[InstCombine] Remove insertRangeTest code that handles the equality case.
[llvm-complete.git] / unittests / Transforms / Scalar / LoopPassManagerTest.cpp
blob5eb8101a3df9417f3f237b628b87651c98e3d6fd
1 //===- llvm/unittest/Analysis/LoopPassManagerTest.cpp - LPM tests ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Transforms/Scalar/LoopPassManager.h"
10 #include "llvm/Analysis/AliasAnalysis.h"
11 #include "llvm/Analysis/AssumptionCache.h"
12 #include "llvm/Analysis/ScalarEvolution.h"
13 #include "llvm/Analysis/TargetLibraryInfo.h"
14 #include "llvm/Analysis/TargetTransformInfo.h"
15 #include "llvm/AsmParser/Parser.h"
16 #include "llvm/IR/Dominators.h"
17 #include "llvm/IR/Function.h"
18 #include "llvm/IR/LLVMContext.h"
19 #include "llvm/IR/Module.h"
20 #include "llvm/IR/PassManager.h"
21 #include "llvm/Support/SourceMgr.h"
23 #include "gmock/gmock.h"
24 #include "gtest/gtest.h"
26 using namespace llvm;
28 namespace {
30 using testing::DoDefault;
31 using testing::Return;
32 using testing::Expectation;
33 using testing::Invoke;
34 using testing::InvokeWithoutArgs;
35 using testing::_;
37 template <typename DerivedT, typename IRUnitT,
38 typename AnalysisManagerT = AnalysisManager<IRUnitT>,
39 typename... ExtraArgTs>
40 class MockAnalysisHandleBase {
41 public:
42 class Analysis : public AnalysisInfoMixin<Analysis> {
43 friend AnalysisInfoMixin<Analysis>;
44 friend MockAnalysisHandleBase;
45 static AnalysisKey Key;
47 DerivedT *Handle;
49 Analysis(DerivedT &Handle) : Handle(&Handle) {
50 static_assert(std::is_base_of<MockAnalysisHandleBase, DerivedT>::value,
51 "Must pass the derived type to this template!");
54 public:
55 class Result {
56 friend MockAnalysisHandleBase;
58 DerivedT *Handle;
60 Result(DerivedT &Handle) : Handle(&Handle) {}
62 public:
63 // Forward invalidation events to the mock handle.
64 bool invalidate(IRUnitT &IR, const PreservedAnalyses &PA,
65 typename AnalysisManagerT::Invalidator &Inv) {
66 return Handle->invalidate(IR, PA, Inv);
70 Result run(IRUnitT &IR, AnalysisManagerT &AM, ExtraArgTs... ExtraArgs) {
71 return Handle->run(IR, AM, ExtraArgs...);
75 Analysis getAnalysis() { return Analysis(static_cast<DerivedT &>(*this)); }
76 typename Analysis::Result getResult() {
77 return typename Analysis::Result(static_cast<DerivedT &>(*this));
80 protected:
81 // FIXME: MSVC seems unable to handle a lambda argument to Invoke from within
82 // the template, so we use a boring static function.
83 static bool invalidateCallback(IRUnitT &IR, const PreservedAnalyses &PA,
84 typename AnalysisManagerT::Invalidator &Inv) {
85 auto PAC = PA.template getChecker<Analysis>();
86 return !PAC.preserved() &&
87 !PAC.template preservedSet<AllAnalysesOn<IRUnitT>>();
90 /// Derived classes should call this in their constructor to set up default
91 /// mock actions. (We can't do this in our constructor because this has to
92 /// run after the DerivedT is constructed.)
93 void setDefaults() {
94 ON_CALL(static_cast<DerivedT &>(*this),
95 run(_, _, testing::Matcher<ExtraArgTs>(_)...))
96 .WillByDefault(Return(this->getResult()));
97 ON_CALL(static_cast<DerivedT &>(*this), invalidate(_, _, _))
98 .WillByDefault(Invoke(&invalidateCallback));
102 template <typename DerivedT, typename IRUnitT, typename AnalysisManagerT,
103 typename... ExtraArgTs>
104 AnalysisKey MockAnalysisHandleBase<DerivedT, IRUnitT, AnalysisManagerT,
105 ExtraArgTs...>::Analysis::Key;
107 /// Mock handle for loop analyses.
109 /// This is provided as a template accepting an (optional) integer. Because
110 /// analyses are identified and queried by type, this allows constructing
111 /// multiple handles with distinctly typed nested 'Analysis' types that can be
112 /// registered and queried. If you want to register multiple loop analysis
113 /// passes, you'll need to instantiate this type with different values for I.
114 /// For example:
116 /// MockLoopAnalysisHandleTemplate<0> h0;
117 /// MockLoopAnalysisHandleTemplate<1> h1;
118 /// typedef decltype(h0)::Analysis Analysis0;
119 /// typedef decltype(h1)::Analysis Analysis1;
120 template <size_t I = static_cast<size_t>(-1)>
121 struct MockLoopAnalysisHandleTemplate
122 : MockAnalysisHandleBase<MockLoopAnalysisHandleTemplate<I>, Loop,
123 LoopAnalysisManager,
124 LoopStandardAnalysisResults &> {
125 typedef typename MockLoopAnalysisHandleTemplate::Analysis Analysis;
127 MOCK_METHOD3_T(run, typename Analysis::Result(Loop &, LoopAnalysisManager &,
128 LoopStandardAnalysisResults &));
130 MOCK_METHOD3_T(invalidate, bool(Loop &, const PreservedAnalyses &,
131 LoopAnalysisManager::Invalidator &));
133 MockLoopAnalysisHandleTemplate() { this->setDefaults(); }
136 typedef MockLoopAnalysisHandleTemplate<> MockLoopAnalysisHandle;
138 struct MockFunctionAnalysisHandle
139 : MockAnalysisHandleBase<MockFunctionAnalysisHandle, Function> {
140 MOCK_METHOD2(run, Analysis::Result(Function &, FunctionAnalysisManager &));
142 MOCK_METHOD3(invalidate, bool(Function &, const PreservedAnalyses &,
143 FunctionAnalysisManager::Invalidator &));
145 MockFunctionAnalysisHandle() { setDefaults(); }
148 template <typename DerivedT, typename IRUnitT,
149 typename AnalysisManagerT = AnalysisManager<IRUnitT>,
150 typename... ExtraArgTs>
151 class MockPassHandleBase {
152 public:
153 class Pass : public PassInfoMixin<Pass> {
154 friend MockPassHandleBase;
156 DerivedT *Handle;
158 Pass(DerivedT &Handle) : Handle(&Handle) {
159 static_assert(std::is_base_of<MockPassHandleBase, DerivedT>::value,
160 "Must pass the derived type to this template!");
163 public:
164 PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM,
165 ExtraArgTs... ExtraArgs) {
166 return Handle->run(IR, AM, ExtraArgs...);
170 Pass getPass() { return Pass(static_cast<DerivedT &>(*this)); }
172 protected:
173 /// Derived classes should call this in their constructor to set up default
174 /// mock actions. (We can't do this in our constructor because this has to
175 /// run after the DerivedT is constructed.)
176 void setDefaults() {
177 ON_CALL(static_cast<DerivedT &>(*this),
178 run(_, _, testing::Matcher<ExtraArgTs>(_)...))
179 .WillByDefault(Return(PreservedAnalyses::all()));
183 struct MockLoopPassHandle
184 : MockPassHandleBase<MockLoopPassHandle, Loop, LoopAnalysisManager,
185 LoopStandardAnalysisResults &, LPMUpdater &> {
186 MOCK_METHOD4(run,
187 PreservedAnalyses(Loop &, LoopAnalysisManager &,
188 LoopStandardAnalysisResults &, LPMUpdater &));
189 MockLoopPassHandle() { setDefaults(); }
192 struct MockFunctionPassHandle
193 : MockPassHandleBase<MockFunctionPassHandle, Function> {
194 MOCK_METHOD2(run, PreservedAnalyses(Function &, FunctionAnalysisManager &));
196 MockFunctionPassHandle() { setDefaults(); }
199 struct MockModulePassHandle : MockPassHandleBase<MockModulePassHandle, Module> {
200 MOCK_METHOD2(run, PreservedAnalyses(Module &, ModuleAnalysisManager &));
202 MockModulePassHandle() { setDefaults(); }
205 /// Define a custom matcher for objects which support a 'getName' method
206 /// returning a StringRef.
208 /// LLVM often has IR objects or analysis objects which expose a StringRef name
209 /// and in tests it is convenient to match these by name for readability. This
210 /// matcher supports any type exposing a getName() method of this form.
212 /// It should be used as:
214 /// HasName("my_function")
216 /// No namespace or other qualification is required.
217 MATCHER_P(HasName, Name, "") {
218 // The matcher's name and argument are printed in the case of failure, but we
219 // also want to print out the name of the argument. This uses an implicitly
220 // avaiable std::ostream, so we have to construct a std::string.
221 *result_listener << "has name '" << arg.getName().str() << "'";
222 return Name == arg.getName();
225 std::unique_ptr<Module> parseIR(LLVMContext &C, const char *IR) {
226 SMDiagnostic Err;
227 return parseAssemblyString(IR, Err, C);
230 class LoopPassManagerTest : public ::testing::Test {
231 protected:
232 LLVMContext Context;
233 std::unique_ptr<Module> M;
235 LoopAnalysisManager LAM;
236 FunctionAnalysisManager FAM;
237 ModuleAnalysisManager MAM;
239 MockLoopAnalysisHandle MLAHandle;
240 MockLoopPassHandle MLPHandle;
241 MockFunctionPassHandle MFPHandle;
242 MockModulePassHandle MMPHandle;
244 static PreservedAnalyses
245 getLoopAnalysisResult(Loop &L, LoopAnalysisManager &AM,
246 LoopStandardAnalysisResults &AR, LPMUpdater &) {
247 (void)AM.getResult<MockLoopAnalysisHandle::Analysis>(L, AR);
248 return PreservedAnalyses::all();
251 public:
252 LoopPassManagerTest()
253 : M(parseIR(Context,
254 "define void @f(i1* %ptr) {\n"
255 "entry:\n"
256 " br label %loop.0\n"
257 "loop.0:\n"
258 " %cond.0 = load volatile i1, i1* %ptr\n"
259 " br i1 %cond.0, label %loop.0.0.ph, label %end\n"
260 "loop.0.0.ph:\n"
261 " br label %loop.0.0\n"
262 "loop.0.0:\n"
263 " %cond.0.0 = load volatile i1, i1* %ptr\n"
264 " br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n"
265 "loop.0.1.ph:\n"
266 " br label %loop.0.1\n"
267 "loop.0.1:\n"
268 " %cond.0.1 = load volatile i1, i1* %ptr\n"
269 " br i1 %cond.0.1, label %loop.0.1, label %loop.0.latch\n"
270 "loop.0.latch:\n"
271 " br label %loop.0\n"
272 "end:\n"
273 " ret void\n"
274 "}\n"
275 "\n"
276 "define void @g(i1* %ptr) {\n"
277 "entry:\n"
278 " br label %loop.g.0\n"
279 "loop.g.0:\n"
280 " %cond.0 = load volatile i1, i1* %ptr\n"
281 " br i1 %cond.0, label %loop.g.0, label %end\n"
282 "end:\n"
283 " ret void\n"
284 "}\n")),
285 LAM(true), FAM(true), MAM(true) {
286 // Register our mock analysis.
287 LAM.registerPass([&] { return MLAHandle.getAnalysis(); });
289 // We need DominatorTreeAnalysis for LoopAnalysis.
290 FAM.registerPass([&] { return DominatorTreeAnalysis(); });
291 FAM.registerPass([&] { return LoopAnalysis(); });
292 // We also allow loop passes to assume a set of other analyses and so need
293 // those.
294 FAM.registerPass([&] { return AAManager(); });
295 FAM.registerPass([&] { return AssumptionAnalysis(); });
296 if (EnableMSSALoopDependency)
297 FAM.registerPass([&] { return MemorySSAAnalysis(); });
298 FAM.registerPass([&] { return ScalarEvolutionAnalysis(); });
299 FAM.registerPass([&] { return TargetLibraryAnalysis(); });
300 FAM.registerPass([&] { return TargetIRAnalysis(); });
302 // Register required pass instrumentation analysis.
303 LAM.registerPass([&] { return PassInstrumentationAnalysis(); });
304 FAM.registerPass([&] { return PassInstrumentationAnalysis(); });
305 MAM.registerPass([&] { return PassInstrumentationAnalysis(); });
307 // Cross-register proxies.
308 LAM.registerPass([&] { return FunctionAnalysisManagerLoopProxy(FAM); });
309 FAM.registerPass([&] { return LoopAnalysisManagerFunctionProxy(LAM); });
310 FAM.registerPass([&] { return ModuleAnalysisManagerFunctionProxy(MAM); });
311 MAM.registerPass([&] { return FunctionAnalysisManagerModuleProxy(FAM); });
315 TEST_F(LoopPassManagerTest, Basic) {
316 ModulePassManager MPM(true);
317 ::testing::InSequence MakeExpectationsSequenced;
319 // First we just visit all the loops in all the functions and get their
320 // analysis results. This will run the analysis a total of four times,
321 // once for each loop.
322 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
323 .WillOnce(Invoke(getLoopAnalysisResult));
324 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
325 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
326 .WillOnce(Invoke(getLoopAnalysisResult));
327 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
328 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
329 .WillOnce(Invoke(getLoopAnalysisResult));
330 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
331 EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _))
332 .WillOnce(Invoke(getLoopAnalysisResult));
333 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
334 // Wire the loop pass through pass managers into the module pipeline.
336 LoopPassManager LPM(true);
337 LPM.addPass(MLPHandle.getPass());
338 FunctionPassManager FPM(true);
339 FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
340 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
343 // Next we run two passes over the loops. The first one invalidates the
344 // analyses for one loop, the second ones try to get the analysis results.
345 // This should force only one analysis to re-run within the loop PM, but will
346 // also invalidate everything after the loop pass manager finishes.
347 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
348 .WillOnce(DoDefault())
349 .WillOnce(Invoke(getLoopAnalysisResult));
350 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
351 .WillOnce(InvokeWithoutArgs([] { return PreservedAnalyses::none(); }))
352 .WillOnce(Invoke(getLoopAnalysisResult));
353 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
354 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
355 .WillOnce(DoDefault())
356 .WillOnce(Invoke(getLoopAnalysisResult));
357 EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _))
358 .WillOnce(DoDefault())
359 .WillOnce(Invoke(getLoopAnalysisResult));
360 // Wire two loop pass runs into the module pipeline.
362 LoopPassManager LPM(true);
363 LPM.addPass(MLPHandle.getPass());
364 LPM.addPass(MLPHandle.getPass());
365 FunctionPassManager FPM(true);
366 FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
367 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
370 // And now run the pipeline across the module.
371 MPM.run(*M, MAM);
374 TEST_F(LoopPassManagerTest, FunctionPassInvalidationOfLoopAnalyses) {
375 ModulePassManager MPM(true);
376 FunctionPassManager FPM(true);
377 // We process each function completely in sequence.
378 ::testing::Sequence FSequence, GSequence;
380 // First, force the analysis result to be computed for each loop.
381 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _))
382 .InSequence(FSequence)
383 .WillOnce(DoDefault());
384 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _))
385 .InSequence(FSequence)
386 .WillOnce(DoDefault());
387 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _))
388 .InSequence(FSequence)
389 .WillOnce(DoDefault());
390 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _))
391 .InSequence(GSequence)
392 .WillOnce(DoDefault());
393 FPM.addPass(createFunctionToLoopPassAdaptor(
394 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
396 // No need to re-run if we require again from a fresh loop pass manager.
397 FPM.addPass(createFunctionToLoopPassAdaptor(
398 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
399 // For 'f', preserve most things but not the specific loop analyses.
400 auto PA = getLoopPassPreservedAnalyses();
401 if (EnableMSSALoopDependency)
402 PA.preserve<MemorySSAAnalysis>();
403 EXPECT_CALL(MFPHandle, run(HasName("f"), _))
404 .InSequence(FSequence)
405 .WillOnce(Return(PA));
406 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _))
407 .InSequence(FSequence)
408 .WillOnce(DoDefault());
409 // On one loop, skip the invalidation (as though we did an internal update).
410 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _))
411 .InSequence(FSequence)
412 .WillOnce(Return(false));
413 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _))
414 .InSequence(FSequence)
415 .WillOnce(DoDefault());
416 // Now two loops still have to be recomputed.
417 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _))
418 .InSequence(FSequence)
419 .WillOnce(DoDefault());
420 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _))
421 .InSequence(FSequence)
422 .WillOnce(DoDefault());
423 // Preserve things in the second function to ensure invalidation remains
424 // isolated to one function.
425 EXPECT_CALL(MFPHandle, run(HasName("g"), _))
426 .InSequence(GSequence)
427 .WillOnce(DoDefault());
428 FPM.addPass(MFPHandle.getPass());
429 FPM.addPass(createFunctionToLoopPassAdaptor(
430 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
432 EXPECT_CALL(MFPHandle, run(HasName("f"), _))
433 .InSequence(FSequence)
434 .WillOnce(DoDefault());
435 // For 'g', fail to preserve anything, causing the loops themselves to be
436 // cleared. We don't get an invalidation event here as the loop is gone, but
437 // we should still have to recompute the analysis.
438 EXPECT_CALL(MFPHandle, run(HasName("g"), _))
439 .InSequence(GSequence)
440 .WillOnce(Return(PreservedAnalyses::none()));
441 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _))
442 .InSequence(GSequence)
443 .WillOnce(DoDefault());
444 FPM.addPass(MFPHandle.getPass());
445 FPM.addPass(createFunctionToLoopPassAdaptor(
446 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
448 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
450 // Verify with a separate function pass run that we didn't mess up 'f's
451 // cache. No analysis runs should be necessary here.
452 MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
453 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
455 MPM.run(*M, MAM);
458 TEST_F(LoopPassManagerTest, ModulePassInvalidationOfLoopAnalyses) {
459 ModulePassManager MPM(true);
460 ::testing::InSequence MakeExpectationsSequenced;
462 // First, force the analysis result to be computed for each loop.
463 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
464 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
465 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
466 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
467 MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
468 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
470 // Walking all the way out and all the way back in doesn't re-run the
471 // analysis.
472 MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
473 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
475 // But a module pass that doesn't preserve the actual mock loop analysis
476 // invalidates all the way down and forces recomputing.
477 EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] {
478 auto PA = getLoopPassPreservedAnalyses();
479 PA.preserve<FunctionAnalysisManagerModuleProxy>();
480 if (EnableMSSALoopDependency)
481 PA.preserve<MemorySSAAnalysis>();
482 return PA;
483 }));
484 // All the loop analyses from both functions get invalidated before we
485 // recompute anything.
486 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _));
487 // On one loop, again skip the invalidation (as though we did an internal
488 // update).
489 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _))
490 .WillOnce(Return(false));
491 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _));
492 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.g.0"), _, _));
493 // Now all but one of the loops gets re-analyzed.
494 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
495 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
496 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
497 MPM.addPass(MMPHandle.getPass());
498 MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
499 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
501 // Verify that the cached values persist.
502 MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
503 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
505 // Now we fail to preserve the loop analysis and observe that the loop
506 // analyses are cleared (so no invalidation event) as the loops themselves
507 // are no longer valid.
508 EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] {
509 auto PA = PreservedAnalyses::none();
510 PA.preserve<FunctionAnalysisManagerModuleProxy>();
511 return PA;
512 }));
513 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
514 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
515 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
516 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
517 MPM.addPass(MMPHandle.getPass());
518 MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
519 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
521 // Verify that the cached values persist.
522 MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
523 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
525 // Next, check that even if we preserve everything within the function itelf,
526 // if the function's module pass proxy isn't preserved and the potential set
527 // of functions changes, the clear reaches the loop analyses as well. This
528 // will again trigger re-runs but not invalidation events.
529 EXPECT_CALL(MMPHandle, run(_, _)).WillOnce(InvokeWithoutArgs([] {
530 auto PA = PreservedAnalyses::none();
531 PA.preserveSet<AllAnalysesOn<Function>>();
532 PA.preserveSet<AllAnalysesOn<Loop>>();
533 return PA;
534 }));
535 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
536 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
537 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
538 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
539 MPM.addPass(MMPHandle.getPass());
540 MPM.addPass(createModuleToFunctionPassAdaptor(createFunctionToLoopPassAdaptor(
541 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>())));
543 MPM.run(*M, MAM);
546 // Test that if any of the bundled analyses provided in the LPM's signature
547 // become invalid, the analysis proxy itself becomes invalid and we clear all
548 // loop analysis results.
549 TEST_F(LoopPassManagerTest, InvalidationOfBundledAnalyses) {
550 ModulePassManager MPM(true);
551 FunctionPassManager FPM(true);
552 ::testing::InSequence MakeExpectationsSequenced;
554 // First, force the analysis result to be computed for each loop.
555 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
556 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
557 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
558 FPM.addPass(createFunctionToLoopPassAdaptor(
559 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
561 // No need to re-run if we require again from a fresh loop pass manager.
562 FPM.addPass(createFunctionToLoopPassAdaptor(
563 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
565 // Preserving everything but the loop analyses themselves results in
566 // invalidation and running.
567 EXPECT_CALL(MFPHandle, run(HasName("f"), _))
568 .WillOnce(Return(getLoopPassPreservedAnalyses()));
569 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
570 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
571 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
572 FPM.addPass(MFPHandle.getPass());
573 FPM.addPass(createFunctionToLoopPassAdaptor(
574 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
576 // The rest don't invalidate analyses, they only trigger re-runs because we
577 // clear the cache completely.
578 EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
579 auto PA = PreservedAnalyses::none();
580 // Not preserving `AAManager`.
581 PA.preserve<DominatorTreeAnalysis>();
582 PA.preserve<LoopAnalysis>();
583 PA.preserve<LoopAnalysisManagerFunctionProxy>();
584 PA.preserve<ScalarEvolutionAnalysis>();
585 return PA;
586 }));
587 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
588 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
589 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
590 FPM.addPass(MFPHandle.getPass());
591 FPM.addPass(createFunctionToLoopPassAdaptor(
592 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
594 EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
595 auto PA = PreservedAnalyses::none();
596 PA.preserve<AAManager>();
597 // Not preserving `DominatorTreeAnalysis`.
598 PA.preserve<LoopAnalysis>();
599 PA.preserve<LoopAnalysisManagerFunctionProxy>();
600 PA.preserve<ScalarEvolutionAnalysis>();
601 return PA;
602 }));
603 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
604 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
605 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
606 FPM.addPass(MFPHandle.getPass());
607 FPM.addPass(createFunctionToLoopPassAdaptor(
608 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
610 EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
611 auto PA = PreservedAnalyses::none();
612 PA.preserve<AAManager>();
613 PA.preserve<DominatorTreeAnalysis>();
614 // Not preserving the `LoopAnalysis`.
615 PA.preserve<LoopAnalysisManagerFunctionProxy>();
616 PA.preserve<ScalarEvolutionAnalysis>();
617 return PA;
618 }));
619 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
620 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
621 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
622 FPM.addPass(MFPHandle.getPass());
623 FPM.addPass(createFunctionToLoopPassAdaptor(
624 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
626 EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
627 auto PA = PreservedAnalyses::none();
628 PA.preserve<AAManager>();
629 PA.preserve<DominatorTreeAnalysis>();
630 PA.preserve<LoopAnalysis>();
631 // Not preserving the `LoopAnalysisManagerFunctionProxy`.
632 PA.preserve<ScalarEvolutionAnalysis>();
633 return PA;
634 }));
635 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
636 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
637 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
638 FPM.addPass(MFPHandle.getPass());
639 FPM.addPass(createFunctionToLoopPassAdaptor(
640 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
642 EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
643 auto PA = PreservedAnalyses::none();
644 PA.preserve<AAManager>();
645 PA.preserve<DominatorTreeAnalysis>();
646 PA.preserve<LoopAnalysis>();
647 PA.preserve<LoopAnalysisManagerFunctionProxy>();
648 // Not preserving `ScalarEvolutionAnalysis`.
649 return PA;
650 }));
651 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
652 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
653 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
654 FPM.addPass(MFPHandle.getPass());
655 FPM.addPass(createFunctionToLoopPassAdaptor(
656 RequireAnalysisLoopPass<MockLoopAnalysisHandle::Analysis>()));
658 // After all the churn on 'f', we'll compute the loop analysis results for
659 // 'g' once with a requires pass and then run our mock pass over g a bunch
660 // but just get cached results each time.
661 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
662 EXPECT_CALL(MFPHandle, run(HasName("g"), _)).Times(6);
664 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
665 MPM.run(*M, MAM);
668 TEST_F(LoopPassManagerTest, IndirectInvalidation) {
669 // We need two distinct analysis types and handles.
670 enum { A, B };
671 MockLoopAnalysisHandleTemplate<A> MLAHandleA;
672 MockLoopAnalysisHandleTemplate<B> MLAHandleB;
673 LAM.registerPass([&] { return MLAHandleA.getAnalysis(); });
674 LAM.registerPass([&] { return MLAHandleB.getAnalysis(); });
675 typedef decltype(MLAHandleA)::Analysis AnalysisA;
676 typedef decltype(MLAHandleB)::Analysis AnalysisB;
678 // Set up AnalysisA to depend on our AnalysisB. For testing purposes we just
679 // need to get the AnalysisB results in AnalysisA's run method and check if
680 // AnalysisB gets invalidated in AnalysisA's invalidate method.
681 ON_CALL(MLAHandleA, run(_, _, _))
682 .WillByDefault(Invoke([&](Loop &L, LoopAnalysisManager &AM,
683 LoopStandardAnalysisResults &AR) {
684 (void)AM.getResult<AnalysisB>(L, AR);
685 return MLAHandleA.getResult();
686 }));
687 ON_CALL(MLAHandleA, invalidate(_, _, _))
688 .WillByDefault(Invoke([](Loop &L, const PreservedAnalyses &PA,
689 LoopAnalysisManager::Invalidator &Inv) {
690 auto PAC = PA.getChecker<AnalysisA>();
691 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Loop>>()) ||
692 Inv.invalidate<AnalysisB>(L, PA);
693 }));
695 ::testing::InSequence MakeExpectationsSequenced;
697 // Compute the analyses across all of 'f' first.
698 EXPECT_CALL(MLAHandleA, run(HasName("loop.0.0"), _, _));
699 EXPECT_CALL(MLAHandleB, run(HasName("loop.0.0"), _, _));
700 EXPECT_CALL(MLAHandleA, run(HasName("loop.0.1"), _, _));
701 EXPECT_CALL(MLAHandleB, run(HasName("loop.0.1"), _, _));
702 EXPECT_CALL(MLAHandleA, run(HasName("loop.0"), _, _));
703 EXPECT_CALL(MLAHandleB, run(HasName("loop.0"), _, _));
705 // Now we invalidate AnalysisB (but not AnalysisA) for one of the loops and
706 // preserve everything for the rest. This in turn triggers that one loop to
707 // recompute both AnalysisB *and* AnalysisA if indirect invalidation is
708 // working.
709 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
710 .WillOnce(InvokeWithoutArgs([] {
711 auto PA = getLoopPassPreservedAnalyses();
712 // Specifically preserve AnalysisA so that it would survive if it
713 // didn't depend on AnalysisB.
714 PA.preserve<AnalysisA>();
715 return PA;
716 }));
717 // It happens that AnalysisB is invalidated first. That shouldn't matter
718 // though, and we should still call AnalysisA's invalidation.
719 EXPECT_CALL(MLAHandleB, invalidate(HasName("loop.0.0"), _, _));
720 EXPECT_CALL(MLAHandleA, invalidate(HasName("loop.0.0"), _, _));
721 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
722 .WillOnce(Invoke([](Loop &L, LoopAnalysisManager &AM,
723 LoopStandardAnalysisResults &AR, LPMUpdater &) {
724 (void)AM.getResult<AnalysisA>(L, AR);
725 return PreservedAnalyses::all();
726 }));
727 EXPECT_CALL(MLAHandleA, run(HasName("loop.0.0"), _, _));
728 EXPECT_CALL(MLAHandleB, run(HasName("loop.0.0"), _, _));
729 // The rest of the loops should run and get cached results.
730 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
731 .Times(2)
732 .WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM,
733 LoopStandardAnalysisResults &AR, LPMUpdater &) {
734 (void)AM.getResult<AnalysisA>(L, AR);
735 return PreservedAnalyses::all();
736 }));
737 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
738 .Times(2)
739 .WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM,
740 LoopStandardAnalysisResults &AR, LPMUpdater &) {
741 (void)AM.getResult<AnalysisA>(L, AR);
742 return PreservedAnalyses::all();
743 }));
745 // The run over 'g' should be boring, with us just computing the analyses once
746 // up front and then running loop passes and getting cached results.
747 EXPECT_CALL(MLAHandleA, run(HasName("loop.g.0"), _, _));
748 EXPECT_CALL(MLAHandleB, run(HasName("loop.g.0"), _, _));
749 EXPECT_CALL(MLPHandle, run(HasName("loop.g.0"), _, _, _))
750 .Times(2)
751 .WillRepeatedly(Invoke([](Loop &L, LoopAnalysisManager &AM,
752 LoopStandardAnalysisResults &AR, LPMUpdater &) {
753 (void)AM.getResult<AnalysisA>(L, AR);
754 return PreservedAnalyses::all();
755 }));
757 // Build the pipeline and run it.
758 ModulePassManager MPM(true);
759 FunctionPassManager FPM(true);
760 FPM.addPass(
761 createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass<AnalysisA>()));
762 LoopPassManager LPM(true);
763 LPM.addPass(MLPHandle.getPass());
764 LPM.addPass(MLPHandle.getPass());
765 FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
766 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
767 MPM.run(*M, MAM);
770 TEST_F(LoopPassManagerTest, IndirectOuterPassInvalidation) {
771 typedef decltype(MLAHandle)::Analysis LoopAnalysis;
773 MockFunctionAnalysisHandle MFAHandle;
774 FAM.registerPass([&] { return MFAHandle.getAnalysis(); });
775 typedef decltype(MFAHandle)::Analysis FunctionAnalysis;
777 // Set up the loop analysis to depend on both the function and module
778 // analysis.
779 ON_CALL(MLAHandle, run(_, _, _))
780 .WillByDefault(Invoke([&](Loop &L, LoopAnalysisManager &AM,
781 LoopStandardAnalysisResults &AR) {
782 auto &FAMP = AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR);
783 auto &FAM = FAMP.getManager();
784 Function &F = *L.getHeader()->getParent();
785 if (FAM.getCachedResult<FunctionAnalysis>(F))
786 FAMP.registerOuterAnalysisInvalidation<FunctionAnalysis,
787 LoopAnalysis>();
788 return MLAHandle.getResult();
789 }));
791 ::testing::InSequence MakeExpectationsSequenced;
793 // Compute the analyses across all of 'f' first.
794 EXPECT_CALL(MFPHandle, run(HasName("f"), _))
795 .WillOnce(Invoke([](Function &F, FunctionAnalysisManager &AM) {
796 // Force the computing of the function analysis so it is available in
797 // this function.
798 (void)AM.getResult<FunctionAnalysis>(F);
799 return PreservedAnalyses::all();
800 }));
801 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
802 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
803 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
805 // Now invalidate the function analysis but preserve the loop analyses.
806 // This should trigger immediate invalidation of the loop analyses, despite
807 // the fact that they were preserved.
808 EXPECT_CALL(MFPHandle, run(HasName("f"), _)).WillOnce(InvokeWithoutArgs([] {
809 auto PA = getLoopPassPreservedAnalyses();
810 if (EnableMSSALoopDependency)
811 PA.preserve<MemorySSAAnalysis>();
812 PA.preserveSet<AllAnalysesOn<Loop>>();
813 return PA;
814 }));
815 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.0"), _, _));
816 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0.1"), _, _));
817 EXPECT_CALL(MLAHandle, invalidate(HasName("loop.0"), _, _));
819 // And re-running a requires pass recomputes them.
820 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
821 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
822 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
824 // When we run over 'g' we don't populate the cache with the function
825 // analysis.
826 EXPECT_CALL(MFPHandle, run(HasName("g"), _))
827 .WillOnce(Return(PreservedAnalyses::all()));
828 EXPECT_CALL(MLAHandle, run(HasName("loop.g.0"), _, _));
830 // Which means that no extra invalidation occurs and cached values are used.
831 EXPECT_CALL(MFPHandle, run(HasName("g"), _)).WillOnce(InvokeWithoutArgs([] {
832 auto PA = getLoopPassPreservedAnalyses();
833 if (EnableMSSALoopDependency)
834 PA.preserve<MemorySSAAnalysis>();
835 PA.preserveSet<AllAnalysesOn<Loop>>();
836 return PA;
837 }));
839 // Build the pipeline and run it.
840 ModulePassManager MPM(true);
841 FunctionPassManager FPM(true);
842 FPM.addPass(MFPHandle.getPass());
843 FPM.addPass(
844 createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass<LoopAnalysis>()));
845 FPM.addPass(MFPHandle.getPass());
846 FPM.addPass(
847 createFunctionToLoopPassAdaptor(RequireAnalysisLoopPass<LoopAnalysis>()));
848 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
849 MPM.run(*M, MAM);
852 TEST_F(LoopPassManagerTest, LoopChildInsertion) {
853 // Super boring module with three loops in a single loop nest.
854 M = parseIR(Context, "define void @f(i1* %ptr) {\n"
855 "entry:\n"
856 " br label %loop.0\n"
857 "loop.0:\n"
858 " %cond.0 = load volatile i1, i1* %ptr\n"
859 " br i1 %cond.0, label %loop.0.0.ph, label %end\n"
860 "loop.0.0.ph:\n"
861 " br label %loop.0.0\n"
862 "loop.0.0:\n"
863 " %cond.0.0 = load volatile i1, i1* %ptr\n"
864 " br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n"
865 "loop.0.1.ph:\n"
866 " br label %loop.0.1\n"
867 "loop.0.1:\n"
868 " %cond.0.1 = load volatile i1, i1* %ptr\n"
869 " br i1 %cond.0.1, label %loop.0.1, label %loop.0.2.ph\n"
870 "loop.0.2.ph:\n"
871 " br label %loop.0.2\n"
872 "loop.0.2:\n"
873 " %cond.0.2 = load volatile i1, i1* %ptr\n"
874 " br i1 %cond.0.2, label %loop.0.2, label %loop.0.latch\n"
875 "loop.0.latch:\n"
876 " br label %loop.0\n"
877 "end:\n"
878 " ret void\n"
879 "}\n");
881 // Build up variables referring into the IR so we can rewrite it below
882 // easily.
883 Function &F = *M->begin();
884 ASSERT_THAT(F, HasName("f"));
885 Argument &Ptr = *F.arg_begin();
886 auto BBI = F.begin();
887 BasicBlock &EntryBB = *BBI++;
888 ASSERT_THAT(EntryBB, HasName("entry"));
889 BasicBlock &Loop0BB = *BBI++;
890 ASSERT_THAT(Loop0BB, HasName("loop.0"));
891 BasicBlock &Loop00PHBB = *BBI++;
892 ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph"));
893 BasicBlock &Loop00BB = *BBI++;
894 ASSERT_THAT(Loop00BB, HasName("loop.0.0"));
895 BasicBlock &Loop01PHBB = *BBI++;
896 ASSERT_THAT(Loop01PHBB, HasName("loop.0.1.ph"));
897 BasicBlock &Loop01BB = *BBI++;
898 ASSERT_THAT(Loop01BB, HasName("loop.0.1"));
899 BasicBlock &Loop02PHBB = *BBI++;
900 ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph"));
901 BasicBlock &Loop02BB = *BBI++;
902 ASSERT_THAT(Loop02BB, HasName("loop.0.2"));
903 BasicBlock &Loop0LatchBB = *BBI++;
904 ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch"));
905 BasicBlock &EndBB = *BBI++;
906 ASSERT_THAT(EndBB, HasName("end"));
907 ASSERT_THAT(BBI, F.end());
908 auto CreateCondBr = [&](BasicBlock *TrueBB, BasicBlock *FalseBB,
909 const char *Name, BasicBlock *BB) {
910 auto *Cond = new LoadInst(Type::getInt1Ty(Context), &Ptr, Name,
911 /*isVolatile*/ true, BB);
912 BranchInst::Create(TrueBB, FalseBB, Cond, BB);
915 // Build the pass managers and register our pipeline. We build a single loop
916 // pass pipeline consisting of three mock pass runs over each loop. After
917 // this we run both domtree and loop verification passes to make sure that
918 // the IR remained valid during our mutations.
919 ModulePassManager MPM(true);
920 FunctionPassManager FPM(true);
921 LoopPassManager LPM(true);
922 LPM.addPass(MLPHandle.getPass());
923 LPM.addPass(MLPHandle.getPass());
924 LPM.addPass(MLPHandle.getPass());
925 FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
926 FPM.addPass(DominatorTreeVerifierPass());
927 FPM.addPass(LoopVerifierPass());
928 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
930 // All the visit orders are deterministic, so we use simple fully order
931 // expectations.
932 ::testing::InSequence MakeExpectationsSequenced;
934 // We run loop passes three times over each of the loops.
935 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
936 .WillOnce(Invoke(getLoopAnalysisResult));
937 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
938 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
939 .Times(2)
940 .WillRepeatedly(Invoke(getLoopAnalysisResult));
942 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
943 .WillOnce(Invoke(getLoopAnalysisResult));
944 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
946 // When running over the middle loop, the second run inserts two new child
947 // loops, inserting them and itself into the worklist.
948 BasicBlock *NewLoop010BB, *NewLoop01LatchBB;
949 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
950 .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
951 LoopStandardAnalysisResults &AR,
952 LPMUpdater &Updater) {
953 auto *NewLoop = AR.LI.AllocateLoop();
954 L.addChildLoop(NewLoop);
955 auto *NewLoop010PHBB =
956 BasicBlock::Create(Context, "loop.0.1.0.ph", &F, &Loop02PHBB);
957 NewLoop010BB =
958 BasicBlock::Create(Context, "loop.0.1.0", &F, &Loop02PHBB);
959 NewLoop01LatchBB =
960 BasicBlock::Create(Context, "loop.0.1.latch", &F, &Loop02PHBB);
961 Loop01BB.getTerminator()->replaceUsesOfWith(&Loop01BB, NewLoop010PHBB);
962 BranchInst::Create(NewLoop010BB, NewLoop010PHBB);
963 CreateCondBr(NewLoop01LatchBB, NewLoop010BB, "cond.0.1.0",
964 NewLoop010BB);
965 BranchInst::Create(&Loop01BB, NewLoop01LatchBB);
966 AR.DT.addNewBlock(NewLoop010PHBB, &Loop01BB);
967 AR.DT.addNewBlock(NewLoop010BB, NewLoop010PHBB);
968 AR.DT.addNewBlock(NewLoop01LatchBB, NewLoop010BB);
969 EXPECT_TRUE(AR.DT.verify());
970 L.addBasicBlockToLoop(NewLoop010PHBB, AR.LI);
971 NewLoop->addBasicBlockToLoop(NewLoop010BB, AR.LI);
972 L.addBasicBlockToLoop(NewLoop01LatchBB, AR.LI);
973 NewLoop->verifyLoop();
974 L.verifyLoop();
975 Updater.addChildLoops({NewLoop});
976 return PreservedAnalyses::all();
977 }));
979 // We should immediately drop down to fully visit the new inner loop.
980 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.0"), _, _, _))
981 .WillOnce(Invoke(getLoopAnalysisResult));
982 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1.0"), _, _));
983 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.0"), _, _, _))
984 .Times(2)
985 .WillRepeatedly(Invoke(getLoopAnalysisResult));
987 // After visiting the inner loop, we should re-visit the second loop
988 // reflecting its new loop nest structure.
989 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
990 .WillOnce(Invoke(getLoopAnalysisResult));
992 // In the second run over the middle loop after we've visited the new child,
993 // we add another child to check that we can repeatedly add children, and add
994 // children to a loop that already has children.
995 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
996 .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
997 LoopStandardAnalysisResults &AR,
998 LPMUpdater &Updater) {
999 auto *NewLoop = AR.LI.AllocateLoop();
1000 L.addChildLoop(NewLoop);
1001 auto *NewLoop011PHBB = BasicBlock::Create(Context, "loop.0.1.1.ph", &F, NewLoop01LatchBB);
1002 auto *NewLoop011BB = BasicBlock::Create(Context, "loop.0.1.1", &F, NewLoop01LatchBB);
1003 NewLoop010BB->getTerminator()->replaceUsesOfWith(NewLoop01LatchBB,
1004 NewLoop011PHBB);
1005 BranchInst::Create(NewLoop011BB, NewLoop011PHBB);
1006 CreateCondBr(NewLoop01LatchBB, NewLoop011BB, "cond.0.1.1",
1007 NewLoop011BB);
1008 AR.DT.addNewBlock(NewLoop011PHBB, NewLoop010BB);
1009 auto *NewDTNode = AR.DT.addNewBlock(NewLoop011BB, NewLoop011PHBB);
1010 AR.DT.changeImmediateDominator(AR.DT[NewLoop01LatchBB], NewDTNode);
1011 EXPECT_TRUE(AR.DT.verify());
1012 L.addBasicBlockToLoop(NewLoop011PHBB, AR.LI);
1013 NewLoop->addBasicBlockToLoop(NewLoop011BB, AR.LI);
1014 NewLoop->verifyLoop();
1015 L.verifyLoop();
1016 Updater.addChildLoops({NewLoop});
1017 return PreservedAnalyses::all();
1018 }));
1020 // Again, we should immediately drop down to visit the new, unvisited child
1021 // loop. We don't need to revisit the other child though.
1022 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.1"), _, _, _))
1023 .WillOnce(Invoke(getLoopAnalysisResult));
1024 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1.1"), _, _));
1025 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1.1"), _, _, _))
1026 .Times(2)
1027 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1029 // And now we should pop back up to the second loop and do a full pipeline of
1030 // three passes on its current form.
1031 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1032 .Times(3)
1033 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1035 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1036 .WillOnce(Invoke(getLoopAnalysisResult));
1037 EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _));
1038 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1039 .Times(2)
1040 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1042 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1043 .WillOnce(Invoke(getLoopAnalysisResult));
1044 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
1045 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1046 .Times(2)
1047 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1049 // Now that all the expected actions are registered, run the pipeline over
1050 // our module. All of our expectations are verified when the test finishes.
1051 MPM.run(*M, MAM);
1054 TEST_F(LoopPassManagerTest, LoopPeerInsertion) {
1055 // Super boring module with two loop nests and loop nest with two child
1056 // loops.
1057 M = parseIR(Context, "define void @f(i1* %ptr) {\n"
1058 "entry:\n"
1059 " br label %loop.0\n"
1060 "loop.0:\n"
1061 " %cond.0 = load volatile i1, i1* %ptr\n"
1062 " br i1 %cond.0, label %loop.0.0.ph, label %loop.2.ph\n"
1063 "loop.0.0.ph:\n"
1064 " br label %loop.0.0\n"
1065 "loop.0.0:\n"
1066 " %cond.0.0 = load volatile i1, i1* %ptr\n"
1067 " br i1 %cond.0.0, label %loop.0.0, label %loop.0.2.ph\n"
1068 "loop.0.2.ph:\n"
1069 " br label %loop.0.2\n"
1070 "loop.0.2:\n"
1071 " %cond.0.2 = load volatile i1, i1* %ptr\n"
1072 " br i1 %cond.0.2, label %loop.0.2, label %loop.0.latch\n"
1073 "loop.0.latch:\n"
1074 " br label %loop.0\n"
1075 "loop.2.ph:\n"
1076 " br label %loop.2\n"
1077 "loop.2:\n"
1078 " %cond.2 = load volatile i1, i1* %ptr\n"
1079 " br i1 %cond.2, label %loop.2, label %end\n"
1080 "end:\n"
1081 " ret void\n"
1082 "}\n");
1084 // Build up variables referring into the IR so we can rewrite it below
1085 // easily.
1086 Function &F = *M->begin();
1087 ASSERT_THAT(F, HasName("f"));
1088 Argument &Ptr = *F.arg_begin();
1089 auto BBI = F.begin();
1090 BasicBlock &EntryBB = *BBI++;
1091 ASSERT_THAT(EntryBB, HasName("entry"));
1092 BasicBlock &Loop0BB = *BBI++;
1093 ASSERT_THAT(Loop0BB, HasName("loop.0"));
1094 BasicBlock &Loop00PHBB = *BBI++;
1095 ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph"));
1096 BasicBlock &Loop00BB = *BBI++;
1097 ASSERT_THAT(Loop00BB, HasName("loop.0.0"));
1098 BasicBlock &Loop02PHBB = *BBI++;
1099 ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph"));
1100 BasicBlock &Loop02BB = *BBI++;
1101 ASSERT_THAT(Loop02BB, HasName("loop.0.2"));
1102 BasicBlock &Loop0LatchBB = *BBI++;
1103 ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch"));
1104 BasicBlock &Loop2PHBB = *BBI++;
1105 ASSERT_THAT(Loop2PHBB, HasName("loop.2.ph"));
1106 BasicBlock &Loop2BB = *BBI++;
1107 ASSERT_THAT(Loop2BB, HasName("loop.2"));
1108 BasicBlock &EndBB = *BBI++;
1109 ASSERT_THAT(EndBB, HasName("end"));
1110 ASSERT_THAT(BBI, F.end());
1111 auto CreateCondBr = [&](BasicBlock *TrueBB, BasicBlock *FalseBB,
1112 const char *Name, BasicBlock *BB) {
1113 auto *Cond = new LoadInst(Type::getInt1Ty(Context), &Ptr, Name,
1114 /*isVolatile*/ true, BB);
1115 BranchInst::Create(TrueBB, FalseBB, Cond, BB);
1118 // Build the pass managers and register our pipeline. We build a single loop
1119 // pass pipeline consisting of three mock pass runs over each loop. After
1120 // this we run both domtree and loop verification passes to make sure that
1121 // the IR remained valid during our mutations.
1122 ModulePassManager MPM(true);
1123 FunctionPassManager FPM(true);
1124 LoopPassManager LPM(true);
1125 LPM.addPass(MLPHandle.getPass());
1126 LPM.addPass(MLPHandle.getPass());
1127 LPM.addPass(MLPHandle.getPass());
1128 FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
1129 FPM.addPass(DominatorTreeVerifierPass());
1130 FPM.addPass(LoopVerifierPass());
1131 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
1133 // All the visit orders are deterministic, so we use simple fully order
1134 // expectations.
1135 ::testing::InSequence MakeExpectationsSequenced;
1137 // We run loop passes three times over each of the loops.
1138 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1139 .WillOnce(Invoke(getLoopAnalysisResult));
1140 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
1142 // On the second run, we insert a sibling loop.
1143 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1144 .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
1145 LoopStandardAnalysisResults &AR,
1146 LPMUpdater &Updater) {
1147 auto *NewLoop = AR.LI.AllocateLoop();
1148 L.getParentLoop()->addChildLoop(NewLoop);
1149 auto *NewLoop01PHBB = BasicBlock::Create(Context, "loop.0.1.ph", &F, &Loop02PHBB);
1150 auto *NewLoop01BB = BasicBlock::Create(Context, "loop.0.1", &F, &Loop02PHBB);
1151 BranchInst::Create(NewLoop01BB, NewLoop01PHBB);
1152 CreateCondBr(&Loop02PHBB, NewLoop01BB, "cond.0.1", NewLoop01BB);
1153 Loop00BB.getTerminator()->replaceUsesOfWith(&Loop02PHBB, NewLoop01PHBB);
1154 AR.DT.addNewBlock(NewLoop01PHBB, &Loop00BB);
1155 auto *NewDTNode = AR.DT.addNewBlock(NewLoop01BB, NewLoop01PHBB);
1156 AR.DT.changeImmediateDominator(AR.DT[&Loop02PHBB], NewDTNode);
1157 EXPECT_TRUE(AR.DT.verify());
1158 L.getParentLoop()->addBasicBlockToLoop(NewLoop01PHBB, AR.LI);
1159 NewLoop->addBasicBlockToLoop(NewLoop01BB, AR.LI);
1160 L.getParentLoop()->verifyLoop();
1161 Updater.addSiblingLoops({NewLoop});
1162 return PreservedAnalyses::all();
1163 }));
1164 // We finish processing this loop as sibling loops don't perturb the
1165 // postorder walk.
1166 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1167 .WillOnce(Invoke(getLoopAnalysisResult));
1169 // We visit the inserted sibling next.
1170 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1171 .WillOnce(Invoke(getLoopAnalysisResult));
1172 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
1173 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1174 .Times(2)
1175 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1177 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1178 .WillOnce(Invoke(getLoopAnalysisResult));
1179 EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _));
1180 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1181 .WillOnce(Invoke(getLoopAnalysisResult));
1182 // Next, on the third pass run on the last inner loop we add more new
1183 // siblings, more than one, and one with nested child loops. By doing this at
1184 // the end we make sure that edge case works well.
1185 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1186 .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
1187 LoopStandardAnalysisResults &AR,
1188 LPMUpdater &Updater) {
1189 Loop *NewLoops[] = {AR.LI.AllocateLoop(), AR.LI.AllocateLoop(),
1190 AR.LI.AllocateLoop()};
1191 L.getParentLoop()->addChildLoop(NewLoops[0]);
1192 L.getParentLoop()->addChildLoop(NewLoops[1]);
1193 NewLoops[1]->addChildLoop(NewLoops[2]);
1194 auto *NewLoop03PHBB =
1195 BasicBlock::Create(Context, "loop.0.3.ph", &F, &Loop0LatchBB);
1196 auto *NewLoop03BB =
1197 BasicBlock::Create(Context, "loop.0.3", &F, &Loop0LatchBB);
1198 auto *NewLoop04PHBB =
1199 BasicBlock::Create(Context, "loop.0.4.ph", &F, &Loop0LatchBB);
1200 auto *NewLoop04BB =
1201 BasicBlock::Create(Context, "loop.0.4", &F, &Loop0LatchBB);
1202 auto *NewLoop040PHBB =
1203 BasicBlock::Create(Context, "loop.0.4.0.ph", &F, &Loop0LatchBB);
1204 auto *NewLoop040BB =
1205 BasicBlock::Create(Context, "loop.0.4.0", &F, &Loop0LatchBB);
1206 auto *NewLoop04LatchBB =
1207 BasicBlock::Create(Context, "loop.0.4.latch", &F, &Loop0LatchBB);
1208 Loop02BB.getTerminator()->replaceUsesOfWith(&Loop0LatchBB, NewLoop03PHBB);
1209 BranchInst::Create(NewLoop03BB, NewLoop03PHBB);
1210 CreateCondBr(NewLoop04PHBB, NewLoop03BB, "cond.0.3", NewLoop03BB);
1211 BranchInst::Create(NewLoop04BB, NewLoop04PHBB);
1212 CreateCondBr(&Loop0LatchBB, NewLoop040PHBB, "cond.0.4", NewLoop04BB);
1213 BranchInst::Create(NewLoop040BB, NewLoop040PHBB);
1214 CreateCondBr(NewLoop04LatchBB, NewLoop040BB, "cond.0.4.0", NewLoop040BB);
1215 BranchInst::Create(NewLoop04BB, NewLoop04LatchBB);
1216 AR.DT.addNewBlock(NewLoop03PHBB, &Loop02BB);
1217 AR.DT.addNewBlock(NewLoop03BB, NewLoop03PHBB);
1218 AR.DT.addNewBlock(NewLoop04PHBB, NewLoop03BB);
1219 auto *NewDTNode = AR.DT.addNewBlock(NewLoop04BB, NewLoop04PHBB);
1220 AR.DT.changeImmediateDominator(AR.DT[&Loop0LatchBB], NewDTNode);
1221 AR.DT.addNewBlock(NewLoop040PHBB, NewLoop04BB);
1222 AR.DT.addNewBlock(NewLoop040BB, NewLoop040PHBB);
1223 AR.DT.addNewBlock(NewLoop04LatchBB, NewLoop040BB);
1224 EXPECT_TRUE(AR.DT.verify());
1225 L.getParentLoop()->addBasicBlockToLoop(NewLoop03PHBB, AR.LI);
1226 NewLoops[0]->addBasicBlockToLoop(NewLoop03BB, AR.LI);
1227 L.getParentLoop()->addBasicBlockToLoop(NewLoop04PHBB, AR.LI);
1228 NewLoops[1]->addBasicBlockToLoop(NewLoop04BB, AR.LI);
1229 NewLoops[1]->addBasicBlockToLoop(NewLoop040PHBB, AR.LI);
1230 NewLoops[2]->addBasicBlockToLoop(NewLoop040BB, AR.LI);
1231 NewLoops[1]->addBasicBlockToLoop(NewLoop04LatchBB, AR.LI);
1232 L.getParentLoop()->verifyLoop();
1233 Updater.addSiblingLoops({NewLoops[0], NewLoops[1]});
1234 return PreservedAnalyses::all();
1235 }));
1237 EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
1238 .WillOnce(Invoke(getLoopAnalysisResult));
1239 EXPECT_CALL(MLAHandle, run(HasName("loop.0.3"), _, _));
1240 EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
1241 .Times(2)
1242 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1244 // Note that we need to visit the inner loop of this added sibling before the
1245 // sibling itself!
1246 EXPECT_CALL(MLPHandle, run(HasName("loop.0.4.0"), _, _, _))
1247 .WillOnce(Invoke(getLoopAnalysisResult));
1248 EXPECT_CALL(MLAHandle, run(HasName("loop.0.4.0"), _, _));
1249 EXPECT_CALL(MLPHandle, run(HasName("loop.0.4.0"), _, _, _))
1250 .Times(2)
1251 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1253 EXPECT_CALL(MLPHandle, run(HasName("loop.0.4"), _, _, _))
1254 .WillOnce(Invoke(getLoopAnalysisResult));
1255 EXPECT_CALL(MLAHandle, run(HasName("loop.0.4"), _, _));
1256 EXPECT_CALL(MLPHandle, run(HasName("loop.0.4"), _, _, _))
1257 .Times(2)
1258 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1260 // And only now do we visit the outermost loop of the nest.
1261 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1262 .WillOnce(Invoke(getLoopAnalysisResult));
1263 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
1264 // On the second pass, we add sibling loops which become new top-level loops.
1265 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1266 .WillOnce(Invoke([&](Loop &L, LoopAnalysisManager &AM,
1267 LoopStandardAnalysisResults &AR,
1268 LPMUpdater &Updater) {
1269 auto *NewLoop = AR.LI.AllocateLoop();
1270 AR.LI.addTopLevelLoop(NewLoop);
1271 auto *NewLoop1PHBB = BasicBlock::Create(Context, "loop.1.ph", &F, &Loop2BB);
1272 auto *NewLoop1BB = BasicBlock::Create(Context, "loop.1", &F, &Loop2BB);
1273 BranchInst::Create(NewLoop1BB, NewLoop1PHBB);
1274 CreateCondBr(&Loop2PHBB, NewLoop1BB, "cond.1", NewLoop1BB);
1275 Loop0BB.getTerminator()->replaceUsesOfWith(&Loop2PHBB, NewLoop1PHBB);
1276 AR.DT.addNewBlock(NewLoop1PHBB, &Loop0BB);
1277 auto *NewDTNode = AR.DT.addNewBlock(NewLoop1BB, NewLoop1PHBB);
1278 AR.DT.changeImmediateDominator(AR.DT[&Loop2PHBB], NewDTNode);
1279 EXPECT_TRUE(AR.DT.verify());
1280 NewLoop->addBasicBlockToLoop(NewLoop1BB, AR.LI);
1281 NewLoop->verifyLoop();
1282 Updater.addSiblingLoops({NewLoop});
1283 return PreservedAnalyses::all();
1284 }));
1285 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1286 .WillOnce(Invoke(getLoopAnalysisResult));
1288 EXPECT_CALL(MLPHandle, run(HasName("loop.1"), _, _, _))
1289 .WillOnce(Invoke(getLoopAnalysisResult));
1290 EXPECT_CALL(MLAHandle, run(HasName("loop.1"), _, _));
1291 EXPECT_CALL(MLPHandle, run(HasName("loop.1"), _, _, _))
1292 .Times(2)
1293 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1295 EXPECT_CALL(MLPHandle, run(HasName("loop.2"), _, _, _))
1296 .WillOnce(Invoke(getLoopAnalysisResult));
1297 EXPECT_CALL(MLAHandle, run(HasName("loop.2"), _, _));
1298 EXPECT_CALL(MLPHandle, run(HasName("loop.2"), _, _, _))
1299 .Times(2)
1300 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1302 // Now that all the expected actions are registered, run the pipeline over
1303 // our module. All of our expectations are verified when the test finishes.
1304 MPM.run(*M, MAM);
1307 TEST_F(LoopPassManagerTest, LoopDeletion) {
1308 // Build a module with a single loop nest that contains one outer loop with
1309 // three subloops, and one of those with its own subloop. We will
1310 // incrementally delete all of these to test different deletion scenarios.
1311 M = parseIR(Context, "define void @f(i1* %ptr) {\n"
1312 "entry:\n"
1313 " br label %loop.0\n"
1314 "loop.0:\n"
1315 " %cond.0 = load volatile i1, i1* %ptr\n"
1316 " br i1 %cond.0, label %loop.0.0.ph, label %end\n"
1317 "loop.0.0.ph:\n"
1318 " br label %loop.0.0\n"
1319 "loop.0.0:\n"
1320 " %cond.0.0 = load volatile i1, i1* %ptr\n"
1321 " br i1 %cond.0.0, label %loop.0.0, label %loop.0.1.ph\n"
1322 "loop.0.1.ph:\n"
1323 " br label %loop.0.1\n"
1324 "loop.0.1:\n"
1325 " %cond.0.1 = load volatile i1, i1* %ptr\n"
1326 " br i1 %cond.0.1, label %loop.0.1, label %loop.0.2.ph\n"
1327 "loop.0.2.ph:\n"
1328 " br label %loop.0.2\n"
1329 "loop.0.2:\n"
1330 " %cond.0.2 = load volatile i1, i1* %ptr\n"
1331 " br i1 %cond.0.2, label %loop.0.2.0.ph, label %loop.0.latch\n"
1332 "loop.0.2.0.ph:\n"
1333 " br label %loop.0.2.0\n"
1334 "loop.0.2.0:\n"
1335 " %cond.0.2.0 = load volatile i1, i1* %ptr\n"
1336 " br i1 %cond.0.2.0, label %loop.0.2.0, label %loop.0.2.latch\n"
1337 "loop.0.2.latch:\n"
1338 " br label %loop.0.2\n"
1339 "loop.0.latch:\n"
1340 " br label %loop.0\n"
1341 "end:\n"
1342 " ret void\n"
1343 "}\n");
1345 // Build up variables referring into the IR so we can rewrite it below
1346 // easily.
1347 Function &F = *M->begin();
1348 ASSERT_THAT(F, HasName("f"));
1349 Argument &Ptr = *F.arg_begin();
1350 auto BBI = F.begin();
1351 BasicBlock &EntryBB = *BBI++;
1352 ASSERT_THAT(EntryBB, HasName("entry"));
1353 BasicBlock &Loop0BB = *BBI++;
1354 ASSERT_THAT(Loop0BB, HasName("loop.0"));
1355 BasicBlock &Loop00PHBB = *BBI++;
1356 ASSERT_THAT(Loop00PHBB, HasName("loop.0.0.ph"));
1357 BasicBlock &Loop00BB = *BBI++;
1358 ASSERT_THAT(Loop00BB, HasName("loop.0.0"));
1359 BasicBlock &Loop01PHBB = *BBI++;
1360 ASSERT_THAT(Loop01PHBB, HasName("loop.0.1.ph"));
1361 BasicBlock &Loop01BB = *BBI++;
1362 ASSERT_THAT(Loop01BB, HasName("loop.0.1"));
1363 BasicBlock &Loop02PHBB = *BBI++;
1364 ASSERT_THAT(Loop02PHBB, HasName("loop.0.2.ph"));
1365 BasicBlock &Loop02BB = *BBI++;
1366 ASSERT_THAT(Loop02BB, HasName("loop.0.2"));
1367 BasicBlock &Loop020PHBB = *BBI++;
1368 ASSERT_THAT(Loop020PHBB, HasName("loop.0.2.0.ph"));
1369 BasicBlock &Loop020BB = *BBI++;
1370 ASSERT_THAT(Loop020BB, HasName("loop.0.2.0"));
1371 BasicBlock &Loop02LatchBB = *BBI++;
1372 ASSERT_THAT(Loop02LatchBB, HasName("loop.0.2.latch"));
1373 BasicBlock &Loop0LatchBB = *BBI++;
1374 ASSERT_THAT(Loop0LatchBB, HasName("loop.0.latch"));
1375 BasicBlock &EndBB = *BBI++;
1376 ASSERT_THAT(EndBB, HasName("end"));
1377 ASSERT_THAT(BBI, F.end());
1379 // Helper to do the actual deletion of a loop. We directly encode this here
1380 // to isolate ourselves from the rest of LLVM and for simplicity. Here we can
1381 // egregiously cheat based on knowledge of the test case. For example, we
1382 // have no PHI nodes and there is always a single i-dom.
1383 auto EraseLoop = [](Loop &L, BasicBlock &IDomBB,
1384 LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
1385 assert(L.empty() && "Can only delete leaf loops with this routine!");
1386 SmallVector<BasicBlock *, 4> LoopBBs(L.block_begin(), L.block_end());
1387 Updater.markLoopAsDeleted(L, L.getName());
1388 IDomBB.getTerminator()->replaceUsesOfWith(L.getHeader(),
1389 L.getUniqueExitBlock());
1390 for (BasicBlock *LoopBB : LoopBBs) {
1391 SmallVector<DomTreeNode *, 4> ChildNodes(AR.DT[LoopBB]->begin(),
1392 AR.DT[LoopBB]->end());
1393 for (DomTreeNode *ChildNode : ChildNodes)
1394 AR.DT.changeImmediateDominator(ChildNode, AR.DT[&IDomBB]);
1395 AR.DT.eraseNode(LoopBB);
1396 AR.LI.removeBlock(LoopBB);
1397 LoopBB->dropAllReferences();
1399 for (BasicBlock *LoopBB : LoopBBs)
1400 LoopBB->eraseFromParent();
1402 AR.LI.erase(&L);
1405 // Build up the pass managers.
1406 ModulePassManager MPM(true);
1407 FunctionPassManager FPM(true);
1408 // We run several loop pass pipelines across the loop nest, but they all take
1409 // the same form of three mock pass runs in a loop pipeline followed by
1410 // domtree and loop verification. We use a lambda to stamp this out each
1411 // time.
1412 auto AddLoopPipelineAndVerificationPasses = [&] {
1413 LoopPassManager LPM(true);
1414 LPM.addPass(MLPHandle.getPass());
1415 LPM.addPass(MLPHandle.getPass());
1416 LPM.addPass(MLPHandle.getPass());
1417 FPM.addPass(createFunctionToLoopPassAdaptor(std::move(LPM)));
1418 FPM.addPass(DominatorTreeVerifierPass());
1419 FPM.addPass(LoopVerifierPass());
1422 // All the visit orders are deterministic so we use simple fully order
1423 // expectations.
1424 ::testing::InSequence MakeExpectationsSequenced;
1426 // We run the loop pipeline with three passes over each of the loops. When
1427 // running over the middle loop, the second pass in the pipeline deletes it.
1428 // This should prevent the third pass from visiting it but otherwise leave
1429 // the process unimpacted.
1430 AddLoopPipelineAndVerificationPasses();
1431 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1432 .WillOnce(Invoke(getLoopAnalysisResult));
1433 EXPECT_CALL(MLAHandle, run(HasName("loop.0.0"), _, _));
1434 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1435 .Times(2)
1436 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1438 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1439 .WillOnce(Invoke(getLoopAnalysisResult));
1440 EXPECT_CALL(MLAHandle, run(HasName("loop.0.1"), _, _));
1441 EXPECT_CALL(MLPHandle, run(HasName("loop.0.1"), _, _, _))
1442 .WillOnce(
1443 Invoke([&](Loop &L, LoopAnalysisManager &AM,
1444 LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
1445 Loop *ParentL = L.getParentLoop();
1446 AR.SE.forgetLoop(&L);
1447 EraseLoop(L, Loop01PHBB, AR, Updater);
1448 ParentL->verifyLoop();
1449 return PreservedAnalyses::all();
1450 }));
1452 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _))
1453 .WillOnce(Invoke(getLoopAnalysisResult));
1454 EXPECT_CALL(MLAHandle, run(HasName("loop.0.2.0"), _, _));
1455 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _))
1456 .Times(2)
1457 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1459 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1460 .WillOnce(Invoke(getLoopAnalysisResult));
1461 EXPECT_CALL(MLAHandle, run(HasName("loop.0.2"), _, _));
1462 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1463 .Times(2)
1464 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1466 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1467 .WillOnce(Invoke(getLoopAnalysisResult));
1468 EXPECT_CALL(MLAHandle, run(HasName("loop.0"), _, _));
1469 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1470 .Times(2)
1471 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1473 // Run the loop pipeline again. This time we delete the last loop, which
1474 // contains a nested loop within it and insert a new loop into the nest. This
1475 // makes sure we can handle nested loop deletion.
1476 AddLoopPipelineAndVerificationPasses();
1477 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1478 .Times(3)
1479 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1481 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2.0"), _, _, _))
1482 .Times(3)
1483 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1485 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1486 .WillOnce(Invoke(getLoopAnalysisResult));
1487 BasicBlock *NewLoop03PHBB;
1488 EXPECT_CALL(MLPHandle, run(HasName("loop.0.2"), _, _, _))
1489 .WillOnce(
1490 Invoke([&](Loop &L, LoopAnalysisManager &AM,
1491 LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
1492 AR.SE.forgetLoop(*L.begin());
1493 EraseLoop(**L.begin(), Loop020PHBB, AR, Updater);
1495 auto *ParentL = L.getParentLoop();
1496 AR.SE.forgetLoop(&L);
1497 EraseLoop(L, Loop02PHBB, AR, Updater);
1499 // Now insert a new sibling loop.
1500 auto *NewSibling = AR.LI.AllocateLoop();
1501 ParentL->addChildLoop(NewSibling);
1502 NewLoop03PHBB =
1503 BasicBlock::Create(Context, "loop.0.3.ph", &F, &Loop0LatchBB);
1504 auto *NewLoop03BB =
1505 BasicBlock::Create(Context, "loop.0.3", &F, &Loop0LatchBB);
1506 BranchInst::Create(NewLoop03BB, NewLoop03PHBB);
1507 auto *Cond =
1508 new LoadInst(Type::getInt1Ty(Context), &Ptr, "cond.0.3",
1509 /*isVolatile*/ true, NewLoop03BB);
1510 BranchInst::Create(&Loop0LatchBB, NewLoop03BB, Cond, NewLoop03BB);
1511 Loop02PHBB.getTerminator()->replaceUsesOfWith(&Loop0LatchBB,
1512 NewLoop03PHBB);
1513 AR.DT.addNewBlock(NewLoop03PHBB, &Loop02PHBB);
1514 AR.DT.addNewBlock(NewLoop03BB, NewLoop03PHBB);
1515 AR.DT.changeImmediateDominator(AR.DT[&Loop0LatchBB],
1516 AR.DT[NewLoop03BB]);
1517 EXPECT_TRUE(AR.DT.verify());
1518 ParentL->addBasicBlockToLoop(NewLoop03PHBB, AR.LI);
1519 NewSibling->addBasicBlockToLoop(NewLoop03BB, AR.LI);
1520 NewSibling->verifyLoop();
1521 ParentL->verifyLoop();
1522 Updater.addSiblingLoops({NewSibling});
1523 return PreservedAnalyses::all();
1524 }));
1526 // To respect our inner-to-outer traversal order, we must visit the
1527 // newly-inserted sibling of the loop we just deleted before we visit the
1528 // outer loop. When we do so, this must compute a fresh analysis result, even
1529 // though our new loop has the same pointer value as the loop we deleted.
1530 EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
1531 .WillOnce(Invoke(getLoopAnalysisResult));
1532 EXPECT_CALL(MLAHandle, run(HasName("loop.0.3"), _, _));
1533 EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
1534 .Times(2)
1535 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1537 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1538 .Times(3)
1539 .WillRepeatedly(Invoke(getLoopAnalysisResult));
1541 // In the final loop pipeline run we delete every loop, including the last
1542 // loop of the nest. We do this again in the second pass in the pipeline, and
1543 // as a consequence we never make it to three runs on any loop. We also cover
1544 // deleting multiple loops in a single pipeline, deleting the first loop and
1545 // deleting the (last) top level loop.
1546 AddLoopPipelineAndVerificationPasses();
1547 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1548 .WillOnce(Invoke(getLoopAnalysisResult));
1549 EXPECT_CALL(MLPHandle, run(HasName("loop.0.0"), _, _, _))
1550 .WillOnce(
1551 Invoke([&](Loop &L, LoopAnalysisManager &AM,
1552 LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
1553 AR.SE.forgetLoop(&L);
1554 EraseLoop(L, Loop00PHBB, AR, Updater);
1555 return PreservedAnalyses::all();
1556 }));
1558 EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
1559 .WillOnce(Invoke(getLoopAnalysisResult));
1560 EXPECT_CALL(MLPHandle, run(HasName("loop.0.3"), _, _, _))
1561 .WillOnce(
1562 Invoke([&](Loop &L, LoopAnalysisManager &AM,
1563 LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
1564 AR.SE.forgetLoop(&L);
1565 EraseLoop(L, *NewLoop03PHBB, AR, Updater);
1566 return PreservedAnalyses::all();
1567 }));
1569 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1570 .WillOnce(Invoke(getLoopAnalysisResult));
1571 EXPECT_CALL(MLPHandle, run(HasName("loop.0"), _, _, _))
1572 .WillOnce(
1573 Invoke([&](Loop &L, LoopAnalysisManager &AM,
1574 LoopStandardAnalysisResults &AR, LPMUpdater &Updater) {
1575 AR.SE.forgetLoop(&L);
1576 EraseLoop(L, EntryBB, AR, Updater);
1577 return PreservedAnalyses::all();
1578 }));
1580 // Add the function pass pipeline now that it is fully built up and run it
1581 // over the module's one function.
1582 MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
1583 MPM.run(*M, MAM);