBB
),
2272 /*InvertCond=*/false);
2273 // If the compares in later blocks need to use values not currently
2274 // exported from this block, export them now. This block should always
2275 // be the first entry.
2276 assert(SL
->SwitchCases
[0].ThisBB
== BrMBB
&& "Unexpected lowering!");
2278 // Allow some cases to be rejected.
2279 if (ShouldEmitAsBranches(SL
->SwitchCases
)) {
2280 for (unsigned i
= 1, e
= SL
->SwitchCases
.size(); i
!= e
; ++i
) {
2281 ExportFromCurrentBlock(SL
->SwitchCases
[i
].CmpLHS
);
2282 ExportFromCurrentBlock(SL
->SwitchCases
[i
].CmpRHS
);
2285 // Emit the branch for this block.
2286 visitSwitchCase(SL
->SwitchCases
[0], BrMBB
);
2287 SL
->SwitchCases
.erase(SL
->SwitchCases
.begin());
2291 // Okay, we decided not to do this, remove any inserted MBB's and clear
2293 for (unsigned i
= 1, e
= SL
->SwitchCases
.size(); i
!= e
; ++i
)
2294 FuncInfo
.MF
->erase(SL
->SwitchCases
[i
].ThisBB
);
2296 SL
->SwitchCases
.clear();
2300 // Create a CaseBlock record representing this branch.
2301 CaseBlock
CB(ISD::SETEQ
, CondVal
, ConstantInt::getTrue(*DAG
.getContext()),
2302 nullptr, Succ0MBB
, Succ1MBB
, BrMBB
, getCurSDLoc());
2304 // Use visitSwitchCase to actually insert the fast branch sequence for this
2306 visitSwitchCase(CB
, BrMBB
);
2309 /// visitSwitchCase - Emits the necessary code to represent a single node in
2310 /// the binary search tree resulting from lowering a switch instruction.
2311 void SelectionDAGBuilder::visitSwitchCase(CaseBlock
&CB
,
2312 MachineBasicBlock
*SwitchBB
) {
2314 SDValue CondLHS
= getValue(CB
.CmpLHS
);
2317 if (CB
.CC
== ISD::SETTRUE
) {
2318 // Branch or fall through to TrueBB.
2319 addSuccessorWithProb(SwitchBB
, CB
.TrueBB
, CB
.TrueProb
);
2320 SwitchBB
->normalizeSuccProbs();
2321 if (CB
.TrueBB
!= NextBlock(SwitchBB
)) {
2322 DAG
.setRoot(DAG
.getNode(ISD::BR
, dl
, MVT::Other
, getControlRoot(),
2323 DAG
.getBasicBlock(CB
.TrueBB
)));
2328 auto &TLI
= DAG
.getTargetLoweringInfo();
2329 EVT MemVT
= TLI
.getMemValueType(DAG
.getDataLayout(), CB
.CmpLHS
->getType());
2331 // Build the setcc now.
2333 // Fold "(X == true)" to X and "(X == false)" to !X to
2334 // handle common cases produced by branch lowering.
2335 if (CB
.CmpRHS
== ConstantInt::getTrue(*DAG
.getContext()) &&
2336 CB
.CC
== ISD::SETEQ
)
2338 else if (CB
.CmpRHS
== ConstantInt::getFalse(*DAG
.getContext()) &&
2339 CB
.CC
== ISD::SETEQ
) {
2340 SDValue True
= DAG
.getConstant(1, dl
, CondLHS
.getValueType());
2341 Cond
= DAG
.getNode(ISD::XOR
, dl
, CondLHS
.getValueType(), CondLHS
, True
);
2343 SDValue CondRHS
= getValue(CB
.CmpRHS
);
2345 // If a pointer's DAG type is larger than its memory type then the DAG
2346 // values are zero-extended. This breaks signed comparisons so truncate
2347 // back to the underlying type before doing the compare.
2348 if (CondLHS
.getValueType() != MemVT
) {
2349 CondLHS
= DAG
.getPtrExtOrTrunc(CondLHS
, getCurSDLoc(), MemVT
);
2350 CondRHS
= DAG
.getPtrExtOrTrunc(CondRHS
, getCurSDLoc(), MemVT
);
2352 Cond
= DAG
.getSetCC(dl
, MVT::i1
, CondLHS
, CondRHS
, CB
.CC
);
2355 assert(CB
.CC
== ISD::SETLE
&& "Can handle only LE ranges now");
2357 const APInt
& Low
= cast
<ConstantInt
>(CB
.CmpLHS
)->getValue();
2358 const APInt
& High
= cast
<ConstantInt
>(CB
.CmpRHS
)->getValue();
2360 SDValue CmpOp
= getValue(CB
.CmpMHS
);
2361 EVT VT
= CmpOp
.getValueType();
2363 if (cast
<ConstantInt
>(CB
.CmpLHS
)->isMinValue(true)) {
2364 Cond
= DAG
.getSetCC(dl
, MVT::i1
, CmpOp
, DAG
.getConstant(High
, dl
, VT
),
2367 SDValue SUB
= DAG
.getNode(ISD::SUB
, dl
,
2368 VT
, CmpOp
, DAG
.getConstant(Low
, dl
, VT
));
2369 Cond
= DAG
.getSetCC(dl
, MVT::i1
, SUB
,
2370 DAG
.getConstant(High
-Low
, dl
, VT
), ISD::SETULE
);
2374 // Update successor info
2375 addSuccessorWithProb(SwitchBB
, CB
.TrueBB
, CB
.TrueProb
);
2376 // TrueBB and FalseBB are always different unless the incoming IR is
2377 // degenerate. This only happens when running llc on weird IR.
2378 if (CB
.TrueBB
!= CB
.FalseBB
)
2379 addSuccessorWithProb(SwitchBB
, CB
.FalseBB
, CB
.FalseProb
);
2380 SwitchBB
->normalizeSuccProbs();
2382 // If the lhs block is the next block, invert the condition so that we can
2383 // fall through to the lhs instead of the rhs block.
2384 if (CB
.TrueBB
== NextBlock(SwitchBB
)) {
2385 std::swap(CB
.TrueBB
, CB
.FalseBB
);
2386 SDValue True
= DAG
.getConstant(1, dl
, Cond
.getValueType());
2387 Cond
= DAG
.getNode(ISD::XOR
, dl
, Cond
.getValueType(), Cond
, True
);
2390 SDValue BrCond
= DAG
.getNode(ISD::BRCOND
, dl
,
2391 MVT::Other
, getControlRoot(), Cond
,
2392 DAG
.getBasicBlock(CB
.TrueBB
));
2394 // Insert the false branch. Do this even if it's a fall through branch,
2395 // this makes it easier to do DAG optimizations which require inverting
2396 // the branch condition.
2397 BrCond
= DAG
.getNode(ISD::BR
, dl
, MVT::Other
, BrCond
,
2398 DAG
.getBasicBlock(CB
.FalseBB
));
2400 DAG
.setRoot(BrCond
);
2403 /// visitJumpTable - Emit JumpTable node in the current MBB
2404 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable
&JT
) {
2405 // Emit the code for the jump table
2406 assert(JT
.Reg
!= -1U && "Should lower JT Header first!");
2407 EVT PTy
= DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout());
2408 SDValue Index
= DAG
.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2410 SDValue Table
= DAG
.getJumpTable(JT
.JTI
, PTy
);
2411 SDValue BrJumpTable
= DAG
.getNode(ISD::BR_JT
, getCurSDLoc(),
2412 MVT::Other
, Index
.getValue(1),
2414 DAG
.setRoot(BrJumpTable
);
2417 /// visitJumpTableHeader - This function emits necessary code to produce index
2418 /// in the JumpTable from switch case.
2419 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable
&JT
,
2420 JumpTableHeader
&JTH
,
2421 MachineBasicBlock
*SwitchBB
) {
2422 SDLoc dl
= getCurSDLoc();
2424 // Subtract the lowest switch case value from the value being switched on.
2425 SDValue SwitchOp
= getValue(JTH
.SValue
);
2426 EVT VT
= SwitchOp
.getValueType();
2427 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, VT
, SwitchOp
,
2428 DAG
.getConstant(JTH
.First
, dl
, VT
));
2430 // The SDNode we just created, which holds the value being switched on minus
2431 // the smallest case value, needs to be copied to a virtual register so it
2432 // can be used as an index into the jump table in a subsequent basic block.
2433 // This value may be smaller or larger than the target's pointer type, and
2434 // therefore require extension or truncating.
2435 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2436 SwitchOp
= DAG
.getZExtOrTrunc(Sub
, dl
, TLI
.getPointerTy(DAG
.getDataLayout()));
2438 unsigned JumpTableReg
=
2439 FuncInfo
.CreateReg(TLI
.getPointerTy(DAG
.getDataLayout()));
2440 SDValue CopyTo
= DAG
.getCopyToReg(getControlRoot(), dl
,
2441 JumpTableReg
, SwitchOp
);
2442 JT
.Reg
= JumpTableReg
;
2444 if (!JTH
.OmitRangeCheck
) {
2445 // Emit the range check for the jump table, and branch to the default block
2446 // for the switch statement if the value being switched on exceeds the
2447 // largest case in the switch.
2448 SDValue CMP
= DAG
.getSetCC(
2449 dl
, TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(),
2450 Sub
.getValueType()),
2451 Sub
, DAG
.getConstant(JTH
.Last
- JTH
.First
, dl
, VT
), ISD::SETUGT
);
2453 SDValue BrCond
= DAG
.getNode(ISD::BRCOND
, dl
,
2454 MVT::Other
, CopyTo
, CMP
,
2455 DAG
.getBasicBlock(JT
.Default
));
2457 // Avoid emitting unnecessary branches to the next block.
2458 if (JT
.MBB
!= NextBlock(SwitchBB
))
2459 BrCond
= DAG
.getNode(ISD::BR
, dl
, MVT::Other
, BrCond
,
2460 DAG
.getBasicBlock(JT
.MBB
));
2462 DAG
.setRoot(BrCond
);
2464 // Avoid emitting unnecessary branches to the next block.
2465 if (JT
.MBB
!= NextBlock(SwitchBB
))
2466 DAG
.setRoot(DAG
.getNode(ISD::BR
, dl
, MVT::Other
, CopyTo
,
2467 DAG
.getBasicBlock(JT
.MBB
)));
2469 DAG
.setRoot(CopyTo
);
2473 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2474 /// variable if there exists one.
2475 static SDValue
getLoadStackGuard(SelectionDAG
&DAG
, const SDLoc
&DL
,
2477 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2478 EVT PtrTy
= TLI
.getPointerTy(DAG
.getDataLayout());
2479 EVT PtrMemTy
= TLI
.getPointerMemTy(DAG
.getDataLayout());
2480 MachineFunction
&MF
= DAG
.getMachineFunction();
2481 Value
*Global
= TLI
.getSDagStackGuard(*MF
.getFunction().getParent());
2482 MachineSDNode
*Node
=
2483 DAG
.getMachineNode(TargetOpcode::LOAD_STACK_GUARD
, DL
, PtrTy
, Chain
);
2485 MachinePointerInfo
MPInfo(Global
);
2486 auto Flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOInvariant
|
2487 MachineMemOperand::MODereferenceable
;
2488 MachineMemOperand
*MemRef
= MF
.getMachineMemOperand(
2489 MPInfo
, Flags
, PtrTy
.getSizeInBits() / 8, DAG
.getEVTAlignment(PtrTy
));
2490 DAG
.setNodeMemRefs(Node
, {MemRef
});
2492 if (PtrTy
!= PtrMemTy
)
2493 return DAG
.getPtrExtOrTrunc(SDValue(Node
, 0), DL
, PtrMemTy
);
2494 return SDValue(Node
, 0);
2497 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2498 /// tail spliced into a stack protector check success bb.
2500 /// For a high level explanation of how this fits into the stack protector
2501 /// generation see the comment on the declaration of class
2502 /// StackProtectorDescriptor.
2503 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor
&SPD
,
2504 MachineBasicBlock
*ParentBB
) {
2506 // First create the loads to the guard/stack slot for the comparison.
2507 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2508 EVT PtrTy
= TLI
.getPointerTy(DAG
.getDataLayout());
2509 EVT PtrMemTy
= TLI
.getPointerMemTy(DAG
.getDataLayout());
2511 MachineFrameInfo
&MFI
= ParentBB
->getParent()->getFrameInfo();
2512 int FI
= MFI
.getStackProtectorIndex();
2515 SDLoc dl
= getCurSDLoc();
2516 SDValue StackSlotPtr
= DAG
.getFrameIndex(FI
, PtrTy
);
2517 const Module
&M
= *ParentBB
->getParent()->getFunction().getParent();
2518 unsigned Align
= DL
->getPrefTypeAlignment(Type::getInt8PtrTy(M
.getContext()));
2520 // Generate code to load the content of the guard slot.
2521 SDValue GuardVal
= DAG
.getLoad(
2522 PtrMemTy
, dl
, DAG
.getEntryNode(), StackSlotPtr
,
2523 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
), Align
,
2524 MachineMemOperand::MOVolatile
);
2526 if (TLI
.useStackGuardXorFP())
2527 GuardVal
= TLI
.emitStackGuardXorFP(DAG
, GuardVal
, dl
);
2529 // Retrieve guard check function, nullptr if instrumentation is inlined.
2530 if (const Function
*GuardCheckFn
= TLI
.getSSPStackGuardCheck(M
)) {
2531 // The target provides a guard check function to validate the guard value.
2532 // Generate a call to that function with the content of the guard slot as
2534 FunctionType
*FnTy
= GuardCheckFn
->getFunctionType();
2535 assert(FnTy
->getNumParams() == 1 && "Invalid function signature");
2537 TargetLowering::ArgListTy Args
;
2538 TargetLowering::ArgListEntry Entry
;
2539 Entry
.Node
= GuardVal
;
2540 Entry
.Ty
= FnTy
->getParamType(0);
2541 if (GuardCheckFn
->hasAttribute(1, Attribute::AttrKind::InReg
))
2542 Entry
.IsInReg
= true;
2543 Args
.push_back(Entry
);
2545 TargetLowering::CallLoweringInfo
CLI(DAG
);
2546 CLI
.setDebugLoc(getCurSDLoc())
2547 .setChain(DAG
.getEntryNode())
2548 .setCallee(GuardCheckFn
->getCallingConv(), FnTy
->getReturnType(),
2549 getValue(GuardCheckFn
), std::move(Args
));
2551 std::pair
<SDValue
, SDValue
> Result
= TLI
.LowerCallTo(CLI
);
2552 DAG
.setRoot(Result
.second
);
2556 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2557 // Otherwise, emit a volatile load to retrieve the stack guard value.
2558 SDValue Chain
= DAG
.getEntryNode();
2559 if (TLI
.useLoadStackGuardNode()) {
2560 Guard
= getLoadStackGuard(DAG
, dl
, Chain
);
2562 const Value
*IRGuard
= TLI
.getSDagStackGuard(M
);
2563 SDValue GuardPtr
= getValue(IRGuard
);
2565 Guard
= DAG
.getLoad(PtrMemTy
, dl
, Chain
, GuardPtr
,
2566 MachinePointerInfo(IRGuard
, 0), Align
,
2567 MachineMemOperand::MOVolatile
);
2570 // Perform the comparison via a subtract/getsetcc.
2571 EVT VT
= Guard
.getValueType();
2572 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, VT
, Guard
, GuardVal
);
2574 SDValue Cmp
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(DAG
.getDataLayout(),
2576 Sub
.getValueType()),
2577 Sub
, DAG
.getConstant(0, dl
, VT
), ISD::SETNE
);
2579 // If the sub is not 0, then we know the guard/stackslot do not equal, so
2580 // branch to failure MBB.
2581 SDValue BrCond
= DAG
.getNode(ISD::BRCOND
, dl
,
2582 MVT::Other
, GuardVal
.getOperand(0),
2583 Cmp
, DAG
.getBasicBlock(SPD
.getFailureMBB()));
2584 // Otherwise branch to success MBB.
2585 SDValue Br
= DAG
.getNode(ISD::BR
, dl
,
2587 DAG
.getBasicBlock(SPD
.getSuccessMBB()));
2592 /// Codegen the failure basic block for a stack protector check.
2594 /// A failure stack protector machine basic block consists simply of a call to
2595 /// __stack_chk_fail().
2597 /// For a high level explanation of how this fits into the stack protector
2598 /// generation see the comment on the declaration of class
2599 /// StackProtectorDescriptor.
2601 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor
&SPD
) {
2602 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2604 TLI
.makeLibCall(DAG
, RTLIB::STACKPROTECTOR_CHECK_FAIL
, MVT::isVoid
,
2605 None
, false, getCurSDLoc(), false, false).second
;
2606 // On PS4, the "return address" must still be within the calling function,
2607 // even if it's at the very end, so emit an explicit TRAP here.
2608 // Passing 'true' for doesNotReturn above won't generate the trap for us.
2609 if (TM
.getTargetTriple().isPS4CPU())
2610 Chain
= DAG
.getNode(ISD::TRAP
, getCurSDLoc(), MVT::Other
, Chain
);
2615 /// visitBitTestHeader - This function emits necessary code to produce value
2616 /// suitable for "bit tests"
2617 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock
&B
,
2618 MachineBasicBlock
*SwitchBB
) {
2619 SDLoc dl
= getCurSDLoc();
2621 // Subtract the minimum value
2622 SDValue SwitchOp
= getValue(B
.SValue
);
2623 EVT VT
= SwitchOp
.getValueType();
2624 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, VT
, SwitchOp
,
2625 DAG
.getConstant(B
.First
, dl
, VT
));
2628 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2629 SDValue RangeCmp
= DAG
.getSetCC(
2630 dl
, TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(),
2631 Sub
.getValueType()),
2632 Sub
, DAG
.getConstant(B
.Range
, dl
, VT
), ISD::SETUGT
);
2634 // Determine the type of the test operands.
2635 bool UsePtrType
= false;
2636 if (!TLI
.isTypeLegal(VT
))
2639 for (unsigned i
= 0, e
= B
.Cases
.size(); i
!= e
; ++i
)
2640 if (!isUIntN(VT
.getSizeInBits(), B
.Cases
[i
].Mask
)) {
2641 // Switch table case range are encoded into series of masks.
2642 // Just use pointer type, it's guaranteed to fit.
2648 VT
= TLI
.getPointerTy(DAG
.getDataLayout());
2649 Sub
= DAG
.getZExtOrTrunc(Sub
, dl
, VT
);
2652 B
.RegVT
= VT
.getSimpleVT();
2653 B
.Reg
= FuncInfo
.CreateReg(B
.RegVT
);
2654 SDValue CopyTo
= DAG
.getCopyToReg(getControlRoot(), dl
, B
.Reg
, Sub
);
2656 MachineBasicBlock
* MBB
= B
.Cases
[0].ThisBB
;
2658 addSuccessorWithProb(SwitchBB
, B
.Default
, B
.DefaultProb
);
2659 addSuccessorWithProb(SwitchBB
, MBB
, B
.Prob
);
2660 SwitchBB
->normalizeSuccProbs();
2662 SDValue BrRange
= DAG
.getNode(ISD::BRCOND
, dl
,
2663 MVT::Other
, CopyTo
, RangeCmp
,
2664 DAG
.getBasicBlock(B
.Default
));
2666 // Avoid emitting unnecessary branches to the next block.
2667 if (MBB
!= NextBlock(SwitchBB
))
2668 BrRange
= DAG
.getNode(ISD::BR
, dl
, MVT::Other
, BrRange
,
2669 DAG
.getBasicBlock(MBB
));
2671 DAG
.setRoot(BrRange
);
2674 /// visitBitTestCase - this function produces one "bit test"
2675 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock
&BB
,
2676 MachineBasicBlock
* NextMBB
,
2677 BranchProbability BranchProbToNext
,
2680 MachineBasicBlock
*SwitchBB
) {
2681 SDLoc dl
= getCurSDLoc();
2683 SDValue ShiftOp
= DAG
.getCopyFromReg(getControlRoot(), dl
, Reg
, VT
);
2685 unsigned PopCount
= countPopulation(B
.Mask
);
2686 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2687 if (PopCount
== 1) {
2688 // Testing for a single bit; just compare the shift count with what it
2689 // would need to be to shift a 1 bit in that position.
2691 dl
, TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
),
2692 ShiftOp
, DAG
.getConstant(countTrailingZeros(B
.Mask
), dl
, VT
),
2694 } else if (PopCount
== BB
.Range
) {
2695 // There is only one zero bit in the range, test for it directly.
2697 dl
, TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
),
2698 ShiftOp
, DAG
.getConstant(countTrailingOnes(B
.Mask
), dl
, VT
),
2701 // Make desired shift
2702 SDValue SwitchVal
= DAG
.getNode(ISD::SHL
, dl
, VT
,
2703 DAG
.getConstant(1, dl
, VT
), ShiftOp
);
2705 // Emit bit tests and jumps
2706 SDValue AndOp
= DAG
.getNode(ISD::AND
, dl
,
2707 VT
, SwitchVal
, DAG
.getConstant(B
.Mask
, dl
, VT
));
2709 dl
, TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
),
2710 AndOp
, DAG
.getConstant(0, dl
, VT
), ISD::SETNE
);
2713 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2714 addSuccessorWithProb(SwitchBB
, B
.TargetBB
, B
.ExtraProb
);
2715 // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2716 addSuccessorWithProb(SwitchBB
, NextMBB
, BranchProbToNext
);
2717 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2718 // one as they are relative probabilities (and thus work more like weights),
2719 // and hence we need to normalize them to let the sum of them become one.
2720 SwitchBB
->normalizeSuccProbs();
2722 SDValue BrAnd
= DAG
.getNode(ISD::BRCOND
, dl
,
2723 MVT::Other
, getControlRoot(),
2724 Cmp
, DAG
.getBasicBlock(B
.TargetBB
));
2726 // Avoid emitting unnecessary branches to the next block.
2727 if (NextMBB
!= NextBlock(SwitchBB
))
2728 BrAnd
= DAG
.getNode(ISD::BR
, dl
, MVT::Other
, BrAnd
,
2729 DAG
.getBasicBlock(NextMBB
));
2734 void SelectionDAGBuilder::visitInvoke(const InvokeInst
&I
) {
2735 MachineBasicBlock
*InvokeMBB
= FuncInfo
.MBB
;
2737 // Retrieve successors. Look through artificial IR level blocks like
2738 // catchswitch for successors.
2739 MachineBasicBlock
*Return
= FuncInfo
.MBBMap
[I
.getSuccessor(0)];
2740 const BasicBlock
*EHPadBB
= I
.getSuccessor(1);
2742 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2743 // have to do anything here to lower funclet bundles.
2744 assert(!I
.hasOperandBundlesOtherThan(
2745 {LLVMContext::OB_deopt
, LLVMContext::OB_funclet
}) &&
2746 "Cannot lower invokes with arbitrary operand bundles yet!");
2748 const Value
*Callee(I
.getCalledValue());
2749 const Function
*Fn
= dyn_cast
<Function
>(Callee
);
2750 if (isa
<InlineAsm
>(Callee
))
2752 else if (Fn
&& Fn
->isIntrinsic()) {
2753 switch (Fn
->getIntrinsicID()) {
2755 llvm_unreachable("Cannot invoke this intrinsic");
2756 case Intrinsic::donothing
:
2757 // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2759 case Intrinsic::experimental_patchpoint_void
:
2760 case Intrinsic::experimental_patchpoint_i64
:
2761 visitPatchpoint(&I
, EHPadBB
);
2763 case Intrinsic::experimental_gc_statepoint
:
2764 LowerStatepoint(ImmutableStatepoint(&I
), EHPadBB
);
2766 case Intrinsic::wasm_rethrow_in_catch
: {
2767 // This is usually done in visitTargetIntrinsic, but this intrinsic is
2768 // special because it can be invoked, so we manually lower it to a DAG
2770 SmallVector
<SDValue
, 8> Ops
;
2771 Ops
.push_back(getRoot()); // inchain
2772 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2774 DAG
.getTargetConstant(Intrinsic::wasm_rethrow_in_catch
, getCurSDLoc(),
2775 TLI
.getPointerTy(DAG
.getDataLayout())));
2776 SDVTList VTs
= DAG
.getVTList(ArrayRef
<EVT
>({MVT::Other
})); // outchain
2777 DAG
.setRoot(DAG
.getNode(ISD::INTRINSIC_VOID
, getCurSDLoc(), VTs
, Ops
));
2781 } else if (I
.countOperandBundlesOfType(LLVMContext::OB_deopt
)) {
2782 // Currently we do not lower any intrinsic calls with deopt operand bundles.
2783 // Eventually we will support lowering the @llvm.experimental.deoptimize
2784 // intrinsic, and right now there are no plans to support other intrinsics
2785 // with deopt state.
2786 LowerCallSiteWithDeoptBundle(&I
, getValue(Callee
), EHPadBB
);
2788 LowerCallTo(&I
, getValue(Callee
), false, EHPadBB
);
2791 // If the value of the invoke is used outside of its defining block, make it
2792 // available as a virtual register.
2793 // We already took care of the exported value for the statepoint instruction
2794 // during call to the LowerStatepoint.
2795 if (!isStatepoint(I
)) {
2796 CopyToExportRegsIfNeeded(&I
);
2799 SmallVector
<std::pair
<MachineBasicBlock
*, BranchProbability
>, 1> UnwindDests
;
2800 BranchProbabilityInfo
*BPI
= FuncInfo
.BPI
;
2801 BranchProbability EHPadBBProb
=
2802 BPI
? BPI
->getEdgeProbability(InvokeMBB
->getBasicBlock(), EHPadBB
)
2803 : BranchProbability::getZero();
2804 findUnwindDestinations(FuncInfo
, EHPadBB
, EHPadBBProb
, UnwindDests
);
2806 // Update successor info.
2807 addSuccessorWithProb(InvokeMBB
, Return
);
2808 for (auto &UnwindDest
: UnwindDests
) {
2809 UnwindDest
.first
->setIsEHPad();
2810 addSuccessorWithProb(InvokeMBB
, UnwindDest
.first
, UnwindDest
.second
);
2812 InvokeMBB
->normalizeSuccProbs();
2814 // Drop into normal successor.
2815 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurSDLoc(), MVT::Other
, getControlRoot(),
2816 DAG
.getBasicBlock(Return
)));
2819 void SelectionDAGBuilder::visitCallBr(const CallBrInst
&I
) {
2820 MachineBasicBlock
*CallBrMBB
= FuncInfo
.MBB
;
2822 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2823 // have to do anything here to lower funclet bundles.
2824 assert(!I
.hasOperandBundlesOtherThan(
2825 {LLVMContext::OB_deopt
, LLVMContext::OB_funclet
}) &&
2826 "Cannot lower callbrs with arbitrary operand bundles yet!");
2828 assert(isa
<InlineAsm
>(I
.getCalledValue()) &&
2829 "Only know how to handle inlineasm callbr");
2832 // Retrieve successors.
2833 MachineBasicBlock
*Return
= FuncInfo
.MBBMap
[I
.getDefaultDest()];
2835 // Update successor info.
2836 addSuccessorWithProb(CallBrMBB
, Return
);
2837 for (unsigned i
= 0, e
= I
.getNumIndirectDests(); i
< e
; ++i
) {
2838 MachineBasicBlock
*Target
= FuncInfo
.MBBMap
[I
.getIndirectDest(i
)];
2839 addSuccessorWithProb(CallBrMBB
, Target
);
2841 CallBrMBB
->normalizeSuccProbs();
2843 // Drop into default successor.
2844 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurSDLoc(),
2845 MVT::Other
, getControlRoot(),
2846 DAG
.getBasicBlock(Return
)));
2849 void SelectionDAGBuilder::visitResume(const ResumeInst
&RI
) {
2850 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2853 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst
&LP
) {
2854 assert(FuncInfo
.MBB
->isEHPad() &&
2855 "Call to landingpad not in landing pad!");
2857 // If there aren't registers to copy the values into (e.g., during SjLj
2858 // exceptions), then don't bother to create these DAG nodes.
2859 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2860 const Constant
*PersonalityFn
= FuncInfo
.Fn
->getPersonalityFn();
2861 if (TLI
.getExceptionPointerRegister(PersonalityFn
) == 0 &&
2862 TLI
.getExceptionSelectorRegister(PersonalityFn
) == 0)
2865 // If landingpad's return type is token type, we don't create DAG nodes
2866 // for its exception pointer and selector value. The extraction of exception
2867 // pointer or selector value from token type landingpads is not currently
2869 if (LP
.getType()->isTokenTy())
2872 SmallVector
<EVT
, 2> ValueVTs
;
2873 SDLoc dl
= getCurSDLoc();
2874 ComputeValueVTs(TLI
, DAG
.getDataLayout(), LP
.getType(), ValueVTs
);
2875 assert(ValueVTs
.size() == 2 && "Only two-valued landingpads are supported");
2877 // Get the two live-in registers as SDValues. The physregs have already been
2878 // copied into virtual registers.
2880 if (FuncInfo
.ExceptionPointerVirtReg
) {
2881 Ops
[0] = DAG
.getZExtOrTrunc(
2882 DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
,
2883 FuncInfo
.ExceptionPointerVirtReg
,
2884 TLI
.getPointerTy(DAG
.getDataLayout())),
2887 Ops
[0] = DAG
.getConstant(0, dl
, TLI
.getPointerTy(DAG
.getDataLayout()));
2889 Ops
[1] = DAG
.getZExtOrTrunc(
2890 DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
,
2891 FuncInfo
.ExceptionSelectorVirtReg
,
2892 TLI
.getPointerTy(DAG
.getDataLayout())),
2896 SDValue Res
= DAG
.getNode(ISD::MERGE_VALUES
, dl
,
2897 DAG
.getVTList(ValueVTs
), Ops
);
2901 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock
*First
,
2902 MachineBasicBlock
*Last
) {
2904 for (unsigned i
= 0, e
= SL
->JTCases
.size(); i
!= e
; ++i
)
2905 if (SL
->JTCases
[i
].first
.HeaderBB
== First
)
2906 SL
->JTCases
[i
].first
.HeaderBB
= Last
;
2908 // Update BitTestCases.
2909 for (unsigned i
= 0, e
= SL
->BitTestCases
.size(); i
!= e
; ++i
)
2910 if (SL
->BitTestCases
[i
].Parent
== First
)
2911 SL
->BitTestCases
[i
].Parent
= Last
;
2914 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst
&I
) {
2915 MachineBasicBlock
*IndirectBrMBB
= FuncInfo
.MBB
;
2917 // Update machine-CFG edges with unique successors.
2918 SmallSet
<BasicBlock
*, 32> Done
;
2919 for (unsigned i
= 0, e
= I
.getNumSuccessors(); i
!= e
; ++i
) {
2920 BasicBlock
*BB
= I
.getSuccessor(i
);
2921 bool Inserted
= Done
.insert(BB
).second
;
2925 MachineBasicBlock
*Succ
= FuncInfo
.MBBMap
[BB
];
2926 addSuccessorWithProb(IndirectBrMBB
, Succ
);
2928 IndirectBrMBB
->normalizeSuccProbs();
2930 DAG
.setRoot(DAG
.getNode(ISD::BRIND
, getCurSDLoc(),
2931 MVT::Other
, getControlRoot(),
2932 getValue(I
.getAddress())));
2935 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst
&I
) {
2936 if (!DAG
.getTarget().Options
.TrapUnreachable
)
2939 // We may be able to ignore unreachable behind a noreturn call.
2940 if (DAG
.getTarget().Options
.NoTrapAfterNoreturn
) {
2941 const BasicBlock
&BB
= *I
.getParent();
2942 if (&I
!= &BB
.front()) {
2943 BasicBlock::const_iterator PredI
=
2944 std::prev(BasicBlock::const_iterator(&I
));
2945 if (const CallInst
*Call
= dyn_cast
<CallInst
>(&*PredI
)) {
2946 if (Call
->doesNotReturn())
2952 DAG
.setRoot(DAG
.getNode(ISD::TRAP
, getCurSDLoc(), MVT::Other
, DAG
.getRoot()));
2955 void SelectionDAGBuilder::visitFSub(const User
&I
) {
2956 // -0.0 - X --> fneg
2957 Type
*Ty
= I
.getType();
2958 if (isa
<Constant
>(I
.getOperand(0)) &&
2959 I
.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty
)) {
2960 SDValue Op2
= getValue(I
.getOperand(1));
2961 setValue(&I
, DAG
.getNode(ISD::FNEG
, getCurSDLoc(),
2962 Op2
.getValueType(), Op2
));
2966 visitBinary(I
, ISD::FSUB
);
2969 /// Checks if the given instruction performs a vector reduction, in which case
2970 /// we have the freedom to alter the elements in the result as long as the
2971 /// reduction of them stays unchanged.
2972 static bool isVectorReductionOp(const User
*I
) {
2973 const Instruction
*Inst
= dyn_cast
<Instruction
>(I
);
2974 if (!Inst
|| !Inst
->getType()->isVectorTy())
2977 auto OpCode
= Inst
->getOpcode();
2979 case Instruction::Add
:
2980 case Instruction::Mul
:
2981 case Instruction::And
:
2982 case Instruction::Or
:
2983 case Instruction::Xor
:
2985 case Instruction::FAdd
:
2986 case Instruction::FMul
:
2987 if (const FPMathOperator
*FPOp
= dyn_cast
<const FPMathOperator
>(Inst
))
2988 if (FPOp
->getFastMathFlags().isFast())
2995 unsigned ElemNum
= Inst
->getType()->getVectorNumElements();
2996 // Ensure the reduction size is a power of 2.
2997 if (!isPowerOf2_32(ElemNum
))
3000 unsigned ElemNumToReduce
= ElemNum
;
3002 // Do DFS search on the def-use chain from the given instruction. We only
3003 // allow four kinds of operations during the search until we reach the
3004 // instruction that extracts the first element from the vector:
3006 // 1. The reduction operation of the same opcode as the given instruction.
3010 // 3. ShuffleVector instruction together with a reduction operation that
3011 // does a partial reduction.
3013 // 4. ExtractElement that extracts the first element from the vector, and we
3014 // stop searching the def-use chain here.
3016 // 3 & 4 above perform a reduction on all elements of the vector. We push defs
3017 // from 1-3 to the stack to continue the DFS. The given instruction is not
3018 // a reduction operation if we meet any other instructions other than those
3021 SmallVector
<const User
*, 16> UsersToVisit
{Inst
};
3022 SmallPtrSet
<const User
*, 16> Visited
;
3023 bool ReduxExtracted
= false;
3025 while (!UsersToVisit
.empty()) {
3026 auto User
= UsersToVisit
.back();
3027 UsersToVisit
.pop_back();
3028 if (!Visited
.insert(User
).second
)
3031 for (const auto &U
: User
->users()) {
3032 auto Inst
= dyn_cast
<Instruction
>(U
);
3036 if (Inst
->getOpcode() == OpCode
|| isa
<PHINode
>(U
)) {
3037 if (const FPMathOperator
*FPOp
= dyn_cast
<const FPMathOperator
>(Inst
))
3038 if (!isa
<PHINode
>(FPOp
) && !FPOp
->getFastMathFlags().isFast())
3040 UsersToVisit
.push_back(U
);
3041 } else if (const ShuffleVectorInst
*ShufInst
=
3042 dyn_cast
<ShuffleVectorInst
>(U
)) {
3043 // Detect the following pattern: A ShuffleVector instruction together
3044 // with a reduction that do partial reduction on the first and second
3045 // ElemNumToReduce / 2 elements, and store the result in
3046 // ElemNumToReduce / 2 elements in another vector.
3048 unsigned ResultElements
= ShufInst
->getType()->getVectorNumElements();
3049 if (ResultElements
< ElemNum
)
3052 if (ElemNumToReduce
== 1)
3054 if (!isa
<UndefValue
>(U
->getOperand(1)))
3056 for (unsigned i
= 0; i
< ElemNumToReduce
/ 2; ++i
)
3057 if (ShufInst
->getMaskValue(i
) != int(i
+ ElemNumToReduce
/ 2))
3059 for (unsigned i
= ElemNumToReduce
/ 2; i
< ElemNum
; ++i
)
3060 if (ShufInst
->getMaskValue(i
) != -1)
3063 // There is only one user of this ShuffleVector instruction, which
3064 // must be a reduction operation.
3065 if (!U
->hasOneUse())
3068 auto U2
= dyn_cast
<Instruction
>(*U
->user_begin());
3069 if (!U2
|| U2
->getOpcode() != OpCode
)
3072 // Check operands of the reduction operation.
3073 if ((U2
->getOperand(0) == U
->getOperand(0) && U2
->getOperand(1) == U
) ||
3074 (U2
->getOperand(1) == U
->getOperand(0) && U2
->getOperand(0) == U
)) {
3075 UsersToVisit
.push_back(U2
);
3076 ElemNumToReduce
/= 2;
3079 } else if (isa
<ExtractElementInst
>(U
)) {
3080 // At this moment we should have reduced all elements in the vector.
3081 if (ElemNumToReduce
!= 1)
3084 const ConstantInt
*Val
= dyn_cast
<ConstantInt
>(U
->getOperand(1));
3085 if (!Val
|| !Val
->isZero())
3088 ReduxExtracted
= true;
3093 return ReduxExtracted
;
3096 void SelectionDAGBuilder::visitUnary(const User
&I
, unsigned Opcode
) {
3099 SDValue Op
= getValue(I
.getOperand(0));
3100 SDValue UnNodeValue
= DAG
.getNode(Opcode
, getCurSDLoc(), Op
.getValueType(),
3102 setValue(&I
, UnNodeValue
);
3105 void SelectionDAGBuilder::visitBinary(const User
&I
, unsigned Opcode
) {
3107 if (auto *OFBinOp
= dyn_cast
<OverflowingBinaryOperator
>(&I
)) {
3108 Flags
.setNoSignedWrap(OFBinOp
->hasNoSignedWrap());
3109 Flags
.setNoUnsignedWrap(OFBinOp
->hasNoUnsignedWrap());
3111 if (auto *ExactOp
= dyn_cast
<PossiblyExactOperator
>(&I
)) {
3112 Flags
.setExact(ExactOp
->isExact());
3114 if (isVectorReductionOp(&I
)) {
3115 Flags
.setVectorReduction(true);
3116 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I
<< "\n");
3119 SDValue Op1
= getValue(I
.getOperand(0));
3120 SDValue Op2
= getValue(I
.getOperand(1));
3121 SDValue BinNodeValue
= DAG
.getNode(Opcode
, getCurSDLoc(), Op1
.getValueType(),
3123 setValue(&I
, BinNodeValue
);
3126 void SelectionDAGBuilder::visitShift(const User
&I
, unsigned Opcode
) {
3127 SDValue Op1
= getValue(I
.getOperand(0));
3128 SDValue Op2
= getValue(I
.getOperand(1));
3130 EVT ShiftTy
= DAG
.getTargetLoweringInfo().getShiftAmountTy(
3131 Op1
.getValueType(), DAG
.getDataLayout());
3133 // Coerce the shift amount to the right type if we can.
3134 if (!I
.getType()->isVectorTy() && Op2
.getValueType() != ShiftTy
) {
3135 unsigned ShiftSize
= ShiftTy
.getSizeInBits();
3136 unsigned Op2Size
= Op2
.getValueSizeInBits();
3137 SDLoc DL
= getCurSDLoc();
3139 // If the operand is smaller than the shift count type, promote it.
3140 if (ShiftSize
> Op2Size
)
3141 Op2
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, ShiftTy
, Op2
);
3143 // If the operand is larger than the shift count type but the shift
3144 // count type has enough bits to represent any shift value, truncate
3145 // it now. This is a common case and it exposes the truncate to
3146 // optimization early.
3147 else if (ShiftSize
>= Log2_32_Ceil(Op2
.getValueSizeInBits()))
3148 Op2
= DAG
.getNode(ISD::TRUNCATE
, DL
, ShiftTy
, Op2
);
3149 // Otherwise we'll need to temporarily settle for some other convenient
3150 // type. Type legalization will make adjustments once the shiftee is split.
3152 Op2
= DAG
.getZExtOrTrunc(Op2
, DL
, MVT::i32
);
3159 if (Opcode
== ISD::SRL
|| Opcode
== ISD::SRA
|| Opcode
== ISD::SHL
) {
3161 if (const OverflowingBinaryOperator
*OFBinOp
=
3162 dyn_cast
<const OverflowingBinaryOperator
>(&I
)) {
3163 nuw
= OFBinOp
->hasNoUnsignedWrap();
3164 nsw
= OFBinOp
->hasNoSignedWrap();
3166 if (const PossiblyExactOperator
*ExactOp
=
3167 dyn_cast
<const PossiblyExactOperator
>(&I
))
3168 exact
= ExactOp
->isExact();
3171 Flags
.setExact(exact
);
3172 Flags
.setNoSignedWrap(nsw
);
3173 Flags
.setNoUnsignedWrap(nuw
);
3174 SDValue Res
= DAG
.getNode(Opcode
, getCurSDLoc(), Op1
.getValueType(), Op1
, Op2
,
3179 void SelectionDAGBuilder::visitSDiv(const User
&I
) {
3180 SDValue Op1
= getValue(I
.getOperand(0));
3181 SDValue Op2
= getValue(I
.getOperand(1));
3184 Flags
.setExact(isa
<PossiblyExactOperator
>(&I
) &&
3185 cast
<PossiblyExactOperator
>(&I
)->isExact());
3186 setValue(&I
, DAG
.getNode(ISD::SDIV
, getCurSDLoc(), Op1
.getValueType(), Op1
,
3190 void SelectionDAGBuilder::visitICmp(const User
&I
) {
3191 ICmpInst::Predicate predicate
= ICmpInst::BAD_ICMP_PREDICATE
;
3192 if (const ICmpInst
*IC
= dyn_cast
<ICmpInst
>(&I
))
3193 predicate
= IC
->getPredicate();
3194 else if (const ConstantExpr
*IC
= dyn_cast
<ConstantExpr
>(&I
))
3195 predicate
= ICmpInst::Predicate(IC
->getPredicate());
3196 SDValue Op1
= getValue(I
.getOperand(0));
3197 SDValue Op2
= getValue(I
.getOperand(1));
3198 ISD::CondCode Opcode
= getICmpCondCode(predicate
);
3200 auto &TLI
= DAG
.getTargetLoweringInfo();
3202 TLI
.getMemValueType(DAG
.getDataLayout(), I
.getOperand(0)->getType());
3204 // If a pointer's DAG type is larger than its memory type then the DAG values
3205 // are zero-extended. This breaks signed comparisons so truncate back to the
3206 // underlying type before doing the compare.
3207 if (Op1
.getValueType() != MemVT
) {
3208 Op1
= DAG
.getPtrExtOrTrunc(Op1
, getCurSDLoc(), MemVT
);
3209 Op2
= DAG
.getPtrExtOrTrunc(Op2
, getCurSDLoc(), MemVT
);
3212 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3214 setValue(&I
, DAG
.getSetCC(getCurSDLoc(), DestVT
, Op1
, Op2
, Opcode
));
3217 void SelectionDAGBuilder::visitFCmp(const User
&I
) {
3218 FCmpInst::Predicate predicate
= FCmpInst::BAD_FCMP_PREDICATE
;
3219 if (const FCmpInst
*FC
= dyn_cast
<FCmpInst
>(&I
))
3220 predicate
= FC
->getPredicate();
3221 else if (const ConstantExpr
*FC
= dyn_cast
<ConstantExpr
>(&I
))
3222 predicate
= FCmpInst::Predicate(FC
->getPredicate());
3223 SDValue Op1
= getValue(I
.getOperand(0));
3224 SDValue Op2
= getValue(I
.getOperand(1));
3226 ISD::CondCode Condition
= getFCmpCondCode(predicate
);
3227 auto *FPMO
= dyn_cast
<FPMathOperator
>(&I
);
3228 if ((FPMO
&& FPMO
->hasNoNaNs()) || TM
.Options
.NoNaNsFPMath
)
3229 Condition
= getFCmpCodeWithoutNaN(Condition
);
3231 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3233 setValue(&I
, DAG
.getSetCC(getCurSDLoc(), DestVT
, Op1
, Op2
, Condition
));
3236 // Check if the condition of the select has one use or two users that are both
3237 // selects with the same condition.
3238 static bool hasOnlySelectUsers(const Value
*Cond
) {
3239 return llvm::all_of(Cond
->users(), [](const Value
*V
) {
3240 return isa
<SelectInst
>(V
);
3244 void SelectionDAGBuilder::visitSelect(const User
&I
) {
3245 SmallVector
<EVT
, 4> ValueVTs
;
3246 ComputeValueVTs(DAG
.getTargetLoweringInfo(), DAG
.getDataLayout(), I
.getType(),
3248 unsigned NumValues
= ValueVTs
.size();
3249 if (NumValues
== 0) return;
3251 SmallVector
<SDValue
, 4> Values(NumValues
);
3252 SDValue Cond
= getValue(I
.getOperand(0));
3253 SDValue LHSVal
= getValue(I
.getOperand(1));
3254 SDValue RHSVal
= getValue(I
.getOperand(2));
3255 auto BaseOps
= {Cond
};
3256 ISD::NodeType OpCode
= Cond
.getValueType().isVector() ?
3257 ISD::VSELECT
: ISD::SELECT
;
3259 bool IsUnaryAbs
= false;
3261 // Min/max matching is only viable if all output VTs are the same.
3262 if (is_splat(ValueVTs
)) {
3263 EVT VT
= ValueVTs
[0];
3264 LLVMContext
&Ctx
= *DAG
.getContext();
3265 auto &TLI
= DAG
.getTargetLoweringInfo();
3267 // We care about the legality of the operation after it has been type
3269 while (TLI
.getTypeAction(Ctx
, VT
) != TargetLoweringBase::TypeLegal
&&
3270 VT
!= TLI
.getTypeToTransformTo(Ctx
, VT
))
3271 VT
= TLI
.getTypeToTransformTo(Ctx
, VT
);
3273 // If the vselect is legal, assume we want to leave this as a vector setcc +
3274 // vselect. Otherwise, if this is going to be scalarized, we want to see if
3275 // min/max is legal on the scalar type.
3276 bool UseScalarMinMax
= VT
.isVector() &&
3277 !TLI
.isOperationLegalOrCustom(ISD::VSELECT
, VT
);
3280 auto SPR
= matchSelectPattern(const_cast<User
*>(&I
), LHS
, RHS
);
3281 ISD::NodeType Opc
= ISD::DELETED_NODE
;
3282 switch (SPR
.Flavor
) {
3283 case SPF_UMAX
: Opc
= ISD::UMAX
; break;
3284 case SPF_UMIN
: Opc
= ISD::UMIN
; break;
3285 case SPF_SMAX
: Opc
= ISD::SMAX
; break;
3286 case SPF_SMIN
: Opc
= ISD::SMIN
; break;
3288 switch (SPR
.NaNBehavior
) {
3289 case SPNB_NA
: llvm_unreachable("No NaN behavior for FP op?");
3290 case SPNB_RETURNS_NAN
: Opc
= ISD::FMINIMUM
; break;
3291 case SPNB_RETURNS_OTHER
: Opc
= ISD::FMINNUM
; break;
3292 case SPNB_RETURNS_ANY
: {
3293 if (TLI
.isOperationLegalOrCustom(ISD::FMINNUM
, VT
))
3295 else if (TLI
.isOperationLegalOrCustom(ISD::FMINIMUM
, VT
))
3296 Opc
= ISD::FMINIMUM
;
3297 else if (UseScalarMinMax
)
3298 Opc
= TLI
.isOperationLegalOrCustom(ISD::FMINNUM
, VT
.getScalarType()) ?
3299 ISD::FMINNUM
: ISD::FMINIMUM
;
3305 switch (SPR
.NaNBehavior
) {
3306 case SPNB_NA
: llvm_unreachable("No NaN behavior for FP op?");
3307 case SPNB_RETURNS_NAN
: Opc
= ISD::FMAXIMUM
; break;
3308 case SPNB_RETURNS_OTHER
: Opc
= ISD::FMAXNUM
; break;
3309 case SPNB_RETURNS_ANY
:
3311 if (TLI
.isOperationLegalOrCustom(ISD::FMAXNUM
, VT
))
3313 else if (TLI
.isOperationLegalOrCustom(ISD::FMAXIMUM
, VT
))
3314 Opc
= ISD::FMAXIMUM
;
3315 else if (UseScalarMinMax
)
3316 Opc
= TLI
.isOperationLegalOrCustom(ISD::FMAXNUM
, VT
.getScalarType()) ?
3317 ISD::FMAXNUM
: ISD::FMAXIMUM
;
3326 // TODO: we need to produce sub(0, abs(X)).
3330 if (!IsUnaryAbs
&& Opc
!= ISD::DELETED_NODE
&&
3331 (TLI
.isOperationLegalOrCustom(Opc
, VT
) ||
3333 TLI
.isOperationLegalOrCustom(Opc
, VT
.getScalarType()))) &&
3334 // If the underlying comparison instruction is used by any other
3335 // instruction, the consumed instructions won't be destroyed, so it is
3336 // not profitable to convert to a min/max.
3337 hasOnlySelectUsers(cast
<SelectInst
>(I
).getCondition())) {
3339 LHSVal
= getValue(LHS
);
3340 RHSVal
= getValue(RHS
);
3346 LHSVal
= getValue(LHS
);
3352 for (unsigned i
= 0; i
!= NumValues
; ++i
) {
3354 DAG
.getNode(OpCode
, getCurSDLoc(),
3355 LHSVal
.getNode()->getValueType(LHSVal
.getResNo() + i
),
3356 SDValue(LHSVal
.getNode(), LHSVal
.getResNo() + i
));
3359 for (unsigned i
= 0; i
!= NumValues
; ++i
) {
3360 SmallVector
<SDValue
, 3> Ops(BaseOps
.begin(), BaseOps
.end());
3361 Ops
.push_back(SDValue(LHSVal
.getNode(), LHSVal
.getResNo() + i
));
3362 Ops
.push_back(SDValue(RHSVal
.getNode(), RHSVal
.getResNo() + i
));
3363 Values
[i
] = DAG
.getNode(
3364 OpCode
, getCurSDLoc(),
3365 LHSVal
.getNode()->getValueType(LHSVal
.getResNo() + i
), Ops
);
3369 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, getCurSDLoc(),
3370 DAG
.getVTList(ValueVTs
), Values
));
3373 void SelectionDAGBuilder::visitTrunc(const User
&I
) {
3374 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3375 SDValue N
= getValue(I
.getOperand(0));
3376 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3378 setValue(&I
, DAG
.getNode(ISD::TRUNCATE
, getCurSDLoc(), DestVT
, N
));
3381 void SelectionDAGBuilder::visitZExt(const User
&I
) {
3382 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3383 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3384 SDValue N
= getValue(I
.getOperand(0));
3385 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3387 setValue(&I
, DAG
.getNode(ISD::ZERO_EXTEND
, getCurSDLoc(), DestVT
, N
));
3390 void SelectionDAGBuilder::visitSExt(const User
&I
) {
3391 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3392 // SExt also can't be a cast to bool for same reason. So, nothing much to do
3393 SDValue N
= getValue(I
.getOperand(0));
3394 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3396 setValue(&I
, DAG
.getNode(ISD::SIGN_EXTEND
, getCurSDLoc(), DestVT
, N
));
3399 void SelectionDAGBuilder::visitFPTrunc(const User
&I
) {
3400 // FPTrunc is never a no-op cast, no need to check
3401 SDValue N
= getValue(I
.getOperand(0));
3402 SDLoc dl
= getCurSDLoc();
3403 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3404 EVT DestVT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
3405 setValue(&I
, DAG
.getNode(ISD::FP_ROUND
, dl
, DestVT
, N
,
3406 DAG
.getTargetConstant(
3407 0, dl
, TLI
.getPointerTy(DAG
.getDataLayout()))));
3410 void SelectionDAGBuilder::visitFPExt(const User
&I
) {
3411 // FPExt is never a no-op cast, no need to check
3412 SDValue N
= getValue(I
.getOperand(0));
3413 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3415 setValue(&I
, DAG
.getNode(ISD::FP_EXTEND
, getCurSDLoc(), DestVT
, N
));
3418 void SelectionDAGBuilder::visitFPToUI(const User
&I
) {
3419 // FPToUI is never a no-op cast, no need to check
3420 SDValue N
= getValue(I
.getOperand(0));
3421 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3423 setValue(&I
, DAG
.getNode(ISD::FP_TO_UINT
, getCurSDLoc(), DestVT
, N
));
3426 void SelectionDAGBuilder::visitFPToSI(const User
&I
) {
3427 // FPToSI is never a no-op cast, no need to check
3428 SDValue N
= getValue(I
.getOperand(0));
3429 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3431 setValue(&I
, DAG
.getNode(ISD::FP_TO_SINT
, getCurSDLoc(), DestVT
, N
));
3434 void SelectionDAGBuilder::visitUIToFP(const User
&I
) {
3435 // UIToFP is never a no-op cast, no need to check
3436 SDValue N
= getValue(I
.getOperand(0));
3437 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3439 setValue(&I
, DAG
.getNode(ISD::UINT_TO_FP
, getCurSDLoc(), DestVT
, N
));
3442 void SelectionDAGBuilder::visitSIToFP(const User
&I
) {
3443 // SIToFP is never a no-op cast, no need to check
3444 SDValue N
= getValue(I
.getOperand(0));
3445 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3447 setValue(&I
, DAG
.getNode(ISD::SINT_TO_FP
, getCurSDLoc(), DestVT
, N
));
3450 void SelectionDAGBuilder::visitPtrToInt(const User
&I
) {
3451 // What to do depends on the size of the integer and the size of the pointer.
3452 // We can either truncate, zero extend, or no-op, accordingly.
3453 SDValue N
= getValue(I
.getOperand(0));
3454 auto &TLI
= DAG
.getTargetLoweringInfo();
3455 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3458 TLI
.getMemValueType(DAG
.getDataLayout(), I
.getOperand(0)->getType());
3459 N
= DAG
.getPtrExtOrTrunc(N
, getCurSDLoc(), PtrMemVT
);
3460 N
= DAG
.getZExtOrTrunc(N
, getCurSDLoc(), DestVT
);
3464 void SelectionDAGBuilder::visitIntToPtr(const User
&I
) {
3465 // What to do depends on the size of the integer and the size of the pointer.
3466 // We can either truncate, zero extend, or no-op, accordingly.
3467 SDValue N
= getValue(I
.getOperand(0));
3468 auto &TLI
= DAG
.getTargetLoweringInfo();
3469 EVT DestVT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
3470 EVT PtrMemVT
= TLI
.getMemValueType(DAG
.getDataLayout(), I
.getType());
3471 N
= DAG
.getZExtOrTrunc(N
, getCurSDLoc(), PtrMemVT
);
3472 N
= DAG
.getPtrExtOrTrunc(N
, getCurSDLoc(), DestVT
);
3476 void SelectionDAGBuilder::visitBitCast(const User
&I
) {
3477 SDValue N
= getValue(I
.getOperand(0));
3478 SDLoc dl
= getCurSDLoc();
3479 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3482 // BitCast assures us that source and destination are the same size so this is
3483 // either a BITCAST or a no-op.
3484 if (DestVT
!= N
.getValueType())
3485 setValue(&I
, DAG
.getNode(ISD::BITCAST
, dl
,
3486 DestVT
, N
)); // convert types.
3487 // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3488 // might fold any kind of constant expression to an integer constant and that
3489 // is not what we are looking for. Only recognize a bitcast of a genuine
3490 // constant integer as an opaque constant.
3491 else if(ConstantInt
*C
= dyn_cast
<ConstantInt
>(I
.getOperand(0)))
3492 setValue(&I
, DAG
.getConstant(C
->getValue(), dl
, DestVT
, /*isTarget=*/false,
3495 setValue(&I
, N
); // noop cast.
3498 void SelectionDAGBuilder::visitAddrSpaceCast(const User
&I
) {
3499 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3500 const Value
*SV
= I
.getOperand(0);
3501 SDValue N
= getValue(SV
);
3502 EVT DestVT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
3504 unsigned SrcAS
= SV
->getType()->getPointerAddressSpace();
3505 unsigned DestAS
= I
.getType()->getPointerAddressSpace();
3507 if (!TLI
.isNoopAddrSpaceCast(SrcAS
, DestAS
))
3508 N
= DAG
.getAddrSpaceCast(getCurSDLoc(), DestVT
, N
, SrcAS
, DestAS
);
3513 void SelectionDAGBuilder::visitInsertElement(const User
&I
) {
3514 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3515 SDValue InVec
= getValue(I
.getOperand(0));
3516 SDValue InVal
= getValue(I
.getOperand(1));
3517 SDValue InIdx
= DAG
.getSExtOrTrunc(getValue(I
.getOperand(2)), getCurSDLoc(),
3518 TLI
.getVectorIdxTy(DAG
.getDataLayout()));
3519 setValue(&I
, DAG
.getNode(ISD::INSERT_VECTOR_ELT
, getCurSDLoc(),
3520 TLI
.getValueType(DAG
.getDataLayout(), I
.getType()),
3521 InVec
, InVal
, InIdx
));
3524 void SelectionDAGBuilder::visitExtractElement(const User
&I
) {
3525 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3526 SDValue InVec
= getValue(I
.getOperand(0));
3527 SDValue InIdx
= DAG
.getSExtOrTrunc(getValue(I
.getOperand(1)), getCurSDLoc(),
3528 TLI
.getVectorIdxTy(DAG
.getDataLayout()));
3529 setValue(&I
, DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, getCurSDLoc(),
3530 TLI
.getValueType(DAG
.getDataLayout(), I
.getType()),
3534 void SelectionDAGBuilder::visitShuffleVector(const User
&I
) {
3535 SDValue Src1
= getValue(I
.getOperand(0));
3536 SDValue Src2
= getValue(I
.getOperand(1));
3537 SDLoc DL
= getCurSDLoc();
3539 SmallVector
<int, 8> Mask
;
3540 ShuffleVectorInst::getShuffleMask(cast
<Constant
>(I
.getOperand(2)), Mask
);
3541 unsigned MaskNumElts
= Mask
.size();
3543 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3544 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
3545 EVT SrcVT
= Src1
.getValueType();
3546 unsigned SrcNumElts
= SrcVT
.getVectorNumElements();
3548 if (SrcNumElts
== MaskNumElts
) {
3549 setValue(&I
, DAG
.getVectorShuffle(VT
, DL
, Src1
, Src2
, Mask
));
3553 // Normalize the shuffle vector since mask and vector length don't match.
3554 if (SrcNumElts
< MaskNumElts
) {
3555 // Mask is longer than the source vectors. We can use concatenate vector to
3556 // make the mask and vectors lengths match.
3558 if (MaskNumElts
% SrcNumElts
== 0) {
3559 // Mask length is a multiple of the source vector length.
3560 // Check if the shuffle is some kind of concatenation of the input
3562 unsigned NumConcat
= MaskNumElts
/ SrcNumElts
;
3563 bool IsConcat
= true;
3564 SmallVector
<int, 8> ConcatSrcs(NumConcat
, -1);
3565 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
3569 // Ensure the indices in each SrcVT sized piece are sequential and that
3570 // the same source is used for the whole piece.
3571 if ((Idx
% SrcNumElts
!= (i
% SrcNumElts
)) ||
3572 (ConcatSrcs
[i
/ SrcNumElts
] >= 0 &&
3573 ConcatSrcs
[i
/ SrcNumElts
] != (int)(Idx
/ SrcNumElts
))) {
3577 // Remember which source this index came from.
3578 ConcatSrcs
[i
/ SrcNumElts
] = Idx
/ SrcNumElts
;
3581 // The shuffle is concatenating multiple vectors together. Just emit
3582 // a CONCAT_VECTORS operation.
3584 SmallVector
<SDValue
, 8> ConcatOps
;
3585 for (auto Src
: ConcatSrcs
) {
3587 ConcatOps
.push_back(DAG
.getUNDEF(SrcVT
));
3589 ConcatOps
.push_back(Src1
);
3591 ConcatOps
.push_back(Src2
);
3593 setValue(&I
, DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, VT
, ConcatOps
));
3598 unsigned PaddedMaskNumElts
= alignTo(MaskNumElts
, SrcNumElts
);
3599 unsigned NumConcat
= PaddedMaskNumElts
/ SrcNumElts
;
3600 EVT PaddedVT
= EVT::getVectorVT(*DAG
.getContext(), VT
.getScalarType(),
3603 // Pad both vectors with undefs to make them the same length as the mask.
3604 SDValue UndefVal
= DAG
.getUNDEF(SrcVT
);
3606 SmallVector
<SDValue
, 8> MOps1(NumConcat
, UndefVal
);
3607 SmallVector
<SDValue
, 8> MOps2(NumConcat
, UndefVal
);
3611 Src1
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, PaddedVT
, MOps1
);
3612 Src2
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, PaddedVT
, MOps2
);
3614 // Readjust mask for new input vector length.
3615 SmallVector
<int, 8> MappedOps(PaddedMaskNumElts
, -1);
3616 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
3618 if (Idx
>= (int)SrcNumElts
)
3619 Idx
-= SrcNumElts
- PaddedMaskNumElts
;
3623 SDValue Result
= DAG
.getVectorShuffle(PaddedVT
, DL
, Src1
, Src2
, MappedOps
);
3625 // If the concatenated vector was padded, extract a subvector with the
3626 // correct number of elements.
3627 if (MaskNumElts
!= PaddedMaskNumElts
)
3628 Result
= DAG
.getNode(
3629 ISD::EXTRACT_SUBVECTOR
, DL
, VT
, Result
,
3630 DAG
.getConstant(0, DL
, TLI
.getVectorIdxTy(DAG
.getDataLayout())));
3632 setValue(&I
, Result
);
3636 if (SrcNumElts
> MaskNumElts
) {
3637 // Analyze the access pattern of the vector to see if we can extract
3638 // two subvectors and do the shuffle.
3639 int StartIdx
[2] = { -1, -1 }; // StartIdx to extract from
3640 bool CanExtract
= true;
3641 for (int Idx
: Mask
) {
3646 if (Idx
>= (int)SrcNumElts
) {
3651 // If all the indices come from the same MaskNumElts sized portion of
3652 // the sources we can use extract. Also make sure the extract wouldn't
3653 // extract past the end of the source.
3654 int NewStartIdx
= alignDown(Idx
, MaskNumElts
);
3655 if (NewStartIdx
+ MaskNumElts
> SrcNumElts
||
3656 (StartIdx
[Input
] >= 0 && StartIdx
[Input
] != NewStartIdx
))
3658 // Make sure we always update StartIdx as we use it to track if all
3659 // elements are undef.
3660 StartIdx
[Input
] = NewStartIdx
;
3663 if (StartIdx
[0] < 0 && StartIdx
[1] < 0) {
3664 setValue(&I
, DAG
.getUNDEF(VT
)); // Vectors are not used.
3668 // Extract appropriate subvector and generate a vector shuffle
3669 for (unsigned Input
= 0; Input
< 2; ++Input
) {
3670 SDValue
&Src
= Input
== 0 ? Src1
: Src2
;
3671 if (StartIdx
[Input
] < 0)
3672 Src
= DAG
.getUNDEF(VT
);
3675 ISD::EXTRACT_SUBVECTOR
, DL
, VT
, Src
,
3676 DAG
.getConstant(StartIdx
[Input
], DL
,
3677 TLI
.getVectorIdxTy(DAG
.getDataLayout())));
3681 // Calculate new mask.
3682 SmallVector
<int, 8> MappedOps(Mask
.begin(), Mask
.end());
3683 for (int &Idx
: MappedOps
) {
3684 if (Idx
>= (int)SrcNumElts
)
3685 Idx
-= SrcNumElts
+ StartIdx
[1] - MaskNumElts
;
3690 setValue(&I
, DAG
.getVectorShuffle(VT
, DL
, Src1
, Src2
, MappedOps
));
3695 // We can't use either concat vectors or extract subvectors so fall back to
3696 // replacing the shuffle with extract and build vector.
3697 // to insert and build vector.
3698 EVT EltVT
= VT
.getVectorElementType();
3699 EVT IdxVT
= TLI
.getVectorIdxTy(DAG
.getDataLayout());
3700 SmallVector
<SDValue
,8> Ops
;
3701 for (int Idx
: Mask
) {
3705 Res
= DAG
.getUNDEF(EltVT
);
3707 SDValue
&Src
= Idx
< (int)SrcNumElts
? Src1
: Src2
;
3708 if (Idx
>= (int)SrcNumElts
) Idx
-= SrcNumElts
;
3710 Res
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
,
3711 EltVT
, Src
, DAG
.getConstant(Idx
, DL
, IdxVT
));
3717 setValue(&I
, DAG
.getBuildVector(VT
, DL
, Ops
));
3720 void SelectionDAGBuilder::visitInsertValue(const User
&I
) {
3721 ArrayRef
<unsigned> Indices
;
3722 if (const InsertValueInst
*IV
= dyn_cast
<InsertValueInst
>(&I
))
3723 Indices
= IV
->getIndices();
3725 Indices
= cast
<ConstantExpr
>(&I
)->getIndices();
3727 const Value
*Op0
= I
.getOperand(0);
3728 const Value
*Op1
= I
.getOperand(1);
3729 Type
*AggTy
= I
.getType();
3730 Type
*ValTy
= Op1
->getType();
3731 bool IntoUndef
= isa
<UndefValue
>(Op0
);
3732 bool FromUndef
= isa
<UndefValue
>(Op1
);
3734 unsigned LinearIndex
= ComputeLinearIndex(AggTy
, Indices
);
3736 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3737 SmallVector
<EVT
, 4> AggValueVTs
;
3738 ComputeValueVTs(TLI
, DAG
.getDataLayout(), AggTy
, AggValueVTs
);
3739 SmallVector
<EVT
, 4> ValValueVTs
;
3740 ComputeValueVTs(TLI
, DAG
.getDataLayout(), ValTy
, ValValueVTs
);
3742 unsigned NumAggValues
= AggValueVTs
.size();
3743 unsigned NumValValues
= ValValueVTs
.size();
3744 SmallVector
<SDValue
, 4> Values(NumAggValues
);
3746 // Ignore an insertvalue that produces an empty object
3747 if (!NumAggValues
) {
3748 setValue(&I
, DAG
.getUNDEF(MVT(MVT::Other
)));
3752 SDValue Agg
= getValue(Op0
);
3754 // Copy the beginning value(s) from the original aggregate.
3755 for (; i
!= LinearIndex
; ++i
)
3756 Values
[i
] = IntoUndef
? DAG
.getUNDEF(AggValueVTs
[i
]) :
3757 SDValue(Agg
.getNode(), Agg
.getResNo() + i
);
3758 // Copy values from the inserted value(s).
3760 SDValue Val
= getValue(Op1
);
3761 for (; i
!= LinearIndex
+ NumValValues
; ++i
)
3762 Values
[i
] = FromUndef
? DAG
.getUNDEF(AggValueVTs
[i
]) :
3763 SDValue(Val
.getNode(), Val
.getResNo() + i
- LinearIndex
);
3765 // Copy remaining value(s) from the original aggregate.
3766 for (; i
!= NumAggValues
; ++i
)
3767 Values
[i
] = IntoUndef
? DAG
.getUNDEF(AggValueVTs
[i
]) :
3768 SDValue(Agg
.getNode(), Agg
.getResNo() + i
);
3770 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, getCurSDLoc(),
3771 DAG
.getVTList(AggValueVTs
), Values
));
3774 void SelectionDAGBuilder::visitExtractValue(const User
&I
) {
3775 ArrayRef
<unsigned> Indices
;
3776 if (const ExtractValueInst
*EV
= dyn_cast
<ExtractValueInst
>(&I
))
3777 Indices
= EV
->getIndices();
3779 Indices
= cast
<ConstantExpr
>(&I
)->getIndices();
3781 const Value
*Op0
= I
.getOperand(0);
3782 Type
*AggTy
= Op0
->getType();
3783 Type
*ValTy
= I
.getType();
3784 bool OutOfUndef
= isa
<UndefValue
>(Op0
);
3786 unsigned LinearIndex
= ComputeLinearIndex(AggTy
, Indices
);
3788 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3789 SmallVector
<EVT
, 4> ValValueVTs
;
3790 ComputeValueVTs(TLI
, DAG
.getDataLayout(), ValTy
, ValValueVTs
);
3792 unsigned NumValValues
= ValValueVTs
.size();
3794 // Ignore a extractvalue that produces an empty object
3795 if (!NumValValues
) {
3796 setValue(&I
, DAG
.getUNDEF(MVT(MVT::Other
)));
3800 SmallVector
<SDValue
, 4> Values(NumValValues
);
3802 SDValue Agg
= getValue(Op0
);
3803 // Copy out the selected value(s).
3804 for (unsigned i
= LinearIndex
; i
!= LinearIndex
+ NumValValues
; ++i
)
3805 Values
[i
- LinearIndex
] =
3807 DAG
.getUNDEF(Agg
.getNode()->getValueType(Agg
.getResNo() + i
)) :
3808 SDValue(Agg
.getNode(), Agg
.getResNo() + i
);
3810 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, getCurSDLoc(),
3811 DAG
.getVTList(ValValueVTs
), Values
));
3814 void SelectionDAGBuilder::visitGetElementPtr(const User
&I
) {
3815 Value
*Op0
= I
.getOperand(0);
3816 // Note that the pointer operand may be a vector of pointers. Take the scalar
3817 // element which holds a pointer.
3818 unsigned AS
= Op0
->getType()->getScalarType()->getPointerAddressSpace();
3819 SDValue N
= getValue(Op0
);
3820 SDLoc dl
= getCurSDLoc();
3821 auto &TLI
= DAG
.getTargetLoweringInfo();
3822 MVT PtrTy
= TLI
.getPointerTy(DAG
.getDataLayout(), AS
);
3823 MVT PtrMemTy
= TLI
.getPointerMemTy(DAG
.getDataLayout(), AS
);
3825 // Normalize Vector GEP - all scalar operands should be converted to the
3827 unsigned VectorWidth
= I
.getType()->isVectorTy() ?
3828 cast
<VectorType
>(I
.getType())->getVectorNumElements() : 0;
3830 if (VectorWidth
&& !N
.getValueType().isVector()) {
3831 LLVMContext
&Context
= *DAG
.getContext();
3832 EVT VT
= EVT::getVectorVT(Context
, N
.getValueType(), VectorWidth
);
3833 N
= DAG
.getSplatBuildVector(VT
, dl
, N
);
3836 for (gep_type_iterator GTI
= gep_type_begin(&I
), E
= gep_type_end(&I
);
3838 const Value
*Idx
= GTI
.getOperand();
3839 if (StructType
*StTy
= GTI
.getStructTypeOrNull()) {
3840 unsigned Field
= cast
<Constant
>(Idx
)->getUniqueInteger().getZExtValue();
3843 uint64_t Offset
= DL
->getStructLayout(StTy
)->getElementOffset(Field
);
3845 // In an inbounds GEP with an offset that is nonnegative even when
3846 // interpreted as signed, assume there is no unsigned overflow.
3848 if (int64_t(Offset
) >= 0 && cast
<GEPOperator
>(I
).isInBounds())
3849 Flags
.setNoUnsignedWrap(true);
3851 N
= DAG
.getNode(ISD::ADD
, dl
, N
.getValueType(), N
,
3852 DAG
.getConstant(Offset
, dl
, N
.getValueType()), Flags
);
3855 unsigned IdxSize
= DAG
.getDataLayout().getIndexSizeInBits(AS
);
3856 MVT IdxTy
= MVT::getIntegerVT(IdxSize
);
3857 APInt
ElementSize(IdxSize
, DL
->getTypeAllocSize(GTI
.getIndexedType()));
3859 // If this is a scalar constant or a splat vector of constants,
3860 // handle it quickly.
3861 const auto *CI
= dyn_cast
<ConstantInt
>(Idx
);
3862 if (!CI
&& isa
<ConstantDataVector
>(Idx
) &&
3863 cast
<ConstantDataVector
>(Idx
)->getSplatValue())
3864 CI
= cast
<ConstantInt
>(cast
<ConstantDataVector
>(Idx
)->getSplatValue());
3869 APInt Offs
= ElementSize
* CI
->getValue().sextOrTrunc(IdxSize
);
3870 LLVMContext
&Context
= *DAG
.getContext();
3871 SDValue OffsVal
= VectorWidth
?
3872 DAG
.getConstant(Offs
, dl
, EVT::getVectorVT(Context
, IdxTy
, VectorWidth
)) :
3873 DAG
.getConstant(Offs
, dl
, IdxTy
);
3875 // In an inbouds GEP with an offset that is nonnegative even when
3876 // interpreted as signed, assume there is no unsigned overflow.
3878 if (Offs
.isNonNegative() && cast
<GEPOperator
>(I
).isInBounds())
3879 Flags
.setNoUnsignedWrap(true);
3881 OffsVal
= DAG
.getSExtOrTrunc(OffsVal
, dl
, N
.getValueType());
3883 N
= DAG
.getNode(ISD::ADD
, dl
, N
.getValueType(), N
, OffsVal
, Flags
);
3887 // N = N + Idx * ElementSize;
3888 SDValue IdxN
= getValue(Idx
);
3890 if (!IdxN
.getValueType().isVector() && VectorWidth
) {
3891 EVT VT
= EVT::getVectorVT(*Context
, IdxN
.getValueType(), VectorWidth
);
3892 IdxN
= DAG
.getSplatBuildVector(VT
, dl
, IdxN
);
3895 // If the index is smaller or larger than intptr_t, truncate or extend
3897 IdxN
= DAG
.getSExtOrTrunc(IdxN
, dl
, N
.getValueType());
3899 // If this is a multiply by a power of two, turn it into a shl
3900 // immediately. This is a very common case.
3901 if (ElementSize
!= 1) {
3902 if (ElementSize
.isPowerOf2()) {
3903 unsigned Amt
= ElementSize
.logBase2();
3904 IdxN
= DAG
.getNode(ISD::SHL
, dl
,
3905 N
.getValueType(), IdxN
,
3906 DAG
.getConstant(Amt
, dl
, IdxN
.getValueType()));
3908 SDValue Scale
= DAG
.getConstant(ElementSize
.getZExtValue(), dl
,
3909 IdxN
.getValueType());
3910 IdxN
= DAG
.getNode(ISD::MUL
, dl
,
3911 N
.getValueType(), IdxN
, Scale
);
3915 N
= DAG
.getNode(ISD::ADD
, dl
,
3916 N
.getValueType(), N
, IdxN
);
3920 if (PtrMemTy
!= PtrTy
&& !cast
<GEPOperator
>(I
).isInBounds())
3921 N
= DAG
.getPtrExtendInReg(N
, dl
, PtrMemTy
);
3926 void SelectionDAGBuilder::visitAlloca(const AllocaInst
&I
) {
3927 // If this is a fixed sized alloca in the entry block of the function,
3928 // allocate it statically on the stack.
3929 if (FuncInfo
.StaticAllocaMap
.count(&I
))
3930 return; // getValue will auto-populate this.
3932 SDLoc dl
= getCurSDLoc();
3933 Type
*Ty
= I
.getAllocatedType();
3934 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3935 auto &DL
= DAG
.getDataLayout();
3936 uint64_t TySize
= DL
.getTypeAllocSize(Ty
);
3938 std::max((unsigned)DL
.getPrefTypeAlignment(Ty
), I
.getAlignment());
3940 SDValue AllocSize
= getValue(I
.getArraySize());
3942 EVT IntPtr
= TLI
.getPointerTy(DAG
.getDataLayout(), DL
.getAllocaAddrSpace());
3943 if (AllocSize
.getValueType() != IntPtr
)
3944 AllocSize
= DAG
.getZExtOrTrunc(AllocSize
, dl
, IntPtr
);
3946 AllocSize
= DAG
.getNode(ISD::MUL
, dl
, IntPtr
,
3948 DAG
.getConstant(TySize
, dl
, IntPtr
));
3950 // Handle alignment. If the requested alignment is less than or equal to
3951 // the stack alignment, ignore it. If the size is greater than or equal to
3952 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3953 unsigned StackAlign
=
3954 DAG
.getSubtarget().getFrameLowering()->getStackAlignment();
3955 if (Align
<= StackAlign
)
3958 // Round the size of the allocation up to the stack alignment size
3959 // by add SA-1 to the size. This doesn't overflow because we're computing
3960 // an address inside an alloca.
3962 Flags
.setNoUnsignedWrap(true);
3963 AllocSize
= DAG
.getNode(ISD::ADD
, dl
, AllocSize
.getValueType(), AllocSize
,
3964 DAG
.getConstant(StackAlign
- 1, dl
, IntPtr
), Flags
);
3966 // Mask out the low bits for alignment purposes.
3968 DAG
.getNode(ISD::AND
, dl
, AllocSize
.getValueType(), AllocSize
,
3969 DAG
.getConstant(~(uint64_t)(StackAlign
- 1), dl
, IntPtr
));
3971 SDValue Ops
[] = {getRoot(), AllocSize
, DAG
.getConstant(Align
, dl
, IntPtr
)};
3972 SDVTList VTs
= DAG
.getVTList(AllocSize
.getValueType(), MVT::Other
);
3973 SDValue DSA
= DAG
.getNode(ISD::DYNAMIC_STACKALLOC
, dl
, VTs
, Ops
);
3975 DAG
.setRoot(DSA
.getValue(1));
3977 assert(FuncInfo
.MF
->getFrameInfo().hasVarSizedObjects());
3980 void SelectionDAGBuilder::visitLoad(const LoadInst
&I
) {
3982 return visitAtomicLoad(I
);
3984 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3985 const Value
*SV
= I
.getOperand(0);
3986 if (TLI
.supportSwiftError()) {
3987 // Swifterror values can come from either a function parameter with
3988 // swifterror attribute or an alloca with swifterror attribute.
3989 if (const Argument
*Arg
= dyn_cast
<Argument
>(SV
)) {
3990 if (Arg
->hasSwiftErrorAttr())
3991 return visitLoadFromSwiftError(I
);
3994 if (const AllocaInst
*Alloca
= dyn_cast
<AllocaInst
>(SV
)) {
3995 if (Alloca
->isSwiftError())
3996 return visitLoadFromSwiftError(I
);
4000 SDValue Ptr
= getValue(SV
);
4002 Type
*Ty
= I
.getType();
4004 bool isVolatile
= I
.isVolatile();
4005 bool isNonTemporal
= I
.getMetadata(LLVMContext::MD_nontemporal
) != nullptr;
4006 bool isInvariant
= I
.getMetadata(LLVMContext::MD_invariant_load
) != nullptr;
4007 bool isDereferenceable
=
4008 isDereferenceablePointer(SV
, I
.getType(), DAG
.getDataLayout());
4009 unsigned Alignment
= I
.getAlignment();
4012 I
.getAAMetadata(AAInfo
);
4013 const MDNode
*Ranges
= I
.getMetadata(LLVMContext::MD_range
);
4015 SmallVector
<EVT
, 4> ValueVTs
, MemVTs
;
4016 SmallVector
<uint64_t, 4> Offsets
;
4017 ComputeValueVTs(TLI
, DAG
.getDataLayout(), Ty
, ValueVTs
, &MemVTs
, &Offsets
);
4018 unsigned NumValues
= ValueVTs
.size();
4023 bool ConstantMemory
= false;
4024 if (isVolatile
|| NumValues
> MaxParallelChains
)
4025 // Serialize volatile loads with other side effects.
4028 AA
->pointsToConstantMemory(MemoryLocation(
4030 LocationSize::precise(DAG
.getDataLayout().getTypeStoreSize(Ty
)),
4032 // Do not serialize (non-volatile) loads of constant memory with anything.
4033 Root
= DAG
.getEntryNode();
4034 ConstantMemory
= true;
4036 // Do not serialize non-volatile loads against each other.
4037 Root
= DAG
.getRoot();
4040 SDLoc dl
= getCurSDLoc();
4043 Root
= TLI
.prepareVolatileOrAtomicLoad(Root
, dl
, DAG
);
4045 // An aggregate load cannot wrap around the address space, so offsets to its
4046 // parts don't wrap either.
4048 Flags
.setNoUnsignedWrap(true);
4050 SmallVector
<SDValue
, 4> Values(NumValues
);
4051 SmallVector
<SDValue
, 4> Chains(std::min(MaxParallelChains
, NumValues
));
4052 EVT PtrVT
= Ptr
.getValueType();
4053 unsigned ChainI
= 0;
4054 for (unsigned i
= 0; i
!= NumValues
; ++i
, ++ChainI
) {
4055 // Serializing loads here may result in excessive register pressure, and
4056 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4057 // could recover a bit by hoisting nodes upward in the chain by recognizing
4058 // they are side-effect free or do not alias. The optimizer should really
4059 // avoid this case by converting large object/array copies to llvm.memcpy
4060 // (MaxParallelChains should always remain as failsafe).
4061 if (ChainI
== MaxParallelChains
) {
4062 assert(PendingLoads
.empty() && "PendingLoads must be serialized first");
4063 SDValue Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
4064 makeArrayRef(Chains
.data(), ChainI
));
4068 SDValue A
= DAG
.getNode(ISD::ADD
, dl
,
4070 DAG
.getConstant(Offsets
[i
], dl
, PtrVT
),
4072 auto MMOFlags
= MachineMemOperand::MONone
;
4074 MMOFlags
|= MachineMemOperand::MOVolatile
;
4076 MMOFlags
|= MachineMemOperand::MONonTemporal
;
4078 MMOFlags
|= MachineMemOperand::MOInvariant
;
4079 if (isDereferenceable
)
4080 MMOFlags
|= MachineMemOperand::MODereferenceable
;
4081 MMOFlags
|= TLI
.getMMOFlags(I
);
4083 SDValue L
= DAG
.getLoad(MemVTs
[i
], dl
, Root
, A
,
4084 MachinePointerInfo(SV
, Offsets
[i
]), Alignment
,
4085 MMOFlags
, AAInfo
, Ranges
);
4086 Chains
[ChainI
] = L
.getValue(1);
4088 if (MemVTs
[i
] != ValueVTs
[i
])
4089 L
= DAG
.getZExtOrTrunc(L
, dl
, ValueVTs
[i
]);
4094 if (!ConstantMemory
) {
4095 SDValue Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
4096 makeArrayRef(Chains
.data(), ChainI
));
4100 PendingLoads
.push_back(Chain
);
4103 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, dl
,
4104 DAG
.getVTList(ValueVTs
), Values
));
4107 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst
&I
) {
4108 assert(DAG
.getTargetLoweringInfo().supportSwiftError() &&
4109 "call visitStoreToSwiftError when backend supports swifterror");
4111 SmallVector
<EVT
, 4> ValueVTs
;
4112 SmallVector
<uint64_t, 4> Offsets
;
4113 const Value
*SrcV
= I
.getOperand(0);
4114 ComputeValueVTs(DAG
.getTargetLoweringInfo(), DAG
.getDataLayout(),
4115 SrcV
->getType(), ValueVTs
, &Offsets
);
4116 assert(ValueVTs
.size() == 1 && Offsets
[0] == 0 &&
4117 "expect a single EVT for swifterror");
4119 SDValue Src
= getValue(SrcV
);
4120 // Create a virtual register, then update the virtual register.
4122 SwiftError
.getOrCreateVRegDefAt(&I
, FuncInfo
.MBB
, I
.getPointerOperand());
4123 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4124 // Chain can be getRoot or getControlRoot.
4125 SDValue CopyNode
= DAG
.getCopyToReg(getRoot(), getCurSDLoc(), VReg
,
4126 SDValue(Src
.getNode(), Src
.getResNo()));
4127 DAG
.setRoot(CopyNode
);
4130 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst
&I
) {
4131 assert(DAG
.getTargetLoweringInfo().supportSwiftError() &&
4132 "call visitLoadFromSwiftError when backend supports swifterror");
4134 assert(!I
.isVolatile() &&
4135 I
.getMetadata(LLVMContext::MD_nontemporal
) == nullptr &&
4136 I
.getMetadata(LLVMContext::MD_invariant_load
) == nullptr &&
4137 "Support volatile, non temporal, invariant for load_from_swift_error");
4139 const Value
*SV
= I
.getOperand(0);
4140 Type
*Ty
= I
.getType();
4142 I
.getAAMetadata(AAInfo
);
4145 !AA
->pointsToConstantMemory(MemoryLocation(
4146 SV
, LocationSize::precise(DAG
.getDataLayout().getTypeStoreSize(Ty
)),
4148 "load_from_swift_error should not be constant memory");
4150 SmallVector
<EVT
, 4> ValueVTs
;
4151 SmallVector
<uint64_t, 4> Offsets
;
4152 ComputeValueVTs(DAG
.getTargetLoweringInfo(), DAG
.getDataLayout(), Ty
,
4153 ValueVTs
, &Offsets
);
4154 assert(ValueVTs
.size() == 1 && Offsets
[0] == 0 &&
4155 "expect a single EVT for swifterror");
4157 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4158 SDValue L
= DAG
.getCopyFromReg(
4159 getRoot(), getCurSDLoc(),
4160 SwiftError
.getOrCreateVRegUseAt(&I
, FuncInfo
.MBB
, SV
), ValueVTs
[0]);
4165 void SelectionDAGBuilder::visitStore(const StoreInst
&I
) {
4167 return visitAtomicStore(I
);
4169 const Value
*SrcV
= I
.getOperand(0);
4170 const Value
*PtrV
= I
.getOperand(1);
4172 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4173 if (TLI
.supportSwiftError()) {
4174 // Swifterror values can come from either a function parameter with
4175 // swifterror attribute or an alloca with swifterror attribute.
4176 if (const Argument
*Arg
= dyn_cast
<Argument
>(PtrV
)) {
4177 if (Arg
->hasSwiftErrorAttr())
4178 return visitStoreToSwiftError(I
);
4181 if (const AllocaInst
*Alloca
= dyn_cast
<AllocaInst
>(PtrV
)) {
4182 if (Alloca
->isSwiftError())
4183 return visitStoreToSwiftError(I
);
4187 SmallVector
<EVT
, 4> ValueVTs
, MemVTs
;
4188 SmallVector
<uint64_t, 4> Offsets
;
4189 ComputeValueVTs(DAG
.getTargetLoweringInfo(), DAG
.getDataLayout(),
4190 SrcV
->getType(), ValueVTs
, &MemVTs
, &Offsets
);
4191 unsigned NumValues
= ValueVTs
.size();
4195 // Get the lowered operands. Note that we do this after
4196 // checking if NumResults is zero, because with zero results
4197 // the operands won't have values in the map.
4198 SDValue Src
= getValue(SrcV
);
4199 SDValue Ptr
= getValue(PtrV
);
4201 SDValue Root
= getRoot();
4202 SmallVector
<SDValue
, 4> Chains(std::min(MaxParallelChains
, NumValues
));
4203 SDLoc dl
= getCurSDLoc();
4204 EVT PtrVT
= Ptr
.getValueType();
4205 unsigned Alignment
= I
.getAlignment();
4207 I
.getAAMetadata(AAInfo
);
4209 auto MMOFlags
= MachineMemOperand::MONone
;
4211 MMOFlags
|= MachineMemOperand::MOVolatile
;
4212 if (I
.getMetadata(LLVMContext::MD_nontemporal
) != nullptr)
4213 MMOFlags
|= MachineMemOperand::MONonTemporal
;
4214 MMOFlags
|= TLI
.getMMOFlags(I
);
4216 // An aggregate load cannot wrap around the address space, so offsets to its
4217 // parts don't wrap either.
4219 Flags
.setNoUnsignedWrap(true);
4221 unsigned ChainI
= 0;
4222 for (unsigned i
= 0; i
!= NumValues
; ++i
, ++ChainI
) {
4223 // See visitLoad comments.
4224 if (ChainI
== MaxParallelChains
) {
4225 SDValue Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
4226 makeArrayRef(Chains
.data(), ChainI
));
4230 SDValue Add
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Ptr
,
4231 DAG
.getConstant(Offsets
[i
], dl
, PtrVT
), Flags
);
4232 SDValue Val
= SDValue(Src
.getNode(), Src
.getResNo() + i
);
4233 if (MemVTs
[i
] != ValueVTs
[i
])
4234 Val
= DAG
.getPtrExtOrTrunc(Val
, dl
, MemVTs
[i
]);
4236 DAG
.getStore(Root
, dl
, Val
, Add
, MachinePointerInfo(PtrV
, Offsets
[i
]),
4237 Alignment
, MMOFlags
, AAInfo
);
4238 Chains
[ChainI
] = St
;
4241 SDValue StoreNode
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
4242 makeArrayRef(Chains
.data(), ChainI
));
4243 DAG
.setRoot(StoreNode
);
4246 void SelectionDAGBuilder::visitMaskedStore(const CallInst
&I
,
4247 bool IsCompressing
) {
4248 SDLoc sdl
= getCurSDLoc();
4250 auto getMaskedStoreOps
= [&](Value
* &Ptr
, Value
* &Mask
, Value
* &Src0
,
4251 unsigned& Alignment
) {
4252 // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4253 Src0
= I
.getArgOperand(0);
4254 Ptr
= I
.getArgOperand(1);
4255 Alignment
= cast
<ConstantInt
>(I
.getArgOperand(2))->getZExtValue();
4256 Mask
= I
.getArgOperand(3);
4258 auto getCompressingStoreOps
= [&](Value
* &Ptr
, Value
* &Mask
, Value
* &Src0
,
4259 unsigned& Alignment
) {
4260 // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4261 Src0
= I
.getArgOperand(0);
4262 Ptr
= I
.getArgOperand(1);
4263 Mask
= I
.getArgOperand(2);
4267 Value
*PtrOperand
, *MaskOperand
, *Src0Operand
;
4270 getCompressingStoreOps(PtrOperand
, MaskOperand
, Src0Operand
, Alignment
);
4272 getMaskedStoreOps(PtrOperand
, MaskOperand
, Src0Operand
, Alignment
);
4274 SDValue Ptr
= getValue(PtrOperand
);
4275 SDValue Src0
= getValue(Src0Operand
);
4276 SDValue Mask
= getValue(MaskOperand
);
4278 EVT VT
= Src0
.getValueType();
4280 Alignment
= DAG
.getEVTAlignment(VT
);
4283 I
.getAAMetadata(AAInfo
);
4285 MachineMemOperand
*MMO
=
4286 DAG
.getMachineFunction().
4287 getMachineMemOperand(MachinePointerInfo(PtrOperand
),
4288 MachineMemOperand::MOStore
, VT
.getStoreSize(),
4290 SDValue StoreNode
= DAG
.getMaskedStore(getRoot(), sdl
, Src0
, Ptr
, Mask
, VT
,
4291 MMO
, false /* Truncating */,
4293 DAG
.setRoot(StoreNode
);
4294 setValue(&I
, StoreNode
);
4297 // Get a uniform base for the Gather/Scatter intrinsic.
4298 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4299 // We try to represent it as a base pointer + vector of indices.
4300 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4301 // The first operand of the GEP may be a single pointer or a vector of pointers
4303 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4305 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind
4306 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4308 // When the first GEP operand is a single pointer - it is the uniform base we
4309 // are looking for. If first operand of the GEP is a splat vector - we
4310 // extract the splat value and use it as a uniform base.
4311 // In all other cases the function returns 'false'.
4312 static bool getUniformBase(const Value
* &Ptr
, SDValue
& Base
, SDValue
& Index
,
4313 SDValue
&Scale
, SelectionDAGBuilder
* SDB
) {
4314 SelectionDAG
& DAG
= SDB
->DAG
;
4315 LLVMContext
&Context
= *DAG
.getContext();
4317 assert(Ptr
->getType()->isVectorTy() && "Uexpected pointer type");
4318 const GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(Ptr
);
4322 const Value
*GEPPtr
= GEP
->getPointerOperand();
4323 if (!GEPPtr
->getType()->isVectorTy())
4325 else if (!(Ptr
= getSplatValue(GEPPtr
)))
4328 unsigned FinalIndex
= GEP
->getNumOperands() - 1;
4329 Value
*IndexVal
= GEP
->getOperand(FinalIndex
);
4331 // Ensure all the other indices are 0.
4332 for (unsigned i
= 1; i
< FinalIndex
; ++i
) {
4333 auto *C
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
));
4334 if (!C
|| !C
->isZero())
4338 // The operands of the GEP may be defined in another basic block.
4339 // In this case we'll not find nodes for the operands.
4340 if (!SDB
->findValue(Ptr
) || !SDB
->findValue(IndexVal
))
4343 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4344 const DataLayout
&DL
= DAG
.getDataLayout();
4345 Scale
= DAG
.getTargetConstant(DL
.getTypeAllocSize(GEP
->getResultElementType()),
4346 SDB
->getCurSDLoc(), TLI
.getPointerTy(DL
));
4347 Base
= SDB
->getValue(Ptr
);
4348 Index
= SDB
->getValue(IndexVal
);
4350 if (!Index
.getValueType().isVector()) {
4351 unsigned GEPWidth
= GEP
->getType()->getVectorNumElements();
4352 EVT VT
= EVT::getVectorVT(Context
, Index
.getValueType(), GEPWidth
);
4353 Index
= DAG
.getSplatBuildVector(VT
, SDLoc(Index
), Index
);
4358 void SelectionDAGBuilder::visitMaskedScatter(const CallInst
&I
) {
4359 SDLoc sdl
= getCurSDLoc();
4361 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
4362 const Value
*Ptr
= I
.getArgOperand(1);
4363 SDValue Src0
= getValue(I
.getArgOperand(0));
4364 SDValue Mask
= getValue(I
.getArgOperand(3));
4365 EVT VT
= Src0
.getValueType();
4366 unsigned Alignment
= (cast
<ConstantInt
>(I
.getArgOperand(2)))->getZExtValue();
4368 Alignment
= DAG
.getEVTAlignment(VT
);
4369 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4372 I
.getAAMetadata(AAInfo
);
4377 const Value
*BasePtr
= Ptr
;
4378 bool UniformBase
= getUniformBase(BasePtr
, Base
, Index
, Scale
, this);
4380 const Value
*MemOpBasePtr
= UniformBase
? BasePtr
: nullptr;
4381 MachineMemOperand
*MMO
= DAG
.getMachineFunction().
4382 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr
),
4383 MachineMemOperand::MOStore
, VT
.getStoreSize(),
4386 Base
= DAG
.getConstant(0, sdl
, TLI
.getPointerTy(DAG
.getDataLayout()));
4387 Index
= getValue(Ptr
);
4388 Scale
= DAG
.getTargetConstant(1, sdl
, TLI
.getPointerTy(DAG
.getDataLayout()));
4390 SDValue Ops
[] = { getRoot(), Src0
, Mask
, Base
, Index
, Scale
};
4391 SDValue Scatter
= DAG
.getMaskedScatter(DAG
.getVTList(MVT::Other
), VT
, sdl
,
4393 DAG
.setRoot(Scatter
);
4394 setValue(&I
, Scatter
);
4397 void SelectionDAGBuilder::visitMaskedLoad(const CallInst
&I
, bool IsExpanding
) {
4398 SDLoc sdl
= getCurSDLoc();
4400 auto getMaskedLoadOps
= [&](Value
* &Ptr
, Value
* &Mask
, Value
* &Src0
,
4401 unsigned& Alignment
) {
4402 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4403 Ptr
= I
.getArgOperand(0);
4404 Alignment
= cast
<ConstantInt
>(I
.getArgOperand(1))->getZExtValue();
4405 Mask
= I
.getArgOperand(2);
4406 Src0
= I
.getArgOperand(3);
4408 auto getExpandingLoadOps
= [&](Value
* &Ptr
, Value
* &Mask
, Value
* &Src0
,
4409 unsigned& Alignment
) {
4410 // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4411 Ptr
= I
.getArgOperand(0);
4413 Mask
= I
.getArgOperand(1);
4414 Src0
= I
.getArgOperand(2);
4417 Value
*PtrOperand
, *MaskOperand
, *Src0Operand
;
4420 getExpandingLoadOps(PtrOperand
, MaskOperand
, Src0Operand
, Alignment
);
4422 getMaskedLoadOps(PtrOperand
, MaskOperand
, Src0Operand
, Alignment
);
4424 SDValue Ptr
= getValue(PtrOperand
);
4425 SDValue Src0
= getValue(Src0Operand
);
4426 SDValue Mask
= getValue(MaskOperand
);
4428 EVT VT
= Src0
.getValueType();
4430 Alignment
= DAG
.getEVTAlignment(VT
);
4433 I
.getAAMetadata(AAInfo
);
4434 const MDNode
*Ranges
= I
.getMetadata(LLVMContext::MD_range
);
4436 // Do not serialize masked loads of constant memory with anything.
4438 !AA
|| !AA
->pointsToConstantMemory(MemoryLocation(
4440 LocationSize::precise(
4441 DAG
.getDataLayout().getTypeStoreSize(I
.getType())),
4443 SDValue InChain
= AddToChain
? DAG
.getRoot() : DAG
.getEntryNode();
4445 MachineMemOperand
*MMO
=
4446 DAG
.getMachineFunction().
4447 getMachineMemOperand(MachinePointerInfo(PtrOperand
),
4448 MachineMemOperand::MOLoad
, VT
.getStoreSize(),
4449 Alignment
, AAInfo
, Ranges
);
4451 SDValue Load
= DAG
.getMaskedLoad(VT
, sdl
, InChain
, Ptr
, Mask
, Src0
, VT
, MMO
,
4452 ISD::NON_EXTLOAD
, IsExpanding
);
4454 PendingLoads
.push_back(Load
.getValue(1));
4458 void SelectionDAGBuilder::visitMaskedGather(const CallInst
&I
) {
4459 SDLoc sdl
= getCurSDLoc();
4461 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4462 const Value
*Ptr
= I
.getArgOperand(0);
4463 SDValue Src0
= getValue(I
.getArgOperand(3));
4464 SDValue Mask
= getValue(I
.getArgOperand(2));
4466 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4467 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
4468 unsigned Alignment
= (cast
<ConstantInt
>(I
.getArgOperand(1)))->getZExtValue();
4470 Alignment
= DAG
.getEVTAlignment(VT
);
4473 I
.getAAMetadata(AAInfo
);
4474 const MDNode
*Ranges
= I
.getMetadata(LLVMContext::MD_range
);
4476 SDValue Root
= DAG
.getRoot();
4480 const Value
*BasePtr
= Ptr
;
4481 bool UniformBase
= getUniformBase(BasePtr
, Base
, Index
, Scale
, this);
4482 bool ConstantMemory
= false;
4483 if (UniformBase
&& AA
&&
4484 AA
->pointsToConstantMemory(
4485 MemoryLocation(BasePtr
,
4486 LocationSize::precise(
4487 DAG
.getDataLayout().getTypeStoreSize(I
.getType())),
4489 // Do not serialize (non-volatile) loads of constant memory with anything.
4490 Root
= DAG
.getEntryNode();
4491 ConstantMemory
= true;
4494 MachineMemOperand
*MMO
=
4495 DAG
.getMachineFunction().
4496 getMachineMemOperand(MachinePointerInfo(UniformBase
? BasePtr
: nullptr),
4497 MachineMemOperand::MOLoad
, VT
.getStoreSize(),
4498 Alignment
, AAInfo
, Ranges
);
4501 Base
= DAG
.getConstant(0, sdl
, TLI
.getPointerTy(DAG
.getDataLayout()));
4502 Index
= getValue(Ptr
);
4503 Scale
= DAG
.getTargetConstant(1, sdl
, TLI
.getPointerTy(DAG
.getDataLayout()));
4505 SDValue Ops
[] = { Root
, Src0
, Mask
, Base
, Index
, Scale
};
4506 SDValue Gather
= DAG
.getMaskedGather(DAG
.getVTList(VT
, MVT::Other
), VT
, sdl
,
4509 SDValue OutChain
= Gather
.getValue(1);
4510 if (!ConstantMemory
)
4511 PendingLoads
.push_back(OutChain
);
4512 setValue(&I
, Gather
);
4515 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst
&I
) {
4516 SDLoc dl
= getCurSDLoc();
4517 AtomicOrdering SuccessOrdering
= I
.getSuccessOrdering();
4518 AtomicOrdering FailureOrdering
= I
.getFailureOrdering();
4519 SyncScope::ID SSID
= I
.getSyncScopeID();
4521 SDValue InChain
= getRoot();
4523 MVT MemVT
= getValue(I
.getCompareOperand()).getSimpleValueType();
4524 SDVTList VTs
= DAG
.getVTList(MemVT
, MVT::i1
, MVT::Other
);
4526 auto Alignment
= DAG
.getEVTAlignment(MemVT
);
4528 auto Flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOStore
;
4530 Flags
|= MachineMemOperand::MOVolatile
;
4531 Flags
|= DAG
.getTargetLoweringInfo().getMMOFlags(I
);
4533 MachineFunction
&MF
= DAG
.getMachineFunction();
4534 MachineMemOperand
*MMO
=
4535 MF
.getMachineMemOperand(MachinePointerInfo(I
.getPointerOperand()),
4536 Flags
, MemVT
.getStoreSize(), Alignment
,
4537 AAMDNodes(), nullptr, SSID
, SuccessOrdering
,
4540 SDValue L
= DAG
.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS
,
4541 dl
, MemVT
, VTs
, InChain
,
4542 getValue(I
.getPointerOperand()),
4543 getValue(I
.getCompareOperand()),
4544 getValue(I
.getNewValOperand()), MMO
);
4546 SDValue OutChain
= L
.getValue(2);
4549 DAG
.setRoot(OutChain
);
4552 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst
&I
) {
4553 SDLoc dl
= getCurSDLoc();
4555 switch (I
.getOperation()) {
4556 default: llvm_unreachable("Unknown atomicrmw operation");
4557 case AtomicRMWInst::Xchg
: NT
= ISD::ATOMIC_SWAP
; break;
4558 case AtomicRMWInst::Add
: NT
= ISD::ATOMIC_LOAD_ADD
; break;
4559 case AtomicRMWInst::Sub
: NT
= ISD::ATOMIC_LOAD_SUB
; break;
4560 case AtomicRMWInst::And
: NT
= ISD::ATOMIC_LOAD_AND
; break;
4561 case AtomicRMWInst::Nand
: NT
= ISD::ATOMIC_LOAD_NAND
; break;
4562 case AtomicRMWInst::Or
: NT
= ISD::ATOMIC_LOAD_OR
; break;
4563 case AtomicRMWInst::Xor
: NT
= ISD::ATOMIC_LOAD_XOR
; break;
4564 case AtomicRMWInst::Max
: NT
= ISD::ATOMIC_LOAD_MAX
; break;
4565 case AtomicRMWInst::Min
: NT
= ISD::ATOMIC_LOAD_MIN
; break;
4566 case AtomicRMWInst::UMax
: NT
= ISD::ATOMIC_LOAD_UMAX
; break;
4567 case AtomicRMWInst::UMin
: NT
= ISD::ATOMIC_LOAD_UMIN
; break;
4568 case AtomicRMWInst::FAdd
: NT
= ISD::ATOMIC_LOAD_FADD
; break;
4569 case AtomicRMWInst::FSub
: NT
= ISD::ATOMIC_LOAD_FSUB
; break;
4571 AtomicOrdering Ordering
= I
.getOrdering();
4572 SyncScope::ID SSID
= I
.getSyncScopeID();
4574 SDValue InChain
= getRoot();
4576 auto MemVT
= getValue(I
.getValOperand()).getSimpleValueType();
4577 auto Alignment
= DAG
.getEVTAlignment(MemVT
);
4579 auto Flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOStore
;
4581 Flags
|= MachineMemOperand::MOVolatile
;
4582 Flags
|= DAG
.getTargetLoweringInfo().getMMOFlags(I
);
4584 MachineFunction
&MF
= DAG
.getMachineFunction();
4585 MachineMemOperand
*MMO
=
4586 MF
.getMachineMemOperand(MachinePointerInfo(I
.getPointerOperand()), Flags
,
4587 MemVT
.getStoreSize(), Alignment
, AAMDNodes(),
4588 nullptr, SSID
, Ordering
);
4591 DAG
.getAtomic(NT
, dl
, MemVT
, InChain
,
4592 getValue(I
.getPointerOperand()), getValue(I
.getValOperand()),
4595 SDValue OutChain
= L
.getValue(1);
4598 DAG
.setRoot(OutChain
);
4601 void SelectionDAGBuilder::visitFence(const FenceInst
&I
) {
4602 SDLoc dl
= getCurSDLoc();
4603 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4606 Ops
[1] = DAG
.getConstant((unsigned)I
.getOrdering(), dl
,
4607 TLI
.getFenceOperandTy(DAG
.getDataLayout()));
4608 Ops
[2] = DAG
.getConstant(I
.getSyncScopeID(), dl
,
4609 TLI
.getFenceOperandTy(DAG
.getDataLayout()));
4610 DAG
.setRoot(DAG
.getNode(ISD::ATOMIC_FENCE
, dl
, MVT::Other
, Ops
));
4613 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst
&I
) {
4614 SDLoc dl
= getCurSDLoc();
4615 AtomicOrdering Order
= I
.getOrdering();
4616 SyncScope::ID SSID
= I
.getSyncScopeID();
4618 SDValue InChain
= getRoot();
4620 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4621 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
4622 EVT MemVT
= TLI
.getMemValueType(DAG
.getDataLayout(), I
.getType());
4624 if (!TLI
.supportsUnalignedAtomics() &&
4625 I
.getAlignment() < MemVT
.getSizeInBits() / 8)
4626 report_fatal_error("Cannot generate unaligned atomic load");
4628 auto Flags
= MachineMemOperand::MOLoad
;
4630 Flags
|= MachineMemOperand::MOVolatile
;
4631 if (I
.getMetadata(LLVMContext::MD_invariant_load
) != nullptr)
4632 Flags
|= MachineMemOperand::MOInvariant
;
4633 if (isDereferenceablePointer(I
.getPointerOperand(), I
.getType(),
4634 DAG
.getDataLayout()))
4635 Flags
|= MachineMemOperand::MODereferenceable
;
4637 Flags
|= TLI
.getMMOFlags(I
);
4639 MachineMemOperand
*MMO
=
4640 DAG
.getMachineFunction().
4641 getMachineMemOperand(MachinePointerInfo(I
.getPointerOperand()),
4642 Flags
, MemVT
.getStoreSize(),
4643 I
.getAlignment() ? I
.getAlignment() :
4644 DAG
.getEVTAlignment(MemVT
),
4645 AAMDNodes(), nullptr, SSID
, Order
);
4647 InChain
= TLI
.prepareVolatileOrAtomicLoad(InChain
, dl
, DAG
);
4649 DAG
.getAtomic(ISD::ATOMIC_LOAD
, dl
, MemVT
, MemVT
, InChain
,
4650 getValue(I
.getPointerOperand()), MMO
);
4652 SDValue OutChain
= L
.getValue(1);
4654 L
= DAG
.getPtrExtOrTrunc(L
, dl
, VT
);
4657 DAG
.setRoot(OutChain
);
4660 void SelectionDAGBuilder::visitAtomicStore(const StoreInst
&I
) {
4661 SDLoc dl
= getCurSDLoc();
4663 AtomicOrdering Ordering
= I
.getOrdering();
4664 SyncScope::ID SSID
= I
.getSyncScopeID();
4666 SDValue InChain
= getRoot();
4668 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4670 TLI
.getMemValueType(DAG
.getDataLayout(), I
.getValueOperand()->getType());
4672 if (I
.getAlignment() < MemVT
.getSizeInBits() / 8)
4673 report_fatal_error("Cannot generate unaligned atomic store");
4675 auto Flags
= MachineMemOperand::MOStore
;
4677 Flags
|= MachineMemOperand::MOVolatile
;
4678 Flags
|= TLI
.getMMOFlags(I
);
4680 MachineFunction
&MF
= DAG
.getMachineFunction();
4681 MachineMemOperand
*MMO
=
4682 MF
.getMachineMemOperand(MachinePointerInfo(I
.getPointerOperand()), Flags
,
4683 MemVT
.getStoreSize(), I
.getAlignment(), AAMDNodes(),
4684 nullptr, SSID
, Ordering
);
4686 SDValue Val
= getValue(I
.getValueOperand());
4687 if (Val
.getValueType() != MemVT
)
4688 Val
= DAG
.getPtrExtOrTrunc(Val
, dl
, MemVT
);
4690 SDValue OutChain
= DAG
.getAtomic(ISD::ATOMIC_STORE
, dl
, MemVT
, InChain
,
4691 getValue(I
.getPointerOperand()), Val
, MMO
);
4694 DAG
.setRoot(OutChain
);
4697 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4699 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst
&I
,
4700 unsigned Intrinsic
) {
4701 // Ignore the callsite's attributes. A specific call site may be marked with
4702 // readnone, but the lowering code will expect the chain based on the
4704 const Function
*F
= I
.getCalledFunction();
4705 bool HasChain
= !F
->doesNotAccessMemory();
4706 bool OnlyLoad
= HasChain
&& F
->onlyReadsMemory();
4708 // Build the operand list.
4709 SmallVector
<SDValue
, 8> Ops
;
4710 if (HasChain
) { // If this intrinsic has side-effects, chainify it.
4712 // We don't need to serialize loads against other loads.
4713 Ops
.push_back(DAG
.getRoot());
4715 Ops
.push_back(getRoot());
4719 // Info is set by getTgtMemInstrinsic
4720 TargetLowering::IntrinsicInfo Info
;
4721 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4722 bool IsTgtIntrinsic
= TLI
.getTgtMemIntrinsic(Info
, I
,
4723 DAG
.getMachineFunction(),
4726 // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4727 if (!IsTgtIntrinsic
|| Info
.opc
== ISD::INTRINSIC_VOID
||
4728 Info
.opc
== ISD::INTRINSIC_W_CHAIN
)
4729 Ops
.push_back(DAG
.getTargetConstant(Intrinsic
, getCurSDLoc(),
4730 TLI
.getPointerTy(DAG
.getDataLayout())));
4732 // Add all operands of the call to the operand list.
4733 for (unsigned i
= 0, e
= I
.getNumArgOperands(); i
!= e
; ++i
) {
4734 SDValue Op
= getValue(I
.getArgOperand(i
));
4738 SmallVector
<EVT
, 4> ValueVTs
;
4739 ComputeValueVTs(TLI
, DAG
.getDataLayout(), I
.getType(), ValueVTs
);
4742 ValueVTs
.push_back(MVT::Other
);
4744 SDVTList VTs
= DAG
.getVTList(ValueVTs
);
4748 if (IsTgtIntrinsic
) {
4749 // This is target intrinsic that touches memory
4751 I
.getAAMetadata(AAInfo
);
4753 DAG
.getMemIntrinsicNode(Info
.opc
, getCurSDLoc(), VTs
, Ops
, Info
.memVT
,
4754 MachinePointerInfo(Info
.ptrVal
, Info
.offset
),
4755 Info
.align
, Info
.flags
, Info
.size
, AAInfo
);
4756 } else if (!HasChain
) {
4757 Result
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, getCurSDLoc(), VTs
, Ops
);
4758 } else if (!I
.getType()->isVoidTy()) {
4759 Result
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, getCurSDLoc(), VTs
, Ops
);
4761 Result
= DAG
.getNode(ISD::INTRINSIC_VOID
, getCurSDLoc(), VTs
, Ops
);
4765 SDValue Chain
= Result
.getValue(Result
.getNode()->getNumValues()-1);
4767 PendingLoads
.push_back(Chain
);
4772 if (!I
.getType()->isVoidTy()) {
4773 if (VectorType
*PTy
= dyn_cast
<VectorType
>(I
.getType())) {
4774 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), PTy
);
4775 Result
= DAG
.getNode(ISD::BITCAST
, getCurSDLoc(), VT
, Result
);
4777 Result
= lowerRangeToAssertZExt(DAG
, I
, Result
);
4779 setValue(&I
, Result
);
4783 /// GetSignificand - Get the significand and build it into a floating-point
4784 /// number with exponent of 1:
4786 /// Op = (Op & 0x007fffff) | 0x3f800000;
4788 /// where Op is the hexadecimal representation of floating point value.
4789 static SDValue
GetSignificand(SelectionDAG
&DAG
, SDValue Op
, const SDLoc
&dl
) {
4790 SDValue t1
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Op
,
4791 DAG
.getConstant(0x007fffff, dl
, MVT::i32
));
4792 SDValue t2
= DAG
.getNode(ISD::OR
, dl
, MVT::i32
, t1
,
4793 DAG
.getConstant(0x3f800000, dl
, MVT::i32
));
4794 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::f32
, t2
);
4797 /// GetExponent - Get the exponent:
4799 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4801 /// where Op is the hexadecimal representation of floating point value.
4802 static SDValue
GetExponent(SelectionDAG
&DAG
, SDValue Op
,
4803 const TargetLowering
&TLI
, const SDLoc
&dl
) {
4804 SDValue t0
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Op
,
4805 DAG
.getConstant(0x7f800000, dl
, MVT::i32
));
4806 SDValue t1
= DAG
.getNode(
4807 ISD::SRL
, dl
, MVT::i32
, t0
,
4808 DAG
.getConstant(23, dl
, TLI
.getPointerTy(DAG
.getDataLayout())));
4809 SDValue t2
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, t1
,
4810 DAG
.getConstant(127, dl
, MVT::i32
));
4811 return DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::f32
, t2
);
4814 /// getF32Constant - Get 32-bit floating point constant.
4815 static SDValue
getF32Constant(SelectionDAG
&DAG
, unsigned Flt
,
4817 return DAG
.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt
)), dl
,
4821 static SDValue
getLimitedPrecisionExp2(SDValue t0
, const SDLoc
&dl
,
4822 SelectionDAG
&DAG
) {
4823 // TODO: What fast-math-flags should be set on the floating-point nodes?
4825 // IntegerPartOfX = ((int32_t)(t0);
4826 SDValue IntegerPartOfX
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::i32
, t0
);
4828 // FractionalPartOfX = t0 - (float)IntegerPartOfX;
4829 SDValue t1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::f32
, IntegerPartOfX
);
4830 SDValue X
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t0
, t1
);
4832 // IntegerPartOfX <<= 23;
4833 IntegerPartOfX
= DAG
.getNode(
4834 ISD::SHL
, dl
, MVT::i32
, IntegerPartOfX
,
4835 DAG
.getConstant(23, dl
, DAG
.getTargetLoweringInfo().getPointerTy(
4836 DAG
.getDataLayout())));
4838 SDValue TwoToFractionalPartOfX
;
4839 if (LimitFloatPrecision
<= 6) {
4840 // For floating-point precision of 6:
4842 // TwoToFractionalPartOfX =
4844 // (0.735607626f + 0.252464424f * x) * x;
4846 // error 0.0144103317, which is 6 bits
4847 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
4848 getF32Constant(DAG
, 0x3e814304, dl
));
4849 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
4850 getF32Constant(DAG
, 0x3f3c50c8, dl
));
4851 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
4852 TwoToFractionalPartOfX
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
4853 getF32Constant(DAG
, 0x3f7f5e7e, dl
));
4854 } else if (LimitFloatPrecision
<= 12) {
4855 // For floating-point precision of 12:
4857 // TwoToFractionalPartOfX =
4860 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
4862 // error 0.000107046256, which is 13 to 14 bits
4863 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
4864 getF32Constant(DAG
, 0x3da235e3, dl
));
4865 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
4866 getF32Constant(DAG
, 0x3e65b8f3, dl
));
4867 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
4868 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
4869 getF32Constant(DAG
, 0x3f324b07, dl
));
4870 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
4871 TwoToFractionalPartOfX
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
4872 getF32Constant(DAG
, 0x3f7ff8fd, dl
));
4873 } else { // LimitFloatPrecision <= 18
4874 // For floating-point precision of 18:
4876 // TwoToFractionalPartOfX =
4880 // (0.554906021e-1f +
4881 // (0.961591928e-2f +
4882 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4883 // error 2.47208000*10^(-7), which is better than 18 bits
4884 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
4885 getF32Constant(DAG
, 0x3924b03e, dl
));
4886 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
4887 getF32Constant(DAG
, 0x3ab24b87, dl
));
4888 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
4889 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
4890 getF32Constant(DAG
, 0x3c1d8c17, dl
));
4891 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
4892 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
4893 getF32Constant(DAG
, 0x3d634a1d, dl
));
4894 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
4895 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
4896 getF32Constant(DAG
, 0x3e75fe14, dl
));
4897 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
4898 SDValue t11
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t10
,
4899 getF32Constant(DAG
, 0x3f317234, dl
));
4900 SDValue t12
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t11
, X
);
4901 TwoToFractionalPartOfX
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t12
,
4902 getF32Constant(DAG
, 0x3f800000, dl
));
4905 // Add the exponent into the result in integer domain.
4906 SDValue t13
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, TwoToFractionalPartOfX
);
4907 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::f32
,
4908 DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, t13
, IntegerPartOfX
));
4911 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4912 /// limited-precision mode.
4913 static SDValue
expandExp(const SDLoc
&dl
, SDValue Op
, SelectionDAG
&DAG
,
4914 const TargetLowering
&TLI
) {
4915 if (Op
.getValueType() == MVT::f32
&&
4916 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
4918 // Put the exponent in the right bit position for later addition to the
4921 // #define LOG2OFe 1.4426950f
4922 // t0 = Op * LOG2OFe
4924 // TODO: What fast-math-flags should be set here?
4925 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, Op
,
4926 getF32Constant(DAG
, 0x3fb8aa3b, dl
));
4927 return getLimitedPrecisionExp2(t0
, dl
, DAG
);
4930 // No special expansion.
4931 return DAG
.getNode(ISD::FEXP
, dl
, Op
.getValueType(), Op
);
4934 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4935 /// limited-precision mode.
4936 static SDValue
expandLog(const SDLoc
&dl
, SDValue Op
, SelectionDAG
&DAG
,
4937 const TargetLowering
&TLI
) {
4938 // TODO: What fast-math-flags should be set on the floating-point nodes?
4940 if (Op
.getValueType() == MVT::f32
&&
4941 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
4942 SDValue Op1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Op
);
4944 // Scale the exponent by log(2) [0.69314718f].
4945 SDValue Exp
= GetExponent(DAG
, Op1
, TLI
, dl
);
4946 SDValue LogOfExponent
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, Exp
,
4947 getF32Constant(DAG
, 0x3f317218, dl
));
4949 // Get the significand and build it into a floating-point number with
4951 SDValue X
= GetSignificand(DAG
, Op1
, dl
);
4953 SDValue LogOfMantissa
;
4954 if (LimitFloatPrecision
<= 6) {
4955 // For floating-point precision of 6:
4959 // (1.4034025f - 0.23903021f * x) * x;
4961 // error 0.0034276066, which is better than 8 bits
4962 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
4963 getF32Constant(DAG
, 0xbe74c456, dl
));
4964 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
4965 getF32Constant(DAG
, 0x3fb3a2b1, dl
));
4966 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
4967 LogOfMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
4968 getF32Constant(DAG
, 0x3f949a29, dl
));
4969 } else if (LimitFloatPrecision
<= 12) {
4970 // For floating-point precision of 12:
4976 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4978 // error 0.000061011436, which is 14 bits
4979 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
4980 getF32Constant(DAG
, 0xbd67b6d6, dl
));
4981 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
4982 getF32Constant(DAG
, 0x3ee4f4b8, dl
));
4983 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
4984 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
4985 getF32Constant(DAG
, 0x3fbc278b, dl
));
4986 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
4987 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
4988 getF32Constant(DAG
, 0x40348e95, dl
));
4989 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
4990 LogOfMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
4991 getF32Constant(DAG
, 0x3fdef31a, dl
));
4992 } else { // LimitFloatPrecision <= 18
4993 // For floating-point precision of 18:
5001 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5003 // error 0.0000023660568, which is better than 18 bits
5004 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5005 getF32Constant(DAG
, 0xbc91e5ac, dl
));
5006 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
5007 getF32Constant(DAG
, 0x3e4350aa, dl
));
5008 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5009 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
5010 getF32Constant(DAG
, 0x3f60d3e3, dl
));
5011 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
5012 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
5013 getF32Constant(DAG
, 0x4011cdf0, dl
));
5014 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
5015 SDValue t7
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
5016 getF32Constant(DAG
, 0x406cfd1c, dl
));
5017 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
5018 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
5019 getF32Constant(DAG
, 0x408797cb, dl
));
5020 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
5021 LogOfMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t10
,
5022 getF32Constant(DAG
, 0x4006dcab, dl
));
5025 return DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, LogOfExponent
, LogOfMantissa
);
5028 // No special expansion.
5029 return DAG
.getNode(ISD::FLOG
, dl
, Op
.getValueType(), Op
);
5032 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5033 /// limited-precision mode.
5034 static SDValue
expandLog2(const SDLoc
&dl
, SDValue Op
, SelectionDAG
&DAG
,
5035 const TargetLowering
&TLI
) {
5036 // TODO: What fast-math-flags should be set on the floating-point nodes?
5038 if (Op
.getValueType() == MVT::f32
&&
5039 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
5040 SDValue Op1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Op
);
5042 // Get the exponent.
5043 SDValue LogOfExponent
= GetExponent(DAG
, Op1
, TLI
, dl
);
5045 // Get the significand and build it into a floating-point number with
5047 SDValue X
= GetSignificand(DAG
, Op1
, dl
);
5049 // Different possible minimax approximations of significand in
5050 // floating-point for various degrees of accuracy over [1,2].
5051 SDValue Log2ofMantissa
;
5052 if (LimitFloatPrecision
<= 6) {
5053 // For floating-point precision of 6:
5055 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5057 // error 0.0049451742, which is more than 7 bits
5058 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5059 getF32Constant(DAG
, 0xbeb08fe0, dl
));
5060 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
5061 getF32Constant(DAG
, 0x40019463, dl
));
5062 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5063 Log2ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
5064 getF32Constant(DAG
, 0x3fd6633d, dl
));
5065 } else if (LimitFloatPrecision
<= 12) {
5066 // For floating-point precision of 12:
5072 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5074 // error 0.0000876136000, which is better than 13 bits
5075 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5076 getF32Constant(DAG
, 0xbda7262e, dl
));
5077 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
5078 getF32Constant(DAG
, 0x3f25280b, dl
));
5079 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5080 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
5081 getF32Constant(DAG
, 0x4007b923, dl
));
5082 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
5083 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
5084 getF32Constant(DAG
, 0x40823e2f, dl
));
5085 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
5086 Log2ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
5087 getF32Constant(DAG
, 0x4020d29c, dl
));
5088 } else { // LimitFloatPrecision <= 18
5089 // For floating-point precision of 18:
5098 // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5100 // error 0.0000018516, which is better than 18 bits
5101 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5102 getF32Constant(DAG
, 0xbcd2769e, dl
));
5103 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
5104 getF32Constant(DAG
, 0x3e8ce0b9, dl
));
5105 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5106 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
5107 getF32Constant(DAG
, 0x3fa22ae7, dl
));
5108 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
5109 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
5110 getF32Constant(DAG
, 0x40525723, dl
));
5111 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
5112 SDValue t7
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
5113 getF32Constant(DAG
, 0x40aaf200, dl
));
5114 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
5115 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
5116 getF32Constant(DAG
, 0x40c39dad, dl
));
5117 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
5118 Log2ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t10
,
5119 getF32Constant(DAG
, 0x4042902c, dl
));
5122 return DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, LogOfExponent
, Log2ofMantissa
);
5125 // No special expansion.
5126 return DAG
.getNode(ISD::FLOG2
, dl
, Op
.getValueType(), Op
);
5129 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5130 /// limited-precision mode.
5131 static SDValue
expandLog10(const SDLoc
&dl
, SDValue Op
, SelectionDAG
&DAG
,
5132 const TargetLowering
&TLI
) {
5133 // TODO: What fast-math-flags should be set on the floating-point nodes?
5135 if (Op
.getValueType() == MVT::f32
&&
5136 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
5137 SDValue Op1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Op
);
5139 // Scale the exponent by log10(2) [0.30102999f].
5140 SDValue Exp
= GetExponent(DAG
, Op1
, TLI
, dl
);
5141 SDValue LogOfExponent
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, Exp
,
5142 getF32Constant(DAG
, 0x3e9a209a, dl
));
5144 // Get the significand and build it into a floating-point number with
5146 SDValue X
= GetSignificand(DAG
, Op1
, dl
);
5148 SDValue Log10ofMantissa
;
5149 if (LimitFloatPrecision
<= 6) {
5150 // For floating-point precision of 6:
5152 // Log10ofMantissa =
5154 // (0.60948995f - 0.10380950f * x) * x;
5156 // error 0.0014886165, which is 6 bits
5157 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5158 getF32Constant(DAG
, 0xbdd49a13, dl
));
5159 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
5160 getF32Constant(DAG
, 0x3f1c0789, dl
));
5161 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5162 Log10ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
5163 getF32Constant(DAG
, 0x3f011300, dl
));
5164 } else if (LimitFloatPrecision
<= 12) {
5165 // For floating-point precision of 12:
5167 // Log10ofMantissa =
5170 // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5172 // error 0.00019228036, which is better than 12 bits
5173 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5174 getF32Constant(DAG
, 0x3d431f31, dl
));
5175 SDValue t1
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t0
,
5176 getF32Constant(DAG
, 0x3ea21fb2, dl
));
5177 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5178 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
5179 getF32Constant(DAG
, 0x3f6ae232, dl
));
5180 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
5181 Log10ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t4
,
5182 getF32Constant(DAG
, 0x3f25f7c3, dl
));
5183 } else { // LimitFloatPrecision <= 18
5184 // For floating-point precision of 18:
5186 // Log10ofMantissa =
5191 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5193 // error 0.0000037995730, which is better than 18 bits
5194 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5195 getF32Constant(DAG
, 0x3c5d51ce, dl
));
5196 SDValue t1
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t0
,
5197 getF32Constant(DAG
, 0x3e00685a, dl
));
5198 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5199 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
5200 getF32Constant(DAG
, 0x3efb6798, dl
));
5201 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
5202 SDValue t5
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t4
,
5203 getF32Constant(DAG
, 0x3f88d192, dl
));
5204 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
5205 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
5206 getF32Constant(DAG
, 0x3fc4316c, dl
));
5207 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
5208 Log10ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t8
,
5209 getF32Constant(DAG
, 0x3f57ce70, dl
));
5212 return DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, LogOfExponent
, Log10ofMantissa
);
5215 // No special expansion.
5216 return DAG
.getNode(ISD::FLOG10
, dl
, Op
.getValueType(), Op
);
5219 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5220 /// limited-precision mode.
5221 static SDValue
expandExp2(const SDLoc
&dl
, SDValue Op
, SelectionDAG
&DAG
,
5222 const TargetLowering
&TLI
) {
5223 if (Op
.getValueType() == MVT::f32
&&
5224 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18)
5225 return getLimitedPrecisionExp2(Op
, dl
, DAG
);
5227 // No special expansion.
5228 return DAG
.getNode(ISD::FEXP2
, dl
, Op
.getValueType(), Op
);
5231 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5232 /// limited-precision mode with x == 10.0f.
5233 static SDValue
expandPow(const SDLoc
&dl
, SDValue LHS
, SDValue RHS
,
5234 SelectionDAG
&DAG
, const TargetLowering
&TLI
) {
5235 bool IsExp10
= false;
5236 if (LHS
.getValueType() == MVT::f32
&& RHS
.getValueType() == MVT::f32
&&
5237 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
5238 if (ConstantFPSDNode
*LHSC
= dyn_cast
<ConstantFPSDNode
>(LHS
)) {
5240 IsExp10
= LHSC
->isExactlyValue(Ten
);
5244 // TODO: What fast-math-flags should be set on the FMUL node?
5246 // Put the exponent in the right bit position for later addition to the
5249 // #define LOG2OF10 3.3219281f
5250 // t0 = Op * LOG2OF10;
5251 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, RHS
,
5252 getF32Constant(DAG
, 0x40549a78, dl
));
5253 return getLimitedPrecisionExp2(t0
, dl
, DAG
);
5256 // No special expansion.
5257 return DAG
.getNode(ISD::FPOW
, dl
, LHS
.getValueType(), LHS
, RHS
);
5260 /// ExpandPowI - Expand a llvm.powi intrinsic.
5261 static SDValue
ExpandPowI(const SDLoc
&DL
, SDValue LHS
, SDValue RHS
,
5262 SelectionDAG
&DAG
) {
5263 // If RHS is a constant, we can expand this out to a multiplication tree,
5264 // otherwise we end up lowering to a call to __powidf2 (for example). When
5265 // optimizing for size, we only want to do this if the expansion would produce
5266 // a small number of multiplies, otherwise we do the full expansion.
5267 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(RHS
)) {
5268 // Get the exponent as a positive value.
5269 unsigned Val
= RHSC
->getSExtValue();
5270 if ((int)Val
< 0) Val
= -Val
;
5272 // powi(x, 0) -> 1.0
5274 return DAG
.getConstantFP(1.0, DL
, LHS
.getValueType());
5276 const Function
&F
= DAG
.getMachineFunction().getFunction();
5277 if (!F
.hasOptSize() ||
5278 // If optimizing for size, don't insert too many multiplies.
5279 // This inserts up to 5 multiplies.
5280 countPopulation(Val
) + Log2_32(Val
) < 7) {
5281 // We use the simple binary decomposition method to generate the multiply
5282 // sequence. There are more optimal ways to do this (for example,
5283 // powi(x,15) generates one more multiply than it should), but this has
5284 // the benefit of being both really simple and much better than a libcall.
5285 SDValue Res
; // Logically starts equal to 1.0
5286 SDValue CurSquare
= LHS
;
5287 // TODO: Intrinsics should have fast-math-flags that propagate to these
5292 Res
= DAG
.getNode(ISD::FMUL
, DL
,Res
.getValueType(), Res
, CurSquare
);
5294 Res
= CurSquare
; // 1.0*CurSquare.
5297 CurSquare
= DAG
.getNode(ISD::FMUL
, DL
, CurSquare
.getValueType(),
5298 CurSquare
, CurSquare
);
5302 // If the original was negative, invert the result, producing 1/(x*x*x).
5303 if (RHSC
->getSExtValue() < 0)
5304 Res
= DAG
.getNode(ISD::FDIV
, DL
, LHS
.getValueType(),
5305 DAG
.getConstantFP(1.0, DL
, LHS
.getValueType()), Res
);
5310 // Otherwise, expand to a libcall.
5311 return DAG
.getNode(ISD::FPOWI
, DL
, LHS
.getValueType(), LHS
, RHS
);
5314 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5315 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5316 void getUnderlyingArgRegs(SmallVectorImpl
<std::pair
<unsigned, unsigned>> &Regs
,
5318 switch (N
.getOpcode()) {
5319 case ISD::CopyFromReg
: {
5320 SDValue Op
= N
.getOperand(1);
5321 Regs
.emplace_back(cast
<RegisterSDNode
>(Op
)->getReg(),
5322 Op
.getValueType().getSizeInBits());
5326 case ISD::AssertZext
:
5327 case ISD::AssertSext
:
5329 getUnderlyingArgRegs(Regs
, N
.getOperand(0));
5331 case ISD::BUILD_PAIR
:
5332 case ISD::BUILD_VECTOR
:
5333 case ISD::CONCAT_VECTORS
:
5334 for (SDValue Op
: N
->op_values())
5335 getUnderlyingArgRegs(Regs
, Op
);
5342 /// If the DbgValueInst is a dbg_value of a function argument, create the
5343 /// corresponding DBG_VALUE machine instruction for it now. At the end of
5344 /// instruction selection, they will be inserted to the entry BB.
5345 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5346 const Value
*V
, DILocalVariable
*Variable
, DIExpression
*Expr
,
5347 DILocation
*DL
, bool IsDbgDeclare
, const SDValue
&N
) {
5348 const Argument
*Arg
= dyn_cast
<Argument
>(V
);
5352 if (!IsDbgDeclare
) {
5353 // ArgDbgValues are hoisted to the beginning of the entry block. So we
5354 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5356 bool IsInEntryBlock
= FuncInfo
.MBB
== &FuncInfo
.MF
->front();
5357 if (!IsInEntryBlock
)
5360 // ArgDbgValues are hoisted to the beginning of the entry block. So we
5361 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5362 // variable that also is a param.
5364 // Although, if we are at the top of the entry block already, we can still
5365 // emit using ArgDbgValue. This might catch some situations when the
5366 // dbg.value refers to an argument that isn't used in the entry block, so
5367 // any CopyToReg node would be optimized out and the only way to express
5368 // this DBG_VALUE is by using the physical reg (or FI) as done in this
5369 // method. ArgDbgValues are hoisted to the beginning of the entry block. So
5370 // we should only emit as ArgDbgValue if the Variable is an argument to the
5371 // current function, and the dbg.value intrinsic is found in the entry
5373 bool VariableIsFunctionInputArg
= Variable
->isParameter() &&
5374 !DL
->getInlinedAt();
5375 bool IsInPrologue
= SDNodeOrder
== LowestSDNodeOrder
;
5376 if (!IsInPrologue
&& !VariableIsFunctionInputArg
)
5379 // Here we assume that a function argument on IR level only can be used to
5380 // describe one input parameter on source level. If we for example have
5381 // source code like this
5383 // struct A { long x, y; };
5384 // void foo(struct A a, long b) {
5392 // define void @foo(i32 %a1, i32 %a2, i32 %b) {
5394 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5395 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5396 // call void @llvm.dbg.value(metadata i32 %b, "b",
5398 // call void @llvm.dbg.value(metadata i32 %a1, "b"
5401 // then the last dbg.value is describing a parameter "b" using a value that
5402 // is an argument. But since we already has used %a1 to describe a parameter
5403 // we should not handle that last dbg.value here (that would result in an
5404 // incorrect hoisting of the DBG_VALUE to the function entry).
5405 // Notice that we allow one dbg.value per IR level argument, to accomodate
5406 // for the situation with fragments above.
5407 if (VariableIsFunctionInputArg
) {
5408 unsigned ArgNo
= Arg
->getArgNo();
5409 if (ArgNo
>= FuncInfo
.DescribedArgs
.size())
5410 FuncInfo
.DescribedArgs
.resize(ArgNo
+ 1, false);
5411 else if (!IsInPrologue
&& FuncInfo
.DescribedArgs
.test(ArgNo
))
5413 FuncInfo
.DescribedArgs
.set(ArgNo
);
5417 MachineFunction
&MF
= DAG
.getMachineFunction();
5418 const TargetInstrInfo
*TII
= DAG
.getSubtarget().getInstrInfo();
5420 bool IsIndirect
= false;
5421 Optional
<MachineOperand
> Op
;
5422 // Some arguments' frame index is recorded during argument lowering.
5423 int FI
= FuncInfo
.getArgumentFrameIndex(Arg
);
5424 if (FI
!= std::numeric_limits
<int>::max())
5425 Op
= MachineOperand::CreateFI(FI
);
5427 SmallVector
<std::pair
<unsigned, unsigned>, 8> ArgRegsAndSizes
;
5428 if (!Op
&& N
.getNode()) {
5429 getUnderlyingArgRegs(ArgRegsAndSizes
, N
);
5431 if (ArgRegsAndSizes
.size() == 1)
5432 Reg
= ArgRegsAndSizes
.front().first
;
5434 if (Reg
&& Reg
.isVirtual()) {
5435 MachineRegisterInfo
&RegInfo
= MF
.getRegInfo();
5436 Register PR
= RegInfo
.getLiveInPhysReg(Reg
);
5441 Op
= MachineOperand::CreateReg(Reg
, false);
5442 IsIndirect
= IsDbgDeclare
;
5446 if (!Op
&& N
.getNode()) {
5447 // Check if frame index is available.
5448 SDValue LCandidate
= peekThroughBitcasts(N
);
5449 if (LoadSDNode
*LNode
= dyn_cast
<LoadSDNode
>(LCandidate
.getNode()))
5450 if (FrameIndexSDNode
*FINode
=
5451 dyn_cast
<FrameIndexSDNode
>(LNode
->getBasePtr().getNode()))
5452 Op
= MachineOperand::CreateFI(FINode
->getIndex());
5456 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5457 auto splitMultiRegDbgValue
5458 = [&](ArrayRef
<std::pair
<unsigned, unsigned>> SplitRegs
) {
5459 unsigned Offset
= 0;
5460 for (auto RegAndSize
: SplitRegs
) {
5461 auto FragmentExpr
= DIExpression::createFragmentExpression(
5462 Expr
, Offset
, RegAndSize
.second
);
5465 FuncInfo
.ArgDbgValues
.push_back(
5466 BuildMI(MF
, DL
, TII
->get(TargetOpcode::DBG_VALUE
), IsDbgDeclare
,
5467 RegAndSize
.first
, Variable
, *FragmentExpr
));
5468 Offset
+= RegAndSize
.second
;
5472 // Check if ValueMap has reg number.
5473 DenseMap
<const Value
*, unsigned>::const_iterator
5474 VMI
= FuncInfo
.ValueMap
.find(V
);
5475 if (VMI
!= FuncInfo
.ValueMap
.end()) {
5476 const auto &TLI
= DAG
.getTargetLoweringInfo();
5477 RegsForValue
RFV(V
->getContext(), TLI
, DAG
.getDataLayout(), VMI
->second
,
5478 V
->getType(), getABIRegCopyCC(V
));
5479 if (RFV
.occupiesMultipleRegs()) {
5480 splitMultiRegDbgValue(RFV
.getRegsAndSizes());
5484 Op
= MachineOperand::CreateReg(VMI
->second
, false);
5485 IsIndirect
= IsDbgDeclare
;
5486 } else if (ArgRegsAndSizes
.size() > 1) {
5487 // This was split due to the calling convention, and no virtual register
5488 // mapping exists for the value.
5489 splitMultiRegDbgValue(ArgRegsAndSizes
);
5497 assert(Variable
->isValidLocationForIntrinsic(DL
) &&
5498 "Expected inlined-at fields to agree");
5499 IsIndirect
= (Op
->isReg()) ? IsIndirect
: true;
5500 FuncInfo
.ArgDbgValues
.push_back(
5501 BuildMI(MF
, DL
, TII
->get(TargetOpcode::DBG_VALUE
), IsIndirect
,
5502 *Op
, Variable
, Expr
));
5507 /// Return the appropriate SDDbgValue based on N.
5508 SDDbgValue
*SelectionDAGBuilder::getDbgValue(SDValue N
,
5509 DILocalVariable
*Variable
,
5512 unsigned DbgSDNodeOrder
) {
5513 if (auto *FISDN
= dyn_cast
<FrameIndexSDNode
>(N
.getNode())) {
5514 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5515 // stack slot locations.
5517 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5518 // debug values here after optimization:
5520 // dbg.value(i32* %px, !"int *px", !DIExpression()), and
5521 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5523 // Both describe the direct values of their associated variables.
5524 return DAG
.getFrameIndexDbgValue(Variable
, Expr
, FISDN
->getIndex(),
5525 /*IsIndirect*/ false, dl
, DbgSDNodeOrder
);
5527 return DAG
.getDbgValue(Variable
, Expr
, N
.getNode(), N
.getResNo(),
5528 /*IsIndirect*/ false, dl
, DbgSDNodeOrder
);
5531 // VisualStudio defines setjmp as _setjmp
5532 #if defined(_MSC_VER) && defined(setjmp) && \
5533 !defined(setjmp_undefined_for_msvc)
5534 # pragma push_macro("setjmp")
5536 # define setjmp_undefined_for_msvc
5539 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic
) {
5540 switch (Intrinsic
) {
5541 case Intrinsic::smul_fix
:
5542 return ISD::SMULFIX
;
5543 case Intrinsic::umul_fix
:
5544 return ISD::UMULFIX
;
5546 llvm_unreachable("Unhandled fixed point intrinsic");
5550 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst
&I
,
5551 const char *FunctionName
) {
5552 assert(FunctionName
&& "FunctionName must not be nullptr");
5553 SDValue Callee
= DAG
.getExternalSymbol(
5555 DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout()));
5556 LowerCallTo(&I
, Callee
, I
.isTailCall());
5559 /// Lower the call to the specified intrinsic function.
5560 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst
&I
,
5561 unsigned Intrinsic
) {
5562 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
5563 SDLoc sdl
= getCurSDLoc();
5564 DebugLoc dl
= getCurDebugLoc();
5567 switch (Intrinsic
) {
5569 // By default, turn this into a target intrinsic node.
5570 visitTargetIntrinsic(I
, Intrinsic
);
5572 case Intrinsic::vastart
: visitVAStart(I
); return;
5573 case Intrinsic::vaend
: visitVAEnd(I
); return;
5574 case Intrinsic::vacopy
: visitVACopy(I
); return;
5575 case Intrinsic::returnaddress
:
5576 setValue(&I
, DAG
.getNode(ISD::RETURNADDR
, sdl
,
5577 TLI
.getPointerTy(DAG
.getDataLayout()),
5578 getValue(I
.getArgOperand(0))));
5580 case Intrinsic::addressofreturnaddress
:
5581 setValue(&I
, DAG
.getNode(ISD::ADDROFRETURNADDR
, sdl
,
5582 TLI
.getPointerTy(DAG
.getDataLayout())));
5584 case Intrinsic::sponentry
:
5585 setValue(&I
, DAG
.getNode(ISD::SPONENTRY
, sdl
,
5586 TLI
.getPointerTy(DAG
.getDataLayout())));
5588 case Intrinsic::frameaddress
:
5589 setValue(&I
, DAG
.getNode(ISD::FRAMEADDR
, sdl
,
5590 TLI
.getPointerTy(DAG
.getDataLayout()),
5591 getValue(I
.getArgOperand(0))));
5593 case Intrinsic::read_register
: {
5594 Value
*Reg
= I
.getArgOperand(0);
5595 SDValue Chain
= getRoot();
5597 DAG
.getMDNode(cast
<MDNode
>(cast
<MetadataAsValue
>(Reg
)->getMetadata()));
5598 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
5599 Res
= DAG
.getNode(ISD::READ_REGISTER
, sdl
,
5600 DAG
.getVTList(VT
, MVT::Other
), Chain
, RegName
);
5602 DAG
.setRoot(Res
.getValue(1));
5605 case Intrinsic::write_register
: {
5606 Value
*Reg
= I
.getArgOperand(0);
5607 Value
*RegValue
= I
.getArgOperand(1);
5608 SDValue Chain
= getRoot();
5610 DAG
.getMDNode(cast
<MDNode
>(cast
<MetadataAsValue
>(Reg
)->getMetadata()));
5611 DAG
.setRoot(DAG
.getNode(ISD::WRITE_REGISTER
, sdl
, MVT::Other
, Chain
,
5612 RegName
, getValue(RegValue
)));
5615 case Intrinsic::setjmp
:
5616 lowerCallToExternalSymbol(I
, &"_setjmp"[!TLI
.usesUnderscoreSetJmp()]);
5618 case Intrinsic::longjmp
:
5619 lowerCallToExternalSymbol(I
, &"_longjmp"[!TLI
.usesUnderscoreLongJmp()]);
5621 case Intrinsic::memcpy
: {
5622 const auto &MCI
= cast
<MemCpyInst
>(I
);
5623 SDValue Op1
= getValue(I
.getArgOperand(0));
5624 SDValue Op2
= getValue(I
.getArgOperand(1));
5625 SDValue Op3
= getValue(I
.getArgOperand(2));
5626 // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5627 unsigned DstAlign
= std::max
<unsigned>(MCI
.getDestAlignment(), 1);
5628 unsigned SrcAlign
= std::max
<unsigned>(MCI
.getSourceAlignment(), 1);
5629 unsigned Align
= MinAlign(DstAlign
, SrcAlign
);
5630 bool isVol
= MCI
.isVolatile();
5631 bool isTC
= I
.isTailCall() && isInTailCallPosition(&I
, DAG
.getTarget());
5632 // FIXME: Support passing different dest/src alignments to the memcpy DAG
5634 SDValue MC
= DAG
.getMemcpy(getRoot(), sdl
, Op1
, Op2
, Op3
, Align
, isVol
,
5636 MachinePointerInfo(I
.getArgOperand(0)),
5637 MachinePointerInfo(I
.getArgOperand(1)));
5638 updateDAGForMaybeTailCall(MC
);
5641 case Intrinsic::memset
: {
5642 const auto &MSI
= cast
<MemSetInst
>(I
);
5643 SDValue Op1
= getValue(I
.getArgOperand(0));
5644 SDValue Op2
= getValue(I
.getArgOperand(1));
5645 SDValue Op3
= getValue(I
.getArgOperand(2));
5646 // @llvm.memset defines 0 and 1 to both mean no alignment.
5647 unsigned Align
= std::max
<unsigned>(MSI
.getDestAlignment(), 1);
5648 bool isVol
= MSI
.isVolatile();
5649 bool isTC
= I
.isTailCall() && isInTailCallPosition(&I
, DAG
.getTarget());
5650 SDValue MS
= DAG
.getMemset(getRoot(), sdl
, Op1
, Op2
, Op3
, Align
, isVol
,
5651 isTC
, MachinePointerInfo(I
.getArgOperand(0)));
5652 updateDAGForMaybeTailCall(MS
);
5655 case Intrinsic::memmove
: {
5656 const auto &MMI
= cast
<MemMoveInst
>(I
);
5657 SDValue Op1
= getValue(I
.getArgOperand(0));
5658 SDValue Op2
= getValue(I
.getArgOperand(1));
5659 SDValue Op3
= getValue(I
.getArgOperand(2));
5660 // @llvm.memmove defines 0 and 1 to both mean no alignment.
5661 unsigned DstAlign
= std::max
<unsigned>(MMI
.getDestAlignment(), 1);
5662 unsigned SrcAlign
= std::max
<unsigned>(MMI
.getSourceAlignment(), 1);
5663 unsigned Align
= MinAlign(DstAlign
, SrcAlign
);
5664 bool isVol
= MMI
.isVolatile();
5665 bool isTC
= I
.isTailCall() && isInTailCallPosition(&I
, DAG
.getTarget());
5666 // FIXME: Support passing different dest/src alignments to the memmove DAG
5668 SDValue MM
= DAG
.getMemmove(getRoot(), sdl
, Op1
, Op2
, Op3
, Align
, isVol
,
5669 isTC
, MachinePointerInfo(I
.getArgOperand(0)),
5670 MachinePointerInfo(I
.getArgOperand(1)));
5671 updateDAGForMaybeTailCall(MM
);
5674 case Intrinsic::memcpy_element_unordered_atomic
: {
5675 const AtomicMemCpyInst
&MI
= cast
<AtomicMemCpyInst
>(I
);
5676 SDValue Dst
= getValue(MI
.getRawDest());
5677 SDValue Src
= getValue(MI
.getRawSource());
5678 SDValue Length
= getValue(MI
.getLength());
5680 unsigned DstAlign
= MI
.getDestAlignment();
5681 unsigned SrcAlign
= MI
.getSourceAlignment();
5682 Type
*LengthTy
= MI
.getLength()->getType();
5683 unsigned ElemSz
= MI
.getElementSizeInBytes();
5684 bool isTC
= I
.isTailCall() && isInTailCallPosition(&I
, DAG
.getTarget());
5685 SDValue MC
= DAG
.getAtomicMemcpy(getRoot(), sdl
, Dst
, DstAlign
, Src
,
5686 SrcAlign
, Length
, LengthTy
, ElemSz
, isTC
,
5687 MachinePointerInfo(MI
.getRawDest()),
5688 MachinePointerInfo(MI
.getRawSource()));
5689 updateDAGForMaybeTailCall(MC
);
5692 case Intrinsic::memmove_element_unordered_atomic
: {
5693 auto &MI
= cast
<AtomicMemMoveInst
>(I
);
5694 SDValue Dst
= getValue(MI
.getRawDest());
5695 SDValue Src
= getValue(MI
.getRawSource());
5696 SDValue Length
= getValue(MI
.getLength());
5698 unsigned DstAlign
= MI
.getDestAlignment();
5699 unsigned SrcAlign
= MI
.getSourceAlignment();
5700 Type
*LengthTy
= MI
.getLength()->getType();
5701 unsigned ElemSz
= MI
.getElementSizeInBytes();
5702 bool isTC
= I
.isTailCall() && isInTailCallPosition(&I
, DAG
.getTarget());
5703 SDValue MC
= DAG
.getAtomicMemmove(getRoot(), sdl
, Dst
, DstAlign
, Src
,
5704 SrcAlign
, Length
, LengthTy
, ElemSz
, isTC
,
5705 MachinePointerInfo(MI
.getRawDest()),
5706 MachinePointerInfo(MI
.getRawSource()));
5707 updateDAGForMaybeTailCall(MC
);
5710 case Intrinsic::memset_element_unordered_atomic
: {
5711 auto &MI
= cast
<AtomicMemSetInst
>(I
);
5712 SDValue Dst
= getValue(MI
.getRawDest());
5713 SDValue Val
= getValue(MI
.getValue());
5714 SDValue Length
= getValue(MI
.getLength());
5716 unsigned DstAlign
= MI
.getDestAlignment();
5717 Type
*LengthTy
= MI
.getLength()->getType();
5718 unsigned ElemSz
= MI
.getElementSizeInBytes();
5719 bool isTC
= I
.isTailCall() && isInTailCallPosition(&I
, DAG
.getTarget());
5720 SDValue MC
= DAG
.getAtomicMemset(getRoot(), sdl
, Dst
, DstAlign
, Val
, Length
,
5721 LengthTy
, ElemSz
, isTC
,
5722 MachinePointerInfo(MI
.getRawDest()));
5723 updateDAGForMaybeTailCall(MC
);
5726 case Intrinsic::dbg_addr
:
5727 case Intrinsic::dbg_declare
: {
5728 const auto &DI
= cast
<DbgVariableIntrinsic
>(I
);
5729 DILocalVariable
*Variable
= DI
.getVariable();
5730 DIExpression
*Expression
= DI
.getExpression();
5731 dropDanglingDebugInfo(Variable
, Expression
);
5732 assert(Variable
&& "Missing variable");
5734 // Check if address has undef value.
5735 const Value
*Address
= DI
.getVariableLocation();
5736 if (!Address
|| isa
<UndefValue
>(Address
) ||
5737 (Address
->use_empty() && !isa
<Argument
>(Address
))) {
5738 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
<< "\n");
5742 bool isParameter
= Variable
->isParameter() || isa
<Argument
>(Address
);
5744 // Check if this variable can be described by a frame index, typically
5745 // either as a static alloca or a byval parameter.
5746 int FI
= std::numeric_limits
<int>::max();
5747 if (const auto *AI
=
5748 dyn_cast
<AllocaInst
>(Address
->stripInBoundsConstantOffsets())) {
5749 if (AI
->isStaticAlloca()) {
5750 auto I
= FuncInfo
.StaticAllocaMap
.find(AI
);
5751 if (I
!= FuncInfo
.StaticAllocaMap
.end())
5754 } else if (const auto *Arg
= dyn_cast
<Argument
>(
5755 Address
->stripInBoundsConstantOffsets())) {
5756 FI
= FuncInfo
.getArgumentFrameIndex(Arg
);
5759 // llvm.dbg.addr is control dependent and always generates indirect
5760 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5761 // the MachineFunction variable table.
5762 if (FI
!= std::numeric_limits
<int>::max()) {
5763 if (Intrinsic
== Intrinsic::dbg_addr
) {
5764 SDDbgValue
*SDV
= DAG
.getFrameIndexDbgValue(
5765 Variable
, Expression
, FI
, /*IsIndirect*/ true, dl
, SDNodeOrder
);
5766 DAG
.AddDbgValue(SDV
, getRoot().getNode(), isParameter
);
5771 SDValue
&N
= NodeMap
[Address
];
5772 if (!N
.getNode() && isa
<Argument
>(Address
))
5773 // Check unused arguments map.
5774 N
= UnusedArgNodeMap
[Address
];
5777 if (const BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(Address
))
5778 Address
= BCI
->getOperand(0);
5779 // Parameters are handled specially.
5780 auto FINode
= dyn_cast
<FrameIndexSDNode
>(N
.getNode());
5781 if (isParameter
&& FINode
) {
5782 // Byval parameter. We have a frame index at this point.
5784 DAG
.getFrameIndexDbgValue(Variable
, Expression
, FINode
->getIndex(),
5785 /*IsIndirect*/ true, dl
, SDNodeOrder
);
5786 } else if (isa
<Argument
>(Address
)) {
5787 // Address is an argument, so try to emit its dbg value using
5788 // virtual register info from the FuncInfo.ValueMap.
5789 EmitFuncArgumentDbgValue(Address
, Variable
, Expression
, dl
, true, N
);
5792 SDV
= DAG
.getDbgValue(Variable
, Expression
, N
.getNode(), N
.getResNo(),
5793 true, dl
, SDNodeOrder
);
5795 DAG
.AddDbgValue(SDV
, N
.getNode(), isParameter
);
5797 // If Address is an argument then try to emit its dbg value using
5798 // virtual register info from the FuncInfo.ValueMap.
5799 if (!EmitFuncArgumentDbgValue(Address
, Variable
, Expression
, dl
, true,
5801 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
<< "\n");
5806 case Intrinsic::dbg_label
: {
5807 const DbgLabelInst
&DI
= cast
<DbgLabelInst
>(I
);
5808 DILabel
*Label
= DI
.getLabel();
5809 assert(Label
&& "Missing label");
5812 SDV
= DAG
.getDbgLabel(Label
, dl
, SDNodeOrder
);
5813 DAG
.AddDbgLabel(SDV
);
5816 case Intrinsic::dbg_value
: {
5817 const DbgValueInst
&DI
= cast
<DbgValueInst
>(I
);
5818 assert(DI
.getVariable() && "Missing variable");
5820 DILocalVariable
*Variable
= DI
.getVariable();
5821 DIExpression
*Expression
= DI
.getExpression();
5822 dropDanglingDebugInfo(Variable
, Expression
);
5823 const Value
*V
= DI
.getValue();
5827 if (handleDebugValue(V
, Variable
, Expression
, dl
, DI
.getDebugLoc(),
5831 // TODO: Dangling debug info will eventually either be resolved or produce
5832 // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5833 // between the original dbg.value location and its resolved DBG_VALUE, which
5834 // we should ideally fill with an extra Undef DBG_VALUE.
5836 DanglingDebugInfoMap
[V
].emplace_back(&DI
, dl
, SDNodeOrder
);
5840 case Intrinsic::eh_typeid_for
: {
5841 // Find the type id for the given typeinfo.
5842 GlobalValue
*GV
= ExtractTypeInfo(I
.getArgOperand(0));
5843 unsigned TypeID
= DAG
.getMachineFunction().getTypeIDFor(GV
);
5844 Res
= DAG
.getConstant(TypeID
, sdl
, MVT::i32
);
5849 case Intrinsic::eh_return_i32
:
5850 case Intrinsic::eh_return_i64
:
5851 DAG
.getMachineFunction().setCallsEHReturn(true);
5852 DAG
.setRoot(DAG
.getNode(ISD::EH_RETURN
, sdl
,
5855 getValue(I
.getArgOperand(0)),
5856 getValue(I
.getArgOperand(1))));
5858 case Intrinsic::eh_unwind_init
:
5859 DAG
.getMachineFunction().setCallsUnwindInit(true);
5861 case Intrinsic::eh_dwarf_cfa
:
5862 setValue(&I
, DAG
.getNode(ISD::EH_DWARF_CFA
, sdl
,
5863 TLI
.getPointerTy(DAG
.getDataLayout()),
5864 getValue(I
.getArgOperand(0))));
5866 case Intrinsic::eh_sjlj_callsite
: {
5867 MachineModuleInfo
&MMI
= DAG
.getMachineFunction().getMMI();
5868 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(I
.getArgOperand(0));
5869 assert(CI
&& "Non-constant call site value in eh.sjlj.callsite!");
5870 assert(MMI
.getCurrentCallSite() == 0 && "Overlapping call sites!");
5872 MMI
.setCurrentCallSite(CI
->getZExtValue());
5875 case Intrinsic::eh_sjlj_functioncontext
: {
5876 // Get and store the index of the function context.
5877 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
5879 cast
<AllocaInst
>(I
.getArgOperand(0)->stripPointerCasts());
5880 int FI
= FuncInfo
.StaticAllocaMap
[FnCtx
];
5881 MFI
.setFunctionContextIndex(FI
);
5884 case Intrinsic::eh_sjlj_setjmp
: {
5887 Ops
[1] = getValue(I
.getArgOperand(0));
5888 SDValue Op
= DAG
.getNode(ISD::EH_SJLJ_SETJMP
, sdl
,
5889 DAG
.getVTList(MVT::i32
, MVT::Other
), Ops
);
5890 setValue(&I
, Op
.getValue(0));
5891 DAG
.setRoot(Op
.getValue(1));
5894 case Intrinsic::eh_sjlj_longjmp
:
5895 DAG
.setRoot(DAG
.getNode(ISD::EH_SJLJ_LONGJMP
, sdl
, MVT::Other
,
5896 getRoot(), getValue(I
.getArgOperand(0))));
5898 case Intrinsic::eh_sjlj_setup_dispatch
:
5899 DAG
.setRoot(DAG
.getNode(ISD::EH_SJLJ_SETUP_DISPATCH
, sdl
, MVT::Other
,
5902 case Intrinsic::masked_gather
:
5903 visitMaskedGather(I
);
5905 case Intrinsic::masked_load
:
5908 case Intrinsic::masked_scatter
:
5909 visitMaskedScatter(I
);
5911 case Intrinsic::masked_store
:
5912 visitMaskedStore(I
);
5914 case Intrinsic::masked_expandload
:
5915 visitMaskedLoad(I
, true /* IsExpanding */);
5917 case Intrinsic::masked_compressstore
:
5918 visitMaskedStore(I
, true /* IsCompressing */);
5920 case Intrinsic::x86_mmx_pslli_w
:
5921 case Intrinsic::x86_mmx_pslli_d
:
5922 case Intrinsic::x86_mmx_pslli_q
:
5923 case Intrinsic::x86_mmx_psrli_w
:
5924 case Intrinsic::x86_mmx_psrli_d
:
5925 case Intrinsic::x86_mmx_psrli_q
:
5926 case Intrinsic::x86_mmx_psrai_w
:
5927 case Intrinsic::x86_mmx_psrai_d
: {
5928 SDValue ShAmt
= getValue(I
.getArgOperand(1));
5929 if (isa
<ConstantSDNode
>(ShAmt
)) {
5930 visitTargetIntrinsic(I
, Intrinsic
);
5933 unsigned NewIntrinsic
= 0;
5934 EVT ShAmtVT
= MVT::v2i32
;
5935 switch (Intrinsic
) {
5936 case Intrinsic::x86_mmx_pslli_w
:
5937 NewIntrinsic
= Intrinsic::x86_mmx_psll_w
;
5939 case Intrinsic::x86_mmx_pslli_d
:
5940 NewIntrinsic
= Intrinsic::x86_mmx_psll_d
;
5942 case Intrinsic::x86_mmx_pslli_q
:
5943 NewIntrinsic
= Intrinsic::x86_mmx_psll_q
;
5945 case Intrinsic::x86_mmx_psrli_w
:
5946 NewIntrinsic
= Intrinsic::x86_mmx_psrl_w
;
5948 case Intrinsic::x86_mmx_psrli_d
:
5949 NewIntrinsic
= Intrinsic::x86_mmx_psrl_d
;
5951 case Intrinsic::x86_mmx_psrli_q
:
5952 NewIntrinsic
= Intrinsic::x86_mmx_psrl_q
;
5954 case Intrinsic::x86_mmx_psrai_w
:
5955 NewIntrinsic
= Intrinsic::x86_mmx_psra_w
;
5957 case Intrinsic::x86_mmx_psrai_d
:
5958 NewIntrinsic
= Intrinsic::x86_mmx_psra_d
;
5960 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
5963 // The vector shift intrinsics with scalars uses 32b shift amounts but
5964 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5966 // We must do this early because v2i32 is not a legal type.
5969 ShOps
[1] = DAG
.getConstant(0, sdl
, MVT::i32
);
5970 ShAmt
= DAG
.getBuildVector(ShAmtVT
, sdl
, ShOps
);
5971 EVT DestVT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
5972 ShAmt
= DAG
.getNode(ISD::BITCAST
, sdl
, DestVT
, ShAmt
);
5973 Res
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, sdl
, DestVT
,
5974 DAG
.getConstant(NewIntrinsic
, sdl
, MVT::i32
),
5975 getValue(I
.getArgOperand(0)), ShAmt
);
5979 case Intrinsic::powi
:
5980 setValue(&I
, ExpandPowI(sdl
, getValue(I
.getArgOperand(0)),
5981 getValue(I
.getArgOperand(1)), DAG
));
5983 case Intrinsic::log
:
5984 setValue(&I
, expandLog(sdl
, getValue(I
.getArgOperand(0)), DAG
, TLI
));
5986 case Intrinsic::log2
:
5987 setValue(&I
, expandLog2(sdl
, getValue(I
.getArgOperand(0)), DAG
, TLI
));
5989 case Intrinsic::log10
:
5990 setValue(&I
, expandLog10(sdl
, getValue(I
.getArgOperand(0)), DAG
, TLI
));
5992 case Intrinsic::exp
:
5993 setValue(&I
, expandExp(sdl
, getValue(I
.getArgOperand(0)), DAG
, TLI
));
5995 case Intrinsic::exp2
:
5996 setValue(&I
, expandExp2(sdl
, getValue(I
.getArgOperand(0)), DAG
, TLI
));
5998 case Intrinsic::pow
:
5999 setValue(&I
, expandPow(sdl
, getValue(I
.getArgOperand(0)),
6000 getValue(I
.getArgOperand(1)), DAG
, TLI
));
6002 case Intrinsic::sqrt
:
6003 case Intrinsic::fabs
:
6004 case Intrinsic::sin
:
6005 case Intrinsic::cos
:
6006 case Intrinsic::floor
:
6007 case Intrinsic::ceil
:
6008 case Intrinsic::trunc
:
6009 case Intrinsic::rint
:
6010 case Intrinsic::nearbyint
:
6011 case Intrinsic::round
:
6012 case Intrinsic::canonicalize
: {
6014 switch (Intrinsic
) {
6015 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6016 case Intrinsic::sqrt
: Opcode
= ISD::FSQRT
; break;
6017 case Intrinsic::fabs
: Opcode
= ISD::FABS
; break;
6018 case Intrinsic::sin
: Opcode
= ISD::FSIN
; break;
6019 case Intrinsic::cos
: Opcode
= ISD::FCOS
; break;
6020 case Intrinsic::floor
: Opcode
= ISD::FFLOOR
; break;
6021 case Intrinsic::ceil
: Opcode
= ISD::FCEIL
; break;
6022 case Intrinsic::trunc
: Opcode
= ISD::FTRUNC
; break;
6023 case Intrinsic::rint
: Opcode
= ISD::FRINT
; break;
6024 case Intrinsic::nearbyint
: Opcode
= ISD::FNEARBYINT
; break;
6025 case Intrinsic::round
: Opcode
= ISD::FROUND
; break;
6026 case Intrinsic::canonicalize
: Opcode
= ISD::FCANONICALIZE
; break;
6029 setValue(&I
, DAG
.getNode(Opcode
, sdl
,
6030 getValue(I
.getArgOperand(0)).getValueType(),
6031 getValue(I
.getArgOperand(0))));
6034 case Intrinsic::lround
:
6035 case Intrinsic::llround
:
6036 case Intrinsic::lrint
:
6037 case Intrinsic::llrint
: {
6039 switch (Intrinsic
) {
6040 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6041 case Intrinsic::lround
: Opcode
= ISD::LROUND
; break;
6042 case Intrinsic::llround
: Opcode
= ISD::LLROUND
; break;
6043 case Intrinsic::lrint
: Opcode
= ISD::LRINT
; break;
6044 case Intrinsic::llrint
: Opcode
= ISD::LLRINT
; break;
6047 EVT RetVT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
6048 setValue(&I
, DAG
.getNode(Opcode
, sdl
, RetVT
,
6049 getValue(I
.getArgOperand(0))));
6052 case Intrinsic::minnum
:
6053 setValue(&I
, DAG
.getNode(ISD::FMINNUM
, sdl
,
6054 getValue(I
.getArgOperand(0)).getValueType(),
6055 getValue(I
.getArgOperand(0)),
6056 getValue(I
.getArgOperand(1))));
6058 case Intrinsic::maxnum
:
6059 setValue(&I
, DAG
.getNode(ISD::FMAXNUM
, sdl
,
6060 getValue(I
.getArgOperand(0)).getValueType(),
6061 getValue(I
.getArgOperand(0)),
6062 getValue(I
.getArgOperand(1))));
6064 case Intrinsic::minimum
:
6065 setValue(&I
, DAG
.getNode(ISD::FMINIMUM
, sdl
,
6066 getValue(I
.getArgOperand(0)).getValueType(),
6067 getValue(I
.getArgOperand(0)),
6068 getValue(I
.getArgOperand(1))));
6070 case Intrinsic::maximum
:
6071 setValue(&I
, DAG
.getNode(ISD::FMAXIMUM
, sdl
,
6072 getValue(I
.getArgOperand(0)).getValueType(),
6073 getValue(I
.getArgOperand(0)),
6074 getValue(I
.getArgOperand(1))));
6076 case Intrinsic::copysign
:
6077 setValue(&I
, DAG
.getNode(ISD::FCOPYSIGN
, sdl
,
6078 getValue(I
.getArgOperand(0)).getValueType(),
6079 getValue(I
.getArgOperand(0)),
6080 getValue(I
.getArgOperand(1))));
6082 case Intrinsic::fma
:
6083 setValue(&I
, DAG
.getNode(ISD::FMA
, sdl
,
6084 getValue(I
.getArgOperand(0)).getValueType(),
6085 getValue(I
.getArgOperand(0)),
6086 getValue(I
.getArgOperand(1)),
6087 getValue(I
.getArgOperand(2))));
6089 case Intrinsic::experimental_constrained_fadd
:
6090 case Intrinsic::experimental_constrained_fsub
:
6091 case Intrinsic::experimental_constrained_fmul
:
6092 case Intrinsic::experimental_constrained_fdiv
:
6093 case Intrinsic::experimental_constrained_frem
:
6094 case Intrinsic::experimental_constrained_fma
:
6095 case Intrinsic::experimental_constrained_fptrunc
:
6096 case Intrinsic::experimental_constrained_fpext
:
6097 case Intrinsic::experimental_constrained_sqrt
:
6098 case Intrinsic::experimental_constrained_pow
:
6099 case Intrinsic::experimental_constrained_powi
:
6100 case Intrinsic::experimental_constrained_sin
:
6101 case Intrinsic::experimental_constrained_cos
:
6102 case Intrinsic::experimental_constrained_exp
:
6103 case Intrinsic::experimental_constrained_exp2
:
6104 case Intrinsic::experimental_constrained_log
:
6105 case Intrinsic::experimental_constrained_log10
:
6106 case Intrinsic::experimental_constrained_log2
:
6107 case Intrinsic::experimental_constrained_rint
:
6108 case Intrinsic::experimental_constrained_nearbyint
:
6109 case Intrinsic::experimental_constrained_maxnum
:
6110 case Intrinsic::experimental_constrained_minnum
:
6111 case Intrinsic::experimental_constrained_ceil
:
6112 case Intrinsic::experimental_constrained_floor
:
6113 case Intrinsic::experimental_constrained_round
:
6114 case Intrinsic::experimental_constrained_trunc
:
6115 visitConstrainedFPIntrinsic(cast
<ConstrainedFPIntrinsic
>(I
));
6117 case Intrinsic::fmuladd
: {
6118 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
6119 if (TM
.Options
.AllowFPOpFusion
!= FPOpFusion::Strict
&&
6120 TLI
.isFMAFasterThanFMulAndFAdd(VT
)) {
6121 setValue(&I
, DAG
.getNode(ISD::FMA
, sdl
,
6122 getValue(I
.getArgOperand(0)).getValueType(),
6123 getValue(I
.getArgOperand(0)),
6124 getValue(I
.getArgOperand(1)),
6125 getValue(I
.getArgOperand(2))));
6127 // TODO: Intrinsic calls should have fast-math-flags.
6128 SDValue Mul
= DAG
.getNode(ISD::FMUL
, sdl
,
6129 getValue(I
.getArgOperand(0)).getValueType(),
6130 getValue(I
.getArgOperand(0)),
6131 getValue(I
.getArgOperand(1)));
6132 SDValue Add
= DAG
.getNode(ISD::FADD
, sdl
,
6133 getValue(I
.getArgOperand(0)).getValueType(),
6135 getValue(I
.getArgOperand(2)));
6140 case Intrinsic::convert_to_fp16
:
6141 setValue(&I
, DAG
.getNode(ISD::BITCAST
, sdl
, MVT::i16
,
6142 DAG
.getNode(ISD::FP_ROUND
, sdl
, MVT::f16
,
6143 getValue(I
.getArgOperand(0)),
6144 DAG
.getTargetConstant(0, sdl
,
6147 case Intrinsic::convert_from_fp16
:
6148 setValue(&I
, DAG
.getNode(ISD::FP_EXTEND
, sdl
,
6149 TLI
.getValueType(DAG
.getDataLayout(), I
.getType()),
6150 DAG
.getNode(ISD::BITCAST
, sdl
, MVT::f16
,
6151 getValue(I
.getArgOperand(0)))));
6153 case Intrinsic::pcmarker
: {
6154 SDValue Tmp
= getValue(I
.getArgOperand(0));
6155 DAG
.setRoot(DAG
.getNode(ISD::PCMARKER
, sdl
, MVT::Other
, getRoot(), Tmp
));
6158 case Intrinsic::readcyclecounter
: {
6159 SDValue Op
= getRoot();
6160 Res
= DAG
.getNode(ISD::READCYCLECOUNTER
, sdl
,
6161 DAG
.getVTList(MVT::i64
, MVT::Other
), Op
);
6163 DAG
.setRoot(Res
.getValue(1));
6166 case Intrinsic::bitreverse
:
6167 setValue(&I
, DAG
.getNode(ISD::BITREVERSE
, sdl
,
6168 getValue(I
.getArgOperand(0)).getValueType(),
6169 getValue(I
.getArgOperand(0))));
6171 case Intrinsic::bswap
:
6172 setValue(&I
, DAG
.getNode(ISD::BSWAP
, sdl
,
6173 getValue(I
.getArgOperand(0)).getValueType(),
6174 getValue(I
.getArgOperand(0))));
6176 case Intrinsic::cttz
: {
6177 SDValue Arg
= getValue(I
.getArgOperand(0));
6178 ConstantInt
*CI
= cast
<ConstantInt
>(I
.getArgOperand(1));
6179 EVT Ty
= Arg
.getValueType();
6180 setValue(&I
, DAG
.getNode(CI
->isZero() ? ISD::CTTZ
: ISD::CTTZ_ZERO_UNDEF
,
6184 case Intrinsic::ctlz
: {
6185 SDValue Arg
= getValue(I
.getArgOperand(0));
6186 ConstantInt
*CI
= cast
<ConstantInt
>(I
.getArgOperand(1));
6187 EVT Ty
= Arg
.getValueType();
6188 setValue(&I
, DAG
.getNode(CI
->isZero() ? ISD::CTLZ
: ISD::CTLZ_ZERO_UNDEF
,
6192 case Intrinsic::ctpop
: {
6193 SDValue Arg
= getValue(I
.getArgOperand(0));
6194 EVT Ty
= Arg
.getValueType();
6195 setValue(&I
, DAG
.getNode(ISD::CTPOP
, sdl
, Ty
, Arg
));
6198 case Intrinsic::fshl
:
6199 case Intrinsic::fshr
: {
6200 bool IsFSHL
= Intrinsic
== Intrinsic::fshl
;
6201 SDValue X
= getValue(I
.getArgOperand(0));
6202 SDValue Y
= getValue(I
.getArgOperand(1));
6203 SDValue Z
= getValue(I
.getArgOperand(2));
6204 EVT VT
= X
.getValueType();
6205 SDValue BitWidthC
= DAG
.getConstant(VT
.getScalarSizeInBits(), sdl
, VT
);
6206 SDValue Zero
= DAG
.getConstant(0, sdl
, VT
);
6207 SDValue ShAmt
= DAG
.getNode(ISD::UREM
, sdl
, VT
, Z
, BitWidthC
);
6209 auto FunnelOpcode
= IsFSHL
? ISD::FSHL
: ISD::FSHR
;
6210 if (TLI
.isOperationLegalOrCustom(FunnelOpcode
, VT
)) {
6211 setValue(&I
, DAG
.getNode(FunnelOpcode
, sdl
, VT
, X
, Y
, Z
));
6215 // When X == Y, this is rotate. If the data type has a power-of-2 size, we
6216 // avoid the select that is necessary in the general case to filter out
6217 // the 0-shift possibility that leads to UB.
6218 if (X
== Y
&& isPowerOf2_32(VT
.getScalarSizeInBits())) {
6219 auto RotateOpcode
= IsFSHL
? ISD::ROTL
: ISD::ROTR
;
6220 if (TLI
.isOperationLegalOrCustom(RotateOpcode
, VT
)) {
6221 setValue(&I
, DAG
.getNode(RotateOpcode
, sdl
, VT
, X
, Z
));
6225 // Some targets only rotate one way. Try the opposite direction.
6226 RotateOpcode
= IsFSHL
? ISD::ROTR
: ISD::ROTL
;
6227 if (TLI
.isOperationLegalOrCustom(RotateOpcode
, VT
)) {
6228 // Negate the shift amount because it is safe to ignore the high bits.
6229 SDValue NegShAmt
= DAG
.getNode(ISD::SUB
, sdl
, VT
, Zero
, Z
);
6230 setValue(&I
, DAG
.getNode(RotateOpcode
, sdl
, VT
, X
, NegShAmt
));
6234 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
6235 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
6236 SDValue NegZ
= DAG
.getNode(ISD::SUB
, sdl
, VT
, Zero
, Z
);
6237 SDValue NShAmt
= DAG
.getNode(ISD::UREM
, sdl
, VT
, NegZ
, BitWidthC
);
6238 SDValue ShX
= DAG
.getNode(ISD::SHL
, sdl
, VT
, X
, IsFSHL
? ShAmt
: NShAmt
);
6239 SDValue ShY
= DAG
.getNode(ISD::SRL
, sdl
, VT
, X
, IsFSHL
? NShAmt
: ShAmt
);
6240 setValue(&I
, DAG
.getNode(ISD::OR
, sdl
, VT
, ShX
, ShY
));
6244 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6245 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6246 SDValue InvShAmt
= DAG
.getNode(ISD::SUB
, sdl
, VT
, BitWidthC
, ShAmt
);
6247 SDValue ShX
= DAG
.getNode(ISD::SHL
, sdl
, VT
, X
, IsFSHL
? ShAmt
: InvShAmt
);
6248 SDValue ShY
= DAG
.getNode(ISD::SRL
, sdl
, VT
, Y
, IsFSHL
? InvShAmt
: ShAmt
);
6249 SDValue Or
= DAG
.getNode(ISD::OR
, sdl
, VT
, ShX
, ShY
);
6251 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6252 // and that is undefined. We must compare and select to avoid UB.
6255 CCVT
= EVT::getVectorVT(*Context
, CCVT
, VT
.getVectorNumElements());
6257 // For fshl, 0-shift returns the 1st arg (X).
6258 // For fshr, 0-shift returns the 2nd arg (Y).
6259 SDValue IsZeroShift
= DAG
.getSetCC(sdl
, CCVT
, ShAmt
, Zero
, ISD::SETEQ
);
6260 setValue(&I
, DAG
.getSelect(sdl
, VT
, IsZeroShift
, IsFSHL
? X
: Y
, Or
));
6263 case Intrinsic::sadd_sat
: {
6264 SDValue Op1
= getValue(I
.getArgOperand(0));
6265 SDValue Op2
= getValue(I
.getArgOperand(1));
6266 setValue(&I
, DAG
.getNode(ISD::SADDSAT
, sdl
, Op1
.getValueType(), Op1
, Op2
));
6269 case Intrinsic::uadd_sat
: {
6270 SDValue Op1
= getValue(I
.getArgOperand(0));
6271 SDValue Op2
= getValue(I
.getArgOperand(1));
6272 setValue(&I
, DAG
.getNode(ISD::UADDSAT
, sdl
, Op1
.getValueType(), Op1
, Op2
));
6275 case Intrinsic::ssub_sat
: {
6276 SDValue Op1
= getValue(I
.getArgOperand(0));
6277 SDValue Op2
= getValue(I
.getArgOperand(1));
6278 setValue(&I
, DAG
.getNode(ISD::SSUBSAT
, sdl
, Op1
.getValueType(), Op1
, Op2
));
6281 case Intrinsic::usub_sat
: {
6282 SDValue Op1
= getValue(I
.getArgOperand(0));
6283 SDValue Op2
= getValue(I
.getArgOperand(1));
6284 setValue(&I
, DAG
.getNode(ISD::USUBSAT
, sdl
, Op1
.getValueType(), Op1
, Op2
));
6287 case Intrinsic::smul_fix
:
6288 case Intrinsic::umul_fix
: {
6289 SDValue Op1
= getValue(I
.getArgOperand(0));
6290 SDValue Op2
= getValue(I
.getArgOperand(1));
6291 SDValue Op3
= getValue(I
.getArgOperand(2));
6292 setValue(&I
, DAG
.getNode(FixedPointIntrinsicToOpcode(Intrinsic
), sdl
,
6293 Op1
.getValueType(), Op1
, Op2
, Op3
));
6296 case Intrinsic::smul_fix_sat
: {
6297 SDValue Op1
= getValue(I
.getArgOperand(0));
6298 SDValue Op2
= getValue(I
.getArgOperand(1));
6299 SDValue Op3
= getValue(I
.getArgOperand(2));
6300 setValue(&I
, DAG
.getNode(ISD::SMULFIXSAT
, sdl
, Op1
.getValueType(), Op1
, Op2
,
6304 case Intrinsic::stacksave
: {
6305 SDValue Op
= getRoot();
6307 ISD::STACKSAVE
, sdl
,
6308 DAG
.getVTList(TLI
.getPointerTy(DAG
.getDataLayout()), MVT::Other
), Op
);
6310 DAG
.setRoot(Res
.getValue(1));
6313 case Intrinsic::stackrestore
:
6314 Res
= getValue(I
.getArgOperand(0));
6315 DAG
.setRoot(DAG
.getNode(ISD::STACKRESTORE
, sdl
, MVT::Other
, getRoot(), Res
));
6317 case Intrinsic::get_dynamic_area_offset
: {
6318 SDValue Op
= getRoot();
6319 EVT PtrTy
= TLI
.getPointerTy(DAG
.getDataLayout());
6320 EVT ResTy
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
6321 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6323 if (PtrTy
.getSizeInBits() < ResTy
.getSizeInBits())
6324 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6326 Res
= DAG
.getNode(ISD::GET_DYNAMIC_AREA_OFFSET
, sdl
, DAG
.getVTList(ResTy
),
6332 case Intrinsic::stackguard
: {
6333 EVT PtrTy
= TLI
.getPointerTy(DAG
.getDataLayout());
6334 MachineFunction
&MF
= DAG
.getMachineFunction();
6335 const Module
&M
= *MF
.getFunction().getParent();
6336 SDValue Chain
= getRoot();
6337 if (TLI
.useLoadStackGuardNode()) {
6338 Res
= getLoadStackGuard(DAG
, sdl
, Chain
);
6340 const Value
*Global
= TLI
.getSDagStackGuard(M
);
6341 unsigned Align
= DL
->getPrefTypeAlignment(Global
->getType());
6342 Res
= DAG
.getLoad(PtrTy
, sdl
, Chain
, getValue(Global
),
6343 MachinePointerInfo(Global
, 0), Align
,
6344 MachineMemOperand::MOVolatile
);
6346 if (TLI
.useStackGuardXorFP())
6347 Res
= TLI
.emitStackGuardXorFP(DAG
, Res
, sdl
);
6352 case Intrinsic::stackprotector
: {
6353 // Emit code into the DAG to store the stack guard onto the stack.
6354 MachineFunction
&MF
= DAG
.getMachineFunction();
6355 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
6356 EVT PtrTy
= TLI
.getPointerTy(DAG
.getDataLayout());
6357 SDValue Src
, Chain
= getRoot();
6359 if (TLI
.useLoadStackGuardNode())
6360 Src
= getLoadStackGuard(DAG
, sdl
, Chain
);
6362 Src
= getValue(I
.getArgOperand(0)); // The guard's value.
6364 AllocaInst
*Slot
= cast
<AllocaInst
>(I
.getArgOperand(1));
6366 int FI
= FuncInfo
.StaticAllocaMap
[Slot
];
6367 MFI
.setStackProtectorIndex(FI
);
6369 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrTy
);
6371 // Store the stack protector onto the stack.
6372 Res
= DAG
.getStore(Chain
, sdl
, Src
, FIN
, MachinePointerInfo::getFixedStack(
6373 DAG
.getMachineFunction(), FI
),
6374 /* Alignment = */ 0, MachineMemOperand::MOVolatile
);
6379 case Intrinsic::objectsize
: {
6380 // If we don't know by now, we're never going to know.
6381 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(I
.getArgOperand(1));
6383 assert(CI
&& "Non-constant type in __builtin_object_size?");
6385 SDValue Arg
= getValue(I
.getCalledValue());
6386 EVT Ty
= Arg
.getValueType();
6389 Res
= DAG
.getConstant(-1ULL, sdl
, Ty
);
6391 Res
= DAG
.getConstant(0, sdl
, Ty
);
6397 case Intrinsic::is_constant
:
6398 // If this wasn't constant-folded away by now, then it's not a
6400 setValue(&I
, DAG
.getConstant(0, sdl
, MVT::i1
));
6403 case Intrinsic::annotation
:
6404 case Intrinsic::ptr_annotation
:
6405 case Intrinsic::launder_invariant_group
:
6406 case Intrinsic::strip_invariant_group
:
6407 // Drop the intrinsic, but forward the value
6408 setValue(&I
, getValue(I
.getOperand(0)));
6410 case Intrinsic::assume
:
6411 case Intrinsic::var_annotation
:
6412 case Intrinsic::sideeffect
:
6413 // Discard annotate attributes, assumptions, and artificial side-effects.
6416 case Intrinsic::codeview_annotation
: {
6417 // Emit a label associated with this metadata.
6418 MachineFunction
&MF
= DAG
.getMachineFunction();
6420 MF
.getMMI().getContext().createTempSymbol("annotation", true);
6421 Metadata
*MD
= cast
<MetadataAsValue
>(I
.getArgOperand(0))->getMetadata();
6422 MF
.addCodeViewAnnotation(Label
, cast
<MDNode
>(MD
));
6423 Res
= DAG
.getLabelNode(ISD::ANNOTATION_LABEL
, sdl
, getRoot(), Label
);
6428 case Intrinsic::init_trampoline
: {
6429 const Function
*F
= cast
<Function
>(I
.getArgOperand(1)->stripPointerCasts());
6433 Ops
[1] = getValue(I
.getArgOperand(0));
6434 Ops
[2] = getValue(I
.getArgOperand(1));
6435 Ops
[3] = getValue(I
.getArgOperand(2));
6436 Ops
[4] = DAG
.getSrcValue(I
.getArgOperand(0));
6437 Ops
[5] = DAG
.getSrcValue(F
);
6439 Res
= DAG
.getNode(ISD::INIT_TRAMPOLINE
, sdl
, MVT::Other
, Ops
);
6444 case Intrinsic::adjust_trampoline
:
6445 setValue(&I
, DAG
.getNode(ISD::ADJUST_TRAMPOLINE
, sdl
,
6446 TLI
.getPointerTy(DAG
.getDataLayout()),
6447 getValue(I
.getArgOperand(0))));
6449 case Intrinsic::gcroot
: {
6450 assert(DAG
.getMachineFunction().getFunction().hasGC() &&
6451 "only valid in functions with gc specified, enforced by Verifier");
6452 assert(GFI
&& "implied by previous");
6453 const Value
*Alloca
= I
.getArgOperand(0)->stripPointerCasts();
6454 const Constant
*TypeMap
= cast
<Constant
>(I
.getArgOperand(1));
6456 FrameIndexSDNode
*FI
= cast
<FrameIndexSDNode
>(getValue(Alloca
).getNode());
6457 GFI
->addStackRoot(FI
->getIndex(), TypeMap
);
6460 case Intrinsic::gcread
:
6461 case Intrinsic::gcwrite
:
6462 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6463 case Intrinsic::flt_rounds
:
6464 setValue(&I
, DAG
.getNode(ISD::FLT_ROUNDS_
, sdl
, MVT::i32
));
6467 case Intrinsic::expect
:
6468 // Just replace __builtin_expect(exp, c) with EXP.
6469 setValue(&I
, getValue(I
.getArgOperand(0)));
6472 case Intrinsic::debugtrap
:
6473 case Intrinsic::trap
: {
6474 StringRef TrapFuncName
=
6476 .getAttribute(AttributeList::FunctionIndex
, "trap-func-name")
6477 .getValueAsString();
6478 if (TrapFuncName
.empty()) {
6479 ISD::NodeType Op
= (Intrinsic
== Intrinsic::trap
) ?
6480 ISD::TRAP
: ISD::DEBUGTRAP
;
6481 DAG
.setRoot(DAG
.getNode(Op
, sdl
,MVT::Other
, getRoot()));
6484 TargetLowering::ArgListTy Args
;
6486 TargetLowering::CallLoweringInfo
CLI(DAG
);
6487 CLI
.setDebugLoc(sdl
).setChain(getRoot()).setLibCallee(
6488 CallingConv::C
, I
.getType(),
6489 DAG
.getExternalSymbol(TrapFuncName
.data(),
6490 TLI
.getPointerTy(DAG
.getDataLayout())),
6493 std::pair
<SDValue
, SDValue
> Result
= TLI
.LowerCallTo(CLI
);
6494 DAG
.setRoot(Result
.second
);
6498 case Intrinsic::uadd_with_overflow
:
6499 case Intrinsic::sadd_with_overflow
:
6500 case Intrinsic::usub_with_overflow
:
6501 case Intrinsic::ssub_with_overflow
:
6502 case Intrinsic::umul_with_overflow
:
6503 case Intrinsic::smul_with_overflow
: {
6505 switch (Intrinsic
) {
6506 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6507 case Intrinsic::uadd_with_overflow
: Op
= ISD::UADDO
; break;
6508 case Intrinsic::sadd_with_overflow
: Op
= ISD::SADDO
; break;
6509 case Intrinsic::usub_with_overflow
: Op
= ISD::USUBO
; break;
6510 case Intrinsic::ssub_with_overflow
: Op
= ISD::SSUBO
; break;
6511 case Intrinsic::umul_with_overflow
: Op
= ISD::UMULO
; break;
6512 case Intrinsic::smul_with_overflow
: Op
= ISD::SMULO
; break;
6514 SDValue Op1
= getValue(I
.getArgOperand(0));
6515 SDValue Op2
= getValue(I
.getArgOperand(1));
6517 EVT ResultVT
= Op1
.getValueType();
6518 EVT OverflowVT
= MVT::i1
;
6519 if (ResultVT
.isVector())
6520 OverflowVT
= EVT::getVectorVT(
6521 *Context
, OverflowVT
, ResultVT
.getVectorNumElements());
6523 SDVTList VTs
= DAG
.getVTList(ResultVT
, OverflowVT
);
6524 setValue(&I
, DAG
.getNode(Op
, sdl
, VTs
, Op1
, Op2
));
6527 case Intrinsic::prefetch
: {
6529 unsigned rw
= cast
<ConstantInt
>(I
.getArgOperand(1))->getZExtValue();
6530 auto Flags
= rw
== 0 ? MachineMemOperand::MOLoad
:MachineMemOperand::MOStore
;
6531 Ops
[0] = DAG
.getRoot();
6532 Ops
[1] = getValue(I
.getArgOperand(0));
6533 Ops
[2] = getValue(I
.getArgOperand(1));
6534 Ops
[3] = getValue(I
.getArgOperand(2));
6535 Ops
[4] = getValue(I
.getArgOperand(3));
6536 SDValue Result
= DAG
.getMemIntrinsicNode(ISD::PREFETCH
, sdl
,
6537 DAG
.getVTList(MVT::Other
), Ops
,
6538 EVT::getIntegerVT(*Context
, 8),
6539 MachinePointerInfo(I
.getArgOperand(0)),
6543 // Chain the prefetch in parallell with any pending loads, to stay out of
6544 // the way of later optimizations.
6545 PendingLoads
.push_back(Result
);
6547 DAG
.setRoot(Result
);
6550 case Intrinsic::lifetime_start
:
6551 case Intrinsic::lifetime_end
: {
6552 bool IsStart
= (Intrinsic
== Intrinsic::lifetime_start
);
6553 // Stack coloring is not enabled in O0, discard region information.
6554 if (TM
.getOptLevel() == CodeGenOpt::None
)
6557 const int64_t ObjectSize
=
6558 cast
<ConstantInt
>(I
.getArgOperand(0))->getSExtValue();
6559 Value
*const ObjectPtr
= I
.getArgOperand(1);
6560 SmallVector
<const Value
*, 4> Allocas
;
6561 GetUnderlyingObjects(ObjectPtr
, Allocas
, *DL
);
6563 for (SmallVectorImpl
<const Value
*>::iterator Object
= Allocas
.begin(),
6564 E
= Allocas
.end(); Object
!= E
; ++Object
) {
6565 const AllocaInst
*LifetimeObject
= dyn_cast_or_null
<AllocaInst
>(*Object
);
6567 // Could not find an Alloca.
6568 if (!LifetimeObject
)
6571 // First check that the Alloca is static, otherwise it won't have a
6572 // valid frame index.
6573 auto SI
= FuncInfo
.StaticAllocaMap
.find(LifetimeObject
);
6574 if (SI
== FuncInfo
.StaticAllocaMap
.end())
6577 const int FrameIndex
= SI
->second
;
6579 if (GetPointerBaseWithConstantOffset(
6580 ObjectPtr
, Offset
, DAG
.getDataLayout()) != LifetimeObject
)
6581 Offset
= -1; // Cannot determine offset from alloca to lifetime object.
6582 Res
= DAG
.getLifetimeNode(IsStart
, sdl
, getRoot(), FrameIndex
, ObjectSize
,
6588 case Intrinsic::invariant_start
:
6589 // Discard region information.
6590 setValue(&I
, DAG
.getUNDEF(TLI
.getPointerTy(DAG
.getDataLayout())));
6592 case Intrinsic::invariant_end
:
6593 // Discard region information.
6595 case Intrinsic::clear_cache
:
6596 /// FunctionName may be null.
6597 if (const char *FunctionName
= TLI
.getClearCacheBuiltinName())
6598 lowerCallToExternalSymbol(I
, FunctionName
);
6600 case Intrinsic::donothing
:
6603 case Intrinsic::experimental_stackmap
:
6606 case Intrinsic::experimental_patchpoint_void
:
6607 case Intrinsic::experimental_patchpoint_i64
:
6608 visitPatchpoint(&I
);
6610 case Intrinsic::experimental_gc_statepoint
:
6611 LowerStatepoint(ImmutableStatepoint(&I
));
6613 case Intrinsic::experimental_gc_result
:
6614 visitGCResult(cast
<GCResultInst
>(I
));
6616 case Intrinsic::experimental_gc_relocate
:
6617 visitGCRelocate(cast
<GCRelocateInst
>(I
));
6619 case Intrinsic::instrprof_increment
:
6620 llvm_unreachable("instrprof failed to lower an increment");
6621 case Intrinsic::instrprof_value_profile
:
6622 llvm_unreachable("instrprof failed to lower a value profiling call");
6623 case Intrinsic::localescape
: {
6624 MachineFunction
&MF
= DAG
.getMachineFunction();
6625 const TargetInstrInfo
*TII
= DAG
.getSubtarget().getInstrInfo();
6627 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6628 // is the same on all targets.
6629 for (unsigned Idx
= 0, E
= I
.getNumArgOperands(); Idx
< E
; ++Idx
) {
6630 Value
*Arg
= I
.getArgOperand(Idx
)->stripPointerCasts();
6631 if (isa
<ConstantPointerNull
>(Arg
))
6632 continue; // Skip null pointers. They represent a hole in index space.
6633 AllocaInst
*Slot
= cast
<AllocaInst
>(Arg
);
6634 assert(FuncInfo
.StaticAllocaMap
.count(Slot
) &&
6635 "can only escape static allocas");
6636 int FI
= FuncInfo
.StaticAllocaMap
[Slot
];
6637 MCSymbol
*FrameAllocSym
=
6638 MF
.getMMI().getContext().getOrCreateFrameAllocSymbol(
6639 GlobalValue::dropLLVMManglingEscape(MF
.getName()), Idx
);
6640 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, dl
,
6641 TII
->get(TargetOpcode::LOCAL_ESCAPE
))
6642 .addSym(FrameAllocSym
)
6649 case Intrinsic::localrecover
: {
6650 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6651 MachineFunction
&MF
= DAG
.getMachineFunction();
6652 MVT PtrVT
= TLI
.getPointerTy(DAG
.getDataLayout(), 0);
6654 // Get the symbol that defines the frame offset.
6655 auto *Fn
= cast
<Function
>(I
.getArgOperand(0)->stripPointerCasts());
6656 auto *Idx
= cast
<ConstantInt
>(I
.getArgOperand(2));
6658 unsigned(Idx
->getLimitedValue(std::numeric_limits
<int>::max()));
6659 MCSymbol
*FrameAllocSym
=
6660 MF
.getMMI().getContext().getOrCreateFrameAllocSymbol(
6661 GlobalValue::dropLLVMManglingEscape(Fn
->getName()), IdxVal
);
6663 // Create a MCSymbol for the label to avoid any target lowering
6664 // that would make this PC relative.
6665 SDValue OffsetSym
= DAG
.getMCSymbol(FrameAllocSym
, PtrVT
);
6667 DAG
.getNode(ISD::LOCAL_RECOVER
, sdl
, PtrVT
, OffsetSym
);
6669 // Add the offset to the FP.
6670 Value
*FP
= I
.getArgOperand(1);
6671 SDValue FPVal
= getValue(FP
);
6672 SDValue Add
= DAG
.getNode(ISD::ADD
, sdl
, PtrVT
, FPVal
, OffsetVal
);
6678 case Intrinsic::eh_exceptionpointer
:
6679 case Intrinsic::eh_exceptioncode
: {
6680 // Get the exception pointer vreg, copy from it, and resize it to fit.
6681 const auto *CPI
= cast
<CatchPadInst
>(I
.getArgOperand(0));
6682 MVT PtrVT
= TLI
.getPointerTy(DAG
.getDataLayout());
6683 const TargetRegisterClass
*PtrRC
= TLI
.getRegClassFor(PtrVT
);
6684 unsigned VReg
= FuncInfo
.getCatchPadExceptionPointerVReg(CPI
, PtrRC
);
6686 DAG
.getCopyFromReg(DAG
.getEntryNode(), getCurSDLoc(), VReg
, PtrVT
);
6687 if (Intrinsic
== Intrinsic::eh_exceptioncode
)
6688 N
= DAG
.getZExtOrTrunc(N
, getCurSDLoc(), MVT::i32
);
6692 case Intrinsic::xray_customevent
: {
6693 // Here we want to make sure that the intrinsic behaves as if it has a
6694 // specific calling convention, and only for x86_64.
6695 // FIXME: Support other platforms later.
6696 const auto &Triple
= DAG
.getTarget().getTargetTriple();
6697 if (Triple
.getArch() != Triple::x86_64
|| !Triple
.isOSLinux())
6700 SDLoc DL
= getCurSDLoc();
6701 SmallVector
<SDValue
, 8> Ops
;
6703 // We want to say that we always want the arguments in registers.
6704 SDValue LogEntryVal
= getValue(I
.getArgOperand(0));
6705 SDValue StrSizeVal
= getValue(I
.getArgOperand(1));
6706 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
6707 SDValue Chain
= getRoot();
6708 Ops
.push_back(LogEntryVal
);
6709 Ops
.push_back(StrSizeVal
);
6710 Ops
.push_back(Chain
);
6712 // We need to enforce the calling convention for the callsite, so that
6713 // argument ordering is enforced correctly, and that register allocation can
6714 // see that some registers may be assumed clobbered and have to preserve
6715 // them across calls to the intrinsic.
6716 MachineSDNode
*MN
= DAG
.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL
,
6718 SDValue patchableNode
= SDValue(MN
, 0);
6719 DAG
.setRoot(patchableNode
);
6720 setValue(&I
, patchableNode
);
6723 case Intrinsic::xray_typedevent
: {
6724 // Here we want to make sure that the intrinsic behaves as if it has a
6725 // specific calling convention, and only for x86_64.
6726 // FIXME: Support other platforms later.
6727 const auto &Triple
= DAG
.getTarget().getTargetTriple();
6728 if (Triple
.getArch() != Triple::x86_64
|| !Triple
.isOSLinux())
6731 SDLoc DL
= getCurSDLoc();
6732 SmallVector
<SDValue
, 8> Ops
;
6734 // We want to say that we always want the arguments in registers.
6735 // It's unclear to me how manipulating the selection DAG here forces callers
6736 // to provide arguments in registers instead of on the stack.
6737 SDValue LogTypeId
= getValue(I
.getArgOperand(0));
6738 SDValue LogEntryVal
= getValue(I
.getArgOperand(1));
6739 SDValue StrSizeVal
= getValue(I
.getArgOperand(2));
6740 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
6741 SDValue Chain
= getRoot();
6742 Ops
.push_back(LogTypeId
);
6743 Ops
.push_back(LogEntryVal
);
6744 Ops
.push_back(StrSizeVal
);
6745 Ops
.push_back(Chain
);
6747 // We need to enforce the calling convention for the callsite, so that
6748 // argument ordering is enforced correctly, and that register allocation can
6749 // see that some registers may be assumed clobbered and have to preserve
6750 // them across calls to the intrinsic.
6751 MachineSDNode
*MN
= DAG
.getMachineNode(
6752 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL
, DL
, NodeTys
, Ops
);
6753 SDValue patchableNode
= SDValue(MN
, 0);
6754 DAG
.setRoot(patchableNode
);
6755 setValue(&I
, patchableNode
);
6758 case Intrinsic::experimental_deoptimize
:
6759 LowerDeoptimizeCall(&I
);
6762 case Intrinsic::experimental_vector_reduce_v2_fadd
:
6763 case Intrinsic::experimental_vector_reduce_v2_fmul
:
6764 case Intrinsic::experimental_vector_reduce_add
:
6765 case Intrinsic::experimental_vector_reduce_mul
:
6766 case Intrinsic::experimental_vector_reduce_and
:
6767 case Intrinsic::experimental_vector_reduce_or
:
6768 case Intrinsic::experimental_vector_reduce_xor
:
6769 case Intrinsic::experimental_vector_reduce_smax
:
6770 case Intrinsic::experimental_vector_reduce_smin
:
6771 case Intrinsic::experimental_vector_reduce_umax
:
6772 case Intrinsic::experimental_vector_reduce_umin
:
6773 case Intrinsic::experimental_vector_reduce_fmax
:
6774 case Intrinsic::experimental_vector_reduce_fmin
:
6775 visitVectorReduce(I
, Intrinsic
);
6778 case Intrinsic::icall_branch_funnel
: {
6779 SmallVector
<SDValue
, 16> Ops
;
6780 Ops
.push_back(getValue(I
.getArgOperand(0)));
6783 auto *Base
= dyn_cast
<GlobalObject
>(GetPointerBaseWithConstantOffset(
6784 I
.getArgOperand(1), Offset
, DAG
.getDataLayout()));
6787 "llvm.icall.branch.funnel operand must be a GlobalValue");
6788 Ops
.push_back(DAG
.getTargetGlobalAddress(Base
, getCurSDLoc(), MVT::i64
, 0));
6790 struct BranchFunnelTarget
{
6794 SmallVector
<BranchFunnelTarget
, 8> Targets
;
6796 for (unsigned Op
= 1, N
= I
.getNumArgOperands(); Op
!= N
; Op
+= 2) {
6797 auto *ElemBase
= dyn_cast
<GlobalObject
>(GetPointerBaseWithConstantOffset(
6798 I
.getArgOperand(Op
), Offset
, DAG
.getDataLayout()));
6799 if (ElemBase
!= Base
)
6800 report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6801 "to the same GlobalValue");
6803 SDValue Val
= getValue(I
.getArgOperand(Op
+ 1));
6804 auto *GA
= dyn_cast
<GlobalAddressSDNode
>(Val
);
6807 "llvm.icall.branch.funnel operand must be a GlobalValue");
6808 Targets
.push_back({Offset
, DAG
.getTargetGlobalAddress(
6809 GA
->getGlobal(), getCurSDLoc(),
6810 Val
.getValueType(), GA
->getOffset())});
6813 [](const BranchFunnelTarget
&T1
, const BranchFunnelTarget
&T2
) {
6814 return T1
.Offset
< T2
.Offset
;
6817 for (auto &T
: Targets
) {
6818 Ops
.push_back(DAG
.getTargetConstant(T
.Offset
, getCurSDLoc(), MVT::i32
));
6819 Ops
.push_back(T
.Target
);
6822 Ops
.push_back(DAG
.getRoot()); // Chain
6823 SDValue
N(DAG
.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL
,
6824 getCurSDLoc(), MVT::Other
, Ops
),
6832 case Intrinsic::wasm_landingpad_index
:
6833 // Information this intrinsic contained has been transferred to
6834 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6838 case Intrinsic::aarch64_settag
:
6839 case Intrinsic::aarch64_settag_zero
: {
6840 const SelectionDAGTargetInfo
&TSI
= DAG
.getSelectionDAGInfo();
6841 bool ZeroMemory
= Intrinsic
== Intrinsic::aarch64_settag_zero
;
6842 SDValue Val
= TSI
.EmitTargetCodeForSetTag(
6843 DAG
, getCurSDLoc(), getRoot(), getValue(I
.getArgOperand(0)),
6844 getValue(I
.getArgOperand(1)), MachinePointerInfo(I
.getArgOperand(0)),
6853 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6854 const ConstrainedFPIntrinsic
&FPI
) {
6855 SDLoc sdl
= getCurSDLoc();
6857 switch (FPI
.getIntrinsicID()) {
6858 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6859 case Intrinsic::experimental_constrained_fadd
:
6860 Opcode
= ISD::STRICT_FADD
;
6862 case Intrinsic::experimental_constrained_fsub
:
6863 Opcode
= ISD::STRICT_FSUB
;
6865 case Intrinsic::experimental_constrained_fmul
:
6866 Opcode
= ISD::STRICT_FMUL
;
6868 case Intrinsic::experimental_constrained_fdiv
:
6869 Opcode
= ISD::STRICT_FDIV
;
6871 case Intrinsic::experimental_constrained_frem
:
6872 Opcode
= ISD::STRICT_FREM
;
6874 case Intrinsic::experimental_constrained_fma
:
6875 Opcode
= ISD::STRICT_FMA
;
6877 case Intrinsic::experimental_constrained_fptrunc
:
6878 Opcode
= ISD::STRICT_FP_ROUND
;
6880 case Intrinsic::experimental_constrained_fpext
:
6881 Opcode
= ISD::STRICT_FP_EXTEND
;
6883 case Intrinsic::experimental_constrained_sqrt
:
6884 Opcode
= ISD::STRICT_FSQRT
;
6886 case Intrinsic::experimental_constrained_pow
:
6887 Opcode
= ISD::STRICT_FPOW
;
6889 case Intrinsic::experimental_constrained_powi
:
6890 Opcode
= ISD::STRICT_FPOWI
;
6892 case Intrinsic::experimental_constrained_sin
:
6893 Opcode
= ISD::STRICT_FSIN
;
6895 case Intrinsic::experimental_constrained_cos
:
6896 Opcode
= ISD::STRICT_FCOS
;
6898 case Intrinsic::experimental_constrained_exp
:
6899 Opcode
= ISD::STRICT_FEXP
;
6901 case Intrinsic::experimental_constrained_exp2
:
6902 Opcode
= ISD::STRICT_FEXP2
;
6904 case Intrinsic::experimental_constrained_log
:
6905 Opcode
= ISD::STRICT_FLOG
;
6907 case Intrinsic::experimental_constrained_log10
:
6908 Opcode
= ISD::STRICT_FLOG10
;
6910 case Intrinsic::experimental_constrained_log2
:
6911 Opcode
= ISD::STRICT_FLOG2
;
6913 case Intrinsic::experimental_constrained_rint
:
6914 Opcode
= ISD::STRICT_FRINT
;
6916 case Intrinsic::experimental_constrained_nearbyint
:
6917 Opcode
= ISD::STRICT_FNEARBYINT
;
6919 case Intrinsic::experimental_constrained_maxnum
:
6920 Opcode
= ISD::STRICT_FMAXNUM
;
6922 case Intrinsic::experimental_constrained_minnum
:
6923 Opcode
= ISD::STRICT_FMINNUM
;
6925 case Intrinsic::experimental_constrained_ceil
:
6926 Opcode
= ISD::STRICT_FCEIL
;
6928 case Intrinsic::experimental_constrained_floor
:
6929 Opcode
= ISD::STRICT_FFLOOR
;
6931 case Intrinsic::experimental_constrained_round
:
6932 Opcode
= ISD::STRICT_FROUND
;
6934 case Intrinsic::experimental_constrained_trunc
:
6935 Opcode
= ISD::STRICT_FTRUNC
;
6938 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
6939 SDValue Chain
= getRoot();
6940 SmallVector
<EVT
, 4> ValueVTs
;
6941 ComputeValueVTs(TLI
, DAG
.getDataLayout(), FPI
.getType(), ValueVTs
);
6942 ValueVTs
.push_back(MVT::Other
); // Out chain
6944 SDVTList VTs
= DAG
.getVTList(ValueVTs
);
6946 if (Opcode
== ISD::STRICT_FP_ROUND
)
6947 Result
= DAG
.getNode(Opcode
, sdl
, VTs
,
6948 { Chain
, getValue(FPI
.getArgOperand(0)),
6949 DAG
.getTargetConstant(0, sdl
,
6950 TLI
.getPointerTy(DAG
.getDataLayout())) });
6951 else if (FPI
.isUnaryOp())
6952 Result
= DAG
.getNode(Opcode
, sdl
, VTs
,
6953 { Chain
, getValue(FPI
.getArgOperand(0)) });
6954 else if (FPI
.isTernaryOp())
6955 Result
= DAG
.getNode(Opcode
, sdl
, VTs
,
6956 { Chain
, getValue(FPI
.getArgOperand(0)),
6957 getValue(FPI
.getArgOperand(1)),
6958 getValue(FPI
.getArgOperand(2)) });
6960 Result
= DAG
.getNode(Opcode
, sdl
, VTs
,
6961 { Chain
, getValue(FPI
.getArgOperand(0)),
6962 getValue(FPI
.getArgOperand(1)) });
6964 if (FPI
.getExceptionBehavior() !=
6965 ConstrainedFPIntrinsic::ExceptionBehavior::ebIgnore
) {
6967 Flags
.setFPExcept(true);
6968 Result
->setFlags(Flags
);
6971 assert(Result
.getNode()->getNumValues() == 2);
6972 SDValue OutChain
= Result
.getValue(1);
6973 DAG
.setRoot(OutChain
);
6974 SDValue FPResult
= Result
.getValue(0);
6975 setValue(&FPI
, FPResult
);
6978 std::pair
<SDValue
, SDValue
>
6979 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo
&CLI
,
6980 const BasicBlock
*EHPadBB
) {
6981 MachineFunction
&MF
= DAG
.getMachineFunction();
6982 MachineModuleInfo
&MMI
= MF
.getMMI();
6983 MCSymbol
*BeginLabel
= nullptr;
6986 // Insert a label before the invoke call to mark the try range. This can be
6987 // used to detect deletion of the invoke via the MachineModuleInfo.
6988 BeginLabel
= MMI
.getContext().createTempSymbol();
6990 // For SjLj, keep track of which landing pads go with which invokes
6991 // so as to maintain the ordering of pads in the LSDA.
6992 unsigned CallSiteIndex
= MMI
.getCurrentCallSite();
6993 if (CallSiteIndex
) {
6994 MF
.setCallSiteBeginLabel(BeginLabel
, CallSiteIndex
);
6995 LPadToCallSiteMap
[FuncInfo
.MBBMap
[EHPadBB
]].push_back(CallSiteIndex
);
6997 // Now that the call site is handled, stop tracking it.
6998 MMI
.setCurrentCallSite(0);
7001 // Both PendingLoads and PendingExports must be flushed here;
7002 // this call might not return.
7004 DAG
.setRoot(DAG
.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel
));
7006 CLI
.setChain(getRoot());
7008 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
7009 std::pair
<SDValue
, SDValue
> Result
= TLI
.LowerCallTo(CLI
);
7011 assert((CLI
.IsTailCall
|| Result
.second
.getNode()) &&
7012 "Non-null chain expected with non-tail call!");
7013 assert((Result
.second
.getNode() || !Result
.first
.getNode()) &&
7014 "Null value expected with tail call!");
7016 if (!Result
.second
.getNode()) {
7017 // As a special case, a null chain means that a tail call has been emitted
7018 // and the DAG root is already updated.
7021 // Since there's no actual continuation from this block, nothing can be
7022 // relying on us setting vregs for them.
7023 PendingExports
.clear();
7025 DAG
.setRoot(Result
.second
);
7029 // Insert a label at the end of the invoke call to mark the try range. This
7030 // can be used to detect deletion of the invoke via the MachineModuleInfo.
7031 MCSymbol
*EndLabel
= MMI
.getContext().createTempSymbol();
7032 DAG
.setRoot(DAG
.getEHLabel(getCurSDLoc(), getRoot(), EndLabel
));
7034 // Inform MachineModuleInfo of range.
7035 auto Pers
= classifyEHPersonality(FuncInfo
.Fn
->getPersonalityFn());
7036 // There is a platform (e.g. wasm) that uses funclet style IR but does not
7037 // actually use outlined funclets and their LSDA info style.
7038 if (MF
.hasEHFunclets() && isFuncletEHPersonality(Pers
)) {
7040 WinEHFuncInfo
*EHInfo
= DAG
.getMachineFunction().getWinEHFuncInfo();
7041 EHInfo
->addIPToStateRange(cast
<InvokeInst
>(CLI
.CS
.getInstruction()),
7042 BeginLabel
, EndLabel
);
7043 } else if (!isScopedEHPersonality(Pers
)) {
7044 MF
.addInvoke(FuncInfo
.MBBMap
[EHPadBB
], BeginLabel
, EndLabel
);
7051 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS
, SDValue Callee
,
7053 const BasicBlock
*EHPadBB
) {
7054 auto &DL
= DAG
.getDataLayout();
7055 FunctionType
*FTy
= CS
.getFunctionType();
7056 Type
*RetTy
= CS
.getType();
7058 TargetLowering::ArgListTy Args
;
7059 Args
.reserve(CS
.arg_size());
7061 const Value
*SwiftErrorVal
= nullptr;
7062 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
7064 // We can't tail call inside a function with a swifterror argument. Lowering
7065 // does not support this yet. It would have to move into the swifterror
7066 // register before the call.
7067 auto *Caller
= CS
.getInstruction()->getParent()->getParent();
7068 if (TLI
.supportSwiftError() &&
7069 Caller
->getAttributes().hasAttrSomewhere(Attribute::SwiftError
))
7072 for (ImmutableCallSite::arg_iterator i
= CS
.arg_begin(), e
= CS
.arg_end();
7074 TargetLowering::ArgListEntry Entry
;
7075 const Value
*V
= *i
;
7078 if (V
->getType()->isEmptyTy())
7081 SDValue ArgNode
= getValue(V
);
7082 Entry
.Node
= ArgNode
; Entry
.Ty
= V
->getType();
7084 Entry
.setAttributes(&CS
, i
- CS
.arg_begin());
7086 // Use swifterror virtual register as input to the call.
7087 if (Entry
.IsSwiftError
&& TLI
.supportSwiftError()) {
7089 // We find the virtual register for the actual swifterror argument.
7090 // Instead of using the Value, we use the virtual register instead.
7091 Entry
.Node
= DAG
.getRegister(
7092 SwiftError
.getOrCreateVRegUseAt(CS
.getInstruction(), FuncInfo
.MBB
, V
),
7093 EVT(TLI
.getPointerTy(DL
)));
7096 Args
.push_back(Entry
);
7098 // If we have an explicit sret argument that is an Instruction, (i.e., it
7099 // might point to function-local memory), we can't meaningfully tail-call.
7100 if (Entry
.IsSRet
&& isa
<Instruction
>(V
))
7104 // Check if target-independent constraints permit a tail call here.
7105 // Target-dependent constraints are checked within TLI->LowerCallTo.
7106 if (isTailCall
&& !isInTailCallPosition(CS
, DAG
.getTarget()))
7109 // Disable tail calls if there is an swifterror argument. Targets have not
7110 // been updated to support tail calls.
7111 if (TLI
.supportSwiftError() && SwiftErrorVal
)
7114 TargetLowering::CallLoweringInfo
CLI(DAG
);
7115 CLI
.setDebugLoc(getCurSDLoc())
7116 .setChain(getRoot())
7117 .setCallee(RetTy
, FTy
, Callee
, std::move(Args
), CS
)
7118 .setTailCall(isTailCall
)
7119 .setConvergent(CS
.isConvergent());
7120 std::pair
<SDValue
, SDValue
> Result
= lowerInvokable(CLI
, EHPadBB
);
7122 if (Result
.first
.getNode()) {
7123 const Instruction
*Inst
= CS
.getInstruction();
7124 Result
.first
= lowerRangeToAssertZExt(DAG
, *Inst
, Result
.first
);
7125 setValue(Inst
, Result
.first
);
7128 // The last element of CLI.InVals has the SDValue for swifterror return.
7129 // Here we copy it to a virtual register and update SwiftErrorMap for
7131 if (SwiftErrorVal
&& TLI
.supportSwiftError()) {
7132 // Get the last element of InVals.
7133 SDValue Src
= CLI
.InVals
.back();
7134 unsigned VReg
= SwiftError
.getOrCreateVRegDefAt(
7135 CS
.getInstruction(), FuncInfo
.MBB
, SwiftErrorVal
);
7136 SDValue CopyNode
= CLI
.DAG
.getCopyToReg(Result
.second
, CLI
.DL
, VReg
, Src
);
7137 DAG
.setRoot(CopyNode
);
7141 static SDValue
getMemCmpLoad(const Value
*PtrVal
, MVT LoadVT
,
7142 SelectionDAGBuilder
&Builder
) {
7143 // Check to see if this load can be trivially constant folded, e.g. if the
7144 // input is from a string literal.
7145 if (const Constant
*LoadInput
= dyn_cast
<Constant
>(PtrVal
)) {
7146 // Cast pointer to the type we really want to load.
7148 Type::getIntNTy(PtrVal
->getContext(), LoadVT
.getScalarSizeInBits());
7149 if (LoadVT
.isVector())
7150 LoadTy
= VectorType::get(LoadTy
, LoadVT
.getVectorNumElements());
7152 LoadInput
= ConstantExpr::getBitCast(const_cast<Constant
*>(LoadInput
),
7153 PointerType::getUnqual(LoadTy
));
7155 if (const Constant
*LoadCst
= ConstantFoldLoadFromConstPtr(
7156 const_cast<Constant
*>(LoadInput
), LoadTy
, *Builder
.DL
))
7157 return Builder
.getValue(LoadCst
);
7160 // Otherwise, we have to emit the load. If the pointer is to unfoldable but
7161 // still constant memory, the input chain can be the entry node.
7163 bool ConstantMemory
= false;
7165 // Do not serialize (non-volatile) loads of constant memory with anything.
7166 if (Builder
.AA
&& Builder
.AA
->pointsToConstantMemory(PtrVal
)) {
7167 Root
= Builder
.DAG
.getEntryNode();
7168 ConstantMemory
= true;
7170 // Do not serialize non-volatile loads against each other.
7171 Root
= Builder
.DAG
.getRoot();
7174 SDValue Ptr
= Builder
.getValue(PtrVal
);
7175 SDValue LoadVal
= Builder
.DAG
.getLoad(LoadVT
, Builder
.getCurSDLoc(), Root
,
7176 Ptr
, MachinePointerInfo(PtrVal
),
7177 /* Alignment = */ 1);
7179 if (!ConstantMemory
)
7180 Builder
.PendingLoads
.push_back(LoadVal
.getValue(1));
7184 /// Record the value for an instruction that produces an integer result,
7185 /// converting the type where necessary.
7186 void SelectionDAGBuilder::processIntegerCallValue(const Instruction
&I
,
7189 EVT VT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
7192 Value
= DAG
.getSExtOrTrunc(Value
, getCurSDLoc(), VT
);
7194 Value
= DAG
.getZExtOrTrunc(Value
, getCurSDLoc(), VT
);
7195 setValue(&I
, Value
);
7198 /// See if we can lower a memcmp call into an optimized form. If so, return
7199 /// true and lower it. Otherwise return false, and it will be lowered like a
7201 /// The caller already checked that \p I calls the appropriate LibFunc with a
7202 /// correct prototype.
7203 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst
&I
) {
7204 const Value
*LHS
= I
.getArgOperand(0), *RHS
= I
.getArgOperand(1);
7205 const Value
*Size
= I
.getArgOperand(2);
7206 const ConstantInt
*CSize
= dyn_cast
<ConstantInt
>(Size
);
7207 if (CSize
&& CSize
->getZExtValue() == 0) {
7208 EVT CallVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
7210 setValue(&I
, DAG
.getConstant(0, getCurSDLoc(), CallVT
));
7214 const SelectionDAGTargetInfo
&TSI
= DAG
.getSelectionDAGInfo();
7215 std::pair
<SDValue
, SDValue
> Res
= TSI
.EmitTargetCodeForMemcmp(
7216 DAG
, getCurSDLoc(), DAG
.getRoot(), getValue(LHS
), getValue(RHS
),
7217 getValue(Size
), MachinePointerInfo(LHS
), MachinePointerInfo(RHS
));
7218 if (Res
.first
.getNode()) {
7219 processIntegerCallValue(I
, Res
.first
, true);
7220 PendingLoads
.push_back(Res
.second
);
7224 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0
7225 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0
7226 if (!CSize
|| !isOnlyUsedInZeroEqualityComparison(&I
))
7229 // If the target has a fast compare for the given size, it will return a
7230 // preferred load type for that size. Require that the load VT is legal and
7231 // that the target supports unaligned loads of that type. Otherwise, return
7233 auto hasFastLoadsAndCompare
= [&](unsigned NumBits
) {
7234 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
7235 MVT LVT
= TLI
.hasFastEqualityCompare(NumBits
);
7236 if (LVT
!= MVT::INVALID_SIMPLE_VALUE_TYPE
) {
7237 // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7238 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7239 // TODO: Check alignment of src and dest ptrs.
7240 unsigned DstAS
= LHS
->getType()->getPointerAddressSpace();
7241 unsigned SrcAS
= RHS
->getType()->getPointerAddressSpace();
7242 if (!TLI
.isTypeLegal(LVT
) ||
7243 !TLI
.allowsMisalignedMemoryAccesses(LVT
, SrcAS
) ||
7244 !TLI
.allowsMisalignedMemoryAccesses(LVT
, DstAS
))
7245 LVT
= MVT::INVALID_SIMPLE_VALUE_TYPE
;
7251 // This turns into unaligned loads. We only do this if the target natively
7252 // supports the MVT we'll be loading or if it is small enough (<= 4) that
7253 // we'll only produce a small number of byte loads.
7255 unsigned NumBitsToCompare
= CSize
->getZExtValue() * 8;
7256 switch (NumBitsToCompare
) {
7268 LoadVT
= hasFastLoadsAndCompare(NumBitsToCompare
);
7272 if (LoadVT
== MVT::INVALID_SIMPLE_VALUE_TYPE
)
7275 SDValue LoadL
= getMemCmpLoad(LHS
, LoadVT
, *this);
7276 SDValue LoadR
= getMemCmpLoad(RHS
, LoadVT
, *this);
7278 // Bitcast to a wide integer type if the loads are vectors.
7279 if (LoadVT
.isVector()) {
7280 EVT CmpVT
= EVT::getIntegerVT(LHS
->getContext(), LoadVT
.getSizeInBits());
7281 LoadL
= DAG
.getBitcast(CmpVT
, LoadL
);
7282 LoadR
= DAG
.getBitcast(CmpVT
, LoadR
);
7285 SDValue Cmp
= DAG
.getSetCC(getCurSDLoc(), MVT::i1
, LoadL
, LoadR
, ISD::SETNE
);
7286 processIntegerCallValue(I
, Cmp
, false);
7290 /// See if we can lower a memchr call into an optimized form. If so, return
7291 /// true and lower it. Otherwise return false, and it will be lowered like a
7293 /// The caller already checked that \p I calls the appropriate LibFunc with a
7294 /// correct prototype.
7295 bool SelectionDAGBuilder::visitMemChrCall(const CallInst
&I
) {
7296 const Value
*Src
= I
.getArgOperand(0);
7297 const Value
*Char
= I
.getArgOperand(1);
7298 const Value
*Length
= I
.getArgOperand(2);
7300 const SelectionDAGTargetInfo
&TSI
= DAG
.getSelectionDAGInfo();
7301 std::pair
<SDValue
, SDValue
> Res
=
7302 TSI
.EmitTargetCodeForMemchr(DAG
, getCurSDLoc(), DAG
.getRoot(),
7303 getValue(Src
), getValue(Char
), getValue(Length
),
7304 MachinePointerInfo(Src
));
7305 if (Res
.first
.getNode()) {
7306 setValue(&I
, Res
.first
);
7307 PendingLoads
.push_back(Res
.second
);
7314 /// See if we can lower a mempcpy call into an optimized form. If so, return
7315 /// true and lower it. Otherwise return false, and it will be lowered like a
7317 /// The caller already checked that \p I calls the appropriate LibFunc with a
7318 /// correct prototype.
7319 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst
&I
) {
7320 SDValue Dst
= getValue(I
.getArgOperand(0));
7321 SDValue Src
= getValue(I
.getArgOperand(1));
7322 SDValue Size
= getValue(I
.getArgOperand(2));
7324 unsigned DstAlign
= DAG
.InferPtrAlignment(Dst
);
7325 unsigned SrcAlign
= DAG
.InferPtrAlignment(Src
);
7326 unsigned Align
= std::min(DstAlign
, SrcAlign
);
7327 if (Align
== 0) // Alignment of one or both could not be inferred.
7328 Align
= 1; // 0 and 1 both specify no alignment, but 0 is reserved.
7331 SDLoc sdl
= getCurSDLoc();
7333 // In the mempcpy context we need to pass in a false value for isTailCall
7334 // because the return pointer needs to be adjusted by the size of
7335 // the copied memory.
7336 SDValue MC
= DAG
.getMemcpy(getRoot(), sdl
, Dst
, Src
, Size
, Align
, isVol
,
7337 false, /*isTailCall=*/false,
7338 MachinePointerInfo(I
.getArgOperand(0)),
7339 MachinePointerInfo(I
.getArgOperand(1)));
7340 assert(MC
.getNode() != nullptr &&
7341 "** memcpy should not be lowered as TailCall in mempcpy context **");
7344 // Check if Size needs to be truncated or extended.
7345 Size
= DAG
.getSExtOrTrunc(Size
, sdl
, Dst
.getValueType());
7347 // Adjust return pointer to point just past the last dst byte.
7348 SDValue DstPlusSize
= DAG
.getNode(ISD::ADD
, sdl
, Dst
.getValueType(),
7350 setValue(&I
, DstPlusSize
);
7354 /// See if we can lower a strcpy call into an optimized form. If so, return
7355 /// true and lower it, otherwise return false and it will be lowered like a
7357 /// The caller already checked that \p I calls the appropriate LibFunc with a
7358 /// correct prototype.
7359 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst
&I
, bool isStpcpy
) {
7360 const Value
*Arg0
= I
.getArgOperand(0), *Arg1
= I
.getArgOperand(1);
7362 const SelectionDAGTargetInfo
&TSI
= DAG
.getSelectionDAGInfo();
7363 std::pair
<SDValue
, SDValue
> Res
=
7364 TSI
.EmitTargetCodeForStrcpy(DAG
, getCurSDLoc(), getRoot(),
7365 getValue(Arg0
), getValue(Arg1
),
7366 MachinePointerInfo(Arg0
),
7367 MachinePointerInfo(Arg1
), isStpcpy
);
7368 if (Res
.first
.getNode()) {
7369 setValue(&I
, Res
.first
);
7370 DAG
.setRoot(Res
.second
);
7377 /// See if we can lower a strcmp call into an optimized form. If so, return
7378 /// true and lower it, otherwise return false and it will be lowered like a
7380 /// The caller already checked that \p I calls the appropriate LibFunc with a
7381 /// correct prototype.
7382 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst
&I
) {
7383 const Value
*Arg0
= I
.getArgOperand(0), *Arg1
= I
.getArgOperand(1);
7385 const SelectionDAGTargetInfo
&TSI
= DAG
.getSelectionDAGInfo();
7386 std::pair
<SDValue
, SDValue
> Res
=
7387 TSI
.EmitTargetCodeForStrcmp(DAG
, getCurSDLoc(), DAG
.getRoot(),
7388 getValue(Arg0
), getValue(Arg1
),
7389 MachinePointerInfo(Arg0
),
7390 MachinePointerInfo(Arg1
));
7391 if (Res
.first
.getNode()) {
7392 processIntegerCallValue(I
, Res
.first
, true);
7393 PendingLoads
.push_back(Res
.second
);
7400 /// See if we can lower a strlen call into an optimized form. If so, return
7401 /// true and lower it, otherwise return false and it will be lowered like a
7403 /// The caller already checked that \p I calls the appropriate LibFunc with a
7404 /// correct prototype.
7405 bool SelectionDAGBuilder::visitStrLenCall(const CallInst
&I
) {
7406 const Value
*Arg0
= I
.getArgOperand(0);
7408 const SelectionDAGTargetInfo
&TSI
= DAG
.getSelectionDAGInfo();
7409 std::pair
<SDValue
, SDValue
> Res
=
7410 TSI
.EmitTargetCodeForStrlen(DAG
, getCurSDLoc(), DAG
.getRoot(),
7411 getValue(Arg0
), MachinePointerInfo(Arg0
));
7412 if (Res
.first
.getNode()) {
7413 processIntegerCallValue(I
, Res
.first
, false);
7414 PendingLoads
.push_back(Res
.second
);
7421 /// See if we can lower a strnlen call into an optimized form. If so, return
7422 /// true and lower it, otherwise return false and it will be lowered like a
7424 /// The caller already checked that \p I calls the appropriate LibFunc with a
7425 /// correct prototype.
7426 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst
&I
) {
7427 const Value
*Arg0
= I
.getArgOperand(0), *Arg1
= I
.getArgOperand(1);
7429 const SelectionDAGTargetInfo
&TSI
= DAG
.getSelectionDAGInfo();
7430 std::pair
<SDValue
, SDValue
> Res
=
7431 TSI
.EmitTargetCodeForStrnlen(DAG
, getCurSDLoc(), DAG
.getRoot(),
7432 getValue(Arg0
), getValue(Arg1
),
7433 MachinePointerInfo(Arg0
));
7434 if (Res
.first
.getNode()) {
7435 processIntegerCallValue(I
, Res
.first
, false);
7436 PendingLoads
.push_back(Res
.second
);
7443 /// See if we can lower a unary floating-point operation into an SDNode with
7444 /// the specified Opcode. If so, return true and lower it, otherwise return
7445 /// false and it will be lowered like a normal call.
7446 /// The caller already checked that \p I calls the appropriate LibFunc with a
7447 /// correct prototype.
7448 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst
&I
,
7450 // We already checked this call's prototype; verify it doesn't modify errno.
7451 if (!I
.onlyReadsMemory())
7454 SDValue Tmp
= getValue(I
.getArgOperand(0));
7455 setValue(&I
, DAG
.getNode(Opcode
, getCurSDLoc(), Tmp
.getValueType(), Tmp
));
7459 /// See if we can lower a binary floating-point operation into an SDNode with
7460 /// the specified Opcode. If so, return true and lower it. Otherwise return
7461 /// false, and it will be lowered like a normal call.
7462 /// The caller already checked that \p I calls the appropriate LibFunc with a
7463 /// correct prototype.
7464 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst
&I
,
7466 // We already checked this call's prototype; verify it doesn't modify errno.
7467 if (!I
.onlyReadsMemory())
7470 SDValue Tmp0
= getValue(I
.getArgOperand(0));
7471 SDValue Tmp1
= getValue(I
.getArgOperand(1));
7472 EVT VT
= Tmp0
.getValueType();
7473 setValue(&I
, DAG
.getNode(Opcode
, getCurSDLoc(), VT
, Tmp0
, Tmp1
));
7477 void SelectionDAGBuilder::visitCall(const CallInst
&I
) {
7478 // Handle inline assembly differently.
7479 if (isa
<InlineAsm
>(I
.getCalledValue())) {
7484 if (Function
*F
= I
.getCalledFunction()) {
7485 if (F
->isDeclaration()) {
7486 // Is this an LLVM intrinsic or a target-specific intrinsic?
7487 unsigned IID
= F
->getIntrinsicID();
7489 if (const TargetIntrinsicInfo
*II
= TM
.getIntrinsicInfo())
7490 IID
= II
->getIntrinsicID(F
);
7493 visitIntrinsicCall(I
, IID
);
7498 // Check for well-known libc/libm calls. If the function is internal, it
7499 // can't be a library call. Don't do the check if marked as nobuiltin for
7500 // some reason or the call site requires strict floating point semantics.
7502 if (!I
.isNoBuiltin() && !I
.isStrictFP() && !F
->hasLocalLinkage() &&
7503 F
->hasName() && LibInfo
->getLibFunc(*F
, Func
) &&
7504 LibInfo
->hasOptimizedCodeGen(Func
)) {
7507 case LibFunc_copysign
:
7508 case LibFunc_copysignf
:
7509 case LibFunc_copysignl
:
7510 // We already checked this call's prototype; verify it doesn't modify
7512 if (I
.onlyReadsMemory()) {
7513 SDValue LHS
= getValue(I
.getArgOperand(0));
7514 SDValue RHS
= getValue(I
.getArgOperand(1));
7515 setValue(&I
, DAG
.getNode(ISD::FCOPYSIGN
, getCurSDLoc(),
7516 LHS
.getValueType(), LHS
, RHS
));
7523 if (visitUnaryFloatCall(I
, ISD::FABS
))
7529 if (visitBinaryFloatCall(I
, ISD::FMINNUM
))
7535 if (visitBinaryFloatCall(I
, ISD::FMAXNUM
))
7541 if (visitUnaryFloatCall(I
, ISD::FSIN
))
7547 if (visitUnaryFloatCall(I
, ISD::FCOS
))
7553 case LibFunc_sqrt_finite
:
7554 case LibFunc_sqrtf_finite
:
7555 case LibFunc_sqrtl_finite
:
7556 if (visitUnaryFloatCall(I
, ISD::FSQRT
))
7560 case LibFunc_floorf
:
7561 case LibFunc_floorl
:
7562 if (visitUnaryFloatCall(I
, ISD::FFLOOR
))
7565 case LibFunc_nearbyint
:
7566 case LibFunc_nearbyintf
:
7567 case LibFunc_nearbyintl
:
7568 if (visitUnaryFloatCall(I
, ISD::FNEARBYINT
))
7574 if (visitUnaryFloatCall(I
, ISD::FCEIL
))
7580 if (visitUnaryFloatCall(I
, ISD::FRINT
))
7584 case LibFunc_roundf
:
7585 case LibFunc_roundl
:
7586 if (visitUnaryFloatCall(I
, ISD::FROUND
))
7590 case LibFunc_truncf
:
7591 case LibFunc_truncl
:
7592 if (visitUnaryFloatCall(I
, ISD::FTRUNC
))
7598 if (visitUnaryFloatCall(I
, ISD::FLOG2
))
7604 if (visitUnaryFloatCall(I
, ISD::FEXP2
))
7607 case LibFunc_memcmp
:
7608 if (visitMemCmpCall(I
))
7611 case LibFunc_mempcpy
:
7612 if (visitMemPCpyCall(I
))
7615 case LibFunc_memchr
:
7616 if (visitMemChrCall(I
))
7619 case LibFunc_strcpy
:
7620 if (visitStrCpyCall(I
, false))
7623 case LibFunc_stpcpy
:
7624 if (visitStrCpyCall(I
, true))
7627 case LibFunc_strcmp
:
7628 if (visitStrCmpCall(I
))
7631 case LibFunc_strlen
:
7632 if (visitStrLenCall(I
))
7635 case LibFunc_strnlen
:
7636 if (visitStrNLenCall(I
))
7643 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7644 // have to do anything here to lower funclet bundles.
7645 assert(!I
.hasOperandBundlesOtherThan(
7646 {LLVMContext::OB_deopt
, LLVMContext::OB_funclet
}) &&
7647 "Cannot lower calls with arbitrary operand bundles!");
7649 SDValue Callee
= getValue(I
.getCalledValue());
7651 if (I
.countOperandBundlesOfType(LLVMContext::OB_deopt
))
7652 LowerCallSiteWithDeoptBundle(&I
, Callee
, nullptr);
7654 // Check if we can potentially perform a tail call. More detailed checking
7655 // is be done within LowerCallTo, after more information about the call is
7657 LowerCallTo(&I
, Callee
, I
.isTailCall());
7662 /// AsmOperandInfo - This contains information for each constraint that we are
7664 class SDISelAsmOperandInfo
: public TargetLowering::AsmOperandInfo
{
7666 /// CallOperand - If this is the result output operand or a clobber
7667 /// this is null, otherwise it is the incoming operand to the CallInst.
7668 /// This gets modified as the asm is processed.
7669 SDValue CallOperand
;
7671 /// AssignedRegs - If this is a register or register class operand, this
7672 /// contains the set of register corresponding to the operand.
7673 RegsForValue AssignedRegs
;
7675 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo
&info
)
7676 : TargetLowering::AsmOperandInfo(info
), CallOperand(nullptr, 0) {
7679 /// Whether or not this operand accesses memory
7680 bool hasMemory(const TargetLowering
&TLI
) const {
7681 // Indirect operand accesses access memory.
7685 for (const auto &Code
: Codes
)
7686 if (TLI
.getConstraintType(Code
) == TargetLowering::C_Memory
)
7692 /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7693 /// corresponds to. If there is no Value* for this operand, it returns
7695 EVT
getCallOperandValEVT(LLVMContext
&Context
, const TargetLowering
&TLI
,
7696 const DataLayout
&DL
) const {
7697 if (!CallOperandVal
) return MVT::Other
;
7699 if (isa
<BasicBlock
>(CallOperandVal
))
7700 return TLI
.getPointerTy(DL
);
7702 llvm::Type
*OpTy
= CallOperandVal
->getType();
7704 // FIXME: code duplicated from TargetLowering::ParseConstraints().
7705 // If this is an indirect operand, the operand is a pointer to the
7708 PointerType
*PtrTy
= dyn_cast
<PointerType
>(OpTy
);
7710 report_fatal_error("Indirect operand for inline asm not a pointer!");
7711 OpTy
= PtrTy
->getElementType();
7714 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7715 if (StructType
*STy
= dyn_cast
<StructType
>(OpTy
))
7716 if (STy
->getNumElements() == 1)
7717 OpTy
= STy
->getElementType(0);
7719 // If OpTy is not a single value, it may be a struct/union that we
7720 // can tile with integers.
7721 if (!OpTy
->isSingleValueType() && OpTy
->isSized()) {
7722 unsigned BitSize
= DL
.getTypeSizeInBits(OpTy
);
7731 OpTy
= IntegerType::get(Context
, BitSize
);
7736 return TLI
.getValueType(DL
, OpTy
, true);
7740 using SDISelAsmOperandInfoVector
= SmallVector
<SDISelAsmOperandInfo
, 16>;
7742 } // end anonymous namespace
7744 /// Make sure that the output operand \p OpInfo and its corresponding input
7745 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7747 static void patchMatchingInput(const SDISelAsmOperandInfo
&OpInfo
,
7748 SDISelAsmOperandInfo
&MatchingOpInfo
,
7749 SelectionDAG
&DAG
) {
7750 if (OpInfo
.ConstraintVT
== MatchingOpInfo
.ConstraintVT
)
7753 const TargetRegisterInfo
*TRI
= DAG
.getSubtarget().getRegisterInfo();
7754 const auto &TLI
= DAG
.getTargetLoweringInfo();
7756 std::pair
<unsigned, const TargetRegisterClass
*> MatchRC
=
7757 TLI
.getRegForInlineAsmConstraint(TRI
, OpInfo
.ConstraintCode
,
7758 OpInfo
.ConstraintVT
);
7759 std::pair
<unsigned, const TargetRegisterClass
*> InputRC
=
7760 TLI
.getRegForInlineAsmConstraint(TRI
, MatchingOpInfo
.ConstraintCode
,
7761 MatchingOpInfo
.ConstraintVT
);
7762 if ((OpInfo
.ConstraintVT
.isInteger() !=
7763 MatchingOpInfo
.ConstraintVT
.isInteger()) ||
7764 (MatchRC
.second
!= InputRC
.second
)) {
7765 // FIXME: error out in a more elegant fashion
7766 report_fatal_error("Unsupported asm: input constraint"
7767 " with a matching output constraint of"
7768 " incompatible type!");
7770 MatchingOpInfo
.ConstraintVT
= OpInfo
.ConstraintVT
;
7773 /// Get a direct memory input to behave well as an indirect operand.
7774 /// This may introduce stores, hence the need for a \p Chain.
7775 /// \return The (possibly updated) chain.
7776 static SDValue
getAddressForMemoryInput(SDValue Chain
, const SDLoc
&Location
,
7777 SDISelAsmOperandInfo
&OpInfo
,
7778 SelectionDAG
&DAG
) {
7779 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
7781 // If we don't have an indirect input, put it in the constpool if we can,
7782 // otherwise spill it to a stack slot.
7783 // TODO: This isn't quite right. We need to handle these according to
7784 // the addressing mode that the constraint wants. Also, this may take
7785 // an additional register for the computation and we don't want that
7788 // If the operand is a float, integer, or vector constant, spill to a
7789 // constant pool entry to get its address.
7790 const Value
*OpVal
= OpInfo
.CallOperandVal
;
7791 if (isa
<ConstantFP
>(OpVal
) || isa
<ConstantInt
>(OpVal
) ||
7792 isa
<ConstantVector
>(OpVal
) || isa
<ConstantDataVector
>(OpVal
)) {
7793 OpInfo
.CallOperand
= DAG
.getConstantPool(
7794 cast
<Constant
>(OpVal
), TLI
.getPointerTy(DAG
.getDataLayout()));
7798 // Otherwise, create a stack slot and emit a store to it before the asm.
7799 Type
*Ty
= OpVal
->getType();
7800 auto &DL
= DAG
.getDataLayout();
7801 uint64_t TySize
= DL
.getTypeAllocSize(Ty
);
7802 unsigned Align
= DL
.getPrefTypeAlignment(Ty
);
7803 MachineFunction
&MF
= DAG
.getMachineFunction();
7804 int SSFI
= MF
.getFrameInfo().CreateStackObject(TySize
, Align
, false);
7805 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, TLI
.getFrameIndexTy(DL
));
7806 Chain
= DAG
.getTruncStore(Chain
, Location
, OpInfo
.CallOperand
, StackSlot
,
7807 MachinePointerInfo::getFixedStack(MF
, SSFI
),
7808 TLI
.getMemValueType(DL
, Ty
));
7809 OpInfo
.CallOperand
= StackSlot
;
7814 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7815 /// specified operand. We prefer to assign virtual registers, to allow the
7816 /// register allocator to handle the assignment process. However, if the asm
7817 /// uses features that we can't model on machineinstrs, we have SDISel do the
7818 /// allocation. This produces generally horrible, but correct, code.
7820 /// OpInfo describes the operand
7821 /// RefOpInfo describes the matching operand if any, the operand otherwise
7822 static void GetRegistersForValue(SelectionDAG
&DAG
, const SDLoc
&DL
,
7823 SDISelAsmOperandInfo
&OpInfo
,
7824 SDISelAsmOperandInfo
&RefOpInfo
) {
7825 LLVMContext
&Context
= *DAG
.getContext();
7826 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
7828 MachineFunction
&MF
= DAG
.getMachineFunction();
7829 SmallVector
<unsigned, 4> Regs
;
7830 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
7832 // No work to do for memory operations.
7833 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
)
7836 // If this is a constraint for a single physreg, or a constraint for a
7837 // register class, find it.
7838 unsigned AssignedReg
;
7839 const TargetRegisterClass
*RC
;
7840 std::tie(AssignedReg
, RC
) = TLI
.getRegForInlineAsmConstraint(
7841 &TRI
, RefOpInfo
.ConstraintCode
, RefOpInfo
.ConstraintVT
);
7842 // RC is unset only on failure. Return immediately.
7846 // Get the actual register value type. This is important, because the user
7847 // may have asked for (e.g.) the AX register in i32 type. We need to
7848 // remember that AX is actually i16 to get the right extension.
7849 const MVT RegVT
= *TRI
.legalclasstypes_begin(*RC
);
7851 if (OpInfo
.ConstraintVT
!= MVT::Other
) {
7852 // If this is an FP operand in an integer register (or visa versa), or more
7853 // generally if the operand value disagrees with the register class we plan
7854 // to stick it in, fix the operand type.
7856 // If this is an input value, the bitcast to the new type is done now.
7857 // Bitcast for output value is done at the end of visitInlineAsm().
7858 if ((OpInfo
.Type
== InlineAsm::isOutput
||
7859 OpInfo
.Type
== InlineAsm::isInput
) &&
7860 !TRI
.isTypeLegalForClass(*RC
, OpInfo
.ConstraintVT
)) {
7861 // Try to convert to the first EVT that the reg class contains. If the
7862 // types are identical size, use a bitcast to convert (e.g. two differing
7863 // vector types). Note: output bitcast is done at the end of
7864 // visitInlineAsm().
7865 if (RegVT
.getSizeInBits() == OpInfo
.ConstraintVT
.getSizeInBits()) {
7866 // Exclude indirect inputs while they are unsupported because the code
7867 // to perform the load is missing and thus OpInfo.CallOperand still
7868 // refers to the input address rather than the pointed-to value.
7869 if (OpInfo
.Type
== InlineAsm::isInput
&& !OpInfo
.isIndirect
)
7870 OpInfo
.CallOperand
=
7871 DAG
.getNode(ISD::BITCAST
, DL
, RegVT
, OpInfo
.CallOperand
);
7872 OpInfo
.ConstraintVT
= RegVT
;
7873 // If the operand is an FP value and we want it in integer registers,
7874 // use the corresponding integer type. This turns an f64 value into
7875 // i64, which can be passed with two i32 values on a 32-bit machine.
7876 } else if (RegVT
.isInteger() && OpInfo
.ConstraintVT
.isFloatingPoint()) {
7877 MVT VT
= MVT::getIntegerVT(OpInfo
.ConstraintVT
.getSizeInBits());
7878 if (OpInfo
.Type
== InlineAsm::isInput
)
7879 OpInfo
.CallOperand
=
7880 DAG
.getNode(ISD::BITCAST
, DL
, VT
, OpInfo
.CallOperand
);
7881 OpInfo
.ConstraintVT
= VT
;
7886 // No need to allocate a matching input constraint since the constraint it's
7887 // matching to has already been allocated.
7888 if (OpInfo
.isMatchingInputConstraint())
7891 EVT ValueVT
= OpInfo
.ConstraintVT
;
7892 if (OpInfo
.ConstraintVT
== MVT::Other
)
7895 // Initialize NumRegs.
7896 unsigned NumRegs
= 1;
7897 if (OpInfo
.ConstraintVT
!= MVT::Other
)
7898 NumRegs
= TLI
.getNumRegisters(Context
, OpInfo
.ConstraintVT
);
7900 // If this is a constraint for a specific physical register, like {r17},
7903 // If this associated to a specific register, initialize iterator to correct
7904 // place. If virtual, make sure we have enough registers
7906 // Initialize iterator if necessary
7907 TargetRegisterClass::iterator I
= RC
->begin();
7908 MachineRegisterInfo
&RegInfo
= MF
.getRegInfo();
7910 // Do not check for single registers.
7912 for (; *I
!= AssignedReg
; ++I
)
7913 assert(I
!= RC
->end() && "AssignedReg should be member of RC");
7916 for (; NumRegs
; --NumRegs
, ++I
) {
7917 assert(I
!= RC
->end() && "Ran out of registers to allocate!");
7918 Register R
= AssignedReg
? Register(*I
) : RegInfo
.createVirtualRegister(RC
);
7922 OpInfo
.AssignedRegs
= RegsForValue(Regs
, RegVT
, ValueVT
);
7926 findMatchingInlineAsmOperand(unsigned OperandNo
,
7927 const std::vector
<SDValue
> &AsmNodeOperands
) {
7928 // Scan until we find the definition we already emitted of this operand.
7929 unsigned CurOp
= InlineAsm::Op_FirstOperand
;
7930 for (; OperandNo
; --OperandNo
) {
7931 // Advance to the next operand.
7933 cast
<ConstantSDNode
>(AsmNodeOperands
[CurOp
])->getZExtValue();
7934 assert((InlineAsm::isRegDefKind(OpFlag
) ||
7935 InlineAsm::isRegDefEarlyClobberKind(OpFlag
) ||
7936 InlineAsm::isMemKind(OpFlag
)) &&
7937 "Skipped past definitions?");
7938 CurOp
+= InlineAsm::getNumOperandRegisters(OpFlag
) + 1;
7949 explicit ExtraFlags(ImmutableCallSite CS
) {
7950 const InlineAsm
*IA
= cast
<InlineAsm
>(CS
.getCalledValue());
7951 if (IA
->hasSideEffects())
7952 Flags
|= InlineAsm::Extra_HasSideEffects
;
7953 if (IA
->isAlignStack())
7954 Flags
|= InlineAsm::Extra_IsAlignStack
;
7955 if (CS
.isConvergent())
7956 Flags
|= InlineAsm::Extra_IsConvergent
;
7957 Flags
|= IA
->getDialect() * InlineAsm::Extra_AsmDialect
;
7960 void update(const TargetLowering::AsmOperandInfo
&OpInfo
) {
7961 // Ideally, we would only check against memory constraints. However, the
7962 // meaning of an Other constraint can be target-specific and we can't easily
7963 // reason about it. Therefore, be conservative and set MayLoad/MayStore
7964 // for Other constraints as well.
7965 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
||
7966 OpInfo
.ConstraintType
== TargetLowering::C_Other
) {
7967 if (OpInfo
.Type
== InlineAsm::isInput
)
7968 Flags
|= InlineAsm::Extra_MayLoad
;
7969 else if (OpInfo
.Type
== InlineAsm::isOutput
)
7970 Flags
|= InlineAsm::Extra_MayStore
;
7971 else if (OpInfo
.Type
== InlineAsm::isClobber
)
7972 Flags
|= (InlineAsm::Extra_MayLoad
| InlineAsm::Extra_MayStore
);
7976 unsigned get() const { return Flags
; }
7979 } // end anonymous namespace
7981 /// visitInlineAsm - Handle a call to an InlineAsm object.
7982 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS
) {
7983 const InlineAsm
*IA
= cast
<InlineAsm
>(CS
.getCalledValue());
7985 /// ConstraintOperands - Information about all of the constraints.
7986 SDISelAsmOperandInfoVector ConstraintOperands
;
7988 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
7989 TargetLowering::AsmOperandInfoVector TargetConstraints
= TLI
.ParseConstraints(
7990 DAG
.getDataLayout(), DAG
.getSubtarget().getRegisterInfo(), CS
);
7992 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
7993 // AsmDialect, MayLoad, MayStore).
7994 bool HasSideEffect
= IA
->hasSideEffects();
7995 ExtraFlags
ExtraInfo(CS
);
7997 unsigned ArgNo
= 0; // ArgNo - The argument of the CallInst.
7998 unsigned ResNo
= 0; // ResNo - The result number of the next output.
7999 for (auto &T
: TargetConstraints
) {
8000 ConstraintOperands
.push_back(SDISelAsmOperandInfo(T
));
8001 SDISelAsmOperandInfo
&OpInfo
= ConstraintOperands
.back();
8003 // Compute the value type for each operand.
8004 if (OpInfo
.Type
== InlineAsm::isInput
||
8005 (OpInfo
.Type
== InlineAsm::isOutput
&& OpInfo
.isIndirect
)) {
8006 OpInfo
.CallOperandVal
= const_cast<Value
*>(CS
.getArgument(ArgNo
++));
8008 // Process the call argument. BasicBlocks are labels, currently appearing
8010 const Instruction
*I
= CS
.getInstruction();
8011 if (isa
<CallBrInst
>(I
) &&
8012 (ArgNo
- 1) >= (cast
<CallBrInst
>(I
)->getNumArgOperands() -
8013 cast
<CallBrInst
>(I
)->getNumIndirectDests())) {
8014 const auto *BA
= cast
<BlockAddress
>(OpInfo
.CallOperandVal
);
8015 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), BA
->getType(), true);
8016 OpInfo
.CallOperand
= DAG
.getTargetBlockAddress(BA
, VT
);
8017 } else if (const auto *BB
= dyn_cast
<BasicBlock
>(OpInfo
.CallOperandVal
)) {
8018 OpInfo
.CallOperand
= DAG
.getBasicBlock(FuncInfo
.MBBMap
[BB
]);
8020 OpInfo
.CallOperand
= getValue(OpInfo
.CallOperandVal
);
8023 OpInfo
.ConstraintVT
=
8025 .getCallOperandValEVT(*DAG
.getContext(), TLI
, DAG
.getDataLayout())
8027 } else if (OpInfo
.Type
== InlineAsm::isOutput
&& !OpInfo
.isIndirect
) {
8028 // The return value of the call is this value. As such, there is no
8029 // corresponding argument.
8030 assert(!CS
.getType()->isVoidTy() && "Bad inline asm!");
8031 if (StructType
*STy
= dyn_cast
<StructType
>(CS
.getType())) {
8032 OpInfo
.ConstraintVT
= TLI
.getSimpleValueType(
8033 DAG
.getDataLayout(), STy
->getElementType(ResNo
));
8035 assert(ResNo
== 0 && "Asm only has one result!");
8036 OpInfo
.ConstraintVT
=
8037 TLI
.getSimpleValueType(DAG
.getDataLayout(), CS
.getType());
8041 OpInfo
.ConstraintVT
= MVT::Other
;
8045 HasSideEffect
= OpInfo
.hasMemory(TLI
);
8047 // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8048 // FIXME: Could we compute this on OpInfo rather than T?
8050 // Compute the constraint code and ConstraintType to use.
8051 TLI
.ComputeConstraintToUse(T
, SDValue());
8053 ExtraInfo
.update(T
);
8057 // We won't need to flush pending loads if this asm doesn't touch
8058 // memory and is nonvolatile.
8059 SDValue Flag
, Chain
= (HasSideEffect
) ? getRoot() : DAG
.getRoot();
8061 bool IsCallBr
= isa
<CallBrInst
>(CS
.getInstruction());
8063 // If this is a callbr we need to flush pending exports since inlineasm_br
8064 // is a terminator. We need to do this before nodes are glued to
8065 // the inlineasm_br node.
8066 Chain
= getControlRoot();
8069 // Second pass over the constraints: compute which constraint option to use.
8070 for (SDISelAsmOperandInfo
&OpInfo
: ConstraintOperands
) {
8071 // If this is an output operand with a matching input operand, look up the
8072 // matching input. If their types mismatch, e.g. one is an integer, the
8073 // other is floating point, or their sizes are different, flag it as an
8075 if (OpInfo
.hasMatchingInput()) {
8076 SDISelAsmOperandInfo
&Input
= ConstraintOperands
[OpInfo
.MatchingInput
];
8077 patchMatchingInput(OpInfo
, Input
, DAG
);
8080 // Compute the constraint code and ConstraintType to use.
8081 TLI
.ComputeConstraintToUse(OpInfo
, OpInfo
.CallOperand
, &DAG
);
8083 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
&&
8084 OpInfo
.Type
== InlineAsm::isClobber
)
8087 // If this is a memory input, and if the operand is not indirect, do what we
8088 // need to provide an address for the memory input.
8089 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
&&
8090 !OpInfo
.isIndirect
) {
8091 assert((OpInfo
.isMultipleAlternative
||
8092 (OpInfo
.Type
== InlineAsm::isInput
)) &&
8093 "Can only indirectify direct input operands!");
8095 // Memory operands really want the address of the value.
8096 Chain
= getAddressForMemoryInput(Chain
, getCurSDLoc(), OpInfo
, DAG
);
8098 // There is no longer a Value* corresponding to this operand.
8099 OpInfo
.CallOperandVal
= nullptr;
8101 // It is now an indirect operand.
8102 OpInfo
.isIndirect
= true;
8107 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8108 std::vector
<SDValue
> AsmNodeOperands
;
8109 AsmNodeOperands
.push_back(SDValue()); // reserve space for input chain
8110 AsmNodeOperands
.push_back(DAG
.getTargetExternalSymbol(
8111 IA
->getAsmString().c_str(), TLI
.getPointerTy(DAG
.getDataLayout())));
8113 // If we have a !srcloc metadata node associated with it, we want to attach
8114 // this to the ultimately generated inline asm machineinstr. To do this, we
8115 // pass in the third operand as this (potentially null) inline asm MDNode.
8116 const MDNode
*SrcLoc
= CS
.getInstruction()->getMetadata("srcloc");
8117 AsmNodeOperands
.push_back(DAG
.getMDNode(SrcLoc
));
8119 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8120 // bits as operand 3.
8121 AsmNodeOperands
.push_back(DAG
.getTargetConstant(
8122 ExtraInfo
.get(), getCurSDLoc(), TLI
.getPointerTy(DAG
.getDataLayout())));
8124 // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8125 // this, assign virtual and physical registers for inputs and otput.
8126 for (SDISelAsmOperandInfo
&OpInfo
: ConstraintOperands
) {
8127 // Assign Registers.
8128 SDISelAsmOperandInfo
&RefOpInfo
=
8129 OpInfo
.isMatchingInputConstraint()
8130 ? ConstraintOperands
[OpInfo
.getMatchedOperand()]
8132 GetRegistersForValue(DAG
, getCurSDLoc(), OpInfo
, RefOpInfo
);
8134 switch (OpInfo
.Type
) {
8135 case InlineAsm::isOutput
:
8136 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
||
8137 (OpInfo
.ConstraintType
== TargetLowering::C_Other
&&
8138 OpInfo
.isIndirect
)) {
8139 unsigned ConstraintID
=
8140 TLI
.getInlineAsmMemConstraint(OpInfo
.ConstraintCode
);
8141 assert(ConstraintID
!= InlineAsm::Constraint_Unknown
&&
8142 "Failed to convert memory constraint code to constraint id.");
8144 // Add information to the INLINEASM node to know about this output.
8145 unsigned OpFlags
= InlineAsm::getFlagWord(InlineAsm::Kind_Mem
, 1);
8146 OpFlags
= InlineAsm::getFlagWordForMem(OpFlags
, ConstraintID
);
8147 AsmNodeOperands
.push_back(DAG
.getTargetConstant(OpFlags
, getCurSDLoc(),
8149 AsmNodeOperands
.push_back(OpInfo
.CallOperand
);
8151 } else if ((OpInfo
.ConstraintType
== TargetLowering::C_Other
&&
8152 !OpInfo
.isIndirect
) ||
8153 OpInfo
.ConstraintType
== TargetLowering::C_Register
||
8154 OpInfo
.ConstraintType
== TargetLowering::C_RegisterClass
) {
8155 // Otherwise, this outputs to a register (directly for C_Register /
8156 // C_RegisterClass, and a target-defined fashion for C_Other). Find a
8157 // register that we can use.
8158 if (OpInfo
.AssignedRegs
.Regs
.empty()) {
8160 CS
, "couldn't allocate output register for constraint '" +
8161 Twine(OpInfo
.ConstraintCode
) + "'");
8165 // Add information to the INLINEASM node to know that this register is
8167 OpInfo
.AssignedRegs
.AddInlineAsmOperands(
8168 OpInfo
.isEarlyClobber
? InlineAsm::Kind_RegDefEarlyClobber
8169 : InlineAsm::Kind_RegDef
,
8170 false, 0, getCurSDLoc(), DAG
, AsmNodeOperands
);
8174 case InlineAsm::isInput
: {
8175 SDValue InOperandVal
= OpInfo
.CallOperand
;
8177 if (OpInfo
.isMatchingInputConstraint()) {
8178 // If this is required to match an output register we have already set,
8179 // just use its register.
8180 auto CurOp
= findMatchingInlineAsmOperand(OpInfo
.getMatchedOperand(),
8183 cast
<ConstantSDNode
>(AsmNodeOperands
[CurOp
])->getZExtValue();
8184 if (InlineAsm::isRegDefKind(OpFlag
) ||
8185 InlineAsm::isRegDefEarlyClobberKind(OpFlag
)) {
8186 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8187 if (OpInfo
.isIndirect
) {
8188 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8189 emitInlineAsmError(CS
, "inline asm not supported yet:"
8190 " don't know how to handle tied "
8191 "indirect register inputs");
8195 MVT RegVT
= AsmNodeOperands
[CurOp
+1].getSimpleValueType();
8196 SmallVector
<unsigned, 4> Regs
;
8198 if (const TargetRegisterClass
*RC
= TLI
.getRegClassFor(RegVT
)) {
8199 unsigned NumRegs
= InlineAsm::getNumOperandRegisters(OpFlag
);
8200 MachineRegisterInfo
&RegInfo
=
8201 DAG
.getMachineFunction().getRegInfo();
8202 for (unsigned i
= 0; i
!= NumRegs
; ++i
)
8203 Regs
.push_back(RegInfo
.createVirtualRegister(RC
));
8205 emitInlineAsmError(CS
, "inline asm error: This value type register "
8206 "class is not natively supported!");
8210 RegsForValue
MatchedRegs(Regs
, RegVT
, InOperandVal
.getValueType());
8212 SDLoc dl
= getCurSDLoc();
8213 // Use the produced MatchedRegs object to
8214 MatchedRegs
.getCopyToRegs(InOperandVal
, DAG
, dl
, Chain
, &Flag
,
8215 CS
.getInstruction());
8216 MatchedRegs
.AddInlineAsmOperands(InlineAsm::Kind_RegUse
,
8217 true, OpInfo
.getMatchedOperand(), dl
,
8218 DAG
, AsmNodeOperands
);
8222 assert(InlineAsm::isMemKind(OpFlag
) && "Unknown matching constraint!");
8223 assert(InlineAsm::getNumOperandRegisters(OpFlag
) == 1 &&
8224 "Unexpected number of operands");
8225 // Add information to the INLINEASM node to know about this input.
8226 // See InlineAsm.h isUseOperandTiedToDef.
8227 OpFlag
= InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag
);
8228 OpFlag
= InlineAsm::getFlagWordForMatchingOp(OpFlag
,
8229 OpInfo
.getMatchedOperand());
8230 AsmNodeOperands
.push_back(DAG
.getTargetConstant(
8231 OpFlag
, getCurSDLoc(), TLI
.getPointerTy(DAG
.getDataLayout())));
8232 AsmNodeOperands
.push_back(AsmNodeOperands
[CurOp
+1]);
8236 // Treat indirect 'X' constraint as memory.
8237 if (OpInfo
.ConstraintType
== TargetLowering::C_Other
&&
8239 OpInfo
.ConstraintType
= TargetLowering::C_Memory
;
8241 if (OpInfo
.ConstraintType
== TargetLowering::C_Other
) {
8242 std::vector
<SDValue
> Ops
;
8243 TLI
.LowerAsmOperandForConstraint(InOperandVal
, OpInfo
.ConstraintCode
,
8246 emitInlineAsmError(CS
, "invalid operand for inline asm constraint '" +
8247 Twine(OpInfo
.ConstraintCode
) + "'");
8251 // Add information to the INLINEASM node to know about this input.
8252 unsigned ResOpType
=
8253 InlineAsm::getFlagWord(InlineAsm::Kind_Imm
, Ops
.size());
8254 AsmNodeOperands
.push_back(DAG
.getTargetConstant(
8255 ResOpType
, getCurSDLoc(), TLI
.getPointerTy(DAG
.getDataLayout())));
8256 AsmNodeOperands
.insert(AsmNodeOperands
.end(), Ops
.begin(), Ops
.end());
8260 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
) {
8261 assert(OpInfo
.isIndirect
&& "Operand must be indirect to be a mem!");
8262 assert(InOperandVal
.getValueType() ==
8263 TLI
.getPointerTy(DAG
.getDataLayout()) &&
8264 "Memory operands expect pointer values");
8266 unsigned ConstraintID
=
8267 TLI
.getInlineAsmMemConstraint(OpInfo
.ConstraintCode
);
8268 assert(ConstraintID
!= InlineAsm::Constraint_Unknown
&&
8269 "Failed to convert memory constraint code to constraint id.");
8271 // Add information to the INLINEASM node to know about this input.
8272 unsigned ResOpType
= InlineAsm::getFlagWord(InlineAsm::Kind_Mem
, 1);
8273 ResOpType
= InlineAsm::getFlagWordForMem(ResOpType
, ConstraintID
);
8274 AsmNodeOperands
.push_back(DAG
.getTargetConstant(ResOpType
,
8277 AsmNodeOperands
.push_back(InOperandVal
);
8281 assert((OpInfo
.ConstraintType
== TargetLowering::C_RegisterClass
||
8282 OpInfo
.ConstraintType
== TargetLowering::C_Register
) &&
8283 "Unknown constraint type!");
8285 // TODO: Support this.
8286 if (OpInfo
.isIndirect
) {
8288 CS
, "Don't know how to handle indirect register inputs yet "
8289 "for constraint '" +
8290 Twine(OpInfo
.ConstraintCode
) + "'");
8294 // Copy the input into the appropriate registers.
8295 if (OpInfo
.AssignedRegs
.Regs
.empty()) {
8296 emitInlineAsmError(CS
, "couldn't allocate input reg for constraint '" +
8297 Twine(OpInfo
.ConstraintCode
) + "'");
8301 SDLoc dl
= getCurSDLoc();
8303 OpInfo
.AssignedRegs
.getCopyToRegs(InOperandVal
, DAG
, dl
,
8304 Chain
, &Flag
, CS
.getInstruction());
8306 OpInfo
.AssignedRegs
.AddInlineAsmOperands(InlineAsm::Kind_RegUse
, false, 0,
8307 dl
, DAG
, AsmNodeOperands
);
8310 case InlineAsm::isClobber
:
8311 // Add the clobbered value to the operand list, so that the register
8312 // allocator is aware that the physreg got clobbered.
8313 if (!OpInfo
.AssignedRegs
.Regs
.empty())
8314 OpInfo
.AssignedRegs
.AddInlineAsmOperands(InlineAsm::Kind_Clobber
,
8315 false, 0, getCurSDLoc(), DAG
,
8321 // Finish up input operands. Set the input chain and add the flag last.
8322 AsmNodeOperands
[InlineAsm::Op_InputChain
] = Chain
;
8323 if (Flag
.getNode()) AsmNodeOperands
.push_back(Flag
);
8325 unsigned ISDOpc
= IsCallBr
? ISD::INLINEASM_BR
: ISD::INLINEASM
;
8326 Chain
= DAG
.getNode(ISDOpc
, getCurSDLoc(),
8327 DAG
.getVTList(MVT::Other
, MVT::Glue
), AsmNodeOperands
);
8328 Flag
= Chain
.getValue(1);
8330 // Do additional work to generate outputs.
8332 SmallVector
<EVT
, 1> ResultVTs
;
8333 SmallVector
<SDValue
, 1> ResultValues
;
8334 SmallVector
<SDValue
, 8> OutChains
;
8336 llvm::Type
*CSResultType
= CS
.getType();
8337 ArrayRef
<Type
*> ResultTypes
;
8338 if (StructType
*StructResult
= dyn_cast
<StructType
>(CSResultType
))
8339 ResultTypes
= StructResult
->elements();
8340 else if (!CSResultType
->isVoidTy())
8341 ResultTypes
= makeArrayRef(CSResultType
);
8343 auto CurResultType
= ResultTypes
.begin();
8344 auto handleRegAssign
= [&](SDValue V
) {
8345 assert(CurResultType
!= ResultTypes
.end() && "Unexpected value");
8346 assert((*CurResultType
)->isSized() && "Unexpected unsized type");
8347 EVT ResultVT
= TLI
.getValueType(DAG
.getDataLayout(), *CurResultType
);
8349 // If the type of the inline asm call site return value is different but has
8350 // same size as the type of the asm output bitcast it. One example of this
8351 // is for vectors with different width / number of elements. This can
8352 // happen for register classes that can contain multiple different value
8353 // types. The preg or vreg allocated may not have the same VT as was
8356 // This can also happen for a return value that disagrees with the register
8357 // class it is put in, eg. a double in a general-purpose register on a
8359 if (ResultVT
!= V
.getValueType() &&
8360 ResultVT
.getSizeInBits() == V
.getValueSizeInBits())
8361 V
= DAG
.getNode(ISD::BITCAST
, getCurSDLoc(), ResultVT
, V
);
8362 else if (ResultVT
!= V
.getValueType() && ResultVT
.isInteger() &&
8363 V
.getValueType().isInteger()) {
8364 // If a result value was tied to an input value, the computed result
8365 // may have a wider width than the expected result. Extract the
8366 // relevant portion.
8367 V
= DAG
.getNode(ISD::TRUNCATE
, getCurSDLoc(), ResultVT
, V
);
8369 assert(ResultVT
== V
.getValueType() && "Asm result value mismatch!");
8370 ResultVTs
.push_back(ResultVT
);
8371 ResultValues
.push_back(V
);
8374 // Deal with output operands.
8375 for (SDISelAsmOperandInfo
&OpInfo
: ConstraintOperands
) {
8376 if (OpInfo
.Type
== InlineAsm::isOutput
) {
8378 // Skip trivial output operands.
8379 if (OpInfo
.AssignedRegs
.Regs
.empty())
8382 switch (OpInfo
.ConstraintType
) {
8383 case TargetLowering::C_Register
:
8384 case TargetLowering::C_RegisterClass
:
8385 Val
= OpInfo
.AssignedRegs
.getCopyFromRegs(
8386 DAG
, FuncInfo
, getCurSDLoc(), Chain
, &Flag
, CS
.getInstruction());
8388 case TargetLowering::C_Other
:
8389 Val
= TLI
.LowerAsmOutputForConstraint(Chain
, Flag
, getCurSDLoc(),
8392 case TargetLowering::C_Memory
:
8393 break; // Already handled.
8394 case TargetLowering::C_Unknown
:
8395 assert(false && "Unexpected unknown constraint");
8398 // Indirect output manifest as stores. Record output chains.
8399 if (OpInfo
.isIndirect
) {
8400 const Value
*Ptr
= OpInfo
.CallOperandVal
;
8401 assert(Ptr
&& "Expected value CallOperandVal for indirect asm operand");
8402 SDValue Store
= DAG
.getStore(Chain
, getCurSDLoc(), Val
, getValue(Ptr
),
8403 MachinePointerInfo(Ptr
));
8404 OutChains
.push_back(Store
);
8406 // generate CopyFromRegs to associated registers.
8407 assert(!CS
.getType()->isVoidTy() && "Bad inline asm!");
8408 if (Val
.getOpcode() == ISD::MERGE_VALUES
) {
8409 for (const SDValue
&V
: Val
->op_values())
8412 handleRegAssign(Val
);
8418 if (!ResultValues
.empty()) {
8419 assert(CurResultType
== ResultTypes
.end() &&
8420 "Mismatch in number of ResultTypes");
8421 assert(ResultValues
.size() == ResultTypes
.size() &&
8422 "Mismatch in number of output operands in asm result");
8424 SDValue V
= DAG
.getNode(ISD::MERGE_VALUES
, getCurSDLoc(),
8425 DAG
.getVTList(ResultVTs
), ResultValues
);
8426 setValue(CS
.getInstruction(), V
);
8429 // Collect store chains.
8430 if (!OutChains
.empty())
8431 Chain
= DAG
.getNode(ISD::TokenFactor
, getCurSDLoc(), MVT::Other
, OutChains
);
8433 // Only Update Root if inline assembly has a memory effect.
8434 if (ResultValues
.empty() || HasSideEffect
|| !OutChains
.empty() || IsCallBr
)
8438 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS
,
8439 const Twine
&Message
) {
8440 LLVMContext
&Ctx
= *DAG
.getContext();
8441 Ctx
.emitError(CS
.getInstruction(), Message
);
8443 // Make sure we leave the DAG in a valid state
8444 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8445 SmallVector
<EVT
, 1> ValueVTs
;
8446 ComputeValueVTs(TLI
, DAG
.getDataLayout(), CS
->getType(), ValueVTs
);
8448 if (ValueVTs
.empty())
8451 SmallVector
<SDValue
, 1> Ops
;
8452 for (unsigned i
= 0, e
= ValueVTs
.size(); i
!= e
; ++i
)
8453 Ops
.push_back(DAG
.getUNDEF(ValueVTs
[i
]));
8455 setValue(CS
.getInstruction(), DAG
.getMergeValues(Ops
, getCurSDLoc()));
8458 void SelectionDAGBuilder::visitVAStart(const CallInst
&I
) {
8459 DAG
.setRoot(DAG
.getNode(ISD::VASTART
, getCurSDLoc(),
8460 MVT::Other
, getRoot(),
8461 getValue(I
.getArgOperand(0)),
8462 DAG
.getSrcValue(I
.getArgOperand(0))));
8465 void SelectionDAGBuilder::visitVAArg(const VAArgInst
&I
) {
8466 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8467 const DataLayout
&DL
= DAG
.getDataLayout();
8468 SDValue V
= DAG
.getVAArg(
8469 TLI
.getMemValueType(DAG
.getDataLayout(), I
.getType()), getCurSDLoc(),
8470 getRoot(), getValue(I
.getOperand(0)), DAG
.getSrcValue(I
.getOperand(0)),
8471 DL
.getABITypeAlignment(I
.getType()));
8472 DAG
.setRoot(V
.getValue(1));
8474 if (I
.getType()->isPointerTy())
8475 V
= DAG
.getPtrExtOrTrunc(
8476 V
, getCurSDLoc(), TLI
.getValueType(DAG
.getDataLayout(), I
.getType()));
8480 void SelectionDAGBuilder::visitVAEnd(const CallInst
&I
) {
8481 DAG
.setRoot(DAG
.getNode(ISD::VAEND
, getCurSDLoc(),
8482 MVT::Other
, getRoot(),
8483 getValue(I
.getArgOperand(0)),
8484 DAG
.getSrcValue(I
.getArgOperand(0))));
8487 void SelectionDAGBuilder::visitVACopy(const CallInst
&I
) {
8488 DAG
.setRoot(DAG
.getNode(ISD::VACOPY
, getCurSDLoc(),
8489 MVT::Other
, getRoot(),
8490 getValue(I
.getArgOperand(0)),
8491 getValue(I
.getArgOperand(1)),
8492 DAG
.getSrcValue(I
.getArgOperand(0)),
8493 DAG
.getSrcValue(I
.getArgOperand(1))));
8496 SDValue
SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG
&DAG
,
8497 const Instruction
&I
,
8499 const MDNode
*Range
= I
.getMetadata(LLVMContext::MD_range
);
8503 ConstantRange CR
= getConstantRangeFromMetadata(*Range
);
8504 if (CR
.isFullSet() || CR
.isEmptySet() || CR
.isUpperWrapped())
8507 APInt Lo
= CR
.getUnsignedMin();
8508 if (!Lo
.isMinValue())
8511 APInt Hi
= CR
.getUnsignedMax();
8512 unsigned Bits
= std::max(Hi
.getActiveBits(),
8513 static_cast<unsigned>(IntegerType::MIN_INT_BITS
));
8515 EVT SmallVT
= EVT::getIntegerVT(*DAG
.getContext(), Bits
);
8517 SDLoc SL
= getCurSDLoc();
8519 SDValue ZExt
= DAG
.getNode(ISD::AssertZext
, SL
, Op
.getValueType(), Op
,
8520 DAG
.getValueType(SmallVT
));
8521 unsigned NumVals
= Op
.getNode()->getNumValues();
8525 SmallVector
<SDValue
, 4> Ops
;
8527 Ops
.push_back(ZExt
);
8528 for (unsigned I
= 1; I
!= NumVals
; ++I
)
8529 Ops
.push_back(Op
.getValue(I
));
8531 return DAG
.getMergeValues(Ops
, SL
);
8534 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8535 /// the call being lowered.
8537 /// This is a helper for lowering intrinsics that follow a target calling
8538 /// convention or require stack pointer adjustment. Only a subset of the
8539 /// intrinsic's operands need to participate in the calling convention.
8540 void SelectionDAGBuilder::populateCallLoweringInfo(
8541 TargetLowering::CallLoweringInfo
&CLI
, const CallBase
*Call
,
8542 unsigned ArgIdx
, unsigned NumArgs
, SDValue Callee
, Type
*ReturnTy
,
8543 bool IsPatchPoint
) {
8544 TargetLowering::ArgListTy Args
;
8545 Args
.reserve(NumArgs
);
8547 // Populate the argument list.
8548 // Attributes for args start at offset 1, after the return attribute.
8549 for (unsigned ArgI
= ArgIdx
, ArgE
= ArgIdx
+ NumArgs
;
8550 ArgI
!= ArgE
; ++ArgI
) {
8551 const Value
*V
= Call
->getOperand(ArgI
);
8553 assert(!V
->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8555 TargetLowering::ArgListEntry Entry
;
8556 Entry
.Node
= getValue(V
);
8557 Entry
.Ty
= V
->getType();
8558 Entry
.setAttributes(Call
, ArgI
);
8559 Args
.push_back(Entry
);
8562 CLI
.setDebugLoc(getCurSDLoc())
8563 .setChain(getRoot())
8564 .setCallee(Call
->getCallingConv(), ReturnTy
, Callee
, std::move(Args
))
8565 .setDiscardResult(Call
->use_empty())
8566 .setIsPatchPoint(IsPatchPoint
);
8569 /// Add a stack map intrinsic call's live variable operands to a stackmap
8570 /// or patchpoint target node's operand list.
8572 /// Constants are converted to TargetConstants purely as an optimization to
8573 /// avoid constant materialization and register allocation.
8575 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8576 /// generate addess computation nodes, and so FinalizeISel can convert the
8577 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8578 /// address materialization and register allocation, but may also be required
8579 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8580 /// alloca in the entry block, then the runtime may assume that the alloca's
8581 /// StackMap location can be read immediately after compilation and that the
8582 /// location is valid at any point during execution (this is similar to the
8583 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8584 /// only available in a register, then the runtime would need to trap when
8585 /// execution reaches the StackMap in order to read the alloca's location.
8586 static void addStackMapLiveVars(ImmutableCallSite CS
, unsigned StartIdx
,
8587 const SDLoc
&DL
, SmallVectorImpl
<SDValue
> &Ops
,
8588 SelectionDAGBuilder
&Builder
) {
8589 for (unsigned i
= StartIdx
, e
= CS
.arg_size(); i
!= e
; ++i
) {
8590 SDValue OpVal
= Builder
.getValue(CS
.getArgument(i
));
8591 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(OpVal
)) {
8593 Builder
.DAG
.getTargetConstant(StackMaps::ConstantOp
, DL
, MVT::i64
));
8595 Builder
.DAG
.getTargetConstant(C
->getSExtValue(), DL
, MVT::i64
));
8596 } else if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(OpVal
)) {
8597 const TargetLowering
&TLI
= Builder
.DAG
.getTargetLoweringInfo();
8598 Ops
.push_back(Builder
.DAG
.getTargetFrameIndex(
8599 FI
->getIndex(), TLI
.getFrameIndexTy(Builder
.DAG
.getDataLayout())));
8601 Ops
.push_back(OpVal
);
8605 /// Lower llvm.experimental.stackmap directly to its target opcode.
8606 void SelectionDAGBuilder::visitStackmap(const CallInst
&CI
) {
8607 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8608 // [live variables...])
8610 assert(CI
.getType()->isVoidTy() && "Stackmap cannot return a value.");
8612 SDValue Chain
, InFlag
, Callee
, NullPtr
;
8613 SmallVector
<SDValue
, 32> Ops
;
8615 SDLoc DL
= getCurSDLoc();
8616 Callee
= getValue(CI
.getCalledValue());
8617 NullPtr
= DAG
.getIntPtrConstant(0, DL
, true);
8619 // The stackmap intrinsic only records the live variables (the arguemnts
8620 // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8621 // intrinsic, this won't be lowered to a function call. This means we don't
8622 // have to worry about calling conventions and target specific lowering code.
8623 // Instead we perform the call lowering right here.
8625 // chain, flag = CALLSEQ_START(chain, 0, 0)
8626 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8627 // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8629 Chain
= DAG
.getCALLSEQ_START(getRoot(), 0, 0, DL
);
8630 InFlag
= Chain
.getValue(1);
8632 // Add the <id> and <numBytes> constants.
8633 SDValue IDVal
= getValue(CI
.getOperand(PatchPointOpers::IDPos
));
8634 Ops
.push_back(DAG
.getTargetConstant(
8635 cast
<ConstantSDNode
>(IDVal
)->getZExtValue(), DL
, MVT::i64
));
8636 SDValue NBytesVal
= getValue(CI
.getOperand(PatchPointOpers::NBytesPos
));
8637 Ops
.push_back(DAG
.getTargetConstant(
8638 cast
<ConstantSDNode
>(NBytesVal
)->getZExtValue(), DL
,
8641 // Push live variables for the stack map.
8642 addStackMapLiveVars(&CI
, 2, DL
, Ops
, *this);
8644 // We are not pushing any register mask info here on the operands list,
8645 // because the stackmap doesn't clobber anything.
8647 // Push the chain and the glue flag.
8648 Ops
.push_back(Chain
);
8649 Ops
.push_back(InFlag
);
8651 // Create the STACKMAP node.
8652 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
8653 SDNode
*SM
= DAG
.getMachineNode(TargetOpcode::STACKMAP
, DL
, NodeTys
, Ops
);
8654 Chain
= SDValue(SM
, 0);
8655 InFlag
= Chain
.getValue(1);
8657 Chain
= DAG
.getCALLSEQ_END(Chain
, NullPtr
, NullPtr
, InFlag
, DL
);
8659 // Stackmaps don't generate values, so nothing goes into the NodeMap.
8661 // Set the root to the target-lowered call chain.
8664 // Inform the Frame Information that we have a stackmap in this function.
8665 FuncInfo
.MF
->getFrameInfo().setHasStackMap();
8668 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8669 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS
,
8670 const BasicBlock
*EHPadBB
) {
8671 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8676 // [live variables...])
8678 CallingConv::ID CC
= CS
.getCallingConv();
8679 bool IsAnyRegCC
= CC
== CallingConv::AnyReg
;
8680 bool HasDef
= !CS
->getType()->isVoidTy();
8681 SDLoc dl
= getCurSDLoc();
8682 SDValue Callee
= getValue(CS
->getOperand(PatchPointOpers::TargetPos
));
8684 // Handle immediate and symbolic callees.
8685 if (auto* ConstCallee
= dyn_cast
<ConstantSDNode
>(Callee
))
8686 Callee
= DAG
.getIntPtrConstant(ConstCallee
->getZExtValue(), dl
,
8688 else if (auto* SymbolicCallee
= dyn_cast
<GlobalAddressSDNode
>(Callee
))
8689 Callee
= DAG
.getTargetGlobalAddress(SymbolicCallee
->getGlobal(),
8690 SDLoc(SymbolicCallee
),
8691 SymbolicCallee
->getValueType(0));
8693 // Get the real number of arguments participating in the call <numArgs>
8694 SDValue NArgVal
= getValue(CS
.getArgument(PatchPointOpers::NArgPos
));
8695 unsigned NumArgs
= cast
<ConstantSDNode
>(NArgVal
)->getZExtValue();
8697 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8698 // Intrinsics include all meta-operands up to but not including CC.
8699 unsigned NumMetaOpers
= PatchPointOpers::CCPos
;
8700 assert(CS
.arg_size() >= NumMetaOpers
+ NumArgs
&&
8701 "Not enough arguments provided to the patchpoint intrinsic");
8703 // For AnyRegCC the arguments are lowered later on manually.
8704 unsigned NumCallArgs
= IsAnyRegCC
? 0 : NumArgs
;
8706 IsAnyRegCC
? Type::getVoidTy(*DAG
.getContext()) : CS
->getType();
8708 TargetLowering::CallLoweringInfo
CLI(DAG
);
8709 populateCallLoweringInfo(CLI
, cast
<CallBase
>(CS
.getInstruction()),
8710 NumMetaOpers
, NumCallArgs
, Callee
, ReturnTy
, true);
8711 std::pair
<SDValue
, SDValue
> Result
= lowerInvokable(CLI
, EHPadBB
);
8713 SDNode
*CallEnd
= Result
.second
.getNode();
8714 if (HasDef
&& (CallEnd
->getOpcode() == ISD::CopyFromReg
))
8715 CallEnd
= CallEnd
->getOperand(0).getNode();
8717 /// Get a call instruction from the call sequence chain.
8718 /// Tail calls are not allowed.
8719 assert(CallEnd
->getOpcode() == ISD::CALLSEQ_END
&&
8720 "Expected a callseq node.");
8721 SDNode
*Call
= CallEnd
->getOperand(0).getNode();
8722 bool HasGlue
= Call
->getGluedNode();
8724 // Replace the target specific call node with the patchable intrinsic.
8725 SmallVector
<SDValue
, 8> Ops
;
8727 // Add the <id> and <numBytes> constants.
8728 SDValue IDVal
= getValue(CS
->getOperand(PatchPointOpers::IDPos
));
8729 Ops
.push_back(DAG
.getTargetConstant(
8730 cast
<ConstantSDNode
>(IDVal
)->getZExtValue(), dl
, MVT::i64
));
8731 SDValue NBytesVal
= getValue(CS
->getOperand(PatchPointOpers::NBytesPos
));
8732 Ops
.push_back(DAG
.getTargetConstant(
8733 cast
<ConstantSDNode
>(NBytesVal
)->getZExtValue(), dl
,
8737 Ops
.push_back(Callee
);
8739 // Adjust <numArgs> to account for any arguments that have been passed on the
8741 // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8742 unsigned NumCallRegArgs
= Call
->getNumOperands() - (HasGlue
? 4 : 3);
8743 NumCallRegArgs
= IsAnyRegCC
? NumArgs
: NumCallRegArgs
;
8744 Ops
.push_back(DAG
.getTargetConstant(NumCallRegArgs
, dl
, MVT::i32
));
8746 // Add the calling convention
8747 Ops
.push_back(DAG
.getTargetConstant((unsigned)CC
, dl
, MVT::i32
));
8749 // Add the arguments we omitted previously. The register allocator should
8750 // place these in any free register.
8752 for (unsigned i
= NumMetaOpers
, e
= NumMetaOpers
+ NumArgs
; i
!= e
; ++i
)
8753 Ops
.push_back(getValue(CS
.getArgument(i
)));
8755 // Push the arguments from the call instruction up to the register mask.
8756 SDNode::op_iterator e
= HasGlue
? Call
->op_end()-2 : Call
->op_end()-1;
8757 Ops
.append(Call
->op_begin() + 2, e
);
8759 // Push live variables for the stack map.
8760 addStackMapLiveVars(CS
, NumMetaOpers
+ NumArgs
, dl
, Ops
, *this);
8762 // Push the register mask info.
8764 Ops
.push_back(*(Call
->op_end()-2));
8766 Ops
.push_back(*(Call
->op_end()-1));
8768 // Push the chain (this is originally the first operand of the call, but
8769 // becomes now the last or second to last operand).
8770 Ops
.push_back(*(Call
->op_begin()));
8772 // Push the glue flag (last operand).
8774 Ops
.push_back(*(Call
->op_end()-1));
8777 if (IsAnyRegCC
&& HasDef
) {
8778 // Create the return types based on the intrinsic definition
8779 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8780 SmallVector
<EVT
, 3> ValueVTs
;
8781 ComputeValueVTs(TLI
, DAG
.getDataLayout(), CS
->getType(), ValueVTs
);
8782 assert(ValueVTs
.size() == 1 && "Expected only one return value type.");
8784 // There is always a chain and a glue type at the end
8785 ValueVTs
.push_back(MVT::Other
);
8786 ValueVTs
.push_back(MVT::Glue
);
8787 NodeTys
= DAG
.getVTList(ValueVTs
);
8789 NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
8791 // Replace the target specific call node with a PATCHPOINT node.
8792 MachineSDNode
*MN
= DAG
.getMachineNode(TargetOpcode::PATCHPOINT
,
8795 // Update the NodeMap.
8798 setValue(CS
.getInstruction(), SDValue(MN
, 0));
8800 setValue(CS
.getInstruction(), Result
.first
);
8803 // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8804 // call sequence. Furthermore the location of the chain and glue can change
8805 // when the AnyReg calling convention is used and the intrinsic returns a
8807 if (IsAnyRegCC
&& HasDef
) {
8808 SDValue From
[] = {SDValue(Call
, 0), SDValue(Call
, 1)};
8809 SDValue To
[] = {SDValue(MN
, 1), SDValue(MN
, 2)};
8810 DAG
.ReplaceAllUsesOfValuesWith(From
, To
, 2);
8812 DAG
.ReplaceAllUsesWith(Call
, MN
);
8813 DAG
.DeleteNode(Call
);
8815 // Inform the Frame Information that we have a patchpoint in this function.
8816 FuncInfo
.MF
->getFrameInfo().setHasPatchPoint();
8819 void SelectionDAGBuilder::visitVectorReduce(const CallInst
&I
,
8820 unsigned Intrinsic
) {
8821 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8822 SDValue Op1
= getValue(I
.getArgOperand(0));
8824 if (I
.getNumArgOperands() > 1)
8825 Op2
= getValue(I
.getArgOperand(1));
8826 SDLoc dl
= getCurSDLoc();
8827 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
8830 if (isa
<FPMathOperator
>(I
))
8831 FMF
= I
.getFastMathFlags();
8833 switch (Intrinsic
) {
8834 case Intrinsic::experimental_vector_reduce_v2_fadd
:
8835 if (FMF
.allowReassoc())
8836 Res
= DAG
.getNode(ISD::FADD
, dl
, VT
, Op1
,
8837 DAG
.getNode(ISD::VECREDUCE_FADD
, dl
, VT
, Op2
));
8839 Res
= DAG
.getNode(ISD::VECREDUCE_STRICT_FADD
, dl
, VT
, Op1
, Op2
);
8841 case Intrinsic::experimental_vector_reduce_v2_fmul
:
8842 if (FMF
.allowReassoc())
8843 Res
= DAG
.getNode(ISD::FMUL
, dl
, VT
, Op1
,
8844 DAG
.getNode(ISD::VECREDUCE_FMUL
, dl
, VT
, Op2
));
8846 Res
= DAG
.getNode(ISD::VECREDUCE_STRICT_FMUL
, dl
, VT
, Op1
, Op2
);
8848 case Intrinsic::experimental_vector_reduce_add
:
8849 Res
= DAG
.getNode(ISD::VECREDUCE_ADD
, dl
, VT
, Op1
);
8851 case Intrinsic::experimental_vector_reduce_mul
:
8852 Res
= DAG
.getNode(ISD::VECREDUCE_MUL
, dl
, VT
, Op1
);
8854 case Intrinsic::experimental_vector_reduce_and
:
8855 Res
= DAG
.getNode(ISD::VECREDUCE_AND
, dl
, VT
, Op1
);
8857 case Intrinsic::experimental_vector_reduce_or
:
8858 Res
= DAG
.getNode(ISD::VECREDUCE_OR
, dl
, VT
, Op1
);
8860 case Intrinsic::experimental_vector_reduce_xor
:
8861 Res
= DAG
.getNode(ISD::VECREDUCE_XOR
, dl
, VT
, Op1
);
8863 case Intrinsic::experimental_vector_reduce_smax
:
8864 Res
= DAG
.getNode(ISD::VECREDUCE_SMAX
, dl
, VT
, Op1
);
8866 case Intrinsic::experimental_vector_reduce_smin
:
8867 Res
= DAG
.getNode(ISD::VECREDUCE_SMIN
, dl
, VT
, Op1
);
8869 case Intrinsic::experimental_vector_reduce_umax
:
8870 Res
= DAG
.getNode(ISD::VECREDUCE_UMAX
, dl
, VT
, Op1
);
8872 case Intrinsic::experimental_vector_reduce_umin
:
8873 Res
= DAG
.getNode(ISD::VECREDUCE_UMIN
, dl
, VT
, Op1
);
8875 case Intrinsic::experimental_vector_reduce_fmax
:
8876 Res
= DAG
.getNode(ISD::VECREDUCE_FMAX
, dl
, VT
, Op1
);
8878 case Intrinsic::experimental_vector_reduce_fmin
:
8879 Res
= DAG
.getNode(ISD::VECREDUCE_FMIN
, dl
, VT
, Op1
);
8882 llvm_unreachable("Unhandled vector reduce intrinsic");
8887 /// Returns an AttributeList representing the attributes applied to the return
8888 /// value of the given call.
8889 static AttributeList
getReturnAttrs(TargetLowering::CallLoweringInfo
&CLI
) {
8890 SmallVector
<Attribute::AttrKind
, 2> Attrs
;
8892 Attrs
.push_back(Attribute::SExt
);
8894 Attrs
.push_back(Attribute::ZExt
);
8896 Attrs
.push_back(Attribute::InReg
);
8898 return AttributeList::get(CLI
.RetTy
->getContext(), AttributeList::ReturnIndex
,
8902 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8903 /// implementation, which just calls LowerCall.
8904 /// FIXME: When all targets are
8905 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8906 std::pair
<SDValue
, SDValue
>
8907 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo
&CLI
) const {
8908 // Handle the incoming return values from the call.
8910 Type
*OrigRetTy
= CLI
.RetTy
;
8911 SmallVector
<EVT
, 4> RetTys
;
8912 SmallVector
<uint64_t, 4> Offsets
;
8913 auto &DL
= CLI
.DAG
.getDataLayout();
8914 ComputeValueVTs(*this, DL
, CLI
.RetTy
, RetTys
, &Offsets
);
8916 if (CLI
.IsPostTypeLegalization
) {
8917 // If we are lowering a libcall after legalization, split the return type.
8918 SmallVector
<EVT
, 4> OldRetTys
;
8919 SmallVector
<uint64_t, 4> OldOffsets
;
8920 RetTys
.swap(OldRetTys
);
8921 Offsets
.swap(OldOffsets
);
8923 for (size_t i
= 0, e
= OldRetTys
.size(); i
!= e
; ++i
) {
8924 EVT RetVT
= OldRetTys
[i
];
8925 uint64_t Offset
= OldOffsets
[i
];
8926 MVT RegisterVT
= getRegisterType(CLI
.RetTy
->getContext(), RetVT
);
8927 unsigned NumRegs
= getNumRegisters(CLI
.RetTy
->getContext(), RetVT
);
8928 unsigned RegisterVTByteSZ
= RegisterVT
.getSizeInBits() / 8;
8929 RetTys
.append(NumRegs
, RegisterVT
);
8930 for (unsigned j
= 0; j
!= NumRegs
; ++j
)
8931 Offsets
.push_back(Offset
+ j
* RegisterVTByteSZ
);
8935 SmallVector
<ISD::OutputArg
, 4> Outs
;
8936 GetReturnInfo(CLI
.CallConv
, CLI
.RetTy
, getReturnAttrs(CLI
), Outs
, *this, DL
);
8938 bool CanLowerReturn
=
8939 this->CanLowerReturn(CLI
.CallConv
, CLI
.DAG
.getMachineFunction(),
8940 CLI
.IsVarArg
, Outs
, CLI
.RetTy
->getContext());
8942 SDValue DemoteStackSlot
;
8943 int DemoteStackIdx
= -100;
8944 if (!CanLowerReturn
) {
8945 // FIXME: equivalent assert?
8946 // assert(!CS.hasInAllocaArgument() &&
8947 // "sret demotion is incompatible with inalloca");
8948 uint64_t TySize
= DL
.getTypeAllocSize(CLI
.RetTy
);
8949 unsigned Align
= DL
.getPrefTypeAlignment(CLI
.RetTy
);
8950 MachineFunction
&MF
= CLI
.DAG
.getMachineFunction();
8951 DemoteStackIdx
= MF
.getFrameInfo().CreateStackObject(TySize
, Align
, false);
8952 Type
*StackSlotPtrType
= PointerType::get(CLI
.RetTy
,
8953 DL
.getAllocaAddrSpace());
8955 DemoteStackSlot
= CLI
.DAG
.getFrameIndex(DemoteStackIdx
, getFrameIndexTy(DL
));
8957 Entry
.Node
= DemoteStackSlot
;
8958 Entry
.Ty
= StackSlotPtrType
;
8959 Entry
.IsSExt
= false;
8960 Entry
.IsZExt
= false;
8961 Entry
.IsInReg
= false;
8962 Entry
.IsSRet
= true;
8963 Entry
.IsNest
= false;
8964 Entry
.IsByVal
= false;
8965 Entry
.IsReturned
= false;
8966 Entry
.IsSwiftSelf
= false;
8967 Entry
.IsSwiftError
= false;
8968 Entry
.Alignment
= Align
;
8969 CLI
.getArgs().insert(CLI
.getArgs().begin(), Entry
);
8970 CLI
.NumFixedArgs
+= 1;
8971 CLI
.RetTy
= Type::getVoidTy(CLI
.RetTy
->getContext());
8973 // sret demotion isn't compatible with tail-calls, since the sret argument
8974 // points into the callers stack frame.
8975 CLI
.IsTailCall
= false;
8977 bool NeedsRegBlock
= functionArgumentNeedsConsecutiveRegisters(
8978 CLI
.RetTy
, CLI
.CallConv
, CLI
.IsVarArg
);
8979 for (unsigned I
= 0, E
= RetTys
.size(); I
!= E
; ++I
) {
8980 ISD::ArgFlagsTy Flags
;
8981 if (NeedsRegBlock
) {
8982 Flags
.setInConsecutiveRegs();
8983 if (I
== RetTys
.size() - 1)
8984 Flags
.setInConsecutiveRegsLast();
8987 MVT RegisterVT
= getRegisterTypeForCallingConv(CLI
.RetTy
->getContext(),
8989 unsigned NumRegs
= getNumRegistersForCallingConv(CLI
.RetTy
->getContext(),
8991 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
8992 ISD::InputArg MyFlags
;
8993 MyFlags
.Flags
= Flags
;
8994 MyFlags
.VT
= RegisterVT
;
8996 MyFlags
.Used
= CLI
.IsReturnValueUsed
;
8997 if (CLI
.RetTy
->isPointerTy()) {
8998 MyFlags
.Flags
.setPointer();
8999 MyFlags
.Flags
.setPointerAddrSpace(
9000 cast
<PointerType
>(CLI
.RetTy
)->getAddressSpace());
9003 MyFlags
.Flags
.setSExt();
9005 MyFlags
.Flags
.setZExt();
9007 MyFlags
.Flags
.setInReg();
9008 CLI
.Ins
.push_back(MyFlags
);
9013 // We push in swifterror return as the last element of CLI.Ins.
9014 ArgListTy
&Args
= CLI
.getArgs();
9015 if (supportSwiftError()) {
9016 for (unsigned i
= 0, e
= Args
.size(); i
!= e
; ++i
) {
9017 if (Args
[i
].IsSwiftError
) {
9018 ISD::InputArg MyFlags
;
9019 MyFlags
.VT
= getPointerTy(DL
);
9020 MyFlags
.ArgVT
= EVT(getPointerTy(DL
));
9021 MyFlags
.Flags
.setSwiftError();
9022 CLI
.Ins
.push_back(MyFlags
);
9027 // Handle all of the outgoing arguments.
9029 CLI
.OutVals
.clear();
9030 for (unsigned i
= 0, e
= Args
.size(); i
!= e
; ++i
) {
9031 SmallVector
<EVT
, 4> ValueVTs
;
9032 ComputeValueVTs(*this, DL
, Args
[i
].Ty
, ValueVTs
);
9033 // FIXME: Split arguments if CLI.IsPostTypeLegalization
9034 Type
*FinalType
= Args
[i
].Ty
;
9035 if (Args
[i
].IsByVal
)
9036 FinalType
= cast
<PointerType
>(Args
[i
].Ty
)->getElementType();
9037 bool NeedsRegBlock
= functionArgumentNeedsConsecutiveRegisters(
9038 FinalType
, CLI
.CallConv
, CLI
.IsVarArg
);
9039 for (unsigned Value
= 0, NumValues
= ValueVTs
.size(); Value
!= NumValues
;
9041 EVT VT
= ValueVTs
[Value
];
9042 Type
*ArgTy
= VT
.getTypeForEVT(CLI
.RetTy
->getContext());
9043 SDValue Op
= SDValue(Args
[i
].Node
.getNode(),
9044 Args
[i
].Node
.getResNo() + Value
);
9045 ISD::ArgFlagsTy Flags
;
9047 // Certain targets (such as MIPS), may have a different ABI alignment
9048 // for a type depending on the context. Give the target a chance to
9049 // specify the alignment it wants.
9050 unsigned OriginalAlignment
= getABIAlignmentForCallingConv(ArgTy
, DL
);
9052 if (Args
[i
].Ty
->isPointerTy()) {
9054 Flags
.setPointerAddrSpace(
9055 cast
<PointerType
>(Args
[i
].Ty
)->getAddressSpace());
9061 if (Args
[i
].IsInReg
) {
9062 // If we are using vectorcall calling convention, a structure that is
9063 // passed InReg - is surely an HVA
9064 if (CLI
.CallConv
== CallingConv::X86_VectorCall
&&
9065 isa
<StructType
>(FinalType
)) {
9066 // The first value of a structure is marked
9068 Flags
.setHvaStart();
9076 if (Args
[i
].IsSwiftSelf
)
9077 Flags
.setSwiftSelf();
9078 if (Args
[i
].IsSwiftError
)
9079 Flags
.setSwiftError();
9080 if (Args
[i
].IsByVal
)
9082 if (Args
[i
].IsInAlloca
) {
9083 Flags
.setInAlloca();
9084 // Set the byval flag for CCAssignFn callbacks that don't know about
9085 // inalloca. This way we can know how many bytes we should've allocated
9086 // and how many bytes a callee cleanup function will pop. If we port
9087 // inalloca to more targets, we'll have to add custom inalloca handling
9088 // in the various CC lowering callbacks.
9091 if (Args
[i
].IsByVal
|| Args
[i
].IsInAlloca
) {
9092 PointerType
*Ty
= cast
<PointerType
>(Args
[i
].Ty
);
9093 Type
*ElementTy
= Ty
->getElementType();
9095 unsigned FrameSize
= DL
.getTypeAllocSize(
9096 Args
[i
].ByValType
? Args
[i
].ByValType
: ElementTy
);
9097 Flags
.setByValSize(FrameSize
);
9099 // info is not there but there are cases it cannot get right.
9100 unsigned FrameAlign
;
9101 if (Args
[i
].Alignment
)
9102 FrameAlign
= Args
[i
].Alignment
;
9104 FrameAlign
= getByValTypeAlignment(ElementTy
, DL
);
9105 Flags
.setByValAlign(FrameAlign
);
9110 Flags
.setInConsecutiveRegs();
9111 Flags
.setOrigAlign(OriginalAlignment
);
9113 MVT PartVT
= getRegisterTypeForCallingConv(CLI
.RetTy
->getContext(),
9115 unsigned NumParts
= getNumRegistersForCallingConv(CLI
.RetTy
->getContext(),
9117 SmallVector
<SDValue
, 4> Parts(NumParts
);
9118 ISD::NodeType ExtendKind
= ISD::ANY_EXTEND
;
9121 ExtendKind
= ISD::SIGN_EXTEND
;
9122 else if (Args
[i
].IsZExt
)
9123 ExtendKind
= ISD::ZERO_EXTEND
;
9125 // Conservatively only handle 'returned' on non-vectors that can be lowered,
9127 if (Args
[i
].IsReturned
&& !Op
.getValueType().isVector() &&
9129 assert((CLI
.RetTy
== Args
[i
].Ty
||
9130 (CLI
.RetTy
->isPointerTy() && Args
[i
].Ty
->isPointerTy() &&
9131 CLI
.RetTy
->getPointerAddressSpace() ==
9132 Args
[i
].Ty
->getPointerAddressSpace())) &&
9133 RetTys
.size() == NumValues
&& "unexpected use of 'returned'");
9134 // Before passing 'returned' to the target lowering code, ensure that
9135 // either the register MVT and the actual EVT are the same size or that
9136 // the return value and argument are extended in the same way; in these
9137 // cases it's safe to pass the argument register value unchanged as the
9138 // return register value (although it's at the target's option whether
9140 // TODO: allow code generation to take advantage of partially preserved
9141 // registers rather than clobbering the entire register when the
9142 // parameter extension method is not compatible with the return
9144 if ((NumParts
* PartVT
.getSizeInBits() == VT
.getSizeInBits()) ||
9145 (ExtendKind
!= ISD::ANY_EXTEND
&& CLI
.RetSExt
== Args
[i
].IsSExt
&&
9146 CLI
.RetZExt
== Args
[i
].IsZExt
))
9147 Flags
.setReturned();
9150 getCopyToParts(CLI
.DAG
, CLI
.DL
, Op
, &Parts
[0], NumParts
, PartVT
,
9151 CLI
.CS
.getInstruction(), CLI
.CallConv
, ExtendKind
);
9153 for (unsigned j
= 0; j
!= NumParts
; ++j
) {
9154 // if it isn't first piece, alignment must be 1
9155 ISD::OutputArg
MyFlags(Flags
, Parts
[j
].getValueType(), VT
,
9156 i
< CLI
.NumFixedArgs
,
9157 i
, j
*Parts
[j
].getValueType().getStoreSize());
9158 if (NumParts
> 1 && j
== 0)
9159 MyFlags
.Flags
.setSplit();
9161 MyFlags
.Flags
.setOrigAlign(1);
9162 if (j
== NumParts
- 1)
9163 MyFlags
.Flags
.setSplitEnd();
9166 CLI
.Outs
.push_back(MyFlags
);
9167 CLI
.OutVals
.push_back(Parts
[j
]);
9170 if (NeedsRegBlock
&& Value
== NumValues
- 1)
9171 CLI
.Outs
[CLI
.Outs
.size() - 1].Flags
.setInConsecutiveRegsLast();
9175 SmallVector
<SDValue
, 4> InVals
;
9176 CLI
.Chain
= LowerCall(CLI
, InVals
);
9178 // Update CLI.InVals to use outside of this function.
9179 CLI
.InVals
= InVals
;
9181 // Verify that the target's LowerCall behaved as expected.
9182 assert(CLI
.Chain
.getNode() && CLI
.Chain
.getValueType() == MVT::Other
&&
9183 "LowerCall didn't return a valid chain!");
9184 assert((!CLI
.IsTailCall
|| InVals
.empty()) &&
9185 "LowerCall emitted a return value for a tail call!");
9186 assert((CLI
.IsTailCall
|| InVals
.size() == CLI
.Ins
.size()) &&
9187 "LowerCall didn't emit the correct number of values!");
9189 // For a tail call, the return value is merely live-out and there aren't
9190 // any nodes in the DAG representing it. Return a special value to
9191 // indicate that a tail call has been emitted and no more Instructions
9192 // should be processed in the current block.
9193 if (CLI
.IsTailCall
) {
9194 CLI
.DAG
.setRoot(CLI
.Chain
);
9195 return std::make_pair(SDValue(), SDValue());
9199 for (unsigned i
= 0, e
= CLI
.Ins
.size(); i
!= e
; ++i
) {
9200 assert(InVals
[i
].getNode() && "LowerCall emitted a null value!");
9201 assert(EVT(CLI
.Ins
[i
].VT
) == InVals
[i
].getValueType() &&
9202 "LowerCall emitted a value with the wrong type!");
9206 SmallVector
<SDValue
, 4> ReturnValues
;
9207 if (!CanLowerReturn
) {
9208 // The instruction result is the result of loading from the
9209 // hidden sret parameter.
9210 SmallVector
<EVT
, 1> PVTs
;
9211 Type
*PtrRetTy
= OrigRetTy
->getPointerTo(DL
.getAllocaAddrSpace());
9213 ComputeValueVTs(*this, DL
, PtrRetTy
, PVTs
);
9214 assert(PVTs
.size() == 1 && "Pointers should fit in one register");
9215 EVT PtrVT
= PVTs
[0];
9217 unsigned NumValues
= RetTys
.size();
9218 ReturnValues
.resize(NumValues
);
9219 SmallVector
<SDValue
, 4> Chains(NumValues
);
9221 // An aggregate return value cannot wrap around the address space, so
9222 // offsets to its parts don't wrap either.
9224 Flags
.setNoUnsignedWrap(true);
9226 for (unsigned i
= 0; i
< NumValues
; ++i
) {
9227 SDValue Add
= CLI
.DAG
.getNode(ISD::ADD
, CLI
.DL
, PtrVT
, DemoteStackSlot
,
9228 CLI
.DAG
.getConstant(Offsets
[i
], CLI
.DL
,
9230 SDValue L
= CLI
.DAG
.getLoad(
9231 RetTys
[i
], CLI
.DL
, CLI
.Chain
, Add
,
9232 MachinePointerInfo::getFixedStack(CLI
.DAG
.getMachineFunction(),
9233 DemoteStackIdx
, Offsets
[i
]),
9234 /* Alignment = */ 1);
9235 ReturnValues
[i
] = L
;
9236 Chains
[i
] = L
.getValue(1);
9239 CLI
.Chain
= CLI
.DAG
.getNode(ISD::TokenFactor
, CLI
.DL
, MVT::Other
, Chains
);
9241 // Collect the legal value parts into potentially illegal values
9242 // that correspond to the original function's return values.
9243 Optional
<ISD::NodeType
> AssertOp
;
9245 AssertOp
= ISD::AssertSext
;
9246 else if (CLI
.RetZExt
)
9247 AssertOp
= ISD::AssertZext
;
9248 unsigned CurReg
= 0;
9249 for (unsigned I
= 0, E
= RetTys
.size(); I
!= E
; ++I
) {
9251 MVT RegisterVT
= getRegisterTypeForCallingConv(CLI
.RetTy
->getContext(),
9253 unsigned NumRegs
= getNumRegistersForCallingConv(CLI
.RetTy
->getContext(),
9256 ReturnValues
.push_back(getCopyFromParts(CLI
.DAG
, CLI
.DL
, &InVals
[CurReg
],
9257 NumRegs
, RegisterVT
, VT
, nullptr,
9258 CLI
.CallConv
, AssertOp
));
9262 // For a function returning void, there is no return value. We can't create
9263 // such a node, so we just return a null return value in that case. In
9264 // that case, nothing will actually look at the value.
9265 if (ReturnValues
.empty())
9266 return std::make_pair(SDValue(), CLI
.Chain
);
9269 SDValue Res
= CLI
.DAG
.getNode(ISD::MERGE_VALUES
, CLI
.DL
,
9270 CLI
.DAG
.getVTList(RetTys
), ReturnValues
);
9271 return std::make_pair(Res
, CLI
.Chain
);
9274 void TargetLowering::LowerOperationWrapper(SDNode
*N
,
9275 SmallVectorImpl
<SDValue
> &Results
,
9276 SelectionDAG
&DAG
) const {
9277 if (SDValue Res
= LowerOperation(SDValue(N
, 0), DAG
))
9278 Results
.push_back(Res
);
9281 SDValue
TargetLowering::LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const {
9282 llvm_unreachable("LowerOperation not implemented for this target!");
9286 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value
*V
, unsigned Reg
) {
9287 SDValue Op
= getNonRegisterValue(V
);
9288 assert((Op
.getOpcode() != ISD::CopyFromReg
||
9289 cast
<RegisterSDNode
>(Op
.getOperand(1))->getReg() != Reg
) &&
9290 "Copy from a reg to the same reg!");
9291 assert(!TargetRegisterInfo::isPhysicalRegister(Reg
) && "Is a physreg");
9293 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
9294 // If this is an InlineAsm we have to match the registers required, not the
9295 // notional registers required by the type.
9297 RegsForValue
RFV(V
->getContext(), TLI
, DAG
.getDataLayout(), Reg
, V
->getType(),
9298 None
); // This is not an ABI copy.
9299 SDValue Chain
= DAG
.getEntryNode();
9301 ISD::NodeType ExtendType
= (FuncInfo
.PreferredExtendType
.find(V
) ==
9302 FuncInfo
.PreferredExtendType
.end())
9304 : FuncInfo
.PreferredExtendType
[V
];
9305 RFV
.getCopyToRegs(Op
, DAG
, getCurSDLoc(), Chain
, nullptr, V
, ExtendType
);
9306 PendingExports
.push_back(Chain
);
9309 #include "llvm/CodeGen/SelectionDAGISel.h"
9311 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9312 /// entry block, return true. This includes arguments used by switches, since
9313 /// the switch may expand into multiple basic blocks.
9314 static bool isOnlyUsedInEntryBlock(const Argument
*A
, bool FastISel
) {
9315 // With FastISel active, we may be splitting blocks, so force creation
9316 // of virtual registers for all non-dead arguments.
9318 return A
->use_empty();
9320 const BasicBlock
&Entry
= A
->getParent()->front();
9321 for (const User
*U
: A
->users())
9322 if (cast
<Instruction
>(U
)->getParent() != &Entry
|| isa
<SwitchInst
>(U
))
9323 return false; // Use not in entry block.
9328 using ArgCopyElisionMapTy
=
9329 DenseMap
<const Argument
*,
9330 std::pair
<const AllocaInst
*, const StoreInst
*>>;
9332 /// Scan the entry block of the function in FuncInfo for arguments that look
9333 /// like copies into a local alloca. Record any copied arguments in
9334 /// ArgCopyElisionCandidates.
9336 findArgumentCopyElisionCandidates(const DataLayout
&DL
,
9337 FunctionLoweringInfo
*FuncInfo
,
9338 ArgCopyElisionMapTy
&ArgCopyElisionCandidates
) {
9339 // Record the state of every static alloca used in the entry block. Argument
9340 // allocas are all used in the entry block, so we need approximately as many
9341 // entries as we have arguments.
9342 enum StaticAllocaInfo
{ Unknown
, Clobbered
, Elidable
};
9343 SmallDenseMap
<const AllocaInst
*, StaticAllocaInfo
, 8> StaticAllocas
;
9344 unsigned NumArgs
= FuncInfo
->Fn
->arg_size();
9345 StaticAllocas
.reserve(NumArgs
* 2);
9347 auto GetInfoIfStaticAlloca
= [&](const Value
*V
) -> StaticAllocaInfo
* {
9350 V
= V
->stripPointerCasts();
9351 const auto *AI
= dyn_cast
<AllocaInst
>(V
);
9352 if (!AI
|| !AI
->isStaticAlloca() || !FuncInfo
->StaticAllocaMap
.count(AI
))
9354 auto Iter
= StaticAllocas
.insert({AI
, Unknown
});
9355 return &Iter
.first
->second
;
9358 // Look for stores of arguments to static allocas. Look through bitcasts and
9359 // GEPs to handle type coercions, as long as the alloca is fully initialized
9360 // by the store. Any non-store use of an alloca escapes it and any subsequent
9361 // unanalyzed store might write it.
9362 // FIXME: Handle structs initialized with multiple stores.
9363 for (const Instruction
&I
: FuncInfo
->Fn
->getEntryBlock()) {
9364 // Look for stores, and handle non-store uses conservatively.
9365 const auto *SI
= dyn_cast
<StoreInst
>(&I
);
9367 // We will look through cast uses, so ignore them completely.
9370 // Ignore debug info intrinsics, they don't escape or store to allocas.
9371 if (isa
<DbgInfoIntrinsic
>(I
))
9373 // This is an unknown instruction. Assume it escapes or writes to all
9374 // static alloca operands.
9375 for (const Use
&U
: I
.operands()) {
9376 if (StaticAllocaInfo
*Info
= GetInfoIfStaticAlloca(U
))
9377 *Info
= StaticAllocaInfo::Clobbered
;
9382 // If the stored value is a static alloca, mark it as escaped.
9383 if (StaticAllocaInfo
*Info
= GetInfoIfStaticAlloca(SI
->getValueOperand()))
9384 *Info
= StaticAllocaInfo::Clobbered
;
9386 // Check if the destination is a static alloca.
9387 const Value
*Dst
= SI
->getPointerOperand()->stripPointerCasts();
9388 StaticAllocaInfo
*Info
= GetInfoIfStaticAlloca(Dst
);
9391 const AllocaInst
*AI
= cast
<AllocaInst
>(Dst
);
9393 // Skip allocas that have been initialized or clobbered.
9394 if (*Info
!= StaticAllocaInfo::Unknown
)
9397 // Check if the stored value is an argument, and that this store fully
9398 // initializes the alloca. Don't elide copies from the same argument twice.
9399 const Value
*Val
= SI
->getValueOperand()->stripPointerCasts();
9400 const auto *Arg
= dyn_cast
<Argument
>(Val
);
9401 if (!Arg
|| Arg
->hasInAllocaAttr() || Arg
->hasByValAttr() ||
9402 Arg
->getType()->isEmptyTy() ||
9403 DL
.getTypeStoreSize(Arg
->getType()) !=
9404 DL
.getTypeAllocSize(AI
->getAllocatedType()) ||
9405 ArgCopyElisionCandidates
.count(Arg
)) {
9406 *Info
= StaticAllocaInfo::Clobbered
;
9410 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9413 // Mark this alloca and store for argument copy elision.
9414 *Info
= StaticAllocaInfo::Elidable
;
9415 ArgCopyElisionCandidates
.insert({Arg
, {AI
, SI
}});
9417 // Stop scanning if we've seen all arguments. This will happen early in -O0
9418 // builds, which is useful, because -O0 builds have large entry blocks and
9420 if (ArgCopyElisionCandidates
.size() == NumArgs
)
9425 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9426 /// ArgVal is a load from a suitable fixed stack object.
9427 static void tryToElideArgumentCopy(
9428 FunctionLoweringInfo
*FuncInfo
, SmallVectorImpl
<SDValue
> &Chains
,
9429 DenseMap
<int, int> &ArgCopyElisionFrameIndexMap
,
9430 SmallPtrSetImpl
<const Instruction
*> &ElidedArgCopyInstrs
,
9431 ArgCopyElisionMapTy
&ArgCopyElisionCandidates
, const Argument
&Arg
,
9432 SDValue ArgVal
, bool &ArgHasUses
) {
9433 // Check if this is a load from a fixed stack object.
9434 auto *LNode
= dyn_cast
<LoadSDNode
>(ArgVal
);
9437 auto *FINode
= dyn_cast
<FrameIndexSDNode
>(LNode
->getBasePtr().getNode());
9441 // Check that the fixed stack object is the right size and alignment.
9442 // Look at the alignment that the user wrote on the alloca instead of looking
9443 // at the stack object.
9444 auto ArgCopyIter
= ArgCopyElisionCandidates
.find(&Arg
);
9445 assert(ArgCopyIter
!= ArgCopyElisionCandidates
.end());
9446 const AllocaInst
*AI
= ArgCopyIter
->second
.first
;
9447 int FixedIndex
= FINode
->getIndex();
9448 int &AllocaIndex
= FuncInfo
->StaticAllocaMap
[AI
];
9449 int OldIndex
= AllocaIndex
;
9450 MachineFrameInfo
&MFI
= FuncInfo
->MF
->getFrameInfo();
9451 if (MFI
.getObjectSize(FixedIndex
) != MFI
.getObjectSize(OldIndex
)) {
9453 dbgs() << " argument copy elision failed due to bad fixed stack "
9457 unsigned RequiredAlignment
= AI
->getAlignment();
9458 if (!RequiredAlignment
) {
9459 RequiredAlignment
= FuncInfo
->MF
->getDataLayout().getABITypeAlignment(
9460 AI
->getAllocatedType());
9462 if (MFI
.getObjectAlignment(FixedIndex
) < RequiredAlignment
) {
9463 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca "
9464 "greater than stack argument alignment ("
9465 << RequiredAlignment
<< " vs "
9466 << MFI
.getObjectAlignment(FixedIndex
) << ")\n");
9470 // Perform the elision. Delete the old stack object and replace its only use
9471 // in the variable info map. Mark the stack object as mutable.
9473 dbgs() << "Eliding argument copy from " << Arg
<< " to " << *AI
<< '\n'
9474 << " Replacing frame index " << OldIndex
<< " with " << FixedIndex
9477 MFI
.RemoveStackObject(OldIndex
);
9478 MFI
.setIsImmutableObjectIndex(FixedIndex
, false);
9479 AllocaIndex
= FixedIndex
;
9480 ArgCopyElisionFrameIndexMap
.insert({OldIndex
, FixedIndex
});
9481 Chains
.push_back(ArgVal
.getValue(1));
9483 // Avoid emitting code for the store implementing the copy.
9484 const StoreInst
*SI
= ArgCopyIter
->second
.second
;
9485 ElidedArgCopyInstrs
.insert(SI
);
9487 // Check for uses of the argument again so that we can avoid exporting ArgVal
9488 // if it is't used by anything other than the store.
9489 for (const Value
*U
: Arg
.users()) {
9497 void SelectionDAGISel::LowerArguments(const Function
&F
) {
9498 SelectionDAG
&DAG
= SDB
->DAG
;
9499 SDLoc dl
= SDB
->getCurSDLoc();
9500 const DataLayout
&DL
= DAG
.getDataLayout();
9501 SmallVector
<ISD::InputArg
, 16> Ins
;
9503 if (!FuncInfo
->CanLowerReturn
) {
9504 // Put in an sret pointer parameter before all the other parameters.
9505 SmallVector
<EVT
, 1> ValueVTs
;
9506 ComputeValueVTs(*TLI
, DAG
.getDataLayout(),
9507 F
.getReturnType()->getPointerTo(
9508 DAG
.getDataLayout().getAllocaAddrSpace()),
9511 // NOTE: Assuming that a pointer will never break down to more than one VT
9513 ISD::ArgFlagsTy Flags
;
9515 MVT RegisterVT
= TLI
->getRegisterType(*DAG
.getContext(), ValueVTs
[0]);
9516 ISD::InputArg
RetArg(Flags
, RegisterVT
, ValueVTs
[0], true,
9517 ISD::InputArg::NoArgIndex
, 0);
9518 Ins
.push_back(RetArg
);
9521 // Look for stores of arguments to static allocas. Mark such arguments with a
9522 // flag to ask the target to give us the memory location of that argument if
9524 ArgCopyElisionMapTy ArgCopyElisionCandidates
;
9525 findArgumentCopyElisionCandidates(DL
, FuncInfo
, ArgCopyElisionCandidates
);
9527 // Set up the incoming argument description vector.
9528 for (const Argument
&Arg
: F
.args()) {
9529 unsigned ArgNo
= Arg
.getArgNo();
9530 SmallVector
<EVT
, 4> ValueVTs
;
9531 ComputeValueVTs(*TLI
, DAG
.getDataLayout(), Arg
.getType(), ValueVTs
);
9532 bool isArgValueUsed
= !Arg
.use_empty();
9533 unsigned PartBase
= 0;
9534 Type
*FinalType
= Arg
.getType();
9535 if (Arg
.hasAttribute(Attribute::ByVal
))
9536 FinalType
= Arg
.getParamByValType();
9537 bool NeedsRegBlock
= TLI
->functionArgumentNeedsConsecutiveRegisters(
9538 FinalType
, F
.getCallingConv(), F
.isVarArg());
9539 for (unsigned Value
= 0, NumValues
= ValueVTs
.size();
9540 Value
!= NumValues
; ++Value
) {
9541 EVT VT
= ValueVTs
[Value
];
9542 Type
*ArgTy
= VT
.getTypeForEVT(*DAG
.getContext());
9543 ISD::ArgFlagsTy Flags
;
9545 // Certain targets (such as MIPS), may have a different ABI alignment
9546 // for a type depending on the context. Give the target a chance to
9547 // specify the alignment it wants.
9548 unsigned OriginalAlignment
=
9549 TLI
->getABIAlignmentForCallingConv(ArgTy
, DL
);
9551 if (Arg
.getType()->isPointerTy()) {
9553 Flags
.setPointerAddrSpace(
9554 cast
<PointerType
>(Arg
.getType())->getAddressSpace());
9556 if (Arg
.hasAttribute(Attribute::ZExt
))
9558 if (Arg
.hasAttribute(Attribute::SExt
))
9560 if (Arg
.hasAttribute(Attribute::InReg
)) {
9561 // If we are using vectorcall calling convention, a structure that is
9562 // passed InReg - is surely an HVA
9563 if (F
.getCallingConv() == CallingConv::X86_VectorCall
&&
9564 isa
<StructType
>(Arg
.getType())) {
9565 // The first value of a structure is marked
9567 Flags
.setHvaStart();
9573 if (Arg
.hasAttribute(Attribute::StructRet
))
9575 if (Arg
.hasAttribute(Attribute::SwiftSelf
))
9576 Flags
.setSwiftSelf();
9577 if (Arg
.hasAttribute(Attribute::SwiftError
))
9578 Flags
.setSwiftError();
9579 if (Arg
.hasAttribute(Attribute::ByVal
))
9581 if (Arg
.hasAttribute(Attribute::InAlloca
)) {
9582 Flags
.setInAlloca();
9583 // Set the byval flag for CCAssignFn callbacks that don't know about
9584 // inalloca. This way we can know how many bytes we should've allocated
9585 // and how many bytes a callee cleanup function will pop. If we port
9586 // inalloca to more targets, we'll have to add custom inalloca handling
9587 // in the various CC lowering callbacks.
9590 if (F
.getCallingConv() == CallingConv::X86_INTR
) {
9591 // IA Interrupt passes frame (1st parameter) by value in the stack.
9595 if (Flags
.isByVal() || Flags
.isInAlloca()) {
9596 Type
*ElementTy
= Arg
.getParamByValType();
9598 // For ByVal, size and alignment should be passed from FE. BE will
9599 // guess if this info is not there but there are cases it cannot get
9601 unsigned FrameSize
= DL
.getTypeAllocSize(Arg
.getParamByValType());
9602 Flags
.setByValSize(FrameSize
);
9604 unsigned FrameAlign
;
9605 if (Arg
.getParamAlignment())
9606 FrameAlign
= Arg
.getParamAlignment();
9608 FrameAlign
= TLI
->getByValTypeAlignment(ElementTy
, DL
);
9609 Flags
.setByValAlign(FrameAlign
);
9611 if (Arg
.hasAttribute(Attribute::Nest
))
9614 Flags
.setInConsecutiveRegs();
9615 Flags
.setOrigAlign(OriginalAlignment
);
9616 if (ArgCopyElisionCandidates
.count(&Arg
))
9617 Flags
.setCopyElisionCandidate();
9619 MVT RegisterVT
= TLI
->getRegisterTypeForCallingConv(
9620 *CurDAG
->getContext(), F
.getCallingConv(), VT
);
9621 unsigned NumRegs
= TLI
->getNumRegistersForCallingConv(
9622 *CurDAG
->getContext(), F
.getCallingConv(), VT
);
9623 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
9624 ISD::InputArg
MyFlags(Flags
, RegisterVT
, VT
, isArgValueUsed
,
9625 ArgNo
, PartBase
+i
*RegisterVT
.getStoreSize());
9626 if (NumRegs
> 1 && i
== 0)
9627 MyFlags
.Flags
.setSplit();
9628 // if it isn't first piece, alignment must be 1
9630 MyFlags
.Flags
.setOrigAlign(1);
9631 if (i
== NumRegs
- 1)
9632 MyFlags
.Flags
.setSplitEnd();
9634 Ins
.push_back(MyFlags
);
9636 if (NeedsRegBlock
&& Value
== NumValues
- 1)
9637 Ins
[Ins
.size() - 1].Flags
.setInConsecutiveRegsLast();
9638 PartBase
+= VT
.getStoreSize();
9642 // Call the target to set up the argument values.
9643 SmallVector
<SDValue
, 8> InVals
;
9644 SDValue NewRoot
= TLI
->LowerFormalArguments(
9645 DAG
.getRoot(), F
.getCallingConv(), F
.isVarArg(), Ins
, dl
, DAG
, InVals
);
9647 // Verify that the target's LowerFormalArguments behaved as expected.
9648 assert(NewRoot
.getNode() && NewRoot
.getValueType() == MVT::Other
&&
9649 "LowerFormalArguments didn't return a valid chain!");
9650 assert(InVals
.size() == Ins
.size() &&
9651 "LowerFormalArguments didn't emit the correct number of values!");
9653 for (unsigned i
= 0, e
= Ins
.size(); i
!= e
; ++i
) {
9654 assert(InVals
[i
].getNode() &&
9655 "LowerFormalArguments emitted a null value!");
9656 assert(EVT(Ins
[i
].VT
) == InVals
[i
].getValueType() &&
9657 "LowerFormalArguments emitted a value with the wrong type!");
9661 // Update the DAG with the new chain value resulting from argument lowering.
9662 DAG
.setRoot(NewRoot
);
9664 // Set up the argument values.
9666 if (!FuncInfo
->CanLowerReturn
) {
9667 // Create a virtual register for the sret pointer, and put in a copy
9668 // from the sret argument into it.
9669 SmallVector
<EVT
, 1> ValueVTs
;
9670 ComputeValueVTs(*TLI
, DAG
.getDataLayout(),
9671 F
.getReturnType()->getPointerTo(
9672 DAG
.getDataLayout().getAllocaAddrSpace()),
9674 MVT VT
= ValueVTs
[0].getSimpleVT();
9675 MVT RegVT
= TLI
->getRegisterType(*CurDAG
->getContext(), VT
);
9676 Optional
<ISD::NodeType
> AssertOp
= None
;
9677 SDValue ArgValue
= getCopyFromParts(DAG
, dl
, &InVals
[0], 1, RegVT
, VT
,
9678 nullptr, F
.getCallingConv(), AssertOp
);
9680 MachineFunction
& MF
= SDB
->DAG
.getMachineFunction();
9681 MachineRegisterInfo
& RegInfo
= MF
.getRegInfo();
9682 unsigned SRetReg
= RegInfo
.createVirtualRegister(TLI
->getRegClassFor(RegVT
));
9683 FuncInfo
->DemoteRegister
= SRetReg
;
9685 SDB
->DAG
.getCopyToReg(NewRoot
, SDB
->getCurSDLoc(), SRetReg
, ArgValue
);
9686 DAG
.setRoot(NewRoot
);
9688 // i indexes lowered arguments. Bump it past the hidden sret argument.
9692 SmallVector
<SDValue
, 4> Chains
;
9693 DenseMap
<int, int> ArgCopyElisionFrameIndexMap
;
9694 for (const Argument
&Arg
: F
.args()) {
9695 SmallVector
<SDValue
, 4> ArgValues
;
9696 SmallVector
<EVT
, 4> ValueVTs
;
9697 ComputeValueVTs(*TLI
, DAG
.getDataLayout(), Arg
.getType(), ValueVTs
);
9698 unsigned NumValues
= ValueVTs
.size();
9702 bool ArgHasUses
= !Arg
.use_empty();
9704 // Elide the copying store if the target loaded this argument from a
9705 // suitable fixed stack object.
9706 if (Ins
[i
].Flags
.isCopyElisionCandidate()) {
9707 tryToElideArgumentCopy(FuncInfo
, Chains
, ArgCopyElisionFrameIndexMap
,
9708 ElidedArgCopyInstrs
, ArgCopyElisionCandidates
, Arg
,
9709 InVals
[i
], ArgHasUses
);
9712 // If this argument is unused then remember its value. It is used to generate
9713 // debugging information.
9714 bool isSwiftErrorArg
=
9715 TLI
->supportSwiftError() &&
9716 Arg
.hasAttribute(Attribute::SwiftError
);
9717 if (!ArgHasUses
&& !isSwiftErrorArg
) {
9718 SDB
->setUnusedArgValue(&Arg
, InVals
[i
]);
9720 // Also remember any frame index for use in FastISel.
9721 if (FrameIndexSDNode
*FI
=
9722 dyn_cast
<FrameIndexSDNode
>(InVals
[i
].getNode()))
9723 FuncInfo
->setArgumentFrameIndex(&Arg
, FI
->getIndex());
9726 for (unsigned Val
= 0; Val
!= NumValues
; ++Val
) {
9727 EVT VT
= ValueVTs
[Val
];
9728 MVT PartVT
= TLI
->getRegisterTypeForCallingConv(*CurDAG
->getContext(),
9729 F
.getCallingConv(), VT
);
9730 unsigned NumParts
= TLI
->getNumRegistersForCallingConv(
9731 *CurDAG
->getContext(), F
.getCallingConv(), VT
);
9733 // Even an apparant 'unused' swifterror argument needs to be returned. So
9734 // we do generate a copy for it that can be used on return from the
9736 if (ArgHasUses
|| isSwiftErrorArg
) {
9737 Optional
<ISD::NodeType
> AssertOp
;
9738 if (Arg
.hasAttribute(Attribute::SExt
))
9739 AssertOp
= ISD::AssertSext
;
9740 else if (Arg
.hasAttribute(Attribute::ZExt
))
9741 AssertOp
= ISD::AssertZext
;
9743 ArgValues
.push_back(getCopyFromParts(DAG
, dl
, &InVals
[i
], NumParts
,
9744 PartVT
, VT
, nullptr,
9745 F
.getCallingConv(), AssertOp
));
9751 // We don't need to do anything else for unused arguments.
9752 if (ArgValues
.empty())
9755 // Note down frame index.
9756 if (FrameIndexSDNode
*FI
=
9757 dyn_cast
<FrameIndexSDNode
>(ArgValues
[0].getNode()))
9758 FuncInfo
->setArgumentFrameIndex(&Arg
, FI
->getIndex());
9760 SDValue Res
= DAG
.getMergeValues(makeArrayRef(ArgValues
.data(), NumValues
),
9761 SDB
->getCurSDLoc());
9763 SDB
->setValue(&Arg
, Res
);
9764 if (!TM
.Options
.EnableFastISel
&& Res
.getOpcode() == ISD::BUILD_PAIR
) {
9765 // We want to associate the argument with the frame index, among
9766 // involved operands, that correspond to the lowest address. The
9767 // getCopyFromParts function, called earlier, is swapping the order of
9768 // the operands to BUILD_PAIR depending on endianness. The result of
9769 // that swapping is that the least significant bits of the argument will
9770 // be in the first operand of the BUILD_PAIR node, and the most
9771 // significant bits will be in the second operand.
9772 unsigned LowAddressOp
= DAG
.getDataLayout().isBigEndian() ? 1 : 0;
9773 if (LoadSDNode
*LNode
=
9774 dyn_cast
<LoadSDNode
>(Res
.getOperand(LowAddressOp
).getNode()))
9775 if (FrameIndexSDNode
*FI
=
9776 dyn_cast
<FrameIndexSDNode
>(LNode
->getBasePtr().getNode()))
9777 FuncInfo
->setArgumentFrameIndex(&Arg
, FI
->getIndex());
9780 // Update the SwiftErrorVRegDefMap.
9781 if (Res
.getOpcode() == ISD::CopyFromReg
&& isSwiftErrorArg
) {
9782 unsigned Reg
= cast
<RegisterSDNode
>(Res
.getOperand(1))->getReg();
9783 if (TargetRegisterInfo::isVirtualRegister(Reg
))
9784 SwiftError
->setCurrentVReg(FuncInfo
->MBB
, SwiftError
->getFunctionArg(),
9788 // If this argument is live outside of the entry block, insert a copy from
9789 // wherever we got it to the vreg that other BB's will reference it as.
9790 if (Res
.getOpcode() == ISD::CopyFromReg
) {
9791 // If we can, though, try to skip creating an unnecessary vreg.
9792 // FIXME: This isn't very clean... it would be nice to make this more
9794 unsigned Reg
= cast
<RegisterSDNode
>(Res
.getOperand(1))->getReg();
9795 if (TargetRegisterInfo::isVirtualRegister(Reg
)) {
9796 FuncInfo
->ValueMap
[&Arg
] = Reg
;
9800 if (!isOnlyUsedInEntryBlock(&Arg
, TM
.Options
.EnableFastISel
)) {
9801 FuncInfo
->InitializeRegForValue(&Arg
);
9802 SDB
->CopyToExportRegsIfNeeded(&Arg
);
9806 if (!Chains
.empty()) {
9807 Chains
.push_back(NewRoot
);
9808 NewRoot
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Chains
);
9811 DAG
.setRoot(NewRoot
);
9813 assert(i
== InVals
.size() && "Argument register count mismatch!");
9815 // If any argument copy elisions occurred and we have debug info, update the
9816 // stale frame indices used in the dbg.declare variable info table.
9817 MachineFunction::VariableDbgInfoMapTy
&DbgDeclareInfo
= MF
->getVariableDbgInfo();
9818 if (!DbgDeclareInfo
.empty() && !ArgCopyElisionFrameIndexMap
.empty()) {
9819 for (MachineFunction::VariableDbgInfo
&VI
: DbgDeclareInfo
) {
9820 auto I
= ArgCopyElisionFrameIndexMap
.find(VI
.Slot
);
9821 if (I
!= ArgCopyElisionFrameIndexMap
.end())
9822 VI
.Slot
= I
->second
;
9826 // Finally, if the target has anything special to do, allow it to do so.
9827 EmitFunctionEntryCode();
9830 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
9831 /// ensure constants are generated when needed. Remember the virtual registers
9832 /// that need to be added to the Machine PHI nodes as input. We cannot just
9833 /// directly add them, because expansion might result in multiple MBB's for one
9834 /// BB. As such, the start of the BB might correspond to a different MBB than
9837 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock
*LLVMBB
) {
9838 const Instruction
*TI
= LLVMBB
->getTerminator();
9840 SmallPtrSet
<MachineBasicBlock
*, 4> SuccsHandled
;
9842 // Check PHI nodes in successors that expect a value to be available from this
9844 for (unsigned succ
= 0, e
= TI
->getNumSuccessors(); succ
!= e
; ++succ
) {
9845 const BasicBlock
*SuccBB
= TI
->getSuccessor(succ
);
9846 if (!isa
<PHINode
>(SuccBB
->begin())) continue;
9847 MachineBasicBlock
*SuccMBB
= FuncInfo
.MBBMap
[SuccBB
];
9849 // If this terminator has multiple identical successors (common for
9850 // switches), only handle each succ once.
9851 if (!SuccsHandled
.insert(SuccMBB
).second
)
9854 MachineBasicBlock::iterator MBBI
= SuccMBB
->begin();
9856 // At this point we know that there is a 1-1 correspondence between LLVM PHI
9857 // nodes and Machine PHI nodes, but the incoming operands have not been
9859 for (const PHINode
&PN
: SuccBB
->phis()) {
9860 // Ignore dead phi's.
9865 if (PN
.getType()->isEmptyTy())
9869 const Value
*PHIOp
= PN
.getIncomingValueForBlock(LLVMBB
);
9871 if (const Constant
*C
= dyn_cast
<Constant
>(PHIOp
)) {
9872 unsigned &RegOut
= ConstantsOut
[C
];
9874 RegOut
= FuncInfo
.CreateRegs(C
);
9875 CopyValueToVirtualRegister(C
, RegOut
);
9879 DenseMap
<const Value
*, unsigned>::iterator I
=
9880 FuncInfo
.ValueMap
.find(PHIOp
);
9881 if (I
!= FuncInfo
.ValueMap
.end())
9884 assert(isa
<AllocaInst
>(PHIOp
) &&
9885 FuncInfo
.StaticAllocaMap
.count(cast
<AllocaInst
>(PHIOp
)) &&
9886 "Didn't codegen value into a register!??");
9887 Reg
= FuncInfo
.CreateRegs(PHIOp
);
9888 CopyValueToVirtualRegister(PHIOp
, Reg
);
9892 // Remember that this register needs to added to the machine PHI node as
9893 // the input for this MBB.
9894 SmallVector
<EVT
, 4> ValueVTs
;
9895 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
9896 ComputeValueVTs(TLI
, DAG
.getDataLayout(), PN
.getType(), ValueVTs
);
9897 for (unsigned vti
= 0, vte
= ValueVTs
.size(); vti
!= vte
; ++vti
) {
9898 EVT VT
= ValueVTs
[vti
];
9899 unsigned NumRegisters
= TLI
.getNumRegisters(*DAG
.getContext(), VT
);
9900 for (unsigned i
= 0, e
= NumRegisters
; i
!= e
; ++i
)
9901 FuncInfo
.PHINodesToUpdate
.push_back(
9902 std::make_pair(&*MBBI
++, Reg
+ i
));
9903 Reg
+= NumRegisters
;
9908 ConstantsOut
.clear();
9911 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9914 SelectionDAGBuilder::StackProtectorDescriptor::
9915 AddSuccessorMBB(const BasicBlock
*BB
,
9916 MachineBasicBlock
*ParentMBB
,
9918 MachineBasicBlock
*SuccMBB
) {
9919 // If SuccBB has not been created yet, create it.
9921 MachineFunction
*MF
= ParentMBB
->getParent();
9922 MachineFunction::iterator
BBI(ParentMBB
);
9923 SuccMBB
= MF
->CreateMachineBasicBlock(BB
);
9924 MF
->insert(++BBI
, SuccMBB
);
9926 // Add it as a successor of ParentMBB.
9927 ParentMBB
->addSuccessor(
9928 SuccMBB
, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely
));
9932 MachineBasicBlock
*SelectionDAGBuilder::NextBlock(MachineBasicBlock
*MBB
) {
9933 MachineFunction::iterator
I(MBB
);
9934 if (++I
== FuncInfo
.MF
->end())
9939 /// During lowering new call nodes can be created (such as memset, etc.).
9940 /// Those will become new roots of the current DAG, but complications arise
9941 /// when they are tail calls. In such cases, the call lowering will update
9942 /// the root, but the builder still needs to know that a tail call has been
9943 /// lowered in order to avoid generating an additional return.
9944 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC
) {
9945 // If the node is null, we do have a tail call.
9946 if (MaybeTC
.getNode() != nullptr)
9947 DAG
.setRoot(MaybeTC
);
9952 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W
, Value
*Cond
,
9953 MachineBasicBlock
*SwitchMBB
,
9954 MachineBasicBlock
*DefaultMBB
) {
9955 MachineFunction
*CurMF
= FuncInfo
.MF
;
9956 MachineBasicBlock
*NextMBB
= nullptr;
9957 MachineFunction::iterator
BBI(W
.MBB
);
9958 if (++BBI
!= FuncInfo
.MF
->end())
9961 unsigned Size
= W
.LastCluster
- W
.FirstCluster
+ 1;
9963 BranchProbabilityInfo
*BPI
= FuncInfo
.BPI
;
9965 if (Size
== 2 && W
.MBB
== SwitchMBB
) {
9966 // If any two of the cases has the same destination, and if one value
9967 // is the same as the other, but has one bit unset that the other has set,
9968 // use bit manipulation to do two compares at once. For example:
9969 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
9970 // TODO: This could be extended to merge any 2 cases in switches with 3
9972 // TODO: Handle cases where W.CaseBB != SwitchBB.
9973 CaseCluster
&Small
= *W
.FirstCluster
;
9974 CaseCluster
&Big
= *W
.LastCluster
;
9976 if (Small
.Low
== Small
.High
&& Big
.Low
== Big
.High
&&
9977 Small
.MBB
== Big
.MBB
) {
9978 const APInt
&SmallValue
= Small
.Low
->getValue();
9979 const APInt
&BigValue
= Big
.Low
->getValue();
9981 // Check that there is only one bit different.
9982 APInt CommonBit
= BigValue
^ SmallValue
;
9983 if (CommonBit
.isPowerOf2()) {
9984 SDValue CondLHS
= getValue(Cond
);
9985 EVT VT
= CondLHS
.getValueType();
9986 SDLoc DL
= getCurSDLoc();
9988 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, VT
, CondLHS
,
9989 DAG
.getConstant(CommonBit
, DL
, VT
));
9990 SDValue Cond
= DAG
.getSetCC(
9991 DL
, MVT::i1
, Or
, DAG
.getConstant(BigValue
| SmallValue
, DL
, VT
),
9994 // Update successor info.
9995 // Both Small and Big will jump to Small.BB, so we sum up the
9997 addSuccessorWithProb(SwitchMBB
, Small
.MBB
, Small
.Prob
+ Big
.Prob
);
9999 addSuccessorWithProb(
10000 SwitchMBB
, DefaultMBB
,
10001 // The default destination is the first successor in IR.
10002 BPI
->getEdgeProbability(SwitchMBB
->getBasicBlock(), (unsigned)0));
10004 addSuccessorWithProb(SwitchMBB
, DefaultMBB
);
10006 // Insert the true branch.
10008 DAG
.getNode(ISD::BRCOND
, DL
, MVT::Other
, getControlRoot(), Cond
,
10009 DAG
.getBasicBlock(Small
.MBB
));
10010 // Insert the false branch.
10011 BrCond
= DAG
.getNode(ISD::BR
, DL
, MVT::Other
, BrCond
,
10012 DAG
.getBasicBlock(DefaultMBB
));
10014 DAG
.setRoot(BrCond
);
10020 if (TM
.getOptLevel() != CodeGenOpt::None
) {
10021 // Here, we order cases by probability so the most likely case will be
10022 // checked first. However, two clusters can have the same probability in
10023 // which case their relative ordering is non-deterministic. So we use Low
10024 // as a tie-breaker as clusters are guaranteed to never overlap.
10025 llvm::sort(W
.FirstCluster
, W
.LastCluster
+ 1,
10026 [](const CaseCluster
&a
, const CaseCluster
&b
) {
10027 return a
.Prob
!= b
.Prob
?
10029 a
.Low
->getValue().slt(b
.Low
->getValue());
10032 // Rearrange the case blocks so that the last one falls through if possible
10033 // without changing the order of probabilities.
10034 for (CaseClusterIt I
= W
.LastCluster
; I
> W
.FirstCluster
; ) {
10036 if (I
->Prob
> W
.LastCluster
->Prob
)
10038 if (I
->Kind
== CC_Range
&& I
->MBB
== NextMBB
) {
10039 std::swap(*I
, *W
.LastCluster
);
10045 // Compute total probability.
10046 BranchProbability DefaultProb
= W
.DefaultProb
;
10047 BranchProbability UnhandledProbs
= DefaultProb
;
10048 for (CaseClusterIt I
= W
.FirstCluster
; I
<= W
.LastCluster
; ++I
)
10049 UnhandledProbs
+= I
->Prob
;
10051 MachineBasicBlock
*CurMBB
= W
.MBB
;
10052 for (CaseClusterIt I
= W
.FirstCluster
, E
= W
.LastCluster
; I
<= E
; ++I
) {
10053 bool FallthroughUnreachable
= false;
10054 MachineBasicBlock
*Fallthrough
;
10055 if (I
== W
.LastCluster
) {
10056 // For the last cluster, fall through to the default destination.
10057 Fallthrough
= DefaultMBB
;
10058 FallthroughUnreachable
= isa
<UnreachableInst
>(
10059 DefaultMBB
->getBasicBlock()->getFirstNonPHIOrDbg());
10061 Fallthrough
= CurMF
->CreateMachineBasicBlock(CurMBB
->getBasicBlock());
10062 CurMF
->insert(BBI
, Fallthrough
);
10063 // Put Cond in a virtual register to make it available from the new blocks.
10064 ExportFromCurrentBlock(Cond
);
10066 UnhandledProbs
-= I
->Prob
;
10069 case CC_JumpTable
: {
10070 // FIXME: Optimize away range check based on pivot comparisons.
10071 JumpTableHeader
*JTH
= &SL
->JTCases
[I
->JTCasesIndex
].first
;
10072 SwitchCG::JumpTable
*JT
= &SL
->JTCases
[I
->JTCasesIndex
].second
;
10074 // The jump block hasn't been inserted yet; insert it here.
10075 MachineBasicBlock
*JumpMBB
= JT
->MBB
;
10076 CurMF
->insert(BBI
, JumpMBB
);
10078 auto JumpProb
= I
->Prob
;
10079 auto FallthroughProb
= UnhandledProbs
;
10081 // If the default statement is a target of the jump table, we evenly
10082 // distribute the default probability to successors of CurMBB. Also
10083 // update the probability on the edge from JumpMBB to Fallthrough.
10084 for (MachineBasicBlock::succ_iterator SI
= JumpMBB
->succ_begin(),
10085 SE
= JumpMBB
->succ_end();
10087 if (*SI
== DefaultMBB
) {
10088 JumpProb
+= DefaultProb
/ 2;
10089 FallthroughProb
-= DefaultProb
/ 2;
10090 JumpMBB
->setSuccProbability(SI
, DefaultProb
/ 2);
10091 JumpMBB
->normalizeSuccProbs();
10096 if (FallthroughUnreachable
) {
10097 // Skip the range check if the fallthrough block is unreachable.
10098 JTH
->OmitRangeCheck
= true;
10101 if (!JTH
->OmitRangeCheck
)
10102 addSuccessorWithProb(CurMBB
, Fallthrough
, FallthroughProb
);
10103 addSuccessorWithProb(CurMBB
, JumpMBB
, JumpProb
);
10104 CurMBB
->normalizeSuccProbs();
10106 // The jump table header will be inserted in our current block, do the
10107 // range check, and fall through to our fallthrough block.
10108 JTH
->HeaderBB
= CurMBB
;
10109 JT
->Default
= Fallthrough
; // FIXME: Move Default to JumpTableHeader.
10111 // If we're in the right place, emit the jump table header right now.
10112 if (CurMBB
== SwitchMBB
) {
10113 visitJumpTableHeader(*JT
, *JTH
, SwitchMBB
);
10114 JTH
->Emitted
= true;
10118 case CC_BitTests
: {
10119 // FIXME: If Fallthrough is unreachable, skip the range check.
10121 // FIXME: Optimize away range check based on pivot comparisons.
10122 BitTestBlock
*BTB
= &SL
->BitTestCases
[I
->BTCasesIndex
];
10124 // The bit test blocks haven't been inserted yet; insert them here.
10125 for (BitTestCase
&BTC
: BTB
->Cases
)
10126 CurMF
->insert(BBI
, BTC
.ThisBB
);
10128 // Fill in fields of the BitTestBlock.
10129 BTB
->Parent
= CurMBB
;
10130 BTB
->Default
= Fallthrough
;
10132 BTB
->DefaultProb
= UnhandledProbs
;
10133 // If the cases in bit test don't form a contiguous range, we evenly
10134 // distribute the probability on the edge to Fallthrough to two
10135 // successors of CurMBB.
10136 if (!BTB
->ContiguousRange
) {
10137 BTB
->Prob
+= DefaultProb
/ 2;
10138 BTB
->DefaultProb
-= DefaultProb
/ 2;
10141 // If we're in the right place, emit the bit test header right now.
10142 if (CurMBB
== SwitchMBB
) {
10143 visitBitTestHeader(*BTB
, SwitchMBB
);
10144 BTB
->Emitted
= true;
10149 const Value
*RHS
, *LHS
, *MHS
;
10151 if (I
->Low
== I
->High
) {
10152 // Check Cond == I->Low.
10158 // Check I->Low <= Cond <= I->High.
10165 // If Fallthrough is unreachable, fold away the comparison.
10166 if (FallthroughUnreachable
)
10169 // The false probability is the sum of all unhandled cases.
10170 CaseBlock
CB(CC
, LHS
, RHS
, MHS
, I
->MBB
, Fallthrough
, CurMBB
,
10171 getCurSDLoc(), I
->Prob
, UnhandledProbs
);
10173 if (CurMBB
== SwitchMBB
)
10174 visitSwitchCase(CB
, SwitchMBB
);
10176 SL
->SwitchCases
.push_back(CB
);
10181 CurMBB
= Fallthrough
;
10185 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster
&CC
,
10186 CaseClusterIt First
,
10187 CaseClusterIt Last
) {
10188 return std::count_if(First
, Last
+ 1, [&](const CaseCluster
&X
) {
10189 if (X
.Prob
!= CC
.Prob
)
10190 return X
.Prob
> CC
.Prob
;
10192 // Ties are broken by comparing the case value.
10193 return X
.Low
->getValue().slt(CC
.Low
->getValue());
10197 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList
&WorkList
,
10198 const SwitchWorkListItem
&W
,
10200 MachineBasicBlock
*SwitchMBB
) {
10201 assert(W
.FirstCluster
->Low
->getValue().slt(W
.LastCluster
->Low
->getValue()) &&
10202 "Clusters not sorted?");
10204 assert(W
.LastCluster
- W
.FirstCluster
+ 1 >= 2 && "Too small to split!");
10206 // Balance the tree based on branch probabilities to create a near-optimal (in
10207 // terms of search time given key frequency) binary search tree. See e.g. Kurt
10208 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10209 CaseClusterIt LastLeft
= W
.FirstCluster
;
10210 CaseClusterIt FirstRight
= W
.LastCluster
;
10211 auto LeftProb
= LastLeft
->Prob
+ W
.DefaultProb
/ 2;
10212 auto RightProb
= FirstRight
->Prob
+ W
.DefaultProb
/ 2;
10214 // Move LastLeft and FirstRight towards each other from opposite directions to
10215 // find a partitioning of the clusters which balances the probability on both
10216 // sides. If LeftProb and RightProb are equal, alternate which side is
10217 // taken to ensure 0-probability nodes are distributed evenly.
10219 while (LastLeft
+ 1 < FirstRight
) {
10220 if (LeftProb
< RightProb
|| (LeftProb
== RightProb
&& (I
& 1)))
10221 LeftProb
+= (++LastLeft
)->Prob
;
10223 RightProb
+= (--FirstRight
)->Prob
;
10228 // Our binary search tree differs from a typical BST in that ours can have up
10229 // to three values in each leaf. The pivot selection above doesn't take that
10230 // into account, which means the tree might require more nodes and be less
10231 // efficient. We compensate for this here.
10233 unsigned NumLeft
= LastLeft
- W
.FirstCluster
+ 1;
10234 unsigned NumRight
= W
.LastCluster
- FirstRight
+ 1;
10236 if (std::min(NumLeft
, NumRight
) < 3 && std::max(NumLeft
, NumRight
) > 3) {
10237 // If one side has less than 3 clusters, and the other has more than 3,
10238 // consider taking a cluster from the other side.
10240 if (NumLeft
< NumRight
) {
10241 // Consider moving the first cluster on the right to the left side.
10242 CaseCluster
&CC
= *FirstRight
;
10243 unsigned RightSideRank
= caseClusterRank(CC
, FirstRight
, W
.LastCluster
);
10244 unsigned LeftSideRank
= caseClusterRank(CC
, W
.FirstCluster
, LastLeft
);
10245 if (LeftSideRank
<= RightSideRank
) {
10246 // Moving the cluster to the left does not demote it.
10252 assert(NumRight
< NumLeft
);
10253 // Consider moving the last element on the left to the right side.
10254 CaseCluster
&CC
= *LastLeft
;
10255 unsigned LeftSideRank
= caseClusterRank(CC
, W
.FirstCluster
, LastLeft
);
10256 unsigned RightSideRank
= caseClusterRank(CC
, FirstRight
, W
.LastCluster
);
10257 if (RightSideRank
<= LeftSideRank
) {
10258 // Moving the cluster to the right does not demot it.
10268 assert(LastLeft
+ 1 == FirstRight
);
10269 assert(LastLeft
>= W
.FirstCluster
);
10270 assert(FirstRight
<= W
.LastCluster
);
10272 // Use the first element on the right as pivot since we will make less-than
10273 // comparisons against it.
10274 CaseClusterIt PivotCluster
= FirstRight
;
10275 assert(PivotCluster
> W
.FirstCluster
);
10276 assert(PivotCluster
<= W
.LastCluster
);
10278 CaseClusterIt FirstLeft
= W
.FirstCluster
;
10279 CaseClusterIt LastRight
= W
.LastCluster
;
10281 const ConstantInt
*Pivot
= PivotCluster
->Low
;
10283 // New blocks will be inserted immediately after the current one.
10284 MachineFunction::iterator
BBI(W
.MBB
);
10287 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10288 // we can branch to its destination directly if it's squeezed exactly in
10289 // between the known lower bound and Pivot - 1.
10290 MachineBasicBlock
*LeftMBB
;
10291 if (FirstLeft
== LastLeft
&& FirstLeft
->Kind
== CC_Range
&&
10292 FirstLeft
->Low
== W
.GE
&&
10293 (FirstLeft
->High
->getValue() + 1LL) == Pivot
->getValue()) {
10294 LeftMBB
= FirstLeft
->MBB
;
10296 LeftMBB
= FuncInfo
.MF
->CreateMachineBasicBlock(W
.MBB
->getBasicBlock());
10297 FuncInfo
.MF
->insert(BBI
, LeftMBB
);
10298 WorkList
.push_back(
10299 {LeftMBB
, FirstLeft
, LastLeft
, W
.GE
, Pivot
, W
.DefaultProb
/ 2});
10300 // Put Cond in a virtual register to make it available from the new blocks.
10301 ExportFromCurrentBlock(Cond
);
10304 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10305 // single cluster, RHS.Low == Pivot, and we can branch to its destination
10306 // directly if RHS.High equals the current upper bound.
10307 MachineBasicBlock
*RightMBB
;
10308 if (FirstRight
== LastRight
&& FirstRight
->Kind
== CC_Range
&&
10309 W
.LT
&& (FirstRight
->High
->getValue() + 1ULL) == W
.LT
->getValue()) {
10310 RightMBB
= FirstRight
->MBB
;
10312 RightMBB
= FuncInfo
.MF
->CreateMachineBasicBlock(W
.MBB
->getBasicBlock());
10313 FuncInfo
.MF
->insert(BBI
, RightMBB
);
10314 WorkList
.push_back(
10315 {RightMBB
, FirstRight
, LastRight
, Pivot
, W
.LT
, W
.DefaultProb
/ 2});
10316 // Put Cond in a virtual register to make it available from the new blocks.
10317 ExportFromCurrentBlock(Cond
);
10320 // Create the CaseBlock record that will be used to lower the branch.
10321 CaseBlock
CB(ISD::SETLT
, Cond
, Pivot
, nullptr, LeftMBB
, RightMBB
, W
.MBB
,
10322 getCurSDLoc(), LeftProb
, RightProb
);
10324 if (W
.MBB
== SwitchMBB
)
10325 visitSwitchCase(CB
, SwitchMBB
);
10327 SL
->SwitchCases
.push_back(CB
);
10330 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10331 // from the swith statement.
10332 static BranchProbability
scaleCaseProbality(BranchProbability CaseProb
,
10333 BranchProbability PeeledCaseProb
) {
10334 if (PeeledCaseProb
== BranchProbability::getOne())
10335 return BranchProbability::getZero();
10336 BranchProbability SwitchProb
= PeeledCaseProb
.getCompl();
10338 uint32_t Numerator
= CaseProb
.getNumerator();
10339 uint32_t Denominator
= SwitchProb
.scale(CaseProb
.getDenominator());
10340 return BranchProbability(Numerator
, std::max(Numerator
, Denominator
));
10343 // Try to peel the top probability case if it exceeds the threshold.
10344 // Return current MachineBasicBlock for the switch statement if the peeling
10346 // If the peeling is performed, return the newly created MachineBasicBlock
10347 // for the peeled switch statement. Also update Clusters to remove the peeled
10348 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10349 MachineBasicBlock
*SelectionDAGBuilder::peelDominantCaseCluster(
10350 const SwitchInst
&SI
, CaseClusterVector
&Clusters
,
10351 BranchProbability
&PeeledCaseProb
) {
10352 MachineBasicBlock
*SwitchMBB
= FuncInfo
.MBB
;
10353 // Don't perform if there is only one cluster or optimizing for size.
10354 if (SwitchPeelThreshold
> 100 || !FuncInfo
.BPI
|| Clusters
.size() < 2 ||
10355 TM
.getOptLevel() == CodeGenOpt::None
||
10356 SwitchMBB
->getParent()->getFunction().hasMinSize())
10359 BranchProbability TopCaseProb
= BranchProbability(SwitchPeelThreshold
, 100);
10360 unsigned PeeledCaseIndex
= 0;
10361 bool SwitchPeeled
= false;
10362 for (unsigned Index
= 0; Index
< Clusters
.size(); ++Index
) {
10363 CaseCluster
&CC
= Clusters
[Index
];
10364 if (CC
.Prob
< TopCaseProb
)
10366 TopCaseProb
= CC
.Prob
;
10367 PeeledCaseIndex
= Index
;
10368 SwitchPeeled
= true;
10373 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10374 << TopCaseProb
<< "\n");
10376 // Record the MBB for the peeled switch statement.
10377 MachineFunction::iterator
BBI(SwitchMBB
);
10379 MachineBasicBlock
*PeeledSwitchMBB
=
10380 FuncInfo
.MF
->CreateMachineBasicBlock(SwitchMBB
->getBasicBlock());
10381 FuncInfo
.MF
->insert(BBI
, PeeledSwitchMBB
);
10383 ExportFromCurrentBlock(SI
.getCondition());
10384 auto PeeledCaseIt
= Clusters
.begin() + PeeledCaseIndex
;
10385 SwitchWorkListItem W
= {SwitchMBB
, PeeledCaseIt
, PeeledCaseIt
,
10386 nullptr, nullptr, TopCaseProb
.getCompl()};
10387 lowerWorkItem(W
, SI
.getCondition(), SwitchMBB
, PeeledSwitchMBB
);
10389 Clusters
.erase(PeeledCaseIt
);
10390 for (CaseCluster
&CC
: Clusters
) {
10392 dbgs() << "Scale the probablity for one cluster, before scaling: "
10393 << CC
.Prob
<< "\n");
10394 CC
.Prob
= scaleCaseProbality(CC
.Prob
, TopCaseProb
);
10395 LLVM_DEBUG(dbgs() << "After scaling: " << CC
.Prob
<< "\n");
10397 PeeledCaseProb
= TopCaseProb
;
10398 return PeeledSwitchMBB
;
10401 void SelectionDAGBuilder::visitSwitch(const SwitchInst
&SI
) {
10402 // Extract cases from the switch.
10403 BranchProbabilityInfo
*BPI
= FuncInfo
.BPI
;
10404 CaseClusterVector Clusters
;
10405 Clusters
.reserve(SI
.getNumCases());
10406 for (auto I
: SI
.cases()) {
10407 MachineBasicBlock
*Succ
= FuncInfo
.MBBMap
[I
.getCaseSuccessor()];
10408 const ConstantInt
*CaseVal
= I
.getCaseValue();
10409 BranchProbability Prob
=
10410 BPI
? BPI
->getEdgeProbability(SI
.getParent(), I
.getSuccessorIndex())
10411 : BranchProbability(1, SI
.getNumCases() + 1);
10412 Clusters
.push_back(CaseCluster::range(CaseVal
, CaseVal
, Succ
, Prob
));
10415 MachineBasicBlock
*DefaultMBB
= FuncInfo
.MBBMap
[SI
.getDefaultDest()];
10417 // Cluster adjacent cases with the same destination. We do this at all
10418 // optimization levels because it's cheap to do and will make codegen faster
10419 // if there are many clusters.
10420 sortAndRangeify(Clusters
);
10422 // The branch probablity of the peeled case.
10423 BranchProbability PeeledCaseProb
= BranchProbability::getZero();
10424 MachineBasicBlock
*PeeledSwitchMBB
=
10425 peelDominantCaseCluster(SI
, Clusters
, PeeledCaseProb
);
10427 // If there is only the default destination, jump there directly.
10428 MachineBasicBlock
*SwitchMBB
= FuncInfo
.MBB
;
10429 if (Clusters
.empty()) {
10430 assert(PeeledSwitchMBB
== SwitchMBB
);
10431 SwitchMBB
->addSuccessor(DefaultMBB
);
10432 if (DefaultMBB
!= NextBlock(SwitchMBB
)) {
10433 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurSDLoc(), MVT::Other
,
10434 getControlRoot(), DAG
.getBasicBlock(DefaultMBB
)));
10439 SL
->findJumpTables(Clusters
, &SI
, DefaultMBB
);
10440 SL
->findBitTestClusters(Clusters
, &SI
);
10443 dbgs() << "Case clusters: ";
10444 for (const CaseCluster
&C
: Clusters
) {
10445 if (C
.Kind
== CC_JumpTable
)
10447 if (C
.Kind
== CC_BitTests
)
10450 C
.Low
->getValue().print(dbgs(), true);
10451 if (C
.Low
!= C
.High
) {
10453 C
.High
->getValue().print(dbgs(), true);
10460 assert(!Clusters
.empty());
10461 SwitchWorkList WorkList
;
10462 CaseClusterIt First
= Clusters
.begin();
10463 CaseClusterIt Last
= Clusters
.end() - 1;
10464 auto DefaultProb
= getEdgeProbability(PeeledSwitchMBB
, DefaultMBB
);
10465 // Scale the branchprobability for DefaultMBB if the peel occurs and
10466 // DefaultMBB is not replaced.
10467 if (PeeledCaseProb
!= BranchProbability::getZero() &&
10468 DefaultMBB
== FuncInfo
.MBBMap
[SI
.getDefaultDest()])
10469 DefaultProb
= scaleCaseProbality(DefaultProb
, PeeledCaseProb
);
10470 WorkList
.push_back(
10471 {PeeledSwitchMBB
, First
, Last
, nullptr, nullptr, DefaultProb
});
10473 while (!WorkList
.empty()) {
10474 SwitchWorkListItem W
= WorkList
.back();
10475 WorkList
.pop_back();
10476 unsigned NumClusters
= W
.LastCluster
- W
.FirstCluster
+ 1;
10478 if (NumClusters
> 3 && TM
.getOptLevel() != CodeGenOpt::None
&&
10479 !DefaultMBB
->getParent()->getFunction().hasMinSize()) {
10480 // For optimized builds, lower large range as a balanced binary tree.
10481 splitWorkItem(WorkList
, W
, SI
.getCondition(), SwitchMBB
);
10485 lowerWorkItem(W
, SI
.getCondition(), SwitchMBB
, DefaultMBB
);