[DAGCombiner] Eliminate dead stores to stack.
[llvm-complete.git] / include / llvm / CodeGen / SelectionDAGNodes.h
bloba5d494ff4e0a975c4c606ba7a900d9f95bcba15c
1 //===- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ----*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the SDNode class and derived classes, which are used to
10 // represent the nodes and operations present in a SelectionDAG. These nodes
11 // and operations are machine code level operations, with some similarities to
12 // the GCC RTL representation.
14 // Clients should include the SelectionDAG.h file instead of this file directly.
16 //===----------------------------------------------------------------------===//
18 #ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
19 #define LLVM_CODEGEN_SELECTIONDAGNODES_H
21 #include "llvm/ADT/APFloat.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/FoldingSet.h"
25 #include "llvm/ADT/GraphTraits.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/ilist_node.h"
29 #include "llvm/ADT/iterator.h"
30 #include "llvm/ADT/iterator_range.h"
31 #include "llvm/CodeGen/ISDOpcodes.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/ValueTypes.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DebugLoc.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/Support/AlignOf.h"
41 #include "llvm/Support/AtomicOrdering.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/MachineValueType.h"
45 #include <algorithm>
46 #include <cassert>
47 #include <climits>
48 #include <cstddef>
49 #include <cstdint>
50 #include <cstring>
51 #include <iterator>
52 #include <string>
53 #include <tuple>
55 namespace llvm {
57 class APInt;
58 class Constant;
59 template <typename T> struct DenseMapInfo;
60 class GlobalValue;
61 class MachineBasicBlock;
62 class MachineConstantPoolValue;
63 class MCSymbol;
64 class raw_ostream;
65 class SDNode;
66 class SelectionDAG;
67 class Type;
68 class Value;
70 void checkForCycles(const SDNode *N, const SelectionDAG *DAG = nullptr,
71 bool force = false);
73 /// This represents a list of ValueType's that has been intern'd by
74 /// a SelectionDAG. Instances of this simple value class are returned by
75 /// SelectionDAG::getVTList(...).
76 ///
77 struct SDVTList {
78 const EVT *VTs;
79 unsigned int NumVTs;
82 namespace ISD {
84 /// Node predicates
86 /// If N is a BUILD_VECTOR node whose elements are all the same constant or
87 /// undefined, return true and return the constant value in \p SplatValue.
88 bool isConstantSplatVector(const SDNode *N, APInt &SplatValue);
90 /// Return true if the specified node is a BUILD_VECTOR where all of the
91 /// elements are ~0 or undef.
92 bool isBuildVectorAllOnes(const SDNode *N);
94 /// Return true if the specified node is a BUILD_VECTOR where all of the
95 /// elements are 0 or undef.
96 bool isBuildVectorAllZeros(const SDNode *N);
98 /// Return true if the specified node is a BUILD_VECTOR node of all
99 /// ConstantSDNode or undef.
100 bool isBuildVectorOfConstantSDNodes(const SDNode *N);
102 /// Return true if the specified node is a BUILD_VECTOR node of all
103 /// ConstantFPSDNode or undef.
104 bool isBuildVectorOfConstantFPSDNodes(const SDNode *N);
106 /// Return true if the node has at least one operand and all operands of the
107 /// specified node are ISD::UNDEF.
108 bool allOperandsUndef(const SDNode *N);
110 } // end namespace ISD
112 //===----------------------------------------------------------------------===//
113 /// Unlike LLVM values, Selection DAG nodes may return multiple
114 /// values as the result of a computation. Many nodes return multiple values,
115 /// from loads (which define a token and a return value) to ADDC (which returns
116 /// a result and a carry value), to calls (which may return an arbitrary number
117 /// of values).
119 /// As such, each use of a SelectionDAG computation must indicate the node that
120 /// computes it as well as which return value to use from that node. This pair
121 /// of information is represented with the SDValue value type.
123 class SDValue {
124 friend struct DenseMapInfo<SDValue>;
126 SDNode *Node = nullptr; // The node defining the value we are using.
127 unsigned ResNo = 0; // Which return value of the node we are using.
129 public:
130 SDValue() = default;
131 SDValue(SDNode *node, unsigned resno);
133 /// get the index which selects a specific result in the SDNode
134 unsigned getResNo() const { return ResNo; }
136 /// get the SDNode which holds the desired result
137 SDNode *getNode() const { return Node; }
139 /// set the SDNode
140 void setNode(SDNode *N) { Node = N; }
142 inline SDNode *operator->() const { return Node; }
144 bool operator==(const SDValue &O) const {
145 return Node == O.Node && ResNo == O.ResNo;
147 bool operator!=(const SDValue &O) const {
148 return !operator==(O);
150 bool operator<(const SDValue &O) const {
151 return std::tie(Node, ResNo) < std::tie(O.Node, O.ResNo);
153 explicit operator bool() const {
154 return Node != nullptr;
157 SDValue getValue(unsigned R) const {
158 return SDValue(Node, R);
161 /// Return true if this node is an operand of N.
162 bool isOperandOf(const SDNode *N) const;
164 /// Return the ValueType of the referenced return value.
165 inline EVT getValueType() const;
167 /// Return the simple ValueType of the referenced return value.
168 MVT getSimpleValueType() const {
169 return getValueType().getSimpleVT();
172 /// Returns the size of the value in bits.
173 unsigned getValueSizeInBits() const {
174 return getValueType().getSizeInBits();
177 unsigned getScalarValueSizeInBits() const {
178 return getValueType().getScalarType().getSizeInBits();
181 // Forwarding methods - These forward to the corresponding methods in SDNode.
182 inline unsigned getOpcode() const;
183 inline unsigned getNumOperands() const;
184 inline const SDValue &getOperand(unsigned i) const;
185 inline uint64_t getConstantOperandVal(unsigned i) const;
186 inline const APInt &getConstantOperandAPInt(unsigned i) const;
187 inline bool isTargetMemoryOpcode() const;
188 inline bool isTargetOpcode() const;
189 inline bool isMachineOpcode() const;
190 inline bool isUndef() const;
191 inline unsigned getMachineOpcode() const;
192 inline const DebugLoc &getDebugLoc() const;
193 inline void dump() const;
194 inline void dump(const SelectionDAG *G) const;
195 inline void dumpr() const;
196 inline void dumpr(const SelectionDAG *G) const;
198 /// Return true if this operand (which must be a chain) reaches the
199 /// specified operand without crossing any side-effecting instructions.
200 /// In practice, this looks through token factors and non-volatile loads.
201 /// In order to remain efficient, this only
202 /// looks a couple of nodes in, it does not do an exhaustive search.
203 bool reachesChainWithoutSideEffects(SDValue Dest,
204 unsigned Depth = 2) const;
206 /// Return true if there are no nodes using value ResNo of Node.
207 inline bool use_empty() const;
209 /// Return true if there is exactly one node using value ResNo of Node.
210 inline bool hasOneUse() const;
213 template<> struct DenseMapInfo<SDValue> {
214 static inline SDValue getEmptyKey() {
215 SDValue V;
216 V.ResNo = -1U;
217 return V;
220 static inline SDValue getTombstoneKey() {
221 SDValue V;
222 V.ResNo = -2U;
223 return V;
226 static unsigned getHashValue(const SDValue &Val) {
227 return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
228 (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
231 static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
232 return LHS == RHS;
236 /// Allow casting operators to work directly on
237 /// SDValues as if they were SDNode*'s.
238 template<> struct simplify_type<SDValue> {
239 using SimpleType = SDNode *;
241 static SimpleType getSimplifiedValue(SDValue &Val) {
242 return Val.getNode();
245 template<> struct simplify_type<const SDValue> {
246 using SimpleType = /*const*/ SDNode *;
248 static SimpleType getSimplifiedValue(const SDValue &Val) {
249 return Val.getNode();
253 /// Represents a use of a SDNode. This class holds an SDValue,
254 /// which records the SDNode being used and the result number, a
255 /// pointer to the SDNode using the value, and Next and Prev pointers,
256 /// which link together all the uses of an SDNode.
258 class SDUse {
259 /// Val - The value being used.
260 SDValue Val;
261 /// User - The user of this value.
262 SDNode *User = nullptr;
263 /// Prev, Next - Pointers to the uses list of the SDNode referred by
264 /// this operand.
265 SDUse **Prev = nullptr;
266 SDUse *Next = nullptr;
268 public:
269 SDUse() = default;
270 SDUse(const SDUse &U) = delete;
271 SDUse &operator=(const SDUse &) = delete;
273 /// Normally SDUse will just implicitly convert to an SDValue that it holds.
274 operator const SDValue&() const { return Val; }
276 /// If implicit conversion to SDValue doesn't work, the get() method returns
277 /// the SDValue.
278 const SDValue &get() const { return Val; }
280 /// This returns the SDNode that contains this Use.
281 SDNode *getUser() { return User; }
283 /// Get the next SDUse in the use list.
284 SDUse *getNext() const { return Next; }
286 /// Convenience function for get().getNode().
287 SDNode *getNode() const { return Val.getNode(); }
288 /// Convenience function for get().getResNo().
289 unsigned getResNo() const { return Val.getResNo(); }
290 /// Convenience function for get().getValueType().
291 EVT getValueType() const { return Val.getValueType(); }
293 /// Convenience function for get().operator==
294 bool operator==(const SDValue &V) const {
295 return Val == V;
298 /// Convenience function for get().operator!=
299 bool operator!=(const SDValue &V) const {
300 return Val != V;
303 /// Convenience function for get().operator<
304 bool operator<(const SDValue &V) const {
305 return Val < V;
308 private:
309 friend class SelectionDAG;
310 friend class SDNode;
311 // TODO: unfriend HandleSDNode once we fix its operand handling.
312 friend class HandleSDNode;
314 void setUser(SDNode *p) { User = p; }
316 /// Remove this use from its existing use list, assign it the
317 /// given value, and add it to the new value's node's use list.
318 inline void set(const SDValue &V);
319 /// Like set, but only supports initializing a newly-allocated
320 /// SDUse with a non-null value.
321 inline void setInitial(const SDValue &V);
322 /// Like set, but only sets the Node portion of the value,
323 /// leaving the ResNo portion unmodified.
324 inline void setNode(SDNode *N);
326 void addToList(SDUse **List) {
327 Next = *List;
328 if (Next) Next->Prev = &Next;
329 Prev = List;
330 *List = this;
333 void removeFromList() {
334 *Prev = Next;
335 if (Next) Next->Prev = Prev;
339 /// simplify_type specializations - Allow casting operators to work directly on
340 /// SDValues as if they were SDNode*'s.
341 template<> struct simplify_type<SDUse> {
342 using SimpleType = SDNode *;
344 static SimpleType getSimplifiedValue(SDUse &Val) {
345 return Val.getNode();
349 /// These are IR-level optimization flags that may be propagated to SDNodes.
350 /// TODO: This data structure should be shared by the IR optimizer and the
351 /// the backend.
352 struct SDNodeFlags {
353 private:
354 // This bit is used to determine if the flags are in a defined state.
355 // Flag bits can only be masked out during intersection if the masking flags
356 // are defined.
357 bool AnyDefined : 1;
359 bool NoUnsignedWrap : 1;
360 bool NoSignedWrap : 1;
361 bool Exact : 1;
362 bool NoNaNs : 1;
363 bool NoInfs : 1;
364 bool NoSignedZeros : 1;
365 bool AllowReciprocal : 1;
366 bool VectorReduction : 1;
367 bool AllowContract : 1;
368 bool ApproximateFuncs : 1;
369 bool AllowReassociation : 1;
371 public:
372 /// Default constructor turns off all optimization flags.
373 SDNodeFlags()
374 : AnyDefined(false), NoUnsignedWrap(false), NoSignedWrap(false),
375 Exact(false), NoNaNs(false), NoInfs(false),
376 NoSignedZeros(false), AllowReciprocal(false), VectorReduction(false),
377 AllowContract(false), ApproximateFuncs(false),
378 AllowReassociation(false) {}
380 /// Propagate the fast-math-flags from an IR FPMathOperator.
381 void copyFMF(const FPMathOperator &FPMO) {
382 setNoNaNs(FPMO.hasNoNaNs());
383 setNoInfs(FPMO.hasNoInfs());
384 setNoSignedZeros(FPMO.hasNoSignedZeros());
385 setAllowReciprocal(FPMO.hasAllowReciprocal());
386 setAllowContract(FPMO.hasAllowContract());
387 setApproximateFuncs(FPMO.hasApproxFunc());
388 setAllowReassociation(FPMO.hasAllowReassoc());
391 /// Sets the state of the flags to the defined state.
392 void setDefined() { AnyDefined = true; }
393 /// Returns true if the flags are in a defined state.
394 bool isDefined() const { return AnyDefined; }
396 // These are mutators for each flag.
397 void setNoUnsignedWrap(bool b) {
398 setDefined();
399 NoUnsignedWrap = b;
401 void setNoSignedWrap(bool b) {
402 setDefined();
403 NoSignedWrap = b;
405 void setExact(bool b) {
406 setDefined();
407 Exact = b;
409 void setNoNaNs(bool b) {
410 setDefined();
411 NoNaNs = b;
413 void setNoInfs(bool b) {
414 setDefined();
415 NoInfs = b;
417 void setNoSignedZeros(bool b) {
418 setDefined();
419 NoSignedZeros = b;
421 void setAllowReciprocal(bool b) {
422 setDefined();
423 AllowReciprocal = b;
425 void setVectorReduction(bool b) {
426 setDefined();
427 VectorReduction = b;
429 void setAllowContract(bool b) {
430 setDefined();
431 AllowContract = b;
433 void setApproximateFuncs(bool b) {
434 setDefined();
435 ApproximateFuncs = b;
437 void setAllowReassociation(bool b) {
438 setDefined();
439 AllowReassociation = b;
442 // These are accessors for each flag.
443 bool hasNoUnsignedWrap() const { return NoUnsignedWrap; }
444 bool hasNoSignedWrap() const { return NoSignedWrap; }
445 bool hasExact() const { return Exact; }
446 bool hasNoNaNs() const { return NoNaNs; }
447 bool hasNoInfs() const { return NoInfs; }
448 bool hasNoSignedZeros() const { return NoSignedZeros; }
449 bool hasAllowReciprocal() const { return AllowReciprocal; }
450 bool hasVectorReduction() const { return VectorReduction; }
451 bool hasAllowContract() const { return AllowContract; }
452 bool hasApproximateFuncs() const { return ApproximateFuncs; }
453 bool hasAllowReassociation() const { return AllowReassociation; }
455 bool isFast() const {
456 return NoSignedZeros && AllowReciprocal && NoNaNs && NoInfs &&
457 AllowContract && ApproximateFuncs && AllowReassociation;
460 /// Clear any flags in this flag set that aren't also set in Flags.
461 /// If the given Flags are undefined then don't do anything.
462 void intersectWith(const SDNodeFlags Flags) {
463 if (!Flags.isDefined())
464 return;
465 NoUnsignedWrap &= Flags.NoUnsignedWrap;
466 NoSignedWrap &= Flags.NoSignedWrap;
467 Exact &= Flags.Exact;
468 NoNaNs &= Flags.NoNaNs;
469 NoInfs &= Flags.NoInfs;
470 NoSignedZeros &= Flags.NoSignedZeros;
471 AllowReciprocal &= Flags.AllowReciprocal;
472 VectorReduction &= Flags.VectorReduction;
473 AllowContract &= Flags.AllowContract;
474 ApproximateFuncs &= Flags.ApproximateFuncs;
475 AllowReassociation &= Flags.AllowReassociation;
479 /// Represents one node in the SelectionDAG.
481 class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
482 private:
483 /// The operation that this node performs.
484 int16_t NodeType;
486 protected:
487 // We define a set of mini-helper classes to help us interpret the bits in our
488 // SubclassData. These are designed to fit within a uint16_t so they pack
489 // with NodeType.
491 class SDNodeBitfields {
492 friend class SDNode;
493 friend class MemIntrinsicSDNode;
494 friend class MemSDNode;
495 friend class SelectionDAG;
497 uint16_t HasDebugValue : 1;
498 uint16_t IsMemIntrinsic : 1;
499 uint16_t IsDivergent : 1;
501 enum { NumSDNodeBits = 3 };
503 class ConstantSDNodeBitfields {
504 friend class ConstantSDNode;
506 uint16_t : NumSDNodeBits;
508 uint16_t IsOpaque : 1;
511 class MemSDNodeBitfields {
512 friend class MemSDNode;
513 friend class MemIntrinsicSDNode;
514 friend class AtomicSDNode;
516 uint16_t : NumSDNodeBits;
518 uint16_t IsVolatile : 1;
519 uint16_t IsNonTemporal : 1;
520 uint16_t IsDereferenceable : 1;
521 uint16_t IsInvariant : 1;
523 enum { NumMemSDNodeBits = NumSDNodeBits + 4 };
525 class LSBaseSDNodeBitfields {
526 friend class LSBaseSDNode;
528 uint16_t : NumMemSDNodeBits;
530 uint16_t AddressingMode : 3; // enum ISD::MemIndexedMode
532 enum { NumLSBaseSDNodeBits = NumMemSDNodeBits + 3 };
534 class LoadSDNodeBitfields {
535 friend class LoadSDNode;
536 friend class MaskedLoadSDNode;
538 uint16_t : NumLSBaseSDNodeBits;
540 uint16_t ExtTy : 2; // enum ISD::LoadExtType
541 uint16_t IsExpanding : 1;
544 class StoreSDNodeBitfields {
545 friend class StoreSDNode;
546 friend class MaskedStoreSDNode;
548 uint16_t : NumLSBaseSDNodeBits;
550 uint16_t IsTruncating : 1;
551 uint16_t IsCompressing : 1;
554 union {
555 char RawSDNodeBits[sizeof(uint16_t)];
556 SDNodeBitfields SDNodeBits;
557 ConstantSDNodeBitfields ConstantSDNodeBits;
558 MemSDNodeBitfields MemSDNodeBits;
559 LSBaseSDNodeBitfields LSBaseSDNodeBits;
560 LoadSDNodeBitfields LoadSDNodeBits;
561 StoreSDNodeBitfields StoreSDNodeBits;
564 // RawSDNodeBits must cover the entirety of the union. This means that all of
565 // the union's members must have size <= RawSDNodeBits. We write the RHS as
566 // "2" instead of sizeof(RawSDNodeBits) because MSVC can't handle the latter.
567 static_assert(sizeof(SDNodeBitfields) <= 2, "field too wide");
568 static_assert(sizeof(ConstantSDNodeBitfields) <= 2, "field too wide");
569 static_assert(sizeof(MemSDNodeBitfields) <= 2, "field too wide");
570 static_assert(sizeof(LSBaseSDNodeBitfields) <= 2, "field too wide");
571 static_assert(sizeof(LoadSDNodeBitfields) <= 2, "field too wide");
572 static_assert(sizeof(StoreSDNodeBitfields) <= 2, "field too wide");
574 private:
575 friend class SelectionDAG;
576 // TODO: unfriend HandleSDNode once we fix its operand handling.
577 friend class HandleSDNode;
579 /// Unique id per SDNode in the DAG.
580 int NodeId = -1;
582 /// The values that are used by this operation.
583 SDUse *OperandList = nullptr;
585 /// The types of the values this node defines. SDNode's may
586 /// define multiple values simultaneously.
587 const EVT *ValueList;
589 /// List of uses for this SDNode.
590 SDUse *UseList = nullptr;
592 /// The number of entries in the Operand/Value list.
593 unsigned short NumOperands = 0;
594 unsigned short NumValues;
596 // The ordering of the SDNodes. It roughly corresponds to the ordering of the
597 // original LLVM instructions.
598 // This is used for turning off scheduling, because we'll forgo
599 // the normal scheduling algorithms and output the instructions according to
600 // this ordering.
601 unsigned IROrder;
603 /// Source line information.
604 DebugLoc debugLoc;
606 /// Return a pointer to the specified value type.
607 static const EVT *getValueTypeList(EVT VT);
609 SDNodeFlags Flags;
611 public:
612 /// Unique and persistent id per SDNode in the DAG.
613 /// Used for debug printing.
614 uint16_t PersistentId;
616 //===--------------------------------------------------------------------===//
617 // Accessors
620 /// Return the SelectionDAG opcode value for this node. For
621 /// pre-isel nodes (those for which isMachineOpcode returns false), these
622 /// are the opcode values in the ISD and <target>ISD namespaces. For
623 /// post-isel opcodes, see getMachineOpcode.
624 unsigned getOpcode() const { return (unsigned short)NodeType; }
626 /// Test if this node has a target-specific opcode (in the
627 /// \<target\>ISD namespace).
628 bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
630 /// Test if this node has a target-specific
631 /// memory-referencing opcode (in the \<target\>ISD namespace and
632 /// greater than FIRST_TARGET_MEMORY_OPCODE).
633 bool isTargetMemoryOpcode() const {
634 return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE;
637 /// Return true if the type of the node type undefined.
638 bool isUndef() const { return NodeType == ISD::UNDEF; }
640 /// Test if this node is a memory intrinsic (with valid pointer information).
641 /// INTRINSIC_W_CHAIN and INTRINSIC_VOID nodes are sometimes created for
642 /// non-memory intrinsics (with chains) that are not really instances of
643 /// MemSDNode. For such nodes, we need some extra state to determine the
644 /// proper classof relationship.
645 bool isMemIntrinsic() const {
646 return (NodeType == ISD::INTRINSIC_W_CHAIN ||
647 NodeType == ISD::INTRINSIC_VOID) &&
648 SDNodeBits.IsMemIntrinsic;
651 /// Test if this node is a strict floating point pseudo-op.
652 bool isStrictFPOpcode() {
653 switch (NodeType) {
654 default:
655 return false;
656 case ISD::STRICT_FADD:
657 case ISD::STRICT_FSUB:
658 case ISD::STRICT_FMUL:
659 case ISD::STRICT_FDIV:
660 case ISD::STRICT_FREM:
661 case ISD::STRICT_FMA:
662 case ISD::STRICT_FSQRT:
663 case ISD::STRICT_FPOW:
664 case ISD::STRICT_FPOWI:
665 case ISD::STRICT_FSIN:
666 case ISD::STRICT_FCOS:
667 case ISD::STRICT_FEXP:
668 case ISD::STRICT_FEXP2:
669 case ISD::STRICT_FLOG:
670 case ISD::STRICT_FLOG10:
671 case ISD::STRICT_FLOG2:
672 case ISD::STRICT_FRINT:
673 case ISD::STRICT_FNEARBYINT:
674 case ISD::STRICT_FMAXNUM:
675 case ISD::STRICT_FMINNUM:
676 case ISD::STRICT_FCEIL:
677 case ISD::STRICT_FFLOOR:
678 case ISD::STRICT_FROUND:
679 case ISD::STRICT_FTRUNC:
680 return true;
684 /// Test if this node has a post-isel opcode, directly
685 /// corresponding to a MachineInstr opcode.
686 bool isMachineOpcode() const { return NodeType < 0; }
688 /// This may only be called if isMachineOpcode returns
689 /// true. It returns the MachineInstr opcode value that the node's opcode
690 /// corresponds to.
691 unsigned getMachineOpcode() const {
692 assert(isMachineOpcode() && "Not a MachineInstr opcode!");
693 return ~NodeType;
696 bool getHasDebugValue() const { return SDNodeBits.HasDebugValue; }
697 void setHasDebugValue(bool b) { SDNodeBits.HasDebugValue = b; }
699 bool isDivergent() const { return SDNodeBits.IsDivergent; }
701 /// Return true if there are no uses of this node.
702 bool use_empty() const { return UseList == nullptr; }
704 /// Return true if there is exactly one use of this node.
705 bool hasOneUse() const {
706 return !use_empty() && std::next(use_begin()) == use_end();
709 /// Return the number of uses of this node. This method takes
710 /// time proportional to the number of uses.
711 size_t use_size() const { return std::distance(use_begin(), use_end()); }
713 /// Return the unique node id.
714 int getNodeId() const { return NodeId; }
716 /// Set unique node id.
717 void setNodeId(int Id) { NodeId = Id; }
719 /// Return the node ordering.
720 unsigned getIROrder() const { return IROrder; }
722 /// Set the node ordering.
723 void setIROrder(unsigned Order) { IROrder = Order; }
725 /// Return the source location info.
726 const DebugLoc &getDebugLoc() const { return debugLoc; }
728 /// Set source location info. Try to avoid this, putting
729 /// it in the constructor is preferable.
730 void setDebugLoc(DebugLoc dl) { debugLoc = std::move(dl); }
732 /// This class provides iterator support for SDUse
733 /// operands that use a specific SDNode.
734 class use_iterator
735 : public std::iterator<std::forward_iterator_tag, SDUse, ptrdiff_t> {
736 friend class SDNode;
738 SDUse *Op = nullptr;
740 explicit use_iterator(SDUse *op) : Op(op) {}
742 public:
743 using reference = std::iterator<std::forward_iterator_tag,
744 SDUse, ptrdiff_t>::reference;
745 using pointer = std::iterator<std::forward_iterator_tag,
746 SDUse, ptrdiff_t>::pointer;
748 use_iterator() = default;
749 use_iterator(const use_iterator &I) : Op(I.Op) {}
751 bool operator==(const use_iterator &x) const {
752 return Op == x.Op;
754 bool operator!=(const use_iterator &x) const {
755 return !operator==(x);
758 /// Return true if this iterator is at the end of uses list.
759 bool atEnd() const { return Op == nullptr; }
761 // Iterator traversal: forward iteration only.
762 use_iterator &operator++() { // Preincrement
763 assert(Op && "Cannot increment end iterator!");
764 Op = Op->getNext();
765 return *this;
768 use_iterator operator++(int) { // Postincrement
769 use_iterator tmp = *this; ++*this; return tmp;
772 /// Retrieve a pointer to the current user node.
773 SDNode *operator*() const {
774 assert(Op && "Cannot dereference end iterator!");
775 return Op->getUser();
778 SDNode *operator->() const { return operator*(); }
780 SDUse &getUse() const { return *Op; }
782 /// Retrieve the operand # of this use in its user.
783 unsigned getOperandNo() const {
784 assert(Op && "Cannot dereference end iterator!");
785 return (unsigned)(Op - Op->getUser()->OperandList);
789 /// Provide iteration support to walk over all uses of an SDNode.
790 use_iterator use_begin() const {
791 return use_iterator(UseList);
794 static use_iterator use_end() { return use_iterator(nullptr); }
796 inline iterator_range<use_iterator> uses() {
797 return make_range(use_begin(), use_end());
799 inline iterator_range<use_iterator> uses() const {
800 return make_range(use_begin(), use_end());
803 /// Return true if there are exactly NUSES uses of the indicated value.
804 /// This method ignores uses of other values defined by this operation.
805 bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
807 /// Return true if there are any use of the indicated value.
808 /// This method ignores uses of other values defined by this operation.
809 bool hasAnyUseOfValue(unsigned Value) const;
811 /// Return true if this node is the only use of N.
812 bool isOnlyUserOf(const SDNode *N) const;
814 /// Return true if this node is an operand of N.
815 bool isOperandOf(const SDNode *N) const;
817 /// Return true if this node is a predecessor of N.
818 /// NOTE: Implemented on top of hasPredecessor and every bit as
819 /// expensive. Use carefully.
820 bool isPredecessorOf(const SDNode *N) const {
821 return N->hasPredecessor(this);
824 /// Return true if N is a predecessor of this node.
825 /// N is either an operand of this node, or can be reached by recursively
826 /// traversing up the operands.
827 /// NOTE: This is an expensive method. Use it carefully.
828 bool hasPredecessor(const SDNode *N) const;
830 /// Returns true if N is a predecessor of any node in Worklist. This
831 /// helper keeps Visited and Worklist sets externally to allow unions
832 /// searches to be performed in parallel, caching of results across
833 /// queries and incremental addition to Worklist. Stops early if N is
834 /// found but will resume. Remember to clear Visited and Worklists
835 /// if DAG changes. MaxSteps gives a maximum number of nodes to visit before
836 /// giving up. The TopologicalPrune flag signals that positive NodeIds are
837 /// topologically ordered (Operands have strictly smaller node id) and search
838 /// can be pruned leveraging this.
839 static bool hasPredecessorHelper(const SDNode *N,
840 SmallPtrSetImpl<const SDNode *> &Visited,
841 SmallVectorImpl<const SDNode *> &Worklist,
842 unsigned int MaxSteps = 0,
843 bool TopologicalPrune = false) {
844 SmallVector<const SDNode *, 8> DeferredNodes;
845 if (Visited.count(N))
846 return true;
848 // Node Id's are assigned in three places: As a topological
849 // ordering (> 0), during legalization (results in values set to
850 // 0), new nodes (set to -1). If N has a topolgical id then we
851 // know that all nodes with ids smaller than it cannot be
852 // successors and we need not check them. Filter out all node
853 // that can't be matches. We add them to the worklist before exit
854 // in case of multiple calls. Note that during selection the topological id
855 // may be violated if a node's predecessor is selected before it. We mark
856 // this at selection negating the id of unselected successors and
857 // restricting topological pruning to positive ids.
859 int NId = N->getNodeId();
860 // If we Invalidated the Id, reconstruct original NId.
861 if (NId < -1)
862 NId = -(NId + 1);
864 bool Found = false;
865 while (!Worklist.empty()) {
866 const SDNode *M = Worklist.pop_back_val();
867 int MId = M->getNodeId();
868 if (TopologicalPrune && M->getOpcode() != ISD::TokenFactor && (NId > 0) &&
869 (MId > 0) && (MId < NId)) {
870 DeferredNodes.push_back(M);
871 continue;
873 for (const SDValue &OpV : M->op_values()) {
874 SDNode *Op = OpV.getNode();
875 if (Visited.insert(Op).second)
876 Worklist.push_back(Op);
877 if (Op == N)
878 Found = true;
880 if (Found)
881 break;
882 if (MaxSteps != 0 && Visited.size() >= MaxSteps)
883 break;
885 // Push deferred nodes back on worklist.
886 Worklist.append(DeferredNodes.begin(), DeferredNodes.end());
887 // If we bailed early, conservatively return found.
888 if (MaxSteps != 0 && Visited.size() >= MaxSteps)
889 return true;
890 return Found;
893 /// Return true if all the users of N are contained in Nodes.
894 /// NOTE: Requires at least one match, but doesn't require them all.
895 static bool areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N);
897 /// Return the number of values used by this operation.
898 unsigned getNumOperands() const { return NumOperands; }
900 /// Return the maximum number of operands that a SDNode can hold.
901 static constexpr size_t getMaxNumOperands() {
902 return std::numeric_limits<decltype(SDNode::NumOperands)>::max();
905 /// Helper method returns the integer value of a ConstantSDNode operand.
906 inline uint64_t getConstantOperandVal(unsigned Num) const;
908 /// Helper method returns the APInt of a ConstantSDNode operand.
909 inline const APInt &getConstantOperandAPInt(unsigned Num) const;
911 const SDValue &getOperand(unsigned Num) const {
912 assert(Num < NumOperands && "Invalid child # of SDNode!");
913 return OperandList[Num];
916 using op_iterator = SDUse *;
918 op_iterator op_begin() const { return OperandList; }
919 op_iterator op_end() const { return OperandList+NumOperands; }
920 ArrayRef<SDUse> ops() const { return makeArrayRef(op_begin(), op_end()); }
922 /// Iterator for directly iterating over the operand SDValue's.
923 struct value_op_iterator
924 : iterator_adaptor_base<value_op_iterator, op_iterator,
925 std::random_access_iterator_tag, SDValue,
926 ptrdiff_t, value_op_iterator *,
927 value_op_iterator *> {
928 explicit value_op_iterator(SDUse *U = nullptr)
929 : iterator_adaptor_base(U) {}
931 const SDValue &operator*() const { return I->get(); }
934 iterator_range<value_op_iterator> op_values() const {
935 return make_range(value_op_iterator(op_begin()),
936 value_op_iterator(op_end()));
939 SDVTList getVTList() const {
940 SDVTList X = { ValueList, NumValues };
941 return X;
944 /// If this node has a glue operand, return the node
945 /// to which the glue operand points. Otherwise return NULL.
946 SDNode *getGluedNode() const {
947 if (getNumOperands() != 0 &&
948 getOperand(getNumOperands()-1).getValueType() == MVT::Glue)
949 return getOperand(getNumOperands()-1).getNode();
950 return nullptr;
953 /// If this node has a glue value with a user, return
954 /// the user (there is at most one). Otherwise return NULL.
955 SDNode *getGluedUser() const {
956 for (use_iterator UI = use_begin(), UE = use_end(); UI != UE; ++UI)
957 if (UI.getUse().get().getValueType() == MVT::Glue)
958 return *UI;
959 return nullptr;
962 const SDNodeFlags getFlags() const { return Flags; }
963 void setFlags(SDNodeFlags NewFlags) { Flags = NewFlags; }
964 bool isFast() { return Flags.isFast(); }
966 /// Clear any flags in this node that aren't also set in Flags.
967 /// If Flags is not in a defined state then this has no effect.
968 void intersectFlagsWith(const SDNodeFlags Flags);
970 /// Return the number of values defined/returned by this operator.
971 unsigned getNumValues() const { return NumValues; }
973 /// Return the type of a specified result.
974 EVT getValueType(unsigned ResNo) const {
975 assert(ResNo < NumValues && "Illegal result number!");
976 return ValueList[ResNo];
979 /// Return the type of a specified result as a simple type.
980 MVT getSimpleValueType(unsigned ResNo) const {
981 return getValueType(ResNo).getSimpleVT();
984 /// Returns MVT::getSizeInBits(getValueType(ResNo)).
985 unsigned getValueSizeInBits(unsigned ResNo) const {
986 return getValueType(ResNo).getSizeInBits();
989 using value_iterator = const EVT *;
991 value_iterator value_begin() const { return ValueList; }
992 value_iterator value_end() const { return ValueList+NumValues; }
994 /// Return the opcode of this operation for printing.
995 std::string getOperationName(const SelectionDAG *G = nullptr) const;
996 static const char* getIndexedModeName(ISD::MemIndexedMode AM);
997 void print_types(raw_ostream &OS, const SelectionDAG *G) const;
998 void print_details(raw_ostream &OS, const SelectionDAG *G) const;
999 void print(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
1000 void printr(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
1002 /// Print a SelectionDAG node and all children down to
1003 /// the leaves. The given SelectionDAG allows target-specific nodes
1004 /// to be printed in human-readable form. Unlike printr, this will
1005 /// print the whole DAG, including children that appear multiple
1006 /// times.
1008 void printrFull(raw_ostream &O, const SelectionDAG *G = nullptr) const;
1010 /// Print a SelectionDAG node and children up to
1011 /// depth "depth." The given SelectionDAG allows target-specific
1012 /// nodes to be printed in human-readable form. Unlike printr, this
1013 /// will print children that appear multiple times wherever they are
1014 /// used.
1016 void printrWithDepth(raw_ostream &O, const SelectionDAG *G = nullptr,
1017 unsigned depth = 100) const;
1019 /// Dump this node, for debugging.
1020 void dump() const;
1022 /// Dump (recursively) this node and its use-def subgraph.
1023 void dumpr() const;
1025 /// Dump this node, for debugging.
1026 /// The given SelectionDAG allows target-specific nodes to be printed
1027 /// in human-readable form.
1028 void dump(const SelectionDAG *G) const;
1030 /// Dump (recursively) this node and its use-def subgraph.
1031 /// The given SelectionDAG allows target-specific nodes to be printed
1032 /// in human-readable form.
1033 void dumpr(const SelectionDAG *G) const;
1035 /// printrFull to dbgs(). The given SelectionDAG allows
1036 /// target-specific nodes to be printed in human-readable form.
1037 /// Unlike dumpr, this will print the whole DAG, including children
1038 /// that appear multiple times.
1039 void dumprFull(const SelectionDAG *G = nullptr) const;
1041 /// printrWithDepth to dbgs(). The given
1042 /// SelectionDAG allows target-specific nodes to be printed in
1043 /// human-readable form. Unlike dumpr, this will print children
1044 /// that appear multiple times wherever they are used.
1046 void dumprWithDepth(const SelectionDAG *G = nullptr,
1047 unsigned depth = 100) const;
1049 /// Gather unique data for the node.
1050 void Profile(FoldingSetNodeID &ID) const;
1052 /// This method should only be used by the SDUse class.
1053 void addUse(SDUse &U) { U.addToList(&UseList); }
1055 protected:
1056 static SDVTList getSDVTList(EVT VT) {
1057 SDVTList Ret = { getValueTypeList(VT), 1 };
1058 return Ret;
1061 /// Create an SDNode.
1063 /// SDNodes are created without any operands, and never own the operand
1064 /// storage. To add operands, see SelectionDAG::createOperands.
1065 SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
1066 : NodeType(Opc), ValueList(VTs.VTs), NumValues(VTs.NumVTs),
1067 IROrder(Order), debugLoc(std::move(dl)) {
1068 memset(&RawSDNodeBits, 0, sizeof(RawSDNodeBits));
1069 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
1070 assert(NumValues == VTs.NumVTs &&
1071 "NumValues wasn't wide enough for its operands!");
1074 /// Release the operands and set this node to have zero operands.
1075 void DropOperands();
1078 /// Wrapper class for IR location info (IR ordering and DebugLoc) to be passed
1079 /// into SDNode creation functions.
1080 /// When an SDNode is created from the DAGBuilder, the DebugLoc is extracted
1081 /// from the original Instruction, and IROrder is the ordinal position of
1082 /// the instruction.
1083 /// When an SDNode is created after the DAG is being built, both DebugLoc and
1084 /// the IROrder are propagated from the original SDNode.
1085 /// So SDLoc class provides two constructors besides the default one, one to
1086 /// be used by the DAGBuilder, the other to be used by others.
1087 class SDLoc {
1088 private:
1089 DebugLoc DL;
1090 int IROrder = 0;
1092 public:
1093 SDLoc() = default;
1094 SDLoc(const SDNode *N) : DL(N->getDebugLoc()), IROrder(N->getIROrder()) {}
1095 SDLoc(const SDValue V) : SDLoc(V.getNode()) {}
1096 SDLoc(const Instruction *I, int Order) : IROrder(Order) {
1097 assert(Order >= 0 && "bad IROrder");
1098 if (I)
1099 DL = I->getDebugLoc();
1102 unsigned getIROrder() const { return IROrder; }
1103 const DebugLoc &getDebugLoc() const { return DL; }
1106 // Define inline functions from the SDValue class.
1108 inline SDValue::SDValue(SDNode *node, unsigned resno)
1109 : Node(node), ResNo(resno) {
1110 // Explicitly check for !ResNo to avoid use-after-free, because there are
1111 // callers that use SDValue(N, 0) with a deleted N to indicate successful
1112 // combines.
1113 assert((!Node || !ResNo || ResNo < Node->getNumValues()) &&
1114 "Invalid result number for the given node!");
1115 assert(ResNo < -2U && "Cannot use result numbers reserved for DenseMaps.");
1118 inline unsigned SDValue::getOpcode() const {
1119 return Node->getOpcode();
1122 inline EVT SDValue::getValueType() const {
1123 return Node->getValueType(ResNo);
1126 inline unsigned SDValue::getNumOperands() const {
1127 return Node->getNumOperands();
1130 inline const SDValue &SDValue::getOperand(unsigned i) const {
1131 return Node->getOperand(i);
1134 inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
1135 return Node->getConstantOperandVal(i);
1138 inline const APInt &SDValue::getConstantOperandAPInt(unsigned i) const {
1139 return Node->getConstantOperandAPInt(i);
1142 inline bool SDValue::isTargetOpcode() const {
1143 return Node->isTargetOpcode();
1146 inline bool SDValue::isTargetMemoryOpcode() const {
1147 return Node->isTargetMemoryOpcode();
1150 inline bool SDValue::isMachineOpcode() const {
1151 return Node->isMachineOpcode();
1154 inline unsigned SDValue::getMachineOpcode() const {
1155 return Node->getMachineOpcode();
1158 inline bool SDValue::isUndef() const {
1159 return Node->isUndef();
1162 inline bool SDValue::use_empty() const {
1163 return !Node->hasAnyUseOfValue(ResNo);
1166 inline bool SDValue::hasOneUse() const {
1167 return Node->hasNUsesOfValue(1, ResNo);
1170 inline const DebugLoc &SDValue::getDebugLoc() const {
1171 return Node->getDebugLoc();
1174 inline void SDValue::dump() const {
1175 return Node->dump();
1178 inline void SDValue::dump(const SelectionDAG *G) const {
1179 return Node->dump(G);
1182 inline void SDValue::dumpr() const {
1183 return Node->dumpr();
1186 inline void SDValue::dumpr(const SelectionDAG *G) const {
1187 return Node->dumpr(G);
1190 // Define inline functions from the SDUse class.
1192 inline void SDUse::set(const SDValue &V) {
1193 if (Val.getNode()) removeFromList();
1194 Val = V;
1195 if (V.getNode()) V.getNode()->addUse(*this);
1198 inline void SDUse::setInitial(const SDValue &V) {
1199 Val = V;
1200 V.getNode()->addUse(*this);
1203 inline void SDUse::setNode(SDNode *N) {
1204 if (Val.getNode()) removeFromList();
1205 Val.setNode(N);
1206 if (N) N->addUse(*this);
1209 /// This class is used to form a handle around another node that
1210 /// is persistent and is updated across invocations of replaceAllUsesWith on its
1211 /// operand. This node should be directly created by end-users and not added to
1212 /// the AllNodes list.
1213 class HandleSDNode : public SDNode {
1214 SDUse Op;
1216 public:
1217 explicit HandleSDNode(SDValue X)
1218 : SDNode(ISD::HANDLENODE, 0, DebugLoc(), getSDVTList(MVT::Other)) {
1219 // HandleSDNodes are never inserted into the DAG, so they won't be
1220 // auto-numbered. Use ID 65535 as a sentinel.
1221 PersistentId = 0xffff;
1223 // Manually set up the operand list. This node type is special in that it's
1224 // always stack allocated and SelectionDAG does not manage its operands.
1225 // TODO: This should either (a) not be in the SDNode hierarchy, or (b) not
1226 // be so special.
1227 Op.setUser(this);
1228 Op.setInitial(X);
1229 NumOperands = 1;
1230 OperandList = &Op;
1232 ~HandleSDNode();
1234 const SDValue &getValue() const { return Op; }
1237 class AddrSpaceCastSDNode : public SDNode {
1238 private:
1239 unsigned SrcAddrSpace;
1240 unsigned DestAddrSpace;
1242 public:
1243 AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, EVT VT,
1244 unsigned SrcAS, unsigned DestAS);
1246 unsigned getSrcAddressSpace() const { return SrcAddrSpace; }
1247 unsigned getDestAddressSpace() const { return DestAddrSpace; }
1249 static bool classof(const SDNode *N) {
1250 return N->getOpcode() == ISD::ADDRSPACECAST;
1254 /// This is an abstract virtual class for memory operations.
1255 class MemSDNode : public SDNode {
1256 private:
1257 // VT of in-memory value.
1258 EVT MemoryVT;
1260 protected:
1261 /// Memory reference information.
1262 MachineMemOperand *MMO;
1264 public:
1265 MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs,
1266 EVT memvt, MachineMemOperand *MMO);
1268 bool readMem() const { return MMO->isLoad(); }
1269 bool writeMem() const { return MMO->isStore(); }
1271 /// Returns alignment and volatility of the memory access
1272 unsigned getOriginalAlignment() const {
1273 return MMO->getBaseAlignment();
1275 unsigned getAlignment() const {
1276 return MMO->getAlignment();
1279 /// Return the SubclassData value, without HasDebugValue. This contains an
1280 /// encoding of the volatile flag, as well as bits used by subclasses. This
1281 /// function should only be used to compute a FoldingSetNodeID value.
1282 /// The HasDebugValue bit is masked out because CSE map needs to match
1283 /// nodes with debug info with nodes without debug info. Same is about
1284 /// isDivergent bit.
1285 unsigned getRawSubclassData() const {
1286 uint16_t Data;
1287 union {
1288 char RawSDNodeBits[sizeof(uint16_t)];
1289 SDNodeBitfields SDNodeBits;
1291 memcpy(&RawSDNodeBits, &this->RawSDNodeBits, sizeof(this->RawSDNodeBits));
1292 SDNodeBits.HasDebugValue = 0;
1293 SDNodeBits.IsDivergent = false;
1294 memcpy(&Data, &RawSDNodeBits, sizeof(RawSDNodeBits));
1295 return Data;
1298 bool isVolatile() const { return MemSDNodeBits.IsVolatile; }
1299 bool isNonTemporal() const { return MemSDNodeBits.IsNonTemporal; }
1300 bool isDereferenceable() const { return MemSDNodeBits.IsDereferenceable; }
1301 bool isInvariant() const { return MemSDNodeBits.IsInvariant; }
1303 // Returns the offset from the location of the access.
1304 int64_t getSrcValueOffset() const { return MMO->getOffset(); }
1306 /// Returns the AA info that describes the dereference.
1307 AAMDNodes getAAInfo() const { return MMO->getAAInfo(); }
1309 /// Returns the Ranges that describes the dereference.
1310 const MDNode *getRanges() const { return MMO->getRanges(); }
1312 /// Returns the synchronization scope ID for this memory operation.
1313 SyncScope::ID getSyncScopeID() const { return MMO->getSyncScopeID(); }
1315 /// Return the atomic ordering requirements for this memory operation. For
1316 /// cmpxchg atomic operations, return the atomic ordering requirements when
1317 /// store occurs.
1318 AtomicOrdering getOrdering() const { return MMO->getOrdering(); }
1320 /// Return the type of the in-memory value.
1321 EVT getMemoryVT() const { return MemoryVT; }
1323 /// Return a MachineMemOperand object describing the memory
1324 /// reference performed by operation.
1325 MachineMemOperand *getMemOperand() const { return MMO; }
1327 const MachinePointerInfo &getPointerInfo() const {
1328 return MMO->getPointerInfo();
1331 /// Return the address space for the associated pointer
1332 unsigned getAddressSpace() const {
1333 return getPointerInfo().getAddrSpace();
1336 /// Update this MemSDNode's MachineMemOperand information
1337 /// to reflect the alignment of NewMMO, if it has a greater alignment.
1338 /// This must only be used when the new alignment applies to all users of
1339 /// this MachineMemOperand.
1340 void refineAlignment(const MachineMemOperand *NewMMO) {
1341 MMO->refineAlignment(NewMMO);
1344 const SDValue &getChain() const { return getOperand(0); }
1345 const SDValue &getBasePtr() const {
1346 return getOperand(getOpcode() == ISD::STORE ? 2 : 1);
1349 // Methods to support isa and dyn_cast
1350 static bool classof(const SDNode *N) {
1351 // For some targets, we lower some target intrinsics to a MemIntrinsicNode
1352 // with either an intrinsic or a target opcode.
1353 return N->getOpcode() == ISD::LOAD ||
1354 N->getOpcode() == ISD::STORE ||
1355 N->getOpcode() == ISD::PREFETCH ||
1356 N->getOpcode() == ISD::ATOMIC_CMP_SWAP ||
1357 N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
1358 N->getOpcode() == ISD::ATOMIC_SWAP ||
1359 N->getOpcode() == ISD::ATOMIC_LOAD_ADD ||
1360 N->getOpcode() == ISD::ATOMIC_LOAD_SUB ||
1361 N->getOpcode() == ISD::ATOMIC_LOAD_AND ||
1362 N->getOpcode() == ISD::ATOMIC_LOAD_CLR ||
1363 N->getOpcode() == ISD::ATOMIC_LOAD_OR ||
1364 N->getOpcode() == ISD::ATOMIC_LOAD_XOR ||
1365 N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
1366 N->getOpcode() == ISD::ATOMIC_LOAD_MIN ||
1367 N->getOpcode() == ISD::ATOMIC_LOAD_MAX ||
1368 N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
1369 N->getOpcode() == ISD::ATOMIC_LOAD_UMAX ||
1370 N->getOpcode() == ISD::ATOMIC_LOAD_FADD ||
1371 N->getOpcode() == ISD::ATOMIC_LOAD_FSUB ||
1372 N->getOpcode() == ISD::ATOMIC_LOAD ||
1373 N->getOpcode() == ISD::ATOMIC_STORE ||
1374 N->getOpcode() == ISD::MLOAD ||
1375 N->getOpcode() == ISD::MSTORE ||
1376 N->getOpcode() == ISD::MGATHER ||
1377 N->getOpcode() == ISD::MSCATTER ||
1378 N->isMemIntrinsic() ||
1379 N->isTargetMemoryOpcode();
1383 /// This is an SDNode representing atomic operations.
1384 class AtomicSDNode : public MemSDNode {
1385 public:
1386 AtomicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTL,
1387 EVT MemVT, MachineMemOperand *MMO)
1388 : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {}
1390 const SDValue &getBasePtr() const { return getOperand(1); }
1391 const SDValue &getVal() const { return getOperand(2); }
1393 /// Returns true if this SDNode represents cmpxchg atomic operation, false
1394 /// otherwise.
1395 bool isCompareAndSwap() const {
1396 unsigned Op = getOpcode();
1397 return Op == ISD::ATOMIC_CMP_SWAP ||
1398 Op == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS;
1401 /// For cmpxchg atomic operations, return the atomic ordering requirements
1402 /// when store does not occur.
1403 AtomicOrdering getFailureOrdering() const {
1404 assert(isCompareAndSwap() && "Must be cmpxchg operation");
1405 return MMO->getFailureOrdering();
1408 // Methods to support isa and dyn_cast
1409 static bool classof(const SDNode *N) {
1410 return N->getOpcode() == ISD::ATOMIC_CMP_SWAP ||
1411 N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
1412 N->getOpcode() == ISD::ATOMIC_SWAP ||
1413 N->getOpcode() == ISD::ATOMIC_LOAD_ADD ||
1414 N->getOpcode() == ISD::ATOMIC_LOAD_SUB ||
1415 N->getOpcode() == ISD::ATOMIC_LOAD_AND ||
1416 N->getOpcode() == ISD::ATOMIC_LOAD_CLR ||
1417 N->getOpcode() == ISD::ATOMIC_LOAD_OR ||
1418 N->getOpcode() == ISD::ATOMIC_LOAD_XOR ||
1419 N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
1420 N->getOpcode() == ISD::ATOMIC_LOAD_MIN ||
1421 N->getOpcode() == ISD::ATOMIC_LOAD_MAX ||
1422 N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
1423 N->getOpcode() == ISD::ATOMIC_LOAD_UMAX ||
1424 N->getOpcode() == ISD::ATOMIC_LOAD_FADD ||
1425 N->getOpcode() == ISD::ATOMIC_LOAD_FSUB ||
1426 N->getOpcode() == ISD::ATOMIC_LOAD ||
1427 N->getOpcode() == ISD::ATOMIC_STORE;
1431 /// This SDNode is used for target intrinsics that touch
1432 /// memory and need an associated MachineMemOperand. Its opcode may be
1433 /// INTRINSIC_VOID, INTRINSIC_W_CHAIN, PREFETCH, or a target-specific opcode
1434 /// with a value not less than FIRST_TARGET_MEMORY_OPCODE.
1435 class MemIntrinsicSDNode : public MemSDNode {
1436 public:
1437 MemIntrinsicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
1438 SDVTList VTs, EVT MemoryVT, MachineMemOperand *MMO)
1439 : MemSDNode(Opc, Order, dl, VTs, MemoryVT, MMO) {
1440 SDNodeBits.IsMemIntrinsic = true;
1443 // Methods to support isa and dyn_cast
1444 static bool classof(const SDNode *N) {
1445 // We lower some target intrinsics to their target opcode
1446 // early a node with a target opcode can be of this class
1447 return N->isMemIntrinsic() ||
1448 N->getOpcode() == ISD::PREFETCH ||
1449 N->isTargetMemoryOpcode();
1453 /// This SDNode is used to implement the code generator
1454 /// support for the llvm IR shufflevector instruction. It combines elements
1455 /// from two input vectors into a new input vector, with the selection and
1456 /// ordering of elements determined by an array of integers, referred to as
1457 /// the shuffle mask. For input vectors of width N, mask indices of 0..N-1
1458 /// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
1459 /// An index of -1 is treated as undef, such that the code generator may put
1460 /// any value in the corresponding element of the result.
1461 class ShuffleVectorSDNode : public SDNode {
1462 // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
1463 // is freed when the SelectionDAG object is destroyed.
1464 const int *Mask;
1466 protected:
1467 friend class SelectionDAG;
1469 ShuffleVectorSDNode(EVT VT, unsigned Order, const DebugLoc &dl, const int *M)
1470 : SDNode(ISD::VECTOR_SHUFFLE, Order, dl, getSDVTList(VT)), Mask(M) {}
1472 public:
1473 ArrayRef<int> getMask() const {
1474 EVT VT = getValueType(0);
1475 return makeArrayRef(Mask, VT.getVectorNumElements());
1478 int getMaskElt(unsigned Idx) const {
1479 assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!");
1480 return Mask[Idx];
1483 bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
1485 int getSplatIndex() const {
1486 assert(isSplat() && "Cannot get splat index for non-splat!");
1487 EVT VT = getValueType(0);
1488 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
1489 if (Mask[i] >= 0)
1490 return Mask[i];
1492 llvm_unreachable("Splat with all undef indices?");
1495 static bool isSplatMask(const int *Mask, EVT VT);
1497 /// Change values in a shuffle permute mask assuming
1498 /// the two vector operands have swapped position.
1499 static void commuteMask(MutableArrayRef<int> Mask) {
1500 unsigned NumElems = Mask.size();
1501 for (unsigned i = 0; i != NumElems; ++i) {
1502 int idx = Mask[i];
1503 if (idx < 0)
1504 continue;
1505 else if (idx < (int)NumElems)
1506 Mask[i] = idx + NumElems;
1507 else
1508 Mask[i] = idx - NumElems;
1512 static bool classof(const SDNode *N) {
1513 return N->getOpcode() == ISD::VECTOR_SHUFFLE;
1517 class ConstantSDNode : public SDNode {
1518 friend class SelectionDAG;
1520 const ConstantInt *Value;
1522 ConstantSDNode(bool isTarget, bool isOpaque, const ConstantInt *val, EVT VT)
1523 : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, 0, DebugLoc(),
1524 getSDVTList(VT)),
1525 Value(val) {
1526 ConstantSDNodeBits.IsOpaque = isOpaque;
1529 public:
1530 const ConstantInt *getConstantIntValue() const { return Value; }
1531 const APInt &getAPIntValue() const { return Value->getValue(); }
1532 uint64_t getZExtValue() const { return Value->getZExtValue(); }
1533 int64_t getSExtValue() const { return Value->getSExtValue(); }
1534 uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) {
1535 return Value->getLimitedValue(Limit);
1538 bool isOne() const { return Value->isOne(); }
1539 bool isNullValue() const { return Value->isZero(); }
1540 bool isAllOnesValue() const { return Value->isMinusOne(); }
1542 bool isOpaque() const { return ConstantSDNodeBits.IsOpaque; }
1544 static bool classof(const SDNode *N) {
1545 return N->getOpcode() == ISD::Constant ||
1546 N->getOpcode() == ISD::TargetConstant;
1550 uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
1551 return cast<ConstantSDNode>(getOperand(Num))->getZExtValue();
1554 const APInt &SDNode::getConstantOperandAPInt(unsigned Num) const {
1555 return cast<ConstantSDNode>(getOperand(Num))->getAPIntValue();
1558 class ConstantFPSDNode : public SDNode {
1559 friend class SelectionDAG;
1561 const ConstantFP *Value;
1563 ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT)
1564 : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, 0,
1565 DebugLoc(), getSDVTList(VT)),
1566 Value(val) {}
1568 public:
1569 const APFloat& getValueAPF() const { return Value->getValueAPF(); }
1570 const ConstantFP *getConstantFPValue() const { return Value; }
1572 /// Return true if the value is positive or negative zero.
1573 bool isZero() const { return Value->isZero(); }
1575 /// Return true if the value is a NaN.
1576 bool isNaN() const { return Value->isNaN(); }
1578 /// Return true if the value is an infinity
1579 bool isInfinity() const { return Value->isInfinity(); }
1581 /// Return true if the value is negative.
1582 bool isNegative() const { return Value->isNegative(); }
1584 /// We don't rely on operator== working on double values, as
1585 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1586 /// As such, this method can be used to do an exact bit-for-bit comparison of
1587 /// two floating point values.
1589 /// We leave the version with the double argument here because it's just so
1590 /// convenient to write "2.0" and the like. Without this function we'd
1591 /// have to duplicate its logic everywhere it's called.
1592 bool isExactlyValue(double V) const {
1593 return Value->getValueAPF().isExactlyValue(V);
1595 bool isExactlyValue(const APFloat& V) const;
1597 static bool isValueValidForType(EVT VT, const APFloat& Val);
1599 static bool classof(const SDNode *N) {
1600 return N->getOpcode() == ISD::ConstantFP ||
1601 N->getOpcode() == ISD::TargetConstantFP;
1605 /// Returns true if \p V is a constant integer zero.
1606 bool isNullConstant(SDValue V);
1608 /// Returns true if \p V is an FP constant with a value of positive zero.
1609 bool isNullFPConstant(SDValue V);
1611 /// Returns true if \p V is an integer constant with all bits set.
1612 bool isAllOnesConstant(SDValue V);
1614 /// Returns true if \p V is a constant integer one.
1615 bool isOneConstant(SDValue V);
1617 /// Return the non-bitcasted source operand of \p V if it exists.
1618 /// If \p V is not a bitcasted value, it is returned as-is.
1619 SDValue peekThroughBitcasts(SDValue V);
1621 /// Return the non-bitcasted and one-use source operand of \p V if it exists.
1622 /// If \p V is not a bitcasted one-use value, it is returned as-is.
1623 SDValue peekThroughOneUseBitcasts(SDValue V);
1625 /// Returns true if \p V is a bitwise not operation. Assumes that an all ones
1626 /// constant is canonicalized to be operand 1.
1627 bool isBitwiseNot(SDValue V);
1629 /// Returns the SDNode if it is a constant splat BuildVector or constant int.
1630 ConstantSDNode *isConstOrConstSplat(SDValue N, bool AllowUndefs = false);
1632 /// Returns the SDNode if it is a constant splat BuildVector or constant float.
1633 ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, bool AllowUndefs = false);
1635 /// Return true if the value is a constant 0 integer or a splatted vector of
1636 /// a constant 0 integer (with no undefs by default).
1637 /// Build vector implicit truncation is not an issue for null values.
1638 bool isNullOrNullSplat(SDValue V, bool AllowUndefs = false);
1640 /// Return true if the value is a constant 1 integer or a splatted vector of a
1641 /// constant 1 integer (with no undefs).
1642 /// Does not permit build vector implicit truncation.
1643 bool isOneOrOneSplat(SDValue V);
1645 /// Return true if the value is a constant -1 integer or a splatted vector of a
1646 /// constant -1 integer (with no undefs).
1647 /// Does not permit build vector implicit truncation.
1648 bool isAllOnesOrAllOnesSplat(SDValue V);
1650 class GlobalAddressSDNode : public SDNode {
1651 friend class SelectionDAG;
1653 const GlobalValue *TheGlobal;
1654 int64_t Offset;
1655 unsigned char TargetFlags;
1657 GlobalAddressSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL,
1658 const GlobalValue *GA, EVT VT, int64_t o,
1659 unsigned char TF);
1661 public:
1662 const GlobalValue *getGlobal() const { return TheGlobal; }
1663 int64_t getOffset() const { return Offset; }
1664 unsigned char getTargetFlags() const { return TargetFlags; }
1665 // Return the address space this GlobalAddress belongs to.
1666 unsigned getAddressSpace() const;
1668 static bool classof(const SDNode *N) {
1669 return N->getOpcode() == ISD::GlobalAddress ||
1670 N->getOpcode() == ISD::TargetGlobalAddress ||
1671 N->getOpcode() == ISD::GlobalTLSAddress ||
1672 N->getOpcode() == ISD::TargetGlobalTLSAddress;
1676 class FrameIndexSDNode : public SDNode {
1677 friend class SelectionDAG;
1679 int FI;
1681 FrameIndexSDNode(int fi, EVT VT, bool isTarg)
1682 : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
1683 0, DebugLoc(), getSDVTList(VT)), FI(fi) {
1686 public:
1687 int getIndex() const { return FI; }
1689 static bool classof(const SDNode *N) {
1690 return N->getOpcode() == ISD::FrameIndex ||
1691 N->getOpcode() == ISD::TargetFrameIndex;
1695 /// This SDNode is used for LIFETIME_START/LIFETIME_END values, which indicate
1696 /// the offet and size that are started/ended in the underlying FrameIndex.
1697 class LifetimeSDNode : public SDNode {
1698 int64_t Size;
1699 int64_t Offset; // -1 if offset is unknown.
1700 public:
1701 LifetimeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl,
1702 SDVTList VTs, int64_t Size, int64_t Offset)
1703 : SDNode(Opcode, Order, dl, VTs), Size(Size), Offset(Offset) {}
1705 int64_t getFrameIndex() const {
1706 return cast<FrameIndexSDNode>(getOperand(1))->getIndex();
1709 bool hasOffset() const { return Offset >= 0; }
1710 int64_t getOffset() const {
1711 assert(hasOffset() && "offset is unknown");
1712 return Offset;
1714 int64_t getSize() const {
1715 assert(hasOffset() && "offset is unknown");
1716 return Size;
1719 // Methods to support isa and dyn_cast
1720 static bool classof(const SDNode *N) {
1721 return N->getOpcode() == ISD::LIFETIME_START ||
1722 N->getOpcode() == ISD::LIFETIME_END;
1726 class JumpTableSDNode : public SDNode {
1727 friend class SelectionDAG;
1729 int JTI;
1730 unsigned char TargetFlags;
1732 JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned char TF)
1733 : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
1734 0, DebugLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
1737 public:
1738 int getIndex() const { return JTI; }
1739 unsigned char getTargetFlags() const { return TargetFlags; }
1741 static bool classof(const SDNode *N) {
1742 return N->getOpcode() == ISD::JumpTable ||
1743 N->getOpcode() == ISD::TargetJumpTable;
1747 class ConstantPoolSDNode : public SDNode {
1748 friend class SelectionDAG;
1750 union {
1751 const Constant *ConstVal;
1752 MachineConstantPoolValue *MachineCPVal;
1753 } Val;
1754 int Offset; // It's a MachineConstantPoolValue if top bit is set.
1755 unsigned Alignment; // Minimum alignment requirement of CP (not log2 value).
1756 unsigned char TargetFlags;
1758 ConstantPoolSDNode(bool isTarget, const Constant *c, EVT VT, int o,
1759 unsigned Align, unsigned char TF)
1760 : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
1761 DebugLoc(), getSDVTList(VT)), Offset(o), Alignment(Align),
1762 TargetFlags(TF) {
1763 assert(Offset >= 0 && "Offset is too large");
1764 Val.ConstVal = c;
1767 ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1768 EVT VT, int o, unsigned Align, unsigned char TF)
1769 : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
1770 DebugLoc(), getSDVTList(VT)), Offset(o), Alignment(Align),
1771 TargetFlags(TF) {
1772 assert(Offset >= 0 && "Offset is too large");
1773 Val.MachineCPVal = v;
1774 Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
1777 public:
1778 bool isMachineConstantPoolEntry() const {
1779 return Offset < 0;
1782 const Constant *getConstVal() const {
1783 assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1784 return Val.ConstVal;
1787 MachineConstantPoolValue *getMachineCPVal() const {
1788 assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1789 return Val.MachineCPVal;
1792 int getOffset() const {
1793 return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1));
1796 // Return the alignment of this constant pool object, which is either 0 (for
1797 // default alignment) or the desired value.
1798 unsigned getAlignment() const { return Alignment; }
1799 unsigned char getTargetFlags() const { return TargetFlags; }
1801 Type *getType() const;
1803 static bool classof(const SDNode *N) {
1804 return N->getOpcode() == ISD::ConstantPool ||
1805 N->getOpcode() == ISD::TargetConstantPool;
1809 /// Completely target-dependent object reference.
1810 class TargetIndexSDNode : public SDNode {
1811 friend class SelectionDAG;
1813 unsigned char TargetFlags;
1814 int Index;
1815 int64_t Offset;
1817 public:
1818 TargetIndexSDNode(int Idx, EVT VT, int64_t Ofs, unsigned char TF)
1819 : SDNode(ISD::TargetIndex, 0, DebugLoc(), getSDVTList(VT)),
1820 TargetFlags(TF), Index(Idx), Offset(Ofs) {}
1822 unsigned char getTargetFlags() const { return TargetFlags; }
1823 int getIndex() const { return Index; }
1824 int64_t getOffset() const { return Offset; }
1826 static bool classof(const SDNode *N) {
1827 return N->getOpcode() == ISD::TargetIndex;
1831 class BasicBlockSDNode : public SDNode {
1832 friend class SelectionDAG;
1834 MachineBasicBlock *MBB;
1836 /// Debug info is meaningful and potentially useful here, but we create
1837 /// blocks out of order when they're jumped to, which makes it a bit
1838 /// harder. Let's see if we need it first.
1839 explicit BasicBlockSDNode(MachineBasicBlock *mbb)
1840 : SDNode(ISD::BasicBlock, 0, DebugLoc(), getSDVTList(MVT::Other)), MBB(mbb)
1843 public:
1844 MachineBasicBlock *getBasicBlock() const { return MBB; }
1846 static bool classof(const SDNode *N) {
1847 return N->getOpcode() == ISD::BasicBlock;
1851 /// A "pseudo-class" with methods for operating on BUILD_VECTORs.
1852 class BuildVectorSDNode : public SDNode {
1853 public:
1854 // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
1855 explicit BuildVectorSDNode() = delete;
1857 /// Check if this is a constant splat, and if so, find the
1858 /// smallest element size that splats the vector. If MinSplatBits is
1859 /// nonzero, the element size must be at least that large. Note that the
1860 /// splat element may be the entire vector (i.e., a one element vector).
1861 /// Returns the splat element value in SplatValue. Any undefined bits in
1862 /// that value are zero, and the corresponding bits in the SplatUndef mask
1863 /// are set. The SplatBitSize value is set to the splat element size in
1864 /// bits. HasAnyUndefs is set to true if any bits in the vector are
1865 /// undefined. isBigEndian describes the endianness of the target.
1866 bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
1867 unsigned &SplatBitSize, bool &HasAnyUndefs,
1868 unsigned MinSplatBits = 0,
1869 bool isBigEndian = false) const;
1871 /// Returns the splatted value or a null value if this is not a splat.
1873 /// If passed a non-null UndefElements bitvector, it will resize it to match
1874 /// the vector width and set the bits where elements are undef.
1875 SDValue getSplatValue(BitVector *UndefElements = nullptr) const;
1877 /// Returns the splatted constant or null if this is not a constant
1878 /// splat.
1880 /// If passed a non-null UndefElements bitvector, it will resize it to match
1881 /// the vector width and set the bits where elements are undef.
1882 ConstantSDNode *
1883 getConstantSplatNode(BitVector *UndefElements = nullptr) const;
1885 /// Returns the splatted constant FP or null if this is not a constant
1886 /// FP splat.
1888 /// If passed a non-null UndefElements bitvector, it will resize it to match
1889 /// the vector width and set the bits where elements are undef.
1890 ConstantFPSDNode *
1891 getConstantFPSplatNode(BitVector *UndefElements = nullptr) const;
1893 /// If this is a constant FP splat and the splatted constant FP is an
1894 /// exact power or 2, return the log base 2 integer value. Otherwise,
1895 /// return -1.
1897 /// The BitWidth specifies the necessary bit precision.
1898 int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
1899 uint32_t BitWidth) const;
1901 bool isConstant() const;
1903 static bool classof(const SDNode *N) {
1904 return N->getOpcode() == ISD::BUILD_VECTOR;
1908 /// An SDNode that holds an arbitrary LLVM IR Value. This is
1909 /// used when the SelectionDAG needs to make a simple reference to something
1910 /// in the LLVM IR representation.
1912 class SrcValueSDNode : public SDNode {
1913 friend class SelectionDAG;
1915 const Value *V;
1917 /// Create a SrcValue for a general value.
1918 explicit SrcValueSDNode(const Value *v)
1919 : SDNode(ISD::SRCVALUE, 0, DebugLoc(), getSDVTList(MVT::Other)), V(v) {}
1921 public:
1922 /// Return the contained Value.
1923 const Value *getValue() const { return V; }
1925 static bool classof(const SDNode *N) {
1926 return N->getOpcode() == ISD::SRCVALUE;
1930 class MDNodeSDNode : public SDNode {
1931 friend class SelectionDAG;
1933 const MDNode *MD;
1935 explicit MDNodeSDNode(const MDNode *md)
1936 : SDNode(ISD::MDNODE_SDNODE, 0, DebugLoc(), getSDVTList(MVT::Other)), MD(md)
1939 public:
1940 const MDNode *getMD() const { return MD; }
1942 static bool classof(const SDNode *N) {
1943 return N->getOpcode() == ISD::MDNODE_SDNODE;
1947 class RegisterSDNode : public SDNode {
1948 friend class SelectionDAG;
1950 unsigned Reg;
1952 RegisterSDNode(unsigned reg, EVT VT)
1953 : SDNode(ISD::Register, 0, DebugLoc(), getSDVTList(VT)), Reg(reg) {}
1955 public:
1956 unsigned getReg() const { return Reg; }
1958 static bool classof(const SDNode *N) {
1959 return N->getOpcode() == ISD::Register;
1963 class RegisterMaskSDNode : public SDNode {
1964 friend class SelectionDAG;
1966 // The memory for RegMask is not owned by the node.
1967 const uint32_t *RegMask;
1969 RegisterMaskSDNode(const uint32_t *mask)
1970 : SDNode(ISD::RegisterMask, 0, DebugLoc(), getSDVTList(MVT::Untyped)),
1971 RegMask(mask) {}
1973 public:
1974 const uint32_t *getRegMask() const { return RegMask; }
1976 static bool classof(const SDNode *N) {
1977 return N->getOpcode() == ISD::RegisterMask;
1981 class BlockAddressSDNode : public SDNode {
1982 friend class SelectionDAG;
1984 const BlockAddress *BA;
1985 int64_t Offset;
1986 unsigned char TargetFlags;
1988 BlockAddressSDNode(unsigned NodeTy, EVT VT, const BlockAddress *ba,
1989 int64_t o, unsigned char Flags)
1990 : SDNode(NodeTy, 0, DebugLoc(), getSDVTList(VT)),
1991 BA(ba), Offset(o), TargetFlags(Flags) {}
1993 public:
1994 const BlockAddress *getBlockAddress() const { return BA; }
1995 int64_t getOffset() const { return Offset; }
1996 unsigned char getTargetFlags() const { return TargetFlags; }
1998 static bool classof(const SDNode *N) {
1999 return N->getOpcode() == ISD::BlockAddress ||
2000 N->getOpcode() == ISD::TargetBlockAddress;
2004 class LabelSDNode : public SDNode {
2005 friend class SelectionDAG;
2007 MCSymbol *Label;
2009 LabelSDNode(unsigned Order, const DebugLoc &dl, MCSymbol *L)
2010 : SDNode(ISD::EH_LABEL, Order, dl, getSDVTList(MVT::Other)), Label(L) {}
2012 public:
2013 MCSymbol *getLabel() const { return Label; }
2015 static bool classof(const SDNode *N) {
2016 return N->getOpcode() == ISD::EH_LABEL ||
2017 N->getOpcode() == ISD::ANNOTATION_LABEL;
2021 class ExternalSymbolSDNode : public SDNode {
2022 friend class SelectionDAG;
2024 const char *Symbol;
2025 unsigned char TargetFlags;
2027 ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned char TF, EVT VT)
2028 : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
2029 0, DebugLoc(), getSDVTList(VT)), Symbol(Sym), TargetFlags(TF) {}
2031 public:
2032 const char *getSymbol() const { return Symbol; }
2033 unsigned char getTargetFlags() const { return TargetFlags; }
2035 static bool classof(const SDNode *N) {
2036 return N->getOpcode() == ISD::ExternalSymbol ||
2037 N->getOpcode() == ISD::TargetExternalSymbol;
2041 class MCSymbolSDNode : public SDNode {
2042 friend class SelectionDAG;
2044 MCSymbol *Symbol;
2046 MCSymbolSDNode(MCSymbol *Symbol, EVT VT)
2047 : SDNode(ISD::MCSymbol, 0, DebugLoc(), getSDVTList(VT)), Symbol(Symbol) {}
2049 public:
2050 MCSymbol *getMCSymbol() const { return Symbol; }
2052 static bool classof(const SDNode *N) {
2053 return N->getOpcode() == ISD::MCSymbol;
2057 class CondCodeSDNode : public SDNode {
2058 friend class SelectionDAG;
2060 ISD::CondCode Condition;
2062 explicit CondCodeSDNode(ISD::CondCode Cond)
2063 : SDNode(ISD::CONDCODE, 0, DebugLoc(), getSDVTList(MVT::Other)),
2064 Condition(Cond) {}
2066 public:
2067 ISD::CondCode get() const { return Condition; }
2069 static bool classof(const SDNode *N) {
2070 return N->getOpcode() == ISD::CONDCODE;
2074 /// This class is used to represent EVT's, which are used
2075 /// to parameterize some operations.
2076 class VTSDNode : public SDNode {
2077 friend class SelectionDAG;
2079 EVT ValueType;
2081 explicit VTSDNode(EVT VT)
2082 : SDNode(ISD::VALUETYPE, 0, DebugLoc(), getSDVTList(MVT::Other)),
2083 ValueType(VT) {}
2085 public:
2086 EVT getVT() const { return ValueType; }
2088 static bool classof(const SDNode *N) {
2089 return N->getOpcode() == ISD::VALUETYPE;
2093 /// Base class for LoadSDNode and StoreSDNode
2094 class LSBaseSDNode : public MemSDNode {
2095 public:
2096 LSBaseSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl,
2097 SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT,
2098 MachineMemOperand *MMO)
2099 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2100 LSBaseSDNodeBits.AddressingMode = AM;
2101 assert(getAddressingMode() == AM && "Value truncated");
2104 const SDValue &getOffset() const {
2105 return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
2108 /// Return the addressing mode for this load or store:
2109 /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2110 ISD::MemIndexedMode getAddressingMode() const {
2111 return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
2114 /// Return true if this is a pre/post inc/dec load/store.
2115 bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
2117 /// Return true if this is NOT a pre/post inc/dec load/store.
2118 bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
2120 static bool classof(const SDNode *N) {
2121 return N->getOpcode() == ISD::LOAD ||
2122 N->getOpcode() == ISD::STORE;
2126 /// This class is used to represent ISD::LOAD nodes.
2127 class LoadSDNode : public LSBaseSDNode {
2128 friend class SelectionDAG;
2130 LoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2131 ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT,
2132 MachineMemOperand *MMO)
2133 : LSBaseSDNode(ISD::LOAD, Order, dl, VTs, AM, MemVT, MMO) {
2134 LoadSDNodeBits.ExtTy = ETy;
2135 assert(readMem() && "Load MachineMemOperand is not a load!");
2136 assert(!writeMem() && "Load MachineMemOperand is a store!");
2139 public:
2140 /// Return whether this is a plain node,
2141 /// or one of the varieties of value-extending loads.
2142 ISD::LoadExtType getExtensionType() const {
2143 return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2146 const SDValue &getBasePtr() const { return getOperand(1); }
2147 const SDValue &getOffset() const { return getOperand(2); }
2149 static bool classof(const SDNode *N) {
2150 return N->getOpcode() == ISD::LOAD;
2154 /// This class is used to represent ISD::STORE nodes.
2155 class StoreSDNode : public LSBaseSDNode {
2156 friend class SelectionDAG;
2158 StoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2159 ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
2160 MachineMemOperand *MMO)
2161 : LSBaseSDNode(ISD::STORE, Order, dl, VTs, AM, MemVT, MMO) {
2162 StoreSDNodeBits.IsTruncating = isTrunc;
2163 assert(!readMem() && "Store MachineMemOperand is a load!");
2164 assert(writeMem() && "Store MachineMemOperand is not a store!");
2167 public:
2168 /// Return true if the op does a truncation before store.
2169 /// For integers this is the same as doing a TRUNCATE and storing the result.
2170 /// For floats, it is the same as doing an FP_ROUND and storing the result.
2171 bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2172 void setTruncatingStore(bool Truncating) {
2173 StoreSDNodeBits.IsTruncating = Truncating;
2176 const SDValue &getValue() const { return getOperand(1); }
2177 const SDValue &getBasePtr() const { return getOperand(2); }
2178 const SDValue &getOffset() const { return getOperand(3); }
2180 static bool classof(const SDNode *N) {
2181 return N->getOpcode() == ISD::STORE;
2185 /// This base class is used to represent MLOAD and MSTORE nodes
2186 class MaskedLoadStoreSDNode : public MemSDNode {
2187 public:
2188 friend class SelectionDAG;
2190 MaskedLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order,
2191 const DebugLoc &dl, SDVTList VTs, EVT MemVT,
2192 MachineMemOperand *MMO)
2193 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {}
2195 // MaskedLoadSDNode (Chain, ptr, mask, passthru)
2196 // MaskedStoreSDNode (Chain, data, ptr, mask)
2197 // Mask is a vector of i1 elements
2198 const SDValue &getBasePtr() const {
2199 return getOperand(getOpcode() == ISD::MLOAD ? 1 : 2);
2201 const SDValue &getMask() const {
2202 return getOperand(getOpcode() == ISD::MLOAD ? 2 : 3);
2205 static bool classof(const SDNode *N) {
2206 return N->getOpcode() == ISD::MLOAD ||
2207 N->getOpcode() == ISD::MSTORE;
2211 /// This class is used to represent an MLOAD node
2212 class MaskedLoadSDNode : public MaskedLoadStoreSDNode {
2213 public:
2214 friend class SelectionDAG;
2216 MaskedLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2217 ISD::LoadExtType ETy, bool IsExpanding, EVT MemVT,
2218 MachineMemOperand *MMO)
2219 : MaskedLoadStoreSDNode(ISD::MLOAD, Order, dl, VTs, MemVT, MMO) {
2220 LoadSDNodeBits.ExtTy = ETy;
2221 LoadSDNodeBits.IsExpanding = IsExpanding;
2224 ISD::LoadExtType getExtensionType() const {
2225 return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
2228 const SDValue &getBasePtr() const { return getOperand(1); }
2229 const SDValue &getMask() const { return getOperand(2); }
2230 const SDValue &getPassThru() const { return getOperand(3); }
2232 static bool classof(const SDNode *N) {
2233 return N->getOpcode() == ISD::MLOAD;
2236 bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; }
2239 /// This class is used to represent an MSTORE node
2240 class MaskedStoreSDNode : public MaskedLoadStoreSDNode {
2241 public:
2242 friend class SelectionDAG;
2244 MaskedStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2245 bool isTrunc, bool isCompressing, EVT MemVT,
2246 MachineMemOperand *MMO)
2247 : MaskedLoadStoreSDNode(ISD::MSTORE, Order, dl, VTs, MemVT, MMO) {
2248 StoreSDNodeBits.IsTruncating = isTrunc;
2249 StoreSDNodeBits.IsCompressing = isCompressing;
2252 /// Return true if the op does a truncation before store.
2253 /// For integers this is the same as doing a TRUNCATE and storing the result.
2254 /// For floats, it is the same as doing an FP_ROUND and storing the result.
2255 bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
2257 /// Returns true if the op does a compression to the vector before storing.
2258 /// The node contiguously stores the active elements (integers or floats)
2259 /// in src (those with their respective bit set in writemask k) to unaligned
2260 /// memory at base_addr.
2261 bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; }
2263 const SDValue &getValue() const { return getOperand(1); }
2264 const SDValue &getBasePtr() const { return getOperand(2); }
2265 const SDValue &getMask() const { return getOperand(3); }
2267 static bool classof(const SDNode *N) {
2268 return N->getOpcode() == ISD::MSTORE;
2272 /// This is a base class used to represent
2273 /// MGATHER and MSCATTER nodes
2275 class MaskedGatherScatterSDNode : public MemSDNode {
2276 public:
2277 friend class SelectionDAG;
2279 MaskedGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order,
2280 const DebugLoc &dl, SDVTList VTs, EVT MemVT,
2281 MachineMemOperand *MMO)
2282 : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {}
2284 // In the both nodes address is Op1, mask is Op2:
2285 // MaskedGatherSDNode (Chain, passthru, mask, base, index, scale)
2286 // MaskedScatterSDNode (Chain, value, mask, base, index, scale)
2287 // Mask is a vector of i1 elements
2288 const SDValue &getBasePtr() const { return getOperand(3); }
2289 const SDValue &getIndex() const { return getOperand(4); }
2290 const SDValue &getMask() const { return getOperand(2); }
2291 const SDValue &getScale() const { return getOperand(5); }
2293 static bool classof(const SDNode *N) {
2294 return N->getOpcode() == ISD::MGATHER ||
2295 N->getOpcode() == ISD::MSCATTER;
2299 /// This class is used to represent an MGATHER node
2301 class MaskedGatherSDNode : public MaskedGatherScatterSDNode {
2302 public:
2303 friend class SelectionDAG;
2305 MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2306 EVT MemVT, MachineMemOperand *MMO)
2307 : MaskedGatherScatterSDNode(ISD::MGATHER, Order, dl, VTs, MemVT, MMO) {}
2309 const SDValue &getPassThru() const { return getOperand(1); }
2311 static bool classof(const SDNode *N) {
2312 return N->getOpcode() == ISD::MGATHER;
2316 /// This class is used to represent an MSCATTER node
2318 class MaskedScatterSDNode : public MaskedGatherScatterSDNode {
2319 public:
2320 friend class SelectionDAG;
2322 MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
2323 EVT MemVT, MachineMemOperand *MMO)
2324 : MaskedGatherScatterSDNode(ISD::MSCATTER, Order, dl, VTs, MemVT, MMO) {}
2326 const SDValue &getValue() const { return getOperand(1); }
2328 static bool classof(const SDNode *N) {
2329 return N->getOpcode() == ISD::MSCATTER;
2333 /// An SDNode that represents everything that will be needed
2334 /// to construct a MachineInstr. These nodes are created during the
2335 /// instruction selection proper phase.
2337 /// Note that the only supported way to set the `memoperands` is by calling the
2338 /// `SelectionDAG::setNodeMemRefs` function as the memory management happens
2339 /// inside the DAG rather than in the node.
2340 class MachineSDNode : public SDNode {
2341 private:
2342 friend class SelectionDAG;
2344 MachineSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL, SDVTList VTs)
2345 : SDNode(Opc, Order, DL, VTs) {}
2347 // We use a pointer union between a single `MachineMemOperand` pointer and
2348 // a pointer to an array of `MachineMemOperand` pointers. This is null when
2349 // the number of these is zero, the single pointer variant used when the
2350 // number is one, and the array is used for larger numbers.
2352 // The array is allocated via the `SelectionDAG`'s allocator and so will
2353 // always live until the DAG is cleaned up and doesn't require ownership here.
2355 // We can't use something simpler like `TinyPtrVector` here because `SDNode`
2356 // subclasses aren't managed in a conforming C++ manner. See the comments on
2357 // `SelectionDAG::MorphNodeTo` which details what all goes on, but the
2358 // constraint here is that these don't manage memory with their constructor or
2359 // destructor and can be initialized to a good state even if they start off
2360 // uninitialized.
2361 PointerUnion<MachineMemOperand *, MachineMemOperand **> MemRefs = {};
2363 // Note that this could be folded into the above `MemRefs` member if doing so
2364 // is advantageous at some point. We don't need to store this in most cases.
2365 // However, at the moment this doesn't appear to make the allocation any
2366 // smaller and makes the code somewhat simpler to read.
2367 int NumMemRefs = 0;
2369 public:
2370 using mmo_iterator = ArrayRef<MachineMemOperand *>::const_iterator;
2372 ArrayRef<MachineMemOperand *> memoperands() const {
2373 // Special case the common cases.
2374 if (NumMemRefs == 0)
2375 return {};
2376 if (NumMemRefs == 1)
2377 return makeArrayRef(MemRefs.getAddrOfPtr1(), 1);
2379 // Otherwise we have an actual array.
2380 return makeArrayRef(MemRefs.get<MachineMemOperand **>(), NumMemRefs);
2382 mmo_iterator memoperands_begin() const { return memoperands().begin(); }
2383 mmo_iterator memoperands_end() const { return memoperands().end(); }
2384 bool memoperands_empty() const { return memoperands().empty(); }
2386 /// Clear out the memory reference descriptor list.
2387 void clearMemRefs() {
2388 MemRefs = nullptr;
2389 NumMemRefs = 0;
2392 static bool classof(const SDNode *N) {
2393 return N->isMachineOpcode();
2397 class SDNodeIterator : public std::iterator<std::forward_iterator_tag,
2398 SDNode, ptrdiff_t> {
2399 const SDNode *Node;
2400 unsigned Operand;
2402 SDNodeIterator(const SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
2404 public:
2405 bool operator==(const SDNodeIterator& x) const {
2406 return Operand == x.Operand;
2408 bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
2410 pointer operator*() const {
2411 return Node->getOperand(Operand).getNode();
2413 pointer operator->() const { return operator*(); }
2415 SDNodeIterator& operator++() { // Preincrement
2416 ++Operand;
2417 return *this;
2419 SDNodeIterator operator++(int) { // Postincrement
2420 SDNodeIterator tmp = *this; ++*this; return tmp;
2422 size_t operator-(SDNodeIterator Other) const {
2423 assert(Node == Other.Node &&
2424 "Cannot compare iterators of two different nodes!");
2425 return Operand - Other.Operand;
2428 static SDNodeIterator begin(const SDNode *N) { return SDNodeIterator(N, 0); }
2429 static SDNodeIterator end (const SDNode *N) {
2430 return SDNodeIterator(N, N->getNumOperands());
2433 unsigned getOperand() const { return Operand; }
2434 const SDNode *getNode() const { return Node; }
2437 template <> struct GraphTraits<SDNode*> {
2438 using NodeRef = SDNode *;
2439 using ChildIteratorType = SDNodeIterator;
2441 static NodeRef getEntryNode(SDNode *N) { return N; }
2443 static ChildIteratorType child_begin(NodeRef N) {
2444 return SDNodeIterator::begin(N);
2447 static ChildIteratorType child_end(NodeRef N) {
2448 return SDNodeIterator::end(N);
2452 /// A representation of the largest SDNode, for use in sizeof().
2454 /// This needs to be a union because the largest node differs on 32 bit systems
2455 /// with 4 and 8 byte pointer alignment, respectively.
2456 using LargestSDNode = AlignedCharArrayUnion<AtomicSDNode, TargetIndexSDNode,
2457 BlockAddressSDNode,
2458 GlobalAddressSDNode>;
2460 /// The SDNode class with the greatest alignment requirement.
2461 using MostAlignedSDNode = GlobalAddressSDNode;
2463 namespace ISD {
2465 /// Returns true if the specified node is a non-extending and unindexed load.
2466 inline bool isNormalLoad(const SDNode *N) {
2467 const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
2468 return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
2469 Ld->getAddressingMode() == ISD::UNINDEXED;
2472 /// Returns true if the specified node is a non-extending load.
2473 inline bool isNON_EXTLoad(const SDNode *N) {
2474 return isa<LoadSDNode>(N) &&
2475 cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
2478 /// Returns true if the specified node is a EXTLOAD.
2479 inline bool isEXTLoad(const SDNode *N) {
2480 return isa<LoadSDNode>(N) &&
2481 cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
2484 /// Returns true if the specified node is a SEXTLOAD.
2485 inline bool isSEXTLoad(const SDNode *N) {
2486 return isa<LoadSDNode>(N) &&
2487 cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
2490 /// Returns true if the specified node is a ZEXTLOAD.
2491 inline bool isZEXTLoad(const SDNode *N) {
2492 return isa<LoadSDNode>(N) &&
2493 cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
2496 /// Returns true if the specified node is an unindexed load.
2497 inline bool isUNINDEXEDLoad(const SDNode *N) {
2498 return isa<LoadSDNode>(N) &&
2499 cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2502 /// Returns true if the specified node is a non-truncating
2503 /// and unindexed store.
2504 inline bool isNormalStore(const SDNode *N) {
2505 const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
2506 return St && !St->isTruncatingStore() &&
2507 St->getAddressingMode() == ISD::UNINDEXED;
2510 /// Returns true if the specified node is a non-truncating store.
2511 inline bool isNON_TRUNCStore(const SDNode *N) {
2512 return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
2515 /// Returns true if the specified node is a truncating store.
2516 inline bool isTRUNCStore(const SDNode *N) {
2517 return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
2520 /// Returns true if the specified node is an unindexed store.
2521 inline bool isUNINDEXEDStore(const SDNode *N) {
2522 return isa<StoreSDNode>(N) &&
2523 cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2526 /// Return true if the node is a math/logic binary operator. This corresponds
2527 /// to the IR function of the same name.
2528 inline bool isBinaryOp(const SDNode *N) {
2529 auto Op = N->getOpcode();
2530 return (Op == ISD::ADD || Op == ISD::SUB || Op == ISD::MUL ||
2531 Op == ISD::AND || Op == ISD::OR || Op == ISD::XOR ||
2532 Op == ISD::SHL || Op == ISD::SRL || Op == ISD::SRA ||
2533 Op == ISD::SDIV || Op == ISD::UDIV || Op == ISD::SREM ||
2534 Op == ISD::UREM || Op == ISD::FADD || Op == ISD::FSUB ||
2535 Op == ISD::FMUL || Op == ISD::FDIV || Op == ISD::FREM);
2538 /// Attempt to match a unary predicate against a scalar/splat constant or
2539 /// every element of a constant BUILD_VECTOR.
2540 /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
2541 bool matchUnaryPredicate(SDValue Op,
2542 std::function<bool(ConstantSDNode *)> Match,
2543 bool AllowUndefs = false);
2545 /// Attempt to match a binary predicate against a pair of scalar/splat
2546 /// constants or every element of a pair of constant BUILD_VECTORs.
2547 /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
2548 bool matchBinaryPredicate(
2549 SDValue LHS, SDValue RHS,
2550 std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
2551 bool AllowUndefs = false);
2552 } // end namespace ISD
2554 } // end namespace llvm
2556 #endif // LLVM_CODEGEN_SELECTIONDAGNODES_H