[InstCombine] Remove insertRangeTest code that handles the equality case.
[llvm-complete.git] / lib / CodeGen / SelectionDAG / TargetLowering.cpp
blobbab99b2e0293e504e2258cb90c4d9c8de8f1f31f
1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/CodeGen/CallingConvLower.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineJumpTableInfo.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/CodeGen/TargetRegisterInfo.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCExpr.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetLoweringObjectFile.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include <cctype>
36 using namespace llvm;
38 /// NOTE: The TargetMachine owns TLOF.
39 TargetLowering::TargetLowering(const TargetMachine &tm)
40 : TargetLoweringBase(tm) {}
42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
43 return nullptr;
46 bool TargetLowering::isPositionIndependent() const {
47 return getTargetMachine().isPositionIndependent();
50 /// Check whether a given call node is in tail position within its function. If
51 /// so, it sets Chain to the input chain of the tail call.
52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
53 SDValue &Chain) const {
54 const Function &F = DAG.getMachineFunction().getFunction();
56 // Conservatively require the attributes of the call to match those of
57 // the return. Ignore NoAlias and NonNull because they don't affect the
58 // call sequence.
59 AttributeList CallerAttrs = F.getAttributes();
60 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
61 .removeAttribute(Attribute::NoAlias)
62 .removeAttribute(Attribute::NonNull)
63 .hasAttributes())
64 return false;
66 // It's not safe to eliminate the sign / zero extension of the return value.
67 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
68 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
69 return false;
71 // Check if the only use is a function return node.
72 return isUsedByReturnOnly(Node, Chain);
75 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
76 const uint32_t *CallerPreservedMask,
77 const SmallVectorImpl<CCValAssign> &ArgLocs,
78 const SmallVectorImpl<SDValue> &OutVals) const {
79 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
80 const CCValAssign &ArgLoc = ArgLocs[I];
81 if (!ArgLoc.isRegLoc())
82 continue;
83 unsigned Reg = ArgLoc.getLocReg();
84 // Only look at callee saved registers.
85 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
86 continue;
87 // Check that we pass the value used for the caller.
88 // (We look for a CopyFromReg reading a virtual register that is used
89 // for the function live-in value of register Reg)
90 SDValue Value = OutVals[I];
91 if (Value->getOpcode() != ISD::CopyFromReg)
92 return false;
93 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
94 if (MRI.getLiveInPhysReg(ArgReg) != Reg)
95 return false;
97 return true;
100 /// Set CallLoweringInfo attribute flags based on a call instruction
101 /// and called function attributes.
102 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
103 unsigned ArgIdx) {
104 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
105 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
106 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
107 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
108 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
109 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
110 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
111 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
112 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
113 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
114 Alignment = Call->getParamAlignment(ArgIdx);
115 ByValType = nullptr;
116 if (Call->paramHasAttr(ArgIdx, Attribute::ByVal))
117 ByValType = Call->getParamByValType(ArgIdx);
120 /// Generate a libcall taking the given operands as arguments and returning a
121 /// result of type RetVT.
122 std::pair<SDValue, SDValue>
123 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
124 ArrayRef<SDValue> Ops, bool isSigned,
125 const SDLoc &dl, bool doesNotReturn,
126 bool isReturnValueUsed,
127 bool isPostTypeLegalization) const {
128 TargetLowering::ArgListTy Args;
129 Args.reserve(Ops.size());
131 TargetLowering::ArgListEntry Entry;
132 for (SDValue Op : Ops) {
133 Entry.Node = Op;
134 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
135 Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
136 Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
137 Args.push_back(Entry);
140 if (LC == RTLIB::UNKNOWN_LIBCALL)
141 report_fatal_error("Unsupported library call operation!");
142 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
143 getPointerTy(DAG.getDataLayout()));
145 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
146 TargetLowering::CallLoweringInfo CLI(DAG);
147 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
148 CLI.setDebugLoc(dl)
149 .setChain(DAG.getEntryNode())
150 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
151 .setNoReturn(doesNotReturn)
152 .setDiscardResult(!isReturnValueUsed)
153 .setIsPostTypeLegalization(isPostTypeLegalization)
154 .setSExtResult(signExtend)
155 .setZExtResult(!signExtend);
156 return LowerCallTo(CLI);
159 bool
160 TargetLowering::findOptimalMemOpLowering(std::vector<EVT> &MemOps,
161 unsigned Limit, uint64_t Size,
162 unsigned DstAlign, unsigned SrcAlign,
163 bool IsMemset,
164 bool ZeroMemset,
165 bool MemcpyStrSrc,
166 bool AllowOverlap,
167 unsigned DstAS, unsigned SrcAS,
168 const AttributeList &FuncAttributes) const {
169 // If 'SrcAlign' is zero, that means the memory operation does not need to
170 // load the value, i.e. memset or memcpy from constant string. Otherwise,
171 // it's the inferred alignment of the source. 'DstAlign', on the other hand,
172 // is the specified alignment of the memory operation. If it is zero, that
173 // means it's possible to change the alignment of the destination.
174 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
175 // not need to be loaded.
176 if (!(SrcAlign == 0 || SrcAlign >= DstAlign))
177 return false;
179 EVT VT = getOptimalMemOpType(Size, DstAlign, SrcAlign,
180 IsMemset, ZeroMemset, MemcpyStrSrc,
181 FuncAttributes);
183 if (VT == MVT::Other) {
184 // Use the largest integer type whose alignment constraints are satisfied.
185 // We only need to check DstAlign here as SrcAlign is always greater or
186 // equal to DstAlign (or zero).
187 VT = MVT::i64;
188 while (DstAlign && DstAlign < VT.getSizeInBits() / 8 &&
189 !allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign))
190 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
191 assert(VT.isInteger());
193 // Find the largest legal integer type.
194 MVT LVT = MVT::i64;
195 while (!isTypeLegal(LVT))
196 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
197 assert(LVT.isInteger());
199 // If the type we've chosen is larger than the largest legal integer type
200 // then use that instead.
201 if (VT.bitsGT(LVT))
202 VT = LVT;
205 unsigned NumMemOps = 0;
206 while (Size != 0) {
207 unsigned VTSize = VT.getSizeInBits() / 8;
208 while (VTSize > Size) {
209 // For now, only use non-vector load / store's for the left-over pieces.
210 EVT NewVT = VT;
211 unsigned NewVTSize;
213 bool Found = false;
214 if (VT.isVector() || VT.isFloatingPoint()) {
215 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
216 if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
217 isSafeMemOpType(NewVT.getSimpleVT()))
218 Found = true;
219 else if (NewVT == MVT::i64 &&
220 isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
221 isSafeMemOpType(MVT::f64)) {
222 // i64 is usually not legal on 32-bit targets, but f64 may be.
223 NewVT = MVT::f64;
224 Found = true;
228 if (!Found) {
229 do {
230 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
231 if (NewVT == MVT::i8)
232 break;
233 } while (!isSafeMemOpType(NewVT.getSimpleVT()));
235 NewVTSize = NewVT.getSizeInBits() / 8;
237 // If the new VT cannot cover all of the remaining bits, then consider
238 // issuing a (or a pair of) unaligned and overlapping load / store.
239 bool Fast;
240 if (NumMemOps && AllowOverlap && NewVTSize < Size &&
241 allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign,
242 MachineMemOperand::MONone, &Fast) &&
243 Fast)
244 VTSize = Size;
245 else {
246 VT = NewVT;
247 VTSize = NewVTSize;
251 if (++NumMemOps > Limit)
252 return false;
254 MemOps.push_back(VT);
255 Size -= VTSize;
258 return true;
261 /// Soften the operands of a comparison. This code is shared among BR_CC,
262 /// SELECT_CC, and SETCC handlers.
263 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
264 SDValue &NewLHS, SDValue &NewRHS,
265 ISD::CondCode &CCCode,
266 const SDLoc &dl) const {
267 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
268 && "Unsupported setcc type!");
270 // Expand into one or more soft-fp libcall(s).
271 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
272 bool ShouldInvertCC = false;
273 switch (CCCode) {
274 case ISD::SETEQ:
275 case ISD::SETOEQ:
276 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
277 (VT == MVT::f64) ? RTLIB::OEQ_F64 :
278 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
279 break;
280 case ISD::SETNE:
281 case ISD::SETUNE:
282 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
283 (VT == MVT::f64) ? RTLIB::UNE_F64 :
284 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
285 break;
286 case ISD::SETGE:
287 case ISD::SETOGE:
288 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
289 (VT == MVT::f64) ? RTLIB::OGE_F64 :
290 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
291 break;
292 case ISD::SETLT:
293 case ISD::SETOLT:
294 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
295 (VT == MVT::f64) ? RTLIB::OLT_F64 :
296 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
297 break;
298 case ISD::SETLE:
299 case ISD::SETOLE:
300 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
301 (VT == MVT::f64) ? RTLIB::OLE_F64 :
302 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
303 break;
304 case ISD::SETGT:
305 case ISD::SETOGT:
306 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
307 (VT == MVT::f64) ? RTLIB::OGT_F64 :
308 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
309 break;
310 case ISD::SETUO:
311 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
312 (VT == MVT::f64) ? RTLIB::UO_F64 :
313 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
314 break;
315 case ISD::SETO:
316 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
317 (VT == MVT::f64) ? RTLIB::O_F64 :
318 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
319 break;
320 case ISD::SETONE:
321 // SETONE = SETOLT | SETOGT
322 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
323 (VT == MVT::f64) ? RTLIB::OLT_F64 :
324 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
325 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
326 (VT == MVT::f64) ? RTLIB::OGT_F64 :
327 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
328 break;
329 case ISD::SETUEQ:
330 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
331 (VT == MVT::f64) ? RTLIB::UO_F64 :
332 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
333 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
334 (VT == MVT::f64) ? RTLIB::OEQ_F64 :
335 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
336 break;
337 default:
338 // Invert CC for unordered comparisons
339 ShouldInvertCC = true;
340 switch (CCCode) {
341 case ISD::SETULT:
342 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
343 (VT == MVT::f64) ? RTLIB::OGE_F64 :
344 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
345 break;
346 case ISD::SETULE:
347 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
348 (VT == MVT::f64) ? RTLIB::OGT_F64 :
349 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
350 break;
351 case ISD::SETUGT:
352 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
353 (VT == MVT::f64) ? RTLIB::OLE_F64 :
354 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
355 break;
356 case ISD::SETUGE:
357 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
358 (VT == MVT::f64) ? RTLIB::OLT_F64 :
359 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
360 break;
361 default: llvm_unreachable("Do not know how to soften this setcc!");
365 // Use the target specific return value for comparions lib calls.
366 EVT RetVT = getCmpLibcallReturnType();
367 SDValue Ops[2] = {NewLHS, NewRHS};
368 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/,
369 dl).first;
370 NewRHS = DAG.getConstant(0, dl, RetVT);
372 CCCode = getCmpLibcallCC(LC1);
373 if (ShouldInvertCC)
374 CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
376 if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
377 SDValue Tmp = DAG.getNode(
378 ISD::SETCC, dl,
379 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
380 NewLHS, NewRHS, DAG.getCondCode(CCCode));
381 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/,
382 dl).first;
383 NewLHS = DAG.getNode(
384 ISD::SETCC, dl,
385 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
386 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
387 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
388 NewRHS = SDValue();
392 /// Return the entry encoding for a jump table in the current function. The
393 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
394 unsigned TargetLowering::getJumpTableEncoding() const {
395 // In non-pic modes, just use the address of a block.
396 if (!isPositionIndependent())
397 return MachineJumpTableInfo::EK_BlockAddress;
399 // In PIC mode, if the target supports a GPRel32 directive, use it.
400 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
401 return MachineJumpTableInfo::EK_GPRel32BlockAddress;
403 // Otherwise, use a label difference.
404 return MachineJumpTableInfo::EK_LabelDifference32;
407 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
408 SelectionDAG &DAG) const {
409 // If our PIC model is GP relative, use the global offset table as the base.
410 unsigned JTEncoding = getJumpTableEncoding();
412 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
413 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
414 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
416 return Table;
419 /// This returns the relocation base for the given PIC jumptable, the same as
420 /// getPICJumpTableRelocBase, but as an MCExpr.
421 const MCExpr *
422 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
423 unsigned JTI,MCContext &Ctx) const{
424 // The normal PIC reloc base is the label at the start of the jump table.
425 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
428 bool
429 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
430 const TargetMachine &TM = getTargetMachine();
431 const GlobalValue *GV = GA->getGlobal();
433 // If the address is not even local to this DSO we will have to load it from
434 // a got and then add the offset.
435 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
436 return false;
438 // If the code is position independent we will have to add a base register.
439 if (isPositionIndependent())
440 return false;
442 // Otherwise we can do it.
443 return true;
446 //===----------------------------------------------------------------------===//
447 // Optimization Methods
448 //===----------------------------------------------------------------------===//
450 /// If the specified instruction has a constant integer operand and there are
451 /// bits set in that constant that are not demanded, then clear those bits and
452 /// return true.
453 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
454 TargetLoweringOpt &TLO) const {
455 SDLoc DL(Op);
456 unsigned Opcode = Op.getOpcode();
458 // Do target-specific constant optimization.
459 if (targetShrinkDemandedConstant(Op, Demanded, TLO))
460 return TLO.New.getNode();
462 // FIXME: ISD::SELECT, ISD::SELECT_CC
463 switch (Opcode) {
464 default:
465 break;
466 case ISD::XOR:
467 case ISD::AND:
468 case ISD::OR: {
469 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
470 if (!Op1C)
471 return false;
473 // If this is a 'not' op, don't touch it because that's a canonical form.
474 const APInt &C = Op1C->getAPIntValue();
475 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
476 return false;
478 if (!C.isSubsetOf(Demanded)) {
479 EVT VT = Op.getValueType();
480 SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT);
481 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
482 return TLO.CombineTo(Op, NewOp);
485 break;
489 return false;
492 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
493 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
494 /// generalized for targets with other types of implicit widening casts.
495 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
496 const APInt &Demanded,
497 TargetLoweringOpt &TLO) const {
498 assert(Op.getNumOperands() == 2 &&
499 "ShrinkDemandedOp only supports binary operators!");
500 assert(Op.getNode()->getNumValues() == 1 &&
501 "ShrinkDemandedOp only supports nodes with one result!");
503 SelectionDAG &DAG = TLO.DAG;
504 SDLoc dl(Op);
506 // Early return, as this function cannot handle vector types.
507 if (Op.getValueType().isVector())
508 return false;
510 // Don't do this if the node has another user, which may require the
511 // full value.
512 if (!Op.getNode()->hasOneUse())
513 return false;
515 // Search for the smallest integer type with free casts to and from
516 // Op's type. For expedience, just check power-of-2 integer types.
517 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
518 unsigned DemandedSize = Demanded.getActiveBits();
519 unsigned SmallVTBits = DemandedSize;
520 if (!isPowerOf2_32(SmallVTBits))
521 SmallVTBits = NextPowerOf2(SmallVTBits);
522 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
523 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
524 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
525 TLI.isZExtFree(SmallVT, Op.getValueType())) {
526 // We found a type with free casts.
527 SDValue X = DAG.getNode(
528 Op.getOpcode(), dl, SmallVT,
529 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
530 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
531 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
532 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
533 return TLO.CombineTo(Op, Z);
536 return false;
539 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
540 DAGCombinerInfo &DCI) const {
541 SelectionDAG &DAG = DCI.DAG;
542 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
543 !DCI.isBeforeLegalizeOps());
544 KnownBits Known;
546 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
547 if (Simplified) {
548 DCI.AddToWorklist(Op.getNode());
549 DCI.CommitTargetLoweringOpt(TLO);
551 return Simplified;
554 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
555 KnownBits &Known,
556 TargetLoweringOpt &TLO,
557 unsigned Depth,
558 bool AssumeSingleUse) const {
559 EVT VT = Op.getValueType();
560 APInt DemandedElts = VT.isVector()
561 ? APInt::getAllOnesValue(VT.getVectorNumElements())
562 : APInt(1, 1);
563 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
564 AssumeSingleUse);
567 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
568 /// result of Op are ever used downstream. If we can use this information to
569 /// simplify Op, create a new simplified DAG node and return true, returning the
570 /// original and new nodes in Old and New. Otherwise, analyze the expression and
571 /// return a mask of Known bits for the expression (used to simplify the
572 /// caller). The Known bits may only be accurate for those bits in the
573 /// OriginalDemandedBits and OriginalDemandedElts.
574 bool TargetLowering::SimplifyDemandedBits(
575 SDValue Op, const APInt &OriginalDemandedBits,
576 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
577 unsigned Depth, bool AssumeSingleUse) const {
578 unsigned BitWidth = OriginalDemandedBits.getBitWidth();
579 assert(Op.getScalarValueSizeInBits() == BitWidth &&
580 "Mask size mismatches value type size!");
582 unsigned NumElts = OriginalDemandedElts.getBitWidth();
583 assert((!Op.getValueType().isVector() ||
584 NumElts == Op.getValueType().getVectorNumElements()) &&
585 "Unexpected vector size");
587 APInt DemandedBits = OriginalDemandedBits;
588 APInt DemandedElts = OriginalDemandedElts;
589 SDLoc dl(Op);
590 auto &DL = TLO.DAG.getDataLayout();
592 // Don't know anything.
593 Known = KnownBits(BitWidth);
595 // Undef operand.
596 if (Op.isUndef())
597 return false;
599 if (Op.getOpcode() == ISD::Constant) {
600 // We know all of the bits for a constant!
601 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
602 Known.Zero = ~Known.One;
603 return false;
606 // Other users may use these bits.
607 EVT VT = Op.getValueType();
608 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
609 if (Depth != 0) {
610 // If not at the root, Just compute the Known bits to
611 // simplify things downstream.
612 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
613 return false;
615 // If this is the root being simplified, allow it to have multiple uses,
616 // just set the DemandedBits/Elts to all bits.
617 DemandedBits = APInt::getAllOnesValue(BitWidth);
618 DemandedElts = APInt::getAllOnesValue(NumElts);
619 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
620 // Not demanding any bits/elts from Op.
621 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
622 } else if (Depth == 6) { // Limit search depth.
623 return false;
626 KnownBits Known2, KnownOut;
627 switch (Op.getOpcode()) {
628 case ISD::SCALAR_TO_VECTOR: {
629 if (!DemandedElts[0])
630 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
632 KnownBits SrcKnown;
633 SDValue Src = Op.getOperand(0);
634 unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
635 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
636 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
637 return true;
638 Known = SrcKnown.zextOrTrunc(BitWidth, false);
639 break;
641 case ISD::BUILD_VECTOR:
642 // Collect the known bits that are shared by every demanded element.
643 // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
644 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
645 return false; // Don't fall through, will infinitely loop.
646 case ISD::LOAD: {
647 LoadSDNode *LD = cast<LoadSDNode>(Op);
648 if (getTargetConstantFromLoad(LD)) {
649 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
650 return false; // Don't fall through, will infinitely loop.
652 break;
654 case ISD::INSERT_VECTOR_ELT: {
655 SDValue Vec = Op.getOperand(0);
656 SDValue Scl = Op.getOperand(1);
657 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
658 EVT VecVT = Vec.getValueType();
660 // If index isn't constant, assume we need all vector elements AND the
661 // inserted element.
662 APInt DemandedVecElts(DemandedElts);
663 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
664 unsigned Idx = CIdx->getZExtValue();
665 DemandedVecElts.clearBit(Idx);
667 // Inserted element is not required.
668 if (!DemandedElts[Idx])
669 return TLO.CombineTo(Op, Vec);
672 KnownBits KnownScl;
673 unsigned NumSclBits = Scl.getScalarValueSizeInBits();
674 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
675 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
676 return true;
678 Known = KnownScl.zextOrTrunc(BitWidth, false);
680 KnownBits KnownVec;
681 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
682 Depth + 1))
683 return true;
685 if (!!DemandedVecElts) {
686 Known.One &= KnownVec.One;
687 Known.Zero &= KnownVec.Zero;
690 return false;
692 case ISD::INSERT_SUBVECTOR: {
693 SDValue Base = Op.getOperand(0);
694 SDValue Sub = Op.getOperand(1);
695 EVT SubVT = Sub.getValueType();
696 unsigned NumSubElts = SubVT.getVectorNumElements();
698 // If index isn't constant, assume we need the original demanded base
699 // elements and ALL the inserted subvector elements.
700 APInt BaseElts = DemandedElts;
701 APInt SubElts = APInt::getAllOnesValue(NumSubElts);
702 if (isa<ConstantSDNode>(Op.getOperand(2))) {
703 const APInt &Idx = Op.getConstantOperandAPInt(2);
704 if (Idx.ule(NumElts - NumSubElts)) {
705 unsigned SubIdx = Idx.getZExtValue();
706 SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
707 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
711 KnownBits KnownSub, KnownBase;
712 if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO,
713 Depth + 1))
714 return true;
715 if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO,
716 Depth + 1))
717 return true;
719 Known.Zero.setAllBits();
720 Known.One.setAllBits();
721 if (!!SubElts) {
722 Known.One &= KnownSub.One;
723 Known.Zero &= KnownSub.Zero;
725 if (!!BaseElts) {
726 Known.One &= KnownBase.One;
727 Known.Zero &= KnownBase.Zero;
729 break;
731 case ISD::CONCAT_VECTORS: {
732 Known.Zero.setAllBits();
733 Known.One.setAllBits();
734 EVT SubVT = Op.getOperand(0).getValueType();
735 unsigned NumSubVecs = Op.getNumOperands();
736 unsigned NumSubElts = SubVT.getVectorNumElements();
737 for (unsigned i = 0; i != NumSubVecs; ++i) {
738 APInt DemandedSubElts =
739 DemandedElts.extractBits(NumSubElts, i * NumSubElts);
740 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
741 Known2, TLO, Depth + 1))
742 return true;
743 // Known bits are shared by every demanded subvector element.
744 if (!!DemandedSubElts) {
745 Known.One &= Known2.One;
746 Known.Zero &= Known2.Zero;
749 break;
751 case ISD::VECTOR_SHUFFLE: {
752 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
754 // Collect demanded elements from shuffle operands..
755 APInt DemandedLHS(NumElts, 0);
756 APInt DemandedRHS(NumElts, 0);
757 for (unsigned i = 0; i != NumElts; ++i) {
758 if (!DemandedElts[i])
759 continue;
760 int M = ShuffleMask[i];
761 if (M < 0) {
762 // For UNDEF elements, we don't know anything about the common state of
763 // the shuffle result.
764 DemandedLHS.clearAllBits();
765 DemandedRHS.clearAllBits();
766 break;
768 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
769 if (M < (int)NumElts)
770 DemandedLHS.setBit(M);
771 else
772 DemandedRHS.setBit(M - NumElts);
775 if (!!DemandedLHS || !!DemandedRHS) {
776 Known.Zero.setAllBits();
777 Known.One.setAllBits();
778 if (!!DemandedLHS) {
779 if (SimplifyDemandedBits(Op.getOperand(0), DemandedBits, DemandedLHS,
780 Known2, TLO, Depth + 1))
781 return true;
782 Known.One &= Known2.One;
783 Known.Zero &= Known2.Zero;
785 if (!!DemandedRHS) {
786 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedRHS,
787 Known2, TLO, Depth + 1))
788 return true;
789 Known.One &= Known2.One;
790 Known.Zero &= Known2.Zero;
793 break;
795 case ISD::AND: {
796 SDValue Op0 = Op.getOperand(0);
797 SDValue Op1 = Op.getOperand(1);
799 // If the RHS is a constant, check to see if the LHS would be zero without
800 // using the bits from the RHS. Below, we use knowledge about the RHS to
801 // simplify the LHS, here we're using information from the LHS to simplify
802 // the RHS.
803 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
804 // Do not increment Depth here; that can cause an infinite loop.
805 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
806 // If the LHS already has zeros where RHSC does, this 'and' is dead.
807 if ((LHSKnown.Zero & DemandedBits) ==
808 (~RHSC->getAPIntValue() & DemandedBits))
809 return TLO.CombineTo(Op, Op0);
811 // If any of the set bits in the RHS are known zero on the LHS, shrink
812 // the constant.
813 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
814 return true;
816 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
817 // constant, but if this 'and' is only clearing bits that were just set by
818 // the xor, then this 'and' can be eliminated by shrinking the mask of
819 // the xor. For example, for a 32-bit X:
820 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
821 if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
822 LHSKnown.One == ~RHSC->getAPIntValue()) {
823 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
824 return TLO.CombineTo(Op, Xor);
828 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
829 Depth + 1))
830 return true;
831 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
832 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
833 Known2, TLO, Depth + 1))
834 return true;
835 assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
837 // If all of the demanded bits are known one on one side, return the other.
838 // These bits cannot contribute to the result of the 'and'.
839 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
840 return TLO.CombineTo(Op, Op0);
841 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
842 return TLO.CombineTo(Op, Op1);
843 // If all of the demanded bits in the inputs are known zeros, return zero.
844 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
845 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
846 // If the RHS is a constant, see if we can simplify it.
847 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
848 return true;
849 // If the operation can be done in a smaller type, do so.
850 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
851 return true;
853 // Output known-1 bits are only known if set in both the LHS & RHS.
854 Known.One &= Known2.One;
855 // Output known-0 are known to be clear if zero in either the LHS | RHS.
856 Known.Zero |= Known2.Zero;
857 break;
859 case ISD::OR: {
860 SDValue Op0 = Op.getOperand(0);
861 SDValue Op1 = Op.getOperand(1);
863 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
864 Depth + 1))
865 return true;
866 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
867 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
868 Known2, TLO, Depth + 1))
869 return true;
870 assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
872 // If all of the demanded bits are known zero on one side, return the other.
873 // These bits cannot contribute to the result of the 'or'.
874 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
875 return TLO.CombineTo(Op, Op0);
876 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
877 return TLO.CombineTo(Op, Op1);
878 // If the RHS is a constant, see if we can simplify it.
879 if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
880 return true;
881 // If the operation can be done in a smaller type, do so.
882 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
883 return true;
885 // Output known-0 bits are only known if clear in both the LHS & RHS.
886 Known.Zero &= Known2.Zero;
887 // Output known-1 are known to be set if set in either the LHS | RHS.
888 Known.One |= Known2.One;
889 break;
891 case ISD::XOR: {
892 SDValue Op0 = Op.getOperand(0);
893 SDValue Op1 = Op.getOperand(1);
895 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
896 Depth + 1))
897 return true;
898 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
899 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
900 Depth + 1))
901 return true;
902 assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
904 // If all of the demanded bits are known zero on one side, return the other.
905 // These bits cannot contribute to the result of the 'xor'.
906 if (DemandedBits.isSubsetOf(Known.Zero))
907 return TLO.CombineTo(Op, Op0);
908 if (DemandedBits.isSubsetOf(Known2.Zero))
909 return TLO.CombineTo(Op, Op1);
910 // If the operation can be done in a smaller type, do so.
911 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
912 return true;
914 // If all of the unknown bits are known to be zero on one side or the other
915 // (but not both) turn this into an *inclusive* or.
916 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
917 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
918 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
920 // Output known-0 bits are known if clear or set in both the LHS & RHS.
921 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
922 // Output known-1 are known to be set if set in only one of the LHS, RHS.
923 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
925 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
926 // If one side is a constant, and all of the known set bits on the other
927 // side are also set in the constant, turn this into an AND, as we know
928 // the bits will be cleared.
929 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
930 // NB: it is okay if more bits are known than are requested
931 if (C->getAPIntValue() == Known2.One) {
932 SDValue ANDC =
933 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
934 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
937 // If the RHS is a constant, see if we can change it. Don't alter a -1
938 // constant because that's a 'not' op, and that is better for combining
939 // and codegen.
940 if (!C->isAllOnesValue()) {
941 if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
942 // We're flipping all demanded bits. Flip the undemanded bits too.
943 SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
944 return TLO.CombineTo(Op, New);
946 // If we can't turn this into a 'not', try to shrink the constant.
947 if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
948 return true;
952 Known = std::move(KnownOut);
953 break;
955 case ISD::SELECT:
956 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
957 Depth + 1))
958 return true;
959 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
960 Depth + 1))
961 return true;
962 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
963 assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
965 // If the operands are constants, see if we can simplify them.
966 if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
967 return true;
969 // Only known if known in both the LHS and RHS.
970 Known.One &= Known2.One;
971 Known.Zero &= Known2.Zero;
972 break;
973 case ISD::SELECT_CC:
974 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
975 Depth + 1))
976 return true;
977 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
978 Depth + 1))
979 return true;
980 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
981 assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
983 // If the operands are constants, see if we can simplify them.
984 if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
985 return true;
987 // Only known if known in both the LHS and RHS.
988 Known.One &= Known2.One;
989 Known.Zero &= Known2.Zero;
990 break;
991 case ISD::SETCC: {
992 SDValue Op0 = Op.getOperand(0);
993 SDValue Op1 = Op.getOperand(1);
994 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
995 // If (1) we only need the sign-bit, (2) the setcc operands are the same
996 // width as the setcc result, and (3) the result of a setcc conforms to 0 or
997 // -1, we may be able to bypass the setcc.
998 if (DemandedBits.isSignMask() &&
999 Op0.getScalarValueSizeInBits() == BitWidth &&
1000 getBooleanContents(VT) ==
1001 BooleanContent::ZeroOrNegativeOneBooleanContent) {
1002 // If we're testing X < 0, then this compare isn't needed - just use X!
1003 // FIXME: We're limiting to integer types here, but this should also work
1004 // if we don't care about FP signed-zero. The use of SETLT with FP means
1005 // that we don't care about NaNs.
1006 if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1007 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1008 return TLO.CombineTo(Op, Op0);
1010 // TODO: Should we check for other forms of sign-bit comparisons?
1011 // Examples: X <= -1, X >= 0
1013 if (getBooleanContents(Op0.getValueType()) ==
1014 TargetLowering::ZeroOrOneBooleanContent &&
1015 BitWidth > 1)
1016 Known.Zero.setBitsFrom(1);
1017 break;
1019 case ISD::SHL: {
1020 SDValue Op0 = Op.getOperand(0);
1021 SDValue Op1 = Op.getOperand(1);
1023 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1024 // If the shift count is an invalid immediate, don't do anything.
1025 if (SA->getAPIntValue().uge(BitWidth))
1026 break;
1028 unsigned ShAmt = SA->getZExtValue();
1029 if (ShAmt == 0)
1030 return TLO.CombineTo(Op, Op0);
1032 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1033 // single shift. We can do this if the bottom bits (which are shifted
1034 // out) are never demanded.
1035 // TODO - support non-uniform vector amounts.
1036 if (Op0.getOpcode() == ISD::SRL) {
1037 if ((DemandedBits & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1038 if (ConstantSDNode *SA2 =
1039 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1040 if (SA2->getAPIntValue().ult(BitWidth)) {
1041 unsigned C1 = SA2->getZExtValue();
1042 unsigned Opc = ISD::SHL;
1043 int Diff = ShAmt - C1;
1044 if (Diff < 0) {
1045 Diff = -Diff;
1046 Opc = ISD::SRL;
1049 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
1050 return TLO.CombineTo(
1051 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1057 if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts,
1058 Known, TLO, Depth + 1))
1059 return true;
1061 // Try shrinking the operation as long as the shift amount will still be
1062 // in range.
1063 if ((ShAmt < DemandedBits.getActiveBits()) &&
1064 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1065 return true;
1067 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1068 // are not demanded. This will likely allow the anyext to be folded away.
1069 if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1070 SDValue InnerOp = Op0.getOperand(0);
1071 EVT InnerVT = InnerOp.getValueType();
1072 unsigned InnerBits = InnerVT.getScalarSizeInBits();
1073 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1074 isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1075 EVT ShTy = getShiftAmountTy(InnerVT, DL);
1076 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1077 ShTy = InnerVT;
1078 SDValue NarrowShl =
1079 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1080 TLO.DAG.getConstant(ShAmt, dl, ShTy));
1081 return TLO.CombineTo(
1082 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1084 // Repeat the SHL optimization above in cases where an extension
1085 // intervenes: (shl (anyext (shr x, c1)), c2) to
1086 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits
1087 // aren't demanded (as above) and that the shifted upper c1 bits of
1088 // x aren't demanded.
1089 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1090 InnerOp.hasOneUse()) {
1091 if (ConstantSDNode *SA2 =
1092 isConstOrConstSplat(InnerOp.getOperand(1))) {
1093 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
1094 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1095 DemandedBits.getActiveBits() <=
1096 (InnerBits - InnerShAmt + ShAmt) &&
1097 DemandedBits.countTrailingZeros() >= ShAmt) {
1098 SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
1099 Op1.getValueType());
1100 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1101 InnerOp.getOperand(0));
1102 return TLO.CombineTo(
1103 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1109 Known.Zero <<= ShAmt;
1110 Known.One <<= ShAmt;
1111 // low bits known zero.
1112 Known.Zero.setLowBits(ShAmt);
1114 break;
1116 case ISD::SRL: {
1117 SDValue Op0 = Op.getOperand(0);
1118 SDValue Op1 = Op.getOperand(1);
1120 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1121 // If the shift count is an invalid immediate, don't do anything.
1122 if (SA->getAPIntValue().uge(BitWidth))
1123 break;
1125 unsigned ShAmt = SA->getZExtValue();
1126 if (ShAmt == 0)
1127 return TLO.CombineTo(Op, Op0);
1129 EVT ShiftVT = Op1.getValueType();
1130 APInt InDemandedMask = (DemandedBits << ShAmt);
1132 // If the shift is exact, then it does demand the low bits (and knows that
1133 // they are zero).
1134 if (Op->getFlags().hasExact())
1135 InDemandedMask.setLowBits(ShAmt);
1137 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1138 // single shift. We can do this if the top bits (which are shifted out)
1139 // are never demanded.
1140 // TODO - support non-uniform vector amounts.
1141 if (Op0.getOpcode() == ISD::SHL) {
1142 if (ConstantSDNode *SA2 =
1143 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1144 if ((DemandedBits & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) {
1145 if (SA2->getAPIntValue().ult(BitWidth)) {
1146 unsigned C1 = SA2->getZExtValue();
1147 unsigned Opc = ISD::SRL;
1148 int Diff = ShAmt - C1;
1149 if (Diff < 0) {
1150 Diff = -Diff;
1151 Opc = ISD::SHL;
1154 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1155 return TLO.CombineTo(
1156 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1162 // Compute the new bits that are at the top now.
1163 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1164 Depth + 1))
1165 return true;
1166 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1167 Known.Zero.lshrInPlace(ShAmt);
1168 Known.One.lshrInPlace(ShAmt);
1170 Known.Zero.setHighBits(ShAmt); // High bits known zero.
1172 break;
1174 case ISD::SRA: {
1175 SDValue Op0 = Op.getOperand(0);
1176 SDValue Op1 = Op.getOperand(1);
1178 // If this is an arithmetic shift right and only the low-bit is set, we can
1179 // always convert this into a logical shr, even if the shift amount is
1180 // variable. The low bit of the shift cannot be an input sign bit unless
1181 // the shift amount is >= the size of the datatype, which is undefined.
1182 if (DemandedBits.isOneValue())
1183 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1185 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1186 // If the shift count is an invalid immediate, don't do anything.
1187 if (SA->getAPIntValue().uge(BitWidth))
1188 break;
1190 unsigned ShAmt = SA->getZExtValue();
1191 if (ShAmt == 0)
1192 return TLO.CombineTo(Op, Op0);
1194 APInt InDemandedMask = (DemandedBits << ShAmt);
1196 // If the shift is exact, then it does demand the low bits (and knows that
1197 // they are zero).
1198 if (Op->getFlags().hasExact())
1199 InDemandedMask.setLowBits(ShAmt);
1201 // If any of the demanded bits are produced by the sign extension, we also
1202 // demand the input sign bit.
1203 if (DemandedBits.countLeadingZeros() < ShAmt)
1204 InDemandedMask.setSignBit();
1206 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1207 Depth + 1))
1208 return true;
1209 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1210 Known.Zero.lshrInPlace(ShAmt);
1211 Known.One.lshrInPlace(ShAmt);
1213 // If the input sign bit is known to be zero, or if none of the top bits
1214 // are demanded, turn this into an unsigned shift right.
1215 if (Known.Zero[BitWidth - ShAmt - 1] ||
1216 DemandedBits.countLeadingZeros() >= ShAmt) {
1217 SDNodeFlags Flags;
1218 Flags.setExact(Op->getFlags().hasExact());
1219 return TLO.CombineTo(
1220 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1223 int Log2 = DemandedBits.exactLogBase2();
1224 if (Log2 >= 0) {
1225 // The bit must come from the sign.
1226 SDValue NewSA =
1227 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType());
1228 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1231 if (Known.One[BitWidth - ShAmt - 1])
1232 // New bits are known one.
1233 Known.One.setHighBits(ShAmt);
1235 break;
1237 case ISD::FSHL:
1238 case ISD::FSHR: {
1239 SDValue Op0 = Op.getOperand(0);
1240 SDValue Op1 = Op.getOperand(1);
1241 SDValue Op2 = Op.getOperand(2);
1242 bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1244 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1245 unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1247 // For fshl, 0-shift returns the 1st arg.
1248 // For fshr, 0-shift returns the 2nd arg.
1249 if (Amt == 0) {
1250 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1251 Known, TLO, Depth + 1))
1252 return true;
1253 break;
1256 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1257 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1258 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1259 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1260 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1261 Depth + 1))
1262 return true;
1263 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1264 Depth + 1))
1265 return true;
1267 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1268 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1269 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1270 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1271 Known.One |= Known2.One;
1272 Known.Zero |= Known2.Zero;
1274 break;
1276 case ISD::BITREVERSE: {
1277 SDValue Src = Op.getOperand(0);
1278 APInt DemandedSrcBits = DemandedBits.reverseBits();
1279 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1280 Depth + 1))
1281 return true;
1282 Known.One = Known2.One.reverseBits();
1283 Known.Zero = Known2.Zero.reverseBits();
1284 break;
1286 case ISD::SIGN_EXTEND_INREG: {
1287 SDValue Op0 = Op.getOperand(0);
1288 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1289 unsigned ExVTBits = ExVT.getScalarSizeInBits();
1291 // If we only care about the highest bit, don't bother shifting right.
1292 if (DemandedBits.isSignMask()) {
1293 unsigned NumSignBits = TLO.DAG.ComputeNumSignBits(Op0);
1294 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1295 // However if the input is already sign extended we expect the sign
1296 // extension to be dropped altogether later and do not simplify.
1297 if (!AlreadySignExtended) {
1298 // Compute the correct shift amount type, which must be getShiftAmountTy
1299 // for scalar types after legalization.
1300 EVT ShiftAmtTy = VT;
1301 if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1302 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1304 SDValue ShiftAmt =
1305 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1306 return TLO.CombineTo(Op,
1307 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1311 // If none of the extended bits are demanded, eliminate the sextinreg.
1312 if (DemandedBits.getActiveBits() <= ExVTBits)
1313 return TLO.CombineTo(Op, Op0);
1315 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1317 // Since the sign extended bits are demanded, we know that the sign
1318 // bit is demanded.
1319 InputDemandedBits.setBit(ExVTBits - 1);
1321 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1322 return true;
1323 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1325 // If the sign bit of the input is known set or clear, then we know the
1326 // top bits of the result.
1328 // If the input sign bit is known zero, convert this into a zero extension.
1329 if (Known.Zero[ExVTBits - 1])
1330 return TLO.CombineTo(
1331 Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType()));
1333 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1334 if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1335 Known.One.setBitsFrom(ExVTBits);
1336 Known.Zero &= Mask;
1337 } else { // Input sign bit unknown
1338 Known.Zero &= Mask;
1339 Known.One &= Mask;
1341 break;
1343 case ISD::BUILD_PAIR: {
1344 EVT HalfVT = Op.getOperand(0).getValueType();
1345 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1347 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1348 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1350 KnownBits KnownLo, KnownHi;
1352 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1353 return true;
1355 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1356 return true;
1358 Known.Zero = KnownLo.Zero.zext(BitWidth) |
1359 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1361 Known.One = KnownLo.One.zext(BitWidth) |
1362 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1363 break;
1365 case ISD::ZERO_EXTEND:
1366 case ISD::ZERO_EXTEND_VECTOR_INREG: {
1367 SDValue Src = Op.getOperand(0);
1368 EVT SrcVT = Src.getValueType();
1369 unsigned InBits = SrcVT.getScalarSizeInBits();
1370 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1371 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1373 // If none of the top bits are demanded, convert this into an any_extend.
1374 if (DemandedBits.getActiveBits() <= InBits) {
1375 // If we only need the non-extended bits of the bottom element
1376 // then we can just bitcast to the result.
1377 if (IsVecInReg && DemandedElts == 1 &&
1378 VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1379 TLO.DAG.getDataLayout().isLittleEndian())
1380 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1382 unsigned Opc =
1383 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1384 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1385 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1388 APInt InDemandedBits = DemandedBits.trunc(InBits);
1389 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1390 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1391 Depth + 1))
1392 return true;
1393 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1394 assert(Known.getBitWidth() == InBits && "Src width has changed?");
1395 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
1396 break;
1398 case ISD::SIGN_EXTEND:
1399 case ISD::SIGN_EXTEND_VECTOR_INREG: {
1400 SDValue Src = Op.getOperand(0);
1401 EVT SrcVT = Src.getValueType();
1402 unsigned InBits = SrcVT.getScalarSizeInBits();
1403 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1404 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1406 // If none of the top bits are demanded, convert this into an any_extend.
1407 if (DemandedBits.getActiveBits() <= InBits) {
1408 // If we only need the non-extended bits of the bottom element
1409 // then we can just bitcast to the result.
1410 if (IsVecInReg && DemandedElts == 1 &&
1411 VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1412 TLO.DAG.getDataLayout().isLittleEndian())
1413 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1415 unsigned Opc =
1416 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1417 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1418 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1421 APInt InDemandedBits = DemandedBits.trunc(InBits);
1422 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1424 // Since some of the sign extended bits are demanded, we know that the sign
1425 // bit is demanded.
1426 InDemandedBits.setBit(InBits - 1);
1428 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1429 Depth + 1))
1430 return true;
1431 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1432 assert(Known.getBitWidth() == InBits && "Src width has changed?");
1434 // If the sign bit is known one, the top bits match.
1435 Known = Known.sext(BitWidth);
1437 // If the sign bit is known zero, convert this to a zero extend.
1438 if (Known.isNonNegative()) {
1439 unsigned Opc =
1440 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1441 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1442 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1444 break;
1446 case ISD::ANY_EXTEND:
1447 case ISD::ANY_EXTEND_VECTOR_INREG: {
1448 SDValue Src = Op.getOperand(0);
1449 EVT SrcVT = Src.getValueType();
1450 unsigned InBits = SrcVT.getScalarSizeInBits();
1451 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1452 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1454 // If we only need the bottom element then we can just bitcast.
1455 // TODO: Handle ANY_EXTEND?
1456 if (IsVecInReg && DemandedElts == 1 &&
1457 VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1458 TLO.DAG.getDataLayout().isLittleEndian())
1459 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1461 APInt InDemandedBits = DemandedBits.trunc(InBits);
1462 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1463 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1464 Depth + 1))
1465 return true;
1466 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1467 assert(Known.getBitWidth() == InBits && "Src width has changed?");
1468 Known = Known.zext(BitWidth, false /* => any extend */);
1469 break;
1471 case ISD::TRUNCATE: {
1472 SDValue Src = Op.getOperand(0);
1474 // Simplify the input, using demanded bit information, and compute the known
1475 // zero/one bits live out.
1476 unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1477 APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1478 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1479 return true;
1480 Known = Known.trunc(BitWidth);
1482 // If the input is only used by this truncate, see if we can shrink it based
1483 // on the known demanded bits.
1484 if (Src.getNode()->hasOneUse()) {
1485 switch (Src.getOpcode()) {
1486 default:
1487 break;
1488 case ISD::SRL:
1489 // Shrink SRL by a constant if none of the high bits shifted in are
1490 // demanded.
1491 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1492 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1493 // undesirable.
1494 break;
1496 auto *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
1497 if (!ShAmt || ShAmt->getAPIntValue().uge(BitWidth))
1498 break;
1500 SDValue Shift = Src.getOperand(1);
1501 uint64_t ShVal = ShAmt->getZExtValue();
1503 if (TLO.LegalTypes())
1504 Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1506 APInt HighBits =
1507 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
1508 HighBits.lshrInPlace(ShVal);
1509 HighBits = HighBits.trunc(BitWidth);
1511 if (!(HighBits & DemandedBits)) {
1512 // None of the shifted in bits are needed. Add a truncate of the
1513 // shift input, then shift it.
1514 SDValue NewTrunc =
1515 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1516 return TLO.CombineTo(
1517 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift));
1519 break;
1523 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1524 break;
1526 case ISD::AssertZext: {
1527 // AssertZext demands all of the high bits, plus any of the low bits
1528 // demanded by its users.
1529 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1530 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1531 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
1532 TLO, Depth + 1))
1533 return true;
1534 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1536 Known.Zero |= ~InMask;
1537 break;
1539 case ISD::EXTRACT_VECTOR_ELT: {
1540 SDValue Src = Op.getOperand(0);
1541 SDValue Idx = Op.getOperand(1);
1542 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1543 unsigned EltBitWidth = Src.getScalarValueSizeInBits();
1545 // Demand the bits from every vector element without a constant index.
1546 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
1547 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
1548 if (CIdx->getAPIntValue().ult(NumSrcElts))
1549 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
1551 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1552 // anything about the extended bits.
1553 APInt DemandedSrcBits = DemandedBits;
1554 if (BitWidth > EltBitWidth)
1555 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
1557 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
1558 Depth + 1))
1559 return true;
1561 Known = Known2;
1562 if (BitWidth > EltBitWidth)
1563 Known = Known.zext(BitWidth, false /* => any extend */);
1564 break;
1566 case ISD::BITCAST: {
1567 SDValue Src = Op.getOperand(0);
1568 EVT SrcVT = Src.getValueType();
1569 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
1571 // If this is an FP->Int bitcast and if the sign bit is the only
1572 // thing demanded, turn this into a FGETSIGN.
1573 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
1574 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
1575 SrcVT.isFloatingPoint()) {
1576 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1577 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1578 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
1579 SrcVT != MVT::f128) {
1580 // Cannot eliminate/lower SHL for f128 yet.
1581 EVT Ty = OpVTLegal ? VT : MVT::i32;
1582 // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1583 // place. We expect the SHL to be eliminated by other optimizations.
1584 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
1585 unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1586 if (!OpVTLegal && OpVTSizeInBits > 32)
1587 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
1588 unsigned ShVal = Op.getValueSizeInBits() - 1;
1589 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
1590 return TLO.CombineTo(Op,
1591 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
1595 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
1596 // Demand the elt/bit if any of the original elts/bits are demanded.
1597 // TODO - bigendian once we have test coverage.
1598 // TODO - bool vectors once SimplifyDemandedVectorElts has SETCC support.
1599 if (SrcVT.isVector() && NumSrcEltBits > 1 &&
1600 (BitWidth % NumSrcEltBits) == 0 &&
1601 TLO.DAG.getDataLayout().isLittleEndian()) {
1602 unsigned Scale = BitWidth / NumSrcEltBits;
1603 unsigned NumSrcElts = SrcVT.getVectorNumElements();
1604 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
1605 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
1606 for (unsigned i = 0; i != Scale; ++i) {
1607 unsigned Offset = i * NumSrcEltBits;
1608 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
1609 if (!Sub.isNullValue()) {
1610 DemandedSrcBits |= Sub;
1611 for (unsigned j = 0; j != NumElts; ++j)
1612 if (DemandedElts[j])
1613 DemandedSrcElts.setBit((j * Scale) + i);
1617 APInt KnownSrcUndef, KnownSrcZero;
1618 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
1619 KnownSrcZero, TLO, Depth + 1))
1620 return true;
1622 KnownBits KnownSrcBits;
1623 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
1624 KnownSrcBits, TLO, Depth + 1))
1625 return true;
1626 } else if ((NumSrcEltBits % BitWidth) == 0 &&
1627 TLO.DAG.getDataLayout().isLittleEndian()) {
1628 unsigned Scale = NumSrcEltBits / BitWidth;
1629 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1630 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
1631 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
1632 for (unsigned i = 0; i != NumElts; ++i)
1633 if (DemandedElts[i]) {
1634 unsigned Offset = (i % Scale) * BitWidth;
1635 DemandedSrcBits.insertBits(DemandedBits, Offset);
1636 DemandedSrcElts.setBit(i / Scale);
1639 if (SrcVT.isVector()) {
1640 APInt KnownSrcUndef, KnownSrcZero;
1641 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
1642 KnownSrcZero, TLO, Depth + 1))
1643 return true;
1646 KnownBits KnownSrcBits;
1647 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
1648 KnownSrcBits, TLO, Depth + 1))
1649 return true;
1652 // If this is a bitcast, let computeKnownBits handle it. Only do this on a
1653 // recursive call where Known may be useful to the caller.
1654 if (Depth > 0) {
1655 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1656 return false;
1658 break;
1660 case ISD::ADD:
1661 case ISD::MUL:
1662 case ISD::SUB: {
1663 // Add, Sub, and Mul don't demand any bits in positions beyond that
1664 // of the highest bit demanded of them.
1665 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
1666 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
1667 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
1668 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
1669 Depth + 1) ||
1670 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
1671 Depth + 1) ||
1672 // See if the operation should be performed at a smaller bit width.
1673 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
1674 SDNodeFlags Flags = Op.getNode()->getFlags();
1675 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1676 // Disable the nsw and nuw flags. We can no longer guarantee that we
1677 // won't wrap after simplification.
1678 Flags.setNoSignedWrap(false);
1679 Flags.setNoUnsignedWrap(false);
1680 SDValue NewOp =
1681 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
1682 return TLO.CombineTo(Op, NewOp);
1684 return true;
1687 // If we have a constant operand, we may be able to turn it into -1 if we
1688 // do not demand the high bits. This can make the constant smaller to
1689 // encode, allow more general folding, or match specialized instruction
1690 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
1691 // is probably not useful (and could be detrimental).
1692 ConstantSDNode *C = isConstOrConstSplat(Op1);
1693 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
1694 if (C && !C->isAllOnesValue() && !C->isOne() &&
1695 (C->getAPIntValue() | HighMask).isAllOnesValue()) {
1696 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
1697 // We can't guarantee that the new math op doesn't wrap, so explicitly
1698 // clear those flags to prevent folding with a potential existing node
1699 // that has those flags set.
1700 SDNodeFlags Flags;
1701 Flags.setNoSignedWrap(false);
1702 Flags.setNoUnsignedWrap(false);
1703 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
1704 return TLO.CombineTo(Op, NewOp);
1707 LLVM_FALLTHROUGH;
1709 default:
1710 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1711 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
1712 Known, TLO, Depth))
1713 return true;
1714 break;
1717 // Just use computeKnownBits to compute output bits.
1718 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1719 break;
1722 // If we know the value of all of the demanded bits, return this as a
1723 // constant.
1724 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
1725 // Avoid folding to a constant if any OpaqueConstant is involved.
1726 const SDNode *N = Op.getNode();
1727 for (SDNodeIterator I = SDNodeIterator::begin(N),
1728 E = SDNodeIterator::end(N);
1729 I != E; ++I) {
1730 SDNode *Op = *I;
1731 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
1732 if (C->isOpaque())
1733 return false;
1735 // TODO: Handle float bits as well.
1736 if (VT.isInteger())
1737 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
1740 return false;
1743 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
1744 const APInt &DemandedElts,
1745 APInt &KnownUndef,
1746 APInt &KnownZero,
1747 DAGCombinerInfo &DCI) const {
1748 SelectionDAG &DAG = DCI.DAG;
1749 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1750 !DCI.isBeforeLegalizeOps());
1752 bool Simplified =
1753 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
1754 if (Simplified) {
1755 DCI.AddToWorklist(Op.getNode());
1756 DCI.CommitTargetLoweringOpt(TLO);
1759 return Simplified;
1762 /// Given a vector binary operation and known undefined elements for each input
1763 /// operand, compute whether each element of the output is undefined.
1764 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
1765 const APInt &UndefOp0,
1766 const APInt &UndefOp1) {
1767 EVT VT = BO.getValueType();
1768 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
1769 "Vector binop only");
1771 EVT EltVT = VT.getVectorElementType();
1772 unsigned NumElts = VT.getVectorNumElements();
1773 assert(UndefOp0.getBitWidth() == NumElts &&
1774 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
1776 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
1777 const APInt &UndefVals) {
1778 if (UndefVals[Index])
1779 return DAG.getUNDEF(EltVT);
1781 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1782 // Try hard to make sure that the getNode() call is not creating temporary
1783 // nodes. Ignore opaque integers because they do not constant fold.
1784 SDValue Elt = BV->getOperand(Index);
1785 auto *C = dyn_cast<ConstantSDNode>(Elt);
1786 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
1787 return Elt;
1790 return SDValue();
1793 APInt KnownUndef = APInt::getNullValue(NumElts);
1794 for (unsigned i = 0; i != NumElts; ++i) {
1795 // If both inputs for this element are either constant or undef and match
1796 // the element type, compute the constant/undef result for this element of
1797 // the vector.
1798 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
1799 // not handle FP constants. The code within getNode() should be refactored
1800 // to avoid the danger of creating a bogus temporary node here.
1801 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
1802 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
1803 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
1804 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
1805 KnownUndef.setBit(i);
1807 return KnownUndef;
1810 bool TargetLowering::SimplifyDemandedVectorElts(
1811 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
1812 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
1813 bool AssumeSingleUse) const {
1814 EVT VT = Op.getValueType();
1815 APInt DemandedElts = OriginalDemandedElts;
1816 unsigned NumElts = DemandedElts.getBitWidth();
1817 assert(VT.isVector() && "Expected vector op");
1818 assert(VT.getVectorNumElements() == NumElts &&
1819 "Mask size mismatches value type element count!");
1821 KnownUndef = KnownZero = APInt::getNullValue(NumElts);
1823 // Undef operand.
1824 if (Op.isUndef()) {
1825 KnownUndef.setAllBits();
1826 return false;
1829 // If Op has other users, assume that all elements are needed.
1830 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
1831 DemandedElts.setAllBits();
1833 // Not demanding any elements from Op.
1834 if (DemandedElts == 0) {
1835 KnownUndef.setAllBits();
1836 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1839 // Limit search depth.
1840 if (Depth >= 6)
1841 return false;
1843 SDLoc DL(Op);
1844 unsigned EltSizeInBits = VT.getScalarSizeInBits();
1846 switch (Op.getOpcode()) {
1847 case ISD::SCALAR_TO_VECTOR: {
1848 if (!DemandedElts[0]) {
1849 KnownUndef.setAllBits();
1850 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1852 KnownUndef.setHighBits(NumElts - 1);
1853 break;
1855 case ISD::BITCAST: {
1856 SDValue Src = Op.getOperand(0);
1857 EVT SrcVT = Src.getValueType();
1859 // We only handle vectors here.
1860 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
1861 if (!SrcVT.isVector())
1862 break;
1864 // Fast handling of 'identity' bitcasts.
1865 unsigned NumSrcElts = SrcVT.getVectorNumElements();
1866 if (NumSrcElts == NumElts)
1867 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
1868 KnownZero, TLO, Depth + 1);
1870 APInt SrcZero, SrcUndef;
1871 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
1873 // Bitcast from 'large element' src vector to 'small element' vector, we
1874 // must demand a source element if any DemandedElt maps to it.
1875 if ((NumElts % NumSrcElts) == 0) {
1876 unsigned Scale = NumElts / NumSrcElts;
1877 for (unsigned i = 0; i != NumElts; ++i)
1878 if (DemandedElts[i])
1879 SrcDemandedElts.setBit(i / Scale);
1881 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
1882 TLO, Depth + 1))
1883 return true;
1885 // Try calling SimplifyDemandedBits, converting demanded elts to the bits
1886 // of the large element.
1887 // TODO - bigendian once we have test coverage.
1888 if (TLO.DAG.getDataLayout().isLittleEndian()) {
1889 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
1890 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
1891 for (unsigned i = 0; i != NumElts; ++i)
1892 if (DemandedElts[i]) {
1893 unsigned Ofs = (i % Scale) * EltSizeInBits;
1894 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
1897 KnownBits Known;
1898 if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1))
1899 return true;
1902 // If the src element is zero/undef then all the output elements will be -
1903 // only demanded elements are guaranteed to be correct.
1904 for (unsigned i = 0; i != NumSrcElts; ++i) {
1905 if (SrcDemandedElts[i]) {
1906 if (SrcZero[i])
1907 KnownZero.setBits(i * Scale, (i + 1) * Scale);
1908 if (SrcUndef[i])
1909 KnownUndef.setBits(i * Scale, (i + 1) * Scale);
1914 // Bitcast from 'small element' src vector to 'large element' vector, we
1915 // demand all smaller source elements covered by the larger demanded element
1916 // of this vector.
1917 if ((NumSrcElts % NumElts) == 0) {
1918 unsigned Scale = NumSrcElts / NumElts;
1919 for (unsigned i = 0; i != NumElts; ++i)
1920 if (DemandedElts[i])
1921 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
1923 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
1924 TLO, Depth + 1))
1925 return true;
1927 // If all the src elements covering an output element are zero/undef, then
1928 // the output element will be as well, assuming it was demanded.
1929 for (unsigned i = 0; i != NumElts; ++i) {
1930 if (DemandedElts[i]) {
1931 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
1932 KnownZero.setBit(i);
1933 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
1934 KnownUndef.setBit(i);
1938 break;
1940 case ISD::BUILD_VECTOR: {
1941 // Check all elements and simplify any unused elements with UNDEF.
1942 if (!DemandedElts.isAllOnesValue()) {
1943 // Don't simplify BROADCASTS.
1944 if (llvm::any_of(Op->op_values(),
1945 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
1946 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
1947 bool Updated = false;
1948 for (unsigned i = 0; i != NumElts; ++i) {
1949 if (!DemandedElts[i] && !Ops[i].isUndef()) {
1950 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
1951 KnownUndef.setBit(i);
1952 Updated = true;
1955 if (Updated)
1956 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
1959 for (unsigned i = 0; i != NumElts; ++i) {
1960 SDValue SrcOp = Op.getOperand(i);
1961 if (SrcOp.isUndef()) {
1962 KnownUndef.setBit(i);
1963 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
1964 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
1965 KnownZero.setBit(i);
1968 break;
1970 case ISD::CONCAT_VECTORS: {
1971 EVT SubVT = Op.getOperand(0).getValueType();
1972 unsigned NumSubVecs = Op.getNumOperands();
1973 unsigned NumSubElts = SubVT.getVectorNumElements();
1974 for (unsigned i = 0; i != NumSubVecs; ++i) {
1975 SDValue SubOp = Op.getOperand(i);
1976 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1977 APInt SubUndef, SubZero;
1978 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
1979 Depth + 1))
1980 return true;
1981 KnownUndef.insertBits(SubUndef, i * NumSubElts);
1982 KnownZero.insertBits(SubZero, i * NumSubElts);
1984 break;
1986 case ISD::INSERT_SUBVECTOR: {
1987 if (!isa<ConstantSDNode>(Op.getOperand(2)))
1988 break;
1989 SDValue Base = Op.getOperand(0);
1990 SDValue Sub = Op.getOperand(1);
1991 EVT SubVT = Sub.getValueType();
1992 unsigned NumSubElts = SubVT.getVectorNumElements();
1993 const APInt &Idx = Op.getConstantOperandAPInt(2);
1994 if (Idx.ugt(NumElts - NumSubElts))
1995 break;
1996 unsigned SubIdx = Idx.getZExtValue();
1997 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
1998 APInt SubUndef, SubZero;
1999 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
2000 Depth + 1))
2001 return true;
2002 APInt BaseElts = DemandedElts;
2003 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
2004 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
2005 Depth + 1))
2006 return true;
2007 KnownUndef.insertBits(SubUndef, SubIdx);
2008 KnownZero.insertBits(SubZero, SubIdx);
2009 break;
2011 case ISD::EXTRACT_SUBVECTOR: {
2012 SDValue Src = Op.getOperand(0);
2013 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2014 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2015 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2016 // Offset the demanded elts by the subvector index.
2017 uint64_t Idx = SubIdx->getZExtValue();
2018 APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2019 APInt SrcUndef, SrcZero;
2020 if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
2021 Depth + 1))
2022 return true;
2023 KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2024 KnownZero = SrcZero.extractBits(NumElts, Idx);
2026 break;
2028 case ISD::INSERT_VECTOR_ELT: {
2029 SDValue Vec = Op.getOperand(0);
2030 SDValue Scl = Op.getOperand(1);
2031 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2033 // For a legal, constant insertion index, if we don't need this insertion
2034 // then strip it, else remove it from the demanded elts.
2035 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2036 unsigned Idx = CIdx->getZExtValue();
2037 if (!DemandedElts[Idx])
2038 return TLO.CombineTo(Op, Vec);
2040 APInt DemandedVecElts(DemandedElts);
2041 DemandedVecElts.clearBit(Idx);
2042 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2043 KnownZero, TLO, Depth + 1))
2044 return true;
2046 KnownUndef.clearBit(Idx);
2047 if (Scl.isUndef())
2048 KnownUndef.setBit(Idx);
2050 KnownZero.clearBit(Idx);
2051 if (isNullConstant(Scl) || isNullFPConstant(Scl))
2052 KnownZero.setBit(Idx);
2053 break;
2056 APInt VecUndef, VecZero;
2057 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2058 Depth + 1))
2059 return true;
2060 // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2061 break;
2063 case ISD::VSELECT: {
2064 // Try to transform the select condition based on the current demanded
2065 // elements.
2066 // TODO: If a condition element is undef, we can choose from one arm of the
2067 // select (and if one arm is undef, then we can propagate that to the
2068 // result).
2069 // TODO - add support for constant vselect masks (see IR version of this).
2070 APInt UnusedUndef, UnusedZero;
2071 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2072 UnusedZero, TLO, Depth + 1))
2073 return true;
2075 // See if we can simplify either vselect operand.
2076 APInt DemandedLHS(DemandedElts);
2077 APInt DemandedRHS(DemandedElts);
2078 APInt UndefLHS, ZeroLHS;
2079 APInt UndefRHS, ZeroRHS;
2080 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2081 ZeroLHS, TLO, Depth + 1))
2082 return true;
2083 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2084 ZeroRHS, TLO, Depth + 1))
2085 return true;
2087 KnownUndef = UndefLHS & UndefRHS;
2088 KnownZero = ZeroLHS & ZeroRHS;
2089 break;
2091 case ISD::VECTOR_SHUFFLE: {
2092 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2094 // Collect demanded elements from shuffle operands..
2095 APInt DemandedLHS(NumElts, 0);
2096 APInt DemandedRHS(NumElts, 0);
2097 for (unsigned i = 0; i != NumElts; ++i) {
2098 int M = ShuffleMask[i];
2099 if (M < 0 || !DemandedElts[i])
2100 continue;
2101 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2102 if (M < (int)NumElts)
2103 DemandedLHS.setBit(M);
2104 else
2105 DemandedRHS.setBit(M - NumElts);
2108 // See if we can simplify either shuffle operand.
2109 APInt UndefLHS, ZeroLHS;
2110 APInt UndefRHS, ZeroRHS;
2111 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2112 ZeroLHS, TLO, Depth + 1))
2113 return true;
2114 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2115 ZeroRHS, TLO, Depth + 1))
2116 return true;
2118 // Simplify mask using undef elements from LHS/RHS.
2119 bool Updated = false;
2120 bool IdentityLHS = true, IdentityRHS = true;
2121 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2122 for (unsigned i = 0; i != NumElts; ++i) {
2123 int &M = NewMask[i];
2124 if (M < 0)
2125 continue;
2126 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2127 (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2128 Updated = true;
2129 M = -1;
2131 IdentityLHS &= (M < 0) || (M == (int)i);
2132 IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2135 // Update legal shuffle masks based on demanded elements if it won't reduce
2136 // to Identity which can cause premature removal of the shuffle mask.
2137 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps &&
2138 isShuffleMaskLegal(NewMask, VT))
2139 return TLO.CombineTo(Op,
2140 TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0),
2141 Op.getOperand(1), NewMask));
2143 // Propagate undef/zero elements from LHS/RHS.
2144 for (unsigned i = 0; i != NumElts; ++i) {
2145 int M = ShuffleMask[i];
2146 if (M < 0) {
2147 KnownUndef.setBit(i);
2148 } else if (M < (int)NumElts) {
2149 if (UndefLHS[M])
2150 KnownUndef.setBit(i);
2151 if (ZeroLHS[M])
2152 KnownZero.setBit(i);
2153 } else {
2154 if (UndefRHS[M - NumElts])
2155 KnownUndef.setBit(i);
2156 if (ZeroRHS[M - NumElts])
2157 KnownZero.setBit(i);
2160 break;
2162 case ISD::ANY_EXTEND_VECTOR_INREG:
2163 case ISD::SIGN_EXTEND_VECTOR_INREG:
2164 case ISD::ZERO_EXTEND_VECTOR_INREG: {
2165 APInt SrcUndef, SrcZero;
2166 SDValue Src = Op.getOperand(0);
2167 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2168 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2169 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2170 Depth + 1))
2171 return true;
2172 KnownZero = SrcZero.zextOrTrunc(NumElts);
2173 KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2175 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2176 Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2177 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2178 // aext - if we just need the bottom element then we can bitcast.
2179 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2182 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2183 // zext(undef) upper bits are guaranteed to be zero.
2184 if (DemandedElts.isSubsetOf(KnownUndef))
2185 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2186 KnownUndef.clearAllBits();
2188 break;
2191 // TODO: There are more binop opcodes that could be handled here - MUL, MIN,
2192 // MAX, saturated math, etc.
2193 case ISD::OR:
2194 case ISD::XOR:
2195 case ISD::ADD:
2196 case ISD::SUB:
2197 case ISD::FADD:
2198 case ISD::FSUB:
2199 case ISD::FMUL:
2200 case ISD::FDIV:
2201 case ISD::FREM: {
2202 APInt UndefRHS, ZeroRHS;
2203 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2204 ZeroRHS, TLO, Depth + 1))
2205 return true;
2206 APInt UndefLHS, ZeroLHS;
2207 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2208 ZeroLHS, TLO, Depth + 1))
2209 return true;
2211 KnownZero = ZeroLHS & ZeroRHS;
2212 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2213 break;
2215 case ISD::SHL:
2216 case ISD::SRL:
2217 case ISD::SRA:
2218 case ISD::ROTL:
2219 case ISD::ROTR: {
2220 APInt UndefRHS, ZeroRHS;
2221 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2222 ZeroRHS, TLO, Depth + 1))
2223 return true;
2224 APInt UndefLHS, ZeroLHS;
2225 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2226 ZeroLHS, TLO, Depth + 1))
2227 return true;
2229 KnownZero = ZeroLHS;
2230 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2231 break;
2233 case ISD::MUL:
2234 case ISD::AND: {
2235 APInt SrcUndef, SrcZero;
2236 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
2237 SrcZero, TLO, Depth + 1))
2238 return true;
2239 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2240 KnownZero, TLO, Depth + 1))
2241 return true;
2243 // If either side has a zero element, then the result element is zero, even
2244 // if the other is an UNDEF.
2245 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2246 // and then handle 'and' nodes with the rest of the binop opcodes.
2247 KnownZero |= SrcZero;
2248 KnownUndef &= SrcUndef;
2249 KnownUndef &= ~KnownZero;
2250 break;
2252 case ISD::TRUNCATE:
2253 case ISD::SIGN_EXTEND:
2254 case ISD::ZERO_EXTEND:
2255 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2256 KnownZero, TLO, Depth + 1))
2257 return true;
2259 if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2260 // zext(undef) upper bits are guaranteed to be zero.
2261 if (DemandedElts.isSubsetOf(KnownUndef))
2262 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2263 KnownUndef.clearAllBits();
2265 break;
2266 default: {
2267 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2268 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2269 KnownZero, TLO, Depth))
2270 return true;
2271 } else {
2272 KnownBits Known;
2273 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2274 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2275 TLO, Depth, AssumeSingleUse))
2276 return true;
2278 break;
2281 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2283 // Constant fold all undef cases.
2284 // TODO: Handle zero cases as well.
2285 if (DemandedElts.isSubsetOf(KnownUndef))
2286 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2288 return false;
2291 /// Determine which of the bits specified in Mask are known to be either zero or
2292 /// one and return them in the Known.
2293 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2294 KnownBits &Known,
2295 const APInt &DemandedElts,
2296 const SelectionDAG &DAG,
2297 unsigned Depth) const {
2298 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2299 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2300 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2301 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2302 "Should use MaskedValueIsZero if you don't know whether Op"
2303 " is a target node!");
2304 Known.resetAll();
2307 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
2308 KnownBits &Known,
2309 const APInt &DemandedElts,
2310 const SelectionDAG &DAG,
2311 unsigned Depth) const {
2312 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
2314 if (unsigned Align = DAG.InferPtrAlignment(Op)) {
2315 // The low bits are known zero if the pointer is aligned.
2316 Known.Zero.setLowBits(Log2_32(Align));
2320 /// This method can be implemented by targets that want to expose additional
2321 /// information about sign bits to the DAG Combiner.
2322 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2323 const APInt &,
2324 const SelectionDAG &,
2325 unsigned Depth) const {
2326 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2327 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2328 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2329 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2330 "Should use ComputeNumSignBits if you don't know whether Op"
2331 " is a target node!");
2332 return 1;
2335 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2336 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2337 TargetLoweringOpt &TLO, unsigned Depth) const {
2338 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2339 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2340 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2341 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2342 "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2343 " is a target node!");
2344 return false;
2347 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2348 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2349 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2350 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2351 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2352 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2353 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2354 "Should use SimplifyDemandedBits if you don't know whether Op"
2355 " is a target node!");
2356 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2357 return false;
2360 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
2361 return nullptr;
2364 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
2365 const SelectionDAG &DAG,
2366 bool SNaN,
2367 unsigned Depth) const {
2368 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2369 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2370 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2371 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2372 "Should use isKnownNeverNaN if you don't know whether Op"
2373 " is a target node!");
2374 return false;
2377 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2378 // work with truncating build vectors and vectors with elements of less than
2379 // 8 bits.
2380 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
2381 if (!N)
2382 return false;
2384 APInt CVal;
2385 if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2386 CVal = CN->getAPIntValue();
2387 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
2388 auto *CN = BV->getConstantSplatNode();
2389 if (!CN)
2390 return false;
2392 // If this is a truncating build vector, truncate the splat value.
2393 // Otherwise, we may fail to match the expected values below.
2394 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
2395 CVal = CN->getAPIntValue();
2396 if (BVEltWidth < CVal.getBitWidth())
2397 CVal = CVal.trunc(BVEltWidth);
2398 } else {
2399 return false;
2402 switch (getBooleanContents(N->getValueType(0))) {
2403 case UndefinedBooleanContent:
2404 return CVal[0];
2405 case ZeroOrOneBooleanContent:
2406 return CVal.isOneValue();
2407 case ZeroOrNegativeOneBooleanContent:
2408 return CVal.isAllOnesValue();
2411 llvm_unreachable("Invalid boolean contents");
2414 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
2415 if (!N)
2416 return false;
2418 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
2419 if (!CN) {
2420 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
2421 if (!BV)
2422 return false;
2424 // Only interested in constant splats, we don't care about undef
2425 // elements in identifying boolean constants and getConstantSplatNode
2426 // returns NULL if all ops are undef;
2427 CN = BV->getConstantSplatNode();
2428 if (!CN)
2429 return false;
2432 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
2433 return !CN->getAPIntValue()[0];
2435 return CN->isNullValue();
2438 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
2439 bool SExt) const {
2440 if (VT == MVT::i1)
2441 return N->isOne();
2443 TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
2444 switch (Cnt) {
2445 case TargetLowering::ZeroOrOneBooleanContent:
2446 // An extended value of 1 is always true, unless its original type is i1,
2447 // in which case it will be sign extended to -1.
2448 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
2449 case TargetLowering::UndefinedBooleanContent:
2450 case TargetLowering::ZeroOrNegativeOneBooleanContent:
2451 return N->isAllOnesValue() && SExt;
2453 llvm_unreachable("Unexpected enumeration.");
2456 /// This helper function of SimplifySetCC tries to optimize the comparison when
2457 /// either operand of the SetCC node is a bitwise-and instruction.
2458 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
2459 ISD::CondCode Cond, const SDLoc &DL,
2460 DAGCombinerInfo &DCI) const {
2461 // Match these patterns in any of their permutations:
2462 // (X & Y) == Y
2463 // (X & Y) != Y
2464 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
2465 std::swap(N0, N1);
2467 EVT OpVT = N0.getValueType();
2468 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
2469 (Cond != ISD::SETEQ && Cond != ISD::SETNE))
2470 return SDValue();
2472 SDValue X, Y;
2473 if (N0.getOperand(0) == N1) {
2474 X = N0.getOperand(1);
2475 Y = N0.getOperand(0);
2476 } else if (N0.getOperand(1) == N1) {
2477 X = N0.getOperand(0);
2478 Y = N0.getOperand(1);
2479 } else {
2480 return SDValue();
2483 SelectionDAG &DAG = DCI.DAG;
2484 SDValue Zero = DAG.getConstant(0, DL, OpVT);
2485 if (DAG.isKnownToBeAPowerOfTwo(Y)) {
2486 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
2487 // Note that where Y is variable and is known to have at most one bit set
2488 // (for example, if it is Z & 1) we cannot do this; the expressions are not
2489 // equivalent when Y == 0.
2490 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2491 if (DCI.isBeforeLegalizeOps() ||
2492 isCondCodeLegal(Cond, N0.getSimpleValueType()))
2493 return DAG.getSetCC(DL, VT, N0, Zero, Cond);
2494 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
2495 // If the target supports an 'and-not' or 'and-complement' logic operation,
2496 // try to use that to make a comparison operation more efficient.
2497 // But don't do this transform if the mask is a single bit because there are
2498 // more efficient ways to deal with that case (for example, 'bt' on x86 or
2499 // 'rlwinm' on PPC).
2501 // Bail out if the compare operand that we want to turn into a zero is
2502 // already a zero (otherwise, infinite loop).
2503 auto *YConst = dyn_cast<ConstantSDNode>(Y);
2504 if (YConst && YConst->isNullValue())
2505 return SDValue();
2507 // Transform this into: ~X & Y == 0.
2508 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
2509 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
2510 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
2513 return SDValue();
2516 /// There are multiple IR patterns that could be checking whether certain
2517 /// truncation of a signed number would be lossy or not. The pattern which is
2518 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
2519 /// We are looking for the following pattern: (KeptBits is a constant)
2520 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
2521 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
2522 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0
2523 /// We will unfold it into the natural trunc+sext pattern:
2524 /// ((%x << C) a>> C) dstcond %x
2525 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x)
2526 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
2527 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
2528 const SDLoc &DL) const {
2529 // We must be comparing with a constant.
2530 ConstantSDNode *C1;
2531 if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
2532 return SDValue();
2534 // N0 should be: add %x, (1 << (KeptBits-1))
2535 if (N0->getOpcode() != ISD::ADD)
2536 return SDValue();
2538 // And we must be 'add'ing a constant.
2539 ConstantSDNode *C01;
2540 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
2541 return SDValue();
2543 SDValue X = N0->getOperand(0);
2544 EVT XVT = X.getValueType();
2546 // Validate constants ...
2548 APInt I1 = C1->getAPIntValue();
2550 ISD::CondCode NewCond;
2551 if (Cond == ISD::CondCode::SETULT) {
2552 NewCond = ISD::CondCode::SETEQ;
2553 } else if (Cond == ISD::CondCode::SETULE) {
2554 NewCond = ISD::CondCode::SETEQ;
2555 // But need to 'canonicalize' the constant.
2556 I1 += 1;
2557 } else if (Cond == ISD::CondCode::SETUGT) {
2558 NewCond = ISD::CondCode::SETNE;
2559 // But need to 'canonicalize' the constant.
2560 I1 += 1;
2561 } else if (Cond == ISD::CondCode::SETUGE) {
2562 NewCond = ISD::CondCode::SETNE;
2563 } else
2564 return SDValue();
2566 APInt I01 = C01->getAPIntValue();
2568 auto checkConstants = [&I1, &I01]() -> bool {
2569 // Both of them must be power-of-two, and the constant from setcc is bigger.
2570 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
2573 if (checkConstants()) {
2574 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256
2575 } else {
2576 // What if we invert constants? (and the target predicate)
2577 I1.negate();
2578 I01.negate();
2579 NewCond = getSetCCInverse(NewCond, /*isInteger=*/true);
2580 if (!checkConstants())
2581 return SDValue();
2582 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256
2585 // They are power-of-two, so which bit is set?
2586 const unsigned KeptBits = I1.logBase2();
2587 const unsigned KeptBitsMinusOne = I01.logBase2();
2589 // Magic!
2590 if (KeptBits != (KeptBitsMinusOne + 1))
2591 return SDValue();
2592 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
2594 // We don't want to do this in every single case.
2595 SelectionDAG &DAG = DCI.DAG;
2596 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
2597 XVT, KeptBits))
2598 return SDValue();
2600 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
2601 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
2603 // Unfold into: ((%x << C) a>> C) cond %x
2604 // Where 'cond' will be either 'eq' or 'ne'.
2605 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
2606 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
2607 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
2608 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
2610 return T2;
2613 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
2614 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
2615 /// handle the commuted versions of these patterns.
2616 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
2617 ISD::CondCode Cond, const SDLoc &DL,
2618 DAGCombinerInfo &DCI) const {
2619 unsigned BOpcode = N0.getOpcode();
2620 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
2621 "Unexpected binop");
2622 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
2624 // (X + Y) == X --> Y == 0
2625 // (X - Y) == X --> Y == 0
2626 // (X ^ Y) == X --> Y == 0
2627 SelectionDAG &DAG = DCI.DAG;
2628 EVT OpVT = N0.getValueType();
2629 SDValue X = N0.getOperand(0);
2630 SDValue Y = N0.getOperand(1);
2631 if (X == N1)
2632 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
2634 if (Y != N1)
2635 return SDValue();
2637 // (X + Y) == Y --> X == 0
2638 // (X ^ Y) == Y --> X == 0
2639 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
2640 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
2642 // The shift would not be valid if the operands are boolean (i1).
2643 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
2644 return SDValue();
2646 // (X - Y) == Y --> X == Y << 1
2647 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
2648 !DCI.isBeforeLegalize());
2649 SDValue One = DAG.getConstant(1, DL, ShiftVT);
2650 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
2651 if (!DCI.isCalledByLegalizer())
2652 DCI.AddToWorklist(YShl1.getNode());
2653 return DAG.getSetCC(DL, VT, X, YShl1, Cond);
2656 /// Try to simplify a setcc built with the specified operands and cc. If it is
2657 /// unable to simplify it, return a null SDValue.
2658 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
2659 ISD::CondCode Cond, bool foldBooleans,
2660 DAGCombinerInfo &DCI,
2661 const SDLoc &dl) const {
2662 SelectionDAG &DAG = DCI.DAG;
2663 EVT OpVT = N0.getValueType();
2665 // Constant fold or commute setcc.
2666 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
2667 return Fold;
2669 // Ensure that the constant occurs on the RHS and fold constant comparisons.
2670 // TODO: Handle non-splat vector constants. All undef causes trouble.
2671 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
2672 if (isConstOrConstSplat(N0) &&
2673 (DCI.isBeforeLegalizeOps() ||
2674 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
2675 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
2677 // If we have a subtract with the same 2 non-constant operands as this setcc
2678 // -- but in reverse order -- then try to commute the operands of this setcc
2679 // to match. A matching pair of setcc (cmp) and sub may be combined into 1
2680 // instruction on some targets.
2681 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
2682 (DCI.isBeforeLegalizeOps() ||
2683 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
2684 DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) &&
2685 !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } ))
2686 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
2688 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
2689 const APInt &C1 = N1C->getAPIntValue();
2691 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
2692 // equality comparison, then we're just comparing whether X itself is
2693 // zero.
2694 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
2695 N0.getOperand(0).getOpcode() == ISD::CTLZ &&
2696 N0.getOperand(1).getOpcode() == ISD::Constant) {
2697 const APInt &ShAmt = N0.getConstantOperandAPInt(1);
2698 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2699 ShAmt == Log2_32(N0.getValueSizeInBits())) {
2700 if ((C1 == 0) == (Cond == ISD::SETEQ)) {
2701 // (srl (ctlz x), 5) == 0 -> X != 0
2702 // (srl (ctlz x), 5) != 1 -> X != 0
2703 Cond = ISD::SETNE;
2704 } else {
2705 // (srl (ctlz x), 5) != 0 -> X == 0
2706 // (srl (ctlz x), 5) == 1 -> X == 0
2707 Cond = ISD::SETEQ;
2709 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
2710 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
2711 Zero, Cond);
2715 SDValue CTPOP = N0;
2716 // Look through truncs that don't change the value of a ctpop.
2717 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
2718 CTPOP = N0.getOperand(0);
2720 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
2721 (N0 == CTPOP ||
2722 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
2723 EVT CTVT = CTPOP.getValueType();
2724 SDValue CTOp = CTPOP.getOperand(0);
2726 // (ctpop x) u< 2 -> (x & x-1) == 0
2727 // (ctpop x) u> 1 -> (x & x-1) != 0
2728 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
2729 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
2730 DAG.getConstant(1, dl, CTVT));
2731 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
2732 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
2733 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
2736 // If ctpop is not supported, expand a power-of-2 comparison based on it.
2737 if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) &&
2738 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2739 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
2740 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
2741 SDValue Zero = DAG.getConstant(0, dl, CTVT);
2742 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
2743 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, true);
2744 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
2745 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
2746 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
2747 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
2748 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
2749 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
2753 // (zext x) == C --> x == (trunc C)
2754 // (sext x) == C --> x == (trunc C)
2755 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2756 DCI.isBeforeLegalize() && N0->hasOneUse()) {
2757 unsigned MinBits = N0.getValueSizeInBits();
2758 SDValue PreExt;
2759 bool Signed = false;
2760 if (N0->getOpcode() == ISD::ZERO_EXTEND) {
2761 // ZExt
2762 MinBits = N0->getOperand(0).getValueSizeInBits();
2763 PreExt = N0->getOperand(0);
2764 } else if (N0->getOpcode() == ISD::AND) {
2765 // DAGCombine turns costly ZExts into ANDs
2766 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
2767 if ((C->getAPIntValue()+1).isPowerOf2()) {
2768 MinBits = C->getAPIntValue().countTrailingOnes();
2769 PreExt = N0->getOperand(0);
2771 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
2772 // SExt
2773 MinBits = N0->getOperand(0).getValueSizeInBits();
2774 PreExt = N0->getOperand(0);
2775 Signed = true;
2776 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
2777 // ZEXTLOAD / SEXTLOAD
2778 if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
2779 MinBits = LN0->getMemoryVT().getSizeInBits();
2780 PreExt = N0;
2781 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
2782 Signed = true;
2783 MinBits = LN0->getMemoryVT().getSizeInBits();
2784 PreExt = N0;
2788 // Figure out how many bits we need to preserve this constant.
2789 unsigned ReqdBits = Signed ?
2790 C1.getBitWidth() - C1.getNumSignBits() + 1 :
2791 C1.getActiveBits();
2793 // Make sure we're not losing bits from the constant.
2794 if (MinBits > 0 &&
2795 MinBits < C1.getBitWidth() &&
2796 MinBits >= ReqdBits) {
2797 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
2798 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
2799 // Will get folded away.
2800 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
2801 if (MinBits == 1 && C1 == 1)
2802 // Invert the condition.
2803 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
2804 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2805 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
2806 return DAG.getSetCC(dl, VT, Trunc, C, Cond);
2809 // If truncating the setcc operands is not desirable, we can still
2810 // simplify the expression in some cases:
2811 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
2812 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
2813 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
2814 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
2815 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
2816 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
2817 SDValue TopSetCC = N0->getOperand(0);
2818 unsigned N0Opc = N0->getOpcode();
2819 bool SExt = (N0Opc == ISD::SIGN_EXTEND);
2820 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
2821 TopSetCC.getOpcode() == ISD::SETCC &&
2822 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
2823 (isConstFalseVal(N1C) ||
2824 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
2826 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
2827 (!N1C->isNullValue() && Cond == ISD::SETNE);
2829 if (!Inverse)
2830 return TopSetCC;
2832 ISD::CondCode InvCond = ISD::getSetCCInverse(
2833 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
2834 TopSetCC.getOperand(0).getValueType().isInteger());
2835 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
2836 TopSetCC.getOperand(1),
2837 InvCond);
2842 // If the LHS is '(and load, const)', the RHS is 0, the test is for
2843 // equality or unsigned, and all 1 bits of the const are in the same
2844 // partial word, see if we can shorten the load.
2845 if (DCI.isBeforeLegalize() &&
2846 !ISD::isSignedIntSetCC(Cond) &&
2847 N0.getOpcode() == ISD::AND && C1 == 0 &&
2848 N0.getNode()->hasOneUse() &&
2849 isa<LoadSDNode>(N0.getOperand(0)) &&
2850 N0.getOperand(0).getNode()->hasOneUse() &&
2851 isa<ConstantSDNode>(N0.getOperand(1))) {
2852 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
2853 APInt bestMask;
2854 unsigned bestWidth = 0, bestOffset = 0;
2855 if (!Lod->isVolatile() && Lod->isUnindexed()) {
2856 unsigned origWidth = N0.getValueSizeInBits();
2857 unsigned maskWidth = origWidth;
2858 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
2859 // 8 bits, but have to be careful...
2860 if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
2861 origWidth = Lod->getMemoryVT().getSizeInBits();
2862 const APInt &Mask = N0.getConstantOperandAPInt(1);
2863 for (unsigned width = origWidth / 2; width>=8; width /= 2) {
2864 APInt newMask = APInt::getLowBitsSet(maskWidth, width);
2865 for (unsigned offset=0; offset<origWidth/width; offset++) {
2866 if (Mask.isSubsetOf(newMask)) {
2867 if (DAG.getDataLayout().isLittleEndian())
2868 bestOffset = (uint64_t)offset * (width/8);
2869 else
2870 bestOffset = (origWidth/width - offset - 1) * (width/8);
2871 bestMask = Mask.lshr(offset * (width/8) * 8);
2872 bestWidth = width;
2873 break;
2875 newMask <<= width;
2879 if (bestWidth) {
2880 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
2881 if (newVT.isRound() &&
2882 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
2883 EVT PtrType = Lod->getOperand(1).getValueType();
2884 SDValue Ptr = Lod->getBasePtr();
2885 if (bestOffset != 0)
2886 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
2887 DAG.getConstant(bestOffset, dl, PtrType));
2888 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
2889 SDValue NewLoad = DAG.getLoad(
2890 newVT, dl, Lod->getChain(), Ptr,
2891 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
2892 return DAG.getSetCC(dl, VT,
2893 DAG.getNode(ISD::AND, dl, newVT, NewLoad,
2894 DAG.getConstant(bestMask.trunc(bestWidth),
2895 dl, newVT)),
2896 DAG.getConstant(0LL, dl, newVT), Cond);
2901 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
2902 if (N0.getOpcode() == ISD::ZERO_EXTEND) {
2903 unsigned InSize = N0.getOperand(0).getValueSizeInBits();
2905 // If the comparison constant has bits in the upper part, the
2906 // zero-extended value could never match.
2907 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
2908 C1.getBitWidth() - InSize))) {
2909 switch (Cond) {
2910 case ISD::SETUGT:
2911 case ISD::SETUGE:
2912 case ISD::SETEQ:
2913 return DAG.getConstant(0, dl, VT);
2914 case ISD::SETULT:
2915 case ISD::SETULE:
2916 case ISD::SETNE:
2917 return DAG.getConstant(1, dl, VT);
2918 case ISD::SETGT:
2919 case ISD::SETGE:
2920 // True if the sign bit of C1 is set.
2921 return DAG.getConstant(C1.isNegative(), dl, VT);
2922 case ISD::SETLT:
2923 case ISD::SETLE:
2924 // True if the sign bit of C1 isn't set.
2925 return DAG.getConstant(C1.isNonNegative(), dl, VT);
2926 default:
2927 break;
2931 // Otherwise, we can perform the comparison with the low bits.
2932 switch (Cond) {
2933 case ISD::SETEQ:
2934 case ISD::SETNE:
2935 case ISD::SETUGT:
2936 case ISD::SETUGE:
2937 case ISD::SETULT:
2938 case ISD::SETULE: {
2939 EVT newVT = N0.getOperand(0).getValueType();
2940 if (DCI.isBeforeLegalizeOps() ||
2941 (isOperationLegal(ISD::SETCC, newVT) &&
2942 isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
2943 EVT NewSetCCVT =
2944 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
2945 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
2947 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
2948 NewConst, Cond);
2949 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
2951 break;
2953 default:
2954 break; // todo, be more careful with signed comparisons
2956 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2957 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2958 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
2959 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
2960 EVT ExtDstTy = N0.getValueType();
2961 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
2963 // If the constant doesn't fit into the number of bits for the source of
2964 // the sign extension, it is impossible for both sides to be equal.
2965 if (C1.getMinSignedBits() > ExtSrcTyBits)
2966 return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
2968 SDValue ZextOp;
2969 EVT Op0Ty = N0.getOperand(0).getValueType();
2970 if (Op0Ty == ExtSrcTy) {
2971 ZextOp = N0.getOperand(0);
2972 } else {
2973 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
2974 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
2975 DAG.getConstant(Imm, dl, Op0Ty));
2977 if (!DCI.isCalledByLegalizer())
2978 DCI.AddToWorklist(ZextOp.getNode());
2979 // Otherwise, make this a use of a zext.
2980 return DAG.getSetCC(dl, VT, ZextOp,
2981 DAG.getConstant(C1 & APInt::getLowBitsSet(
2982 ExtDstTyBits,
2983 ExtSrcTyBits),
2984 dl, ExtDstTy),
2985 Cond);
2986 } else if ((N1C->isNullValue() || N1C->isOne()) &&
2987 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2988 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
2989 if (N0.getOpcode() == ISD::SETCC &&
2990 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
2991 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
2992 if (TrueWhenTrue)
2993 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
2994 // Invert the condition.
2995 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
2996 CC = ISD::getSetCCInverse(CC,
2997 N0.getOperand(0).getValueType().isInteger());
2998 if (DCI.isBeforeLegalizeOps() ||
2999 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3000 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3003 if ((N0.getOpcode() == ISD::XOR ||
3004 (N0.getOpcode() == ISD::AND &&
3005 N0.getOperand(0).getOpcode() == ISD::XOR &&
3006 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3007 isa<ConstantSDNode>(N0.getOperand(1)) &&
3008 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
3009 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
3010 // can only do this if the top bits are known zero.
3011 unsigned BitWidth = N0.getValueSizeInBits();
3012 if (DAG.MaskedValueIsZero(N0,
3013 APInt::getHighBitsSet(BitWidth,
3014 BitWidth-1))) {
3015 // Okay, get the un-inverted input value.
3016 SDValue Val;
3017 if (N0.getOpcode() == ISD::XOR) {
3018 Val = N0.getOperand(0);
3019 } else {
3020 assert(N0.getOpcode() == ISD::AND &&
3021 N0.getOperand(0).getOpcode() == ISD::XOR);
3022 // ((X^1)&1)^1 -> X & 1
3023 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3024 N0.getOperand(0).getOperand(0),
3025 N0.getOperand(1));
3028 return DAG.getSetCC(dl, VT, Val, N1,
3029 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3031 } else if (N1C->isOne() &&
3032 (VT == MVT::i1 ||
3033 getBooleanContents(N0->getValueType(0)) ==
3034 ZeroOrOneBooleanContent)) {
3035 SDValue Op0 = N0;
3036 if (Op0.getOpcode() == ISD::TRUNCATE)
3037 Op0 = Op0.getOperand(0);
3039 if ((Op0.getOpcode() == ISD::XOR) &&
3040 Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3041 Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3042 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3043 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3044 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
3045 Cond);
3047 if (Op0.getOpcode() == ISD::AND &&
3048 isa<ConstantSDNode>(Op0.getOperand(1)) &&
3049 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
3050 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3051 if (Op0.getValueType().bitsGT(VT))
3052 Op0 = DAG.getNode(ISD::AND, dl, VT,
3053 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3054 DAG.getConstant(1, dl, VT));
3055 else if (Op0.getValueType().bitsLT(VT))
3056 Op0 = DAG.getNode(ISD::AND, dl, VT,
3057 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3058 DAG.getConstant(1, dl, VT));
3060 return DAG.getSetCC(dl, VT, Op0,
3061 DAG.getConstant(0, dl, Op0.getValueType()),
3062 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3064 if (Op0.getOpcode() == ISD::AssertZext &&
3065 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3066 return DAG.getSetCC(dl, VT, Op0,
3067 DAG.getConstant(0, dl, Op0.getValueType()),
3068 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3072 // Given:
3073 // icmp eq/ne (urem %x, %y), 0
3074 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3075 // icmp eq/ne %x, 0
3076 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3077 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3078 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3079 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3080 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3081 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3084 if (SDValue V =
3085 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3086 return V;
3089 // These simplifications apply to splat vectors as well.
3090 // TODO: Handle more splat vector cases.
3091 if (auto *N1C = isConstOrConstSplat(N1)) {
3092 const APInt &C1 = N1C->getAPIntValue();
3094 APInt MinVal, MaxVal;
3095 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3096 if (ISD::isSignedIntSetCC(Cond)) {
3097 MinVal = APInt::getSignedMinValue(OperandBitSize);
3098 MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3099 } else {
3100 MinVal = APInt::getMinValue(OperandBitSize);
3101 MaxVal = APInt::getMaxValue(OperandBitSize);
3104 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3105 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3106 // X >= MIN --> true
3107 if (C1 == MinVal)
3108 return DAG.getBoolConstant(true, dl, VT, OpVT);
3110 if (!VT.isVector()) { // TODO: Support this for vectors.
3111 // X >= C0 --> X > (C0 - 1)
3112 APInt C = C1 - 1;
3113 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3114 if ((DCI.isBeforeLegalizeOps() ||
3115 isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3116 (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3117 isLegalICmpImmediate(C.getSExtValue())))) {
3118 return DAG.getSetCC(dl, VT, N0,
3119 DAG.getConstant(C, dl, N1.getValueType()),
3120 NewCC);
3125 if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3126 // X <= MAX --> true
3127 if (C1 == MaxVal)
3128 return DAG.getBoolConstant(true, dl, VT, OpVT);
3130 // X <= C0 --> X < (C0 + 1)
3131 if (!VT.isVector()) { // TODO: Support this for vectors.
3132 APInt C = C1 + 1;
3133 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3134 if ((DCI.isBeforeLegalizeOps() ||
3135 isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3136 (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3137 isLegalICmpImmediate(C.getSExtValue())))) {
3138 return DAG.getSetCC(dl, VT, N0,
3139 DAG.getConstant(C, dl, N1.getValueType()),
3140 NewCC);
3145 if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3146 if (C1 == MinVal)
3147 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3149 // TODO: Support this for vectors after legalize ops.
3150 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3151 // Canonicalize setlt X, Max --> setne X, Max
3152 if (C1 == MaxVal)
3153 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3155 // If we have setult X, 1, turn it into seteq X, 0
3156 if (C1 == MinVal+1)
3157 return DAG.getSetCC(dl, VT, N0,
3158 DAG.getConstant(MinVal, dl, N0.getValueType()),
3159 ISD::SETEQ);
3163 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3164 if (C1 == MaxVal)
3165 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3167 // TODO: Support this for vectors after legalize ops.
3168 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3169 // Canonicalize setgt X, Min --> setne X, Min
3170 if (C1 == MinVal)
3171 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3173 // If we have setugt X, Max-1, turn it into seteq X, Max
3174 if (C1 == MaxVal-1)
3175 return DAG.getSetCC(dl, VT, N0,
3176 DAG.getConstant(MaxVal, dl, N0.getValueType()),
3177 ISD::SETEQ);
3181 // If we have "setcc X, C0", check to see if we can shrink the immediate
3182 // by changing cc.
3183 // TODO: Support this for vectors after legalize ops.
3184 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3185 // SETUGT X, SINTMAX -> SETLT X, 0
3186 if (Cond == ISD::SETUGT &&
3187 C1 == APInt::getSignedMaxValue(OperandBitSize))
3188 return DAG.getSetCC(dl, VT, N0,
3189 DAG.getConstant(0, dl, N1.getValueType()),
3190 ISD::SETLT);
3192 // SETULT X, SINTMIN -> SETGT X, -1
3193 if (Cond == ISD::SETULT &&
3194 C1 == APInt::getSignedMinValue(OperandBitSize)) {
3195 SDValue ConstMinusOne =
3196 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
3197 N1.getValueType());
3198 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
3203 // Back to non-vector simplifications.
3204 // TODO: Can we do these for vector splats?
3205 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3206 const APInt &C1 = N1C->getAPIntValue();
3208 // Fold bit comparisons when we can.
3209 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3210 (VT == N0.getValueType() ||
3211 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
3212 N0.getOpcode() == ISD::AND) {
3213 auto &DL = DAG.getDataLayout();
3214 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3215 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
3216 !DCI.isBeforeLegalize());
3217 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
3218 // Perform the xform if the AND RHS is a single bit.
3219 if (AndRHS->getAPIntValue().isPowerOf2()) {
3220 return DAG.getNode(ISD::TRUNCATE, dl, VT,
3221 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
3222 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
3223 ShiftTy)));
3225 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
3226 // (X & 8) == 8 --> (X & 8) >> 3
3227 // Perform the xform if C1 is a single bit.
3228 if (C1.isPowerOf2()) {
3229 return DAG.getNode(ISD::TRUNCATE, dl, VT,
3230 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
3231 DAG.getConstant(C1.logBase2(), dl,
3232 ShiftTy)));
3238 if (C1.getMinSignedBits() <= 64 &&
3239 !isLegalICmpImmediate(C1.getSExtValue())) {
3240 // (X & -256) == 256 -> (X >> 8) == 1
3241 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3242 N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
3243 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3244 const APInt &AndRHSC = AndRHS->getAPIntValue();
3245 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
3246 unsigned ShiftBits = AndRHSC.countTrailingZeros();
3247 auto &DL = DAG.getDataLayout();
3248 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
3249 !DCI.isBeforeLegalize());
3250 EVT CmpTy = N0.getValueType();
3251 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
3252 DAG.getConstant(ShiftBits, dl,
3253 ShiftTy));
3254 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
3255 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
3258 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
3259 Cond == ISD::SETULE || Cond == ISD::SETUGT) {
3260 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
3261 // X < 0x100000000 -> (X >> 32) < 1
3262 // X >= 0x100000000 -> (X >> 32) >= 1
3263 // X <= 0x0ffffffff -> (X >> 32) < 1
3264 // X > 0x0ffffffff -> (X >> 32) >= 1
3265 unsigned ShiftBits;
3266 APInt NewC = C1;
3267 ISD::CondCode NewCond = Cond;
3268 if (AdjOne) {
3269 ShiftBits = C1.countTrailingOnes();
3270 NewC = NewC + 1;
3271 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3272 } else {
3273 ShiftBits = C1.countTrailingZeros();
3275 NewC.lshrInPlace(ShiftBits);
3276 if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
3277 isLegalICmpImmediate(NewC.getSExtValue())) {
3278 auto &DL = DAG.getDataLayout();
3279 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
3280 !DCI.isBeforeLegalize());
3281 EVT CmpTy = N0.getValueType();
3282 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
3283 DAG.getConstant(ShiftBits, dl, ShiftTy));
3284 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
3285 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
3291 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
3292 auto *CFP = cast<ConstantFPSDNode>(N1);
3293 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
3295 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
3296 // constant if knowing that the operand is non-nan is enough. We prefer to
3297 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
3298 // materialize 0.0.
3299 if (Cond == ISD::SETO || Cond == ISD::SETUO)
3300 return DAG.getSetCC(dl, VT, N0, N0, Cond);
3302 // setcc (fneg x), C -> setcc swap(pred) x, -C
3303 if (N0.getOpcode() == ISD::FNEG) {
3304 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
3305 if (DCI.isBeforeLegalizeOps() ||
3306 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
3307 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
3308 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
3312 // If the condition is not legal, see if we can find an equivalent one
3313 // which is legal.
3314 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
3315 // If the comparison was an awkward floating-point == or != and one of
3316 // the comparison operands is infinity or negative infinity, convert the
3317 // condition to a less-awkward <= or >=.
3318 if (CFP->getValueAPF().isInfinity()) {
3319 if (CFP->getValueAPF().isNegative()) {
3320 if (Cond == ISD::SETOEQ &&
3321 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3322 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
3323 if (Cond == ISD::SETUEQ &&
3324 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3325 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
3326 if (Cond == ISD::SETUNE &&
3327 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3328 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
3329 if (Cond == ISD::SETONE &&
3330 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3331 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
3332 } else {
3333 if (Cond == ISD::SETOEQ &&
3334 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3335 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
3336 if (Cond == ISD::SETUEQ &&
3337 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3338 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
3339 if (Cond == ISD::SETUNE &&
3340 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3341 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
3342 if (Cond == ISD::SETONE &&
3343 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3344 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
3350 if (N0 == N1) {
3351 // The sext(setcc()) => setcc() optimization relies on the appropriate
3352 // constant being emitted.
3353 assert(!N0.getValueType().isInteger() &&
3354 "Integer types should be handled by FoldSetCC");
3356 bool EqTrue = ISD::isTrueWhenEqual(Cond);
3357 unsigned UOF = ISD::getUnorderedFlavor(Cond);
3358 if (UOF == 2) // FP operators that are undefined on NaNs.
3359 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3360 if (UOF == unsigned(EqTrue))
3361 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3362 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
3363 // if it is not already.
3364 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
3365 if (NewCond != Cond &&
3366 (DCI.isBeforeLegalizeOps() ||
3367 isCondCodeLegal(NewCond, N0.getSimpleValueType())))
3368 return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3371 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3372 N0.getValueType().isInteger()) {
3373 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
3374 N0.getOpcode() == ISD::XOR) {
3375 // Simplify (X+Y) == (X+Z) --> Y == Z
3376 if (N0.getOpcode() == N1.getOpcode()) {
3377 if (N0.getOperand(0) == N1.getOperand(0))
3378 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
3379 if (N0.getOperand(1) == N1.getOperand(1))
3380 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
3381 if (isCommutativeBinOp(N0.getOpcode())) {
3382 // If X op Y == Y op X, try other combinations.
3383 if (N0.getOperand(0) == N1.getOperand(1))
3384 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
3385 Cond);
3386 if (N0.getOperand(1) == N1.getOperand(0))
3387 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
3388 Cond);
3392 // If RHS is a legal immediate value for a compare instruction, we need
3393 // to be careful about increasing register pressure needlessly.
3394 bool LegalRHSImm = false;
3396 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
3397 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3398 // Turn (X+C1) == C2 --> X == C2-C1
3399 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
3400 return DAG.getSetCC(dl, VT, N0.getOperand(0),
3401 DAG.getConstant(RHSC->getAPIntValue()-
3402 LHSR->getAPIntValue(),
3403 dl, N0.getValueType()), Cond);
3406 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
3407 if (N0.getOpcode() == ISD::XOR)
3408 // If we know that all of the inverted bits are zero, don't bother
3409 // performing the inversion.
3410 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
3411 return
3412 DAG.getSetCC(dl, VT, N0.getOperand(0),
3413 DAG.getConstant(LHSR->getAPIntValue() ^
3414 RHSC->getAPIntValue(),
3415 dl, N0.getValueType()),
3416 Cond);
3419 // Turn (C1-X) == C2 --> X == C1-C2
3420 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
3421 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
3422 return
3423 DAG.getSetCC(dl, VT, N0.getOperand(1),
3424 DAG.getConstant(SUBC->getAPIntValue() -
3425 RHSC->getAPIntValue(),
3426 dl, N0.getValueType()),
3427 Cond);
3431 // Could RHSC fold directly into a compare?
3432 if (RHSC->getValueType(0).getSizeInBits() <= 64)
3433 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
3436 // (X+Y) == X --> Y == 0 and similar folds.
3437 // Don't do this if X is an immediate that can fold into a cmp
3438 // instruction and X+Y has other uses. It could be an induction variable
3439 // chain, and the transform would increase register pressure.
3440 if (!LegalRHSImm || N0.hasOneUse())
3441 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
3442 return V;
3445 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
3446 N1.getOpcode() == ISD::XOR)
3447 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
3448 return V;
3450 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
3451 return V;
3454 // Fold remainder of division by a constant.
3455 if (N0.getOpcode() == ISD::UREM && N0.hasOneUse() &&
3456 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3457 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3459 // When division is cheap or optimizing for minimum size,
3460 // fall through to DIVREM creation by skipping this fold.
3461 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize))
3462 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
3463 return Folded;
3466 // Fold away ALL boolean setcc's.
3467 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
3468 SDValue Temp;
3469 switch (Cond) {
3470 default: llvm_unreachable("Unknown integer setcc!");
3471 case ISD::SETEQ: // X == Y -> ~(X^Y)
3472 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3473 N0 = DAG.getNOT(dl, Temp, OpVT);
3474 if (!DCI.isCalledByLegalizer())
3475 DCI.AddToWorklist(Temp.getNode());
3476 break;
3477 case ISD::SETNE: // X != Y --> (X^Y)
3478 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3479 break;
3480 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
3481 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
3482 Temp = DAG.getNOT(dl, N0, OpVT);
3483 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
3484 if (!DCI.isCalledByLegalizer())
3485 DCI.AddToWorklist(Temp.getNode());
3486 break;
3487 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
3488 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
3489 Temp = DAG.getNOT(dl, N1, OpVT);
3490 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
3491 if (!DCI.isCalledByLegalizer())
3492 DCI.AddToWorklist(Temp.getNode());
3493 break;
3494 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
3495 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
3496 Temp = DAG.getNOT(dl, N0, OpVT);
3497 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
3498 if (!DCI.isCalledByLegalizer())
3499 DCI.AddToWorklist(Temp.getNode());
3500 break;
3501 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
3502 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
3503 Temp = DAG.getNOT(dl, N1, OpVT);
3504 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
3505 break;
3507 if (VT.getScalarType() != MVT::i1) {
3508 if (!DCI.isCalledByLegalizer())
3509 DCI.AddToWorklist(N0.getNode());
3510 // FIXME: If running after legalize, we probably can't do this.
3511 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
3512 N0 = DAG.getNode(ExtendCode, dl, VT, N0);
3514 return N0;
3517 // Could not fold it.
3518 return SDValue();
3521 /// Returns true (and the GlobalValue and the offset) if the node is a
3522 /// GlobalAddress + offset.
3523 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
3524 int64_t &Offset) const {
3526 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
3528 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
3529 GA = GASD->getGlobal();
3530 Offset += GASD->getOffset();
3531 return true;
3534 if (N->getOpcode() == ISD::ADD) {
3535 SDValue N1 = N->getOperand(0);
3536 SDValue N2 = N->getOperand(1);
3537 if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
3538 if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
3539 Offset += V->getSExtValue();
3540 return true;
3542 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
3543 if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
3544 Offset += V->getSExtValue();
3545 return true;
3550 return false;
3553 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
3554 DAGCombinerInfo &DCI) const {
3555 // Default implementation: no optimization.
3556 return SDValue();
3559 //===----------------------------------------------------------------------===//
3560 // Inline Assembler Implementation Methods
3561 //===----------------------------------------------------------------------===//
3563 TargetLowering::ConstraintType
3564 TargetLowering::getConstraintType(StringRef Constraint) const {
3565 unsigned S = Constraint.size();
3567 if (S == 1) {
3568 switch (Constraint[0]) {
3569 default: break;
3570 case 'r': return C_RegisterClass;
3571 case 'm': // memory
3572 case 'o': // offsetable
3573 case 'V': // not offsetable
3574 return C_Memory;
3575 case 'i': // Simple Integer or Relocatable Constant
3576 case 'n': // Simple Integer
3577 case 'E': // Floating Point Constant
3578 case 'F': // Floating Point Constant
3579 case 's': // Relocatable Constant
3580 case 'p': // Address.
3581 case 'X': // Allow ANY value.
3582 case 'I': // Target registers.
3583 case 'J':
3584 case 'K':
3585 case 'L':
3586 case 'M':
3587 case 'N':
3588 case 'O':
3589 case 'P':
3590 case '<':
3591 case '>':
3592 return C_Other;
3596 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
3597 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
3598 return C_Memory;
3599 return C_Register;
3601 return C_Unknown;
3604 /// Try to replace an X constraint, which matches anything, with another that
3605 /// has more specific requirements based on the type of the corresponding
3606 /// operand.
3607 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
3608 if (ConstraintVT.isInteger())
3609 return "r";
3610 if (ConstraintVT.isFloatingPoint())
3611 return "f"; // works for many targets
3612 return nullptr;
3615 SDValue TargetLowering::LowerAsmOutputForConstraint(
3616 SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo,
3617 SelectionDAG &DAG) const {
3618 return SDValue();
3621 /// Lower the specified operand into the Ops vector.
3622 /// If it is invalid, don't add anything to Ops.
3623 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3624 std::string &Constraint,
3625 std::vector<SDValue> &Ops,
3626 SelectionDAG &DAG) const {
3628 if (Constraint.length() > 1) return;
3630 char ConstraintLetter = Constraint[0];
3631 switch (ConstraintLetter) {
3632 default: break;
3633 case 'X': // Allows any operand; labels (basic block) use this.
3634 if (Op.getOpcode() == ISD::BasicBlock ||
3635 Op.getOpcode() == ISD::TargetBlockAddress) {
3636 Ops.push_back(Op);
3637 return;
3639 LLVM_FALLTHROUGH;
3640 case 'i': // Simple Integer or Relocatable Constant
3641 case 'n': // Simple Integer
3642 case 's': { // Relocatable Constant
3644 GlobalAddressSDNode *GA;
3645 ConstantSDNode *C;
3646 BlockAddressSDNode *BA;
3647 uint64_t Offset = 0;
3649 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
3650 // etc., since getelementpointer is variadic. We can't use
3651 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
3652 // while in this case the GA may be furthest from the root node which is
3653 // likely an ISD::ADD.
3654 while (1) {
3655 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
3656 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
3657 GA->getValueType(0),
3658 Offset + GA->getOffset()));
3659 return;
3660 } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
3661 ConstraintLetter != 's') {
3662 // gcc prints these as sign extended. Sign extend value to 64 bits
3663 // now; without this it would get ZExt'd later in
3664 // ScheduleDAGSDNodes::EmitNode, which is very generic.
3665 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
3666 BooleanContent BCont = getBooleanContents(MVT::i64);
3667 ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
3668 : ISD::SIGN_EXTEND;
3669 int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
3670 : C->getSExtValue();
3671 Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
3672 SDLoc(C), MVT::i64));
3673 return;
3674 } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
3675 ConstraintLetter != 'n') {
3676 Ops.push_back(DAG.getTargetBlockAddress(
3677 BA->getBlockAddress(), BA->getValueType(0),
3678 Offset + BA->getOffset(), BA->getTargetFlags()));
3679 return;
3680 } else {
3681 const unsigned OpCode = Op.getOpcode();
3682 if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
3683 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
3684 Op = Op.getOperand(1);
3685 // Subtraction is not commutative.
3686 else if (OpCode == ISD::ADD &&
3687 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
3688 Op = Op.getOperand(0);
3689 else
3690 return;
3691 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
3692 continue;
3695 return;
3697 break;
3702 std::pair<unsigned, const TargetRegisterClass *>
3703 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
3704 StringRef Constraint,
3705 MVT VT) const {
3706 if (Constraint.empty() || Constraint[0] != '{')
3707 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
3708 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
3710 // Remove the braces from around the name.
3711 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
3713 std::pair<unsigned, const TargetRegisterClass *> R =
3714 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
3716 // Figure out which register class contains this reg.
3717 for (const TargetRegisterClass *RC : RI->regclasses()) {
3718 // If none of the value types for this register class are valid, we
3719 // can't use it. For example, 64-bit reg classes on 32-bit targets.
3720 if (!isLegalRC(*RI, *RC))
3721 continue;
3723 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
3724 I != E; ++I) {
3725 if (RegName.equals_lower(RI->getRegAsmName(*I))) {
3726 std::pair<unsigned, const TargetRegisterClass *> S =
3727 std::make_pair(*I, RC);
3729 // If this register class has the requested value type, return it,
3730 // otherwise keep searching and return the first class found
3731 // if no other is found which explicitly has the requested type.
3732 if (RI->isTypeLegalForClass(*RC, VT))
3733 return S;
3734 if (!R.second)
3735 R = S;
3740 return R;
3743 //===----------------------------------------------------------------------===//
3744 // Constraint Selection.
3746 /// Return true of this is an input operand that is a matching constraint like
3747 /// "4".
3748 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
3749 assert(!ConstraintCode.empty() && "No known constraint!");
3750 return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
3753 /// If this is an input matching constraint, this method returns the output
3754 /// operand it matches.
3755 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
3756 assert(!ConstraintCode.empty() && "No known constraint!");
3757 return atoi(ConstraintCode.c_str());
3760 /// Split up the constraint string from the inline assembly value into the
3761 /// specific constraints and their prefixes, and also tie in the associated
3762 /// operand values.
3763 /// If this returns an empty vector, and if the constraint string itself
3764 /// isn't empty, there was an error parsing.
3765 TargetLowering::AsmOperandInfoVector
3766 TargetLowering::ParseConstraints(const DataLayout &DL,
3767 const TargetRegisterInfo *TRI,
3768 ImmutableCallSite CS) const {
3769 /// Information about all of the constraints.
3770 AsmOperandInfoVector ConstraintOperands;
3771 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
3772 unsigned maCount = 0; // Largest number of multiple alternative constraints.
3774 // Do a prepass over the constraints, canonicalizing them, and building up the
3775 // ConstraintOperands list.
3776 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
3777 unsigned ResNo = 0; // ResNo - The result number of the next output.
3779 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
3780 ConstraintOperands.emplace_back(std::move(CI));
3781 AsmOperandInfo &OpInfo = ConstraintOperands.back();
3783 // Update multiple alternative constraint count.
3784 if (OpInfo.multipleAlternatives.size() > maCount)
3785 maCount = OpInfo.multipleAlternatives.size();
3787 OpInfo.ConstraintVT = MVT::Other;
3789 // Compute the value type for each operand.
3790 switch (OpInfo.Type) {
3791 case InlineAsm::isOutput:
3792 // Indirect outputs just consume an argument.
3793 if (OpInfo.isIndirect) {
3794 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
3795 break;
3798 // The return value of the call is this value. As such, there is no
3799 // corresponding argument.
3800 assert(!CS.getType()->isVoidTy() &&
3801 "Bad inline asm!");
3802 if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
3803 OpInfo.ConstraintVT =
3804 getSimpleValueType(DL, STy->getElementType(ResNo));
3805 } else {
3806 assert(ResNo == 0 && "Asm only has one result!");
3807 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
3809 ++ResNo;
3810 break;
3811 case InlineAsm::isInput:
3812 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
3813 break;
3814 case InlineAsm::isClobber:
3815 // Nothing to do.
3816 break;
3819 if (OpInfo.CallOperandVal) {
3820 llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
3821 if (OpInfo.isIndirect) {
3822 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
3823 if (!PtrTy)
3824 report_fatal_error("Indirect operand for inline asm not a pointer!");
3825 OpTy = PtrTy->getElementType();
3828 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
3829 if (StructType *STy = dyn_cast<StructType>(OpTy))
3830 if (STy->getNumElements() == 1)
3831 OpTy = STy->getElementType(0);
3833 // If OpTy is not a single value, it may be a struct/union that we
3834 // can tile with integers.
3835 if (!OpTy->isSingleValueType() && OpTy->isSized()) {
3836 unsigned BitSize = DL.getTypeSizeInBits(OpTy);
3837 switch (BitSize) {
3838 default: break;
3839 case 1:
3840 case 8:
3841 case 16:
3842 case 32:
3843 case 64:
3844 case 128:
3845 OpInfo.ConstraintVT =
3846 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
3847 break;
3849 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
3850 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
3851 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
3852 } else {
3853 OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
3858 // If we have multiple alternative constraints, select the best alternative.
3859 if (!ConstraintOperands.empty()) {
3860 if (maCount) {
3861 unsigned bestMAIndex = 0;
3862 int bestWeight = -1;
3863 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match.
3864 int weight = -1;
3865 unsigned maIndex;
3866 // Compute the sums of the weights for each alternative, keeping track
3867 // of the best (highest weight) one so far.
3868 for (maIndex = 0; maIndex < maCount; ++maIndex) {
3869 int weightSum = 0;
3870 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3871 cIndex != eIndex; ++cIndex) {
3872 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
3873 if (OpInfo.Type == InlineAsm::isClobber)
3874 continue;
3876 // If this is an output operand with a matching input operand,
3877 // look up the matching input. If their types mismatch, e.g. one
3878 // is an integer, the other is floating point, or their sizes are
3879 // different, flag it as an maCantMatch.
3880 if (OpInfo.hasMatchingInput()) {
3881 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
3882 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
3883 if ((OpInfo.ConstraintVT.isInteger() !=
3884 Input.ConstraintVT.isInteger()) ||
3885 (OpInfo.ConstraintVT.getSizeInBits() !=
3886 Input.ConstraintVT.getSizeInBits())) {
3887 weightSum = -1; // Can't match.
3888 break;
3892 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
3893 if (weight == -1) {
3894 weightSum = -1;
3895 break;
3897 weightSum += weight;
3899 // Update best.
3900 if (weightSum > bestWeight) {
3901 bestWeight = weightSum;
3902 bestMAIndex = maIndex;
3906 // Now select chosen alternative in each constraint.
3907 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3908 cIndex != eIndex; ++cIndex) {
3909 AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
3910 if (cInfo.Type == InlineAsm::isClobber)
3911 continue;
3912 cInfo.selectAlternative(bestMAIndex);
3917 // Check and hook up tied operands, choose constraint code to use.
3918 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3919 cIndex != eIndex; ++cIndex) {
3920 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
3922 // If this is an output operand with a matching input operand, look up the
3923 // matching input. If their types mismatch, e.g. one is an integer, the
3924 // other is floating point, or their sizes are different, flag it as an
3925 // error.
3926 if (OpInfo.hasMatchingInput()) {
3927 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
3929 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
3930 std::pair<unsigned, const TargetRegisterClass *> MatchRC =
3931 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
3932 OpInfo.ConstraintVT);
3933 std::pair<unsigned, const TargetRegisterClass *> InputRC =
3934 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
3935 Input.ConstraintVT);
3936 if ((OpInfo.ConstraintVT.isInteger() !=
3937 Input.ConstraintVT.isInteger()) ||
3938 (MatchRC.second != InputRC.second)) {
3939 report_fatal_error("Unsupported asm: input constraint"
3940 " with a matching output constraint of"
3941 " incompatible type!");
3947 return ConstraintOperands;
3950 /// Return an integer indicating how general CT is.
3951 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3952 switch (CT) {
3953 case TargetLowering::C_Other:
3954 case TargetLowering::C_Unknown:
3955 return 0;
3956 case TargetLowering::C_Register:
3957 return 1;
3958 case TargetLowering::C_RegisterClass:
3959 return 2;
3960 case TargetLowering::C_Memory:
3961 return 3;
3963 llvm_unreachable("Invalid constraint type");
3966 /// Examine constraint type and operand type and determine a weight value.
3967 /// This object must already have been set up with the operand type
3968 /// and the current alternative constraint selected.
3969 TargetLowering::ConstraintWeight
3970 TargetLowering::getMultipleConstraintMatchWeight(
3971 AsmOperandInfo &info, int maIndex) const {
3972 InlineAsm::ConstraintCodeVector *rCodes;
3973 if (maIndex >= (int)info.multipleAlternatives.size())
3974 rCodes = &info.Codes;
3975 else
3976 rCodes = &info.multipleAlternatives[maIndex].Codes;
3977 ConstraintWeight BestWeight = CW_Invalid;
3979 // Loop over the options, keeping track of the most general one.
3980 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
3981 ConstraintWeight weight =
3982 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
3983 if (weight > BestWeight)
3984 BestWeight = weight;
3987 return BestWeight;
3990 /// Examine constraint type and operand type and determine a weight value.
3991 /// This object must already have been set up with the operand type
3992 /// and the current alternative constraint selected.
3993 TargetLowering::ConstraintWeight
3994 TargetLowering::getSingleConstraintMatchWeight(
3995 AsmOperandInfo &info, const char *constraint) const {
3996 ConstraintWeight weight = CW_Invalid;
3997 Value *CallOperandVal = info.CallOperandVal;
3998 // If we don't have a value, we can't do a match,
3999 // but allow it at the lowest weight.
4000 if (!CallOperandVal)
4001 return CW_Default;
4002 // Look at the constraint type.
4003 switch (*constraint) {
4004 case 'i': // immediate integer.
4005 case 'n': // immediate integer with a known value.
4006 if (isa<ConstantInt>(CallOperandVal))
4007 weight = CW_Constant;
4008 break;
4009 case 's': // non-explicit intregal immediate.
4010 if (isa<GlobalValue>(CallOperandVal))
4011 weight = CW_Constant;
4012 break;
4013 case 'E': // immediate float if host format.
4014 case 'F': // immediate float.
4015 if (isa<ConstantFP>(CallOperandVal))
4016 weight = CW_Constant;
4017 break;
4018 case '<': // memory operand with autodecrement.
4019 case '>': // memory operand with autoincrement.
4020 case 'm': // memory operand.
4021 case 'o': // offsettable memory operand
4022 case 'V': // non-offsettable memory operand
4023 weight = CW_Memory;
4024 break;
4025 case 'r': // general register.
4026 case 'g': // general register, memory operand or immediate integer.
4027 // note: Clang converts "g" to "imr".
4028 if (CallOperandVal->getType()->isIntegerTy())
4029 weight = CW_Register;
4030 break;
4031 case 'X': // any operand.
4032 default:
4033 weight = CW_Default;
4034 break;
4036 return weight;
4039 /// If there are multiple different constraints that we could pick for this
4040 /// operand (e.g. "imr") try to pick the 'best' one.
4041 /// This is somewhat tricky: constraints fall into four classes:
4042 /// Other -> immediates and magic values
4043 /// Register -> one specific register
4044 /// RegisterClass -> a group of regs
4045 /// Memory -> memory
4046 /// Ideally, we would pick the most specific constraint possible: if we have
4047 /// something that fits into a register, we would pick it. The problem here
4048 /// is that if we have something that could either be in a register or in
4049 /// memory that use of the register could cause selection of *other*
4050 /// operands to fail: they might only succeed if we pick memory. Because of
4051 /// this the heuristic we use is:
4053 /// 1) If there is an 'other' constraint, and if the operand is valid for
4054 /// that constraint, use it. This makes us take advantage of 'i'
4055 /// constraints when available.
4056 /// 2) Otherwise, pick the most general constraint present. This prefers
4057 /// 'm' over 'r', for example.
4059 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4060 const TargetLowering &TLI,
4061 SDValue Op, SelectionDAG *DAG) {
4062 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4063 unsigned BestIdx = 0;
4064 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4065 int BestGenerality = -1;
4067 // Loop over the options, keeping track of the most general one.
4068 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4069 TargetLowering::ConstraintType CType =
4070 TLI.getConstraintType(OpInfo.Codes[i]);
4072 // If this is an 'other' constraint, see if the operand is valid for it.
4073 // For example, on X86 we might have an 'rI' constraint. If the operand
4074 // is an integer in the range [0..31] we want to use I (saving a load
4075 // of a register), otherwise we must use 'r'.
4076 if (CType == TargetLowering::C_Other && Op.getNode()) {
4077 assert(OpInfo.Codes[i].size() == 1 &&
4078 "Unhandled multi-letter 'other' constraint");
4079 std::vector<SDValue> ResultOps;
4080 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4081 ResultOps, *DAG);
4082 if (!ResultOps.empty()) {
4083 BestType = CType;
4084 BestIdx = i;
4085 break;
4089 // Things with matching constraints can only be registers, per gcc
4090 // documentation. This mainly affects "g" constraints.
4091 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4092 continue;
4094 // This constraint letter is more general than the previous one, use it.
4095 int Generality = getConstraintGenerality(CType);
4096 if (Generality > BestGenerality) {
4097 BestType = CType;
4098 BestIdx = i;
4099 BestGenerality = Generality;
4103 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4104 OpInfo.ConstraintType = BestType;
4107 /// Determines the constraint code and constraint type to use for the specific
4108 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4109 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4110 SDValue Op,
4111 SelectionDAG *DAG) const {
4112 assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4114 // Single-letter constraints ('r') are very common.
4115 if (OpInfo.Codes.size() == 1) {
4116 OpInfo.ConstraintCode = OpInfo.Codes[0];
4117 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4118 } else {
4119 ChooseConstraint(OpInfo, *this, Op, DAG);
4122 // 'X' matches anything.
4123 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4124 // Labels and constants are handled elsewhere ('X' is the only thing
4125 // that matches labels). For Functions, the type here is the type of
4126 // the result, which is not what we want to look at; leave them alone.
4127 Value *v = OpInfo.CallOperandVal;
4128 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4129 OpInfo.CallOperandVal = v;
4130 return;
4133 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4134 return;
4136 // Otherwise, try to resolve it to something we know about by looking at
4137 // the actual operand type.
4138 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4139 OpInfo.ConstraintCode = Repl;
4140 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4145 /// Given an exact SDIV by a constant, create a multiplication
4146 /// with the multiplicative inverse of the constant.
4147 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
4148 const SDLoc &dl, SelectionDAG &DAG,
4149 SmallVectorImpl<SDNode *> &Created) {
4150 SDValue Op0 = N->getOperand(0);
4151 SDValue Op1 = N->getOperand(1);
4152 EVT VT = N->getValueType(0);
4153 EVT SVT = VT.getScalarType();
4154 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
4155 EVT ShSVT = ShVT.getScalarType();
4157 bool UseSRA = false;
4158 SmallVector<SDValue, 16> Shifts, Factors;
4160 auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4161 if (C->isNullValue())
4162 return false;
4163 APInt Divisor = C->getAPIntValue();
4164 unsigned Shift = Divisor.countTrailingZeros();
4165 if (Shift) {
4166 Divisor.ashrInPlace(Shift);
4167 UseSRA = true;
4169 // Calculate the multiplicative inverse, using Newton's method.
4170 APInt t;
4171 APInt Factor = Divisor;
4172 while ((t = Divisor * Factor) != 1)
4173 Factor *= APInt(Divisor.getBitWidth(), 2) - t;
4174 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
4175 Factors.push_back(DAG.getConstant(Factor, dl, SVT));
4176 return true;
4179 // Collect all magic values from the build vector.
4180 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
4181 return SDValue();
4183 SDValue Shift, Factor;
4184 if (VT.isVector()) {
4185 Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4186 Factor = DAG.getBuildVector(VT, dl, Factors);
4187 } else {
4188 Shift = Shifts[0];
4189 Factor = Factors[0];
4192 SDValue Res = Op0;
4194 // Shift the value upfront if it is even, so the LSB is one.
4195 if (UseSRA) {
4196 // TODO: For UDIV use SRL instead of SRA.
4197 SDNodeFlags Flags;
4198 Flags.setExact(true);
4199 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
4200 Created.push_back(Res.getNode());
4203 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
4206 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
4207 SelectionDAG &DAG,
4208 SmallVectorImpl<SDNode *> &Created) const {
4209 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4210 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4211 if (TLI.isIntDivCheap(N->getValueType(0), Attr))
4212 return SDValue(N, 0); // Lower SDIV as SDIV
4213 return SDValue();
4216 /// Given an ISD::SDIV node expressing a divide by constant,
4217 /// return a DAG expression to select that will generate the same value by
4218 /// multiplying by a magic number.
4219 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4220 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
4221 bool IsAfterLegalization,
4222 SmallVectorImpl<SDNode *> &Created) const {
4223 SDLoc dl(N);
4224 EVT VT = N->getValueType(0);
4225 EVT SVT = VT.getScalarType();
4226 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4227 EVT ShSVT = ShVT.getScalarType();
4228 unsigned EltBits = VT.getScalarSizeInBits();
4230 // Check to see if we can do this.
4231 // FIXME: We should be more aggressive here.
4232 if (!isTypeLegal(VT))
4233 return SDValue();
4235 // If the sdiv has an 'exact' bit we can use a simpler lowering.
4236 if (N->getFlags().hasExact())
4237 return BuildExactSDIV(*this, N, dl, DAG, Created);
4239 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
4241 auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4242 if (C->isNullValue())
4243 return false;
4245 const APInt &Divisor = C->getAPIntValue();
4246 APInt::ms magics = Divisor.magic();
4247 int NumeratorFactor = 0;
4248 int ShiftMask = -1;
4250 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
4251 // If d is +1/-1, we just multiply the numerator by +1/-1.
4252 NumeratorFactor = Divisor.getSExtValue();
4253 magics.m = 0;
4254 magics.s = 0;
4255 ShiftMask = 0;
4256 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
4257 // If d > 0 and m < 0, add the numerator.
4258 NumeratorFactor = 1;
4259 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
4260 // If d < 0 and m > 0, subtract the numerator.
4261 NumeratorFactor = -1;
4264 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
4265 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
4266 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
4267 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
4268 return true;
4271 SDValue N0 = N->getOperand(0);
4272 SDValue N1 = N->getOperand(1);
4274 // Collect the shifts / magic values from each element.
4275 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
4276 return SDValue();
4278 SDValue MagicFactor, Factor, Shift, ShiftMask;
4279 if (VT.isVector()) {
4280 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4281 Factor = DAG.getBuildVector(VT, dl, Factors);
4282 Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4283 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
4284 } else {
4285 MagicFactor = MagicFactors[0];
4286 Factor = Factors[0];
4287 Shift = Shifts[0];
4288 ShiftMask = ShiftMasks[0];
4291 // Multiply the numerator (operand 0) by the magic value.
4292 // FIXME: We should support doing a MUL in a wider type.
4293 SDValue Q;
4294 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
4295 : isOperationLegalOrCustom(ISD::MULHS, VT))
4296 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
4297 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
4298 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
4299 SDValue LoHi =
4300 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
4301 Q = SDValue(LoHi.getNode(), 1);
4302 } else
4303 return SDValue(); // No mulhs or equivalent.
4304 Created.push_back(Q.getNode());
4306 // (Optionally) Add/subtract the numerator using Factor.
4307 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
4308 Created.push_back(Factor.getNode());
4309 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
4310 Created.push_back(Q.getNode());
4312 // Shift right algebraic by shift value.
4313 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
4314 Created.push_back(Q.getNode());
4316 // Extract the sign bit, mask it and add it to the quotient.
4317 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
4318 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
4319 Created.push_back(T.getNode());
4320 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
4321 Created.push_back(T.getNode());
4322 return DAG.getNode(ISD::ADD, dl, VT, Q, T);
4325 /// Given an ISD::UDIV node expressing a divide by constant,
4326 /// return a DAG expression to select that will generate the same value by
4327 /// multiplying by a magic number.
4328 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4329 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
4330 bool IsAfterLegalization,
4331 SmallVectorImpl<SDNode *> &Created) const {
4332 SDLoc dl(N);
4333 EVT VT = N->getValueType(0);
4334 EVT SVT = VT.getScalarType();
4335 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4336 EVT ShSVT = ShVT.getScalarType();
4337 unsigned EltBits = VT.getScalarSizeInBits();
4339 // Check to see if we can do this.
4340 // FIXME: We should be more aggressive here.
4341 if (!isTypeLegal(VT))
4342 return SDValue();
4344 bool UseNPQ = false;
4345 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
4347 auto BuildUDIVPattern = [&](ConstantSDNode *C) {
4348 if (C->isNullValue())
4349 return false;
4350 // FIXME: We should use a narrower constant when the upper
4351 // bits are known to be zero.
4352 APInt Divisor = C->getAPIntValue();
4353 APInt::mu magics = Divisor.magicu();
4354 unsigned PreShift = 0, PostShift = 0;
4356 // If the divisor is even, we can avoid using the expensive fixup by
4357 // shifting the divided value upfront.
4358 if (magics.a != 0 && !Divisor[0]) {
4359 PreShift = Divisor.countTrailingZeros();
4360 // Get magic number for the shifted divisor.
4361 magics = Divisor.lshr(PreShift).magicu(PreShift);
4362 assert(magics.a == 0 && "Should use cheap fixup now");
4365 APInt Magic = magics.m;
4367 unsigned SelNPQ;
4368 if (magics.a == 0 || Divisor.isOneValue()) {
4369 assert(magics.s < Divisor.getBitWidth() &&
4370 "We shouldn't generate an undefined shift!");
4371 PostShift = magics.s;
4372 SelNPQ = false;
4373 } else {
4374 PostShift = magics.s - 1;
4375 SelNPQ = true;
4378 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
4379 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
4380 NPQFactors.push_back(
4381 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
4382 : APInt::getNullValue(EltBits),
4383 dl, SVT));
4384 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
4385 UseNPQ |= SelNPQ;
4386 return true;
4389 SDValue N0 = N->getOperand(0);
4390 SDValue N1 = N->getOperand(1);
4392 // Collect the shifts/magic values from each element.
4393 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
4394 return SDValue();
4396 SDValue PreShift, PostShift, MagicFactor, NPQFactor;
4397 if (VT.isVector()) {
4398 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
4399 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4400 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
4401 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
4402 } else {
4403 PreShift = PreShifts[0];
4404 MagicFactor = MagicFactors[0];
4405 PostShift = PostShifts[0];
4408 SDValue Q = N0;
4409 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
4410 Created.push_back(Q.getNode());
4412 // FIXME: We should support doing a MUL in a wider type.
4413 auto GetMULHU = [&](SDValue X, SDValue Y) {
4414 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
4415 : isOperationLegalOrCustom(ISD::MULHU, VT))
4416 return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
4417 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
4418 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
4419 SDValue LoHi =
4420 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
4421 return SDValue(LoHi.getNode(), 1);
4423 return SDValue(); // No mulhu or equivalent
4426 // Multiply the numerator (operand 0) by the magic value.
4427 Q = GetMULHU(Q, MagicFactor);
4428 if (!Q)
4429 return SDValue();
4431 Created.push_back(Q.getNode());
4433 if (UseNPQ) {
4434 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
4435 Created.push_back(NPQ.getNode());
4437 // For vectors we might have a mix of non-NPQ/NPQ paths, so use
4438 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
4439 if (VT.isVector())
4440 NPQ = GetMULHU(NPQ, NPQFactor);
4441 else
4442 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
4444 Created.push_back(NPQ.getNode());
4446 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
4447 Created.push_back(Q.getNode());
4450 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
4451 Created.push_back(Q.getNode());
4453 SDValue One = DAG.getConstant(1, dl, VT);
4454 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
4455 return DAG.getSelect(dl, VT, IsOne, N0, Q);
4458 /// If all values in Values that *don't* match the predicate are same 'splat'
4459 /// value, then replace all values with that splat value.
4460 /// Else, if AlternativeReplacement was provided, then replace all values that
4461 /// do match predicate with AlternativeReplacement value.
4462 static void
4463 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
4464 std::function<bool(SDValue)> Predicate,
4465 SDValue AlternativeReplacement = SDValue()) {
4466 SDValue Replacement;
4467 // Is there a value for which the Predicate does *NOT* match? What is it?
4468 auto SplatValue = llvm::find_if_not(Values, Predicate);
4469 if (SplatValue != Values.end()) {
4470 // Does Values consist only of SplatValue's and values matching Predicate?
4471 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
4472 return Value == *SplatValue || Predicate(Value);
4473 })) // Then we shall replace values matching predicate with SplatValue.
4474 Replacement = *SplatValue;
4476 if (!Replacement) {
4477 // Oops, we did not find the "baseline" splat value.
4478 if (!AlternativeReplacement)
4479 return; // Nothing to do.
4480 // Let's replace with provided value then.
4481 Replacement = AlternativeReplacement;
4483 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
4486 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
4487 /// where the divisor is constant and the comparison target is zero,
4488 /// return a DAG expression that will generate the same comparison result
4489 /// using only multiplications, additions and shifts/rotations.
4490 /// Ref: "Hacker's Delight" 10-17.
4491 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
4492 SDValue CompTargetNode,
4493 ISD::CondCode Cond,
4494 DAGCombinerInfo &DCI,
4495 const SDLoc &DL) const {
4496 SmallVector<SDNode *, 2> Built;
4497 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
4498 DCI, DL, Built)) {
4499 for (SDNode *N : Built)
4500 DCI.AddToWorklist(N);
4501 return Folded;
4504 return SDValue();
4507 SDValue
4508 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
4509 SDValue CompTargetNode, ISD::CondCode Cond,
4510 DAGCombinerInfo &DCI, const SDLoc &DL,
4511 SmallVectorImpl<SDNode *> &Created) const {
4512 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
4513 // - D must be constant, with D = D0 * 2^K where D0 is odd
4514 // - P is the multiplicative inverse of D0 modulo 2^W
4515 // - Q = floor((2^W - 1) / D0)
4516 // where W is the width of the common type of N and D.
4517 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4518 "Only applicable for (in)equality comparisons.");
4520 SelectionDAG &DAG = DCI.DAG;
4522 EVT VT = REMNode.getValueType();
4523 EVT SVT = VT.getScalarType();
4524 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4525 EVT ShSVT = ShVT.getScalarType();
4527 // If MUL is unavailable, we cannot proceed in any case.
4528 if (!isOperationLegalOrCustom(ISD::MUL, VT))
4529 return SDValue();
4531 // TODO: Could support comparing with non-zero too.
4532 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
4533 if (!CompTarget || !CompTarget->isNullValue())
4534 return SDValue();
4536 bool HadOneDivisor = false;
4537 bool AllDivisorsAreOnes = true;
4538 bool HadEvenDivisor = false;
4539 bool AllDivisorsArePowerOfTwo = true;
4540 SmallVector<SDValue, 16> PAmts, KAmts, QAmts;
4542 auto BuildUREMPattern = [&](ConstantSDNode *C) {
4543 // Division by 0 is UB. Leave it to be constant-folded elsewhere.
4544 if (C->isNullValue())
4545 return false;
4547 const APInt &D = C->getAPIntValue();
4548 // If all divisors are ones, we will prefer to avoid the fold.
4549 HadOneDivisor |= D.isOneValue();
4550 AllDivisorsAreOnes &= D.isOneValue();
4552 // Decompose D into D0 * 2^K
4553 unsigned K = D.countTrailingZeros();
4554 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
4555 APInt D0 = D.lshr(K);
4557 // D is even if it has trailing zeros.
4558 HadEvenDivisor |= (K != 0);
4559 // D is a power-of-two if D0 is one.
4560 // If all divisors are power-of-two, we will prefer to avoid the fold.
4561 AllDivisorsArePowerOfTwo &= D0.isOneValue();
4563 // P = inv(D0, 2^W)
4564 // 2^W requires W + 1 bits, so we have to extend and then truncate.
4565 unsigned W = D.getBitWidth();
4566 APInt P = D0.zext(W + 1)
4567 .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
4568 .trunc(W);
4569 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
4570 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
4572 // Q = floor((2^W - 1) / D)
4573 APInt Q = APInt::getAllOnesValue(W).udiv(D);
4575 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
4576 "We are expecting that K is always less than all-ones for ShSVT");
4578 // If the divisor is 1 the result can be constant-folded.
4579 if (D.isOneValue()) {
4580 // Set P and K amount to a bogus values so we can try to splat them.
4581 P = 0;
4582 K = -1;
4583 assert(Q.isAllOnesValue() &&
4584 "Expecting all-ones comparison for one divisor");
4587 PAmts.push_back(DAG.getConstant(P, DL, SVT));
4588 KAmts.push_back(
4589 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
4590 QAmts.push_back(DAG.getConstant(Q, DL, SVT));
4591 return true;
4594 SDValue N = REMNode.getOperand(0);
4595 SDValue D = REMNode.getOperand(1);
4597 // Collect the values from each element.
4598 if (!ISD::matchUnaryPredicate(D, BuildUREMPattern))
4599 return SDValue();
4601 // If this is a urem by a one, avoid the fold since it can be constant-folded.
4602 if (AllDivisorsAreOnes)
4603 return SDValue();
4605 // If this is a urem by a powers-of-two, avoid the fold since it can be
4606 // best implemented as a bit test.
4607 if (AllDivisorsArePowerOfTwo)
4608 return SDValue();
4610 SDValue PVal, KVal, QVal;
4611 if (VT.isVector()) {
4612 if (HadOneDivisor) {
4613 // Try to turn PAmts into a splat, since we don't care about the values
4614 // that are currently '0'. If we can't, just keep '0'`s.
4615 turnVectorIntoSplatVector(PAmts, isNullConstant);
4616 // Try to turn KAmts into a splat, since we don't care about the values
4617 // that are currently '-1'. If we can't, change them to '0'`s.
4618 turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
4619 DAG.getConstant(0, DL, ShSVT));
4622 PVal = DAG.getBuildVector(VT, DL, PAmts);
4623 KVal = DAG.getBuildVector(ShVT, DL, KAmts);
4624 QVal = DAG.getBuildVector(VT, DL, QAmts);
4625 } else {
4626 PVal = PAmts[0];
4627 KVal = KAmts[0];
4628 QVal = QAmts[0];
4631 // (mul N, P)
4632 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
4633 Created.push_back(Op0.getNode());
4635 // Rotate right only if any divisor was even. We avoid rotates for all-odd
4636 // divisors as a performance improvement, since rotating by 0 is a no-op.
4637 if (HadEvenDivisor) {
4638 // We need ROTR to do this.
4639 if (!isOperationLegalOrCustom(ISD::ROTR, VT))
4640 return SDValue();
4641 SDNodeFlags Flags;
4642 Flags.setExact(true);
4643 // UREM: (rotr (mul N, P), K)
4644 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
4645 Created.push_back(Op0.getNode());
4648 // UREM: (setule/setugt (rotr (mul N, P), K), Q)
4649 return DAG.getSetCC(DL, SETCCVT, Op0, QVal,
4650 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
4653 bool TargetLowering::
4654 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
4655 if (!isa<ConstantSDNode>(Op.getOperand(0))) {
4656 DAG.getContext()->emitError("argument to '__builtin_return_address' must "
4657 "be a constant integer");
4658 return true;
4661 return false;
4664 //===----------------------------------------------------------------------===//
4665 // Legalization Utilities
4666 //===----------------------------------------------------------------------===//
4668 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
4669 SDValue LHS, SDValue RHS,
4670 SmallVectorImpl<SDValue> &Result,
4671 EVT HiLoVT, SelectionDAG &DAG,
4672 MulExpansionKind Kind, SDValue LL,
4673 SDValue LH, SDValue RL, SDValue RH) const {
4674 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
4675 Opcode == ISD::SMUL_LOHI);
4677 bool HasMULHS = (Kind == MulExpansionKind::Always) ||
4678 isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
4679 bool HasMULHU = (Kind == MulExpansionKind::Always) ||
4680 isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
4681 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
4682 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
4683 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
4684 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
4686 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
4687 return false;
4689 unsigned OuterBitSize = VT.getScalarSizeInBits();
4690 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
4691 unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
4692 unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
4694 // LL, LH, RL, and RH must be either all NULL or all set to a value.
4695 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
4696 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
4698 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
4699 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
4700 bool Signed) -> bool {
4701 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
4702 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
4703 Hi = SDValue(Lo.getNode(), 1);
4704 return true;
4706 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
4707 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
4708 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
4709 return true;
4711 return false;
4714 SDValue Lo, Hi;
4716 if (!LL.getNode() && !RL.getNode() &&
4717 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
4718 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
4719 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
4722 if (!LL.getNode())
4723 return false;
4725 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
4726 if (DAG.MaskedValueIsZero(LHS, HighMask) &&
4727 DAG.MaskedValueIsZero(RHS, HighMask)) {
4728 // The inputs are both zero-extended.
4729 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
4730 Result.push_back(Lo);
4731 Result.push_back(Hi);
4732 if (Opcode != ISD::MUL) {
4733 SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
4734 Result.push_back(Zero);
4735 Result.push_back(Zero);
4737 return true;
4741 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
4742 RHSSB > InnerBitSize) {
4743 // The input values are both sign-extended.
4744 // TODO non-MUL case?
4745 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
4746 Result.push_back(Lo);
4747 Result.push_back(Hi);
4748 return true;
4752 unsigned ShiftAmount = OuterBitSize - InnerBitSize;
4753 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
4754 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
4755 // FIXME getShiftAmountTy does not always return a sensible result when VT
4756 // is an illegal type, and so the type may be too small to fit the shift
4757 // amount. Override it with i32. The shift will have to be legalized.
4758 ShiftAmountTy = MVT::i32;
4760 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
4762 if (!LH.getNode() && !RH.getNode() &&
4763 isOperationLegalOrCustom(ISD::SRL, VT) &&
4764 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
4765 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
4766 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
4767 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
4768 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
4771 if (!LH.getNode())
4772 return false;
4774 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
4775 return false;
4777 Result.push_back(Lo);
4779 if (Opcode == ISD::MUL) {
4780 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
4781 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
4782 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
4783 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
4784 Result.push_back(Hi);
4785 return true;
4788 // Compute the full width result.
4789 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
4790 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
4791 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
4792 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
4793 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
4796 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
4797 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
4798 return false;
4800 // This is effectively the add part of a multiply-add of half-sized operands,
4801 // so it cannot overflow.
4802 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
4804 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
4805 return false;
4807 SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
4808 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
4810 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
4811 isOperationLegalOrCustom(ISD::ADDE, VT));
4812 if (UseGlue)
4813 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
4814 Merge(Lo, Hi));
4815 else
4816 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
4817 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
4819 SDValue Carry = Next.getValue(1);
4820 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
4821 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
4823 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
4824 return false;
4826 if (UseGlue)
4827 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
4828 Carry);
4829 else
4830 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
4831 Zero, Carry);
4833 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
4835 if (Opcode == ISD::SMUL_LOHI) {
4836 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
4837 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
4838 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
4840 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
4841 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
4842 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
4845 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
4846 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
4847 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
4848 return true;
4851 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
4852 SelectionDAG &DAG, MulExpansionKind Kind,
4853 SDValue LL, SDValue LH, SDValue RL,
4854 SDValue RH) const {
4855 SmallVector<SDValue, 2> Result;
4856 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
4857 N->getOperand(0), N->getOperand(1), Result, HiLoVT,
4858 DAG, Kind, LL, LH, RL, RH);
4859 if (Ok) {
4860 assert(Result.size() == 2);
4861 Lo = Result[0];
4862 Hi = Result[1];
4864 return Ok;
4867 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
4868 SelectionDAG &DAG) const {
4869 EVT VT = Node->getValueType(0);
4871 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
4872 !isOperationLegalOrCustom(ISD::SRL, VT) ||
4873 !isOperationLegalOrCustom(ISD::SUB, VT) ||
4874 !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
4875 return false;
4877 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
4878 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
4879 SDValue X = Node->getOperand(0);
4880 SDValue Y = Node->getOperand(1);
4881 SDValue Z = Node->getOperand(2);
4883 unsigned EltSizeInBits = VT.getScalarSizeInBits();
4884 bool IsFSHL = Node->getOpcode() == ISD::FSHL;
4885 SDLoc DL(SDValue(Node, 0));
4887 EVT ShVT = Z.getValueType();
4888 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
4889 SDValue Zero = DAG.getConstant(0, DL, ShVT);
4891 SDValue ShAmt;
4892 if (isPowerOf2_32(EltSizeInBits)) {
4893 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
4894 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
4895 } else {
4896 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
4899 SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
4900 SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
4901 SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
4902 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
4904 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
4905 // and that is undefined. We must compare and select to avoid UB.
4906 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT);
4908 // For fshl, 0-shift returns the 1st arg (X).
4909 // For fshr, 0-shift returns the 2nd arg (Y).
4910 SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ);
4911 Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or);
4912 return true;
4915 // TODO: Merge with expandFunnelShift.
4916 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
4917 SelectionDAG &DAG) const {
4918 EVT VT = Node->getValueType(0);
4919 unsigned EltSizeInBits = VT.getScalarSizeInBits();
4920 bool IsLeft = Node->getOpcode() == ISD::ROTL;
4921 SDValue Op0 = Node->getOperand(0);
4922 SDValue Op1 = Node->getOperand(1);
4923 SDLoc DL(SDValue(Node, 0));
4925 EVT ShVT = Op1.getValueType();
4926 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
4928 // If a rotate in the other direction is legal, use it.
4929 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
4930 if (isOperationLegal(RevRot, VT)) {
4931 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
4932 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
4933 return true;
4936 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
4937 !isOperationLegalOrCustom(ISD::SRL, VT) ||
4938 !isOperationLegalOrCustom(ISD::SUB, VT) ||
4939 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
4940 !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
4941 return false;
4943 // Otherwise,
4944 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
4945 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
4947 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
4948 "Expecting the type bitwidth to be a power of 2");
4949 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
4950 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
4951 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
4952 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
4953 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
4954 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
4955 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
4956 DAG.getNode(HsOpc, DL, VT, Op0, And1));
4957 return true;
4960 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
4961 SelectionDAG &DAG) const {
4962 SDValue Src = Node->getOperand(0);
4963 EVT SrcVT = Src.getValueType();
4964 EVT DstVT = Node->getValueType(0);
4965 SDLoc dl(SDValue(Node, 0));
4967 // FIXME: Only f32 to i64 conversions are supported.
4968 if (SrcVT != MVT::f32 || DstVT != MVT::i64)
4969 return false;
4971 // Expand f32 -> i64 conversion
4972 // This algorithm comes from compiler-rt's implementation of fixsfdi:
4973 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
4974 unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
4975 EVT IntVT = SrcVT.changeTypeToInteger();
4976 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
4978 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
4979 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
4980 SDValue Bias = DAG.getConstant(127, dl, IntVT);
4981 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
4982 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
4983 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
4985 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
4987 SDValue ExponentBits = DAG.getNode(
4988 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
4989 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
4990 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
4992 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
4993 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
4994 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
4995 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
4997 SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
4998 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
4999 DAG.getConstant(0x00800000, dl, IntVT));
5001 R = DAG.getZExtOrTrunc(R, dl, DstVT);
5003 R = DAG.getSelectCC(
5004 dl, Exponent, ExponentLoBit,
5005 DAG.getNode(ISD::SHL, dl, DstVT, R,
5006 DAG.getZExtOrTrunc(
5007 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
5008 dl, IntShVT)),
5009 DAG.getNode(ISD::SRL, dl, DstVT, R,
5010 DAG.getZExtOrTrunc(
5011 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
5012 dl, IntShVT)),
5013 ISD::SETGT);
5015 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
5016 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
5018 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
5019 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
5020 return true;
5023 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
5024 SelectionDAG &DAG) const {
5025 SDLoc dl(SDValue(Node, 0));
5026 SDValue Src = Node->getOperand(0);
5028 EVT SrcVT = Src.getValueType();
5029 EVT DstVT = Node->getValueType(0);
5030 EVT SetCCVT =
5031 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
5033 // Only expand vector types if we have the appropriate vector bit operations.
5034 if (DstVT.isVector() && (!isOperationLegalOrCustom(ISD::FP_TO_SINT, DstVT) ||
5035 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
5036 return false;
5038 // If the maximum float value is smaller then the signed integer range,
5039 // the destination signmask can't be represented by the float, so we can
5040 // just use FP_TO_SINT directly.
5041 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
5042 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
5043 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
5044 if (APFloat::opOverflow &
5045 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
5046 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
5047 return true;
5050 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
5051 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
5053 bool Strict = shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
5054 if (Strict) {
5055 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
5056 // signmask then offset (the result of which should be fully representable).
5057 // Sel = Src < 0x8000000000000000
5058 // Val = select Sel, Src, Src - 0x8000000000000000
5059 // Ofs = select Sel, 0, 0x8000000000000000
5060 // Result = fp_to_sint(Val) ^ Ofs
5062 // TODO: Should any fast-math-flags be set for the FSUB?
5063 SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src,
5064 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
5065 SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT),
5066 DAG.getConstant(SignMask, dl, DstVT));
5067 Result = DAG.getNode(ISD::XOR, dl, DstVT,
5068 DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val), Ofs);
5069 } else {
5070 // Expand based on maximum range of FP_TO_SINT:
5071 // True = fp_to_sint(Src)
5072 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
5073 // Result = select (Src < 0x8000000000000000), True, False
5075 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
5076 // TODO: Should any fast-math-flags be set for the FSUB?
5077 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
5078 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
5079 False = DAG.getNode(ISD::XOR, dl, DstVT, False,
5080 DAG.getConstant(SignMask, dl, DstVT));
5081 Result = DAG.getSelect(dl, DstVT, Sel, True, False);
5083 return true;
5086 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
5087 SelectionDAG &DAG) const {
5088 SDValue Src = Node->getOperand(0);
5089 EVT SrcVT = Src.getValueType();
5090 EVT DstVT = Node->getValueType(0);
5092 if (SrcVT.getScalarType() != MVT::i64)
5093 return false;
5095 SDLoc dl(SDValue(Node, 0));
5096 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
5098 if (DstVT.getScalarType() == MVT::f32) {
5099 // Only expand vector types if we have the appropriate vector bit
5100 // operations.
5101 if (SrcVT.isVector() &&
5102 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
5103 !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
5104 !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) ||
5105 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
5106 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
5107 return false;
5109 // For unsigned conversions, convert them to signed conversions using the
5110 // algorithm from the x86_64 __floatundidf in compiler_rt.
5111 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src);
5113 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT);
5114 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst);
5115 SDValue AndConst = DAG.getConstant(1, dl, SrcVT);
5116 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst);
5117 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr);
5119 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or);
5120 SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt);
5122 // TODO: This really should be implemented using a branch rather than a
5123 // select. We happen to get lucky and machinesink does the right
5124 // thing most of the time. This would be a good candidate for a
5125 // pseudo-op, or, even better, for whole-function isel.
5126 EVT SetCCVT =
5127 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
5129 SDValue SignBitTest = DAG.getSetCC(
5130 dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
5131 Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast);
5132 return true;
5135 if (DstVT.getScalarType() == MVT::f64) {
5136 // Only expand vector types if we have the appropriate vector bit
5137 // operations.
5138 if (SrcVT.isVector() &&
5139 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
5140 !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
5141 !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
5142 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
5143 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
5144 return false;
5146 // Implementation of unsigned i64 to f64 following the algorithm in
5147 // __floatundidf in compiler_rt. This implementation has the advantage
5148 // of performing rounding correctly, both in the default rounding mode
5149 // and in all alternate rounding modes.
5150 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
5151 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
5152 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
5153 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
5154 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
5155 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
5157 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
5158 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
5159 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
5160 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
5161 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
5162 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
5163 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
5164 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
5165 return true;
5168 return false;
5171 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
5172 SelectionDAG &DAG) const {
5173 SDLoc dl(Node);
5174 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
5175 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
5176 EVT VT = Node->getValueType(0);
5177 if (isOperationLegalOrCustom(NewOp, VT)) {
5178 SDValue Quiet0 = Node->getOperand(0);
5179 SDValue Quiet1 = Node->getOperand(1);
5181 if (!Node->getFlags().hasNoNaNs()) {
5182 // Insert canonicalizes if it's possible we need to quiet to get correct
5183 // sNaN behavior.
5184 if (!DAG.isKnownNeverSNaN(Quiet0)) {
5185 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
5186 Node->getFlags());
5188 if (!DAG.isKnownNeverSNaN(Quiet1)) {
5189 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
5190 Node->getFlags());
5194 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
5197 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
5198 // instead if there are no NaNs.
5199 if (Node->getFlags().hasNoNaNs()) {
5200 unsigned IEEE2018Op =
5201 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
5202 if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
5203 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
5204 Node->getOperand(1), Node->getFlags());
5208 return SDValue();
5211 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
5212 SelectionDAG &DAG) const {
5213 SDLoc dl(Node);
5214 EVT VT = Node->getValueType(0);
5215 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5216 SDValue Op = Node->getOperand(0);
5217 unsigned Len = VT.getScalarSizeInBits();
5218 assert(VT.isInteger() && "CTPOP not implemented for this type.");
5220 // TODO: Add support for irregular type lengths.
5221 if (!(Len <= 128 && Len % 8 == 0))
5222 return false;
5224 // Only expand vector types if we have the appropriate vector bit operations.
5225 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
5226 !isOperationLegalOrCustom(ISD::SUB, VT) ||
5227 !isOperationLegalOrCustom(ISD::SRL, VT) ||
5228 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
5229 !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
5230 return false;
5232 // This is the "best" algorithm from
5233 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
5234 SDValue Mask55 =
5235 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
5236 SDValue Mask33 =
5237 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
5238 SDValue Mask0F =
5239 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
5240 SDValue Mask01 =
5241 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
5243 // v = v - ((v >> 1) & 0x55555555...)
5244 Op = DAG.getNode(ISD::SUB, dl, VT, Op,
5245 DAG.getNode(ISD::AND, dl, VT,
5246 DAG.getNode(ISD::SRL, dl, VT, Op,
5247 DAG.getConstant(1, dl, ShVT)),
5248 Mask55));
5249 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
5250 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
5251 DAG.getNode(ISD::AND, dl, VT,
5252 DAG.getNode(ISD::SRL, dl, VT, Op,
5253 DAG.getConstant(2, dl, ShVT)),
5254 Mask33));
5255 // v = (v + (v >> 4)) & 0x0F0F0F0F...
5256 Op = DAG.getNode(ISD::AND, dl, VT,
5257 DAG.getNode(ISD::ADD, dl, VT, Op,
5258 DAG.getNode(ISD::SRL, dl, VT, Op,
5259 DAG.getConstant(4, dl, ShVT))),
5260 Mask0F);
5261 // v = (v * 0x01010101...) >> (Len - 8)
5262 if (Len > 8)
5263 Op =
5264 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
5265 DAG.getConstant(Len - 8, dl, ShVT));
5267 Result = Op;
5268 return true;
5271 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
5272 SelectionDAG &DAG) const {
5273 SDLoc dl(Node);
5274 EVT VT = Node->getValueType(0);
5275 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5276 SDValue Op = Node->getOperand(0);
5277 unsigned NumBitsPerElt = VT.getScalarSizeInBits();
5279 // If the non-ZERO_UNDEF version is supported we can use that instead.
5280 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
5281 isOperationLegalOrCustom(ISD::CTLZ, VT)) {
5282 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
5283 return true;
5286 // If the ZERO_UNDEF version is supported use that and handle the zero case.
5287 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
5288 EVT SetCCVT =
5289 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5290 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
5291 SDValue Zero = DAG.getConstant(0, dl, VT);
5292 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
5293 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
5294 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
5295 return true;
5298 // Only expand vector types if we have the appropriate vector bit operations.
5299 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
5300 !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
5301 !isOperationLegalOrCustom(ISD::SRL, VT) ||
5302 !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
5303 return false;
5305 // for now, we do this:
5306 // x = x | (x >> 1);
5307 // x = x | (x >> 2);
5308 // ...
5309 // x = x | (x >>16);
5310 // x = x | (x >>32); // for 64-bit input
5311 // return popcount(~x);
5313 // Ref: "Hacker's Delight" by Henry Warren
5314 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
5315 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
5316 Op = DAG.getNode(ISD::OR, dl, VT, Op,
5317 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
5319 Op = DAG.getNOT(dl, Op, VT);
5320 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
5321 return true;
5324 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
5325 SelectionDAG &DAG) const {
5326 SDLoc dl(Node);
5327 EVT VT = Node->getValueType(0);
5328 SDValue Op = Node->getOperand(0);
5329 unsigned NumBitsPerElt = VT.getScalarSizeInBits();
5331 // If the non-ZERO_UNDEF version is supported we can use that instead.
5332 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
5333 isOperationLegalOrCustom(ISD::CTTZ, VT)) {
5334 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
5335 return true;
5338 // If the ZERO_UNDEF version is supported use that and handle the zero case.
5339 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
5340 EVT SetCCVT =
5341 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5342 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
5343 SDValue Zero = DAG.getConstant(0, dl, VT);
5344 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
5345 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
5346 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
5347 return true;
5350 // Only expand vector types if we have the appropriate vector bit operations.
5351 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
5352 (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
5353 !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
5354 !isOperationLegalOrCustom(ISD::SUB, VT) ||
5355 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
5356 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
5357 return false;
5359 // for now, we use: { return popcount(~x & (x - 1)); }
5360 // unless the target has ctlz but not ctpop, in which case we use:
5361 // { return 32 - nlz(~x & (x-1)); }
5362 // Ref: "Hacker's Delight" by Henry Warren
5363 SDValue Tmp = DAG.getNode(
5364 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
5365 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
5367 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
5368 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
5369 Result =
5370 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
5371 DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
5372 return true;
5375 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
5376 return true;
5379 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
5380 SelectionDAG &DAG) const {
5381 SDLoc dl(N);
5382 EVT VT = N->getValueType(0);
5383 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5384 SDValue Op = N->getOperand(0);
5386 // Only expand vector types if we have the appropriate vector operations.
5387 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
5388 !isOperationLegalOrCustom(ISD::ADD, VT) ||
5389 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
5390 return false;
5392 SDValue Shift =
5393 DAG.getNode(ISD::SRA, dl, VT, Op,
5394 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
5395 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
5396 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
5397 return true;
5400 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
5401 SelectionDAG &DAG) const {
5402 SDLoc SL(LD);
5403 SDValue Chain = LD->getChain();
5404 SDValue BasePTR = LD->getBasePtr();
5405 EVT SrcVT = LD->getMemoryVT();
5406 ISD::LoadExtType ExtType = LD->getExtensionType();
5408 unsigned NumElem = SrcVT.getVectorNumElements();
5410 EVT SrcEltVT = SrcVT.getScalarType();
5411 EVT DstEltVT = LD->getValueType(0).getScalarType();
5413 unsigned Stride = SrcEltVT.getSizeInBits() / 8;
5414 assert(SrcEltVT.isByteSized());
5416 SmallVector<SDValue, 8> Vals;
5417 SmallVector<SDValue, 8> LoadChains;
5419 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
5420 SDValue ScalarLoad =
5421 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
5422 LD->getPointerInfo().getWithOffset(Idx * Stride),
5423 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
5424 LD->getMemOperand()->getFlags(), LD->getAAInfo());
5426 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
5428 Vals.push_back(ScalarLoad.getValue(0));
5429 LoadChains.push_back(ScalarLoad.getValue(1));
5432 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
5433 SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
5435 return DAG.getMergeValues({Value, NewChain}, SL);
5438 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
5439 SelectionDAG &DAG) const {
5440 SDLoc SL(ST);
5442 SDValue Chain = ST->getChain();
5443 SDValue BasePtr = ST->getBasePtr();
5444 SDValue Value = ST->getValue();
5445 EVT StVT = ST->getMemoryVT();
5447 // The type of the data we want to save
5448 EVT RegVT = Value.getValueType();
5449 EVT RegSclVT = RegVT.getScalarType();
5451 // The type of data as saved in memory.
5452 EVT MemSclVT = StVT.getScalarType();
5454 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
5455 unsigned NumElem = StVT.getVectorNumElements();
5457 // A vector must always be stored in memory as-is, i.e. without any padding
5458 // between the elements, since various code depend on it, e.g. in the
5459 // handling of a bitcast of a vector type to int, which may be done with a
5460 // vector store followed by an integer load. A vector that does not have
5461 // elements that are byte-sized must therefore be stored as an integer
5462 // built out of the extracted vector elements.
5463 if (!MemSclVT.isByteSized()) {
5464 unsigned NumBits = StVT.getSizeInBits();
5465 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
5467 SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
5469 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
5470 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
5471 DAG.getConstant(Idx, SL, IdxVT));
5472 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
5473 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
5474 unsigned ShiftIntoIdx =
5475 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
5476 SDValue ShiftAmount =
5477 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
5478 SDValue ShiftedElt =
5479 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
5480 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
5483 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
5484 ST->getAlignment(), ST->getMemOperand()->getFlags(),
5485 ST->getAAInfo());
5488 // Store Stride in bytes
5489 unsigned Stride = MemSclVT.getSizeInBits() / 8;
5490 assert(Stride && "Zero stride!");
5491 // Extract each of the elements from the original vector and save them into
5492 // memory individually.
5493 SmallVector<SDValue, 8> Stores;
5494 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
5495 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
5496 DAG.getConstant(Idx, SL, IdxVT));
5498 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
5500 // This scalar TruncStore may be illegal, but we legalize it later.
5501 SDValue Store = DAG.getTruncStore(
5502 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
5503 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
5504 ST->getMemOperand()->getFlags(), ST->getAAInfo());
5506 Stores.push_back(Store);
5509 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
5512 std::pair<SDValue, SDValue>
5513 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
5514 assert(LD->getAddressingMode() == ISD::UNINDEXED &&
5515 "unaligned indexed loads not implemented!");
5516 SDValue Chain = LD->getChain();
5517 SDValue Ptr = LD->getBasePtr();
5518 EVT VT = LD->getValueType(0);
5519 EVT LoadedVT = LD->getMemoryVT();
5520 SDLoc dl(LD);
5521 auto &MF = DAG.getMachineFunction();
5523 if (VT.isFloatingPoint() || VT.isVector()) {
5524 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
5525 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
5526 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
5527 LoadedVT.isVector()) {
5528 // Scalarize the load and let the individual components be handled.
5529 SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
5530 if (Scalarized->getOpcode() == ISD::MERGE_VALUES)
5531 return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1));
5532 return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
5535 // Expand to a (misaligned) integer load of the same size,
5536 // then bitconvert to floating point or vector.
5537 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
5538 LD->getMemOperand());
5539 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
5540 if (LoadedVT != VT)
5541 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
5542 ISD::ANY_EXTEND, dl, VT, Result);
5544 return std::make_pair(Result, newLoad.getValue(1));
5547 // Copy the value to a (aligned) stack slot using (unaligned) integer
5548 // loads and stores, then do a (aligned) load from the stack slot.
5549 MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
5550 unsigned LoadedBytes = LoadedVT.getStoreSize();
5551 unsigned RegBytes = RegVT.getSizeInBits() / 8;
5552 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
5554 // Make sure the stack slot is also aligned for the register type.
5555 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
5556 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
5557 SmallVector<SDValue, 8> Stores;
5558 SDValue StackPtr = StackBase;
5559 unsigned Offset = 0;
5561 EVT PtrVT = Ptr.getValueType();
5562 EVT StackPtrVT = StackPtr.getValueType();
5564 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
5565 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
5567 // Do all but one copies using the full register width.
5568 for (unsigned i = 1; i < NumRegs; i++) {
5569 // Load one integer register's worth from the original location.
5570 SDValue Load = DAG.getLoad(
5571 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
5572 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
5573 LD->getAAInfo());
5574 // Follow the load with a store to the stack slot. Remember the store.
5575 Stores.push_back(DAG.getStore(
5576 Load.getValue(1), dl, Load, StackPtr,
5577 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
5578 // Increment the pointers.
5579 Offset += RegBytes;
5581 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
5582 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
5585 // The last copy may be partial. Do an extending load.
5586 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
5587 8 * (LoadedBytes - Offset));
5588 SDValue Load =
5589 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
5590 LD->getPointerInfo().getWithOffset(Offset), MemVT,
5591 MinAlign(LD->getAlignment(), Offset),
5592 LD->getMemOperand()->getFlags(), LD->getAAInfo());
5593 // Follow the load with a store to the stack slot. Remember the store.
5594 // On big-endian machines this requires a truncating store to ensure
5595 // that the bits end up in the right place.
5596 Stores.push_back(DAG.getTruncStore(
5597 Load.getValue(1), dl, Load, StackPtr,
5598 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
5600 // The order of the stores doesn't matter - say it with a TokenFactor.
5601 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
5603 // Finally, perform the original load only redirected to the stack slot.
5604 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
5605 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
5606 LoadedVT);
5608 // Callers expect a MERGE_VALUES node.
5609 return std::make_pair(Load, TF);
5612 assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
5613 "Unaligned load of unsupported type.");
5615 // Compute the new VT that is half the size of the old one. This is an
5616 // integer MVT.
5617 unsigned NumBits = LoadedVT.getSizeInBits();
5618 EVT NewLoadedVT;
5619 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
5620 NumBits >>= 1;
5622 unsigned Alignment = LD->getAlignment();
5623 unsigned IncrementSize = NumBits / 8;
5624 ISD::LoadExtType HiExtType = LD->getExtensionType();
5626 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
5627 if (HiExtType == ISD::NON_EXTLOAD)
5628 HiExtType = ISD::ZEXTLOAD;
5630 // Load the value in two parts
5631 SDValue Lo, Hi;
5632 if (DAG.getDataLayout().isLittleEndian()) {
5633 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
5634 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
5635 LD->getAAInfo());
5637 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
5638 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
5639 LD->getPointerInfo().getWithOffset(IncrementSize),
5640 NewLoadedVT, MinAlign(Alignment, IncrementSize),
5641 LD->getMemOperand()->getFlags(), LD->getAAInfo());
5642 } else {
5643 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
5644 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
5645 LD->getAAInfo());
5647 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
5648 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
5649 LD->getPointerInfo().getWithOffset(IncrementSize),
5650 NewLoadedVT, MinAlign(Alignment, IncrementSize),
5651 LD->getMemOperand()->getFlags(), LD->getAAInfo());
5654 // aggregate the two parts
5655 SDValue ShiftAmount =
5656 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
5657 DAG.getDataLayout()));
5658 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
5659 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
5661 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
5662 Hi.getValue(1));
5664 return std::make_pair(Result, TF);
5667 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
5668 SelectionDAG &DAG) const {
5669 assert(ST->getAddressingMode() == ISD::UNINDEXED &&
5670 "unaligned indexed stores not implemented!");
5671 SDValue Chain = ST->getChain();
5672 SDValue Ptr = ST->getBasePtr();
5673 SDValue Val = ST->getValue();
5674 EVT VT = Val.getValueType();
5675 int Alignment = ST->getAlignment();
5676 auto &MF = DAG.getMachineFunction();
5677 EVT StoreMemVT = ST->getMemoryVT();
5679 SDLoc dl(ST);
5680 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
5681 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
5682 if (isTypeLegal(intVT)) {
5683 if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
5684 StoreMemVT.isVector()) {
5685 // Scalarize the store and let the individual components be handled.
5686 SDValue Result = scalarizeVectorStore(ST, DAG);
5687 return Result;
5689 // Expand to a bitconvert of the value to the integer type of the
5690 // same size, then a (misaligned) int store.
5691 // FIXME: Does not handle truncating floating point stores!
5692 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
5693 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
5694 Alignment, ST->getMemOperand()->getFlags());
5695 return Result;
5697 // Do a (aligned) store to a stack slot, then copy from the stack slot
5698 // to the final destination using (unaligned) integer loads and stores.
5699 MVT RegVT = getRegisterType(
5700 *DAG.getContext(),
5701 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
5702 EVT PtrVT = Ptr.getValueType();
5703 unsigned StoredBytes = StoreMemVT.getStoreSize();
5704 unsigned RegBytes = RegVT.getSizeInBits() / 8;
5705 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
5707 // Make sure the stack slot is also aligned for the register type.
5708 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
5709 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
5711 // Perform the original store, only redirected to the stack slot.
5712 SDValue Store = DAG.getTruncStore(
5713 Chain, dl, Val, StackPtr,
5714 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
5716 EVT StackPtrVT = StackPtr.getValueType();
5718 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
5719 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
5720 SmallVector<SDValue, 8> Stores;
5721 unsigned Offset = 0;
5723 // Do all but one copies using the full register width.
5724 for (unsigned i = 1; i < NumRegs; i++) {
5725 // Load one integer register's worth from the stack slot.
5726 SDValue Load = DAG.getLoad(
5727 RegVT, dl, Store, StackPtr,
5728 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
5729 // Store it to the final location. Remember the store.
5730 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
5731 ST->getPointerInfo().getWithOffset(Offset),
5732 MinAlign(ST->getAlignment(), Offset),
5733 ST->getMemOperand()->getFlags()));
5734 // Increment the pointers.
5735 Offset += RegBytes;
5736 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
5737 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
5740 // The last store may be partial. Do a truncating store. On big-endian
5741 // machines this requires an extending load from the stack slot to ensure
5742 // that the bits are in the right place.
5743 EVT LoadMemVT =
5744 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
5746 // Load from the stack slot.
5747 SDValue Load = DAG.getExtLoad(
5748 ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
5749 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
5751 Stores.push_back(
5752 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
5753 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
5754 MinAlign(ST->getAlignment(), Offset),
5755 ST->getMemOperand()->getFlags(), ST->getAAInfo()));
5756 // The order of the stores doesn't matter - say it with a TokenFactor.
5757 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
5758 return Result;
5761 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
5762 "Unaligned store of unknown type.");
5763 // Get the half-size VT
5764 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
5765 int NumBits = NewStoredVT.getSizeInBits();
5766 int IncrementSize = NumBits / 8;
5768 // Divide the stored value in two parts.
5769 SDValue ShiftAmount = DAG.getConstant(
5770 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
5771 SDValue Lo = Val;
5772 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
5774 // Store the two parts
5775 SDValue Store1, Store2;
5776 Store1 = DAG.getTruncStore(Chain, dl,
5777 DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
5778 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
5779 ST->getMemOperand()->getFlags());
5781 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
5782 Alignment = MinAlign(Alignment, IncrementSize);
5783 Store2 = DAG.getTruncStore(
5784 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
5785 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
5786 ST->getMemOperand()->getFlags(), ST->getAAInfo());
5788 SDValue Result =
5789 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
5790 return Result;
5793 SDValue
5794 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
5795 const SDLoc &DL, EVT DataVT,
5796 SelectionDAG &DAG,
5797 bool IsCompressedMemory) const {
5798 SDValue Increment;
5799 EVT AddrVT = Addr.getValueType();
5800 EVT MaskVT = Mask.getValueType();
5801 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
5802 "Incompatible types of Data and Mask");
5803 if (IsCompressedMemory) {
5804 // Incrementing the pointer according to number of '1's in the mask.
5805 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
5806 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
5807 if (MaskIntVT.getSizeInBits() < 32) {
5808 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
5809 MaskIntVT = MVT::i32;
5812 // Count '1's with POPCNT.
5813 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
5814 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
5815 // Scale is an element size in bytes.
5816 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
5817 AddrVT);
5818 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
5819 } else
5820 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
5822 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
5825 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
5826 SDValue Idx,
5827 EVT VecVT,
5828 const SDLoc &dl) {
5829 if (isa<ConstantSDNode>(Idx))
5830 return Idx;
5832 EVT IdxVT = Idx.getValueType();
5833 unsigned NElts = VecVT.getVectorNumElements();
5834 if (isPowerOf2_32(NElts)) {
5835 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
5836 Log2_32(NElts));
5837 return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
5838 DAG.getConstant(Imm, dl, IdxVT));
5841 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
5842 DAG.getConstant(NElts - 1, dl, IdxVT));
5845 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
5846 SDValue VecPtr, EVT VecVT,
5847 SDValue Index) const {
5848 SDLoc dl(Index);
5849 // Make sure the index type is big enough to compute in.
5850 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
5852 EVT EltVT = VecVT.getVectorElementType();
5854 // Calculate the element offset and add it to the pointer.
5855 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
5856 assert(EltSize * 8 == EltVT.getSizeInBits() &&
5857 "Converting bits to bytes lost precision");
5859 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
5861 EVT IdxVT = Index.getValueType();
5863 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
5864 DAG.getConstant(EltSize, dl, IdxVT));
5865 return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index);
5868 //===----------------------------------------------------------------------===//
5869 // Implementation of Emulated TLS Model
5870 //===----------------------------------------------------------------------===//
5872 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
5873 SelectionDAG &DAG) const {
5874 // Access to address of TLS varialbe xyz is lowered to a function call:
5875 // __emutls_get_address( address of global variable named "__emutls_v.xyz" )
5876 EVT PtrVT = getPointerTy(DAG.getDataLayout());
5877 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
5878 SDLoc dl(GA);
5880 ArgListTy Args;
5881 ArgListEntry Entry;
5882 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
5883 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
5884 StringRef EmuTlsVarName(NameString);
5885 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
5886 assert(EmuTlsVar && "Cannot find EmuTlsVar ");
5887 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
5888 Entry.Ty = VoidPtrType;
5889 Args.push_back(Entry);
5891 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
5893 TargetLowering::CallLoweringInfo CLI(DAG);
5894 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
5895 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
5896 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
5898 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
5899 // At last for X86 targets, maybe good for other targets too?
5900 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5901 MFI.setAdjustsStack(true); // Is this only for X86 target?
5902 MFI.setHasCalls(true);
5904 assert((GA->getOffset() == 0) &&
5905 "Emulated TLS must have zero offset in GlobalAddressSDNode");
5906 return CallResult.first;
5909 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
5910 SelectionDAG &DAG) const {
5911 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
5912 if (!isCtlzFast())
5913 return SDValue();
5914 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
5915 SDLoc dl(Op);
5916 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5917 if (C->isNullValue() && CC == ISD::SETEQ) {
5918 EVT VT = Op.getOperand(0).getValueType();
5919 SDValue Zext = Op.getOperand(0);
5920 if (VT.bitsLT(MVT::i32)) {
5921 VT = MVT::i32;
5922 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
5924 unsigned Log2b = Log2_32(VT.getSizeInBits());
5925 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
5926 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
5927 DAG.getConstant(Log2b, dl, MVT::i32));
5928 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
5931 return SDValue();
5934 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
5935 unsigned Opcode = Node->getOpcode();
5936 SDValue LHS = Node->getOperand(0);
5937 SDValue RHS = Node->getOperand(1);
5938 EVT VT = LHS.getValueType();
5939 SDLoc dl(Node);
5941 assert(VT == RHS.getValueType() && "Expected operands to be the same type");
5942 assert(VT.isInteger() && "Expected operands to be integers");
5944 // usub.sat(a, b) -> umax(a, b) - b
5945 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
5946 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
5947 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
5950 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
5951 SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
5952 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
5953 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
5956 unsigned OverflowOp;
5957 switch (Opcode) {
5958 case ISD::SADDSAT:
5959 OverflowOp = ISD::SADDO;
5960 break;
5961 case ISD::UADDSAT:
5962 OverflowOp = ISD::UADDO;
5963 break;
5964 case ISD::SSUBSAT:
5965 OverflowOp = ISD::SSUBO;
5966 break;
5967 case ISD::USUBSAT:
5968 OverflowOp = ISD::USUBO;
5969 break;
5970 default:
5971 llvm_unreachable("Expected method to receive signed or unsigned saturation "
5972 "addition or subtraction node.");
5975 unsigned BitWidth = LHS.getScalarValueSizeInBits();
5976 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5977 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
5978 LHS, RHS);
5979 SDValue SumDiff = Result.getValue(0);
5980 SDValue Overflow = Result.getValue(1);
5981 SDValue Zero = DAG.getConstant(0, dl, VT);
5982 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
5984 if (Opcode == ISD::UADDSAT) {
5985 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
5986 // (LHS + RHS) | OverflowMask
5987 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
5988 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
5990 // Overflow ? 0xffff.... : (LHS + RHS)
5991 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
5992 } else if (Opcode == ISD::USUBSAT) {
5993 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
5994 // (LHS - RHS) & ~OverflowMask
5995 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
5996 SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
5997 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
5999 // Overflow ? 0 : (LHS - RHS)
6000 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
6001 } else {
6002 // SatMax -> Overflow && SumDiff < 0
6003 // SatMin -> Overflow && SumDiff >= 0
6004 APInt MinVal = APInt::getSignedMinValue(BitWidth);
6005 APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
6006 SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
6007 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
6008 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
6009 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
6010 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
6014 SDValue
6015 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
6016 assert((Node->getOpcode() == ISD::SMULFIX ||
6017 Node->getOpcode() == ISD::UMULFIX ||
6018 Node->getOpcode() == ISD::SMULFIXSAT) &&
6019 "Expected a fixed point multiplication opcode");
6021 SDLoc dl(Node);
6022 SDValue LHS = Node->getOperand(0);
6023 SDValue RHS = Node->getOperand(1);
6024 EVT VT = LHS.getValueType();
6025 unsigned Scale = Node->getConstantOperandVal(2);
6026 bool Saturating = Node->getOpcode() == ISD::SMULFIXSAT;
6027 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6028 unsigned VTSize = VT.getScalarSizeInBits();
6030 if (!Scale) {
6031 // [us]mul.fix(a, b, 0) -> mul(a, b)
6032 if (!Saturating && isOperationLegalOrCustom(ISD::MUL, VT)) {
6033 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
6034 } else if (Saturating && isOperationLegalOrCustom(ISD::SMULO, VT)) {
6035 SDValue Result =
6036 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
6037 SDValue Product = Result.getValue(0);
6038 SDValue Overflow = Result.getValue(1);
6039 SDValue Zero = DAG.getConstant(0, dl, VT);
6041 APInt MinVal = APInt::getSignedMinValue(VTSize);
6042 APInt MaxVal = APInt::getSignedMaxValue(VTSize);
6043 SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
6044 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
6045 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
6046 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
6047 return DAG.getSelect(dl, VT, Overflow, Result, Product);
6051 bool Signed =
6052 Node->getOpcode() == ISD::SMULFIX || Node->getOpcode() == ISD::SMULFIXSAT;
6053 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
6054 "Expected scale to be less than the number of bits if signed or at "
6055 "most the number of bits if unsigned.");
6056 assert(LHS.getValueType() == RHS.getValueType() &&
6057 "Expected both operands to be the same type");
6059 // Get the upper and lower bits of the result.
6060 SDValue Lo, Hi;
6061 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
6062 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
6063 if (isOperationLegalOrCustom(LoHiOp, VT)) {
6064 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
6065 Lo = Result.getValue(0);
6066 Hi = Result.getValue(1);
6067 } else if (isOperationLegalOrCustom(HiOp, VT)) {
6068 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
6069 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
6070 } else if (VT.isVector()) {
6071 return SDValue();
6072 } else {
6073 report_fatal_error("Unable to expand fixed point multiplication.");
6076 if (Scale == VTSize)
6077 // Result is just the top half since we'd be shifting by the width of the
6078 // operand.
6079 return Hi;
6081 // The result will need to be shifted right by the scale since both operands
6082 // are scaled. The result is given to us in 2 halves, so we only want part of
6083 // both in the result.
6084 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
6085 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
6086 DAG.getConstant(Scale, dl, ShiftTy));
6087 if (!Saturating)
6088 return Result;
6090 unsigned OverflowBits = VTSize - Scale + 1; // +1 for the sign
6091 SDValue HiMask =
6092 DAG.getConstant(APInt::getHighBitsSet(VTSize, OverflowBits), dl, VT);
6093 SDValue LoMask = DAG.getConstant(
6094 APInt::getLowBitsSet(VTSize, VTSize - OverflowBits), dl, VT);
6095 APInt MaxVal = APInt::getSignedMaxValue(VTSize);
6096 APInt MinVal = APInt::getSignedMinValue(VTSize);
6098 Result = DAG.getSelectCC(dl, Hi, LoMask,
6099 DAG.getConstant(MaxVal, dl, VT), Result,
6100 ISD::SETGT);
6101 return DAG.getSelectCC(dl, Hi, HiMask,
6102 DAG.getConstant(MinVal, dl, VT), Result,
6103 ISD::SETLT);
6106 void TargetLowering::expandUADDSUBO(
6107 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
6108 SDLoc dl(Node);
6109 SDValue LHS = Node->getOperand(0);
6110 SDValue RHS = Node->getOperand(1);
6111 bool IsAdd = Node->getOpcode() == ISD::UADDO;
6113 // If ADD/SUBCARRY is legal, use that instead.
6114 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
6115 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
6116 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
6117 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
6118 { LHS, RHS, CarryIn });
6119 Result = SDValue(NodeCarry.getNode(), 0);
6120 Overflow = SDValue(NodeCarry.getNode(), 1);
6121 return;
6124 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
6125 LHS.getValueType(), LHS, RHS);
6127 EVT ResultType = Node->getValueType(1);
6128 EVT SetCCType = getSetCCResultType(
6129 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
6130 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
6131 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
6132 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
6135 void TargetLowering::expandSADDSUBO(
6136 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
6137 SDLoc dl(Node);
6138 SDValue LHS = Node->getOperand(0);
6139 SDValue RHS = Node->getOperand(1);
6140 bool IsAdd = Node->getOpcode() == ISD::SADDO;
6142 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
6143 LHS.getValueType(), LHS, RHS);
6145 EVT ResultType = Node->getValueType(1);
6146 EVT OType = getSetCCResultType(
6147 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
6149 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
6150 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
6151 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
6152 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
6153 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
6154 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
6155 return;
6158 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
6160 // LHSSign -> LHS >= 0
6161 // RHSSign -> RHS >= 0
6162 // SumSign -> Result >= 0
6164 // Add:
6165 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
6166 // Sub:
6167 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
6168 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
6169 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
6170 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
6171 IsAdd ? ISD::SETEQ : ISD::SETNE);
6173 SDValue SumSign = DAG.getSetCC(dl, OType, Result, Zero, ISD::SETGE);
6174 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
6176 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
6177 Overflow = DAG.getBoolExtOrTrunc(Cmp, dl, ResultType, ResultType);
6180 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
6181 SDValue &Overflow, SelectionDAG &DAG) const {
6182 SDLoc dl(Node);
6183 EVT VT = Node->getValueType(0);
6184 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6185 SDValue LHS = Node->getOperand(0);
6186 SDValue RHS = Node->getOperand(1);
6187 bool isSigned = Node->getOpcode() == ISD::SMULO;
6189 // For power-of-two multiplications we can use a simpler shift expansion.
6190 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
6191 const APInt &C = RHSC->getAPIntValue();
6192 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
6193 if (C.isPowerOf2()) {
6194 // smulo(x, signed_min) is same as umulo(x, signed_min).
6195 bool UseArithShift = isSigned && !C.isMinSignedValue();
6196 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
6197 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
6198 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
6199 Overflow = DAG.getSetCC(dl, SetCCVT,
6200 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
6201 dl, VT, Result, ShiftAmt),
6202 LHS, ISD::SETNE);
6203 return true;
6207 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
6208 if (VT.isVector())
6209 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
6210 VT.getVectorNumElements());
6212 SDValue BottomHalf;
6213 SDValue TopHalf;
6214 static const unsigned Ops[2][3] =
6215 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
6216 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
6217 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
6218 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
6219 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
6220 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
6221 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
6222 RHS);
6223 TopHalf = BottomHalf.getValue(1);
6224 } else if (isTypeLegal(WideVT)) {
6225 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
6226 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
6227 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
6228 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
6229 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
6230 getShiftAmountTy(WideVT, DAG.getDataLayout()));
6231 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
6232 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
6233 } else {
6234 if (VT.isVector())
6235 return false;
6237 // We can fall back to a libcall with an illegal type for the MUL if we
6238 // have a libcall big enough.
6239 // Also, we can fall back to a division in some cases, but that's a big
6240 // performance hit in the general case.
6241 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
6242 if (WideVT == MVT::i16)
6243 LC = RTLIB::MUL_I16;
6244 else if (WideVT == MVT::i32)
6245 LC = RTLIB::MUL_I32;
6246 else if (WideVT == MVT::i64)
6247 LC = RTLIB::MUL_I64;
6248 else if (WideVT == MVT::i128)
6249 LC = RTLIB::MUL_I128;
6250 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
6252 SDValue HiLHS;
6253 SDValue HiRHS;
6254 if (isSigned) {
6255 // The high part is obtained by SRA'ing all but one of the bits of low
6256 // part.
6257 unsigned LoSize = VT.getSizeInBits();
6258 HiLHS =
6259 DAG.getNode(ISD::SRA, dl, VT, LHS,
6260 DAG.getConstant(LoSize - 1, dl,
6261 getPointerTy(DAG.getDataLayout())));
6262 HiRHS =
6263 DAG.getNode(ISD::SRA, dl, VT, RHS,
6264 DAG.getConstant(LoSize - 1, dl,
6265 getPointerTy(DAG.getDataLayout())));
6266 } else {
6267 HiLHS = DAG.getConstant(0, dl, VT);
6268 HiRHS = DAG.getConstant(0, dl, VT);
6271 // Here we're passing the 2 arguments explicitly as 4 arguments that are
6272 // pre-lowered to the correct types. This all depends upon WideVT not
6273 // being a legal type for the architecture and thus has to be split to
6274 // two arguments.
6275 SDValue Ret;
6276 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
6277 // Halves of WideVT are packed into registers in different order
6278 // depending on platform endianness. This is usually handled by
6279 // the C calling convention, but we can't defer to it in
6280 // the legalizer.
6281 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
6282 Ret = makeLibCall(DAG, LC, WideVT, Args, isSigned, dl,
6283 /* doesNotReturn */ false, /* isReturnValueUsed */ true,
6284 /* isPostTypeLegalization */ true).first;
6285 } else {
6286 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
6287 Ret = makeLibCall(DAG, LC, WideVT, Args, isSigned, dl,
6288 /* doesNotReturn */ false, /* isReturnValueUsed */ true,
6289 /* isPostTypeLegalization */ true).first;
6291 assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
6292 "Ret value is a collection of constituent nodes holding result.");
6293 if (DAG.getDataLayout().isLittleEndian()) {
6294 // Same as above.
6295 BottomHalf = Ret.getOperand(0);
6296 TopHalf = Ret.getOperand(1);
6297 } else {
6298 BottomHalf = Ret.getOperand(1);
6299 TopHalf = Ret.getOperand(0);
6303 Result = BottomHalf;
6304 if (isSigned) {
6305 SDValue ShiftAmt = DAG.getConstant(
6306 VT.getScalarSizeInBits() - 1, dl,
6307 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
6308 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
6309 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
6310 } else {
6311 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
6312 DAG.getConstant(0, dl, VT), ISD::SETNE);
6315 // Truncate the result if SetCC returns a larger type than needed.
6316 EVT RType = Node->getValueType(1);
6317 if (RType.getSizeInBits() < Overflow.getValueSizeInBits())
6318 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
6320 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
6321 "Unexpected result type for S/UMULO legalization");
6322 return true;
6325 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
6326 SDLoc dl(Node);
6327 bool NoNaN = Node->getFlags().hasNoNaNs();
6328 unsigned BaseOpcode = 0;
6329 switch (Node->getOpcode()) {
6330 default: llvm_unreachable("Expected VECREDUCE opcode");
6331 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
6332 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
6333 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break;
6334 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break;
6335 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break;
6336 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break;
6337 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break;
6338 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break;
6339 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break;
6340 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break;
6341 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break;
6342 case ISD::VECREDUCE_FMAX:
6343 BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM;
6344 break;
6345 case ISD::VECREDUCE_FMIN:
6346 BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM;
6347 break;
6350 SDValue Op = Node->getOperand(0);
6351 EVT VT = Op.getValueType();
6353 // Try to use a shuffle reduction for power of two vectors.
6354 if (VT.isPow2VectorType()) {
6355 while (VT.getVectorNumElements() > 1) {
6356 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
6357 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
6358 break;
6360 SDValue Lo, Hi;
6361 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
6362 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
6363 VT = HalfVT;
6367 EVT EltVT = VT.getVectorElementType();
6368 unsigned NumElts = VT.getVectorNumElements();
6370 SmallVector<SDValue, 8> Ops;
6371 DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
6373 SDValue Res = Ops[0];
6374 for (unsigned i = 1; i < NumElts; i++)
6375 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
6377 // Result type may be wider than element type.
6378 if (EltVT != Node->getValueType(0))
6379 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
6380 return Res;