1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This implements the TargetLowering class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/CodeGen/CallingConvLower.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineJumpTableInfo.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/CodeGen/TargetRegisterInfo.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCExpr.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetLoweringObjectFile.h"
34 #include "llvm/Target/TargetMachine.h"
38 /// NOTE: The TargetMachine owns TLOF.
39 TargetLowering::TargetLowering(const TargetMachine
&tm
)
40 : TargetLoweringBase(tm
) {}
42 const char *TargetLowering::getTargetNodeName(unsigned Opcode
) const {
46 bool TargetLowering::isPositionIndependent() const {
47 return getTargetMachine().isPositionIndependent();
50 /// Check whether a given call node is in tail position within its function. If
51 /// so, it sets Chain to the input chain of the tail call.
52 bool TargetLowering::isInTailCallPosition(SelectionDAG
&DAG
, SDNode
*Node
,
53 SDValue
&Chain
) const {
54 const Function
&F
= DAG
.getMachineFunction().getFunction();
56 // Conservatively require the attributes of the call to match those of
57 // the return. Ignore NoAlias and NonNull because they don't affect the
59 AttributeList CallerAttrs
= F
.getAttributes();
60 if (AttrBuilder(CallerAttrs
, AttributeList::ReturnIndex
)
61 .removeAttribute(Attribute::NoAlias
)
62 .removeAttribute(Attribute::NonNull
)
66 // It's not safe to eliminate the sign / zero extension of the return value.
67 if (CallerAttrs
.hasAttribute(AttributeList::ReturnIndex
, Attribute::ZExt
) ||
68 CallerAttrs
.hasAttribute(AttributeList::ReturnIndex
, Attribute::SExt
))
71 // Check if the only use is a function return node.
72 return isUsedByReturnOnly(Node
, Chain
);
75 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo
&MRI
,
76 const uint32_t *CallerPreservedMask
,
77 const SmallVectorImpl
<CCValAssign
> &ArgLocs
,
78 const SmallVectorImpl
<SDValue
> &OutVals
) const {
79 for (unsigned I
= 0, E
= ArgLocs
.size(); I
!= E
; ++I
) {
80 const CCValAssign
&ArgLoc
= ArgLocs
[I
];
81 if (!ArgLoc
.isRegLoc())
83 unsigned Reg
= ArgLoc
.getLocReg();
84 // Only look at callee saved registers.
85 if (MachineOperand::clobbersPhysReg(CallerPreservedMask
, Reg
))
87 // Check that we pass the value used for the caller.
88 // (We look for a CopyFromReg reading a virtual register that is used
89 // for the function live-in value of register Reg)
90 SDValue Value
= OutVals
[I
];
91 if (Value
->getOpcode() != ISD::CopyFromReg
)
93 unsigned ArgReg
= cast
<RegisterSDNode
>(Value
->getOperand(1))->getReg();
94 if (MRI
.getLiveInPhysReg(ArgReg
) != Reg
)
100 /// Set CallLoweringInfo attribute flags based on a call instruction
101 /// and called function attributes.
102 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase
*Call
,
104 IsSExt
= Call
->paramHasAttr(ArgIdx
, Attribute::SExt
);
105 IsZExt
= Call
->paramHasAttr(ArgIdx
, Attribute::ZExt
);
106 IsInReg
= Call
->paramHasAttr(ArgIdx
, Attribute::InReg
);
107 IsSRet
= Call
->paramHasAttr(ArgIdx
, Attribute::StructRet
);
108 IsNest
= Call
->paramHasAttr(ArgIdx
, Attribute::Nest
);
109 IsByVal
= Call
->paramHasAttr(ArgIdx
, Attribute::ByVal
);
110 IsInAlloca
= Call
->paramHasAttr(ArgIdx
, Attribute::InAlloca
);
111 IsReturned
= Call
->paramHasAttr(ArgIdx
, Attribute::Returned
);
112 IsSwiftSelf
= Call
->paramHasAttr(ArgIdx
, Attribute::SwiftSelf
);
113 IsSwiftError
= Call
->paramHasAttr(ArgIdx
, Attribute::SwiftError
);
114 Alignment
= Call
->getParamAlignment(ArgIdx
);
116 if (Call
->paramHasAttr(ArgIdx
, Attribute::ByVal
))
117 ByValType
= Call
->getParamByValType(ArgIdx
);
120 /// Generate a libcall taking the given operands as arguments and returning a
121 /// result of type RetVT.
122 std::pair
<SDValue
, SDValue
>
123 TargetLowering::makeLibCall(SelectionDAG
&DAG
, RTLIB::Libcall LC
, EVT RetVT
,
124 ArrayRef
<SDValue
> Ops
, bool isSigned
,
125 const SDLoc
&dl
, bool doesNotReturn
,
126 bool isReturnValueUsed
,
127 bool isPostTypeLegalization
) const {
128 TargetLowering::ArgListTy Args
;
129 Args
.reserve(Ops
.size());
131 TargetLowering::ArgListEntry Entry
;
132 for (SDValue Op
: Ops
) {
134 Entry
.Ty
= Entry
.Node
.getValueType().getTypeForEVT(*DAG
.getContext());
135 Entry
.IsSExt
= shouldSignExtendTypeInLibCall(Op
.getValueType(), isSigned
);
136 Entry
.IsZExt
= !shouldSignExtendTypeInLibCall(Op
.getValueType(), isSigned
);
137 Args
.push_back(Entry
);
140 if (LC
== RTLIB::UNKNOWN_LIBCALL
)
141 report_fatal_error("Unsupported library call operation!");
142 SDValue Callee
= DAG
.getExternalSymbol(getLibcallName(LC
),
143 getPointerTy(DAG
.getDataLayout()));
145 Type
*RetTy
= RetVT
.getTypeForEVT(*DAG
.getContext());
146 TargetLowering::CallLoweringInfo
CLI(DAG
);
147 bool signExtend
= shouldSignExtendTypeInLibCall(RetVT
, isSigned
);
149 .setChain(DAG
.getEntryNode())
150 .setLibCallee(getLibcallCallingConv(LC
), RetTy
, Callee
, std::move(Args
))
151 .setNoReturn(doesNotReturn
)
152 .setDiscardResult(!isReturnValueUsed
)
153 .setIsPostTypeLegalization(isPostTypeLegalization
)
154 .setSExtResult(signExtend
)
155 .setZExtResult(!signExtend
);
156 return LowerCallTo(CLI
);
160 TargetLowering::findOptimalMemOpLowering(std::vector
<EVT
> &MemOps
,
161 unsigned Limit
, uint64_t Size
,
162 unsigned DstAlign
, unsigned SrcAlign
,
167 unsigned DstAS
, unsigned SrcAS
,
168 const AttributeList
&FuncAttributes
) const {
169 // If 'SrcAlign' is zero, that means the memory operation does not need to
170 // load the value, i.e. memset or memcpy from constant string. Otherwise,
171 // it's the inferred alignment of the source. 'DstAlign', on the other hand,
172 // is the specified alignment of the memory operation. If it is zero, that
173 // means it's possible to change the alignment of the destination.
174 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
175 // not need to be loaded.
176 if (!(SrcAlign
== 0 || SrcAlign
>= DstAlign
))
179 EVT VT
= getOptimalMemOpType(Size
, DstAlign
, SrcAlign
,
180 IsMemset
, ZeroMemset
, MemcpyStrSrc
,
183 if (VT
== MVT::Other
) {
184 // Use the largest integer type whose alignment constraints are satisfied.
185 // We only need to check DstAlign here as SrcAlign is always greater or
186 // equal to DstAlign (or zero).
188 while (DstAlign
&& DstAlign
< VT
.getSizeInBits() / 8 &&
189 !allowsMisalignedMemoryAccesses(VT
, DstAS
, DstAlign
))
190 VT
= (MVT::SimpleValueType
)(VT
.getSimpleVT().SimpleTy
- 1);
191 assert(VT
.isInteger());
193 // Find the largest legal integer type.
195 while (!isTypeLegal(LVT
))
196 LVT
= (MVT::SimpleValueType
)(LVT
.SimpleTy
- 1);
197 assert(LVT
.isInteger());
199 // If the type we've chosen is larger than the largest legal integer type
200 // then use that instead.
205 unsigned NumMemOps
= 0;
207 unsigned VTSize
= VT
.getSizeInBits() / 8;
208 while (VTSize
> Size
) {
209 // For now, only use non-vector load / store's for the left-over pieces.
214 if (VT
.isVector() || VT
.isFloatingPoint()) {
215 NewVT
= (VT
.getSizeInBits() > 64) ? MVT::i64
: MVT::i32
;
216 if (isOperationLegalOrCustom(ISD::STORE
, NewVT
) &&
217 isSafeMemOpType(NewVT
.getSimpleVT()))
219 else if (NewVT
== MVT::i64
&&
220 isOperationLegalOrCustom(ISD::STORE
, MVT::f64
) &&
221 isSafeMemOpType(MVT::f64
)) {
222 // i64 is usually not legal on 32-bit targets, but f64 may be.
230 NewVT
= (MVT::SimpleValueType
)(NewVT
.getSimpleVT().SimpleTy
- 1);
231 if (NewVT
== MVT::i8
)
233 } while (!isSafeMemOpType(NewVT
.getSimpleVT()));
235 NewVTSize
= NewVT
.getSizeInBits() / 8;
237 // If the new VT cannot cover all of the remaining bits, then consider
238 // issuing a (or a pair of) unaligned and overlapping load / store.
240 if (NumMemOps
&& AllowOverlap
&& NewVTSize
< Size
&&
241 allowsMisalignedMemoryAccesses(VT
, DstAS
, DstAlign
,
242 MachineMemOperand::MONone
, &Fast
) &&
251 if (++NumMemOps
> Limit
)
254 MemOps
.push_back(VT
);
261 /// Soften the operands of a comparison. This code is shared among BR_CC,
262 /// SELECT_CC, and SETCC handlers.
263 void TargetLowering::softenSetCCOperands(SelectionDAG
&DAG
, EVT VT
,
264 SDValue
&NewLHS
, SDValue
&NewRHS
,
265 ISD::CondCode
&CCCode
,
266 const SDLoc
&dl
) const {
267 assert((VT
== MVT::f32
|| VT
== MVT::f64
|| VT
== MVT::f128
|| VT
== MVT::ppcf128
)
268 && "Unsupported setcc type!");
270 // Expand into one or more soft-fp libcall(s).
271 RTLIB::Libcall LC1
= RTLIB::UNKNOWN_LIBCALL
, LC2
= RTLIB::UNKNOWN_LIBCALL
;
272 bool ShouldInvertCC
= false;
276 LC1
= (VT
== MVT::f32
) ? RTLIB::OEQ_F32
:
277 (VT
== MVT::f64
) ? RTLIB::OEQ_F64
:
278 (VT
== MVT::f128
) ? RTLIB::OEQ_F128
: RTLIB::OEQ_PPCF128
;
282 LC1
= (VT
== MVT::f32
) ? RTLIB::UNE_F32
:
283 (VT
== MVT::f64
) ? RTLIB::UNE_F64
:
284 (VT
== MVT::f128
) ? RTLIB::UNE_F128
: RTLIB::UNE_PPCF128
;
288 LC1
= (VT
== MVT::f32
) ? RTLIB::OGE_F32
:
289 (VT
== MVT::f64
) ? RTLIB::OGE_F64
:
290 (VT
== MVT::f128
) ? RTLIB::OGE_F128
: RTLIB::OGE_PPCF128
;
294 LC1
= (VT
== MVT::f32
) ? RTLIB::OLT_F32
:
295 (VT
== MVT::f64
) ? RTLIB::OLT_F64
:
296 (VT
== MVT::f128
) ? RTLIB::OLT_F128
: RTLIB::OLT_PPCF128
;
300 LC1
= (VT
== MVT::f32
) ? RTLIB::OLE_F32
:
301 (VT
== MVT::f64
) ? RTLIB::OLE_F64
:
302 (VT
== MVT::f128
) ? RTLIB::OLE_F128
: RTLIB::OLE_PPCF128
;
306 LC1
= (VT
== MVT::f32
) ? RTLIB::OGT_F32
:
307 (VT
== MVT::f64
) ? RTLIB::OGT_F64
:
308 (VT
== MVT::f128
) ? RTLIB::OGT_F128
: RTLIB::OGT_PPCF128
;
311 LC1
= (VT
== MVT::f32
) ? RTLIB::UO_F32
:
312 (VT
== MVT::f64
) ? RTLIB::UO_F64
:
313 (VT
== MVT::f128
) ? RTLIB::UO_F128
: RTLIB::UO_PPCF128
;
316 LC1
= (VT
== MVT::f32
) ? RTLIB::O_F32
:
317 (VT
== MVT::f64
) ? RTLIB::O_F64
:
318 (VT
== MVT::f128
) ? RTLIB::O_F128
: RTLIB::O_PPCF128
;
321 // SETONE = SETOLT | SETOGT
322 LC1
= (VT
== MVT::f32
) ? RTLIB::OLT_F32
:
323 (VT
== MVT::f64
) ? RTLIB::OLT_F64
:
324 (VT
== MVT::f128
) ? RTLIB::OLT_F128
: RTLIB::OLT_PPCF128
;
325 LC2
= (VT
== MVT::f32
) ? RTLIB::OGT_F32
:
326 (VT
== MVT::f64
) ? RTLIB::OGT_F64
:
327 (VT
== MVT::f128
) ? RTLIB::OGT_F128
: RTLIB::OGT_PPCF128
;
330 LC1
= (VT
== MVT::f32
) ? RTLIB::UO_F32
:
331 (VT
== MVT::f64
) ? RTLIB::UO_F64
:
332 (VT
== MVT::f128
) ? RTLIB::UO_F128
: RTLIB::UO_PPCF128
;
333 LC2
= (VT
== MVT::f32
) ? RTLIB::OEQ_F32
:
334 (VT
== MVT::f64
) ? RTLIB::OEQ_F64
:
335 (VT
== MVT::f128
) ? RTLIB::OEQ_F128
: RTLIB::OEQ_PPCF128
;
338 // Invert CC for unordered comparisons
339 ShouldInvertCC
= true;
342 LC1
= (VT
== MVT::f32
) ? RTLIB::OGE_F32
:
343 (VT
== MVT::f64
) ? RTLIB::OGE_F64
:
344 (VT
== MVT::f128
) ? RTLIB::OGE_F128
: RTLIB::OGE_PPCF128
;
347 LC1
= (VT
== MVT::f32
) ? RTLIB::OGT_F32
:
348 (VT
== MVT::f64
) ? RTLIB::OGT_F64
:
349 (VT
== MVT::f128
) ? RTLIB::OGT_F128
: RTLIB::OGT_PPCF128
;
352 LC1
= (VT
== MVT::f32
) ? RTLIB::OLE_F32
:
353 (VT
== MVT::f64
) ? RTLIB::OLE_F64
:
354 (VT
== MVT::f128
) ? RTLIB::OLE_F128
: RTLIB::OLE_PPCF128
;
357 LC1
= (VT
== MVT::f32
) ? RTLIB::OLT_F32
:
358 (VT
== MVT::f64
) ? RTLIB::OLT_F64
:
359 (VT
== MVT::f128
) ? RTLIB::OLT_F128
: RTLIB::OLT_PPCF128
;
361 default: llvm_unreachable("Do not know how to soften this setcc!");
365 // Use the target specific return value for comparions lib calls.
366 EVT RetVT
= getCmpLibcallReturnType();
367 SDValue Ops
[2] = {NewLHS
, NewRHS
};
368 NewLHS
= makeLibCall(DAG
, LC1
, RetVT
, Ops
, false /*sign irrelevant*/,
370 NewRHS
= DAG
.getConstant(0, dl
, RetVT
);
372 CCCode
= getCmpLibcallCC(LC1
);
374 CCCode
= getSetCCInverse(CCCode
, /*isInteger=*/true);
376 if (LC2
!= RTLIB::UNKNOWN_LIBCALL
) {
377 SDValue Tmp
= DAG
.getNode(
379 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), RetVT
),
380 NewLHS
, NewRHS
, DAG
.getCondCode(CCCode
));
381 NewLHS
= makeLibCall(DAG
, LC2
, RetVT
, Ops
, false/*sign irrelevant*/,
383 NewLHS
= DAG
.getNode(
385 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), RetVT
),
386 NewLHS
, NewRHS
, DAG
.getCondCode(getCmpLibcallCC(LC2
)));
387 NewLHS
= DAG
.getNode(ISD::OR
, dl
, Tmp
.getValueType(), Tmp
, NewLHS
);
392 /// Return the entry encoding for a jump table in the current function. The
393 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
394 unsigned TargetLowering::getJumpTableEncoding() const {
395 // In non-pic modes, just use the address of a block.
396 if (!isPositionIndependent())
397 return MachineJumpTableInfo::EK_BlockAddress
;
399 // In PIC mode, if the target supports a GPRel32 directive, use it.
400 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
401 return MachineJumpTableInfo::EK_GPRel32BlockAddress
;
403 // Otherwise, use a label difference.
404 return MachineJumpTableInfo::EK_LabelDifference32
;
407 SDValue
TargetLowering::getPICJumpTableRelocBase(SDValue Table
,
408 SelectionDAG
&DAG
) const {
409 // If our PIC model is GP relative, use the global offset table as the base.
410 unsigned JTEncoding
= getJumpTableEncoding();
412 if ((JTEncoding
== MachineJumpTableInfo::EK_GPRel64BlockAddress
) ||
413 (JTEncoding
== MachineJumpTableInfo::EK_GPRel32BlockAddress
))
414 return DAG
.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG
.getDataLayout()));
419 /// This returns the relocation base for the given PIC jumptable, the same as
420 /// getPICJumpTableRelocBase, but as an MCExpr.
422 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction
*MF
,
423 unsigned JTI
,MCContext
&Ctx
) const{
424 // The normal PIC reloc base is the label at the start of the jump table.
425 return MCSymbolRefExpr::create(MF
->getJTISymbol(JTI
, Ctx
), Ctx
);
429 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const {
430 const TargetMachine
&TM
= getTargetMachine();
431 const GlobalValue
*GV
= GA
->getGlobal();
433 // If the address is not even local to this DSO we will have to load it from
434 // a got and then add the offset.
435 if (!TM
.shouldAssumeDSOLocal(*GV
->getParent(), GV
))
438 // If the code is position independent we will have to add a base register.
439 if (isPositionIndependent())
442 // Otherwise we can do it.
446 //===----------------------------------------------------------------------===//
447 // Optimization Methods
448 //===----------------------------------------------------------------------===//
450 /// If the specified instruction has a constant integer operand and there are
451 /// bits set in that constant that are not demanded, then clear those bits and
453 bool TargetLowering::ShrinkDemandedConstant(SDValue Op
, const APInt
&Demanded
,
454 TargetLoweringOpt
&TLO
) const {
456 unsigned Opcode
= Op
.getOpcode();
458 // Do target-specific constant optimization.
459 if (targetShrinkDemandedConstant(Op
, Demanded
, TLO
))
460 return TLO
.New
.getNode();
462 // FIXME: ISD::SELECT, ISD::SELECT_CC
469 auto *Op1C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
473 // If this is a 'not' op, don't touch it because that's a canonical form.
474 const APInt
&C
= Op1C
->getAPIntValue();
475 if (Opcode
== ISD::XOR
&& Demanded
.isSubsetOf(C
))
478 if (!C
.isSubsetOf(Demanded
)) {
479 EVT VT
= Op
.getValueType();
480 SDValue NewC
= TLO
.DAG
.getConstant(Demanded
& C
, DL
, VT
);
481 SDValue NewOp
= TLO
.DAG
.getNode(Opcode
, DL
, VT
, Op
.getOperand(0), NewC
);
482 return TLO
.CombineTo(Op
, NewOp
);
492 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
493 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
494 /// generalized for targets with other types of implicit widening casts.
495 bool TargetLowering::ShrinkDemandedOp(SDValue Op
, unsigned BitWidth
,
496 const APInt
&Demanded
,
497 TargetLoweringOpt
&TLO
) const {
498 assert(Op
.getNumOperands() == 2 &&
499 "ShrinkDemandedOp only supports binary operators!");
500 assert(Op
.getNode()->getNumValues() == 1 &&
501 "ShrinkDemandedOp only supports nodes with one result!");
503 SelectionDAG
&DAG
= TLO
.DAG
;
506 // Early return, as this function cannot handle vector types.
507 if (Op
.getValueType().isVector())
510 // Don't do this if the node has another user, which may require the
512 if (!Op
.getNode()->hasOneUse())
515 // Search for the smallest integer type with free casts to and from
516 // Op's type. For expedience, just check power-of-2 integer types.
517 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
518 unsigned DemandedSize
= Demanded
.getActiveBits();
519 unsigned SmallVTBits
= DemandedSize
;
520 if (!isPowerOf2_32(SmallVTBits
))
521 SmallVTBits
= NextPowerOf2(SmallVTBits
);
522 for (; SmallVTBits
< BitWidth
; SmallVTBits
= NextPowerOf2(SmallVTBits
)) {
523 EVT SmallVT
= EVT::getIntegerVT(*DAG
.getContext(), SmallVTBits
);
524 if (TLI
.isTruncateFree(Op
.getValueType(), SmallVT
) &&
525 TLI
.isZExtFree(SmallVT
, Op
.getValueType())) {
526 // We found a type with free casts.
527 SDValue X
= DAG
.getNode(
528 Op
.getOpcode(), dl
, SmallVT
,
529 DAG
.getNode(ISD::TRUNCATE
, dl
, SmallVT
, Op
.getOperand(0)),
530 DAG
.getNode(ISD::TRUNCATE
, dl
, SmallVT
, Op
.getOperand(1)));
531 assert(DemandedSize
<= SmallVTBits
&& "Narrowed below demanded bits?");
532 SDValue Z
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, Op
.getValueType(), X
);
533 return TLO
.CombineTo(Op
, Z
);
539 bool TargetLowering::SimplifyDemandedBits(SDValue Op
, const APInt
&DemandedBits
,
540 DAGCombinerInfo
&DCI
) const {
541 SelectionDAG
&DAG
= DCI
.DAG
;
542 TargetLoweringOpt
TLO(DAG
, !DCI
.isBeforeLegalize(),
543 !DCI
.isBeforeLegalizeOps());
546 bool Simplified
= SimplifyDemandedBits(Op
, DemandedBits
, Known
, TLO
);
548 DCI
.AddToWorklist(Op
.getNode());
549 DCI
.CommitTargetLoweringOpt(TLO
);
554 bool TargetLowering::SimplifyDemandedBits(SDValue Op
, const APInt
&DemandedBits
,
556 TargetLoweringOpt
&TLO
,
558 bool AssumeSingleUse
) const {
559 EVT VT
= Op
.getValueType();
560 APInt DemandedElts
= VT
.isVector()
561 ? APInt::getAllOnesValue(VT
.getVectorNumElements())
563 return SimplifyDemandedBits(Op
, DemandedBits
, DemandedElts
, Known
, TLO
, Depth
,
567 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
568 /// result of Op are ever used downstream. If we can use this information to
569 /// simplify Op, create a new simplified DAG node and return true, returning the
570 /// original and new nodes in Old and New. Otherwise, analyze the expression and
571 /// return a mask of Known bits for the expression (used to simplify the
572 /// caller). The Known bits may only be accurate for those bits in the
573 /// OriginalDemandedBits and OriginalDemandedElts.
574 bool TargetLowering::SimplifyDemandedBits(
575 SDValue Op
, const APInt
&OriginalDemandedBits
,
576 const APInt
&OriginalDemandedElts
, KnownBits
&Known
, TargetLoweringOpt
&TLO
,
577 unsigned Depth
, bool AssumeSingleUse
) const {
578 unsigned BitWidth
= OriginalDemandedBits
.getBitWidth();
579 assert(Op
.getScalarValueSizeInBits() == BitWidth
&&
580 "Mask size mismatches value type size!");
582 unsigned NumElts
= OriginalDemandedElts
.getBitWidth();
583 assert((!Op
.getValueType().isVector() ||
584 NumElts
== Op
.getValueType().getVectorNumElements()) &&
585 "Unexpected vector size");
587 APInt DemandedBits
= OriginalDemandedBits
;
588 APInt DemandedElts
= OriginalDemandedElts
;
590 auto &DL
= TLO
.DAG
.getDataLayout();
592 // Don't know anything.
593 Known
= KnownBits(BitWidth
);
599 if (Op
.getOpcode() == ISD::Constant
) {
600 // We know all of the bits for a constant!
601 Known
.One
= cast
<ConstantSDNode
>(Op
)->getAPIntValue();
602 Known
.Zero
= ~Known
.One
;
606 // Other users may use these bits.
607 EVT VT
= Op
.getValueType();
608 if (!Op
.getNode()->hasOneUse() && !AssumeSingleUse
) {
610 // If not at the root, Just compute the Known bits to
611 // simplify things downstream.
612 Known
= TLO
.DAG
.computeKnownBits(Op
, DemandedElts
, Depth
);
615 // If this is the root being simplified, allow it to have multiple uses,
616 // just set the DemandedBits/Elts to all bits.
617 DemandedBits
= APInt::getAllOnesValue(BitWidth
);
618 DemandedElts
= APInt::getAllOnesValue(NumElts
);
619 } else if (OriginalDemandedBits
== 0 || OriginalDemandedElts
== 0) {
620 // Not demanding any bits/elts from Op.
621 return TLO
.CombineTo(Op
, TLO
.DAG
.getUNDEF(VT
));
622 } else if (Depth
== 6) { // Limit search depth.
626 KnownBits Known2
, KnownOut
;
627 switch (Op
.getOpcode()) {
628 case ISD::SCALAR_TO_VECTOR
: {
629 if (!DemandedElts
[0])
630 return TLO
.CombineTo(Op
, TLO
.DAG
.getUNDEF(VT
));
633 SDValue Src
= Op
.getOperand(0);
634 unsigned SrcBitWidth
= Src
.getScalarValueSizeInBits();
635 APInt SrcDemandedBits
= DemandedBits
.zextOrSelf(SrcBitWidth
);
636 if (SimplifyDemandedBits(Src
, SrcDemandedBits
, SrcKnown
, TLO
, Depth
+ 1))
638 Known
= SrcKnown
.zextOrTrunc(BitWidth
, false);
641 case ISD::BUILD_VECTOR
:
642 // Collect the known bits that are shared by every demanded element.
643 // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
644 Known
= TLO
.DAG
.computeKnownBits(Op
, DemandedElts
, Depth
);
645 return false; // Don't fall through, will infinitely loop.
647 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
648 if (getTargetConstantFromLoad(LD
)) {
649 Known
= TLO
.DAG
.computeKnownBits(Op
, DemandedElts
, Depth
);
650 return false; // Don't fall through, will infinitely loop.
654 case ISD::INSERT_VECTOR_ELT
: {
655 SDValue Vec
= Op
.getOperand(0);
656 SDValue Scl
= Op
.getOperand(1);
657 auto *CIdx
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
658 EVT VecVT
= Vec
.getValueType();
660 // If index isn't constant, assume we need all vector elements AND the
662 APInt
DemandedVecElts(DemandedElts
);
663 if (CIdx
&& CIdx
->getAPIntValue().ult(VecVT
.getVectorNumElements())) {
664 unsigned Idx
= CIdx
->getZExtValue();
665 DemandedVecElts
.clearBit(Idx
);
667 // Inserted element is not required.
668 if (!DemandedElts
[Idx
])
669 return TLO
.CombineTo(Op
, Vec
);
673 unsigned NumSclBits
= Scl
.getScalarValueSizeInBits();
674 APInt DemandedSclBits
= DemandedBits
.zextOrTrunc(NumSclBits
);
675 if (SimplifyDemandedBits(Scl
, DemandedSclBits
, KnownScl
, TLO
, Depth
+ 1))
678 Known
= KnownScl
.zextOrTrunc(BitWidth
, false);
681 if (SimplifyDemandedBits(Vec
, DemandedBits
, DemandedVecElts
, KnownVec
, TLO
,
685 if (!!DemandedVecElts
) {
686 Known
.One
&= KnownVec
.One
;
687 Known
.Zero
&= KnownVec
.Zero
;
692 case ISD::INSERT_SUBVECTOR
: {
693 SDValue Base
= Op
.getOperand(0);
694 SDValue Sub
= Op
.getOperand(1);
695 EVT SubVT
= Sub
.getValueType();
696 unsigned NumSubElts
= SubVT
.getVectorNumElements();
698 // If index isn't constant, assume we need the original demanded base
699 // elements and ALL the inserted subvector elements.
700 APInt BaseElts
= DemandedElts
;
701 APInt SubElts
= APInt::getAllOnesValue(NumSubElts
);
702 if (isa
<ConstantSDNode
>(Op
.getOperand(2))) {
703 const APInt
&Idx
= Op
.getConstantOperandAPInt(2);
704 if (Idx
.ule(NumElts
- NumSubElts
)) {
705 unsigned SubIdx
= Idx
.getZExtValue();
706 SubElts
= DemandedElts
.extractBits(NumSubElts
, SubIdx
);
707 BaseElts
.insertBits(APInt::getNullValue(NumSubElts
), SubIdx
);
711 KnownBits KnownSub
, KnownBase
;
712 if (SimplifyDemandedBits(Sub
, DemandedBits
, SubElts
, KnownSub
, TLO
,
715 if (SimplifyDemandedBits(Base
, DemandedBits
, BaseElts
, KnownBase
, TLO
,
719 Known
.Zero
.setAllBits();
720 Known
.One
.setAllBits();
722 Known
.One
&= KnownSub
.One
;
723 Known
.Zero
&= KnownSub
.Zero
;
726 Known
.One
&= KnownBase
.One
;
727 Known
.Zero
&= KnownBase
.Zero
;
731 case ISD::CONCAT_VECTORS
: {
732 Known
.Zero
.setAllBits();
733 Known
.One
.setAllBits();
734 EVT SubVT
= Op
.getOperand(0).getValueType();
735 unsigned NumSubVecs
= Op
.getNumOperands();
736 unsigned NumSubElts
= SubVT
.getVectorNumElements();
737 for (unsigned i
= 0; i
!= NumSubVecs
; ++i
) {
738 APInt DemandedSubElts
=
739 DemandedElts
.extractBits(NumSubElts
, i
* NumSubElts
);
740 if (SimplifyDemandedBits(Op
.getOperand(i
), DemandedBits
, DemandedSubElts
,
741 Known2
, TLO
, Depth
+ 1))
743 // Known bits are shared by every demanded subvector element.
744 if (!!DemandedSubElts
) {
745 Known
.One
&= Known2
.One
;
746 Known
.Zero
&= Known2
.Zero
;
751 case ISD::VECTOR_SHUFFLE
: {
752 ArrayRef
<int> ShuffleMask
= cast
<ShuffleVectorSDNode
>(Op
)->getMask();
754 // Collect demanded elements from shuffle operands..
755 APInt
DemandedLHS(NumElts
, 0);
756 APInt
DemandedRHS(NumElts
, 0);
757 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
758 if (!DemandedElts
[i
])
760 int M
= ShuffleMask
[i
];
762 // For UNDEF elements, we don't know anything about the common state of
763 // the shuffle result.
764 DemandedLHS
.clearAllBits();
765 DemandedRHS
.clearAllBits();
768 assert(0 <= M
&& M
< (int)(2 * NumElts
) && "Shuffle index out of range");
769 if (M
< (int)NumElts
)
770 DemandedLHS
.setBit(M
);
772 DemandedRHS
.setBit(M
- NumElts
);
775 if (!!DemandedLHS
|| !!DemandedRHS
) {
776 Known
.Zero
.setAllBits();
777 Known
.One
.setAllBits();
779 if (SimplifyDemandedBits(Op
.getOperand(0), DemandedBits
, DemandedLHS
,
780 Known2
, TLO
, Depth
+ 1))
782 Known
.One
&= Known2
.One
;
783 Known
.Zero
&= Known2
.Zero
;
786 if (SimplifyDemandedBits(Op
.getOperand(1), DemandedBits
, DemandedRHS
,
787 Known2
, TLO
, Depth
+ 1))
789 Known
.One
&= Known2
.One
;
790 Known
.Zero
&= Known2
.Zero
;
796 SDValue Op0
= Op
.getOperand(0);
797 SDValue Op1
= Op
.getOperand(1);
799 // If the RHS is a constant, check to see if the LHS would be zero without
800 // using the bits from the RHS. Below, we use knowledge about the RHS to
801 // simplify the LHS, here we're using information from the LHS to simplify
803 if (ConstantSDNode
*RHSC
= isConstOrConstSplat(Op1
)) {
804 // Do not increment Depth here; that can cause an infinite loop.
805 KnownBits LHSKnown
= TLO
.DAG
.computeKnownBits(Op0
, DemandedElts
, Depth
);
806 // If the LHS already has zeros where RHSC does, this 'and' is dead.
807 if ((LHSKnown
.Zero
& DemandedBits
) ==
808 (~RHSC
->getAPIntValue() & DemandedBits
))
809 return TLO
.CombineTo(Op
, Op0
);
811 // If any of the set bits in the RHS are known zero on the LHS, shrink
813 if (ShrinkDemandedConstant(Op
, ~LHSKnown
.Zero
& DemandedBits
, TLO
))
816 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
817 // constant, but if this 'and' is only clearing bits that were just set by
818 // the xor, then this 'and' can be eliminated by shrinking the mask of
819 // the xor. For example, for a 32-bit X:
820 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
821 if (isBitwiseNot(Op0
) && Op0
.hasOneUse() &&
822 LHSKnown
.One
== ~RHSC
->getAPIntValue()) {
823 SDValue Xor
= TLO
.DAG
.getNode(ISD::XOR
, dl
, VT
, Op0
.getOperand(0), Op1
);
824 return TLO
.CombineTo(Op
, Xor
);
828 if (SimplifyDemandedBits(Op1
, DemandedBits
, DemandedElts
, Known
, TLO
,
831 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
832 if (SimplifyDemandedBits(Op0
, ~Known
.Zero
& DemandedBits
, DemandedElts
,
833 Known2
, TLO
, Depth
+ 1))
835 assert(!Known2
.hasConflict() && "Bits known to be one AND zero?");
837 // If all of the demanded bits are known one on one side, return the other.
838 // These bits cannot contribute to the result of the 'and'.
839 if (DemandedBits
.isSubsetOf(Known2
.Zero
| Known
.One
))
840 return TLO
.CombineTo(Op
, Op0
);
841 if (DemandedBits
.isSubsetOf(Known
.Zero
| Known2
.One
))
842 return TLO
.CombineTo(Op
, Op1
);
843 // If all of the demanded bits in the inputs are known zeros, return zero.
844 if (DemandedBits
.isSubsetOf(Known
.Zero
| Known2
.Zero
))
845 return TLO
.CombineTo(Op
, TLO
.DAG
.getConstant(0, dl
, VT
));
846 // If the RHS is a constant, see if we can simplify it.
847 if (ShrinkDemandedConstant(Op
, ~Known2
.Zero
& DemandedBits
, TLO
))
849 // If the operation can be done in a smaller type, do so.
850 if (ShrinkDemandedOp(Op
, BitWidth
, DemandedBits
, TLO
))
853 // Output known-1 bits are only known if set in both the LHS & RHS.
854 Known
.One
&= Known2
.One
;
855 // Output known-0 are known to be clear if zero in either the LHS | RHS.
856 Known
.Zero
|= Known2
.Zero
;
860 SDValue Op0
= Op
.getOperand(0);
861 SDValue Op1
= Op
.getOperand(1);
863 if (SimplifyDemandedBits(Op1
, DemandedBits
, DemandedElts
, Known
, TLO
,
866 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
867 if (SimplifyDemandedBits(Op0
, ~Known
.One
& DemandedBits
, DemandedElts
,
868 Known2
, TLO
, Depth
+ 1))
870 assert(!Known2
.hasConflict() && "Bits known to be one AND zero?");
872 // If all of the demanded bits are known zero on one side, return the other.
873 // These bits cannot contribute to the result of the 'or'.
874 if (DemandedBits
.isSubsetOf(Known2
.One
| Known
.Zero
))
875 return TLO
.CombineTo(Op
, Op0
);
876 if (DemandedBits
.isSubsetOf(Known
.One
| Known2
.Zero
))
877 return TLO
.CombineTo(Op
, Op1
);
878 // If the RHS is a constant, see if we can simplify it.
879 if (ShrinkDemandedConstant(Op
, DemandedBits
, TLO
))
881 // If the operation can be done in a smaller type, do so.
882 if (ShrinkDemandedOp(Op
, BitWidth
, DemandedBits
, TLO
))
885 // Output known-0 bits are only known if clear in both the LHS & RHS.
886 Known
.Zero
&= Known2
.Zero
;
887 // Output known-1 are known to be set if set in either the LHS | RHS.
888 Known
.One
|= Known2
.One
;
892 SDValue Op0
= Op
.getOperand(0);
893 SDValue Op1
= Op
.getOperand(1);
895 if (SimplifyDemandedBits(Op1
, DemandedBits
, DemandedElts
, Known
, TLO
,
898 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
899 if (SimplifyDemandedBits(Op0
, DemandedBits
, DemandedElts
, Known2
, TLO
,
902 assert(!Known2
.hasConflict() && "Bits known to be one AND zero?");
904 // If all of the demanded bits are known zero on one side, return the other.
905 // These bits cannot contribute to the result of the 'xor'.
906 if (DemandedBits
.isSubsetOf(Known
.Zero
))
907 return TLO
.CombineTo(Op
, Op0
);
908 if (DemandedBits
.isSubsetOf(Known2
.Zero
))
909 return TLO
.CombineTo(Op
, Op1
);
910 // If the operation can be done in a smaller type, do so.
911 if (ShrinkDemandedOp(Op
, BitWidth
, DemandedBits
, TLO
))
914 // If all of the unknown bits are known to be zero on one side or the other
915 // (but not both) turn this into an *inclusive* or.
916 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
917 if (DemandedBits
.isSubsetOf(Known
.Zero
| Known2
.Zero
))
918 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::OR
, dl
, VT
, Op0
, Op1
));
920 // Output known-0 bits are known if clear or set in both the LHS & RHS.
921 KnownOut
.Zero
= (Known
.Zero
& Known2
.Zero
) | (Known
.One
& Known2
.One
);
922 // Output known-1 are known to be set if set in only one of the LHS, RHS.
923 KnownOut
.One
= (Known
.Zero
& Known2
.One
) | (Known
.One
& Known2
.Zero
);
925 if (ConstantSDNode
*C
= isConstOrConstSplat(Op1
)) {
926 // If one side is a constant, and all of the known set bits on the other
927 // side are also set in the constant, turn this into an AND, as we know
928 // the bits will be cleared.
929 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
930 // NB: it is okay if more bits are known than are requested
931 if (C
->getAPIntValue() == Known2
.One
) {
933 TLO
.DAG
.getConstant(~C
->getAPIntValue() & DemandedBits
, dl
, VT
);
934 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::AND
, dl
, VT
, Op0
, ANDC
));
937 // If the RHS is a constant, see if we can change it. Don't alter a -1
938 // constant because that's a 'not' op, and that is better for combining
940 if (!C
->isAllOnesValue()) {
941 if (DemandedBits
.isSubsetOf(C
->getAPIntValue())) {
942 // We're flipping all demanded bits. Flip the undemanded bits too.
943 SDValue New
= TLO
.DAG
.getNOT(dl
, Op0
, VT
);
944 return TLO
.CombineTo(Op
, New
);
946 // If we can't turn this into a 'not', try to shrink the constant.
947 if (ShrinkDemandedConstant(Op
, DemandedBits
, TLO
))
952 Known
= std::move(KnownOut
);
956 if (SimplifyDemandedBits(Op
.getOperand(2), DemandedBits
, Known
, TLO
,
959 if (SimplifyDemandedBits(Op
.getOperand(1), DemandedBits
, Known2
, TLO
,
962 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
963 assert(!Known2
.hasConflict() && "Bits known to be one AND zero?");
965 // If the operands are constants, see if we can simplify them.
966 if (ShrinkDemandedConstant(Op
, DemandedBits
, TLO
))
969 // Only known if known in both the LHS and RHS.
970 Known
.One
&= Known2
.One
;
971 Known
.Zero
&= Known2
.Zero
;
974 if (SimplifyDemandedBits(Op
.getOperand(3), DemandedBits
, Known
, TLO
,
977 if (SimplifyDemandedBits(Op
.getOperand(2), DemandedBits
, Known2
, TLO
,
980 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
981 assert(!Known2
.hasConflict() && "Bits known to be one AND zero?");
983 // If the operands are constants, see if we can simplify them.
984 if (ShrinkDemandedConstant(Op
, DemandedBits
, TLO
))
987 // Only known if known in both the LHS and RHS.
988 Known
.One
&= Known2
.One
;
989 Known
.Zero
&= Known2
.Zero
;
992 SDValue Op0
= Op
.getOperand(0);
993 SDValue Op1
= Op
.getOperand(1);
994 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(2))->get();
995 // If (1) we only need the sign-bit, (2) the setcc operands are the same
996 // width as the setcc result, and (3) the result of a setcc conforms to 0 or
997 // -1, we may be able to bypass the setcc.
998 if (DemandedBits
.isSignMask() &&
999 Op0
.getScalarValueSizeInBits() == BitWidth
&&
1000 getBooleanContents(VT
) ==
1001 BooleanContent::ZeroOrNegativeOneBooleanContent
) {
1002 // If we're testing X < 0, then this compare isn't needed - just use X!
1003 // FIXME: We're limiting to integer types here, but this should also work
1004 // if we don't care about FP signed-zero. The use of SETLT with FP means
1005 // that we don't care about NaNs.
1006 if (CC
== ISD::SETLT
&& Op1
.getValueType().isInteger() &&
1007 (isNullConstant(Op1
) || ISD::isBuildVectorAllZeros(Op1
.getNode())))
1008 return TLO
.CombineTo(Op
, Op0
);
1010 // TODO: Should we check for other forms of sign-bit comparisons?
1011 // Examples: X <= -1, X >= 0
1013 if (getBooleanContents(Op0
.getValueType()) ==
1014 TargetLowering::ZeroOrOneBooleanContent
&&
1016 Known
.Zero
.setBitsFrom(1);
1020 SDValue Op0
= Op
.getOperand(0);
1021 SDValue Op1
= Op
.getOperand(1);
1023 if (ConstantSDNode
*SA
= isConstOrConstSplat(Op1
, DemandedElts
)) {
1024 // If the shift count is an invalid immediate, don't do anything.
1025 if (SA
->getAPIntValue().uge(BitWidth
))
1028 unsigned ShAmt
= SA
->getZExtValue();
1030 return TLO
.CombineTo(Op
, Op0
);
1032 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1033 // single shift. We can do this if the bottom bits (which are shifted
1034 // out) are never demanded.
1035 // TODO - support non-uniform vector amounts.
1036 if (Op0
.getOpcode() == ISD::SRL
) {
1037 if ((DemandedBits
& APInt::getLowBitsSet(BitWidth
, ShAmt
)) == 0) {
1038 if (ConstantSDNode
*SA2
=
1039 isConstOrConstSplat(Op0
.getOperand(1), DemandedElts
)) {
1040 if (SA2
->getAPIntValue().ult(BitWidth
)) {
1041 unsigned C1
= SA2
->getZExtValue();
1042 unsigned Opc
= ISD::SHL
;
1043 int Diff
= ShAmt
- C1
;
1049 SDValue NewSA
= TLO
.DAG
.getConstant(Diff
, dl
, Op1
.getValueType());
1050 return TLO
.CombineTo(
1051 Op
, TLO
.DAG
.getNode(Opc
, dl
, VT
, Op0
.getOperand(0), NewSA
));
1057 if (SimplifyDemandedBits(Op0
, DemandedBits
.lshr(ShAmt
), DemandedElts
,
1058 Known
, TLO
, Depth
+ 1))
1061 // Try shrinking the operation as long as the shift amount will still be
1063 if ((ShAmt
< DemandedBits
.getActiveBits()) &&
1064 ShrinkDemandedOp(Op
, BitWidth
, DemandedBits
, TLO
))
1067 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1068 // are not demanded. This will likely allow the anyext to be folded away.
1069 if (Op0
.getOpcode() == ISD::ANY_EXTEND
) {
1070 SDValue InnerOp
= Op0
.getOperand(0);
1071 EVT InnerVT
= InnerOp
.getValueType();
1072 unsigned InnerBits
= InnerVT
.getScalarSizeInBits();
1073 if (ShAmt
< InnerBits
&& DemandedBits
.getActiveBits() <= InnerBits
&&
1074 isTypeDesirableForOp(ISD::SHL
, InnerVT
)) {
1075 EVT ShTy
= getShiftAmountTy(InnerVT
, DL
);
1076 if (!APInt(BitWidth
, ShAmt
).isIntN(ShTy
.getSizeInBits()))
1079 TLO
.DAG
.getNode(ISD::SHL
, dl
, InnerVT
, InnerOp
,
1080 TLO
.DAG
.getConstant(ShAmt
, dl
, ShTy
));
1081 return TLO
.CombineTo(
1082 Op
, TLO
.DAG
.getNode(ISD::ANY_EXTEND
, dl
, VT
, NarrowShl
));
1084 // Repeat the SHL optimization above in cases where an extension
1085 // intervenes: (shl (anyext (shr x, c1)), c2) to
1086 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits
1087 // aren't demanded (as above) and that the shifted upper c1 bits of
1088 // x aren't demanded.
1089 if (Op0
.hasOneUse() && InnerOp
.getOpcode() == ISD::SRL
&&
1090 InnerOp
.hasOneUse()) {
1091 if (ConstantSDNode
*SA2
=
1092 isConstOrConstSplat(InnerOp
.getOperand(1))) {
1093 unsigned InnerShAmt
= SA2
->getLimitedValue(InnerBits
);
1094 if (InnerShAmt
< ShAmt
&& InnerShAmt
< InnerBits
&&
1095 DemandedBits
.getActiveBits() <=
1096 (InnerBits
- InnerShAmt
+ ShAmt
) &&
1097 DemandedBits
.countTrailingZeros() >= ShAmt
) {
1098 SDValue NewSA
= TLO
.DAG
.getConstant(ShAmt
- InnerShAmt
, dl
,
1099 Op1
.getValueType());
1100 SDValue NewExt
= TLO
.DAG
.getNode(ISD::ANY_EXTEND
, dl
, VT
,
1101 InnerOp
.getOperand(0));
1102 return TLO
.CombineTo(
1103 Op
, TLO
.DAG
.getNode(ISD::SHL
, dl
, VT
, NewExt
, NewSA
));
1109 Known
.Zero
<<= ShAmt
;
1110 Known
.One
<<= ShAmt
;
1111 // low bits known zero.
1112 Known
.Zero
.setLowBits(ShAmt
);
1117 SDValue Op0
= Op
.getOperand(0);
1118 SDValue Op1
= Op
.getOperand(1);
1120 if (ConstantSDNode
*SA
= isConstOrConstSplat(Op1
, DemandedElts
)) {
1121 // If the shift count is an invalid immediate, don't do anything.
1122 if (SA
->getAPIntValue().uge(BitWidth
))
1125 unsigned ShAmt
= SA
->getZExtValue();
1127 return TLO
.CombineTo(Op
, Op0
);
1129 EVT ShiftVT
= Op1
.getValueType();
1130 APInt InDemandedMask
= (DemandedBits
<< ShAmt
);
1132 // If the shift is exact, then it does demand the low bits (and knows that
1134 if (Op
->getFlags().hasExact())
1135 InDemandedMask
.setLowBits(ShAmt
);
1137 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1138 // single shift. We can do this if the top bits (which are shifted out)
1139 // are never demanded.
1140 // TODO - support non-uniform vector amounts.
1141 if (Op0
.getOpcode() == ISD::SHL
) {
1142 if (ConstantSDNode
*SA2
=
1143 isConstOrConstSplat(Op0
.getOperand(1), DemandedElts
)) {
1144 if ((DemandedBits
& APInt::getHighBitsSet(BitWidth
, ShAmt
)) == 0) {
1145 if (SA2
->getAPIntValue().ult(BitWidth
)) {
1146 unsigned C1
= SA2
->getZExtValue();
1147 unsigned Opc
= ISD::SRL
;
1148 int Diff
= ShAmt
- C1
;
1154 SDValue NewSA
= TLO
.DAG
.getConstant(Diff
, dl
, ShiftVT
);
1155 return TLO
.CombineTo(
1156 Op
, TLO
.DAG
.getNode(Opc
, dl
, VT
, Op0
.getOperand(0), NewSA
));
1162 // Compute the new bits that are at the top now.
1163 if (SimplifyDemandedBits(Op0
, InDemandedMask
, DemandedElts
, Known
, TLO
,
1166 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1167 Known
.Zero
.lshrInPlace(ShAmt
);
1168 Known
.One
.lshrInPlace(ShAmt
);
1170 Known
.Zero
.setHighBits(ShAmt
); // High bits known zero.
1175 SDValue Op0
= Op
.getOperand(0);
1176 SDValue Op1
= Op
.getOperand(1);
1178 // If this is an arithmetic shift right and only the low-bit is set, we can
1179 // always convert this into a logical shr, even if the shift amount is
1180 // variable. The low bit of the shift cannot be an input sign bit unless
1181 // the shift amount is >= the size of the datatype, which is undefined.
1182 if (DemandedBits
.isOneValue())
1183 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::SRL
, dl
, VT
, Op0
, Op1
));
1185 if (ConstantSDNode
*SA
= isConstOrConstSplat(Op1
, DemandedElts
)) {
1186 // If the shift count is an invalid immediate, don't do anything.
1187 if (SA
->getAPIntValue().uge(BitWidth
))
1190 unsigned ShAmt
= SA
->getZExtValue();
1192 return TLO
.CombineTo(Op
, Op0
);
1194 APInt InDemandedMask
= (DemandedBits
<< ShAmt
);
1196 // If the shift is exact, then it does demand the low bits (and knows that
1198 if (Op
->getFlags().hasExact())
1199 InDemandedMask
.setLowBits(ShAmt
);
1201 // If any of the demanded bits are produced by the sign extension, we also
1202 // demand the input sign bit.
1203 if (DemandedBits
.countLeadingZeros() < ShAmt
)
1204 InDemandedMask
.setSignBit();
1206 if (SimplifyDemandedBits(Op0
, InDemandedMask
, DemandedElts
, Known
, TLO
,
1209 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1210 Known
.Zero
.lshrInPlace(ShAmt
);
1211 Known
.One
.lshrInPlace(ShAmt
);
1213 // If the input sign bit is known to be zero, or if none of the top bits
1214 // are demanded, turn this into an unsigned shift right.
1215 if (Known
.Zero
[BitWidth
- ShAmt
- 1] ||
1216 DemandedBits
.countLeadingZeros() >= ShAmt
) {
1218 Flags
.setExact(Op
->getFlags().hasExact());
1219 return TLO
.CombineTo(
1220 Op
, TLO
.DAG
.getNode(ISD::SRL
, dl
, VT
, Op0
, Op1
, Flags
));
1223 int Log2
= DemandedBits
.exactLogBase2();
1225 // The bit must come from the sign.
1227 TLO
.DAG
.getConstant(BitWidth
- 1 - Log2
, dl
, Op1
.getValueType());
1228 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(ISD::SRL
, dl
, VT
, Op0
, NewSA
));
1231 if (Known
.One
[BitWidth
- ShAmt
- 1])
1232 // New bits are known one.
1233 Known
.One
.setHighBits(ShAmt
);
1239 SDValue Op0
= Op
.getOperand(0);
1240 SDValue Op1
= Op
.getOperand(1);
1241 SDValue Op2
= Op
.getOperand(2);
1242 bool IsFSHL
= (Op
.getOpcode() == ISD::FSHL
);
1244 if (ConstantSDNode
*SA
= isConstOrConstSplat(Op2
, DemandedElts
)) {
1245 unsigned Amt
= SA
->getAPIntValue().urem(BitWidth
);
1247 // For fshl, 0-shift returns the 1st arg.
1248 // For fshr, 0-shift returns the 2nd arg.
1250 if (SimplifyDemandedBits(IsFSHL
? Op0
: Op1
, DemandedBits
, DemandedElts
,
1251 Known
, TLO
, Depth
+ 1))
1256 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1257 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1258 APInt Demanded0
= DemandedBits
.lshr(IsFSHL
? Amt
: (BitWidth
- Amt
));
1259 APInt Demanded1
= DemandedBits
<< (IsFSHL
? (BitWidth
- Amt
) : Amt
);
1260 if (SimplifyDemandedBits(Op0
, Demanded0
, DemandedElts
, Known2
, TLO
,
1263 if (SimplifyDemandedBits(Op1
, Demanded1
, DemandedElts
, Known
, TLO
,
1267 Known2
.One
<<= (IsFSHL
? Amt
: (BitWidth
- Amt
));
1268 Known2
.Zero
<<= (IsFSHL
? Amt
: (BitWidth
- Amt
));
1269 Known
.One
.lshrInPlace(IsFSHL
? (BitWidth
- Amt
) : Amt
);
1270 Known
.Zero
.lshrInPlace(IsFSHL
? (BitWidth
- Amt
) : Amt
);
1271 Known
.One
|= Known2
.One
;
1272 Known
.Zero
|= Known2
.Zero
;
1276 case ISD::BITREVERSE
: {
1277 SDValue Src
= Op
.getOperand(0);
1278 APInt DemandedSrcBits
= DemandedBits
.reverseBits();
1279 if (SimplifyDemandedBits(Src
, DemandedSrcBits
, DemandedElts
, Known2
, TLO
,
1282 Known
.One
= Known2
.One
.reverseBits();
1283 Known
.Zero
= Known2
.Zero
.reverseBits();
1286 case ISD::SIGN_EXTEND_INREG
: {
1287 SDValue Op0
= Op
.getOperand(0);
1288 EVT ExVT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
1289 unsigned ExVTBits
= ExVT
.getScalarSizeInBits();
1291 // If we only care about the highest bit, don't bother shifting right.
1292 if (DemandedBits
.isSignMask()) {
1293 unsigned NumSignBits
= TLO
.DAG
.ComputeNumSignBits(Op0
);
1294 bool AlreadySignExtended
= NumSignBits
>= BitWidth
- ExVTBits
+ 1;
1295 // However if the input is already sign extended we expect the sign
1296 // extension to be dropped altogether later and do not simplify.
1297 if (!AlreadySignExtended
) {
1298 // Compute the correct shift amount type, which must be getShiftAmountTy
1299 // for scalar types after legalization.
1300 EVT ShiftAmtTy
= VT
;
1301 if (TLO
.LegalTypes() && !ShiftAmtTy
.isVector())
1302 ShiftAmtTy
= getShiftAmountTy(ShiftAmtTy
, DL
);
1305 TLO
.DAG
.getConstant(BitWidth
- ExVTBits
, dl
, ShiftAmtTy
);
1306 return TLO
.CombineTo(Op
,
1307 TLO
.DAG
.getNode(ISD::SHL
, dl
, VT
, Op0
, ShiftAmt
));
1311 // If none of the extended bits are demanded, eliminate the sextinreg.
1312 if (DemandedBits
.getActiveBits() <= ExVTBits
)
1313 return TLO
.CombineTo(Op
, Op0
);
1315 APInt InputDemandedBits
= DemandedBits
.getLoBits(ExVTBits
);
1317 // Since the sign extended bits are demanded, we know that the sign
1319 InputDemandedBits
.setBit(ExVTBits
- 1);
1321 if (SimplifyDemandedBits(Op0
, InputDemandedBits
, Known
, TLO
, Depth
+ 1))
1323 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1325 // If the sign bit of the input is known set or clear, then we know the
1326 // top bits of the result.
1328 // If the input sign bit is known zero, convert this into a zero extension.
1329 if (Known
.Zero
[ExVTBits
- 1])
1330 return TLO
.CombineTo(
1331 Op
, TLO
.DAG
.getZeroExtendInReg(Op0
, dl
, ExVT
.getScalarType()));
1333 APInt Mask
= APInt::getLowBitsSet(BitWidth
, ExVTBits
);
1334 if (Known
.One
[ExVTBits
- 1]) { // Input sign bit known set
1335 Known
.One
.setBitsFrom(ExVTBits
);
1337 } else { // Input sign bit unknown
1343 case ISD::BUILD_PAIR
: {
1344 EVT HalfVT
= Op
.getOperand(0).getValueType();
1345 unsigned HalfBitWidth
= HalfVT
.getScalarSizeInBits();
1347 APInt MaskLo
= DemandedBits
.getLoBits(HalfBitWidth
).trunc(HalfBitWidth
);
1348 APInt MaskHi
= DemandedBits
.getHiBits(HalfBitWidth
).trunc(HalfBitWidth
);
1350 KnownBits KnownLo
, KnownHi
;
1352 if (SimplifyDemandedBits(Op
.getOperand(0), MaskLo
, KnownLo
, TLO
, Depth
+ 1))
1355 if (SimplifyDemandedBits(Op
.getOperand(1), MaskHi
, KnownHi
, TLO
, Depth
+ 1))
1358 Known
.Zero
= KnownLo
.Zero
.zext(BitWidth
) |
1359 KnownHi
.Zero
.zext(BitWidth
).shl(HalfBitWidth
);
1361 Known
.One
= KnownLo
.One
.zext(BitWidth
) |
1362 KnownHi
.One
.zext(BitWidth
).shl(HalfBitWidth
);
1365 case ISD::ZERO_EXTEND
:
1366 case ISD::ZERO_EXTEND_VECTOR_INREG
: {
1367 SDValue Src
= Op
.getOperand(0);
1368 EVT SrcVT
= Src
.getValueType();
1369 unsigned InBits
= SrcVT
.getScalarSizeInBits();
1370 unsigned InElts
= SrcVT
.isVector() ? SrcVT
.getVectorNumElements() : 1;
1371 bool IsVecInReg
= Op
.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG
;
1373 // If none of the top bits are demanded, convert this into an any_extend.
1374 if (DemandedBits
.getActiveBits() <= InBits
) {
1375 // If we only need the non-extended bits of the bottom element
1376 // then we can just bitcast to the result.
1377 if (IsVecInReg
&& DemandedElts
== 1 &&
1378 VT
.getSizeInBits() == SrcVT
.getSizeInBits() &&
1379 TLO
.DAG
.getDataLayout().isLittleEndian())
1380 return TLO
.CombineTo(Op
, TLO
.DAG
.getBitcast(VT
, Src
));
1383 IsVecInReg
? ISD::ANY_EXTEND_VECTOR_INREG
: ISD::ANY_EXTEND
;
1384 if (!TLO
.LegalOperations() || isOperationLegal(Opc
, VT
))
1385 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(Opc
, dl
, VT
, Src
));
1388 APInt InDemandedBits
= DemandedBits
.trunc(InBits
);
1389 APInt InDemandedElts
= DemandedElts
.zextOrSelf(InElts
);
1390 if (SimplifyDemandedBits(Src
, InDemandedBits
, InDemandedElts
, Known
, TLO
,
1393 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1394 assert(Known
.getBitWidth() == InBits
&& "Src width has changed?");
1395 Known
= Known
.zext(BitWidth
, true /* ExtendedBitsAreKnownZero */);
1398 case ISD::SIGN_EXTEND
:
1399 case ISD::SIGN_EXTEND_VECTOR_INREG
: {
1400 SDValue Src
= Op
.getOperand(0);
1401 EVT SrcVT
= Src
.getValueType();
1402 unsigned InBits
= SrcVT
.getScalarSizeInBits();
1403 unsigned InElts
= SrcVT
.isVector() ? SrcVT
.getVectorNumElements() : 1;
1404 bool IsVecInReg
= Op
.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG
;
1406 // If none of the top bits are demanded, convert this into an any_extend.
1407 if (DemandedBits
.getActiveBits() <= InBits
) {
1408 // If we only need the non-extended bits of the bottom element
1409 // then we can just bitcast to the result.
1410 if (IsVecInReg
&& DemandedElts
== 1 &&
1411 VT
.getSizeInBits() == SrcVT
.getSizeInBits() &&
1412 TLO
.DAG
.getDataLayout().isLittleEndian())
1413 return TLO
.CombineTo(Op
, TLO
.DAG
.getBitcast(VT
, Src
));
1416 IsVecInReg
? ISD::ANY_EXTEND_VECTOR_INREG
: ISD::ANY_EXTEND
;
1417 if (!TLO
.LegalOperations() || isOperationLegal(Opc
, VT
))
1418 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(Opc
, dl
, VT
, Src
));
1421 APInt InDemandedBits
= DemandedBits
.trunc(InBits
);
1422 APInt InDemandedElts
= DemandedElts
.zextOrSelf(InElts
);
1424 // Since some of the sign extended bits are demanded, we know that the sign
1426 InDemandedBits
.setBit(InBits
- 1);
1428 if (SimplifyDemandedBits(Src
, InDemandedBits
, InDemandedElts
, Known
, TLO
,
1431 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1432 assert(Known
.getBitWidth() == InBits
&& "Src width has changed?");
1434 // If the sign bit is known one, the top bits match.
1435 Known
= Known
.sext(BitWidth
);
1437 // If the sign bit is known zero, convert this to a zero extend.
1438 if (Known
.isNonNegative()) {
1440 IsVecInReg
? ISD::ZERO_EXTEND_VECTOR_INREG
: ISD::ZERO_EXTEND
;
1441 if (!TLO
.LegalOperations() || isOperationLegal(Opc
, VT
))
1442 return TLO
.CombineTo(Op
, TLO
.DAG
.getNode(Opc
, dl
, VT
, Src
));
1446 case ISD::ANY_EXTEND
:
1447 case ISD::ANY_EXTEND_VECTOR_INREG
: {
1448 SDValue Src
= Op
.getOperand(0);
1449 EVT SrcVT
= Src
.getValueType();
1450 unsigned InBits
= SrcVT
.getScalarSizeInBits();
1451 unsigned InElts
= SrcVT
.isVector() ? SrcVT
.getVectorNumElements() : 1;
1452 bool IsVecInReg
= Op
.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG
;
1454 // If we only need the bottom element then we can just bitcast.
1455 // TODO: Handle ANY_EXTEND?
1456 if (IsVecInReg
&& DemandedElts
== 1 &&
1457 VT
.getSizeInBits() == SrcVT
.getSizeInBits() &&
1458 TLO
.DAG
.getDataLayout().isLittleEndian())
1459 return TLO
.CombineTo(Op
, TLO
.DAG
.getBitcast(VT
, Src
));
1461 APInt InDemandedBits
= DemandedBits
.trunc(InBits
);
1462 APInt InDemandedElts
= DemandedElts
.zextOrSelf(InElts
);
1463 if (SimplifyDemandedBits(Src
, InDemandedBits
, InDemandedElts
, Known
, TLO
,
1466 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1467 assert(Known
.getBitWidth() == InBits
&& "Src width has changed?");
1468 Known
= Known
.zext(BitWidth
, false /* => any extend */);
1471 case ISD::TRUNCATE
: {
1472 SDValue Src
= Op
.getOperand(0);
1474 // Simplify the input, using demanded bit information, and compute the known
1475 // zero/one bits live out.
1476 unsigned OperandBitWidth
= Src
.getScalarValueSizeInBits();
1477 APInt TruncMask
= DemandedBits
.zext(OperandBitWidth
);
1478 if (SimplifyDemandedBits(Src
, TruncMask
, Known
, TLO
, Depth
+ 1))
1480 Known
= Known
.trunc(BitWidth
);
1482 // If the input is only used by this truncate, see if we can shrink it based
1483 // on the known demanded bits.
1484 if (Src
.getNode()->hasOneUse()) {
1485 switch (Src
.getOpcode()) {
1489 // Shrink SRL by a constant if none of the high bits shifted in are
1491 if (TLO
.LegalTypes() && !isTypeDesirableForOp(ISD::SRL
, VT
))
1492 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1496 auto *ShAmt
= dyn_cast
<ConstantSDNode
>(Src
.getOperand(1));
1497 if (!ShAmt
|| ShAmt
->getAPIntValue().uge(BitWidth
))
1500 SDValue Shift
= Src
.getOperand(1);
1501 uint64_t ShVal
= ShAmt
->getZExtValue();
1503 if (TLO
.LegalTypes())
1504 Shift
= TLO
.DAG
.getConstant(ShVal
, dl
, getShiftAmountTy(VT
, DL
));
1507 APInt::getHighBitsSet(OperandBitWidth
, OperandBitWidth
- BitWidth
);
1508 HighBits
.lshrInPlace(ShVal
);
1509 HighBits
= HighBits
.trunc(BitWidth
);
1511 if (!(HighBits
& DemandedBits
)) {
1512 // None of the shifted in bits are needed. Add a truncate of the
1513 // shift input, then shift it.
1515 TLO
.DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Src
.getOperand(0));
1516 return TLO
.CombineTo(
1517 Op
, TLO
.DAG
.getNode(ISD::SRL
, dl
, VT
, NewTrunc
, Shift
));
1523 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1526 case ISD::AssertZext
: {
1527 // AssertZext demands all of the high bits, plus any of the low bits
1528 // demanded by its users.
1529 EVT ZVT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
1530 APInt InMask
= APInt::getLowBitsSet(BitWidth
, ZVT
.getSizeInBits());
1531 if (SimplifyDemandedBits(Op
.getOperand(0), ~InMask
| DemandedBits
, Known
,
1534 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
1536 Known
.Zero
|= ~InMask
;
1539 case ISD::EXTRACT_VECTOR_ELT
: {
1540 SDValue Src
= Op
.getOperand(0);
1541 SDValue Idx
= Op
.getOperand(1);
1542 unsigned NumSrcElts
= Src
.getValueType().getVectorNumElements();
1543 unsigned EltBitWidth
= Src
.getScalarValueSizeInBits();
1545 // Demand the bits from every vector element without a constant index.
1546 APInt DemandedSrcElts
= APInt::getAllOnesValue(NumSrcElts
);
1547 if (auto *CIdx
= dyn_cast
<ConstantSDNode
>(Idx
))
1548 if (CIdx
->getAPIntValue().ult(NumSrcElts
))
1549 DemandedSrcElts
= APInt::getOneBitSet(NumSrcElts
, CIdx
->getZExtValue());
1551 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1552 // anything about the extended bits.
1553 APInt DemandedSrcBits
= DemandedBits
;
1554 if (BitWidth
> EltBitWidth
)
1555 DemandedSrcBits
= DemandedSrcBits
.trunc(EltBitWidth
);
1557 if (SimplifyDemandedBits(Src
, DemandedSrcBits
, DemandedSrcElts
, Known2
, TLO
,
1562 if (BitWidth
> EltBitWidth
)
1563 Known
= Known
.zext(BitWidth
, false /* => any extend */);
1566 case ISD::BITCAST
: {
1567 SDValue Src
= Op
.getOperand(0);
1568 EVT SrcVT
= Src
.getValueType();
1569 unsigned NumSrcEltBits
= SrcVT
.getScalarSizeInBits();
1571 // If this is an FP->Int bitcast and if the sign bit is the only
1572 // thing demanded, turn this into a FGETSIGN.
1573 if (!TLO
.LegalOperations() && !VT
.isVector() && !SrcVT
.isVector() &&
1574 DemandedBits
== APInt::getSignMask(Op
.getValueSizeInBits()) &&
1575 SrcVT
.isFloatingPoint()) {
1576 bool OpVTLegal
= isOperationLegalOrCustom(ISD::FGETSIGN
, VT
);
1577 bool i32Legal
= isOperationLegalOrCustom(ISD::FGETSIGN
, MVT::i32
);
1578 if ((OpVTLegal
|| i32Legal
) && VT
.isSimple() && SrcVT
!= MVT::f16
&&
1579 SrcVT
!= MVT::f128
) {
1580 // Cannot eliminate/lower SHL for f128 yet.
1581 EVT Ty
= OpVTLegal
? VT
: MVT::i32
;
1582 // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1583 // place. We expect the SHL to be eliminated by other optimizations.
1584 SDValue Sign
= TLO
.DAG
.getNode(ISD::FGETSIGN
, dl
, Ty
, Src
);
1585 unsigned OpVTSizeInBits
= Op
.getValueSizeInBits();
1586 if (!OpVTLegal
&& OpVTSizeInBits
> 32)
1587 Sign
= TLO
.DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, Sign
);
1588 unsigned ShVal
= Op
.getValueSizeInBits() - 1;
1589 SDValue ShAmt
= TLO
.DAG
.getConstant(ShVal
, dl
, VT
);
1590 return TLO
.CombineTo(Op
,
1591 TLO
.DAG
.getNode(ISD::SHL
, dl
, VT
, Sign
, ShAmt
));
1595 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
1596 // Demand the elt/bit if any of the original elts/bits are demanded.
1597 // TODO - bigendian once we have test coverage.
1598 // TODO - bool vectors once SimplifyDemandedVectorElts has SETCC support.
1599 if (SrcVT
.isVector() && NumSrcEltBits
> 1 &&
1600 (BitWidth
% NumSrcEltBits
) == 0 &&
1601 TLO
.DAG
.getDataLayout().isLittleEndian()) {
1602 unsigned Scale
= BitWidth
/ NumSrcEltBits
;
1603 unsigned NumSrcElts
= SrcVT
.getVectorNumElements();
1604 APInt DemandedSrcBits
= APInt::getNullValue(NumSrcEltBits
);
1605 APInt DemandedSrcElts
= APInt::getNullValue(NumSrcElts
);
1606 for (unsigned i
= 0; i
!= Scale
; ++i
) {
1607 unsigned Offset
= i
* NumSrcEltBits
;
1608 APInt Sub
= DemandedBits
.extractBits(NumSrcEltBits
, Offset
);
1609 if (!Sub
.isNullValue()) {
1610 DemandedSrcBits
|= Sub
;
1611 for (unsigned j
= 0; j
!= NumElts
; ++j
)
1612 if (DemandedElts
[j
])
1613 DemandedSrcElts
.setBit((j
* Scale
) + i
);
1617 APInt KnownSrcUndef
, KnownSrcZero
;
1618 if (SimplifyDemandedVectorElts(Src
, DemandedSrcElts
, KnownSrcUndef
,
1619 KnownSrcZero
, TLO
, Depth
+ 1))
1622 KnownBits KnownSrcBits
;
1623 if (SimplifyDemandedBits(Src
, DemandedSrcBits
, DemandedSrcElts
,
1624 KnownSrcBits
, TLO
, Depth
+ 1))
1626 } else if ((NumSrcEltBits
% BitWidth
) == 0 &&
1627 TLO
.DAG
.getDataLayout().isLittleEndian()) {
1628 unsigned Scale
= NumSrcEltBits
/ BitWidth
;
1629 unsigned NumSrcElts
= SrcVT
.isVector() ? SrcVT
.getVectorNumElements() : 1;
1630 APInt DemandedSrcBits
= APInt::getNullValue(NumSrcEltBits
);
1631 APInt DemandedSrcElts
= APInt::getNullValue(NumSrcElts
);
1632 for (unsigned i
= 0; i
!= NumElts
; ++i
)
1633 if (DemandedElts
[i
]) {
1634 unsigned Offset
= (i
% Scale
) * BitWidth
;
1635 DemandedSrcBits
.insertBits(DemandedBits
, Offset
);
1636 DemandedSrcElts
.setBit(i
/ Scale
);
1639 if (SrcVT
.isVector()) {
1640 APInt KnownSrcUndef
, KnownSrcZero
;
1641 if (SimplifyDemandedVectorElts(Src
, DemandedSrcElts
, KnownSrcUndef
,
1642 KnownSrcZero
, TLO
, Depth
+ 1))
1646 KnownBits KnownSrcBits
;
1647 if (SimplifyDemandedBits(Src
, DemandedSrcBits
, DemandedSrcElts
,
1648 KnownSrcBits
, TLO
, Depth
+ 1))
1652 // If this is a bitcast, let computeKnownBits handle it. Only do this on a
1653 // recursive call where Known may be useful to the caller.
1655 Known
= TLO
.DAG
.computeKnownBits(Op
, DemandedElts
, Depth
);
1663 // Add, Sub, and Mul don't demand any bits in positions beyond that
1664 // of the highest bit demanded of them.
1665 SDValue Op0
= Op
.getOperand(0), Op1
= Op
.getOperand(1);
1666 unsigned DemandedBitsLZ
= DemandedBits
.countLeadingZeros();
1667 APInt LoMask
= APInt::getLowBitsSet(BitWidth
, BitWidth
- DemandedBitsLZ
);
1668 if (SimplifyDemandedBits(Op0
, LoMask
, DemandedElts
, Known2
, TLO
,
1670 SimplifyDemandedBits(Op1
, LoMask
, DemandedElts
, Known2
, TLO
,
1672 // See if the operation should be performed at a smaller bit width.
1673 ShrinkDemandedOp(Op
, BitWidth
, DemandedBits
, TLO
)) {
1674 SDNodeFlags Flags
= Op
.getNode()->getFlags();
1675 if (Flags
.hasNoSignedWrap() || Flags
.hasNoUnsignedWrap()) {
1676 // Disable the nsw and nuw flags. We can no longer guarantee that we
1677 // won't wrap after simplification.
1678 Flags
.setNoSignedWrap(false);
1679 Flags
.setNoUnsignedWrap(false);
1681 TLO
.DAG
.getNode(Op
.getOpcode(), dl
, VT
, Op0
, Op1
, Flags
);
1682 return TLO
.CombineTo(Op
, NewOp
);
1687 // If we have a constant operand, we may be able to turn it into -1 if we
1688 // do not demand the high bits. This can make the constant smaller to
1689 // encode, allow more general folding, or match specialized instruction
1690 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
1691 // is probably not useful (and could be detrimental).
1692 ConstantSDNode
*C
= isConstOrConstSplat(Op1
);
1693 APInt HighMask
= APInt::getHighBitsSet(BitWidth
, DemandedBitsLZ
);
1694 if (C
&& !C
->isAllOnesValue() && !C
->isOne() &&
1695 (C
->getAPIntValue() | HighMask
).isAllOnesValue()) {
1696 SDValue Neg1
= TLO
.DAG
.getAllOnesConstant(dl
, VT
);
1697 // We can't guarantee that the new math op doesn't wrap, so explicitly
1698 // clear those flags to prevent folding with a potential existing node
1699 // that has those flags set.
1701 Flags
.setNoSignedWrap(false);
1702 Flags
.setNoUnsignedWrap(false);
1703 SDValue NewOp
= TLO
.DAG
.getNode(Op
.getOpcode(), dl
, VT
, Op0
, Neg1
, Flags
);
1704 return TLO
.CombineTo(Op
, NewOp
);
1710 if (Op
.getOpcode() >= ISD::BUILTIN_OP_END
) {
1711 if (SimplifyDemandedBitsForTargetNode(Op
, DemandedBits
, DemandedElts
,
1717 // Just use computeKnownBits to compute output bits.
1718 Known
= TLO
.DAG
.computeKnownBits(Op
, DemandedElts
, Depth
);
1722 // If we know the value of all of the demanded bits, return this as a
1724 if (DemandedBits
.isSubsetOf(Known
.Zero
| Known
.One
)) {
1725 // Avoid folding to a constant if any OpaqueConstant is involved.
1726 const SDNode
*N
= Op
.getNode();
1727 for (SDNodeIterator I
= SDNodeIterator::begin(N
),
1728 E
= SDNodeIterator::end(N
);
1731 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
))
1735 // TODO: Handle float bits as well.
1737 return TLO
.CombineTo(Op
, TLO
.DAG
.getConstant(Known
.One
, dl
, VT
));
1743 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op
,
1744 const APInt
&DemandedElts
,
1747 DAGCombinerInfo
&DCI
) const {
1748 SelectionDAG
&DAG
= DCI
.DAG
;
1749 TargetLoweringOpt
TLO(DAG
, !DCI
.isBeforeLegalize(),
1750 !DCI
.isBeforeLegalizeOps());
1753 SimplifyDemandedVectorElts(Op
, DemandedElts
, KnownUndef
, KnownZero
, TLO
);
1755 DCI
.AddToWorklist(Op
.getNode());
1756 DCI
.CommitTargetLoweringOpt(TLO
);
1762 /// Given a vector binary operation and known undefined elements for each input
1763 /// operand, compute whether each element of the output is undefined.
1764 static APInt
getKnownUndefForVectorBinop(SDValue BO
, SelectionDAG
&DAG
,
1765 const APInt
&UndefOp0
,
1766 const APInt
&UndefOp1
) {
1767 EVT VT
= BO
.getValueType();
1768 assert(DAG
.getTargetLoweringInfo().isBinOp(BO
.getOpcode()) && VT
.isVector() &&
1769 "Vector binop only");
1771 EVT EltVT
= VT
.getVectorElementType();
1772 unsigned NumElts
= VT
.getVectorNumElements();
1773 assert(UndefOp0
.getBitWidth() == NumElts
&&
1774 UndefOp1
.getBitWidth() == NumElts
&& "Bad type for undef analysis");
1776 auto getUndefOrConstantElt
= [&](SDValue V
, unsigned Index
,
1777 const APInt
&UndefVals
) {
1778 if (UndefVals
[Index
])
1779 return DAG
.getUNDEF(EltVT
);
1781 if (auto *BV
= dyn_cast
<BuildVectorSDNode
>(V
)) {
1782 // Try hard to make sure that the getNode() call is not creating temporary
1783 // nodes. Ignore opaque integers because they do not constant fold.
1784 SDValue Elt
= BV
->getOperand(Index
);
1785 auto *C
= dyn_cast
<ConstantSDNode
>(Elt
);
1786 if (isa
<ConstantFPSDNode
>(Elt
) || Elt
.isUndef() || (C
&& !C
->isOpaque()))
1793 APInt KnownUndef
= APInt::getNullValue(NumElts
);
1794 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
1795 // If both inputs for this element are either constant or undef and match
1796 // the element type, compute the constant/undef result for this element of
1798 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
1799 // not handle FP constants. The code within getNode() should be refactored
1800 // to avoid the danger of creating a bogus temporary node here.
1801 SDValue C0
= getUndefOrConstantElt(BO
.getOperand(0), i
, UndefOp0
);
1802 SDValue C1
= getUndefOrConstantElt(BO
.getOperand(1), i
, UndefOp1
);
1803 if (C0
&& C1
&& C0
.getValueType() == EltVT
&& C1
.getValueType() == EltVT
)
1804 if (DAG
.getNode(BO
.getOpcode(), SDLoc(BO
), EltVT
, C0
, C1
).isUndef())
1805 KnownUndef
.setBit(i
);
1810 bool TargetLowering::SimplifyDemandedVectorElts(
1811 SDValue Op
, const APInt
&OriginalDemandedElts
, APInt
&KnownUndef
,
1812 APInt
&KnownZero
, TargetLoweringOpt
&TLO
, unsigned Depth
,
1813 bool AssumeSingleUse
) const {
1814 EVT VT
= Op
.getValueType();
1815 APInt DemandedElts
= OriginalDemandedElts
;
1816 unsigned NumElts
= DemandedElts
.getBitWidth();
1817 assert(VT
.isVector() && "Expected vector op");
1818 assert(VT
.getVectorNumElements() == NumElts
&&
1819 "Mask size mismatches value type element count!");
1821 KnownUndef
= KnownZero
= APInt::getNullValue(NumElts
);
1825 KnownUndef
.setAllBits();
1829 // If Op has other users, assume that all elements are needed.
1830 if (!Op
.getNode()->hasOneUse() && !AssumeSingleUse
)
1831 DemandedElts
.setAllBits();
1833 // Not demanding any elements from Op.
1834 if (DemandedElts
== 0) {
1835 KnownUndef
.setAllBits();
1836 return TLO
.CombineTo(Op
, TLO
.DAG
.getUNDEF(VT
));
1839 // Limit search depth.
1844 unsigned EltSizeInBits
= VT
.getScalarSizeInBits();
1846 switch (Op
.getOpcode()) {
1847 case ISD::SCALAR_TO_VECTOR
: {
1848 if (!DemandedElts
[0]) {
1849 KnownUndef
.setAllBits();
1850 return TLO
.CombineTo(Op
, TLO
.DAG
.getUNDEF(VT
));
1852 KnownUndef
.setHighBits(NumElts
- 1);
1855 case ISD::BITCAST
: {
1856 SDValue Src
= Op
.getOperand(0);
1857 EVT SrcVT
= Src
.getValueType();
1859 // We only handle vectors here.
1860 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
1861 if (!SrcVT
.isVector())
1864 // Fast handling of 'identity' bitcasts.
1865 unsigned NumSrcElts
= SrcVT
.getVectorNumElements();
1866 if (NumSrcElts
== NumElts
)
1867 return SimplifyDemandedVectorElts(Src
, DemandedElts
, KnownUndef
,
1868 KnownZero
, TLO
, Depth
+ 1);
1870 APInt SrcZero
, SrcUndef
;
1871 APInt SrcDemandedElts
= APInt::getNullValue(NumSrcElts
);
1873 // Bitcast from 'large element' src vector to 'small element' vector, we
1874 // must demand a source element if any DemandedElt maps to it.
1875 if ((NumElts
% NumSrcElts
) == 0) {
1876 unsigned Scale
= NumElts
/ NumSrcElts
;
1877 for (unsigned i
= 0; i
!= NumElts
; ++i
)
1878 if (DemandedElts
[i
])
1879 SrcDemandedElts
.setBit(i
/ Scale
);
1881 if (SimplifyDemandedVectorElts(Src
, SrcDemandedElts
, SrcUndef
, SrcZero
,
1885 // Try calling SimplifyDemandedBits, converting demanded elts to the bits
1886 // of the large element.
1887 // TODO - bigendian once we have test coverage.
1888 if (TLO
.DAG
.getDataLayout().isLittleEndian()) {
1889 unsigned SrcEltSizeInBits
= SrcVT
.getScalarSizeInBits();
1890 APInt SrcDemandedBits
= APInt::getNullValue(SrcEltSizeInBits
);
1891 for (unsigned i
= 0; i
!= NumElts
; ++i
)
1892 if (DemandedElts
[i
]) {
1893 unsigned Ofs
= (i
% Scale
) * EltSizeInBits
;
1894 SrcDemandedBits
.setBits(Ofs
, Ofs
+ EltSizeInBits
);
1898 if (SimplifyDemandedBits(Src
, SrcDemandedBits
, Known
, TLO
, Depth
+ 1))
1902 // If the src element is zero/undef then all the output elements will be -
1903 // only demanded elements are guaranteed to be correct.
1904 for (unsigned i
= 0; i
!= NumSrcElts
; ++i
) {
1905 if (SrcDemandedElts
[i
]) {
1907 KnownZero
.setBits(i
* Scale
, (i
+ 1) * Scale
);
1909 KnownUndef
.setBits(i
* Scale
, (i
+ 1) * Scale
);
1914 // Bitcast from 'small element' src vector to 'large element' vector, we
1915 // demand all smaller source elements covered by the larger demanded element
1917 if ((NumSrcElts
% NumElts
) == 0) {
1918 unsigned Scale
= NumSrcElts
/ NumElts
;
1919 for (unsigned i
= 0; i
!= NumElts
; ++i
)
1920 if (DemandedElts
[i
])
1921 SrcDemandedElts
.setBits(i
* Scale
, (i
+ 1) * Scale
);
1923 if (SimplifyDemandedVectorElts(Src
, SrcDemandedElts
, SrcUndef
, SrcZero
,
1927 // If all the src elements covering an output element are zero/undef, then
1928 // the output element will be as well, assuming it was demanded.
1929 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
1930 if (DemandedElts
[i
]) {
1931 if (SrcZero
.extractBits(Scale
, i
* Scale
).isAllOnesValue())
1932 KnownZero
.setBit(i
);
1933 if (SrcUndef
.extractBits(Scale
, i
* Scale
).isAllOnesValue())
1934 KnownUndef
.setBit(i
);
1940 case ISD::BUILD_VECTOR
: {
1941 // Check all elements and simplify any unused elements with UNDEF.
1942 if (!DemandedElts
.isAllOnesValue()) {
1943 // Don't simplify BROADCASTS.
1944 if (llvm::any_of(Op
->op_values(),
1945 [&](SDValue Elt
) { return Op
.getOperand(0) != Elt
; })) {
1946 SmallVector
<SDValue
, 32> Ops(Op
->op_begin(), Op
->op_end());
1947 bool Updated
= false;
1948 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
1949 if (!DemandedElts
[i
] && !Ops
[i
].isUndef()) {
1950 Ops
[i
] = TLO
.DAG
.getUNDEF(Ops
[0].getValueType());
1951 KnownUndef
.setBit(i
);
1956 return TLO
.CombineTo(Op
, TLO
.DAG
.getBuildVector(VT
, DL
, Ops
));
1959 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
1960 SDValue SrcOp
= Op
.getOperand(i
);
1961 if (SrcOp
.isUndef()) {
1962 KnownUndef
.setBit(i
);
1963 } else if (EltSizeInBits
== SrcOp
.getScalarValueSizeInBits() &&
1964 (isNullConstant(SrcOp
) || isNullFPConstant(SrcOp
))) {
1965 KnownZero
.setBit(i
);
1970 case ISD::CONCAT_VECTORS
: {
1971 EVT SubVT
= Op
.getOperand(0).getValueType();
1972 unsigned NumSubVecs
= Op
.getNumOperands();
1973 unsigned NumSubElts
= SubVT
.getVectorNumElements();
1974 for (unsigned i
= 0; i
!= NumSubVecs
; ++i
) {
1975 SDValue SubOp
= Op
.getOperand(i
);
1976 APInt SubElts
= DemandedElts
.extractBits(NumSubElts
, i
* NumSubElts
);
1977 APInt SubUndef
, SubZero
;
1978 if (SimplifyDemandedVectorElts(SubOp
, SubElts
, SubUndef
, SubZero
, TLO
,
1981 KnownUndef
.insertBits(SubUndef
, i
* NumSubElts
);
1982 KnownZero
.insertBits(SubZero
, i
* NumSubElts
);
1986 case ISD::INSERT_SUBVECTOR
: {
1987 if (!isa
<ConstantSDNode
>(Op
.getOperand(2)))
1989 SDValue Base
= Op
.getOperand(0);
1990 SDValue Sub
= Op
.getOperand(1);
1991 EVT SubVT
= Sub
.getValueType();
1992 unsigned NumSubElts
= SubVT
.getVectorNumElements();
1993 const APInt
&Idx
= Op
.getConstantOperandAPInt(2);
1994 if (Idx
.ugt(NumElts
- NumSubElts
))
1996 unsigned SubIdx
= Idx
.getZExtValue();
1997 APInt SubElts
= DemandedElts
.extractBits(NumSubElts
, SubIdx
);
1998 APInt SubUndef
, SubZero
;
1999 if (SimplifyDemandedVectorElts(Sub
, SubElts
, SubUndef
, SubZero
, TLO
,
2002 APInt BaseElts
= DemandedElts
;
2003 BaseElts
.insertBits(APInt::getNullValue(NumSubElts
), SubIdx
);
2004 if (SimplifyDemandedVectorElts(Base
, BaseElts
, KnownUndef
, KnownZero
, TLO
,
2007 KnownUndef
.insertBits(SubUndef
, SubIdx
);
2008 KnownZero
.insertBits(SubZero
, SubIdx
);
2011 case ISD::EXTRACT_SUBVECTOR
: {
2012 SDValue Src
= Op
.getOperand(0);
2013 ConstantSDNode
*SubIdx
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
2014 unsigned NumSrcElts
= Src
.getValueType().getVectorNumElements();
2015 if (SubIdx
&& SubIdx
->getAPIntValue().ule(NumSrcElts
- NumElts
)) {
2016 // Offset the demanded elts by the subvector index.
2017 uint64_t Idx
= SubIdx
->getZExtValue();
2018 APInt SrcElts
= DemandedElts
.zextOrSelf(NumSrcElts
).shl(Idx
);
2019 APInt SrcUndef
, SrcZero
;
2020 if (SimplifyDemandedVectorElts(Src
, SrcElts
, SrcUndef
, SrcZero
, TLO
,
2023 KnownUndef
= SrcUndef
.extractBits(NumElts
, Idx
);
2024 KnownZero
= SrcZero
.extractBits(NumElts
, Idx
);
2028 case ISD::INSERT_VECTOR_ELT
: {
2029 SDValue Vec
= Op
.getOperand(0);
2030 SDValue Scl
= Op
.getOperand(1);
2031 auto *CIdx
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
2033 // For a legal, constant insertion index, if we don't need this insertion
2034 // then strip it, else remove it from the demanded elts.
2035 if (CIdx
&& CIdx
->getAPIntValue().ult(NumElts
)) {
2036 unsigned Idx
= CIdx
->getZExtValue();
2037 if (!DemandedElts
[Idx
])
2038 return TLO
.CombineTo(Op
, Vec
);
2040 APInt
DemandedVecElts(DemandedElts
);
2041 DemandedVecElts
.clearBit(Idx
);
2042 if (SimplifyDemandedVectorElts(Vec
, DemandedVecElts
, KnownUndef
,
2043 KnownZero
, TLO
, Depth
+ 1))
2046 KnownUndef
.clearBit(Idx
);
2048 KnownUndef
.setBit(Idx
);
2050 KnownZero
.clearBit(Idx
);
2051 if (isNullConstant(Scl
) || isNullFPConstant(Scl
))
2052 KnownZero
.setBit(Idx
);
2056 APInt VecUndef
, VecZero
;
2057 if (SimplifyDemandedVectorElts(Vec
, DemandedElts
, VecUndef
, VecZero
, TLO
,
2060 // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2063 case ISD::VSELECT
: {
2064 // Try to transform the select condition based on the current demanded
2066 // TODO: If a condition element is undef, we can choose from one arm of the
2067 // select (and if one arm is undef, then we can propagate that to the
2069 // TODO - add support for constant vselect masks (see IR version of this).
2070 APInt UnusedUndef
, UnusedZero
;
2071 if (SimplifyDemandedVectorElts(Op
.getOperand(0), DemandedElts
, UnusedUndef
,
2072 UnusedZero
, TLO
, Depth
+ 1))
2075 // See if we can simplify either vselect operand.
2076 APInt
DemandedLHS(DemandedElts
);
2077 APInt
DemandedRHS(DemandedElts
);
2078 APInt UndefLHS
, ZeroLHS
;
2079 APInt UndefRHS
, ZeroRHS
;
2080 if (SimplifyDemandedVectorElts(Op
.getOperand(1), DemandedLHS
, UndefLHS
,
2081 ZeroLHS
, TLO
, Depth
+ 1))
2083 if (SimplifyDemandedVectorElts(Op
.getOperand(2), DemandedRHS
, UndefRHS
,
2084 ZeroRHS
, TLO
, Depth
+ 1))
2087 KnownUndef
= UndefLHS
& UndefRHS
;
2088 KnownZero
= ZeroLHS
& ZeroRHS
;
2091 case ISD::VECTOR_SHUFFLE
: {
2092 ArrayRef
<int> ShuffleMask
= cast
<ShuffleVectorSDNode
>(Op
)->getMask();
2094 // Collect demanded elements from shuffle operands..
2095 APInt
DemandedLHS(NumElts
, 0);
2096 APInt
DemandedRHS(NumElts
, 0);
2097 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2098 int M
= ShuffleMask
[i
];
2099 if (M
< 0 || !DemandedElts
[i
])
2101 assert(0 <= M
&& M
< (int)(2 * NumElts
) && "Shuffle index out of range");
2102 if (M
< (int)NumElts
)
2103 DemandedLHS
.setBit(M
);
2105 DemandedRHS
.setBit(M
- NumElts
);
2108 // See if we can simplify either shuffle operand.
2109 APInt UndefLHS
, ZeroLHS
;
2110 APInt UndefRHS
, ZeroRHS
;
2111 if (SimplifyDemandedVectorElts(Op
.getOperand(0), DemandedLHS
, UndefLHS
,
2112 ZeroLHS
, TLO
, Depth
+ 1))
2114 if (SimplifyDemandedVectorElts(Op
.getOperand(1), DemandedRHS
, UndefRHS
,
2115 ZeroRHS
, TLO
, Depth
+ 1))
2118 // Simplify mask using undef elements from LHS/RHS.
2119 bool Updated
= false;
2120 bool IdentityLHS
= true, IdentityRHS
= true;
2121 SmallVector
<int, 32> NewMask(ShuffleMask
.begin(), ShuffleMask
.end());
2122 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2123 int &M
= NewMask
[i
];
2126 if (!DemandedElts
[i
] || (M
< (int)NumElts
&& UndefLHS
[M
]) ||
2127 (M
>= (int)NumElts
&& UndefRHS
[M
- NumElts
])) {
2131 IdentityLHS
&= (M
< 0) || (M
== (int)i
);
2132 IdentityRHS
&= (M
< 0) || ((M
- NumElts
) == i
);
2135 // Update legal shuffle masks based on demanded elements if it won't reduce
2136 // to Identity which can cause premature removal of the shuffle mask.
2137 if (Updated
&& !IdentityLHS
&& !IdentityRHS
&& !TLO
.LegalOps
&&
2138 isShuffleMaskLegal(NewMask
, VT
))
2139 return TLO
.CombineTo(Op
,
2140 TLO
.DAG
.getVectorShuffle(VT
, DL
, Op
.getOperand(0),
2141 Op
.getOperand(1), NewMask
));
2143 // Propagate undef/zero elements from LHS/RHS.
2144 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2145 int M
= ShuffleMask
[i
];
2147 KnownUndef
.setBit(i
);
2148 } else if (M
< (int)NumElts
) {
2150 KnownUndef
.setBit(i
);
2152 KnownZero
.setBit(i
);
2154 if (UndefRHS
[M
- NumElts
])
2155 KnownUndef
.setBit(i
);
2156 if (ZeroRHS
[M
- NumElts
])
2157 KnownZero
.setBit(i
);
2162 case ISD::ANY_EXTEND_VECTOR_INREG
:
2163 case ISD::SIGN_EXTEND_VECTOR_INREG
:
2164 case ISD::ZERO_EXTEND_VECTOR_INREG
: {
2165 APInt SrcUndef
, SrcZero
;
2166 SDValue Src
= Op
.getOperand(0);
2167 unsigned NumSrcElts
= Src
.getValueType().getVectorNumElements();
2168 APInt DemandedSrcElts
= DemandedElts
.zextOrSelf(NumSrcElts
);
2169 if (SimplifyDemandedVectorElts(Src
, DemandedSrcElts
, SrcUndef
, SrcZero
, TLO
,
2172 KnownZero
= SrcZero
.zextOrTrunc(NumElts
);
2173 KnownUndef
= SrcUndef
.zextOrTrunc(NumElts
);
2175 if (Op
.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG
&&
2176 Op
.getValueSizeInBits() == Src
.getValueSizeInBits() &&
2177 DemandedSrcElts
== 1 && TLO
.DAG
.getDataLayout().isLittleEndian()) {
2178 // aext - if we just need the bottom element then we can bitcast.
2179 return TLO
.CombineTo(Op
, TLO
.DAG
.getBitcast(VT
, Src
));
2182 if (Op
.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG
) {
2183 // zext(undef) upper bits are guaranteed to be zero.
2184 if (DemandedElts
.isSubsetOf(KnownUndef
))
2185 return TLO
.CombineTo(Op
, TLO
.DAG
.getConstant(0, SDLoc(Op
), VT
));
2186 KnownUndef
.clearAllBits();
2191 // TODO: There are more binop opcodes that could be handled here - MUL, MIN,
2192 // MAX, saturated math, etc.
2202 APInt UndefRHS
, ZeroRHS
;
2203 if (SimplifyDemandedVectorElts(Op
.getOperand(1), DemandedElts
, UndefRHS
,
2204 ZeroRHS
, TLO
, Depth
+ 1))
2206 APInt UndefLHS
, ZeroLHS
;
2207 if (SimplifyDemandedVectorElts(Op
.getOperand(0), DemandedElts
, UndefLHS
,
2208 ZeroLHS
, TLO
, Depth
+ 1))
2211 KnownZero
= ZeroLHS
& ZeroRHS
;
2212 KnownUndef
= getKnownUndefForVectorBinop(Op
, TLO
.DAG
, UndefLHS
, UndefRHS
);
2220 APInt UndefRHS
, ZeroRHS
;
2221 if (SimplifyDemandedVectorElts(Op
.getOperand(1), DemandedElts
, UndefRHS
,
2222 ZeroRHS
, TLO
, Depth
+ 1))
2224 APInt UndefLHS
, ZeroLHS
;
2225 if (SimplifyDemandedVectorElts(Op
.getOperand(0), DemandedElts
, UndefLHS
,
2226 ZeroLHS
, TLO
, Depth
+ 1))
2229 KnownZero
= ZeroLHS
;
2230 KnownUndef
= UndefLHS
& UndefRHS
; // TODO: use getKnownUndefForVectorBinop?
2235 APInt SrcUndef
, SrcZero
;
2236 if (SimplifyDemandedVectorElts(Op
.getOperand(1), DemandedElts
, SrcUndef
,
2237 SrcZero
, TLO
, Depth
+ 1))
2239 if (SimplifyDemandedVectorElts(Op
.getOperand(0), DemandedElts
, KnownUndef
,
2240 KnownZero
, TLO
, Depth
+ 1))
2243 // If either side has a zero element, then the result element is zero, even
2244 // if the other is an UNDEF.
2245 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2246 // and then handle 'and' nodes with the rest of the binop opcodes.
2247 KnownZero
|= SrcZero
;
2248 KnownUndef
&= SrcUndef
;
2249 KnownUndef
&= ~KnownZero
;
2253 case ISD::SIGN_EXTEND
:
2254 case ISD::ZERO_EXTEND
:
2255 if (SimplifyDemandedVectorElts(Op
.getOperand(0), DemandedElts
, KnownUndef
,
2256 KnownZero
, TLO
, Depth
+ 1))
2259 if (Op
.getOpcode() == ISD::ZERO_EXTEND
) {
2260 // zext(undef) upper bits are guaranteed to be zero.
2261 if (DemandedElts
.isSubsetOf(KnownUndef
))
2262 return TLO
.CombineTo(Op
, TLO
.DAG
.getConstant(0, SDLoc(Op
), VT
));
2263 KnownUndef
.clearAllBits();
2267 if (Op
.getOpcode() >= ISD::BUILTIN_OP_END
) {
2268 if (SimplifyDemandedVectorEltsForTargetNode(Op
, DemandedElts
, KnownUndef
,
2269 KnownZero
, TLO
, Depth
))
2273 APInt DemandedBits
= APInt::getAllOnesValue(EltSizeInBits
);
2274 if (SimplifyDemandedBits(Op
, DemandedBits
, OriginalDemandedElts
, Known
,
2275 TLO
, Depth
, AssumeSingleUse
))
2281 assert((KnownUndef
& KnownZero
) == 0 && "Elements flagged as undef AND zero");
2283 // Constant fold all undef cases.
2284 // TODO: Handle zero cases as well.
2285 if (DemandedElts
.isSubsetOf(KnownUndef
))
2286 return TLO
.CombineTo(Op
, TLO
.DAG
.getUNDEF(VT
));
2291 /// Determine which of the bits specified in Mask are known to be either zero or
2292 /// one and return them in the Known.
2293 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op
,
2295 const APInt
&DemandedElts
,
2296 const SelectionDAG
&DAG
,
2297 unsigned Depth
) const {
2298 assert((Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
2299 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
2300 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
2301 Op
.getOpcode() == ISD::INTRINSIC_VOID
) &&
2302 "Should use MaskedValueIsZero if you don't know whether Op"
2303 " is a target node!");
2307 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op
,
2309 const APInt
&DemandedElts
,
2310 const SelectionDAG
&DAG
,
2311 unsigned Depth
) const {
2312 assert(isa
<FrameIndexSDNode
>(Op
) && "expected FrameIndex");
2314 if (unsigned Align
= DAG
.InferPtrAlignment(Op
)) {
2315 // The low bits are known zero if the pointer is aligned.
2316 Known
.Zero
.setLowBits(Log2_32(Align
));
2320 /// This method can be implemented by targets that want to expose additional
2321 /// information about sign bits to the DAG Combiner.
2322 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op
,
2324 const SelectionDAG
&,
2325 unsigned Depth
) const {
2326 assert((Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
2327 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
2328 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
2329 Op
.getOpcode() == ISD::INTRINSIC_VOID
) &&
2330 "Should use ComputeNumSignBits if you don't know whether Op"
2331 " is a target node!");
2335 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2336 SDValue Op
, const APInt
&DemandedElts
, APInt
&KnownUndef
, APInt
&KnownZero
,
2337 TargetLoweringOpt
&TLO
, unsigned Depth
) const {
2338 assert((Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
2339 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
2340 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
2341 Op
.getOpcode() == ISD::INTRINSIC_VOID
) &&
2342 "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2343 " is a target node!");
2347 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2348 SDValue Op
, const APInt
&DemandedBits
, const APInt
&DemandedElts
,
2349 KnownBits
&Known
, TargetLoweringOpt
&TLO
, unsigned Depth
) const {
2350 assert((Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
2351 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
2352 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
2353 Op
.getOpcode() == ISD::INTRINSIC_VOID
) &&
2354 "Should use SimplifyDemandedBits if you don't know whether Op"
2355 " is a target node!");
2356 computeKnownBitsForTargetNode(Op
, Known
, DemandedElts
, TLO
.DAG
, Depth
);
2360 const Constant
*TargetLowering::getTargetConstantFromLoad(LoadSDNode
*) const {
2364 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op
,
2365 const SelectionDAG
&DAG
,
2367 unsigned Depth
) const {
2368 assert((Op
.getOpcode() >= ISD::BUILTIN_OP_END
||
2369 Op
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
||
2370 Op
.getOpcode() == ISD::INTRINSIC_W_CHAIN
||
2371 Op
.getOpcode() == ISD::INTRINSIC_VOID
) &&
2372 "Should use isKnownNeverNaN if you don't know whether Op"
2373 " is a target node!");
2377 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2378 // work with truncating build vectors and vectors with elements of less than
2380 bool TargetLowering::isConstTrueVal(const SDNode
*N
) const {
2385 if (auto *CN
= dyn_cast
<ConstantSDNode
>(N
)) {
2386 CVal
= CN
->getAPIntValue();
2387 } else if (auto *BV
= dyn_cast
<BuildVectorSDNode
>(N
)) {
2388 auto *CN
= BV
->getConstantSplatNode();
2392 // If this is a truncating build vector, truncate the splat value.
2393 // Otherwise, we may fail to match the expected values below.
2394 unsigned BVEltWidth
= BV
->getValueType(0).getScalarSizeInBits();
2395 CVal
= CN
->getAPIntValue();
2396 if (BVEltWidth
< CVal
.getBitWidth())
2397 CVal
= CVal
.trunc(BVEltWidth
);
2402 switch (getBooleanContents(N
->getValueType(0))) {
2403 case UndefinedBooleanContent
:
2405 case ZeroOrOneBooleanContent
:
2406 return CVal
.isOneValue();
2407 case ZeroOrNegativeOneBooleanContent
:
2408 return CVal
.isAllOnesValue();
2411 llvm_unreachable("Invalid boolean contents");
2414 bool TargetLowering::isConstFalseVal(const SDNode
*N
) const {
2418 const ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(N
);
2420 const BuildVectorSDNode
*BV
= dyn_cast
<BuildVectorSDNode
>(N
);
2424 // Only interested in constant splats, we don't care about undef
2425 // elements in identifying boolean constants and getConstantSplatNode
2426 // returns NULL if all ops are undef;
2427 CN
= BV
->getConstantSplatNode();
2432 if (getBooleanContents(N
->getValueType(0)) == UndefinedBooleanContent
)
2433 return !CN
->getAPIntValue()[0];
2435 return CN
->isNullValue();
2438 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode
*N
, EVT VT
,
2443 TargetLowering::BooleanContent Cnt
= getBooleanContents(VT
);
2445 case TargetLowering::ZeroOrOneBooleanContent
:
2446 // An extended value of 1 is always true, unless its original type is i1,
2447 // in which case it will be sign extended to -1.
2448 return (N
->isOne() && !SExt
) || (SExt
&& (N
->getValueType(0) != MVT::i1
));
2449 case TargetLowering::UndefinedBooleanContent
:
2450 case TargetLowering::ZeroOrNegativeOneBooleanContent
:
2451 return N
->isAllOnesValue() && SExt
;
2453 llvm_unreachable("Unexpected enumeration.");
2456 /// This helper function of SimplifySetCC tries to optimize the comparison when
2457 /// either operand of the SetCC node is a bitwise-and instruction.
2458 SDValue
TargetLowering::foldSetCCWithAnd(EVT VT
, SDValue N0
, SDValue N1
,
2459 ISD::CondCode Cond
, const SDLoc
&DL
,
2460 DAGCombinerInfo
&DCI
) const {
2461 // Match these patterns in any of their permutations:
2464 if (N1
.getOpcode() == ISD::AND
&& N0
.getOpcode() != ISD::AND
)
2467 EVT OpVT
= N0
.getValueType();
2468 if (N0
.getOpcode() != ISD::AND
|| !OpVT
.isInteger() ||
2469 (Cond
!= ISD::SETEQ
&& Cond
!= ISD::SETNE
))
2473 if (N0
.getOperand(0) == N1
) {
2474 X
= N0
.getOperand(1);
2475 Y
= N0
.getOperand(0);
2476 } else if (N0
.getOperand(1) == N1
) {
2477 X
= N0
.getOperand(0);
2478 Y
= N0
.getOperand(1);
2483 SelectionDAG
&DAG
= DCI
.DAG
;
2484 SDValue Zero
= DAG
.getConstant(0, DL
, OpVT
);
2485 if (DAG
.isKnownToBeAPowerOfTwo(Y
)) {
2486 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
2487 // Note that where Y is variable and is known to have at most one bit set
2488 // (for example, if it is Z & 1) we cannot do this; the expressions are not
2489 // equivalent when Y == 0.
2490 Cond
= ISD::getSetCCInverse(Cond
, /*isInteger=*/true);
2491 if (DCI
.isBeforeLegalizeOps() ||
2492 isCondCodeLegal(Cond
, N0
.getSimpleValueType()))
2493 return DAG
.getSetCC(DL
, VT
, N0
, Zero
, Cond
);
2494 } else if (N0
.hasOneUse() && hasAndNotCompare(Y
)) {
2495 // If the target supports an 'and-not' or 'and-complement' logic operation,
2496 // try to use that to make a comparison operation more efficient.
2497 // But don't do this transform if the mask is a single bit because there are
2498 // more efficient ways to deal with that case (for example, 'bt' on x86 or
2499 // 'rlwinm' on PPC).
2501 // Bail out if the compare operand that we want to turn into a zero is
2502 // already a zero (otherwise, infinite loop).
2503 auto *YConst
= dyn_cast
<ConstantSDNode
>(Y
);
2504 if (YConst
&& YConst
->isNullValue())
2507 // Transform this into: ~X & Y == 0.
2508 SDValue NotX
= DAG
.getNOT(SDLoc(X
), X
, OpVT
);
2509 SDValue NewAnd
= DAG
.getNode(ISD::AND
, SDLoc(N0
), OpVT
, NotX
, Y
);
2510 return DAG
.getSetCC(DL
, VT
, NewAnd
, Zero
, Cond
);
2516 /// There are multiple IR patterns that could be checking whether certain
2517 /// truncation of a signed number would be lossy or not. The pattern which is
2518 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
2519 /// We are looking for the following pattern: (KeptBits is a constant)
2520 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
2521 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
2522 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0
2523 /// We will unfold it into the natural trunc+sext pattern:
2524 /// ((%x << C) a>> C) dstcond %x
2525 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x)
2526 SDValue
TargetLowering::optimizeSetCCOfSignedTruncationCheck(
2527 EVT SCCVT
, SDValue N0
, SDValue N1
, ISD::CondCode Cond
, DAGCombinerInfo
&DCI
,
2528 const SDLoc
&DL
) const {
2529 // We must be comparing with a constant.
2531 if (!(C1
= dyn_cast
<ConstantSDNode
>(N1
)))
2534 // N0 should be: add %x, (1 << (KeptBits-1))
2535 if (N0
->getOpcode() != ISD::ADD
)
2538 // And we must be 'add'ing a constant.
2539 ConstantSDNode
*C01
;
2540 if (!(C01
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1))))
2543 SDValue X
= N0
->getOperand(0);
2544 EVT XVT
= X
.getValueType();
2546 // Validate constants ...
2548 APInt I1
= C1
->getAPIntValue();
2550 ISD::CondCode NewCond
;
2551 if (Cond
== ISD::CondCode::SETULT
) {
2552 NewCond
= ISD::CondCode::SETEQ
;
2553 } else if (Cond
== ISD::CondCode::SETULE
) {
2554 NewCond
= ISD::CondCode::SETEQ
;
2555 // But need to 'canonicalize' the constant.
2557 } else if (Cond
== ISD::CondCode::SETUGT
) {
2558 NewCond
= ISD::CondCode::SETNE
;
2559 // But need to 'canonicalize' the constant.
2561 } else if (Cond
== ISD::CondCode::SETUGE
) {
2562 NewCond
= ISD::CondCode::SETNE
;
2566 APInt I01
= C01
->getAPIntValue();
2568 auto checkConstants
= [&I1
, &I01
]() -> bool {
2569 // Both of them must be power-of-two, and the constant from setcc is bigger.
2570 return I1
.ugt(I01
) && I1
.isPowerOf2() && I01
.isPowerOf2();
2573 if (checkConstants()) {
2574 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256
2576 // What if we invert constants? (and the target predicate)
2579 NewCond
= getSetCCInverse(NewCond
, /*isInteger=*/true);
2580 if (!checkConstants())
2582 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256
2585 // They are power-of-two, so which bit is set?
2586 const unsigned KeptBits
= I1
.logBase2();
2587 const unsigned KeptBitsMinusOne
= I01
.logBase2();
2590 if (KeptBits
!= (KeptBitsMinusOne
+ 1))
2592 assert(KeptBits
> 0 && KeptBits
< XVT
.getSizeInBits() && "unreachable");
2594 // We don't want to do this in every single case.
2595 SelectionDAG
&DAG
= DCI
.DAG
;
2596 if (!DAG
.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
2600 const unsigned MaskedBits
= XVT
.getSizeInBits() - KeptBits
;
2601 assert(MaskedBits
> 0 && MaskedBits
< XVT
.getSizeInBits() && "unreachable");
2603 // Unfold into: ((%x << C) a>> C) cond %x
2604 // Where 'cond' will be either 'eq' or 'ne'.
2605 SDValue ShiftAmt
= DAG
.getConstant(MaskedBits
, DL
, XVT
);
2606 SDValue T0
= DAG
.getNode(ISD::SHL
, DL
, XVT
, X
, ShiftAmt
);
2607 SDValue T1
= DAG
.getNode(ISD::SRA
, DL
, XVT
, T0
, ShiftAmt
);
2608 SDValue T2
= DAG
.getSetCC(DL
, SCCVT
, T1
, X
, NewCond
);
2613 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
2614 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
2615 /// handle the commuted versions of these patterns.
2616 SDValue
TargetLowering::foldSetCCWithBinOp(EVT VT
, SDValue N0
, SDValue N1
,
2617 ISD::CondCode Cond
, const SDLoc
&DL
,
2618 DAGCombinerInfo
&DCI
) const {
2619 unsigned BOpcode
= N0
.getOpcode();
2620 assert((BOpcode
== ISD::ADD
|| BOpcode
== ISD::SUB
|| BOpcode
== ISD::XOR
) &&
2621 "Unexpected binop");
2622 assert((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) && "Unexpected condcode");
2624 // (X + Y) == X --> Y == 0
2625 // (X - Y) == X --> Y == 0
2626 // (X ^ Y) == X --> Y == 0
2627 SelectionDAG
&DAG
= DCI
.DAG
;
2628 EVT OpVT
= N0
.getValueType();
2629 SDValue X
= N0
.getOperand(0);
2630 SDValue Y
= N0
.getOperand(1);
2632 return DAG
.getSetCC(DL
, VT
, Y
, DAG
.getConstant(0, DL
, OpVT
), Cond
);
2637 // (X + Y) == Y --> X == 0
2638 // (X ^ Y) == Y --> X == 0
2639 if (BOpcode
== ISD::ADD
|| BOpcode
== ISD::XOR
)
2640 return DAG
.getSetCC(DL
, VT
, X
, DAG
.getConstant(0, DL
, OpVT
), Cond
);
2642 // The shift would not be valid if the operands are boolean (i1).
2643 if (!N0
.hasOneUse() || OpVT
.getScalarSizeInBits() == 1)
2646 // (X - Y) == Y --> X == Y << 1
2647 EVT ShiftVT
= getShiftAmountTy(OpVT
, DAG
.getDataLayout(),
2648 !DCI
.isBeforeLegalize());
2649 SDValue One
= DAG
.getConstant(1, DL
, ShiftVT
);
2650 SDValue YShl1
= DAG
.getNode(ISD::SHL
, DL
, N1
.getValueType(), Y
, One
);
2651 if (!DCI
.isCalledByLegalizer())
2652 DCI
.AddToWorklist(YShl1
.getNode());
2653 return DAG
.getSetCC(DL
, VT
, X
, YShl1
, Cond
);
2656 /// Try to simplify a setcc built with the specified operands and cc. If it is
2657 /// unable to simplify it, return a null SDValue.
2658 SDValue
TargetLowering::SimplifySetCC(EVT VT
, SDValue N0
, SDValue N1
,
2659 ISD::CondCode Cond
, bool foldBooleans
,
2660 DAGCombinerInfo
&DCI
,
2661 const SDLoc
&dl
) const {
2662 SelectionDAG
&DAG
= DCI
.DAG
;
2663 EVT OpVT
= N0
.getValueType();
2665 // Constant fold or commute setcc.
2666 if (SDValue Fold
= DAG
.FoldSetCC(VT
, N0
, N1
, Cond
, dl
))
2669 // Ensure that the constant occurs on the RHS and fold constant comparisons.
2670 // TODO: Handle non-splat vector constants. All undef causes trouble.
2671 ISD::CondCode SwappedCC
= ISD::getSetCCSwappedOperands(Cond
);
2672 if (isConstOrConstSplat(N0
) &&
2673 (DCI
.isBeforeLegalizeOps() ||
2674 isCondCodeLegal(SwappedCC
, N0
.getSimpleValueType())))
2675 return DAG
.getSetCC(dl
, VT
, N1
, N0
, SwappedCC
);
2677 // If we have a subtract with the same 2 non-constant operands as this setcc
2678 // -- but in reverse order -- then try to commute the operands of this setcc
2679 // to match. A matching pair of setcc (cmp) and sub may be combined into 1
2680 // instruction on some targets.
2681 if (!isConstOrConstSplat(N0
) && !isConstOrConstSplat(N1
) &&
2682 (DCI
.isBeforeLegalizeOps() ||
2683 isCondCodeLegal(SwappedCC
, N0
.getSimpleValueType())) &&
2684 DAG
.getNodeIfExists(ISD::SUB
, DAG
.getVTList(OpVT
), { N1
, N0
} ) &&
2685 !DAG
.getNodeIfExists(ISD::SUB
, DAG
.getVTList(OpVT
), { N0
, N1
} ))
2686 return DAG
.getSetCC(dl
, VT
, N1
, N0
, SwappedCC
);
2688 if (auto *N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode())) {
2689 const APInt
&C1
= N1C
->getAPIntValue();
2691 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
2692 // equality comparison, then we're just comparing whether X itself is
2694 if (N0
.getOpcode() == ISD::SRL
&& (C1
.isNullValue() || C1
.isOneValue()) &&
2695 N0
.getOperand(0).getOpcode() == ISD::CTLZ
&&
2696 N0
.getOperand(1).getOpcode() == ISD::Constant
) {
2697 const APInt
&ShAmt
= N0
.getConstantOperandAPInt(1);
2698 if ((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
2699 ShAmt
== Log2_32(N0
.getValueSizeInBits())) {
2700 if ((C1
== 0) == (Cond
== ISD::SETEQ
)) {
2701 // (srl (ctlz x), 5) == 0 -> X != 0
2702 // (srl (ctlz x), 5) != 1 -> X != 0
2705 // (srl (ctlz x), 5) != 0 -> X == 0
2706 // (srl (ctlz x), 5) == 1 -> X == 0
2709 SDValue Zero
= DAG
.getConstant(0, dl
, N0
.getValueType());
2710 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0).getOperand(0),
2716 // Look through truncs that don't change the value of a ctpop.
2717 if (N0
.hasOneUse() && N0
.getOpcode() == ISD::TRUNCATE
)
2718 CTPOP
= N0
.getOperand(0);
2720 if (CTPOP
.hasOneUse() && CTPOP
.getOpcode() == ISD::CTPOP
&&
2722 N0
.getValueSizeInBits() > Log2_32_Ceil(CTPOP
.getValueSizeInBits()))) {
2723 EVT CTVT
= CTPOP
.getValueType();
2724 SDValue CTOp
= CTPOP
.getOperand(0);
2726 // (ctpop x) u< 2 -> (x & x-1) == 0
2727 // (ctpop x) u> 1 -> (x & x-1) != 0
2728 if ((Cond
== ISD::SETULT
&& C1
== 2) || (Cond
== ISD::SETUGT
&& C1
== 1)){
2729 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, CTVT
, CTOp
,
2730 DAG
.getConstant(1, dl
, CTVT
));
2731 SDValue And
= DAG
.getNode(ISD::AND
, dl
, CTVT
, CTOp
, Sub
);
2732 ISD::CondCode CC
= Cond
== ISD::SETULT
? ISD::SETEQ
: ISD::SETNE
;
2733 return DAG
.getSetCC(dl
, VT
, And
, DAG
.getConstant(0, dl
, CTVT
), CC
);
2736 // If ctpop is not supported, expand a power-of-2 comparison based on it.
2737 if (C1
== 1 && !isOperationLegalOrCustom(ISD::CTPOP
, CTVT
) &&
2738 (Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
)) {
2739 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
2740 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
2741 SDValue Zero
= DAG
.getConstant(0, dl
, CTVT
);
2742 SDValue NegOne
= DAG
.getAllOnesConstant(dl
, CTVT
);
2743 ISD::CondCode InvCond
= ISD::getSetCCInverse(Cond
, true);
2744 SDValue Add
= DAG
.getNode(ISD::ADD
, dl
, CTVT
, CTOp
, NegOne
);
2745 SDValue And
= DAG
.getNode(ISD::AND
, dl
, CTVT
, CTOp
, Add
);
2746 SDValue LHS
= DAG
.getSetCC(dl
, VT
, CTOp
, Zero
, InvCond
);
2747 SDValue RHS
= DAG
.getSetCC(dl
, VT
, And
, Zero
, Cond
);
2748 unsigned LogicOpcode
= Cond
== ISD::SETEQ
? ISD::AND
: ISD::OR
;
2749 return DAG
.getNode(LogicOpcode
, dl
, VT
, LHS
, RHS
);
2753 // (zext x) == C --> x == (trunc C)
2754 // (sext x) == C --> x == (trunc C)
2755 if ((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
2756 DCI
.isBeforeLegalize() && N0
->hasOneUse()) {
2757 unsigned MinBits
= N0
.getValueSizeInBits();
2759 bool Signed
= false;
2760 if (N0
->getOpcode() == ISD::ZERO_EXTEND
) {
2762 MinBits
= N0
->getOperand(0).getValueSizeInBits();
2763 PreExt
= N0
->getOperand(0);
2764 } else if (N0
->getOpcode() == ISD::AND
) {
2765 // DAGCombine turns costly ZExts into ANDs
2766 if (auto *C
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1)))
2767 if ((C
->getAPIntValue()+1).isPowerOf2()) {
2768 MinBits
= C
->getAPIntValue().countTrailingOnes();
2769 PreExt
= N0
->getOperand(0);
2771 } else if (N0
->getOpcode() == ISD::SIGN_EXTEND
) {
2773 MinBits
= N0
->getOperand(0).getValueSizeInBits();
2774 PreExt
= N0
->getOperand(0);
2776 } else if (auto *LN0
= dyn_cast
<LoadSDNode
>(N0
)) {
2777 // ZEXTLOAD / SEXTLOAD
2778 if (LN0
->getExtensionType() == ISD::ZEXTLOAD
) {
2779 MinBits
= LN0
->getMemoryVT().getSizeInBits();
2781 } else if (LN0
->getExtensionType() == ISD::SEXTLOAD
) {
2783 MinBits
= LN0
->getMemoryVT().getSizeInBits();
2788 // Figure out how many bits we need to preserve this constant.
2789 unsigned ReqdBits
= Signed
?
2790 C1
.getBitWidth() - C1
.getNumSignBits() + 1 :
2793 // Make sure we're not losing bits from the constant.
2795 MinBits
< C1
.getBitWidth() &&
2796 MinBits
>= ReqdBits
) {
2797 EVT MinVT
= EVT::getIntegerVT(*DAG
.getContext(), MinBits
);
2798 if (isTypeDesirableForOp(ISD::SETCC
, MinVT
)) {
2799 // Will get folded away.
2800 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, dl
, MinVT
, PreExt
);
2801 if (MinBits
== 1 && C1
== 1)
2802 // Invert the condition.
2803 return DAG
.getSetCC(dl
, VT
, Trunc
, DAG
.getConstant(0, dl
, MVT::i1
),
2804 Cond
== ISD::SETEQ
? ISD::SETNE
: ISD::SETEQ
);
2805 SDValue C
= DAG
.getConstant(C1
.trunc(MinBits
), dl
, MinVT
);
2806 return DAG
.getSetCC(dl
, VT
, Trunc
, C
, Cond
);
2809 // If truncating the setcc operands is not desirable, we can still
2810 // simplify the expression in some cases:
2811 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
2812 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
2813 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
2814 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
2815 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
2816 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
2817 SDValue TopSetCC
= N0
->getOperand(0);
2818 unsigned N0Opc
= N0
->getOpcode();
2819 bool SExt
= (N0Opc
== ISD::SIGN_EXTEND
);
2820 if (TopSetCC
.getValueType() == MVT::i1
&& VT
== MVT::i1
&&
2821 TopSetCC
.getOpcode() == ISD::SETCC
&&
2822 (N0Opc
== ISD::ZERO_EXTEND
|| N0Opc
== ISD::SIGN_EXTEND
) &&
2823 (isConstFalseVal(N1C
) ||
2824 isExtendedTrueVal(N1C
, N0
->getValueType(0), SExt
))) {
2826 bool Inverse
= (N1C
->isNullValue() && Cond
== ISD::SETEQ
) ||
2827 (!N1C
->isNullValue() && Cond
== ISD::SETNE
);
2832 ISD::CondCode InvCond
= ISD::getSetCCInverse(
2833 cast
<CondCodeSDNode
>(TopSetCC
.getOperand(2))->get(),
2834 TopSetCC
.getOperand(0).getValueType().isInteger());
2835 return DAG
.getSetCC(dl
, VT
, TopSetCC
.getOperand(0),
2836 TopSetCC
.getOperand(1),
2842 // If the LHS is '(and load, const)', the RHS is 0, the test is for
2843 // equality or unsigned, and all 1 bits of the const are in the same
2844 // partial word, see if we can shorten the load.
2845 if (DCI
.isBeforeLegalize() &&
2846 !ISD::isSignedIntSetCC(Cond
) &&
2847 N0
.getOpcode() == ISD::AND
&& C1
== 0 &&
2848 N0
.getNode()->hasOneUse() &&
2849 isa
<LoadSDNode
>(N0
.getOperand(0)) &&
2850 N0
.getOperand(0).getNode()->hasOneUse() &&
2851 isa
<ConstantSDNode
>(N0
.getOperand(1))) {
2852 LoadSDNode
*Lod
= cast
<LoadSDNode
>(N0
.getOperand(0));
2854 unsigned bestWidth
= 0, bestOffset
= 0;
2855 if (!Lod
->isVolatile() && Lod
->isUnindexed()) {
2856 unsigned origWidth
= N0
.getValueSizeInBits();
2857 unsigned maskWidth
= origWidth
;
2858 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
2859 // 8 bits, but have to be careful...
2860 if (Lod
->getExtensionType() != ISD::NON_EXTLOAD
)
2861 origWidth
= Lod
->getMemoryVT().getSizeInBits();
2862 const APInt
&Mask
= N0
.getConstantOperandAPInt(1);
2863 for (unsigned width
= origWidth
/ 2; width
>=8; width
/= 2) {
2864 APInt newMask
= APInt::getLowBitsSet(maskWidth
, width
);
2865 for (unsigned offset
=0; offset
<origWidth
/width
; offset
++) {
2866 if (Mask
.isSubsetOf(newMask
)) {
2867 if (DAG
.getDataLayout().isLittleEndian())
2868 bestOffset
= (uint64_t)offset
* (width
/8);
2870 bestOffset
= (origWidth
/width
- offset
- 1) * (width
/8);
2871 bestMask
= Mask
.lshr(offset
* (width
/8) * 8);
2880 EVT newVT
= EVT::getIntegerVT(*DAG
.getContext(), bestWidth
);
2881 if (newVT
.isRound() &&
2882 shouldReduceLoadWidth(Lod
, ISD::NON_EXTLOAD
, newVT
)) {
2883 EVT PtrType
= Lod
->getOperand(1).getValueType();
2884 SDValue Ptr
= Lod
->getBasePtr();
2885 if (bestOffset
!= 0)
2886 Ptr
= DAG
.getNode(ISD::ADD
, dl
, PtrType
, Lod
->getBasePtr(),
2887 DAG
.getConstant(bestOffset
, dl
, PtrType
));
2888 unsigned NewAlign
= MinAlign(Lod
->getAlignment(), bestOffset
);
2889 SDValue NewLoad
= DAG
.getLoad(
2890 newVT
, dl
, Lod
->getChain(), Ptr
,
2891 Lod
->getPointerInfo().getWithOffset(bestOffset
), NewAlign
);
2892 return DAG
.getSetCC(dl
, VT
,
2893 DAG
.getNode(ISD::AND
, dl
, newVT
, NewLoad
,
2894 DAG
.getConstant(bestMask
.trunc(bestWidth
),
2896 DAG
.getConstant(0LL, dl
, newVT
), Cond
);
2901 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
2902 if (N0
.getOpcode() == ISD::ZERO_EXTEND
) {
2903 unsigned InSize
= N0
.getOperand(0).getValueSizeInBits();
2905 // If the comparison constant has bits in the upper part, the
2906 // zero-extended value could never match.
2907 if (C1
.intersects(APInt::getHighBitsSet(C1
.getBitWidth(),
2908 C1
.getBitWidth() - InSize
))) {
2913 return DAG
.getConstant(0, dl
, VT
);
2917 return DAG
.getConstant(1, dl
, VT
);
2920 // True if the sign bit of C1 is set.
2921 return DAG
.getConstant(C1
.isNegative(), dl
, VT
);
2924 // True if the sign bit of C1 isn't set.
2925 return DAG
.getConstant(C1
.isNonNegative(), dl
, VT
);
2931 // Otherwise, we can perform the comparison with the low bits.
2939 EVT newVT
= N0
.getOperand(0).getValueType();
2940 if (DCI
.isBeforeLegalizeOps() ||
2941 (isOperationLegal(ISD::SETCC
, newVT
) &&
2942 isCondCodeLegal(Cond
, newVT
.getSimpleVT()))) {
2944 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), newVT
);
2945 SDValue NewConst
= DAG
.getConstant(C1
.trunc(InSize
), dl
, newVT
);
2947 SDValue NewSetCC
= DAG
.getSetCC(dl
, NewSetCCVT
, N0
.getOperand(0),
2949 return DAG
.getBoolExtOrTrunc(NewSetCC
, dl
, VT
, N0
.getValueType());
2954 break; // todo, be more careful with signed comparisons
2956 } else if (N0
.getOpcode() == ISD::SIGN_EXTEND_INREG
&&
2957 (Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
)) {
2958 EVT ExtSrcTy
= cast
<VTSDNode
>(N0
.getOperand(1))->getVT();
2959 unsigned ExtSrcTyBits
= ExtSrcTy
.getSizeInBits();
2960 EVT ExtDstTy
= N0
.getValueType();
2961 unsigned ExtDstTyBits
= ExtDstTy
.getSizeInBits();
2963 // If the constant doesn't fit into the number of bits for the source of
2964 // the sign extension, it is impossible for both sides to be equal.
2965 if (C1
.getMinSignedBits() > ExtSrcTyBits
)
2966 return DAG
.getConstant(Cond
== ISD::SETNE
, dl
, VT
);
2969 EVT Op0Ty
= N0
.getOperand(0).getValueType();
2970 if (Op0Ty
== ExtSrcTy
) {
2971 ZextOp
= N0
.getOperand(0);
2973 APInt Imm
= APInt::getLowBitsSet(ExtDstTyBits
, ExtSrcTyBits
);
2974 ZextOp
= DAG
.getNode(ISD::AND
, dl
, Op0Ty
, N0
.getOperand(0),
2975 DAG
.getConstant(Imm
, dl
, Op0Ty
));
2977 if (!DCI
.isCalledByLegalizer())
2978 DCI
.AddToWorklist(ZextOp
.getNode());
2979 // Otherwise, make this a use of a zext.
2980 return DAG
.getSetCC(dl
, VT
, ZextOp
,
2981 DAG
.getConstant(C1
& APInt::getLowBitsSet(
2986 } else if ((N1C
->isNullValue() || N1C
->isOne()) &&
2987 (Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
)) {
2988 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
2989 if (N0
.getOpcode() == ISD::SETCC
&&
2990 isTypeLegal(VT
) && VT
.bitsLE(N0
.getValueType())) {
2991 bool TrueWhenTrue
= (Cond
== ISD::SETEQ
) ^ (!N1C
->isOne());
2993 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, N0
);
2994 // Invert the condition.
2995 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N0
.getOperand(2))->get();
2996 CC
= ISD::getSetCCInverse(CC
,
2997 N0
.getOperand(0).getValueType().isInteger());
2998 if (DCI
.isBeforeLegalizeOps() ||
2999 isCondCodeLegal(CC
, N0
.getOperand(0).getSimpleValueType()))
3000 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), N0
.getOperand(1), CC
);
3003 if ((N0
.getOpcode() == ISD::XOR
||
3004 (N0
.getOpcode() == ISD::AND
&&
3005 N0
.getOperand(0).getOpcode() == ISD::XOR
&&
3006 N0
.getOperand(1) == N0
.getOperand(0).getOperand(1))) &&
3007 isa
<ConstantSDNode
>(N0
.getOperand(1)) &&
3008 cast
<ConstantSDNode
>(N0
.getOperand(1))->isOne()) {
3009 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
3010 // can only do this if the top bits are known zero.
3011 unsigned BitWidth
= N0
.getValueSizeInBits();
3012 if (DAG
.MaskedValueIsZero(N0
,
3013 APInt::getHighBitsSet(BitWidth
,
3015 // Okay, get the un-inverted input value.
3017 if (N0
.getOpcode() == ISD::XOR
) {
3018 Val
= N0
.getOperand(0);
3020 assert(N0
.getOpcode() == ISD::AND
&&
3021 N0
.getOperand(0).getOpcode() == ISD::XOR
);
3022 // ((X^1)&1)^1 -> X & 1
3023 Val
= DAG
.getNode(ISD::AND
, dl
, N0
.getValueType(),
3024 N0
.getOperand(0).getOperand(0),
3028 return DAG
.getSetCC(dl
, VT
, Val
, N1
,
3029 Cond
== ISD::SETEQ
? ISD::SETNE
: ISD::SETEQ
);
3031 } else if (N1C
->isOne() &&
3033 getBooleanContents(N0
->getValueType(0)) ==
3034 ZeroOrOneBooleanContent
)) {
3036 if (Op0
.getOpcode() == ISD::TRUNCATE
)
3037 Op0
= Op0
.getOperand(0);
3039 if ((Op0
.getOpcode() == ISD::XOR
) &&
3040 Op0
.getOperand(0).getOpcode() == ISD::SETCC
&&
3041 Op0
.getOperand(1).getOpcode() == ISD::SETCC
) {
3042 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3043 Cond
= (Cond
== ISD::SETEQ
) ? ISD::SETNE
: ISD::SETEQ
;
3044 return DAG
.getSetCC(dl
, VT
, Op0
.getOperand(0), Op0
.getOperand(1),
3047 if (Op0
.getOpcode() == ISD::AND
&&
3048 isa
<ConstantSDNode
>(Op0
.getOperand(1)) &&
3049 cast
<ConstantSDNode
>(Op0
.getOperand(1))->isOne()) {
3050 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3051 if (Op0
.getValueType().bitsGT(VT
))
3052 Op0
= DAG
.getNode(ISD::AND
, dl
, VT
,
3053 DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Op0
.getOperand(0)),
3054 DAG
.getConstant(1, dl
, VT
));
3055 else if (Op0
.getValueType().bitsLT(VT
))
3056 Op0
= DAG
.getNode(ISD::AND
, dl
, VT
,
3057 DAG
.getNode(ISD::ANY_EXTEND
, dl
, VT
, Op0
.getOperand(0)),
3058 DAG
.getConstant(1, dl
, VT
));
3060 return DAG
.getSetCC(dl
, VT
, Op0
,
3061 DAG
.getConstant(0, dl
, Op0
.getValueType()),
3062 Cond
== ISD::SETEQ
? ISD::SETNE
: ISD::SETEQ
);
3064 if (Op0
.getOpcode() == ISD::AssertZext
&&
3065 cast
<VTSDNode
>(Op0
.getOperand(1))->getVT() == MVT::i1
)
3066 return DAG
.getSetCC(dl
, VT
, Op0
,
3067 DAG
.getConstant(0, dl
, Op0
.getValueType()),
3068 Cond
== ISD::SETEQ
? ISD::SETNE
: ISD::SETEQ
);
3073 // icmp eq/ne (urem %x, %y), 0
3074 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3076 if (N0
.getOpcode() == ISD::UREM
&& N1C
->isNullValue() &&
3077 (Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
)) {
3078 KnownBits XKnown
= DAG
.computeKnownBits(N0
.getOperand(0));
3079 KnownBits YKnown
= DAG
.computeKnownBits(N0
.getOperand(1));
3080 if (XKnown
.countMaxPopulation() == 1 && YKnown
.countMinPopulation() >= 2)
3081 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), N1
, Cond
);
3085 optimizeSetCCOfSignedTruncationCheck(VT
, N0
, N1
, Cond
, DCI
, dl
))
3089 // These simplifications apply to splat vectors as well.
3090 // TODO: Handle more splat vector cases.
3091 if (auto *N1C
= isConstOrConstSplat(N1
)) {
3092 const APInt
&C1
= N1C
->getAPIntValue();
3094 APInt MinVal
, MaxVal
;
3095 unsigned OperandBitSize
= N1C
->getValueType(0).getScalarSizeInBits();
3096 if (ISD::isSignedIntSetCC(Cond
)) {
3097 MinVal
= APInt::getSignedMinValue(OperandBitSize
);
3098 MaxVal
= APInt::getSignedMaxValue(OperandBitSize
);
3100 MinVal
= APInt::getMinValue(OperandBitSize
);
3101 MaxVal
= APInt::getMaxValue(OperandBitSize
);
3104 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3105 if (Cond
== ISD::SETGE
|| Cond
== ISD::SETUGE
) {
3106 // X >= MIN --> true
3108 return DAG
.getBoolConstant(true, dl
, VT
, OpVT
);
3110 if (!VT
.isVector()) { // TODO: Support this for vectors.
3111 // X >= C0 --> X > (C0 - 1)
3113 ISD::CondCode NewCC
= (Cond
== ISD::SETGE
) ? ISD::SETGT
: ISD::SETUGT
;
3114 if ((DCI
.isBeforeLegalizeOps() ||
3115 isCondCodeLegal(NewCC
, VT
.getSimpleVT())) &&
3116 (!N1C
->isOpaque() || (C
.getBitWidth() <= 64 &&
3117 isLegalICmpImmediate(C
.getSExtValue())))) {
3118 return DAG
.getSetCC(dl
, VT
, N0
,
3119 DAG
.getConstant(C
, dl
, N1
.getValueType()),
3125 if (Cond
== ISD::SETLE
|| Cond
== ISD::SETULE
) {
3126 // X <= MAX --> true
3128 return DAG
.getBoolConstant(true, dl
, VT
, OpVT
);
3130 // X <= C0 --> X < (C0 + 1)
3131 if (!VT
.isVector()) { // TODO: Support this for vectors.
3133 ISD::CondCode NewCC
= (Cond
== ISD::SETLE
) ? ISD::SETLT
: ISD::SETULT
;
3134 if ((DCI
.isBeforeLegalizeOps() ||
3135 isCondCodeLegal(NewCC
, VT
.getSimpleVT())) &&
3136 (!N1C
->isOpaque() || (C
.getBitWidth() <= 64 &&
3137 isLegalICmpImmediate(C
.getSExtValue())))) {
3138 return DAG
.getSetCC(dl
, VT
, N0
,
3139 DAG
.getConstant(C
, dl
, N1
.getValueType()),
3145 if (Cond
== ISD::SETLT
|| Cond
== ISD::SETULT
) {
3147 return DAG
.getBoolConstant(false, dl
, VT
, OpVT
); // X < MIN --> false
3149 // TODO: Support this for vectors after legalize ops.
3150 if (!VT
.isVector() || DCI
.isBeforeLegalizeOps()) {
3151 // Canonicalize setlt X, Max --> setne X, Max
3153 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETNE
);
3155 // If we have setult X, 1, turn it into seteq X, 0
3157 return DAG
.getSetCC(dl
, VT
, N0
,
3158 DAG
.getConstant(MinVal
, dl
, N0
.getValueType()),
3163 if (Cond
== ISD::SETGT
|| Cond
== ISD::SETUGT
) {
3165 return DAG
.getBoolConstant(false, dl
, VT
, OpVT
); // X > MAX --> false
3167 // TODO: Support this for vectors after legalize ops.
3168 if (!VT
.isVector() || DCI
.isBeforeLegalizeOps()) {
3169 // Canonicalize setgt X, Min --> setne X, Min
3171 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETNE
);
3173 // If we have setugt X, Max-1, turn it into seteq X, Max
3175 return DAG
.getSetCC(dl
, VT
, N0
,
3176 DAG
.getConstant(MaxVal
, dl
, N0
.getValueType()),
3181 // If we have "setcc X, C0", check to see if we can shrink the immediate
3183 // TODO: Support this for vectors after legalize ops.
3184 if (!VT
.isVector() || DCI
.isBeforeLegalizeOps()) {
3185 // SETUGT X, SINTMAX -> SETLT X, 0
3186 if (Cond
== ISD::SETUGT
&&
3187 C1
== APInt::getSignedMaxValue(OperandBitSize
))
3188 return DAG
.getSetCC(dl
, VT
, N0
,
3189 DAG
.getConstant(0, dl
, N1
.getValueType()),
3192 // SETULT X, SINTMIN -> SETGT X, -1
3193 if (Cond
== ISD::SETULT
&&
3194 C1
== APInt::getSignedMinValue(OperandBitSize
)) {
3195 SDValue ConstMinusOne
=
3196 DAG
.getConstant(APInt::getAllOnesValue(OperandBitSize
), dl
,
3198 return DAG
.getSetCC(dl
, VT
, N0
, ConstMinusOne
, ISD::SETGT
);
3203 // Back to non-vector simplifications.
3204 // TODO: Can we do these for vector splats?
3205 if (auto *N1C
= dyn_cast
<ConstantSDNode
>(N1
.getNode())) {
3206 const APInt
&C1
= N1C
->getAPIntValue();
3208 // Fold bit comparisons when we can.
3209 if ((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
3210 (VT
== N0
.getValueType() ||
3211 (isTypeLegal(VT
) && VT
.bitsLE(N0
.getValueType()))) &&
3212 N0
.getOpcode() == ISD::AND
) {
3213 auto &DL
= DAG
.getDataLayout();
3214 if (auto *AndRHS
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
3215 EVT ShiftTy
= getShiftAmountTy(N0
.getValueType(), DL
,
3216 !DCI
.isBeforeLegalize());
3217 if (Cond
== ISD::SETNE
&& C1
== 0) {// (X & 8) != 0 --> (X & 8) >> 3
3218 // Perform the xform if the AND RHS is a single bit.
3219 if (AndRHS
->getAPIntValue().isPowerOf2()) {
3220 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
,
3221 DAG
.getNode(ISD::SRL
, dl
, N0
.getValueType(), N0
,
3222 DAG
.getConstant(AndRHS
->getAPIntValue().logBase2(), dl
,
3225 } else if (Cond
== ISD::SETEQ
&& C1
== AndRHS
->getAPIntValue()) {
3226 // (X & 8) == 8 --> (X & 8) >> 3
3227 // Perform the xform if C1 is a single bit.
3228 if (C1
.isPowerOf2()) {
3229 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
,
3230 DAG
.getNode(ISD::SRL
, dl
, N0
.getValueType(), N0
,
3231 DAG
.getConstant(C1
.logBase2(), dl
,
3238 if (C1
.getMinSignedBits() <= 64 &&
3239 !isLegalICmpImmediate(C1
.getSExtValue())) {
3240 // (X & -256) == 256 -> (X >> 8) == 1
3241 if ((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
3242 N0
.getOpcode() == ISD::AND
&& N0
.hasOneUse()) {
3243 if (auto *AndRHS
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
3244 const APInt
&AndRHSC
= AndRHS
->getAPIntValue();
3245 if ((-AndRHSC
).isPowerOf2() && (AndRHSC
& C1
) == C1
) {
3246 unsigned ShiftBits
= AndRHSC
.countTrailingZeros();
3247 auto &DL
= DAG
.getDataLayout();
3248 EVT ShiftTy
= getShiftAmountTy(N0
.getValueType(), DL
,
3249 !DCI
.isBeforeLegalize());
3250 EVT CmpTy
= N0
.getValueType();
3251 SDValue Shift
= DAG
.getNode(ISD::SRL
, dl
, CmpTy
, N0
.getOperand(0),
3252 DAG
.getConstant(ShiftBits
, dl
,
3254 SDValue CmpRHS
= DAG
.getConstant(C1
.lshr(ShiftBits
), dl
, CmpTy
);
3255 return DAG
.getSetCC(dl
, VT
, Shift
, CmpRHS
, Cond
);
3258 } else if (Cond
== ISD::SETULT
|| Cond
== ISD::SETUGE
||
3259 Cond
== ISD::SETULE
|| Cond
== ISD::SETUGT
) {
3260 bool AdjOne
= (Cond
== ISD::SETULE
|| Cond
== ISD::SETUGT
);
3261 // X < 0x100000000 -> (X >> 32) < 1
3262 // X >= 0x100000000 -> (X >> 32) >= 1
3263 // X <= 0x0ffffffff -> (X >> 32) < 1
3264 // X > 0x0ffffffff -> (X >> 32) >= 1
3267 ISD::CondCode NewCond
= Cond
;
3269 ShiftBits
= C1
.countTrailingOnes();
3271 NewCond
= (Cond
== ISD::SETULE
) ? ISD::SETULT
: ISD::SETUGE
;
3273 ShiftBits
= C1
.countTrailingZeros();
3275 NewC
.lshrInPlace(ShiftBits
);
3276 if (ShiftBits
&& NewC
.getMinSignedBits() <= 64 &&
3277 isLegalICmpImmediate(NewC
.getSExtValue())) {
3278 auto &DL
= DAG
.getDataLayout();
3279 EVT ShiftTy
= getShiftAmountTy(N0
.getValueType(), DL
,
3280 !DCI
.isBeforeLegalize());
3281 EVT CmpTy
= N0
.getValueType();
3282 SDValue Shift
= DAG
.getNode(ISD::SRL
, dl
, CmpTy
, N0
,
3283 DAG
.getConstant(ShiftBits
, dl
, ShiftTy
));
3284 SDValue CmpRHS
= DAG
.getConstant(NewC
, dl
, CmpTy
);
3285 return DAG
.getSetCC(dl
, VT
, Shift
, CmpRHS
, NewCond
);
3291 if (!isa
<ConstantFPSDNode
>(N0
) && isa
<ConstantFPSDNode
>(N1
)) {
3292 auto *CFP
= cast
<ConstantFPSDNode
>(N1
);
3293 assert(!CFP
->getValueAPF().isNaN() && "Unexpected NaN value");
3295 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
3296 // constant if knowing that the operand is non-nan is enough. We prefer to
3297 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
3299 if (Cond
== ISD::SETO
|| Cond
== ISD::SETUO
)
3300 return DAG
.getSetCC(dl
, VT
, N0
, N0
, Cond
);
3302 // setcc (fneg x), C -> setcc swap(pred) x, -C
3303 if (N0
.getOpcode() == ISD::FNEG
) {
3304 ISD::CondCode SwapCond
= ISD::getSetCCSwappedOperands(Cond
);
3305 if (DCI
.isBeforeLegalizeOps() ||
3306 isCondCodeLegal(SwapCond
, N0
.getSimpleValueType())) {
3307 SDValue NegN1
= DAG
.getNode(ISD::FNEG
, dl
, N0
.getValueType(), N1
);
3308 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), NegN1
, SwapCond
);
3312 // If the condition is not legal, see if we can find an equivalent one
3314 if (!isCondCodeLegal(Cond
, N0
.getSimpleValueType())) {
3315 // If the comparison was an awkward floating-point == or != and one of
3316 // the comparison operands is infinity or negative infinity, convert the
3317 // condition to a less-awkward <= or >=.
3318 if (CFP
->getValueAPF().isInfinity()) {
3319 if (CFP
->getValueAPF().isNegative()) {
3320 if (Cond
== ISD::SETOEQ
&&
3321 isCondCodeLegal(ISD::SETOLE
, N0
.getSimpleValueType()))
3322 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETOLE
);
3323 if (Cond
== ISD::SETUEQ
&&
3324 isCondCodeLegal(ISD::SETOLE
, N0
.getSimpleValueType()))
3325 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETULE
);
3326 if (Cond
== ISD::SETUNE
&&
3327 isCondCodeLegal(ISD::SETUGT
, N0
.getSimpleValueType()))
3328 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETUGT
);
3329 if (Cond
== ISD::SETONE
&&
3330 isCondCodeLegal(ISD::SETUGT
, N0
.getSimpleValueType()))
3331 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETOGT
);
3333 if (Cond
== ISD::SETOEQ
&&
3334 isCondCodeLegal(ISD::SETOGE
, N0
.getSimpleValueType()))
3335 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETOGE
);
3336 if (Cond
== ISD::SETUEQ
&&
3337 isCondCodeLegal(ISD::SETOGE
, N0
.getSimpleValueType()))
3338 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETUGE
);
3339 if (Cond
== ISD::SETUNE
&&
3340 isCondCodeLegal(ISD::SETULT
, N0
.getSimpleValueType()))
3341 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETULT
);
3342 if (Cond
== ISD::SETONE
&&
3343 isCondCodeLegal(ISD::SETULT
, N0
.getSimpleValueType()))
3344 return DAG
.getSetCC(dl
, VT
, N0
, N1
, ISD::SETOLT
);
3351 // The sext(setcc()) => setcc() optimization relies on the appropriate
3352 // constant being emitted.
3353 assert(!N0
.getValueType().isInteger() &&
3354 "Integer types should be handled by FoldSetCC");
3356 bool EqTrue
= ISD::isTrueWhenEqual(Cond
);
3357 unsigned UOF
= ISD::getUnorderedFlavor(Cond
);
3358 if (UOF
== 2) // FP operators that are undefined on NaNs.
3359 return DAG
.getBoolConstant(EqTrue
, dl
, VT
, OpVT
);
3360 if (UOF
== unsigned(EqTrue
))
3361 return DAG
.getBoolConstant(EqTrue
, dl
, VT
, OpVT
);
3362 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
3363 // if it is not already.
3364 ISD::CondCode NewCond
= UOF
== 0 ? ISD::SETO
: ISD::SETUO
;
3365 if (NewCond
!= Cond
&&
3366 (DCI
.isBeforeLegalizeOps() ||
3367 isCondCodeLegal(NewCond
, N0
.getSimpleValueType())))
3368 return DAG
.getSetCC(dl
, VT
, N0
, N1
, NewCond
);
3371 if ((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
3372 N0
.getValueType().isInteger()) {
3373 if (N0
.getOpcode() == ISD::ADD
|| N0
.getOpcode() == ISD::SUB
||
3374 N0
.getOpcode() == ISD::XOR
) {
3375 // Simplify (X+Y) == (X+Z) --> Y == Z
3376 if (N0
.getOpcode() == N1
.getOpcode()) {
3377 if (N0
.getOperand(0) == N1
.getOperand(0))
3378 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(1), N1
.getOperand(1), Cond
);
3379 if (N0
.getOperand(1) == N1
.getOperand(1))
3380 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), N1
.getOperand(0), Cond
);
3381 if (isCommutativeBinOp(N0
.getOpcode())) {
3382 // If X op Y == Y op X, try other combinations.
3383 if (N0
.getOperand(0) == N1
.getOperand(1))
3384 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(1), N1
.getOperand(0),
3386 if (N0
.getOperand(1) == N1
.getOperand(0))
3387 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0), N1
.getOperand(1),
3392 // If RHS is a legal immediate value for a compare instruction, we need
3393 // to be careful about increasing register pressure needlessly.
3394 bool LegalRHSImm
= false;
3396 if (auto *RHSC
= dyn_cast
<ConstantSDNode
>(N1
)) {
3397 if (auto *LHSR
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(1))) {
3398 // Turn (X+C1) == C2 --> X == C2-C1
3399 if (N0
.getOpcode() == ISD::ADD
&& N0
.getNode()->hasOneUse()) {
3400 return DAG
.getSetCC(dl
, VT
, N0
.getOperand(0),
3401 DAG
.getConstant(RHSC
->getAPIntValue()-
3402 LHSR
->getAPIntValue(),
3403 dl
, N0
.getValueType()), Cond
);
3406 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
3407 if (N0
.getOpcode() == ISD::XOR
)
3408 // If we know that all of the inverted bits are zero, don't bother
3409 // performing the inversion.
3410 if (DAG
.MaskedValueIsZero(N0
.getOperand(0), ~LHSR
->getAPIntValue()))
3412 DAG
.getSetCC(dl
, VT
, N0
.getOperand(0),
3413 DAG
.getConstant(LHSR
->getAPIntValue() ^
3414 RHSC
->getAPIntValue(),
3415 dl
, N0
.getValueType()),
3419 // Turn (C1-X) == C2 --> X == C1-C2
3420 if (auto *SUBC
= dyn_cast
<ConstantSDNode
>(N0
.getOperand(0))) {
3421 if (N0
.getOpcode() == ISD::SUB
&& N0
.getNode()->hasOneUse()) {
3423 DAG
.getSetCC(dl
, VT
, N0
.getOperand(1),
3424 DAG
.getConstant(SUBC
->getAPIntValue() -
3425 RHSC
->getAPIntValue(),
3426 dl
, N0
.getValueType()),
3431 // Could RHSC fold directly into a compare?
3432 if (RHSC
->getValueType(0).getSizeInBits() <= 64)
3433 LegalRHSImm
= isLegalICmpImmediate(RHSC
->getSExtValue());
3436 // (X+Y) == X --> Y == 0 and similar folds.
3437 // Don't do this if X is an immediate that can fold into a cmp
3438 // instruction and X+Y has other uses. It could be an induction variable
3439 // chain, and the transform would increase register pressure.
3440 if (!LegalRHSImm
|| N0
.hasOneUse())
3441 if (SDValue V
= foldSetCCWithBinOp(VT
, N0
, N1
, Cond
, dl
, DCI
))
3445 if (N1
.getOpcode() == ISD::ADD
|| N1
.getOpcode() == ISD::SUB
||
3446 N1
.getOpcode() == ISD::XOR
)
3447 if (SDValue V
= foldSetCCWithBinOp(VT
, N1
, N0
, Cond
, dl
, DCI
))
3450 if (SDValue V
= foldSetCCWithAnd(VT
, N0
, N1
, Cond
, dl
, DCI
))
3454 // Fold remainder of division by a constant.
3455 if (N0
.getOpcode() == ISD::UREM
&& N0
.hasOneUse() &&
3456 (Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
)) {
3457 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
3459 // When division is cheap or optimizing for minimum size,
3460 // fall through to DIVREM creation by skipping this fold.
3461 if (!isIntDivCheap(VT
, Attr
) && !Attr
.hasFnAttribute(Attribute::MinSize
))
3462 if (SDValue Folded
= buildUREMEqFold(VT
, N0
, N1
, Cond
, DCI
, dl
))
3466 // Fold away ALL boolean setcc's.
3467 if (N0
.getValueType().getScalarType() == MVT::i1
&& foldBooleans
) {
3470 default: llvm_unreachable("Unknown integer setcc!");
3471 case ISD::SETEQ
: // X == Y -> ~(X^Y)
3472 Temp
= DAG
.getNode(ISD::XOR
, dl
, OpVT
, N0
, N1
);
3473 N0
= DAG
.getNOT(dl
, Temp
, OpVT
);
3474 if (!DCI
.isCalledByLegalizer())
3475 DCI
.AddToWorklist(Temp
.getNode());
3477 case ISD::SETNE
: // X != Y --> (X^Y)
3478 N0
= DAG
.getNode(ISD::XOR
, dl
, OpVT
, N0
, N1
);
3480 case ISD::SETGT
: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
3481 case ISD::SETULT
: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
3482 Temp
= DAG
.getNOT(dl
, N0
, OpVT
);
3483 N0
= DAG
.getNode(ISD::AND
, dl
, OpVT
, N1
, Temp
);
3484 if (!DCI
.isCalledByLegalizer())
3485 DCI
.AddToWorklist(Temp
.getNode());
3487 case ISD::SETLT
: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
3488 case ISD::SETUGT
: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
3489 Temp
= DAG
.getNOT(dl
, N1
, OpVT
);
3490 N0
= DAG
.getNode(ISD::AND
, dl
, OpVT
, N0
, Temp
);
3491 if (!DCI
.isCalledByLegalizer())
3492 DCI
.AddToWorklist(Temp
.getNode());
3494 case ISD::SETULE
: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
3495 case ISD::SETGE
: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
3496 Temp
= DAG
.getNOT(dl
, N0
, OpVT
);
3497 N0
= DAG
.getNode(ISD::OR
, dl
, OpVT
, N1
, Temp
);
3498 if (!DCI
.isCalledByLegalizer())
3499 DCI
.AddToWorklist(Temp
.getNode());
3501 case ISD::SETUGE
: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
3502 case ISD::SETLE
: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
3503 Temp
= DAG
.getNOT(dl
, N1
, OpVT
);
3504 N0
= DAG
.getNode(ISD::OR
, dl
, OpVT
, N0
, Temp
);
3507 if (VT
.getScalarType() != MVT::i1
) {
3508 if (!DCI
.isCalledByLegalizer())
3509 DCI
.AddToWorklist(N0
.getNode());
3510 // FIXME: If running after legalize, we probably can't do this.
3511 ISD::NodeType ExtendCode
= getExtendForContent(getBooleanContents(OpVT
));
3512 N0
= DAG
.getNode(ExtendCode
, dl
, VT
, N0
);
3517 // Could not fold it.
3521 /// Returns true (and the GlobalValue and the offset) if the node is a
3522 /// GlobalAddress + offset.
3523 bool TargetLowering::isGAPlusOffset(SDNode
*WN
, const GlobalValue
*&GA
,
3524 int64_t &Offset
) const {
3526 SDNode
*N
= unwrapAddress(SDValue(WN
, 0)).getNode();
3528 if (auto *GASD
= dyn_cast
<GlobalAddressSDNode
>(N
)) {
3529 GA
= GASD
->getGlobal();
3530 Offset
+= GASD
->getOffset();
3534 if (N
->getOpcode() == ISD::ADD
) {
3535 SDValue N1
= N
->getOperand(0);
3536 SDValue N2
= N
->getOperand(1);
3537 if (isGAPlusOffset(N1
.getNode(), GA
, Offset
)) {
3538 if (auto *V
= dyn_cast
<ConstantSDNode
>(N2
)) {
3539 Offset
+= V
->getSExtValue();
3542 } else if (isGAPlusOffset(N2
.getNode(), GA
, Offset
)) {
3543 if (auto *V
= dyn_cast
<ConstantSDNode
>(N1
)) {
3544 Offset
+= V
->getSExtValue();
3553 SDValue
TargetLowering::PerformDAGCombine(SDNode
*N
,
3554 DAGCombinerInfo
&DCI
) const {
3555 // Default implementation: no optimization.
3559 //===----------------------------------------------------------------------===//
3560 // Inline Assembler Implementation Methods
3561 //===----------------------------------------------------------------------===//
3563 TargetLowering::ConstraintType
3564 TargetLowering::getConstraintType(StringRef Constraint
) const {
3565 unsigned S
= Constraint
.size();
3568 switch (Constraint
[0]) {
3570 case 'r': return C_RegisterClass
;
3572 case 'o': // offsetable
3573 case 'V': // not offsetable
3575 case 'i': // Simple Integer or Relocatable Constant
3576 case 'n': // Simple Integer
3577 case 'E': // Floating Point Constant
3578 case 'F': // Floating Point Constant
3579 case 's': // Relocatable Constant
3580 case 'p': // Address.
3581 case 'X': // Allow ANY value.
3582 case 'I': // Target registers.
3596 if (S
> 1 && Constraint
[0] == '{' && Constraint
[S
- 1] == '}') {
3597 if (S
== 8 && Constraint
.substr(1, 6) == "memory") // "{memory}"
3604 /// Try to replace an X constraint, which matches anything, with another that
3605 /// has more specific requirements based on the type of the corresponding
3607 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT
) const {
3608 if (ConstraintVT
.isInteger())
3610 if (ConstraintVT
.isFloatingPoint())
3611 return "f"; // works for many targets
3615 SDValue
TargetLowering::LowerAsmOutputForConstraint(
3616 SDValue
&Chain
, SDValue
&Flag
, SDLoc DL
, const AsmOperandInfo
&OpInfo
,
3617 SelectionDAG
&DAG
) const {
3621 /// Lower the specified operand into the Ops vector.
3622 /// If it is invalid, don't add anything to Ops.
3623 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
3624 std::string
&Constraint
,
3625 std::vector
<SDValue
> &Ops
,
3626 SelectionDAG
&DAG
) const {
3628 if (Constraint
.length() > 1) return;
3630 char ConstraintLetter
= Constraint
[0];
3631 switch (ConstraintLetter
) {
3633 case 'X': // Allows any operand; labels (basic block) use this.
3634 if (Op
.getOpcode() == ISD::BasicBlock
||
3635 Op
.getOpcode() == ISD::TargetBlockAddress
) {
3640 case 'i': // Simple Integer or Relocatable Constant
3641 case 'n': // Simple Integer
3642 case 's': { // Relocatable Constant
3644 GlobalAddressSDNode
*GA
;
3646 BlockAddressSDNode
*BA
;
3647 uint64_t Offset
= 0;
3649 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
3650 // etc., since getelementpointer is variadic. We can't use
3651 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
3652 // while in this case the GA may be furthest from the root node which is
3653 // likely an ISD::ADD.
3655 if ((GA
= dyn_cast
<GlobalAddressSDNode
>(Op
)) && ConstraintLetter
!= 'n') {
3656 Ops
.push_back(DAG
.getTargetGlobalAddress(GA
->getGlobal(), SDLoc(Op
),
3657 GA
->getValueType(0),
3658 Offset
+ GA
->getOffset()));
3660 } else if ((C
= dyn_cast
<ConstantSDNode
>(Op
)) &&
3661 ConstraintLetter
!= 's') {
3662 // gcc prints these as sign extended. Sign extend value to 64 bits
3663 // now; without this it would get ZExt'd later in
3664 // ScheduleDAGSDNodes::EmitNode, which is very generic.
3665 bool IsBool
= C
->getConstantIntValue()->getBitWidth() == 1;
3666 BooleanContent BCont
= getBooleanContents(MVT::i64
);
3667 ISD::NodeType ExtOpc
= IsBool
? getExtendForContent(BCont
)
3669 int64_t ExtVal
= ExtOpc
== ISD::ZERO_EXTEND
? C
->getZExtValue()
3670 : C
->getSExtValue();
3671 Ops
.push_back(DAG
.getTargetConstant(Offset
+ ExtVal
,
3672 SDLoc(C
), MVT::i64
));
3674 } else if ((BA
= dyn_cast
<BlockAddressSDNode
>(Op
)) &&
3675 ConstraintLetter
!= 'n') {
3676 Ops
.push_back(DAG
.getTargetBlockAddress(
3677 BA
->getBlockAddress(), BA
->getValueType(0),
3678 Offset
+ BA
->getOffset(), BA
->getTargetFlags()));
3681 const unsigned OpCode
= Op
.getOpcode();
3682 if (OpCode
== ISD::ADD
|| OpCode
== ISD::SUB
) {
3683 if ((C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(0))))
3684 Op
= Op
.getOperand(1);
3685 // Subtraction is not commutative.
3686 else if (OpCode
== ISD::ADD
&&
3687 (C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))))
3688 Op
= Op
.getOperand(0);
3691 Offset
+= (OpCode
== ISD::ADD
? 1 : -1) * C
->getSExtValue();
3702 std::pair
<unsigned, const TargetRegisterClass
*>
3703 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo
*RI
,
3704 StringRef Constraint
,
3706 if (Constraint
.empty() || Constraint
[0] != '{')
3707 return std::make_pair(0u, static_cast<TargetRegisterClass
*>(nullptr));
3708 assert(*(Constraint
.end() - 1) == '}' && "Not a brace enclosed constraint?");
3710 // Remove the braces from around the name.
3711 StringRef
RegName(Constraint
.data() + 1, Constraint
.size() - 2);
3713 std::pair
<unsigned, const TargetRegisterClass
*> R
=
3714 std::make_pair(0u, static_cast<const TargetRegisterClass
*>(nullptr));
3716 // Figure out which register class contains this reg.
3717 for (const TargetRegisterClass
*RC
: RI
->regclasses()) {
3718 // If none of the value types for this register class are valid, we
3719 // can't use it. For example, 64-bit reg classes on 32-bit targets.
3720 if (!isLegalRC(*RI
, *RC
))
3723 for (TargetRegisterClass::iterator I
= RC
->begin(), E
= RC
->end();
3725 if (RegName
.equals_lower(RI
->getRegAsmName(*I
))) {
3726 std::pair
<unsigned, const TargetRegisterClass
*> S
=
3727 std::make_pair(*I
, RC
);
3729 // If this register class has the requested value type, return it,
3730 // otherwise keep searching and return the first class found
3731 // if no other is found which explicitly has the requested type.
3732 if (RI
->isTypeLegalForClass(*RC
, VT
))
3743 //===----------------------------------------------------------------------===//
3744 // Constraint Selection.
3746 /// Return true of this is an input operand that is a matching constraint like
3748 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
3749 assert(!ConstraintCode
.empty() && "No known constraint!");
3750 return isdigit(static_cast<unsigned char>(ConstraintCode
[0]));
3753 /// If this is an input matching constraint, this method returns the output
3754 /// operand it matches.
3755 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
3756 assert(!ConstraintCode
.empty() && "No known constraint!");
3757 return atoi(ConstraintCode
.c_str());
3760 /// Split up the constraint string from the inline assembly value into the
3761 /// specific constraints and their prefixes, and also tie in the associated
3763 /// If this returns an empty vector, and if the constraint string itself
3764 /// isn't empty, there was an error parsing.
3765 TargetLowering::AsmOperandInfoVector
3766 TargetLowering::ParseConstraints(const DataLayout
&DL
,
3767 const TargetRegisterInfo
*TRI
,
3768 ImmutableCallSite CS
) const {
3769 /// Information about all of the constraints.
3770 AsmOperandInfoVector ConstraintOperands
;
3771 const InlineAsm
*IA
= cast
<InlineAsm
>(CS
.getCalledValue());
3772 unsigned maCount
= 0; // Largest number of multiple alternative constraints.
3774 // Do a prepass over the constraints, canonicalizing them, and building up the
3775 // ConstraintOperands list.
3776 unsigned ArgNo
= 0; // ArgNo - The argument of the CallInst.
3777 unsigned ResNo
= 0; // ResNo - The result number of the next output.
3779 for (InlineAsm::ConstraintInfo
&CI
: IA
->ParseConstraints()) {
3780 ConstraintOperands
.emplace_back(std::move(CI
));
3781 AsmOperandInfo
&OpInfo
= ConstraintOperands
.back();
3783 // Update multiple alternative constraint count.
3784 if (OpInfo
.multipleAlternatives
.size() > maCount
)
3785 maCount
= OpInfo
.multipleAlternatives
.size();
3787 OpInfo
.ConstraintVT
= MVT::Other
;
3789 // Compute the value type for each operand.
3790 switch (OpInfo
.Type
) {
3791 case InlineAsm::isOutput
:
3792 // Indirect outputs just consume an argument.
3793 if (OpInfo
.isIndirect
) {
3794 OpInfo
.CallOperandVal
= const_cast<Value
*>(CS
.getArgument(ArgNo
++));
3798 // The return value of the call is this value. As such, there is no
3799 // corresponding argument.
3800 assert(!CS
.getType()->isVoidTy() &&
3802 if (StructType
*STy
= dyn_cast
<StructType
>(CS
.getType())) {
3803 OpInfo
.ConstraintVT
=
3804 getSimpleValueType(DL
, STy
->getElementType(ResNo
));
3806 assert(ResNo
== 0 && "Asm only has one result!");
3807 OpInfo
.ConstraintVT
= getSimpleValueType(DL
, CS
.getType());
3811 case InlineAsm::isInput
:
3812 OpInfo
.CallOperandVal
= const_cast<Value
*>(CS
.getArgument(ArgNo
++));
3814 case InlineAsm::isClobber
:
3819 if (OpInfo
.CallOperandVal
) {
3820 llvm::Type
*OpTy
= OpInfo
.CallOperandVal
->getType();
3821 if (OpInfo
.isIndirect
) {
3822 llvm::PointerType
*PtrTy
= dyn_cast
<PointerType
>(OpTy
);
3824 report_fatal_error("Indirect operand for inline asm not a pointer!");
3825 OpTy
= PtrTy
->getElementType();
3828 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
3829 if (StructType
*STy
= dyn_cast
<StructType
>(OpTy
))
3830 if (STy
->getNumElements() == 1)
3831 OpTy
= STy
->getElementType(0);
3833 // If OpTy is not a single value, it may be a struct/union that we
3834 // can tile with integers.
3835 if (!OpTy
->isSingleValueType() && OpTy
->isSized()) {
3836 unsigned BitSize
= DL
.getTypeSizeInBits(OpTy
);
3845 OpInfo
.ConstraintVT
=
3846 MVT::getVT(IntegerType::get(OpTy
->getContext(), BitSize
), true);
3849 } else if (PointerType
*PT
= dyn_cast
<PointerType
>(OpTy
)) {
3850 unsigned PtrSize
= DL
.getPointerSizeInBits(PT
->getAddressSpace());
3851 OpInfo
.ConstraintVT
= MVT::getIntegerVT(PtrSize
);
3853 OpInfo
.ConstraintVT
= MVT::getVT(OpTy
, true);
3858 // If we have multiple alternative constraints, select the best alternative.
3859 if (!ConstraintOperands
.empty()) {
3861 unsigned bestMAIndex
= 0;
3862 int bestWeight
= -1;
3863 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match.
3866 // Compute the sums of the weights for each alternative, keeping track
3867 // of the best (highest weight) one so far.
3868 for (maIndex
= 0; maIndex
< maCount
; ++maIndex
) {
3870 for (unsigned cIndex
= 0, eIndex
= ConstraintOperands
.size();
3871 cIndex
!= eIndex
; ++cIndex
) {
3872 AsmOperandInfo
&OpInfo
= ConstraintOperands
[cIndex
];
3873 if (OpInfo
.Type
== InlineAsm::isClobber
)
3876 // If this is an output operand with a matching input operand,
3877 // look up the matching input. If their types mismatch, e.g. one
3878 // is an integer, the other is floating point, or their sizes are
3879 // different, flag it as an maCantMatch.
3880 if (OpInfo
.hasMatchingInput()) {
3881 AsmOperandInfo
&Input
= ConstraintOperands
[OpInfo
.MatchingInput
];
3882 if (OpInfo
.ConstraintVT
!= Input
.ConstraintVT
) {
3883 if ((OpInfo
.ConstraintVT
.isInteger() !=
3884 Input
.ConstraintVT
.isInteger()) ||
3885 (OpInfo
.ConstraintVT
.getSizeInBits() !=
3886 Input
.ConstraintVT
.getSizeInBits())) {
3887 weightSum
= -1; // Can't match.
3892 weight
= getMultipleConstraintMatchWeight(OpInfo
, maIndex
);
3897 weightSum
+= weight
;
3900 if (weightSum
> bestWeight
) {
3901 bestWeight
= weightSum
;
3902 bestMAIndex
= maIndex
;
3906 // Now select chosen alternative in each constraint.
3907 for (unsigned cIndex
= 0, eIndex
= ConstraintOperands
.size();
3908 cIndex
!= eIndex
; ++cIndex
) {
3909 AsmOperandInfo
&cInfo
= ConstraintOperands
[cIndex
];
3910 if (cInfo
.Type
== InlineAsm::isClobber
)
3912 cInfo
.selectAlternative(bestMAIndex
);
3917 // Check and hook up tied operands, choose constraint code to use.
3918 for (unsigned cIndex
= 0, eIndex
= ConstraintOperands
.size();
3919 cIndex
!= eIndex
; ++cIndex
) {
3920 AsmOperandInfo
&OpInfo
= ConstraintOperands
[cIndex
];
3922 // If this is an output operand with a matching input operand, look up the
3923 // matching input. If their types mismatch, e.g. one is an integer, the
3924 // other is floating point, or their sizes are different, flag it as an
3926 if (OpInfo
.hasMatchingInput()) {
3927 AsmOperandInfo
&Input
= ConstraintOperands
[OpInfo
.MatchingInput
];
3929 if (OpInfo
.ConstraintVT
!= Input
.ConstraintVT
) {
3930 std::pair
<unsigned, const TargetRegisterClass
*> MatchRC
=
3931 getRegForInlineAsmConstraint(TRI
, OpInfo
.ConstraintCode
,
3932 OpInfo
.ConstraintVT
);
3933 std::pair
<unsigned, const TargetRegisterClass
*> InputRC
=
3934 getRegForInlineAsmConstraint(TRI
, Input
.ConstraintCode
,
3935 Input
.ConstraintVT
);
3936 if ((OpInfo
.ConstraintVT
.isInteger() !=
3937 Input
.ConstraintVT
.isInteger()) ||
3938 (MatchRC
.second
!= InputRC
.second
)) {
3939 report_fatal_error("Unsupported asm: input constraint"
3940 " with a matching output constraint of"
3941 " incompatible type!");
3947 return ConstraintOperands
;
3950 /// Return an integer indicating how general CT is.
3951 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT
) {
3953 case TargetLowering::C_Other
:
3954 case TargetLowering::C_Unknown
:
3956 case TargetLowering::C_Register
:
3958 case TargetLowering::C_RegisterClass
:
3960 case TargetLowering::C_Memory
:
3963 llvm_unreachable("Invalid constraint type");
3966 /// Examine constraint type and operand type and determine a weight value.
3967 /// This object must already have been set up with the operand type
3968 /// and the current alternative constraint selected.
3969 TargetLowering::ConstraintWeight
3970 TargetLowering::getMultipleConstraintMatchWeight(
3971 AsmOperandInfo
&info
, int maIndex
) const {
3972 InlineAsm::ConstraintCodeVector
*rCodes
;
3973 if (maIndex
>= (int)info
.multipleAlternatives
.size())
3974 rCodes
= &info
.Codes
;
3976 rCodes
= &info
.multipleAlternatives
[maIndex
].Codes
;
3977 ConstraintWeight BestWeight
= CW_Invalid
;
3979 // Loop over the options, keeping track of the most general one.
3980 for (unsigned i
= 0, e
= rCodes
->size(); i
!= e
; ++i
) {
3981 ConstraintWeight weight
=
3982 getSingleConstraintMatchWeight(info
, (*rCodes
)[i
].c_str());
3983 if (weight
> BestWeight
)
3984 BestWeight
= weight
;
3990 /// Examine constraint type and operand type and determine a weight value.
3991 /// This object must already have been set up with the operand type
3992 /// and the current alternative constraint selected.
3993 TargetLowering::ConstraintWeight
3994 TargetLowering::getSingleConstraintMatchWeight(
3995 AsmOperandInfo
&info
, const char *constraint
) const {
3996 ConstraintWeight weight
= CW_Invalid
;
3997 Value
*CallOperandVal
= info
.CallOperandVal
;
3998 // If we don't have a value, we can't do a match,
3999 // but allow it at the lowest weight.
4000 if (!CallOperandVal
)
4002 // Look at the constraint type.
4003 switch (*constraint
) {
4004 case 'i': // immediate integer.
4005 case 'n': // immediate integer with a known value.
4006 if (isa
<ConstantInt
>(CallOperandVal
))
4007 weight
= CW_Constant
;
4009 case 's': // non-explicit intregal immediate.
4010 if (isa
<GlobalValue
>(CallOperandVal
))
4011 weight
= CW_Constant
;
4013 case 'E': // immediate float if host format.
4014 case 'F': // immediate float.
4015 if (isa
<ConstantFP
>(CallOperandVal
))
4016 weight
= CW_Constant
;
4018 case '<': // memory operand with autodecrement.
4019 case '>': // memory operand with autoincrement.
4020 case 'm': // memory operand.
4021 case 'o': // offsettable memory operand
4022 case 'V': // non-offsettable memory operand
4025 case 'r': // general register.
4026 case 'g': // general register, memory operand or immediate integer.
4027 // note: Clang converts "g" to "imr".
4028 if (CallOperandVal
->getType()->isIntegerTy())
4029 weight
= CW_Register
;
4031 case 'X': // any operand.
4033 weight
= CW_Default
;
4039 /// If there are multiple different constraints that we could pick for this
4040 /// operand (e.g. "imr") try to pick the 'best' one.
4041 /// This is somewhat tricky: constraints fall into four classes:
4042 /// Other -> immediates and magic values
4043 /// Register -> one specific register
4044 /// RegisterClass -> a group of regs
4045 /// Memory -> memory
4046 /// Ideally, we would pick the most specific constraint possible: if we have
4047 /// something that fits into a register, we would pick it. The problem here
4048 /// is that if we have something that could either be in a register or in
4049 /// memory that use of the register could cause selection of *other*
4050 /// operands to fail: they might only succeed if we pick memory. Because of
4051 /// this the heuristic we use is:
4053 /// 1) If there is an 'other' constraint, and if the operand is valid for
4054 /// that constraint, use it. This makes us take advantage of 'i'
4055 /// constraints when available.
4056 /// 2) Otherwise, pick the most general constraint present. This prefers
4057 /// 'm' over 'r', for example.
4059 static void ChooseConstraint(TargetLowering::AsmOperandInfo
&OpInfo
,
4060 const TargetLowering
&TLI
,
4061 SDValue Op
, SelectionDAG
*DAG
) {
4062 assert(OpInfo
.Codes
.size() > 1 && "Doesn't have multiple constraint options");
4063 unsigned BestIdx
= 0;
4064 TargetLowering::ConstraintType BestType
= TargetLowering::C_Unknown
;
4065 int BestGenerality
= -1;
4067 // Loop over the options, keeping track of the most general one.
4068 for (unsigned i
= 0, e
= OpInfo
.Codes
.size(); i
!= e
; ++i
) {
4069 TargetLowering::ConstraintType CType
=
4070 TLI
.getConstraintType(OpInfo
.Codes
[i
]);
4072 // If this is an 'other' constraint, see if the operand is valid for it.
4073 // For example, on X86 we might have an 'rI' constraint. If the operand
4074 // is an integer in the range [0..31] we want to use I (saving a load
4075 // of a register), otherwise we must use 'r'.
4076 if (CType
== TargetLowering::C_Other
&& Op
.getNode()) {
4077 assert(OpInfo
.Codes
[i
].size() == 1 &&
4078 "Unhandled multi-letter 'other' constraint");
4079 std::vector
<SDValue
> ResultOps
;
4080 TLI
.LowerAsmOperandForConstraint(Op
, OpInfo
.Codes
[i
],
4082 if (!ResultOps
.empty()) {
4089 // Things with matching constraints can only be registers, per gcc
4090 // documentation. This mainly affects "g" constraints.
4091 if (CType
== TargetLowering::C_Memory
&& OpInfo
.hasMatchingInput())
4094 // This constraint letter is more general than the previous one, use it.
4095 int Generality
= getConstraintGenerality(CType
);
4096 if (Generality
> BestGenerality
) {
4099 BestGenerality
= Generality
;
4103 OpInfo
.ConstraintCode
= OpInfo
.Codes
[BestIdx
];
4104 OpInfo
.ConstraintType
= BestType
;
4107 /// Determines the constraint code and constraint type to use for the specific
4108 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4109 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo
&OpInfo
,
4111 SelectionDAG
*DAG
) const {
4112 assert(!OpInfo
.Codes
.empty() && "Must have at least one constraint");
4114 // Single-letter constraints ('r') are very common.
4115 if (OpInfo
.Codes
.size() == 1) {
4116 OpInfo
.ConstraintCode
= OpInfo
.Codes
[0];
4117 OpInfo
.ConstraintType
= getConstraintType(OpInfo
.ConstraintCode
);
4119 ChooseConstraint(OpInfo
, *this, Op
, DAG
);
4122 // 'X' matches anything.
4123 if (OpInfo
.ConstraintCode
== "X" && OpInfo
.CallOperandVal
) {
4124 // Labels and constants are handled elsewhere ('X' is the only thing
4125 // that matches labels). For Functions, the type here is the type of
4126 // the result, which is not what we want to look at; leave them alone.
4127 Value
*v
= OpInfo
.CallOperandVal
;
4128 if (isa
<BasicBlock
>(v
) || isa
<ConstantInt
>(v
) || isa
<Function
>(v
)) {
4129 OpInfo
.CallOperandVal
= v
;
4133 if (Op
.getNode() && Op
.getOpcode() == ISD::TargetBlockAddress
)
4136 // Otherwise, try to resolve it to something we know about by looking at
4137 // the actual operand type.
4138 if (const char *Repl
= LowerXConstraint(OpInfo
.ConstraintVT
)) {
4139 OpInfo
.ConstraintCode
= Repl
;
4140 OpInfo
.ConstraintType
= getConstraintType(OpInfo
.ConstraintCode
);
4145 /// Given an exact SDIV by a constant, create a multiplication
4146 /// with the multiplicative inverse of the constant.
4147 static SDValue
BuildExactSDIV(const TargetLowering
&TLI
, SDNode
*N
,
4148 const SDLoc
&dl
, SelectionDAG
&DAG
,
4149 SmallVectorImpl
<SDNode
*> &Created
) {
4150 SDValue Op0
= N
->getOperand(0);
4151 SDValue Op1
= N
->getOperand(1);
4152 EVT VT
= N
->getValueType(0);
4153 EVT SVT
= VT
.getScalarType();
4154 EVT ShVT
= TLI
.getShiftAmountTy(VT
, DAG
.getDataLayout());
4155 EVT ShSVT
= ShVT
.getScalarType();
4157 bool UseSRA
= false;
4158 SmallVector
<SDValue
, 16> Shifts
, Factors
;
4160 auto BuildSDIVPattern
= [&](ConstantSDNode
*C
) {
4161 if (C
->isNullValue())
4163 APInt Divisor
= C
->getAPIntValue();
4164 unsigned Shift
= Divisor
.countTrailingZeros();
4166 Divisor
.ashrInPlace(Shift
);
4169 // Calculate the multiplicative inverse, using Newton's method.
4171 APInt Factor
= Divisor
;
4172 while ((t
= Divisor
* Factor
) != 1)
4173 Factor
*= APInt(Divisor
.getBitWidth(), 2) - t
;
4174 Shifts
.push_back(DAG
.getConstant(Shift
, dl
, ShSVT
));
4175 Factors
.push_back(DAG
.getConstant(Factor
, dl
, SVT
));
4179 // Collect all magic values from the build vector.
4180 if (!ISD::matchUnaryPredicate(Op1
, BuildSDIVPattern
))
4183 SDValue Shift
, Factor
;
4184 if (VT
.isVector()) {
4185 Shift
= DAG
.getBuildVector(ShVT
, dl
, Shifts
);
4186 Factor
= DAG
.getBuildVector(VT
, dl
, Factors
);
4189 Factor
= Factors
[0];
4194 // Shift the value upfront if it is even, so the LSB is one.
4196 // TODO: For UDIV use SRL instead of SRA.
4198 Flags
.setExact(true);
4199 Res
= DAG
.getNode(ISD::SRA
, dl
, VT
, Res
, Shift
, Flags
);
4200 Created
.push_back(Res
.getNode());
4203 return DAG
.getNode(ISD::MUL
, dl
, VT
, Res
, Factor
);
4206 SDValue
TargetLowering::BuildSDIVPow2(SDNode
*N
, const APInt
&Divisor
,
4208 SmallVectorImpl
<SDNode
*> &Created
) const {
4209 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
4210 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4211 if (TLI
.isIntDivCheap(N
->getValueType(0), Attr
))
4212 return SDValue(N
, 0); // Lower SDIV as SDIV
4216 /// Given an ISD::SDIV node expressing a divide by constant,
4217 /// return a DAG expression to select that will generate the same value by
4218 /// multiplying by a magic number.
4219 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4220 SDValue
TargetLowering::BuildSDIV(SDNode
*N
, SelectionDAG
&DAG
,
4221 bool IsAfterLegalization
,
4222 SmallVectorImpl
<SDNode
*> &Created
) const {
4224 EVT VT
= N
->getValueType(0);
4225 EVT SVT
= VT
.getScalarType();
4226 EVT ShVT
= getShiftAmountTy(VT
, DAG
.getDataLayout());
4227 EVT ShSVT
= ShVT
.getScalarType();
4228 unsigned EltBits
= VT
.getScalarSizeInBits();
4230 // Check to see if we can do this.
4231 // FIXME: We should be more aggressive here.
4232 if (!isTypeLegal(VT
))
4235 // If the sdiv has an 'exact' bit we can use a simpler lowering.
4236 if (N
->getFlags().hasExact())
4237 return BuildExactSDIV(*this, N
, dl
, DAG
, Created
);
4239 SmallVector
<SDValue
, 16> MagicFactors
, Factors
, Shifts
, ShiftMasks
;
4241 auto BuildSDIVPattern
= [&](ConstantSDNode
*C
) {
4242 if (C
->isNullValue())
4245 const APInt
&Divisor
= C
->getAPIntValue();
4246 APInt::ms magics
= Divisor
.magic();
4247 int NumeratorFactor
= 0;
4250 if (Divisor
.isOneValue() || Divisor
.isAllOnesValue()) {
4251 // If d is +1/-1, we just multiply the numerator by +1/-1.
4252 NumeratorFactor
= Divisor
.getSExtValue();
4256 } else if (Divisor
.isStrictlyPositive() && magics
.m
.isNegative()) {
4257 // If d > 0 and m < 0, add the numerator.
4258 NumeratorFactor
= 1;
4259 } else if (Divisor
.isNegative() && magics
.m
.isStrictlyPositive()) {
4260 // If d < 0 and m > 0, subtract the numerator.
4261 NumeratorFactor
= -1;
4264 MagicFactors
.push_back(DAG
.getConstant(magics
.m
, dl
, SVT
));
4265 Factors
.push_back(DAG
.getConstant(NumeratorFactor
, dl
, SVT
));
4266 Shifts
.push_back(DAG
.getConstant(magics
.s
, dl
, ShSVT
));
4267 ShiftMasks
.push_back(DAG
.getConstant(ShiftMask
, dl
, SVT
));
4271 SDValue N0
= N
->getOperand(0);
4272 SDValue N1
= N
->getOperand(1);
4274 // Collect the shifts / magic values from each element.
4275 if (!ISD::matchUnaryPredicate(N1
, BuildSDIVPattern
))
4278 SDValue MagicFactor
, Factor
, Shift
, ShiftMask
;
4279 if (VT
.isVector()) {
4280 MagicFactor
= DAG
.getBuildVector(VT
, dl
, MagicFactors
);
4281 Factor
= DAG
.getBuildVector(VT
, dl
, Factors
);
4282 Shift
= DAG
.getBuildVector(ShVT
, dl
, Shifts
);
4283 ShiftMask
= DAG
.getBuildVector(VT
, dl
, ShiftMasks
);
4285 MagicFactor
= MagicFactors
[0];
4286 Factor
= Factors
[0];
4288 ShiftMask
= ShiftMasks
[0];
4291 // Multiply the numerator (operand 0) by the magic value.
4292 // FIXME: We should support doing a MUL in a wider type.
4294 if (IsAfterLegalization
? isOperationLegal(ISD::MULHS
, VT
)
4295 : isOperationLegalOrCustom(ISD::MULHS
, VT
))
4296 Q
= DAG
.getNode(ISD::MULHS
, dl
, VT
, N0
, MagicFactor
);
4297 else if (IsAfterLegalization
? isOperationLegal(ISD::SMUL_LOHI
, VT
)
4298 : isOperationLegalOrCustom(ISD::SMUL_LOHI
, VT
)) {
4300 DAG
.getNode(ISD::SMUL_LOHI
, dl
, DAG
.getVTList(VT
, VT
), N0
, MagicFactor
);
4301 Q
= SDValue(LoHi
.getNode(), 1);
4303 return SDValue(); // No mulhs or equivalent.
4304 Created
.push_back(Q
.getNode());
4306 // (Optionally) Add/subtract the numerator using Factor.
4307 Factor
= DAG
.getNode(ISD::MUL
, dl
, VT
, N0
, Factor
);
4308 Created
.push_back(Factor
.getNode());
4309 Q
= DAG
.getNode(ISD::ADD
, dl
, VT
, Q
, Factor
);
4310 Created
.push_back(Q
.getNode());
4312 // Shift right algebraic by shift value.
4313 Q
= DAG
.getNode(ISD::SRA
, dl
, VT
, Q
, Shift
);
4314 Created
.push_back(Q
.getNode());
4316 // Extract the sign bit, mask it and add it to the quotient.
4317 SDValue SignShift
= DAG
.getConstant(EltBits
- 1, dl
, ShVT
);
4318 SDValue T
= DAG
.getNode(ISD::SRL
, dl
, VT
, Q
, SignShift
);
4319 Created
.push_back(T
.getNode());
4320 T
= DAG
.getNode(ISD::AND
, dl
, VT
, T
, ShiftMask
);
4321 Created
.push_back(T
.getNode());
4322 return DAG
.getNode(ISD::ADD
, dl
, VT
, Q
, T
);
4325 /// Given an ISD::UDIV node expressing a divide by constant,
4326 /// return a DAG expression to select that will generate the same value by
4327 /// multiplying by a magic number.
4328 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4329 SDValue
TargetLowering::BuildUDIV(SDNode
*N
, SelectionDAG
&DAG
,
4330 bool IsAfterLegalization
,
4331 SmallVectorImpl
<SDNode
*> &Created
) const {
4333 EVT VT
= N
->getValueType(0);
4334 EVT SVT
= VT
.getScalarType();
4335 EVT ShVT
= getShiftAmountTy(VT
, DAG
.getDataLayout());
4336 EVT ShSVT
= ShVT
.getScalarType();
4337 unsigned EltBits
= VT
.getScalarSizeInBits();
4339 // Check to see if we can do this.
4340 // FIXME: We should be more aggressive here.
4341 if (!isTypeLegal(VT
))
4344 bool UseNPQ
= false;
4345 SmallVector
<SDValue
, 16> PreShifts
, PostShifts
, MagicFactors
, NPQFactors
;
4347 auto BuildUDIVPattern
= [&](ConstantSDNode
*C
) {
4348 if (C
->isNullValue())
4350 // FIXME: We should use a narrower constant when the upper
4351 // bits are known to be zero.
4352 APInt Divisor
= C
->getAPIntValue();
4353 APInt::mu magics
= Divisor
.magicu();
4354 unsigned PreShift
= 0, PostShift
= 0;
4356 // If the divisor is even, we can avoid using the expensive fixup by
4357 // shifting the divided value upfront.
4358 if (magics
.a
!= 0 && !Divisor
[0]) {
4359 PreShift
= Divisor
.countTrailingZeros();
4360 // Get magic number for the shifted divisor.
4361 magics
= Divisor
.lshr(PreShift
).magicu(PreShift
);
4362 assert(magics
.a
== 0 && "Should use cheap fixup now");
4365 APInt Magic
= magics
.m
;
4368 if (magics
.a
== 0 || Divisor
.isOneValue()) {
4369 assert(magics
.s
< Divisor
.getBitWidth() &&
4370 "We shouldn't generate an undefined shift!");
4371 PostShift
= magics
.s
;
4374 PostShift
= magics
.s
- 1;
4378 PreShifts
.push_back(DAG
.getConstant(PreShift
, dl
, ShSVT
));
4379 MagicFactors
.push_back(DAG
.getConstant(Magic
, dl
, SVT
));
4380 NPQFactors
.push_back(
4381 DAG
.getConstant(SelNPQ
? APInt::getOneBitSet(EltBits
, EltBits
- 1)
4382 : APInt::getNullValue(EltBits
),
4384 PostShifts
.push_back(DAG
.getConstant(PostShift
, dl
, ShSVT
));
4389 SDValue N0
= N
->getOperand(0);
4390 SDValue N1
= N
->getOperand(1);
4392 // Collect the shifts/magic values from each element.
4393 if (!ISD::matchUnaryPredicate(N1
, BuildUDIVPattern
))
4396 SDValue PreShift
, PostShift
, MagicFactor
, NPQFactor
;
4397 if (VT
.isVector()) {
4398 PreShift
= DAG
.getBuildVector(ShVT
, dl
, PreShifts
);
4399 MagicFactor
= DAG
.getBuildVector(VT
, dl
, MagicFactors
);
4400 NPQFactor
= DAG
.getBuildVector(VT
, dl
, NPQFactors
);
4401 PostShift
= DAG
.getBuildVector(ShVT
, dl
, PostShifts
);
4403 PreShift
= PreShifts
[0];
4404 MagicFactor
= MagicFactors
[0];
4405 PostShift
= PostShifts
[0];
4409 Q
= DAG
.getNode(ISD::SRL
, dl
, VT
, Q
, PreShift
);
4410 Created
.push_back(Q
.getNode());
4412 // FIXME: We should support doing a MUL in a wider type.
4413 auto GetMULHU
= [&](SDValue X
, SDValue Y
) {
4414 if (IsAfterLegalization
? isOperationLegal(ISD::MULHU
, VT
)
4415 : isOperationLegalOrCustom(ISD::MULHU
, VT
))
4416 return DAG
.getNode(ISD::MULHU
, dl
, VT
, X
, Y
);
4417 if (IsAfterLegalization
? isOperationLegal(ISD::UMUL_LOHI
, VT
)
4418 : isOperationLegalOrCustom(ISD::UMUL_LOHI
, VT
)) {
4420 DAG
.getNode(ISD::UMUL_LOHI
, dl
, DAG
.getVTList(VT
, VT
), X
, Y
);
4421 return SDValue(LoHi
.getNode(), 1);
4423 return SDValue(); // No mulhu or equivalent
4426 // Multiply the numerator (operand 0) by the magic value.
4427 Q
= GetMULHU(Q
, MagicFactor
);
4431 Created
.push_back(Q
.getNode());
4434 SDValue NPQ
= DAG
.getNode(ISD::SUB
, dl
, VT
, N0
, Q
);
4435 Created
.push_back(NPQ
.getNode());
4437 // For vectors we might have a mix of non-NPQ/NPQ paths, so use
4438 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
4440 NPQ
= GetMULHU(NPQ
, NPQFactor
);
4442 NPQ
= DAG
.getNode(ISD::SRL
, dl
, VT
, NPQ
, DAG
.getConstant(1, dl
, ShVT
));
4444 Created
.push_back(NPQ
.getNode());
4446 Q
= DAG
.getNode(ISD::ADD
, dl
, VT
, NPQ
, Q
);
4447 Created
.push_back(Q
.getNode());
4450 Q
= DAG
.getNode(ISD::SRL
, dl
, VT
, Q
, PostShift
);
4451 Created
.push_back(Q
.getNode());
4453 SDValue One
= DAG
.getConstant(1, dl
, VT
);
4454 SDValue IsOne
= DAG
.getSetCC(dl
, VT
, N1
, One
, ISD::SETEQ
);
4455 return DAG
.getSelect(dl
, VT
, IsOne
, N0
, Q
);
4458 /// If all values in Values that *don't* match the predicate are same 'splat'
4459 /// value, then replace all values with that splat value.
4460 /// Else, if AlternativeReplacement was provided, then replace all values that
4461 /// do match predicate with AlternativeReplacement value.
4463 turnVectorIntoSplatVector(MutableArrayRef
<SDValue
> Values
,
4464 std::function
<bool(SDValue
)> Predicate
,
4465 SDValue AlternativeReplacement
= SDValue()) {
4466 SDValue Replacement
;
4467 // Is there a value for which the Predicate does *NOT* match? What is it?
4468 auto SplatValue
= llvm::find_if_not(Values
, Predicate
);
4469 if (SplatValue
!= Values
.end()) {
4470 // Does Values consist only of SplatValue's and values matching Predicate?
4471 if (llvm::all_of(Values
, [Predicate
, SplatValue
](SDValue Value
) {
4472 return Value
== *SplatValue
|| Predicate(Value
);
4473 })) // Then we shall replace values matching predicate with SplatValue.
4474 Replacement
= *SplatValue
;
4477 // Oops, we did not find the "baseline" splat value.
4478 if (!AlternativeReplacement
)
4479 return; // Nothing to do.
4480 // Let's replace with provided value then.
4481 Replacement
= AlternativeReplacement
;
4483 std::replace_if(Values
.begin(), Values
.end(), Predicate
, Replacement
);
4486 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
4487 /// where the divisor is constant and the comparison target is zero,
4488 /// return a DAG expression that will generate the same comparison result
4489 /// using only multiplications, additions and shifts/rotations.
4490 /// Ref: "Hacker's Delight" 10-17.
4491 SDValue
TargetLowering::buildUREMEqFold(EVT SETCCVT
, SDValue REMNode
,
4492 SDValue CompTargetNode
,
4494 DAGCombinerInfo
&DCI
,
4495 const SDLoc
&DL
) const {
4496 SmallVector
<SDNode
*, 2> Built
;
4497 if (SDValue Folded
= prepareUREMEqFold(SETCCVT
, REMNode
, CompTargetNode
, Cond
,
4499 for (SDNode
*N
: Built
)
4500 DCI
.AddToWorklist(N
);
4508 TargetLowering::prepareUREMEqFold(EVT SETCCVT
, SDValue REMNode
,
4509 SDValue CompTargetNode
, ISD::CondCode Cond
,
4510 DAGCombinerInfo
&DCI
, const SDLoc
&DL
,
4511 SmallVectorImpl
<SDNode
*> &Created
) const {
4512 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
4513 // - D must be constant, with D = D0 * 2^K where D0 is odd
4514 // - P is the multiplicative inverse of D0 modulo 2^W
4515 // - Q = floor((2^W - 1) / D0)
4516 // where W is the width of the common type of N and D.
4517 assert((Cond
== ISD::SETEQ
|| Cond
== ISD::SETNE
) &&
4518 "Only applicable for (in)equality comparisons.");
4520 SelectionDAG
&DAG
= DCI
.DAG
;
4522 EVT VT
= REMNode
.getValueType();
4523 EVT SVT
= VT
.getScalarType();
4524 EVT ShVT
= getShiftAmountTy(VT
, DAG
.getDataLayout());
4525 EVT ShSVT
= ShVT
.getScalarType();
4527 // If MUL is unavailable, we cannot proceed in any case.
4528 if (!isOperationLegalOrCustom(ISD::MUL
, VT
))
4531 // TODO: Could support comparing with non-zero too.
4532 ConstantSDNode
*CompTarget
= isConstOrConstSplat(CompTargetNode
);
4533 if (!CompTarget
|| !CompTarget
->isNullValue())
4536 bool HadOneDivisor
= false;
4537 bool AllDivisorsAreOnes
= true;
4538 bool HadEvenDivisor
= false;
4539 bool AllDivisorsArePowerOfTwo
= true;
4540 SmallVector
<SDValue
, 16> PAmts
, KAmts
, QAmts
;
4542 auto BuildUREMPattern
= [&](ConstantSDNode
*C
) {
4543 // Division by 0 is UB. Leave it to be constant-folded elsewhere.
4544 if (C
->isNullValue())
4547 const APInt
&D
= C
->getAPIntValue();
4548 // If all divisors are ones, we will prefer to avoid the fold.
4549 HadOneDivisor
|= D
.isOneValue();
4550 AllDivisorsAreOnes
&= D
.isOneValue();
4552 // Decompose D into D0 * 2^K
4553 unsigned K
= D
.countTrailingZeros();
4554 assert((!D
.isOneValue() || (K
== 0)) && "For divisor '1' we won't rotate.");
4555 APInt D0
= D
.lshr(K
);
4557 // D is even if it has trailing zeros.
4558 HadEvenDivisor
|= (K
!= 0);
4559 // D is a power-of-two if D0 is one.
4560 // If all divisors are power-of-two, we will prefer to avoid the fold.
4561 AllDivisorsArePowerOfTwo
&= D0
.isOneValue();
4564 // 2^W requires W + 1 bits, so we have to extend and then truncate.
4565 unsigned W
= D
.getBitWidth();
4566 APInt P
= D0
.zext(W
+ 1)
4567 .multiplicativeInverse(APInt::getSignedMinValue(W
+ 1))
4569 assert(!P
.isNullValue() && "No multiplicative inverse!"); // unreachable
4570 assert((D0
* P
).isOneValue() && "Multiplicative inverse sanity check.");
4572 // Q = floor((2^W - 1) / D)
4573 APInt Q
= APInt::getAllOnesValue(W
).udiv(D
);
4575 assert(APInt::getAllOnesValue(ShSVT
.getSizeInBits()).ugt(K
) &&
4576 "We are expecting that K is always less than all-ones for ShSVT");
4578 // If the divisor is 1 the result can be constant-folded.
4579 if (D
.isOneValue()) {
4580 // Set P and K amount to a bogus values so we can try to splat them.
4583 assert(Q
.isAllOnesValue() &&
4584 "Expecting all-ones comparison for one divisor");
4587 PAmts
.push_back(DAG
.getConstant(P
, DL
, SVT
));
4589 DAG
.getConstant(APInt(ShSVT
.getSizeInBits(), K
), DL
, ShSVT
));
4590 QAmts
.push_back(DAG
.getConstant(Q
, DL
, SVT
));
4594 SDValue N
= REMNode
.getOperand(0);
4595 SDValue D
= REMNode
.getOperand(1);
4597 // Collect the values from each element.
4598 if (!ISD::matchUnaryPredicate(D
, BuildUREMPattern
))
4601 // If this is a urem by a one, avoid the fold since it can be constant-folded.
4602 if (AllDivisorsAreOnes
)
4605 // If this is a urem by a powers-of-two, avoid the fold since it can be
4606 // best implemented as a bit test.
4607 if (AllDivisorsArePowerOfTwo
)
4610 SDValue PVal
, KVal
, QVal
;
4611 if (VT
.isVector()) {
4612 if (HadOneDivisor
) {
4613 // Try to turn PAmts into a splat, since we don't care about the values
4614 // that are currently '0'. If we can't, just keep '0'`s.
4615 turnVectorIntoSplatVector(PAmts
, isNullConstant
);
4616 // Try to turn KAmts into a splat, since we don't care about the values
4617 // that are currently '-1'. If we can't, change them to '0'`s.
4618 turnVectorIntoSplatVector(KAmts
, isAllOnesConstant
,
4619 DAG
.getConstant(0, DL
, ShSVT
));
4622 PVal
= DAG
.getBuildVector(VT
, DL
, PAmts
);
4623 KVal
= DAG
.getBuildVector(ShVT
, DL
, KAmts
);
4624 QVal
= DAG
.getBuildVector(VT
, DL
, QAmts
);
4632 SDValue Op0
= DAG
.getNode(ISD::MUL
, DL
, VT
, N
, PVal
);
4633 Created
.push_back(Op0
.getNode());
4635 // Rotate right only if any divisor was even. We avoid rotates for all-odd
4636 // divisors as a performance improvement, since rotating by 0 is a no-op.
4637 if (HadEvenDivisor
) {
4638 // We need ROTR to do this.
4639 if (!isOperationLegalOrCustom(ISD::ROTR
, VT
))
4642 Flags
.setExact(true);
4643 // UREM: (rotr (mul N, P), K)
4644 Op0
= DAG
.getNode(ISD::ROTR
, DL
, VT
, Op0
, KVal
, Flags
);
4645 Created
.push_back(Op0
.getNode());
4648 // UREM: (setule/setugt (rotr (mul N, P), K), Q)
4649 return DAG
.getSetCC(DL
, SETCCVT
, Op0
, QVal
,
4650 ((Cond
== ISD::SETEQ
) ? ISD::SETULE
: ISD::SETUGT
));
4653 bool TargetLowering::
4654 verifyReturnAddressArgumentIsConstant(SDValue Op
, SelectionDAG
&DAG
) const {
4655 if (!isa
<ConstantSDNode
>(Op
.getOperand(0))) {
4656 DAG
.getContext()->emitError("argument to '__builtin_return_address' must "
4657 "be a constant integer");
4664 //===----------------------------------------------------------------------===//
4665 // Legalization Utilities
4666 //===----------------------------------------------------------------------===//
4668 bool TargetLowering::expandMUL_LOHI(unsigned Opcode
, EVT VT
, SDLoc dl
,
4669 SDValue LHS
, SDValue RHS
,
4670 SmallVectorImpl
<SDValue
> &Result
,
4671 EVT HiLoVT
, SelectionDAG
&DAG
,
4672 MulExpansionKind Kind
, SDValue LL
,
4673 SDValue LH
, SDValue RL
, SDValue RH
) const {
4674 assert(Opcode
== ISD::MUL
|| Opcode
== ISD::UMUL_LOHI
||
4675 Opcode
== ISD::SMUL_LOHI
);
4677 bool HasMULHS
= (Kind
== MulExpansionKind::Always
) ||
4678 isOperationLegalOrCustom(ISD::MULHS
, HiLoVT
);
4679 bool HasMULHU
= (Kind
== MulExpansionKind::Always
) ||
4680 isOperationLegalOrCustom(ISD::MULHU
, HiLoVT
);
4681 bool HasSMUL_LOHI
= (Kind
== MulExpansionKind::Always
) ||
4682 isOperationLegalOrCustom(ISD::SMUL_LOHI
, HiLoVT
);
4683 bool HasUMUL_LOHI
= (Kind
== MulExpansionKind::Always
) ||
4684 isOperationLegalOrCustom(ISD::UMUL_LOHI
, HiLoVT
);
4686 if (!HasMULHU
&& !HasMULHS
&& !HasUMUL_LOHI
&& !HasSMUL_LOHI
)
4689 unsigned OuterBitSize
= VT
.getScalarSizeInBits();
4690 unsigned InnerBitSize
= HiLoVT
.getScalarSizeInBits();
4691 unsigned LHSSB
= DAG
.ComputeNumSignBits(LHS
);
4692 unsigned RHSSB
= DAG
.ComputeNumSignBits(RHS
);
4694 // LL, LH, RL, and RH must be either all NULL or all set to a value.
4695 assert((LL
.getNode() && LH
.getNode() && RL
.getNode() && RH
.getNode()) ||
4696 (!LL
.getNode() && !LH
.getNode() && !RL
.getNode() && !RH
.getNode()));
4698 SDVTList VTs
= DAG
.getVTList(HiLoVT
, HiLoVT
);
4699 auto MakeMUL_LOHI
= [&](SDValue L
, SDValue R
, SDValue
&Lo
, SDValue
&Hi
,
4700 bool Signed
) -> bool {
4701 if ((Signed
&& HasSMUL_LOHI
) || (!Signed
&& HasUMUL_LOHI
)) {
4702 Lo
= DAG
.getNode(Signed
? ISD::SMUL_LOHI
: ISD::UMUL_LOHI
, dl
, VTs
, L
, R
);
4703 Hi
= SDValue(Lo
.getNode(), 1);
4706 if ((Signed
&& HasMULHS
) || (!Signed
&& HasMULHU
)) {
4707 Lo
= DAG
.getNode(ISD::MUL
, dl
, HiLoVT
, L
, R
);
4708 Hi
= DAG
.getNode(Signed
? ISD::MULHS
: ISD::MULHU
, dl
, HiLoVT
, L
, R
);
4716 if (!LL
.getNode() && !RL
.getNode() &&
4717 isOperationLegalOrCustom(ISD::TRUNCATE
, HiLoVT
)) {
4718 LL
= DAG
.getNode(ISD::TRUNCATE
, dl
, HiLoVT
, LHS
);
4719 RL
= DAG
.getNode(ISD::TRUNCATE
, dl
, HiLoVT
, RHS
);
4725 APInt HighMask
= APInt::getHighBitsSet(OuterBitSize
, InnerBitSize
);
4726 if (DAG
.MaskedValueIsZero(LHS
, HighMask
) &&
4727 DAG
.MaskedValueIsZero(RHS
, HighMask
)) {
4728 // The inputs are both zero-extended.
4729 if (MakeMUL_LOHI(LL
, RL
, Lo
, Hi
, false)) {
4730 Result
.push_back(Lo
);
4731 Result
.push_back(Hi
);
4732 if (Opcode
!= ISD::MUL
) {
4733 SDValue Zero
= DAG
.getConstant(0, dl
, HiLoVT
);
4734 Result
.push_back(Zero
);
4735 Result
.push_back(Zero
);
4741 if (!VT
.isVector() && Opcode
== ISD::MUL
&& LHSSB
> InnerBitSize
&&
4742 RHSSB
> InnerBitSize
) {
4743 // The input values are both sign-extended.
4744 // TODO non-MUL case?
4745 if (MakeMUL_LOHI(LL
, RL
, Lo
, Hi
, true)) {
4746 Result
.push_back(Lo
);
4747 Result
.push_back(Hi
);
4752 unsigned ShiftAmount
= OuterBitSize
- InnerBitSize
;
4753 EVT ShiftAmountTy
= getShiftAmountTy(VT
, DAG
.getDataLayout());
4754 if (APInt::getMaxValue(ShiftAmountTy
.getSizeInBits()).ult(ShiftAmount
)) {
4755 // FIXME getShiftAmountTy does not always return a sensible result when VT
4756 // is an illegal type, and so the type may be too small to fit the shift
4757 // amount. Override it with i32. The shift will have to be legalized.
4758 ShiftAmountTy
= MVT::i32
;
4760 SDValue Shift
= DAG
.getConstant(ShiftAmount
, dl
, ShiftAmountTy
);
4762 if (!LH
.getNode() && !RH
.getNode() &&
4763 isOperationLegalOrCustom(ISD::SRL
, VT
) &&
4764 isOperationLegalOrCustom(ISD::TRUNCATE
, HiLoVT
)) {
4765 LH
= DAG
.getNode(ISD::SRL
, dl
, VT
, LHS
, Shift
);
4766 LH
= DAG
.getNode(ISD::TRUNCATE
, dl
, HiLoVT
, LH
);
4767 RH
= DAG
.getNode(ISD::SRL
, dl
, VT
, RHS
, Shift
);
4768 RH
= DAG
.getNode(ISD::TRUNCATE
, dl
, HiLoVT
, RH
);
4774 if (!MakeMUL_LOHI(LL
, RL
, Lo
, Hi
, false))
4777 Result
.push_back(Lo
);
4779 if (Opcode
== ISD::MUL
) {
4780 RH
= DAG
.getNode(ISD::MUL
, dl
, HiLoVT
, LL
, RH
);
4781 LH
= DAG
.getNode(ISD::MUL
, dl
, HiLoVT
, LH
, RL
);
4782 Hi
= DAG
.getNode(ISD::ADD
, dl
, HiLoVT
, Hi
, RH
);
4783 Hi
= DAG
.getNode(ISD::ADD
, dl
, HiLoVT
, Hi
, LH
);
4784 Result
.push_back(Hi
);
4788 // Compute the full width result.
4789 auto Merge
= [&](SDValue Lo
, SDValue Hi
) -> SDValue
{
4790 Lo
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, Lo
);
4791 Hi
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, Hi
);
4792 Hi
= DAG
.getNode(ISD::SHL
, dl
, VT
, Hi
, Shift
);
4793 return DAG
.getNode(ISD::OR
, dl
, VT
, Lo
, Hi
);
4796 SDValue Next
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, Hi
);
4797 if (!MakeMUL_LOHI(LL
, RH
, Lo
, Hi
, false))
4800 // This is effectively the add part of a multiply-add of half-sized operands,
4801 // so it cannot overflow.
4802 Next
= DAG
.getNode(ISD::ADD
, dl
, VT
, Next
, Merge(Lo
, Hi
));
4804 if (!MakeMUL_LOHI(LH
, RL
, Lo
, Hi
, false))
4807 SDValue Zero
= DAG
.getConstant(0, dl
, HiLoVT
);
4808 EVT BoolType
= getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
4810 bool UseGlue
= (isOperationLegalOrCustom(ISD::ADDC
, VT
) &&
4811 isOperationLegalOrCustom(ISD::ADDE
, VT
));
4813 Next
= DAG
.getNode(ISD::ADDC
, dl
, DAG
.getVTList(VT
, MVT::Glue
), Next
,
4816 Next
= DAG
.getNode(ISD::ADDCARRY
, dl
, DAG
.getVTList(VT
, BoolType
), Next
,
4817 Merge(Lo
, Hi
), DAG
.getConstant(0, dl
, BoolType
));
4819 SDValue Carry
= Next
.getValue(1);
4820 Result
.push_back(DAG
.getNode(ISD::TRUNCATE
, dl
, HiLoVT
, Next
));
4821 Next
= DAG
.getNode(ISD::SRL
, dl
, VT
, Next
, Shift
);
4823 if (!MakeMUL_LOHI(LH
, RH
, Lo
, Hi
, Opcode
== ISD::SMUL_LOHI
))
4827 Hi
= DAG
.getNode(ISD::ADDE
, dl
, DAG
.getVTList(HiLoVT
, MVT::Glue
), Hi
, Zero
,
4830 Hi
= DAG
.getNode(ISD::ADDCARRY
, dl
, DAG
.getVTList(HiLoVT
, BoolType
), Hi
,
4833 Next
= DAG
.getNode(ISD::ADD
, dl
, VT
, Next
, Merge(Lo
, Hi
));
4835 if (Opcode
== ISD::SMUL_LOHI
) {
4836 SDValue NextSub
= DAG
.getNode(ISD::SUB
, dl
, VT
, Next
,
4837 DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, RL
));
4838 Next
= DAG
.getSelectCC(dl
, LH
, Zero
, NextSub
, Next
, ISD::SETLT
);
4840 NextSub
= DAG
.getNode(ISD::SUB
, dl
, VT
, Next
,
4841 DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, LL
));
4842 Next
= DAG
.getSelectCC(dl
, RH
, Zero
, NextSub
, Next
, ISD::SETLT
);
4845 Result
.push_back(DAG
.getNode(ISD::TRUNCATE
, dl
, HiLoVT
, Next
));
4846 Next
= DAG
.getNode(ISD::SRL
, dl
, VT
, Next
, Shift
);
4847 Result
.push_back(DAG
.getNode(ISD::TRUNCATE
, dl
, HiLoVT
, Next
));
4851 bool TargetLowering::expandMUL(SDNode
*N
, SDValue
&Lo
, SDValue
&Hi
, EVT HiLoVT
,
4852 SelectionDAG
&DAG
, MulExpansionKind Kind
,
4853 SDValue LL
, SDValue LH
, SDValue RL
,
4855 SmallVector
<SDValue
, 2> Result
;
4856 bool Ok
= expandMUL_LOHI(N
->getOpcode(), N
->getValueType(0), N
,
4857 N
->getOperand(0), N
->getOperand(1), Result
, HiLoVT
,
4858 DAG
, Kind
, LL
, LH
, RL
, RH
);
4860 assert(Result
.size() == 2);
4867 bool TargetLowering::expandFunnelShift(SDNode
*Node
, SDValue
&Result
,
4868 SelectionDAG
&DAG
) const {
4869 EVT VT
= Node
->getValueType(0);
4871 if (VT
.isVector() && (!isOperationLegalOrCustom(ISD::SHL
, VT
) ||
4872 !isOperationLegalOrCustom(ISD::SRL
, VT
) ||
4873 !isOperationLegalOrCustom(ISD::SUB
, VT
) ||
4874 !isOperationLegalOrCustomOrPromote(ISD::OR
, VT
)))
4877 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
4878 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
4879 SDValue X
= Node
->getOperand(0);
4880 SDValue Y
= Node
->getOperand(1);
4881 SDValue Z
= Node
->getOperand(2);
4883 unsigned EltSizeInBits
= VT
.getScalarSizeInBits();
4884 bool IsFSHL
= Node
->getOpcode() == ISD::FSHL
;
4885 SDLoc
DL(SDValue(Node
, 0));
4887 EVT ShVT
= Z
.getValueType();
4888 SDValue BitWidthC
= DAG
.getConstant(EltSizeInBits
, DL
, ShVT
);
4889 SDValue Zero
= DAG
.getConstant(0, DL
, ShVT
);
4892 if (isPowerOf2_32(EltSizeInBits
)) {
4893 SDValue Mask
= DAG
.getConstant(EltSizeInBits
- 1, DL
, ShVT
);
4894 ShAmt
= DAG
.getNode(ISD::AND
, DL
, ShVT
, Z
, Mask
);
4896 ShAmt
= DAG
.getNode(ISD::UREM
, DL
, ShVT
, Z
, BitWidthC
);
4899 SDValue InvShAmt
= DAG
.getNode(ISD::SUB
, DL
, ShVT
, BitWidthC
, ShAmt
);
4900 SDValue ShX
= DAG
.getNode(ISD::SHL
, DL
, VT
, X
, IsFSHL
? ShAmt
: InvShAmt
);
4901 SDValue ShY
= DAG
.getNode(ISD::SRL
, DL
, VT
, Y
, IsFSHL
? InvShAmt
: ShAmt
);
4902 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, VT
, ShX
, ShY
);
4904 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
4905 // and that is undefined. We must compare and select to avoid UB.
4906 EVT CCVT
= getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), ShVT
);
4908 // For fshl, 0-shift returns the 1st arg (X).
4909 // For fshr, 0-shift returns the 2nd arg (Y).
4910 SDValue IsZeroShift
= DAG
.getSetCC(DL
, CCVT
, ShAmt
, Zero
, ISD::SETEQ
);
4911 Result
= DAG
.getSelect(DL
, VT
, IsZeroShift
, IsFSHL
? X
: Y
, Or
);
4915 // TODO: Merge with expandFunnelShift.
4916 bool TargetLowering::expandROT(SDNode
*Node
, SDValue
&Result
,
4917 SelectionDAG
&DAG
) const {
4918 EVT VT
= Node
->getValueType(0);
4919 unsigned EltSizeInBits
= VT
.getScalarSizeInBits();
4920 bool IsLeft
= Node
->getOpcode() == ISD::ROTL
;
4921 SDValue Op0
= Node
->getOperand(0);
4922 SDValue Op1
= Node
->getOperand(1);
4923 SDLoc
DL(SDValue(Node
, 0));
4925 EVT ShVT
= Op1
.getValueType();
4926 SDValue BitWidthC
= DAG
.getConstant(EltSizeInBits
, DL
, ShVT
);
4928 // If a rotate in the other direction is legal, use it.
4929 unsigned RevRot
= IsLeft
? ISD::ROTR
: ISD::ROTL
;
4930 if (isOperationLegal(RevRot
, VT
)) {
4931 SDValue Sub
= DAG
.getNode(ISD::SUB
, DL
, ShVT
, BitWidthC
, Op1
);
4932 Result
= DAG
.getNode(RevRot
, DL
, VT
, Op0
, Sub
);
4936 if (VT
.isVector() && (!isOperationLegalOrCustom(ISD::SHL
, VT
) ||
4937 !isOperationLegalOrCustom(ISD::SRL
, VT
) ||
4938 !isOperationLegalOrCustom(ISD::SUB
, VT
) ||
4939 !isOperationLegalOrCustomOrPromote(ISD::OR
, VT
) ||
4940 !isOperationLegalOrCustomOrPromote(ISD::AND
, VT
)))
4944 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
4945 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
4947 assert(isPowerOf2_32(EltSizeInBits
) && EltSizeInBits
> 1 &&
4948 "Expecting the type bitwidth to be a power of 2");
4949 unsigned ShOpc
= IsLeft
? ISD::SHL
: ISD::SRL
;
4950 unsigned HsOpc
= IsLeft
? ISD::SRL
: ISD::SHL
;
4951 SDValue BitWidthMinusOneC
= DAG
.getConstant(EltSizeInBits
- 1, DL
, ShVT
);
4952 SDValue NegOp1
= DAG
.getNode(ISD::SUB
, DL
, ShVT
, BitWidthC
, Op1
);
4953 SDValue And0
= DAG
.getNode(ISD::AND
, DL
, ShVT
, Op1
, BitWidthMinusOneC
);
4954 SDValue And1
= DAG
.getNode(ISD::AND
, DL
, ShVT
, NegOp1
, BitWidthMinusOneC
);
4955 Result
= DAG
.getNode(ISD::OR
, DL
, VT
, DAG
.getNode(ShOpc
, DL
, VT
, Op0
, And0
),
4956 DAG
.getNode(HsOpc
, DL
, VT
, Op0
, And1
));
4960 bool TargetLowering::expandFP_TO_SINT(SDNode
*Node
, SDValue
&Result
,
4961 SelectionDAG
&DAG
) const {
4962 SDValue Src
= Node
->getOperand(0);
4963 EVT SrcVT
= Src
.getValueType();
4964 EVT DstVT
= Node
->getValueType(0);
4965 SDLoc
dl(SDValue(Node
, 0));
4967 // FIXME: Only f32 to i64 conversions are supported.
4968 if (SrcVT
!= MVT::f32
|| DstVT
!= MVT::i64
)
4971 // Expand f32 -> i64 conversion
4972 // This algorithm comes from compiler-rt's implementation of fixsfdi:
4973 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
4974 unsigned SrcEltBits
= SrcVT
.getScalarSizeInBits();
4975 EVT IntVT
= SrcVT
.changeTypeToInteger();
4976 EVT IntShVT
= getShiftAmountTy(IntVT
, DAG
.getDataLayout());
4978 SDValue ExponentMask
= DAG
.getConstant(0x7F800000, dl
, IntVT
);
4979 SDValue ExponentLoBit
= DAG
.getConstant(23, dl
, IntVT
);
4980 SDValue Bias
= DAG
.getConstant(127, dl
, IntVT
);
4981 SDValue SignMask
= DAG
.getConstant(APInt::getSignMask(SrcEltBits
), dl
, IntVT
);
4982 SDValue SignLowBit
= DAG
.getConstant(SrcEltBits
- 1, dl
, IntVT
);
4983 SDValue MantissaMask
= DAG
.getConstant(0x007FFFFF, dl
, IntVT
);
4985 SDValue Bits
= DAG
.getNode(ISD::BITCAST
, dl
, IntVT
, Src
);
4987 SDValue ExponentBits
= DAG
.getNode(
4988 ISD::SRL
, dl
, IntVT
, DAG
.getNode(ISD::AND
, dl
, IntVT
, Bits
, ExponentMask
),
4989 DAG
.getZExtOrTrunc(ExponentLoBit
, dl
, IntShVT
));
4990 SDValue Exponent
= DAG
.getNode(ISD::SUB
, dl
, IntVT
, ExponentBits
, Bias
);
4992 SDValue Sign
= DAG
.getNode(ISD::SRA
, dl
, IntVT
,
4993 DAG
.getNode(ISD::AND
, dl
, IntVT
, Bits
, SignMask
),
4994 DAG
.getZExtOrTrunc(SignLowBit
, dl
, IntShVT
));
4995 Sign
= DAG
.getSExtOrTrunc(Sign
, dl
, DstVT
);
4997 SDValue R
= DAG
.getNode(ISD::OR
, dl
, IntVT
,
4998 DAG
.getNode(ISD::AND
, dl
, IntVT
, Bits
, MantissaMask
),
4999 DAG
.getConstant(0x00800000, dl
, IntVT
));
5001 R
= DAG
.getZExtOrTrunc(R
, dl
, DstVT
);
5003 R
= DAG
.getSelectCC(
5004 dl
, Exponent
, ExponentLoBit
,
5005 DAG
.getNode(ISD::SHL
, dl
, DstVT
, R
,
5007 DAG
.getNode(ISD::SUB
, dl
, IntVT
, Exponent
, ExponentLoBit
),
5009 DAG
.getNode(ISD::SRL
, dl
, DstVT
, R
,
5011 DAG
.getNode(ISD::SUB
, dl
, IntVT
, ExponentLoBit
, Exponent
),
5015 SDValue Ret
= DAG
.getNode(ISD::SUB
, dl
, DstVT
,
5016 DAG
.getNode(ISD::XOR
, dl
, DstVT
, R
, Sign
), Sign
);
5018 Result
= DAG
.getSelectCC(dl
, Exponent
, DAG
.getConstant(0, dl
, IntVT
),
5019 DAG
.getConstant(0, dl
, DstVT
), Ret
, ISD::SETLT
);
5023 bool TargetLowering::expandFP_TO_UINT(SDNode
*Node
, SDValue
&Result
,
5024 SelectionDAG
&DAG
) const {
5025 SDLoc
dl(SDValue(Node
, 0));
5026 SDValue Src
= Node
->getOperand(0);
5028 EVT SrcVT
= Src
.getValueType();
5029 EVT DstVT
= Node
->getValueType(0);
5031 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), SrcVT
);
5033 // Only expand vector types if we have the appropriate vector bit operations.
5034 if (DstVT
.isVector() && (!isOperationLegalOrCustom(ISD::FP_TO_SINT
, DstVT
) ||
5035 !isOperationLegalOrCustomOrPromote(ISD::XOR
, SrcVT
)))
5038 // If the maximum float value is smaller then the signed integer range,
5039 // the destination signmask can't be represented by the float, so we can
5040 // just use FP_TO_SINT directly.
5041 const fltSemantics
&APFSem
= DAG
.EVTToAPFloatSemantics(SrcVT
);
5042 APFloat
APF(APFSem
, APInt::getNullValue(SrcVT
.getScalarSizeInBits()));
5043 APInt SignMask
= APInt::getSignMask(DstVT
.getScalarSizeInBits());
5044 if (APFloat::opOverflow
&
5045 APF
.convertFromAPInt(SignMask
, false, APFloat::rmNearestTiesToEven
)) {
5046 Result
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, DstVT
, Src
);
5050 SDValue Cst
= DAG
.getConstantFP(APF
, dl
, SrcVT
);
5051 SDValue Sel
= DAG
.getSetCC(dl
, SetCCVT
, Src
, Cst
, ISD::SETLT
);
5053 bool Strict
= shouldUseStrictFP_TO_INT(SrcVT
, DstVT
, /*IsSigned*/ false);
5055 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
5056 // signmask then offset (the result of which should be fully representable).
5057 // Sel = Src < 0x8000000000000000
5058 // Val = select Sel, Src, Src - 0x8000000000000000
5059 // Ofs = select Sel, 0, 0x8000000000000000
5060 // Result = fp_to_sint(Val) ^ Ofs
5062 // TODO: Should any fast-math-flags be set for the FSUB?
5063 SDValue Val
= DAG
.getSelect(dl
, SrcVT
, Sel
, Src
,
5064 DAG
.getNode(ISD::FSUB
, dl
, SrcVT
, Src
, Cst
));
5065 SDValue Ofs
= DAG
.getSelect(dl
, DstVT
, Sel
, DAG
.getConstant(0, dl
, DstVT
),
5066 DAG
.getConstant(SignMask
, dl
, DstVT
));
5067 Result
= DAG
.getNode(ISD::XOR
, dl
, DstVT
,
5068 DAG
.getNode(ISD::FP_TO_SINT
, dl
, DstVT
, Val
), Ofs
);
5070 // Expand based on maximum range of FP_TO_SINT:
5071 // True = fp_to_sint(Src)
5072 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
5073 // Result = select (Src < 0x8000000000000000), True, False
5075 SDValue True
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, DstVT
, Src
);
5076 // TODO: Should any fast-math-flags be set for the FSUB?
5077 SDValue False
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, DstVT
,
5078 DAG
.getNode(ISD::FSUB
, dl
, SrcVT
, Src
, Cst
));
5079 False
= DAG
.getNode(ISD::XOR
, dl
, DstVT
, False
,
5080 DAG
.getConstant(SignMask
, dl
, DstVT
));
5081 Result
= DAG
.getSelect(dl
, DstVT
, Sel
, True
, False
);
5086 bool TargetLowering::expandUINT_TO_FP(SDNode
*Node
, SDValue
&Result
,
5087 SelectionDAG
&DAG
) const {
5088 SDValue Src
= Node
->getOperand(0);
5089 EVT SrcVT
= Src
.getValueType();
5090 EVT DstVT
= Node
->getValueType(0);
5092 if (SrcVT
.getScalarType() != MVT::i64
)
5095 SDLoc
dl(SDValue(Node
, 0));
5096 EVT ShiftVT
= getShiftAmountTy(SrcVT
, DAG
.getDataLayout());
5098 if (DstVT
.getScalarType() == MVT::f32
) {
5099 // Only expand vector types if we have the appropriate vector bit
5101 if (SrcVT
.isVector() &&
5102 (!isOperationLegalOrCustom(ISD::SRL
, SrcVT
) ||
5103 !isOperationLegalOrCustom(ISD::FADD
, DstVT
) ||
5104 !isOperationLegalOrCustom(ISD::SINT_TO_FP
, SrcVT
) ||
5105 !isOperationLegalOrCustomOrPromote(ISD::OR
, SrcVT
) ||
5106 !isOperationLegalOrCustomOrPromote(ISD::AND
, SrcVT
)))
5109 // For unsigned conversions, convert them to signed conversions using the
5110 // algorithm from the x86_64 __floatundidf in compiler_rt.
5111 SDValue Fast
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, DstVT
, Src
);
5113 SDValue ShiftConst
= DAG
.getConstant(1, dl
, ShiftVT
);
5114 SDValue Shr
= DAG
.getNode(ISD::SRL
, dl
, SrcVT
, Src
, ShiftConst
);
5115 SDValue AndConst
= DAG
.getConstant(1, dl
, SrcVT
);
5116 SDValue And
= DAG
.getNode(ISD::AND
, dl
, SrcVT
, Src
, AndConst
);
5117 SDValue Or
= DAG
.getNode(ISD::OR
, dl
, SrcVT
, And
, Shr
);
5119 SDValue SignCvt
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, DstVT
, Or
);
5120 SDValue Slow
= DAG
.getNode(ISD::FADD
, dl
, DstVT
, SignCvt
, SignCvt
);
5122 // TODO: This really should be implemented using a branch rather than a
5123 // select. We happen to get lucky and machinesink does the right
5124 // thing most of the time. This would be a good candidate for a
5125 // pseudo-op, or, even better, for whole-function isel.
5127 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), SrcVT
);
5129 SDValue SignBitTest
= DAG
.getSetCC(
5130 dl
, SetCCVT
, Src
, DAG
.getConstant(0, dl
, SrcVT
), ISD::SETLT
);
5131 Result
= DAG
.getSelect(dl
, DstVT
, SignBitTest
, Slow
, Fast
);
5135 if (DstVT
.getScalarType() == MVT::f64
) {
5136 // Only expand vector types if we have the appropriate vector bit
5138 if (SrcVT
.isVector() &&
5139 (!isOperationLegalOrCustom(ISD::SRL
, SrcVT
) ||
5140 !isOperationLegalOrCustom(ISD::FADD
, DstVT
) ||
5141 !isOperationLegalOrCustom(ISD::FSUB
, DstVT
) ||
5142 !isOperationLegalOrCustomOrPromote(ISD::OR
, SrcVT
) ||
5143 !isOperationLegalOrCustomOrPromote(ISD::AND
, SrcVT
)))
5146 // Implementation of unsigned i64 to f64 following the algorithm in
5147 // __floatundidf in compiler_rt. This implementation has the advantage
5148 // of performing rounding correctly, both in the default rounding mode
5149 // and in all alternate rounding modes.
5150 SDValue TwoP52
= DAG
.getConstant(UINT64_C(0x4330000000000000), dl
, SrcVT
);
5151 SDValue TwoP84PlusTwoP52
= DAG
.getConstantFP(
5152 BitsToDouble(UINT64_C(0x4530000000100000)), dl
, DstVT
);
5153 SDValue TwoP84
= DAG
.getConstant(UINT64_C(0x4530000000000000), dl
, SrcVT
);
5154 SDValue LoMask
= DAG
.getConstant(UINT64_C(0x00000000FFFFFFFF), dl
, SrcVT
);
5155 SDValue HiShift
= DAG
.getConstant(32, dl
, ShiftVT
);
5157 SDValue Lo
= DAG
.getNode(ISD::AND
, dl
, SrcVT
, Src
, LoMask
);
5158 SDValue Hi
= DAG
.getNode(ISD::SRL
, dl
, SrcVT
, Src
, HiShift
);
5159 SDValue LoOr
= DAG
.getNode(ISD::OR
, dl
, SrcVT
, Lo
, TwoP52
);
5160 SDValue HiOr
= DAG
.getNode(ISD::OR
, dl
, SrcVT
, Hi
, TwoP84
);
5161 SDValue LoFlt
= DAG
.getBitcast(DstVT
, LoOr
);
5162 SDValue HiFlt
= DAG
.getBitcast(DstVT
, HiOr
);
5163 SDValue HiSub
= DAG
.getNode(ISD::FSUB
, dl
, DstVT
, HiFlt
, TwoP84PlusTwoP52
);
5164 Result
= DAG
.getNode(ISD::FADD
, dl
, DstVT
, LoFlt
, HiSub
);
5171 SDValue
TargetLowering::expandFMINNUM_FMAXNUM(SDNode
*Node
,
5172 SelectionDAG
&DAG
) const {
5174 unsigned NewOp
= Node
->getOpcode() == ISD::FMINNUM
?
5175 ISD::FMINNUM_IEEE
: ISD::FMAXNUM_IEEE
;
5176 EVT VT
= Node
->getValueType(0);
5177 if (isOperationLegalOrCustom(NewOp
, VT
)) {
5178 SDValue Quiet0
= Node
->getOperand(0);
5179 SDValue Quiet1
= Node
->getOperand(1);
5181 if (!Node
->getFlags().hasNoNaNs()) {
5182 // Insert canonicalizes if it's possible we need to quiet to get correct
5184 if (!DAG
.isKnownNeverSNaN(Quiet0
)) {
5185 Quiet0
= DAG
.getNode(ISD::FCANONICALIZE
, dl
, VT
, Quiet0
,
5188 if (!DAG
.isKnownNeverSNaN(Quiet1
)) {
5189 Quiet1
= DAG
.getNode(ISD::FCANONICALIZE
, dl
, VT
, Quiet1
,
5194 return DAG
.getNode(NewOp
, dl
, VT
, Quiet0
, Quiet1
, Node
->getFlags());
5197 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
5198 // instead if there are no NaNs.
5199 if (Node
->getFlags().hasNoNaNs()) {
5200 unsigned IEEE2018Op
=
5201 Node
->getOpcode() == ISD::FMINNUM
? ISD::FMINIMUM
: ISD::FMAXIMUM
;
5202 if (isOperationLegalOrCustom(IEEE2018Op
, VT
)) {
5203 return DAG
.getNode(IEEE2018Op
, dl
, VT
, Node
->getOperand(0),
5204 Node
->getOperand(1), Node
->getFlags());
5211 bool TargetLowering::expandCTPOP(SDNode
*Node
, SDValue
&Result
,
5212 SelectionDAG
&DAG
) const {
5214 EVT VT
= Node
->getValueType(0);
5215 EVT ShVT
= getShiftAmountTy(VT
, DAG
.getDataLayout());
5216 SDValue Op
= Node
->getOperand(0);
5217 unsigned Len
= VT
.getScalarSizeInBits();
5218 assert(VT
.isInteger() && "CTPOP not implemented for this type.");
5220 // TODO: Add support for irregular type lengths.
5221 if (!(Len
<= 128 && Len
% 8 == 0))
5224 // Only expand vector types if we have the appropriate vector bit operations.
5225 if (VT
.isVector() && (!isOperationLegalOrCustom(ISD::ADD
, VT
) ||
5226 !isOperationLegalOrCustom(ISD::SUB
, VT
) ||
5227 !isOperationLegalOrCustom(ISD::SRL
, VT
) ||
5228 (Len
!= 8 && !isOperationLegalOrCustom(ISD::MUL
, VT
)) ||
5229 !isOperationLegalOrCustomOrPromote(ISD::AND
, VT
)))
5232 // This is the "best" algorithm from
5233 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
5235 DAG
.getConstant(APInt::getSplat(Len
, APInt(8, 0x55)), dl
, VT
);
5237 DAG
.getConstant(APInt::getSplat(Len
, APInt(8, 0x33)), dl
, VT
);
5239 DAG
.getConstant(APInt::getSplat(Len
, APInt(8, 0x0F)), dl
, VT
);
5241 DAG
.getConstant(APInt::getSplat(Len
, APInt(8, 0x01)), dl
, VT
);
5243 // v = v - ((v >> 1) & 0x55555555...)
5244 Op
= DAG
.getNode(ISD::SUB
, dl
, VT
, Op
,
5245 DAG
.getNode(ISD::AND
, dl
, VT
,
5246 DAG
.getNode(ISD::SRL
, dl
, VT
, Op
,
5247 DAG
.getConstant(1, dl
, ShVT
)),
5249 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
5250 Op
= DAG
.getNode(ISD::ADD
, dl
, VT
, DAG
.getNode(ISD::AND
, dl
, VT
, Op
, Mask33
),
5251 DAG
.getNode(ISD::AND
, dl
, VT
,
5252 DAG
.getNode(ISD::SRL
, dl
, VT
, Op
,
5253 DAG
.getConstant(2, dl
, ShVT
)),
5255 // v = (v + (v >> 4)) & 0x0F0F0F0F...
5256 Op
= DAG
.getNode(ISD::AND
, dl
, VT
,
5257 DAG
.getNode(ISD::ADD
, dl
, VT
, Op
,
5258 DAG
.getNode(ISD::SRL
, dl
, VT
, Op
,
5259 DAG
.getConstant(4, dl
, ShVT
))),
5261 // v = (v * 0x01010101...) >> (Len - 8)
5264 DAG
.getNode(ISD::SRL
, dl
, VT
, DAG
.getNode(ISD::MUL
, dl
, VT
, Op
, Mask01
),
5265 DAG
.getConstant(Len
- 8, dl
, ShVT
));
5271 bool TargetLowering::expandCTLZ(SDNode
*Node
, SDValue
&Result
,
5272 SelectionDAG
&DAG
) const {
5274 EVT VT
= Node
->getValueType(0);
5275 EVT ShVT
= getShiftAmountTy(VT
, DAG
.getDataLayout());
5276 SDValue Op
= Node
->getOperand(0);
5277 unsigned NumBitsPerElt
= VT
.getScalarSizeInBits();
5279 // If the non-ZERO_UNDEF version is supported we can use that instead.
5280 if (Node
->getOpcode() == ISD::CTLZ_ZERO_UNDEF
&&
5281 isOperationLegalOrCustom(ISD::CTLZ
, VT
)) {
5282 Result
= DAG
.getNode(ISD::CTLZ
, dl
, VT
, Op
);
5286 // If the ZERO_UNDEF version is supported use that and handle the zero case.
5287 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF
, VT
)) {
5289 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
5290 SDValue CTLZ
= DAG
.getNode(ISD::CTLZ_ZERO_UNDEF
, dl
, VT
, Op
);
5291 SDValue Zero
= DAG
.getConstant(0, dl
, VT
);
5292 SDValue SrcIsZero
= DAG
.getSetCC(dl
, SetCCVT
, Op
, Zero
, ISD::SETEQ
);
5293 Result
= DAG
.getNode(ISD::SELECT
, dl
, VT
, SrcIsZero
,
5294 DAG
.getConstant(NumBitsPerElt
, dl
, VT
), CTLZ
);
5298 // Only expand vector types if we have the appropriate vector bit operations.
5299 if (VT
.isVector() && (!isPowerOf2_32(NumBitsPerElt
) ||
5300 !isOperationLegalOrCustom(ISD::CTPOP
, VT
) ||
5301 !isOperationLegalOrCustom(ISD::SRL
, VT
) ||
5302 !isOperationLegalOrCustomOrPromote(ISD::OR
, VT
)))
5305 // for now, we do this:
5306 // x = x | (x >> 1);
5307 // x = x | (x >> 2);
5309 // x = x | (x >>16);
5310 // x = x | (x >>32); // for 64-bit input
5311 // return popcount(~x);
5313 // Ref: "Hacker's Delight" by Henry Warren
5314 for (unsigned i
= 0; (1U << i
) <= (NumBitsPerElt
/ 2); ++i
) {
5315 SDValue Tmp
= DAG
.getConstant(1ULL << i
, dl
, ShVT
);
5316 Op
= DAG
.getNode(ISD::OR
, dl
, VT
, Op
,
5317 DAG
.getNode(ISD::SRL
, dl
, VT
, Op
, Tmp
));
5319 Op
= DAG
.getNOT(dl
, Op
, VT
);
5320 Result
= DAG
.getNode(ISD::CTPOP
, dl
, VT
, Op
);
5324 bool TargetLowering::expandCTTZ(SDNode
*Node
, SDValue
&Result
,
5325 SelectionDAG
&DAG
) const {
5327 EVT VT
= Node
->getValueType(0);
5328 SDValue Op
= Node
->getOperand(0);
5329 unsigned NumBitsPerElt
= VT
.getScalarSizeInBits();
5331 // If the non-ZERO_UNDEF version is supported we can use that instead.
5332 if (Node
->getOpcode() == ISD::CTTZ_ZERO_UNDEF
&&
5333 isOperationLegalOrCustom(ISD::CTTZ
, VT
)) {
5334 Result
= DAG
.getNode(ISD::CTTZ
, dl
, VT
, Op
);
5338 // If the ZERO_UNDEF version is supported use that and handle the zero case.
5339 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF
, VT
)) {
5341 getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
5342 SDValue CTTZ
= DAG
.getNode(ISD::CTTZ_ZERO_UNDEF
, dl
, VT
, Op
);
5343 SDValue Zero
= DAG
.getConstant(0, dl
, VT
);
5344 SDValue SrcIsZero
= DAG
.getSetCC(dl
, SetCCVT
, Op
, Zero
, ISD::SETEQ
);
5345 Result
= DAG
.getNode(ISD::SELECT
, dl
, VT
, SrcIsZero
,
5346 DAG
.getConstant(NumBitsPerElt
, dl
, VT
), CTTZ
);
5350 // Only expand vector types if we have the appropriate vector bit operations.
5351 if (VT
.isVector() && (!isPowerOf2_32(NumBitsPerElt
) ||
5352 (!isOperationLegalOrCustom(ISD::CTPOP
, VT
) &&
5353 !isOperationLegalOrCustom(ISD::CTLZ
, VT
)) ||
5354 !isOperationLegalOrCustom(ISD::SUB
, VT
) ||
5355 !isOperationLegalOrCustomOrPromote(ISD::AND
, VT
) ||
5356 !isOperationLegalOrCustomOrPromote(ISD::XOR
, VT
)))
5359 // for now, we use: { return popcount(~x & (x - 1)); }
5360 // unless the target has ctlz but not ctpop, in which case we use:
5361 // { return 32 - nlz(~x & (x-1)); }
5362 // Ref: "Hacker's Delight" by Henry Warren
5363 SDValue Tmp
= DAG
.getNode(
5364 ISD::AND
, dl
, VT
, DAG
.getNOT(dl
, Op
, VT
),
5365 DAG
.getNode(ISD::SUB
, dl
, VT
, Op
, DAG
.getConstant(1, dl
, VT
)));
5367 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
5368 if (isOperationLegal(ISD::CTLZ
, VT
) && !isOperationLegal(ISD::CTPOP
, VT
)) {
5370 DAG
.getNode(ISD::SUB
, dl
, VT
, DAG
.getConstant(NumBitsPerElt
, dl
, VT
),
5371 DAG
.getNode(ISD::CTLZ
, dl
, VT
, Tmp
));
5375 Result
= DAG
.getNode(ISD::CTPOP
, dl
, VT
, Tmp
);
5379 bool TargetLowering::expandABS(SDNode
*N
, SDValue
&Result
,
5380 SelectionDAG
&DAG
) const {
5382 EVT VT
= N
->getValueType(0);
5383 EVT ShVT
= getShiftAmountTy(VT
, DAG
.getDataLayout());
5384 SDValue Op
= N
->getOperand(0);
5386 // Only expand vector types if we have the appropriate vector operations.
5387 if (VT
.isVector() && (!isOperationLegalOrCustom(ISD::SRA
, VT
) ||
5388 !isOperationLegalOrCustom(ISD::ADD
, VT
) ||
5389 !isOperationLegalOrCustomOrPromote(ISD::XOR
, VT
)))
5393 DAG
.getNode(ISD::SRA
, dl
, VT
, Op
,
5394 DAG
.getConstant(VT
.getScalarSizeInBits() - 1, dl
, ShVT
));
5395 SDValue Add
= DAG
.getNode(ISD::ADD
, dl
, VT
, Op
, Shift
);
5396 Result
= DAG
.getNode(ISD::XOR
, dl
, VT
, Add
, Shift
);
5400 SDValue
TargetLowering::scalarizeVectorLoad(LoadSDNode
*LD
,
5401 SelectionDAG
&DAG
) const {
5403 SDValue Chain
= LD
->getChain();
5404 SDValue BasePTR
= LD
->getBasePtr();
5405 EVT SrcVT
= LD
->getMemoryVT();
5406 ISD::LoadExtType ExtType
= LD
->getExtensionType();
5408 unsigned NumElem
= SrcVT
.getVectorNumElements();
5410 EVT SrcEltVT
= SrcVT
.getScalarType();
5411 EVT DstEltVT
= LD
->getValueType(0).getScalarType();
5413 unsigned Stride
= SrcEltVT
.getSizeInBits() / 8;
5414 assert(SrcEltVT
.isByteSized());
5416 SmallVector
<SDValue
, 8> Vals
;
5417 SmallVector
<SDValue
, 8> LoadChains
;
5419 for (unsigned Idx
= 0; Idx
< NumElem
; ++Idx
) {
5420 SDValue ScalarLoad
=
5421 DAG
.getExtLoad(ExtType
, SL
, DstEltVT
, Chain
, BasePTR
,
5422 LD
->getPointerInfo().getWithOffset(Idx
* Stride
),
5423 SrcEltVT
, MinAlign(LD
->getAlignment(), Idx
* Stride
),
5424 LD
->getMemOperand()->getFlags(), LD
->getAAInfo());
5426 BasePTR
= DAG
.getObjectPtrOffset(SL
, BasePTR
, Stride
);
5428 Vals
.push_back(ScalarLoad
.getValue(0));
5429 LoadChains
.push_back(ScalarLoad
.getValue(1));
5432 SDValue NewChain
= DAG
.getNode(ISD::TokenFactor
, SL
, MVT::Other
, LoadChains
);
5433 SDValue Value
= DAG
.getBuildVector(LD
->getValueType(0), SL
, Vals
);
5435 return DAG
.getMergeValues({Value
, NewChain
}, SL
);
5438 SDValue
TargetLowering::scalarizeVectorStore(StoreSDNode
*ST
,
5439 SelectionDAG
&DAG
) const {
5442 SDValue Chain
= ST
->getChain();
5443 SDValue BasePtr
= ST
->getBasePtr();
5444 SDValue Value
= ST
->getValue();
5445 EVT StVT
= ST
->getMemoryVT();
5447 // The type of the data we want to save
5448 EVT RegVT
= Value
.getValueType();
5449 EVT RegSclVT
= RegVT
.getScalarType();
5451 // The type of data as saved in memory.
5452 EVT MemSclVT
= StVT
.getScalarType();
5454 EVT IdxVT
= getVectorIdxTy(DAG
.getDataLayout());
5455 unsigned NumElem
= StVT
.getVectorNumElements();
5457 // A vector must always be stored in memory as-is, i.e. without any padding
5458 // between the elements, since various code depend on it, e.g. in the
5459 // handling of a bitcast of a vector type to int, which may be done with a
5460 // vector store followed by an integer load. A vector that does not have
5461 // elements that are byte-sized must therefore be stored as an integer
5462 // built out of the extracted vector elements.
5463 if (!MemSclVT
.isByteSized()) {
5464 unsigned NumBits
= StVT
.getSizeInBits();
5465 EVT IntVT
= EVT::getIntegerVT(*DAG
.getContext(), NumBits
);
5467 SDValue CurrVal
= DAG
.getConstant(0, SL
, IntVT
);
5469 for (unsigned Idx
= 0; Idx
< NumElem
; ++Idx
) {
5470 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, RegSclVT
, Value
,
5471 DAG
.getConstant(Idx
, SL
, IdxVT
));
5472 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, SL
, MemSclVT
, Elt
);
5473 SDValue ExtElt
= DAG
.getNode(ISD::ZERO_EXTEND
, SL
, IntVT
, Trunc
);
5474 unsigned ShiftIntoIdx
=
5475 (DAG
.getDataLayout().isBigEndian() ? (NumElem
- 1) - Idx
: Idx
);
5476 SDValue ShiftAmount
=
5477 DAG
.getConstant(ShiftIntoIdx
* MemSclVT
.getSizeInBits(), SL
, IntVT
);
5478 SDValue ShiftedElt
=
5479 DAG
.getNode(ISD::SHL
, SL
, IntVT
, ExtElt
, ShiftAmount
);
5480 CurrVal
= DAG
.getNode(ISD::OR
, SL
, IntVT
, CurrVal
, ShiftedElt
);
5483 return DAG
.getStore(Chain
, SL
, CurrVal
, BasePtr
, ST
->getPointerInfo(),
5484 ST
->getAlignment(), ST
->getMemOperand()->getFlags(),
5488 // Store Stride in bytes
5489 unsigned Stride
= MemSclVT
.getSizeInBits() / 8;
5490 assert(Stride
&& "Zero stride!");
5491 // Extract each of the elements from the original vector and save them into
5492 // memory individually.
5493 SmallVector
<SDValue
, 8> Stores
;
5494 for (unsigned Idx
= 0; Idx
< NumElem
; ++Idx
) {
5495 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, RegSclVT
, Value
,
5496 DAG
.getConstant(Idx
, SL
, IdxVT
));
5498 SDValue Ptr
= DAG
.getObjectPtrOffset(SL
, BasePtr
, Idx
* Stride
);
5500 // This scalar TruncStore may be illegal, but we legalize it later.
5501 SDValue Store
= DAG
.getTruncStore(
5502 Chain
, SL
, Elt
, Ptr
, ST
->getPointerInfo().getWithOffset(Idx
* Stride
),
5503 MemSclVT
, MinAlign(ST
->getAlignment(), Idx
* Stride
),
5504 ST
->getMemOperand()->getFlags(), ST
->getAAInfo());
5506 Stores
.push_back(Store
);
5509 return DAG
.getNode(ISD::TokenFactor
, SL
, MVT::Other
, Stores
);
5512 std::pair
<SDValue
, SDValue
>
5513 TargetLowering::expandUnalignedLoad(LoadSDNode
*LD
, SelectionDAG
&DAG
) const {
5514 assert(LD
->getAddressingMode() == ISD::UNINDEXED
&&
5515 "unaligned indexed loads not implemented!");
5516 SDValue Chain
= LD
->getChain();
5517 SDValue Ptr
= LD
->getBasePtr();
5518 EVT VT
= LD
->getValueType(0);
5519 EVT LoadedVT
= LD
->getMemoryVT();
5521 auto &MF
= DAG
.getMachineFunction();
5523 if (VT
.isFloatingPoint() || VT
.isVector()) {
5524 EVT intVT
= EVT::getIntegerVT(*DAG
.getContext(), LoadedVT
.getSizeInBits());
5525 if (isTypeLegal(intVT
) && isTypeLegal(LoadedVT
)) {
5526 if (!isOperationLegalOrCustom(ISD::LOAD
, intVT
) &&
5527 LoadedVT
.isVector()) {
5528 // Scalarize the load and let the individual components be handled.
5529 SDValue Scalarized
= scalarizeVectorLoad(LD
, DAG
);
5530 if (Scalarized
->getOpcode() == ISD::MERGE_VALUES
)
5531 return std::make_pair(Scalarized
.getOperand(0), Scalarized
.getOperand(1));
5532 return std::make_pair(Scalarized
.getValue(0), Scalarized
.getValue(1));
5535 // Expand to a (misaligned) integer load of the same size,
5536 // then bitconvert to floating point or vector.
5537 SDValue newLoad
= DAG
.getLoad(intVT
, dl
, Chain
, Ptr
,
5538 LD
->getMemOperand());
5539 SDValue Result
= DAG
.getNode(ISD::BITCAST
, dl
, LoadedVT
, newLoad
);
5541 Result
= DAG
.getNode(VT
.isFloatingPoint() ? ISD::FP_EXTEND
:
5542 ISD::ANY_EXTEND
, dl
, VT
, Result
);
5544 return std::make_pair(Result
, newLoad
.getValue(1));
5547 // Copy the value to a (aligned) stack slot using (unaligned) integer
5548 // loads and stores, then do a (aligned) load from the stack slot.
5549 MVT RegVT
= getRegisterType(*DAG
.getContext(), intVT
);
5550 unsigned LoadedBytes
= LoadedVT
.getStoreSize();
5551 unsigned RegBytes
= RegVT
.getSizeInBits() / 8;
5552 unsigned NumRegs
= (LoadedBytes
+ RegBytes
- 1) / RegBytes
;
5554 // Make sure the stack slot is also aligned for the register type.
5555 SDValue StackBase
= DAG
.CreateStackTemporary(LoadedVT
, RegVT
);
5556 auto FrameIndex
= cast
<FrameIndexSDNode
>(StackBase
.getNode())->getIndex();
5557 SmallVector
<SDValue
, 8> Stores
;
5558 SDValue StackPtr
= StackBase
;
5559 unsigned Offset
= 0;
5561 EVT PtrVT
= Ptr
.getValueType();
5562 EVT StackPtrVT
= StackPtr
.getValueType();
5564 SDValue PtrIncrement
= DAG
.getConstant(RegBytes
, dl
, PtrVT
);
5565 SDValue StackPtrIncrement
= DAG
.getConstant(RegBytes
, dl
, StackPtrVT
);
5567 // Do all but one copies using the full register width.
5568 for (unsigned i
= 1; i
< NumRegs
; i
++) {
5569 // Load one integer register's worth from the original location.
5570 SDValue Load
= DAG
.getLoad(
5571 RegVT
, dl
, Chain
, Ptr
, LD
->getPointerInfo().getWithOffset(Offset
),
5572 MinAlign(LD
->getAlignment(), Offset
), LD
->getMemOperand()->getFlags(),
5574 // Follow the load with a store to the stack slot. Remember the store.
5575 Stores
.push_back(DAG
.getStore(
5576 Load
.getValue(1), dl
, Load
, StackPtr
,
5577 MachinePointerInfo::getFixedStack(MF
, FrameIndex
, Offset
)));
5578 // Increment the pointers.
5581 Ptr
= DAG
.getObjectPtrOffset(dl
, Ptr
, PtrIncrement
);
5582 StackPtr
= DAG
.getObjectPtrOffset(dl
, StackPtr
, StackPtrIncrement
);
5585 // The last copy may be partial. Do an extending load.
5586 EVT MemVT
= EVT::getIntegerVT(*DAG
.getContext(),
5587 8 * (LoadedBytes
- Offset
));
5589 DAG
.getExtLoad(ISD::EXTLOAD
, dl
, RegVT
, Chain
, Ptr
,
5590 LD
->getPointerInfo().getWithOffset(Offset
), MemVT
,
5591 MinAlign(LD
->getAlignment(), Offset
),
5592 LD
->getMemOperand()->getFlags(), LD
->getAAInfo());
5593 // Follow the load with a store to the stack slot. Remember the store.
5594 // On big-endian machines this requires a truncating store to ensure
5595 // that the bits end up in the right place.
5596 Stores
.push_back(DAG
.getTruncStore(
5597 Load
.getValue(1), dl
, Load
, StackPtr
,
5598 MachinePointerInfo::getFixedStack(MF
, FrameIndex
, Offset
), MemVT
));
5600 // The order of the stores doesn't matter - say it with a TokenFactor.
5601 SDValue TF
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Stores
);
5603 // Finally, perform the original load only redirected to the stack slot.
5604 Load
= DAG
.getExtLoad(LD
->getExtensionType(), dl
, VT
, TF
, StackBase
,
5605 MachinePointerInfo::getFixedStack(MF
, FrameIndex
, 0),
5608 // Callers expect a MERGE_VALUES node.
5609 return std::make_pair(Load
, TF
);
5612 assert(LoadedVT
.isInteger() && !LoadedVT
.isVector() &&
5613 "Unaligned load of unsupported type.");
5615 // Compute the new VT that is half the size of the old one. This is an
5617 unsigned NumBits
= LoadedVT
.getSizeInBits();
5619 NewLoadedVT
= EVT::getIntegerVT(*DAG
.getContext(), NumBits
/2);
5622 unsigned Alignment
= LD
->getAlignment();
5623 unsigned IncrementSize
= NumBits
/ 8;
5624 ISD::LoadExtType HiExtType
= LD
->getExtensionType();
5626 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
5627 if (HiExtType
== ISD::NON_EXTLOAD
)
5628 HiExtType
= ISD::ZEXTLOAD
;
5630 // Load the value in two parts
5632 if (DAG
.getDataLayout().isLittleEndian()) {
5633 Lo
= DAG
.getExtLoad(ISD::ZEXTLOAD
, dl
, VT
, Chain
, Ptr
, LD
->getPointerInfo(),
5634 NewLoadedVT
, Alignment
, LD
->getMemOperand()->getFlags(),
5637 Ptr
= DAG
.getObjectPtrOffset(dl
, Ptr
, IncrementSize
);
5638 Hi
= DAG
.getExtLoad(HiExtType
, dl
, VT
, Chain
, Ptr
,
5639 LD
->getPointerInfo().getWithOffset(IncrementSize
),
5640 NewLoadedVT
, MinAlign(Alignment
, IncrementSize
),
5641 LD
->getMemOperand()->getFlags(), LD
->getAAInfo());
5643 Hi
= DAG
.getExtLoad(HiExtType
, dl
, VT
, Chain
, Ptr
, LD
->getPointerInfo(),
5644 NewLoadedVT
, Alignment
, LD
->getMemOperand()->getFlags(),
5647 Ptr
= DAG
.getObjectPtrOffset(dl
, Ptr
, IncrementSize
);
5648 Lo
= DAG
.getExtLoad(ISD::ZEXTLOAD
, dl
, VT
, Chain
, Ptr
,
5649 LD
->getPointerInfo().getWithOffset(IncrementSize
),
5650 NewLoadedVT
, MinAlign(Alignment
, IncrementSize
),
5651 LD
->getMemOperand()->getFlags(), LD
->getAAInfo());
5654 // aggregate the two parts
5655 SDValue ShiftAmount
=
5656 DAG
.getConstant(NumBits
, dl
, getShiftAmountTy(Hi
.getValueType(),
5657 DAG
.getDataLayout()));
5658 SDValue Result
= DAG
.getNode(ISD::SHL
, dl
, VT
, Hi
, ShiftAmount
);
5659 Result
= DAG
.getNode(ISD::OR
, dl
, VT
, Result
, Lo
);
5661 SDValue TF
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Lo
.getValue(1),
5664 return std::make_pair(Result
, TF
);
5667 SDValue
TargetLowering::expandUnalignedStore(StoreSDNode
*ST
,
5668 SelectionDAG
&DAG
) const {
5669 assert(ST
->getAddressingMode() == ISD::UNINDEXED
&&
5670 "unaligned indexed stores not implemented!");
5671 SDValue Chain
= ST
->getChain();
5672 SDValue Ptr
= ST
->getBasePtr();
5673 SDValue Val
= ST
->getValue();
5674 EVT VT
= Val
.getValueType();
5675 int Alignment
= ST
->getAlignment();
5676 auto &MF
= DAG
.getMachineFunction();
5677 EVT StoreMemVT
= ST
->getMemoryVT();
5680 if (StoreMemVT
.isFloatingPoint() || StoreMemVT
.isVector()) {
5681 EVT intVT
= EVT::getIntegerVT(*DAG
.getContext(), VT
.getSizeInBits());
5682 if (isTypeLegal(intVT
)) {
5683 if (!isOperationLegalOrCustom(ISD::STORE
, intVT
) &&
5684 StoreMemVT
.isVector()) {
5685 // Scalarize the store and let the individual components be handled.
5686 SDValue Result
= scalarizeVectorStore(ST
, DAG
);
5689 // Expand to a bitconvert of the value to the integer type of the
5690 // same size, then a (misaligned) int store.
5691 // FIXME: Does not handle truncating floating point stores!
5692 SDValue Result
= DAG
.getNode(ISD::BITCAST
, dl
, intVT
, Val
);
5693 Result
= DAG
.getStore(Chain
, dl
, Result
, Ptr
, ST
->getPointerInfo(),
5694 Alignment
, ST
->getMemOperand()->getFlags());
5697 // Do a (aligned) store to a stack slot, then copy from the stack slot
5698 // to the final destination using (unaligned) integer loads and stores.
5699 MVT RegVT
= getRegisterType(
5701 EVT::getIntegerVT(*DAG
.getContext(), StoreMemVT
.getSizeInBits()));
5702 EVT PtrVT
= Ptr
.getValueType();
5703 unsigned StoredBytes
= StoreMemVT
.getStoreSize();
5704 unsigned RegBytes
= RegVT
.getSizeInBits() / 8;
5705 unsigned NumRegs
= (StoredBytes
+ RegBytes
- 1) / RegBytes
;
5707 // Make sure the stack slot is also aligned for the register type.
5708 SDValue StackPtr
= DAG
.CreateStackTemporary(StoreMemVT
, RegVT
);
5709 auto FrameIndex
= cast
<FrameIndexSDNode
>(StackPtr
.getNode())->getIndex();
5711 // Perform the original store, only redirected to the stack slot.
5712 SDValue Store
= DAG
.getTruncStore(
5713 Chain
, dl
, Val
, StackPtr
,
5714 MachinePointerInfo::getFixedStack(MF
, FrameIndex
, 0), StoreMemVT
);
5716 EVT StackPtrVT
= StackPtr
.getValueType();
5718 SDValue PtrIncrement
= DAG
.getConstant(RegBytes
, dl
, PtrVT
);
5719 SDValue StackPtrIncrement
= DAG
.getConstant(RegBytes
, dl
, StackPtrVT
);
5720 SmallVector
<SDValue
, 8> Stores
;
5721 unsigned Offset
= 0;
5723 // Do all but one copies using the full register width.
5724 for (unsigned i
= 1; i
< NumRegs
; i
++) {
5725 // Load one integer register's worth from the stack slot.
5726 SDValue Load
= DAG
.getLoad(
5727 RegVT
, dl
, Store
, StackPtr
,
5728 MachinePointerInfo::getFixedStack(MF
, FrameIndex
, Offset
));
5729 // Store it to the final location. Remember the store.
5730 Stores
.push_back(DAG
.getStore(Load
.getValue(1), dl
, Load
, Ptr
,
5731 ST
->getPointerInfo().getWithOffset(Offset
),
5732 MinAlign(ST
->getAlignment(), Offset
),
5733 ST
->getMemOperand()->getFlags()));
5734 // Increment the pointers.
5736 StackPtr
= DAG
.getObjectPtrOffset(dl
, StackPtr
, StackPtrIncrement
);
5737 Ptr
= DAG
.getObjectPtrOffset(dl
, Ptr
, PtrIncrement
);
5740 // The last store may be partial. Do a truncating store. On big-endian
5741 // machines this requires an extending load from the stack slot to ensure
5742 // that the bits are in the right place.
5744 EVT::getIntegerVT(*DAG
.getContext(), 8 * (StoredBytes
- Offset
));
5746 // Load from the stack slot.
5747 SDValue Load
= DAG
.getExtLoad(
5748 ISD::EXTLOAD
, dl
, RegVT
, Store
, StackPtr
,
5749 MachinePointerInfo::getFixedStack(MF
, FrameIndex
, Offset
), LoadMemVT
);
5752 DAG
.getTruncStore(Load
.getValue(1), dl
, Load
, Ptr
,
5753 ST
->getPointerInfo().getWithOffset(Offset
), LoadMemVT
,
5754 MinAlign(ST
->getAlignment(), Offset
),
5755 ST
->getMemOperand()->getFlags(), ST
->getAAInfo()));
5756 // The order of the stores doesn't matter - say it with a TokenFactor.
5757 SDValue Result
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Stores
);
5761 assert(StoreMemVT
.isInteger() && !StoreMemVT
.isVector() &&
5762 "Unaligned store of unknown type.");
5763 // Get the half-size VT
5764 EVT NewStoredVT
= StoreMemVT
.getHalfSizedIntegerVT(*DAG
.getContext());
5765 int NumBits
= NewStoredVT
.getSizeInBits();
5766 int IncrementSize
= NumBits
/ 8;
5768 // Divide the stored value in two parts.
5769 SDValue ShiftAmount
= DAG
.getConstant(
5770 NumBits
, dl
, getShiftAmountTy(Val
.getValueType(), DAG
.getDataLayout()));
5772 SDValue Hi
= DAG
.getNode(ISD::SRL
, dl
, VT
, Val
, ShiftAmount
);
5774 // Store the two parts
5775 SDValue Store1
, Store2
;
5776 Store1
= DAG
.getTruncStore(Chain
, dl
,
5777 DAG
.getDataLayout().isLittleEndian() ? Lo
: Hi
,
5778 Ptr
, ST
->getPointerInfo(), NewStoredVT
, Alignment
,
5779 ST
->getMemOperand()->getFlags());
5781 Ptr
= DAG
.getObjectPtrOffset(dl
, Ptr
, IncrementSize
);
5782 Alignment
= MinAlign(Alignment
, IncrementSize
);
5783 Store2
= DAG
.getTruncStore(
5784 Chain
, dl
, DAG
.getDataLayout().isLittleEndian() ? Hi
: Lo
, Ptr
,
5785 ST
->getPointerInfo().getWithOffset(IncrementSize
), NewStoredVT
, Alignment
,
5786 ST
->getMemOperand()->getFlags(), ST
->getAAInfo());
5789 DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Store1
, Store2
);
5794 TargetLowering::IncrementMemoryAddress(SDValue Addr
, SDValue Mask
,
5795 const SDLoc
&DL
, EVT DataVT
,
5797 bool IsCompressedMemory
) const {
5799 EVT AddrVT
= Addr
.getValueType();
5800 EVT MaskVT
= Mask
.getValueType();
5801 assert(DataVT
.getVectorNumElements() == MaskVT
.getVectorNumElements() &&
5802 "Incompatible types of Data and Mask");
5803 if (IsCompressedMemory
) {
5804 // Incrementing the pointer according to number of '1's in the mask.
5805 EVT MaskIntVT
= EVT::getIntegerVT(*DAG
.getContext(), MaskVT
.getSizeInBits());
5806 SDValue MaskInIntReg
= DAG
.getBitcast(MaskIntVT
, Mask
);
5807 if (MaskIntVT
.getSizeInBits() < 32) {
5808 MaskInIntReg
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, MVT::i32
, MaskInIntReg
);
5809 MaskIntVT
= MVT::i32
;
5812 // Count '1's with POPCNT.
5813 Increment
= DAG
.getNode(ISD::CTPOP
, DL
, MaskIntVT
, MaskInIntReg
);
5814 Increment
= DAG
.getZExtOrTrunc(Increment
, DL
, AddrVT
);
5815 // Scale is an element size in bytes.
5816 SDValue Scale
= DAG
.getConstant(DataVT
.getScalarSizeInBits() / 8, DL
,
5818 Increment
= DAG
.getNode(ISD::MUL
, DL
, AddrVT
, Increment
, Scale
);
5820 Increment
= DAG
.getConstant(DataVT
.getStoreSize(), DL
, AddrVT
);
5822 return DAG
.getNode(ISD::ADD
, DL
, AddrVT
, Addr
, Increment
);
5825 static SDValue
clampDynamicVectorIndex(SelectionDAG
&DAG
,
5829 if (isa
<ConstantSDNode
>(Idx
))
5832 EVT IdxVT
= Idx
.getValueType();
5833 unsigned NElts
= VecVT
.getVectorNumElements();
5834 if (isPowerOf2_32(NElts
)) {
5835 APInt Imm
= APInt::getLowBitsSet(IdxVT
.getSizeInBits(),
5837 return DAG
.getNode(ISD::AND
, dl
, IdxVT
, Idx
,
5838 DAG
.getConstant(Imm
, dl
, IdxVT
));
5841 return DAG
.getNode(ISD::UMIN
, dl
, IdxVT
, Idx
,
5842 DAG
.getConstant(NElts
- 1, dl
, IdxVT
));
5845 SDValue
TargetLowering::getVectorElementPointer(SelectionDAG
&DAG
,
5846 SDValue VecPtr
, EVT VecVT
,
5847 SDValue Index
) const {
5849 // Make sure the index type is big enough to compute in.
5850 Index
= DAG
.getZExtOrTrunc(Index
, dl
, VecPtr
.getValueType());
5852 EVT EltVT
= VecVT
.getVectorElementType();
5854 // Calculate the element offset and add it to the pointer.
5855 unsigned EltSize
= EltVT
.getSizeInBits() / 8; // FIXME: should be ABI size.
5856 assert(EltSize
* 8 == EltVT
.getSizeInBits() &&
5857 "Converting bits to bytes lost precision");
5859 Index
= clampDynamicVectorIndex(DAG
, Index
, VecVT
, dl
);
5861 EVT IdxVT
= Index
.getValueType();
5863 Index
= DAG
.getNode(ISD::MUL
, dl
, IdxVT
, Index
,
5864 DAG
.getConstant(EltSize
, dl
, IdxVT
));
5865 return DAG
.getNode(ISD::ADD
, dl
, IdxVT
, VecPtr
, Index
);
5868 //===----------------------------------------------------------------------===//
5869 // Implementation of Emulated TLS Model
5870 //===----------------------------------------------------------------------===//
5872 SDValue
TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode
*GA
,
5873 SelectionDAG
&DAG
) const {
5874 // Access to address of TLS varialbe xyz is lowered to a function call:
5875 // __emutls_get_address( address of global variable named "__emutls_v.xyz" )
5876 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
5877 PointerType
*VoidPtrType
= Type::getInt8PtrTy(*DAG
.getContext());
5882 std::string NameString
= ("__emutls_v." + GA
->getGlobal()->getName()).str();
5883 Module
*VariableModule
= const_cast<Module
*>(GA
->getGlobal()->getParent());
5884 StringRef
EmuTlsVarName(NameString
);
5885 GlobalVariable
*EmuTlsVar
= VariableModule
->getNamedGlobal(EmuTlsVarName
);
5886 assert(EmuTlsVar
&& "Cannot find EmuTlsVar ");
5887 Entry
.Node
= DAG
.getGlobalAddress(EmuTlsVar
, dl
, PtrVT
);
5888 Entry
.Ty
= VoidPtrType
;
5889 Args
.push_back(Entry
);
5891 SDValue EmuTlsGetAddr
= DAG
.getExternalSymbol("__emutls_get_address", PtrVT
);
5893 TargetLowering::CallLoweringInfo
CLI(DAG
);
5894 CLI
.setDebugLoc(dl
).setChain(DAG
.getEntryNode());
5895 CLI
.setLibCallee(CallingConv::C
, VoidPtrType
, EmuTlsGetAddr
, std::move(Args
));
5896 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
5898 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
5899 // At last for X86 targets, maybe good for other targets too?
5900 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
5901 MFI
.setAdjustsStack(true); // Is this only for X86 target?
5902 MFI
.setHasCalls(true);
5904 assert((GA
->getOffset() == 0) &&
5905 "Emulated TLS must have zero offset in GlobalAddressSDNode");
5906 return CallResult
.first
;
5909 SDValue
TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op
,
5910 SelectionDAG
&DAG
) const {
5911 assert((Op
->getOpcode() == ISD::SETCC
) && "Input has to be a SETCC node.");
5914 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(2))->get();
5916 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
5917 if (C
->isNullValue() && CC
== ISD::SETEQ
) {
5918 EVT VT
= Op
.getOperand(0).getValueType();
5919 SDValue Zext
= Op
.getOperand(0);
5920 if (VT
.bitsLT(MVT::i32
)) {
5922 Zext
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VT
, Op
.getOperand(0));
5924 unsigned Log2b
= Log2_32(VT
.getSizeInBits());
5925 SDValue Clz
= DAG
.getNode(ISD::CTLZ
, dl
, VT
, Zext
);
5926 SDValue Scc
= DAG
.getNode(ISD::SRL
, dl
, VT
, Clz
,
5927 DAG
.getConstant(Log2b
, dl
, MVT::i32
));
5928 return DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Scc
);
5934 SDValue
TargetLowering::expandAddSubSat(SDNode
*Node
, SelectionDAG
&DAG
) const {
5935 unsigned Opcode
= Node
->getOpcode();
5936 SDValue LHS
= Node
->getOperand(0);
5937 SDValue RHS
= Node
->getOperand(1);
5938 EVT VT
= LHS
.getValueType();
5941 assert(VT
== RHS
.getValueType() && "Expected operands to be the same type");
5942 assert(VT
.isInteger() && "Expected operands to be integers");
5944 // usub.sat(a, b) -> umax(a, b) - b
5945 if (Opcode
== ISD::USUBSAT
&& isOperationLegalOrCustom(ISD::UMAX
, VT
)) {
5946 SDValue Max
= DAG
.getNode(ISD::UMAX
, dl
, VT
, LHS
, RHS
);
5947 return DAG
.getNode(ISD::SUB
, dl
, VT
, Max
, RHS
);
5950 if (Opcode
== ISD::UADDSAT
&& isOperationLegalOrCustom(ISD::UMIN
, VT
)) {
5951 SDValue InvRHS
= DAG
.getNOT(dl
, RHS
, VT
);
5952 SDValue Min
= DAG
.getNode(ISD::UMIN
, dl
, VT
, LHS
, InvRHS
);
5953 return DAG
.getNode(ISD::ADD
, dl
, VT
, Min
, RHS
);
5956 unsigned OverflowOp
;
5959 OverflowOp
= ISD::SADDO
;
5962 OverflowOp
= ISD::UADDO
;
5965 OverflowOp
= ISD::SSUBO
;
5968 OverflowOp
= ISD::USUBO
;
5971 llvm_unreachable("Expected method to receive signed or unsigned saturation "
5972 "addition or subtraction node.");
5975 unsigned BitWidth
= LHS
.getScalarValueSizeInBits();
5976 EVT BoolVT
= getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
5977 SDValue Result
= DAG
.getNode(OverflowOp
, dl
, DAG
.getVTList(VT
, BoolVT
),
5979 SDValue SumDiff
= Result
.getValue(0);
5980 SDValue Overflow
= Result
.getValue(1);
5981 SDValue Zero
= DAG
.getConstant(0, dl
, VT
);
5982 SDValue AllOnes
= DAG
.getAllOnesConstant(dl
, VT
);
5984 if (Opcode
== ISD::UADDSAT
) {
5985 if (getBooleanContents(VT
) == ZeroOrNegativeOneBooleanContent
) {
5986 // (LHS + RHS) | OverflowMask
5987 SDValue OverflowMask
= DAG
.getSExtOrTrunc(Overflow
, dl
, VT
);
5988 return DAG
.getNode(ISD::OR
, dl
, VT
, SumDiff
, OverflowMask
);
5990 // Overflow ? 0xffff.... : (LHS + RHS)
5991 return DAG
.getSelect(dl
, VT
, Overflow
, AllOnes
, SumDiff
);
5992 } else if (Opcode
== ISD::USUBSAT
) {
5993 if (getBooleanContents(VT
) == ZeroOrNegativeOneBooleanContent
) {
5994 // (LHS - RHS) & ~OverflowMask
5995 SDValue OverflowMask
= DAG
.getSExtOrTrunc(Overflow
, dl
, VT
);
5996 SDValue Not
= DAG
.getNOT(dl
, OverflowMask
, VT
);
5997 return DAG
.getNode(ISD::AND
, dl
, VT
, SumDiff
, Not
);
5999 // Overflow ? 0 : (LHS - RHS)
6000 return DAG
.getSelect(dl
, VT
, Overflow
, Zero
, SumDiff
);
6002 // SatMax -> Overflow && SumDiff < 0
6003 // SatMin -> Overflow && SumDiff >= 0
6004 APInt MinVal
= APInt::getSignedMinValue(BitWidth
);
6005 APInt MaxVal
= APInt::getSignedMaxValue(BitWidth
);
6006 SDValue SatMin
= DAG
.getConstant(MinVal
, dl
, VT
);
6007 SDValue SatMax
= DAG
.getConstant(MaxVal
, dl
, VT
);
6008 SDValue SumNeg
= DAG
.getSetCC(dl
, BoolVT
, SumDiff
, Zero
, ISD::SETLT
);
6009 Result
= DAG
.getSelect(dl
, VT
, SumNeg
, SatMax
, SatMin
);
6010 return DAG
.getSelect(dl
, VT
, Overflow
, Result
, SumDiff
);
6015 TargetLowering::expandFixedPointMul(SDNode
*Node
, SelectionDAG
&DAG
) const {
6016 assert((Node
->getOpcode() == ISD::SMULFIX
||
6017 Node
->getOpcode() == ISD::UMULFIX
||
6018 Node
->getOpcode() == ISD::SMULFIXSAT
) &&
6019 "Expected a fixed point multiplication opcode");
6022 SDValue LHS
= Node
->getOperand(0);
6023 SDValue RHS
= Node
->getOperand(1);
6024 EVT VT
= LHS
.getValueType();
6025 unsigned Scale
= Node
->getConstantOperandVal(2);
6026 bool Saturating
= Node
->getOpcode() == ISD::SMULFIXSAT
;
6027 EVT BoolVT
= getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
6028 unsigned VTSize
= VT
.getScalarSizeInBits();
6031 // [us]mul.fix(a, b, 0) -> mul(a, b)
6032 if (!Saturating
&& isOperationLegalOrCustom(ISD::MUL
, VT
)) {
6033 return DAG
.getNode(ISD::MUL
, dl
, VT
, LHS
, RHS
);
6034 } else if (Saturating
&& isOperationLegalOrCustom(ISD::SMULO
, VT
)) {
6036 DAG
.getNode(ISD::SMULO
, dl
, DAG
.getVTList(VT
, BoolVT
), LHS
, RHS
);
6037 SDValue Product
= Result
.getValue(0);
6038 SDValue Overflow
= Result
.getValue(1);
6039 SDValue Zero
= DAG
.getConstant(0, dl
, VT
);
6041 APInt MinVal
= APInt::getSignedMinValue(VTSize
);
6042 APInt MaxVal
= APInt::getSignedMaxValue(VTSize
);
6043 SDValue SatMin
= DAG
.getConstant(MinVal
, dl
, VT
);
6044 SDValue SatMax
= DAG
.getConstant(MaxVal
, dl
, VT
);
6045 SDValue ProdNeg
= DAG
.getSetCC(dl
, BoolVT
, Product
, Zero
, ISD::SETLT
);
6046 Result
= DAG
.getSelect(dl
, VT
, ProdNeg
, SatMax
, SatMin
);
6047 return DAG
.getSelect(dl
, VT
, Overflow
, Result
, Product
);
6052 Node
->getOpcode() == ISD::SMULFIX
|| Node
->getOpcode() == ISD::SMULFIXSAT
;
6053 assert(((Signed
&& Scale
< VTSize
) || (!Signed
&& Scale
<= VTSize
)) &&
6054 "Expected scale to be less than the number of bits if signed or at "
6055 "most the number of bits if unsigned.");
6056 assert(LHS
.getValueType() == RHS
.getValueType() &&
6057 "Expected both operands to be the same type");
6059 // Get the upper and lower bits of the result.
6061 unsigned LoHiOp
= Signed
? ISD::SMUL_LOHI
: ISD::UMUL_LOHI
;
6062 unsigned HiOp
= Signed
? ISD::MULHS
: ISD::MULHU
;
6063 if (isOperationLegalOrCustom(LoHiOp
, VT
)) {
6064 SDValue Result
= DAG
.getNode(LoHiOp
, dl
, DAG
.getVTList(VT
, VT
), LHS
, RHS
);
6065 Lo
= Result
.getValue(0);
6066 Hi
= Result
.getValue(1);
6067 } else if (isOperationLegalOrCustom(HiOp
, VT
)) {
6068 Lo
= DAG
.getNode(ISD::MUL
, dl
, VT
, LHS
, RHS
);
6069 Hi
= DAG
.getNode(HiOp
, dl
, VT
, LHS
, RHS
);
6070 } else if (VT
.isVector()) {
6073 report_fatal_error("Unable to expand fixed point multiplication.");
6076 if (Scale
== VTSize
)
6077 // Result is just the top half since we'd be shifting by the width of the
6081 // The result will need to be shifted right by the scale since both operands
6082 // are scaled. The result is given to us in 2 halves, so we only want part of
6083 // both in the result.
6084 EVT ShiftTy
= getShiftAmountTy(VT
, DAG
.getDataLayout());
6085 SDValue Result
= DAG
.getNode(ISD::FSHR
, dl
, VT
, Hi
, Lo
,
6086 DAG
.getConstant(Scale
, dl
, ShiftTy
));
6090 unsigned OverflowBits
= VTSize
- Scale
+ 1; // +1 for the sign
6092 DAG
.getConstant(APInt::getHighBitsSet(VTSize
, OverflowBits
), dl
, VT
);
6093 SDValue LoMask
= DAG
.getConstant(
6094 APInt::getLowBitsSet(VTSize
, VTSize
- OverflowBits
), dl
, VT
);
6095 APInt MaxVal
= APInt::getSignedMaxValue(VTSize
);
6096 APInt MinVal
= APInt::getSignedMinValue(VTSize
);
6098 Result
= DAG
.getSelectCC(dl
, Hi
, LoMask
,
6099 DAG
.getConstant(MaxVal
, dl
, VT
), Result
,
6101 return DAG
.getSelectCC(dl
, Hi
, HiMask
,
6102 DAG
.getConstant(MinVal
, dl
, VT
), Result
,
6106 void TargetLowering::expandUADDSUBO(
6107 SDNode
*Node
, SDValue
&Result
, SDValue
&Overflow
, SelectionDAG
&DAG
) const {
6109 SDValue LHS
= Node
->getOperand(0);
6110 SDValue RHS
= Node
->getOperand(1);
6111 bool IsAdd
= Node
->getOpcode() == ISD::UADDO
;
6113 // If ADD/SUBCARRY is legal, use that instead.
6114 unsigned OpcCarry
= IsAdd
? ISD::ADDCARRY
: ISD::SUBCARRY
;
6115 if (isOperationLegalOrCustom(OpcCarry
, Node
->getValueType(0))) {
6116 SDValue CarryIn
= DAG
.getConstant(0, dl
, Node
->getValueType(1));
6117 SDValue NodeCarry
= DAG
.getNode(OpcCarry
, dl
, Node
->getVTList(),
6118 { LHS
, RHS
, CarryIn
});
6119 Result
= SDValue(NodeCarry
.getNode(), 0);
6120 Overflow
= SDValue(NodeCarry
.getNode(), 1);
6124 Result
= DAG
.getNode(IsAdd
? ISD::ADD
: ISD::SUB
, dl
,
6125 LHS
.getValueType(), LHS
, RHS
);
6127 EVT ResultType
= Node
->getValueType(1);
6128 EVT SetCCType
= getSetCCResultType(
6129 DAG
.getDataLayout(), *DAG
.getContext(), Node
->getValueType(0));
6130 ISD::CondCode CC
= IsAdd
? ISD::SETULT
: ISD::SETUGT
;
6131 SDValue SetCC
= DAG
.getSetCC(dl
, SetCCType
, Result
, LHS
, CC
);
6132 Overflow
= DAG
.getBoolExtOrTrunc(SetCC
, dl
, ResultType
, ResultType
);
6135 void TargetLowering::expandSADDSUBO(
6136 SDNode
*Node
, SDValue
&Result
, SDValue
&Overflow
, SelectionDAG
&DAG
) const {
6138 SDValue LHS
= Node
->getOperand(0);
6139 SDValue RHS
= Node
->getOperand(1);
6140 bool IsAdd
= Node
->getOpcode() == ISD::SADDO
;
6142 Result
= DAG
.getNode(IsAdd
? ISD::ADD
: ISD::SUB
, dl
,
6143 LHS
.getValueType(), LHS
, RHS
);
6145 EVT ResultType
= Node
->getValueType(1);
6146 EVT OType
= getSetCCResultType(
6147 DAG
.getDataLayout(), *DAG
.getContext(), Node
->getValueType(0));
6149 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
6150 unsigned OpcSat
= IsAdd
? ISD::SADDSAT
: ISD::SSUBSAT
;
6151 if (isOperationLegalOrCustom(OpcSat
, LHS
.getValueType())) {
6152 SDValue Sat
= DAG
.getNode(OpcSat
, dl
, LHS
.getValueType(), LHS
, RHS
);
6153 SDValue SetCC
= DAG
.getSetCC(dl
, OType
, Result
, Sat
, ISD::SETNE
);
6154 Overflow
= DAG
.getBoolExtOrTrunc(SetCC
, dl
, ResultType
, ResultType
);
6158 SDValue Zero
= DAG
.getConstant(0, dl
, LHS
.getValueType());
6160 // LHSSign -> LHS >= 0
6161 // RHSSign -> RHS >= 0
6162 // SumSign -> Result >= 0
6165 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
6167 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
6168 SDValue LHSSign
= DAG
.getSetCC(dl
, OType
, LHS
, Zero
, ISD::SETGE
);
6169 SDValue RHSSign
= DAG
.getSetCC(dl
, OType
, RHS
, Zero
, ISD::SETGE
);
6170 SDValue SignsMatch
= DAG
.getSetCC(dl
, OType
, LHSSign
, RHSSign
,
6171 IsAdd
? ISD::SETEQ
: ISD::SETNE
);
6173 SDValue SumSign
= DAG
.getSetCC(dl
, OType
, Result
, Zero
, ISD::SETGE
);
6174 SDValue SumSignNE
= DAG
.getSetCC(dl
, OType
, LHSSign
, SumSign
, ISD::SETNE
);
6176 SDValue Cmp
= DAG
.getNode(ISD::AND
, dl
, OType
, SignsMatch
, SumSignNE
);
6177 Overflow
= DAG
.getBoolExtOrTrunc(Cmp
, dl
, ResultType
, ResultType
);
6180 bool TargetLowering::expandMULO(SDNode
*Node
, SDValue
&Result
,
6181 SDValue
&Overflow
, SelectionDAG
&DAG
) const {
6183 EVT VT
= Node
->getValueType(0);
6184 EVT SetCCVT
= getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
);
6185 SDValue LHS
= Node
->getOperand(0);
6186 SDValue RHS
= Node
->getOperand(1);
6187 bool isSigned
= Node
->getOpcode() == ISD::SMULO
;
6189 // For power-of-two multiplications we can use a simpler shift expansion.
6190 if (ConstantSDNode
*RHSC
= isConstOrConstSplat(RHS
)) {
6191 const APInt
&C
= RHSC
->getAPIntValue();
6192 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
6193 if (C
.isPowerOf2()) {
6194 // smulo(x, signed_min) is same as umulo(x, signed_min).
6195 bool UseArithShift
= isSigned
&& !C
.isMinSignedValue();
6196 EVT ShiftAmtTy
= getShiftAmountTy(VT
, DAG
.getDataLayout());
6197 SDValue ShiftAmt
= DAG
.getConstant(C
.logBase2(), dl
, ShiftAmtTy
);
6198 Result
= DAG
.getNode(ISD::SHL
, dl
, VT
, LHS
, ShiftAmt
);
6199 Overflow
= DAG
.getSetCC(dl
, SetCCVT
,
6200 DAG
.getNode(UseArithShift
? ISD::SRA
: ISD::SRL
,
6201 dl
, VT
, Result
, ShiftAmt
),
6207 EVT WideVT
= EVT::getIntegerVT(*DAG
.getContext(), VT
.getScalarSizeInBits() * 2);
6209 WideVT
= EVT::getVectorVT(*DAG
.getContext(), WideVT
,
6210 VT
.getVectorNumElements());
6214 static const unsigned Ops
[2][3] =
6215 { { ISD::MULHU
, ISD::UMUL_LOHI
, ISD::ZERO_EXTEND
},
6216 { ISD::MULHS
, ISD::SMUL_LOHI
, ISD::SIGN_EXTEND
}};
6217 if (isOperationLegalOrCustom(Ops
[isSigned
][0], VT
)) {
6218 BottomHalf
= DAG
.getNode(ISD::MUL
, dl
, VT
, LHS
, RHS
);
6219 TopHalf
= DAG
.getNode(Ops
[isSigned
][0], dl
, VT
, LHS
, RHS
);
6220 } else if (isOperationLegalOrCustom(Ops
[isSigned
][1], VT
)) {
6221 BottomHalf
= DAG
.getNode(Ops
[isSigned
][1], dl
, DAG
.getVTList(VT
, VT
), LHS
,
6223 TopHalf
= BottomHalf
.getValue(1);
6224 } else if (isTypeLegal(WideVT
)) {
6225 LHS
= DAG
.getNode(Ops
[isSigned
][2], dl
, WideVT
, LHS
);
6226 RHS
= DAG
.getNode(Ops
[isSigned
][2], dl
, WideVT
, RHS
);
6227 SDValue Mul
= DAG
.getNode(ISD::MUL
, dl
, WideVT
, LHS
, RHS
);
6228 BottomHalf
= DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Mul
);
6229 SDValue ShiftAmt
= DAG
.getConstant(VT
.getScalarSizeInBits(), dl
,
6230 getShiftAmountTy(WideVT
, DAG
.getDataLayout()));
6231 TopHalf
= DAG
.getNode(ISD::TRUNCATE
, dl
, VT
,
6232 DAG
.getNode(ISD::SRL
, dl
, WideVT
, Mul
, ShiftAmt
));
6237 // We can fall back to a libcall with an illegal type for the MUL if we
6238 // have a libcall big enough.
6239 // Also, we can fall back to a division in some cases, but that's a big
6240 // performance hit in the general case.
6241 RTLIB::Libcall LC
= RTLIB::UNKNOWN_LIBCALL
;
6242 if (WideVT
== MVT::i16
)
6243 LC
= RTLIB::MUL_I16
;
6244 else if (WideVT
== MVT::i32
)
6245 LC
= RTLIB::MUL_I32
;
6246 else if (WideVT
== MVT::i64
)
6247 LC
= RTLIB::MUL_I64
;
6248 else if (WideVT
== MVT::i128
)
6249 LC
= RTLIB::MUL_I128
;
6250 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&& "Cannot expand this operation!");
6255 // The high part is obtained by SRA'ing all but one of the bits of low
6257 unsigned LoSize
= VT
.getSizeInBits();
6259 DAG
.getNode(ISD::SRA
, dl
, VT
, LHS
,
6260 DAG
.getConstant(LoSize
- 1, dl
,
6261 getPointerTy(DAG
.getDataLayout())));
6263 DAG
.getNode(ISD::SRA
, dl
, VT
, RHS
,
6264 DAG
.getConstant(LoSize
- 1, dl
,
6265 getPointerTy(DAG
.getDataLayout())));
6267 HiLHS
= DAG
.getConstant(0, dl
, VT
);
6268 HiRHS
= DAG
.getConstant(0, dl
, VT
);
6271 // Here we're passing the 2 arguments explicitly as 4 arguments that are
6272 // pre-lowered to the correct types. This all depends upon WideVT not
6273 // being a legal type for the architecture and thus has to be split to
6276 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG
.getDataLayout())) {
6277 // Halves of WideVT are packed into registers in different order
6278 // depending on platform endianness. This is usually handled by
6279 // the C calling convention, but we can't defer to it in
6281 SDValue Args
[] = { LHS
, HiLHS
, RHS
, HiRHS
};
6282 Ret
= makeLibCall(DAG
, LC
, WideVT
, Args
, isSigned
, dl
,
6283 /* doesNotReturn */ false, /* isReturnValueUsed */ true,
6284 /* isPostTypeLegalization */ true).first
;
6286 SDValue Args
[] = { HiLHS
, LHS
, HiRHS
, RHS
};
6287 Ret
= makeLibCall(DAG
, LC
, WideVT
, Args
, isSigned
, dl
,
6288 /* doesNotReturn */ false, /* isReturnValueUsed */ true,
6289 /* isPostTypeLegalization */ true).first
;
6291 assert(Ret
.getOpcode() == ISD::MERGE_VALUES
&&
6292 "Ret value is a collection of constituent nodes holding result.");
6293 if (DAG
.getDataLayout().isLittleEndian()) {
6295 BottomHalf
= Ret
.getOperand(0);
6296 TopHalf
= Ret
.getOperand(1);
6298 BottomHalf
= Ret
.getOperand(1);
6299 TopHalf
= Ret
.getOperand(0);
6303 Result
= BottomHalf
;
6305 SDValue ShiftAmt
= DAG
.getConstant(
6306 VT
.getScalarSizeInBits() - 1, dl
,
6307 getShiftAmountTy(BottomHalf
.getValueType(), DAG
.getDataLayout()));
6308 SDValue Sign
= DAG
.getNode(ISD::SRA
, dl
, VT
, BottomHalf
, ShiftAmt
);
6309 Overflow
= DAG
.getSetCC(dl
, SetCCVT
, TopHalf
, Sign
, ISD::SETNE
);
6311 Overflow
= DAG
.getSetCC(dl
, SetCCVT
, TopHalf
,
6312 DAG
.getConstant(0, dl
, VT
), ISD::SETNE
);
6315 // Truncate the result if SetCC returns a larger type than needed.
6316 EVT RType
= Node
->getValueType(1);
6317 if (RType
.getSizeInBits() < Overflow
.getValueSizeInBits())
6318 Overflow
= DAG
.getNode(ISD::TRUNCATE
, dl
, RType
, Overflow
);
6320 assert(RType
.getSizeInBits() == Overflow
.getValueSizeInBits() &&
6321 "Unexpected result type for S/UMULO legalization");
6325 SDValue
TargetLowering::expandVecReduce(SDNode
*Node
, SelectionDAG
&DAG
) const {
6327 bool NoNaN
= Node
->getFlags().hasNoNaNs();
6328 unsigned BaseOpcode
= 0;
6329 switch (Node
->getOpcode()) {
6330 default: llvm_unreachable("Expected VECREDUCE opcode");
6331 case ISD::VECREDUCE_FADD
: BaseOpcode
= ISD::FADD
; break;
6332 case ISD::VECREDUCE_FMUL
: BaseOpcode
= ISD::FMUL
; break;
6333 case ISD::VECREDUCE_ADD
: BaseOpcode
= ISD::ADD
; break;
6334 case ISD::VECREDUCE_MUL
: BaseOpcode
= ISD::MUL
; break;
6335 case ISD::VECREDUCE_AND
: BaseOpcode
= ISD::AND
; break;
6336 case ISD::VECREDUCE_OR
: BaseOpcode
= ISD::OR
; break;
6337 case ISD::VECREDUCE_XOR
: BaseOpcode
= ISD::XOR
; break;
6338 case ISD::VECREDUCE_SMAX
: BaseOpcode
= ISD::SMAX
; break;
6339 case ISD::VECREDUCE_SMIN
: BaseOpcode
= ISD::SMIN
; break;
6340 case ISD::VECREDUCE_UMAX
: BaseOpcode
= ISD::UMAX
; break;
6341 case ISD::VECREDUCE_UMIN
: BaseOpcode
= ISD::UMIN
; break;
6342 case ISD::VECREDUCE_FMAX
:
6343 BaseOpcode
= NoNaN
? ISD::FMAXNUM
: ISD::FMAXIMUM
;
6345 case ISD::VECREDUCE_FMIN
:
6346 BaseOpcode
= NoNaN
? ISD::FMINNUM
: ISD::FMINIMUM
;
6350 SDValue Op
= Node
->getOperand(0);
6351 EVT VT
= Op
.getValueType();
6353 // Try to use a shuffle reduction for power of two vectors.
6354 if (VT
.isPow2VectorType()) {
6355 while (VT
.getVectorNumElements() > 1) {
6356 EVT HalfVT
= VT
.getHalfNumVectorElementsVT(*DAG
.getContext());
6357 if (!isOperationLegalOrCustom(BaseOpcode
, HalfVT
))
6361 std::tie(Lo
, Hi
) = DAG
.SplitVector(Op
, dl
);
6362 Op
= DAG
.getNode(BaseOpcode
, dl
, HalfVT
, Lo
, Hi
);
6367 EVT EltVT
= VT
.getVectorElementType();
6368 unsigned NumElts
= VT
.getVectorNumElements();
6370 SmallVector
<SDValue
, 8> Ops
;
6371 DAG
.ExtractVectorElements(Op
, Ops
, 0, NumElts
);
6373 SDValue Res
= Ops
[0];
6374 for (unsigned i
= 1; i
< NumElts
; i
++)
6375 Res
= DAG
.getNode(BaseOpcode
, dl
, EltVT
, Res
, Ops
[i
], Node
->getFlags());
6377 // Result type may be wider than element type.
6378 if (EltVT
!= Node
->getValueType(0))
6379 Res
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, Node
->getValueType(0), Res
);