1 //===- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ----*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file declares the SDNode class and derived classes, which are used to
10 // represent the nodes and operations present in a SelectionDAG. These nodes
11 // and operations are machine code level operations, with some similarities to
12 // the GCC RTL representation.
14 // Clients should include the SelectionDAG.h file instead of this file directly.
16 //===----------------------------------------------------------------------===//
18 #ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
19 #define LLVM_CODEGEN_SELECTIONDAGNODES_H
21 #include "llvm/ADT/APFloat.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/FoldingSet.h"
25 #include "llvm/ADT/GraphTraits.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/ilist_node.h"
29 #include "llvm/ADT/iterator.h"
30 #include "llvm/ADT/iterator_range.h"
31 #include "llvm/CodeGen/ISDOpcodes.h"
32 #include "llvm/CodeGen/MachineMemOperand.h"
33 #include "llvm/CodeGen/ValueTypes.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DebugLoc.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/Support/AlignOf.h"
41 #include "llvm/Support/AtomicOrdering.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/MachineValueType.h"
59 template <typename T
> struct DenseMapInfo
;
61 class MachineBasicBlock
;
62 class MachineConstantPoolValue
;
70 void checkForCycles(const SDNode
*N
, const SelectionDAG
*DAG
= nullptr,
73 /// This represents a list of ValueType's that has been intern'd by
74 /// a SelectionDAG. Instances of this simple value class are returned by
75 /// SelectionDAG::getVTList(...).
86 /// If N is a BUILD_VECTOR node whose elements are all the same constant or
87 /// undefined, return true and return the constant value in \p SplatValue.
88 bool isConstantSplatVector(const SDNode
*N
, APInt
&SplatValue
);
90 /// Return true if the specified node is a BUILD_VECTOR where all of the
91 /// elements are ~0 or undef.
92 bool isBuildVectorAllOnes(const SDNode
*N
);
94 /// Return true if the specified node is a BUILD_VECTOR where all of the
95 /// elements are 0 or undef.
96 bool isBuildVectorAllZeros(const SDNode
*N
);
98 /// Return true if the specified node is a BUILD_VECTOR node of all
99 /// ConstantSDNode or undef.
100 bool isBuildVectorOfConstantSDNodes(const SDNode
*N
);
102 /// Return true if the specified node is a BUILD_VECTOR node of all
103 /// ConstantFPSDNode or undef.
104 bool isBuildVectorOfConstantFPSDNodes(const SDNode
*N
);
106 /// Return true if the node has at least one operand and all operands of the
107 /// specified node are ISD::UNDEF.
108 bool allOperandsUndef(const SDNode
*N
);
110 } // end namespace ISD
112 //===----------------------------------------------------------------------===//
113 /// Unlike LLVM values, Selection DAG nodes may return multiple
114 /// values as the result of a computation. Many nodes return multiple values,
115 /// from loads (which define a token and a return value) to ADDC (which returns
116 /// a result and a carry value), to calls (which may return an arbitrary number
119 /// As such, each use of a SelectionDAG computation must indicate the node that
120 /// computes it as well as which return value to use from that node. This pair
121 /// of information is represented with the SDValue value type.
124 friend struct DenseMapInfo
<SDValue
>;
126 SDNode
*Node
= nullptr; // The node defining the value we are using.
127 unsigned ResNo
= 0; // Which return value of the node we are using.
131 SDValue(SDNode
*node
, unsigned resno
);
133 /// get the index which selects a specific result in the SDNode
134 unsigned getResNo() const { return ResNo
; }
136 /// get the SDNode which holds the desired result
137 SDNode
*getNode() const { return Node
; }
140 void setNode(SDNode
*N
) { Node
= N
; }
142 inline SDNode
*operator->() const { return Node
; }
144 bool operator==(const SDValue
&O
) const {
145 return Node
== O
.Node
&& ResNo
== O
.ResNo
;
147 bool operator!=(const SDValue
&O
) const {
148 return !operator==(O
);
150 bool operator<(const SDValue
&O
) const {
151 return std::tie(Node
, ResNo
) < std::tie(O
.Node
, O
.ResNo
);
153 explicit operator bool() const {
154 return Node
!= nullptr;
157 SDValue
getValue(unsigned R
) const {
158 return SDValue(Node
, R
);
161 /// Return true if this node is an operand of N.
162 bool isOperandOf(const SDNode
*N
) const;
164 /// Return the ValueType of the referenced return value.
165 inline EVT
getValueType() const;
167 /// Return the simple ValueType of the referenced return value.
168 MVT
getSimpleValueType() const {
169 return getValueType().getSimpleVT();
172 /// Returns the size of the value in bits.
173 unsigned getValueSizeInBits() const {
174 return getValueType().getSizeInBits();
177 unsigned getScalarValueSizeInBits() const {
178 return getValueType().getScalarType().getSizeInBits();
181 // Forwarding methods - These forward to the corresponding methods in SDNode.
182 inline unsigned getOpcode() const;
183 inline unsigned getNumOperands() const;
184 inline const SDValue
&getOperand(unsigned i
) const;
185 inline uint64_t getConstantOperandVal(unsigned i
) const;
186 inline const APInt
&getConstantOperandAPInt(unsigned i
) const;
187 inline bool isTargetMemoryOpcode() const;
188 inline bool isTargetOpcode() const;
189 inline bool isMachineOpcode() const;
190 inline bool isUndef() const;
191 inline unsigned getMachineOpcode() const;
192 inline const DebugLoc
&getDebugLoc() const;
193 inline void dump() const;
194 inline void dump(const SelectionDAG
*G
) const;
195 inline void dumpr() const;
196 inline void dumpr(const SelectionDAG
*G
) const;
198 /// Return true if this operand (which must be a chain) reaches the
199 /// specified operand without crossing any side-effecting instructions.
200 /// In practice, this looks through token factors and non-volatile loads.
201 /// In order to remain efficient, this only
202 /// looks a couple of nodes in, it does not do an exhaustive search.
203 bool reachesChainWithoutSideEffects(SDValue Dest
,
204 unsigned Depth
= 2) const;
206 /// Return true if there are no nodes using value ResNo of Node.
207 inline bool use_empty() const;
209 /// Return true if there is exactly one node using value ResNo of Node.
210 inline bool hasOneUse() const;
213 template<> struct DenseMapInfo
<SDValue
> {
214 static inline SDValue
getEmptyKey() {
220 static inline SDValue
getTombstoneKey() {
226 static unsigned getHashValue(const SDValue
&Val
) {
227 return ((unsigned)((uintptr_t)Val
.getNode() >> 4) ^
228 (unsigned)((uintptr_t)Val
.getNode() >> 9)) + Val
.getResNo();
231 static bool isEqual(const SDValue
&LHS
, const SDValue
&RHS
) {
236 /// Allow casting operators to work directly on
237 /// SDValues as if they were SDNode*'s.
238 template<> struct simplify_type
<SDValue
> {
239 using SimpleType
= SDNode
*;
241 static SimpleType
getSimplifiedValue(SDValue
&Val
) {
242 return Val
.getNode();
245 template<> struct simplify_type
<const SDValue
> {
246 using SimpleType
= /*const*/ SDNode
*;
248 static SimpleType
getSimplifiedValue(const SDValue
&Val
) {
249 return Val
.getNode();
253 /// Represents a use of a SDNode. This class holds an SDValue,
254 /// which records the SDNode being used and the result number, a
255 /// pointer to the SDNode using the value, and Next and Prev pointers,
256 /// which link together all the uses of an SDNode.
259 /// Val - The value being used.
261 /// User - The user of this value.
262 SDNode
*User
= nullptr;
263 /// Prev, Next - Pointers to the uses list of the SDNode referred by
265 SDUse
**Prev
= nullptr;
266 SDUse
*Next
= nullptr;
270 SDUse(const SDUse
&U
) = delete;
271 SDUse
&operator=(const SDUse
&) = delete;
273 /// Normally SDUse will just implicitly convert to an SDValue that it holds.
274 operator const SDValue
&() const { return Val
; }
276 /// If implicit conversion to SDValue doesn't work, the get() method returns
278 const SDValue
&get() const { return Val
; }
280 /// This returns the SDNode that contains this Use.
281 SDNode
*getUser() { return User
; }
283 /// Get the next SDUse in the use list.
284 SDUse
*getNext() const { return Next
; }
286 /// Convenience function for get().getNode().
287 SDNode
*getNode() const { return Val
.getNode(); }
288 /// Convenience function for get().getResNo().
289 unsigned getResNo() const { return Val
.getResNo(); }
290 /// Convenience function for get().getValueType().
291 EVT
getValueType() const { return Val
.getValueType(); }
293 /// Convenience function for get().operator==
294 bool operator==(const SDValue
&V
) const {
298 /// Convenience function for get().operator!=
299 bool operator!=(const SDValue
&V
) const {
303 /// Convenience function for get().operator<
304 bool operator<(const SDValue
&V
) const {
309 friend class SelectionDAG
;
311 // TODO: unfriend HandleSDNode once we fix its operand handling.
312 friend class HandleSDNode
;
314 void setUser(SDNode
*p
) { User
= p
; }
316 /// Remove this use from its existing use list, assign it the
317 /// given value, and add it to the new value's node's use list.
318 inline void set(const SDValue
&V
);
319 /// Like set, but only supports initializing a newly-allocated
320 /// SDUse with a non-null value.
321 inline void setInitial(const SDValue
&V
);
322 /// Like set, but only sets the Node portion of the value,
323 /// leaving the ResNo portion unmodified.
324 inline void setNode(SDNode
*N
);
326 void addToList(SDUse
**List
) {
328 if (Next
) Next
->Prev
= &Next
;
333 void removeFromList() {
335 if (Next
) Next
->Prev
= Prev
;
339 /// simplify_type specializations - Allow casting operators to work directly on
340 /// SDValues as if they were SDNode*'s.
341 template<> struct simplify_type
<SDUse
> {
342 using SimpleType
= SDNode
*;
344 static SimpleType
getSimplifiedValue(SDUse
&Val
) {
345 return Val
.getNode();
349 /// These are IR-level optimization flags that may be propagated to SDNodes.
350 /// TODO: This data structure should be shared by the IR optimizer and the
354 // This bit is used to determine if the flags are in a defined state.
355 // Flag bits can only be masked out during intersection if the masking flags
359 bool NoUnsignedWrap
: 1;
360 bool NoSignedWrap
: 1;
364 bool NoSignedZeros
: 1;
365 bool AllowReciprocal
: 1;
366 bool VectorReduction
: 1;
367 bool AllowContract
: 1;
368 bool ApproximateFuncs
: 1;
369 bool AllowReassociation
: 1;
372 /// Default constructor turns off all optimization flags.
374 : AnyDefined(false), NoUnsignedWrap(false), NoSignedWrap(false),
375 Exact(false), NoNaNs(false), NoInfs(false),
376 NoSignedZeros(false), AllowReciprocal(false), VectorReduction(false),
377 AllowContract(false), ApproximateFuncs(false),
378 AllowReassociation(false) {}
380 /// Propagate the fast-math-flags from an IR FPMathOperator.
381 void copyFMF(const FPMathOperator
&FPMO
) {
382 setNoNaNs(FPMO
.hasNoNaNs());
383 setNoInfs(FPMO
.hasNoInfs());
384 setNoSignedZeros(FPMO
.hasNoSignedZeros());
385 setAllowReciprocal(FPMO
.hasAllowReciprocal());
386 setAllowContract(FPMO
.hasAllowContract());
387 setApproximateFuncs(FPMO
.hasApproxFunc());
388 setAllowReassociation(FPMO
.hasAllowReassoc());
391 /// Sets the state of the flags to the defined state.
392 void setDefined() { AnyDefined
= true; }
393 /// Returns true if the flags are in a defined state.
394 bool isDefined() const { return AnyDefined
; }
396 // These are mutators for each flag.
397 void setNoUnsignedWrap(bool b
) {
401 void setNoSignedWrap(bool b
) {
405 void setExact(bool b
) {
409 void setNoNaNs(bool b
) {
413 void setNoInfs(bool b
) {
417 void setNoSignedZeros(bool b
) {
421 void setAllowReciprocal(bool b
) {
425 void setVectorReduction(bool b
) {
429 void setAllowContract(bool b
) {
433 void setApproximateFuncs(bool b
) {
435 ApproximateFuncs
= b
;
437 void setAllowReassociation(bool b
) {
439 AllowReassociation
= b
;
442 // These are accessors for each flag.
443 bool hasNoUnsignedWrap() const { return NoUnsignedWrap
; }
444 bool hasNoSignedWrap() const { return NoSignedWrap
; }
445 bool hasExact() const { return Exact
; }
446 bool hasNoNaNs() const { return NoNaNs
; }
447 bool hasNoInfs() const { return NoInfs
; }
448 bool hasNoSignedZeros() const { return NoSignedZeros
; }
449 bool hasAllowReciprocal() const { return AllowReciprocal
; }
450 bool hasVectorReduction() const { return VectorReduction
; }
451 bool hasAllowContract() const { return AllowContract
; }
452 bool hasApproximateFuncs() const { return ApproximateFuncs
; }
453 bool hasAllowReassociation() const { return AllowReassociation
; }
455 bool isFast() const {
456 return NoSignedZeros
&& AllowReciprocal
&& NoNaNs
&& NoInfs
&&
457 AllowContract
&& ApproximateFuncs
&& AllowReassociation
;
460 /// Clear any flags in this flag set that aren't also set in Flags.
461 /// If the given Flags are undefined then don't do anything.
462 void intersectWith(const SDNodeFlags Flags
) {
463 if (!Flags
.isDefined())
465 NoUnsignedWrap
&= Flags
.NoUnsignedWrap
;
466 NoSignedWrap
&= Flags
.NoSignedWrap
;
467 Exact
&= Flags
.Exact
;
468 NoNaNs
&= Flags
.NoNaNs
;
469 NoInfs
&= Flags
.NoInfs
;
470 NoSignedZeros
&= Flags
.NoSignedZeros
;
471 AllowReciprocal
&= Flags
.AllowReciprocal
;
472 VectorReduction
&= Flags
.VectorReduction
;
473 AllowContract
&= Flags
.AllowContract
;
474 ApproximateFuncs
&= Flags
.ApproximateFuncs
;
475 AllowReassociation
&= Flags
.AllowReassociation
;
479 /// Represents one node in the SelectionDAG.
481 class SDNode
: public FoldingSetNode
, public ilist_node
<SDNode
> {
483 /// The operation that this node performs.
487 // We define a set of mini-helper classes to help us interpret the bits in our
488 // SubclassData. These are designed to fit within a uint16_t so they pack
491 class SDNodeBitfields
{
493 friend class MemIntrinsicSDNode
;
494 friend class MemSDNode
;
495 friend class SelectionDAG
;
497 uint16_t HasDebugValue
: 1;
498 uint16_t IsMemIntrinsic
: 1;
499 uint16_t IsDivergent
: 1;
501 enum { NumSDNodeBits
= 3 };
503 class ConstantSDNodeBitfields
{
504 friend class ConstantSDNode
;
506 uint16_t : NumSDNodeBits
;
508 uint16_t IsOpaque
: 1;
511 class MemSDNodeBitfields
{
512 friend class MemSDNode
;
513 friend class MemIntrinsicSDNode
;
514 friend class AtomicSDNode
;
516 uint16_t : NumSDNodeBits
;
518 uint16_t IsVolatile
: 1;
519 uint16_t IsNonTemporal
: 1;
520 uint16_t IsDereferenceable
: 1;
521 uint16_t IsInvariant
: 1;
523 enum { NumMemSDNodeBits
= NumSDNodeBits
+ 4 };
525 class LSBaseSDNodeBitfields
{
526 friend class LSBaseSDNode
;
528 uint16_t : NumMemSDNodeBits
;
530 uint16_t AddressingMode
: 3; // enum ISD::MemIndexedMode
532 enum { NumLSBaseSDNodeBits
= NumMemSDNodeBits
+ 3 };
534 class LoadSDNodeBitfields
{
535 friend class LoadSDNode
;
536 friend class MaskedLoadSDNode
;
538 uint16_t : NumLSBaseSDNodeBits
;
540 uint16_t ExtTy
: 2; // enum ISD::LoadExtType
541 uint16_t IsExpanding
: 1;
544 class StoreSDNodeBitfields
{
545 friend class StoreSDNode
;
546 friend class MaskedStoreSDNode
;
548 uint16_t : NumLSBaseSDNodeBits
;
550 uint16_t IsTruncating
: 1;
551 uint16_t IsCompressing
: 1;
555 char RawSDNodeBits
[sizeof(uint16_t)];
556 SDNodeBitfields SDNodeBits
;
557 ConstantSDNodeBitfields ConstantSDNodeBits
;
558 MemSDNodeBitfields MemSDNodeBits
;
559 LSBaseSDNodeBitfields LSBaseSDNodeBits
;
560 LoadSDNodeBitfields LoadSDNodeBits
;
561 StoreSDNodeBitfields StoreSDNodeBits
;
564 // RawSDNodeBits must cover the entirety of the union. This means that all of
565 // the union's members must have size <= RawSDNodeBits. We write the RHS as
566 // "2" instead of sizeof(RawSDNodeBits) because MSVC can't handle the latter.
567 static_assert(sizeof(SDNodeBitfields
) <= 2, "field too wide");
568 static_assert(sizeof(ConstantSDNodeBitfields
) <= 2, "field too wide");
569 static_assert(sizeof(MemSDNodeBitfields
) <= 2, "field too wide");
570 static_assert(sizeof(LSBaseSDNodeBitfields
) <= 2, "field too wide");
571 static_assert(sizeof(LoadSDNodeBitfields
) <= 2, "field too wide");
572 static_assert(sizeof(StoreSDNodeBitfields
) <= 2, "field too wide");
575 friend class SelectionDAG
;
576 // TODO: unfriend HandleSDNode once we fix its operand handling.
577 friend class HandleSDNode
;
579 /// Unique id per SDNode in the DAG.
582 /// The values that are used by this operation.
583 SDUse
*OperandList
= nullptr;
585 /// The types of the values this node defines. SDNode's may
586 /// define multiple values simultaneously.
587 const EVT
*ValueList
;
589 /// List of uses for this SDNode.
590 SDUse
*UseList
= nullptr;
592 /// The number of entries in the Operand/Value list.
593 unsigned short NumOperands
= 0;
594 unsigned short NumValues
;
596 // The ordering of the SDNodes. It roughly corresponds to the ordering of the
597 // original LLVM instructions.
598 // This is used for turning off scheduling, because we'll forgo
599 // the normal scheduling algorithms and output the instructions according to
603 /// Source line information.
606 /// Return a pointer to the specified value type.
607 static const EVT
*getValueTypeList(EVT VT
);
612 /// Unique and persistent id per SDNode in the DAG.
613 /// Used for debug printing.
614 uint16_t PersistentId
;
616 //===--------------------------------------------------------------------===//
620 /// Return the SelectionDAG opcode value for this node. For
621 /// pre-isel nodes (those for which isMachineOpcode returns false), these
622 /// are the opcode values in the ISD and <target>ISD namespaces. For
623 /// post-isel opcodes, see getMachineOpcode.
624 unsigned getOpcode() const { return (unsigned short)NodeType
; }
626 /// Test if this node has a target-specific opcode (in the
627 /// \<target\>ISD namespace).
628 bool isTargetOpcode() const { return NodeType
>= ISD::BUILTIN_OP_END
; }
630 /// Test if this node has a target-specific
631 /// memory-referencing opcode (in the \<target\>ISD namespace and
632 /// greater than FIRST_TARGET_MEMORY_OPCODE).
633 bool isTargetMemoryOpcode() const {
634 return NodeType
>= ISD::FIRST_TARGET_MEMORY_OPCODE
;
637 /// Return true if the type of the node type undefined.
638 bool isUndef() const { return NodeType
== ISD::UNDEF
; }
640 /// Test if this node is a memory intrinsic (with valid pointer information).
641 /// INTRINSIC_W_CHAIN and INTRINSIC_VOID nodes are sometimes created for
642 /// non-memory intrinsics (with chains) that are not really instances of
643 /// MemSDNode. For such nodes, we need some extra state to determine the
644 /// proper classof relationship.
645 bool isMemIntrinsic() const {
646 return (NodeType
== ISD::INTRINSIC_W_CHAIN
||
647 NodeType
== ISD::INTRINSIC_VOID
) &&
648 SDNodeBits
.IsMemIntrinsic
;
651 /// Test if this node is a strict floating point pseudo-op.
652 bool isStrictFPOpcode() {
656 case ISD::STRICT_FADD
:
657 case ISD::STRICT_FSUB
:
658 case ISD::STRICT_FMUL
:
659 case ISD::STRICT_FDIV
:
660 case ISD::STRICT_FREM
:
661 case ISD::STRICT_FMA
:
662 case ISD::STRICT_FSQRT
:
663 case ISD::STRICT_FPOW
:
664 case ISD::STRICT_FPOWI
:
665 case ISD::STRICT_FSIN
:
666 case ISD::STRICT_FCOS
:
667 case ISD::STRICT_FEXP
:
668 case ISD::STRICT_FEXP2
:
669 case ISD::STRICT_FLOG
:
670 case ISD::STRICT_FLOG10
:
671 case ISD::STRICT_FLOG2
:
672 case ISD::STRICT_FRINT
:
673 case ISD::STRICT_FNEARBYINT
:
674 case ISD::STRICT_FMAXNUM
:
675 case ISD::STRICT_FMINNUM
:
676 case ISD::STRICT_FCEIL
:
677 case ISD::STRICT_FFLOOR
:
678 case ISD::STRICT_FROUND
:
679 case ISD::STRICT_FTRUNC
:
684 /// Test if this node has a post-isel opcode, directly
685 /// corresponding to a MachineInstr opcode.
686 bool isMachineOpcode() const { return NodeType
< 0; }
688 /// This may only be called if isMachineOpcode returns
689 /// true. It returns the MachineInstr opcode value that the node's opcode
691 unsigned getMachineOpcode() const {
692 assert(isMachineOpcode() && "Not a MachineInstr opcode!");
696 bool getHasDebugValue() const { return SDNodeBits
.HasDebugValue
; }
697 void setHasDebugValue(bool b
) { SDNodeBits
.HasDebugValue
= b
; }
699 bool isDivergent() const { return SDNodeBits
.IsDivergent
; }
701 /// Return true if there are no uses of this node.
702 bool use_empty() const { return UseList
== nullptr; }
704 /// Return true if there is exactly one use of this node.
705 bool hasOneUse() const {
706 return !use_empty() && std::next(use_begin()) == use_end();
709 /// Return the number of uses of this node. This method takes
710 /// time proportional to the number of uses.
711 size_t use_size() const { return std::distance(use_begin(), use_end()); }
713 /// Return the unique node id.
714 int getNodeId() const { return NodeId
; }
716 /// Set unique node id.
717 void setNodeId(int Id
) { NodeId
= Id
; }
719 /// Return the node ordering.
720 unsigned getIROrder() const { return IROrder
; }
722 /// Set the node ordering.
723 void setIROrder(unsigned Order
) { IROrder
= Order
; }
725 /// Return the source location info.
726 const DebugLoc
&getDebugLoc() const { return debugLoc
; }
728 /// Set source location info. Try to avoid this, putting
729 /// it in the constructor is preferable.
730 void setDebugLoc(DebugLoc dl
) { debugLoc
= std::move(dl
); }
732 /// This class provides iterator support for SDUse
733 /// operands that use a specific SDNode.
735 : public std::iterator
<std::forward_iterator_tag
, SDUse
, ptrdiff_t> {
740 explicit use_iterator(SDUse
*op
) : Op(op
) {}
743 using reference
= std::iterator
<std::forward_iterator_tag
,
744 SDUse
, ptrdiff_t>::reference
;
745 using pointer
= std::iterator
<std::forward_iterator_tag
,
746 SDUse
, ptrdiff_t>::pointer
;
748 use_iterator() = default;
749 use_iterator(const use_iterator
&I
) : Op(I
.Op
) {}
751 bool operator==(const use_iterator
&x
) const {
754 bool operator!=(const use_iterator
&x
) const {
755 return !operator==(x
);
758 /// Return true if this iterator is at the end of uses list.
759 bool atEnd() const { return Op
== nullptr; }
761 // Iterator traversal: forward iteration only.
762 use_iterator
&operator++() { // Preincrement
763 assert(Op
&& "Cannot increment end iterator!");
768 use_iterator
operator++(int) { // Postincrement
769 use_iterator tmp
= *this; ++*this; return tmp
;
772 /// Retrieve a pointer to the current user node.
773 SDNode
*operator*() const {
774 assert(Op
&& "Cannot dereference end iterator!");
775 return Op
->getUser();
778 SDNode
*operator->() const { return operator*(); }
780 SDUse
&getUse() const { return *Op
; }
782 /// Retrieve the operand # of this use in its user.
783 unsigned getOperandNo() const {
784 assert(Op
&& "Cannot dereference end iterator!");
785 return (unsigned)(Op
- Op
->getUser()->OperandList
);
789 /// Provide iteration support to walk over all uses of an SDNode.
790 use_iterator
use_begin() const {
791 return use_iterator(UseList
);
794 static use_iterator
use_end() { return use_iterator(nullptr); }
796 inline iterator_range
<use_iterator
> uses() {
797 return make_range(use_begin(), use_end());
799 inline iterator_range
<use_iterator
> uses() const {
800 return make_range(use_begin(), use_end());
803 /// Return true if there are exactly NUSES uses of the indicated value.
804 /// This method ignores uses of other values defined by this operation.
805 bool hasNUsesOfValue(unsigned NUses
, unsigned Value
) const;
807 /// Return true if there are any use of the indicated value.
808 /// This method ignores uses of other values defined by this operation.
809 bool hasAnyUseOfValue(unsigned Value
) const;
811 /// Return true if this node is the only use of N.
812 bool isOnlyUserOf(const SDNode
*N
) const;
814 /// Return true if this node is an operand of N.
815 bool isOperandOf(const SDNode
*N
) const;
817 /// Return true if this node is a predecessor of N.
818 /// NOTE: Implemented on top of hasPredecessor and every bit as
819 /// expensive. Use carefully.
820 bool isPredecessorOf(const SDNode
*N
) const {
821 return N
->hasPredecessor(this);
824 /// Return true if N is a predecessor of this node.
825 /// N is either an operand of this node, or can be reached by recursively
826 /// traversing up the operands.
827 /// NOTE: This is an expensive method. Use it carefully.
828 bool hasPredecessor(const SDNode
*N
) const;
830 /// Returns true if N is a predecessor of any node in Worklist. This
831 /// helper keeps Visited and Worklist sets externally to allow unions
832 /// searches to be performed in parallel, caching of results across
833 /// queries and incremental addition to Worklist. Stops early if N is
834 /// found but will resume. Remember to clear Visited and Worklists
835 /// if DAG changes. MaxSteps gives a maximum number of nodes to visit before
836 /// giving up. The TopologicalPrune flag signals that positive NodeIds are
837 /// topologically ordered (Operands have strictly smaller node id) and search
838 /// can be pruned leveraging this.
839 static bool hasPredecessorHelper(const SDNode
*N
,
840 SmallPtrSetImpl
<const SDNode
*> &Visited
,
841 SmallVectorImpl
<const SDNode
*> &Worklist
,
842 unsigned int MaxSteps
= 0,
843 bool TopologicalPrune
= false) {
844 SmallVector
<const SDNode
*, 8> DeferredNodes
;
845 if (Visited
.count(N
))
848 // Node Id's are assigned in three places: As a topological
849 // ordering (> 0), during legalization (results in values set to
850 // 0), new nodes (set to -1). If N has a topolgical id then we
851 // know that all nodes with ids smaller than it cannot be
852 // successors and we need not check them. Filter out all node
853 // that can't be matches. We add them to the worklist before exit
854 // in case of multiple calls. Note that during selection the topological id
855 // may be violated if a node's predecessor is selected before it. We mark
856 // this at selection negating the id of unselected successors and
857 // restricting topological pruning to positive ids.
859 int NId
= N
->getNodeId();
860 // If we Invalidated the Id, reconstruct original NId.
865 while (!Worklist
.empty()) {
866 const SDNode
*M
= Worklist
.pop_back_val();
867 int MId
= M
->getNodeId();
868 if (TopologicalPrune
&& M
->getOpcode() != ISD::TokenFactor
&& (NId
> 0) &&
869 (MId
> 0) && (MId
< NId
)) {
870 DeferredNodes
.push_back(M
);
873 for (const SDValue
&OpV
: M
->op_values()) {
874 SDNode
*Op
= OpV
.getNode();
875 if (Visited
.insert(Op
).second
)
876 Worklist
.push_back(Op
);
882 if (MaxSteps
!= 0 && Visited
.size() >= MaxSteps
)
885 // Push deferred nodes back on worklist.
886 Worklist
.append(DeferredNodes
.begin(), DeferredNodes
.end());
887 // If we bailed early, conservatively return found.
888 if (MaxSteps
!= 0 && Visited
.size() >= MaxSteps
)
893 /// Return true if all the users of N are contained in Nodes.
894 /// NOTE: Requires at least one match, but doesn't require them all.
895 static bool areOnlyUsersOf(ArrayRef
<const SDNode
*> Nodes
, const SDNode
*N
);
897 /// Return the number of values used by this operation.
898 unsigned getNumOperands() const { return NumOperands
; }
900 /// Return the maximum number of operands that a SDNode can hold.
901 static constexpr size_t getMaxNumOperands() {
902 return std::numeric_limits
<decltype(SDNode::NumOperands
)>::max();
905 /// Helper method returns the integer value of a ConstantSDNode operand.
906 inline uint64_t getConstantOperandVal(unsigned Num
) const;
908 /// Helper method returns the APInt of a ConstantSDNode operand.
909 inline const APInt
&getConstantOperandAPInt(unsigned Num
) const;
911 const SDValue
&getOperand(unsigned Num
) const {
912 assert(Num
< NumOperands
&& "Invalid child # of SDNode!");
913 return OperandList
[Num
];
916 using op_iterator
= SDUse
*;
918 op_iterator
op_begin() const { return OperandList
; }
919 op_iterator
op_end() const { return OperandList
+NumOperands
; }
920 ArrayRef
<SDUse
> ops() const { return makeArrayRef(op_begin(), op_end()); }
922 /// Iterator for directly iterating over the operand SDValue's.
923 struct value_op_iterator
924 : iterator_adaptor_base
<value_op_iterator
, op_iterator
,
925 std::random_access_iterator_tag
, SDValue
,
926 ptrdiff_t, value_op_iterator
*,
927 value_op_iterator
*> {
928 explicit value_op_iterator(SDUse
*U
= nullptr)
929 : iterator_adaptor_base(U
) {}
931 const SDValue
&operator*() const { return I
->get(); }
934 iterator_range
<value_op_iterator
> op_values() const {
935 return make_range(value_op_iterator(op_begin()),
936 value_op_iterator(op_end()));
939 SDVTList
getVTList() const {
940 SDVTList X
= { ValueList
, NumValues
};
944 /// If this node has a glue operand, return the node
945 /// to which the glue operand points. Otherwise return NULL.
946 SDNode
*getGluedNode() const {
947 if (getNumOperands() != 0 &&
948 getOperand(getNumOperands()-1).getValueType() == MVT::Glue
)
949 return getOperand(getNumOperands()-1).getNode();
953 /// If this node has a glue value with a user, return
954 /// the user (there is at most one). Otherwise return NULL.
955 SDNode
*getGluedUser() const {
956 for (use_iterator UI
= use_begin(), UE
= use_end(); UI
!= UE
; ++UI
)
957 if (UI
.getUse().get().getValueType() == MVT::Glue
)
962 const SDNodeFlags
getFlags() const { return Flags
; }
963 void setFlags(SDNodeFlags NewFlags
) { Flags
= NewFlags
; }
964 bool isFast() { return Flags
.isFast(); }
966 /// Clear any flags in this node that aren't also set in Flags.
967 /// If Flags is not in a defined state then this has no effect.
968 void intersectFlagsWith(const SDNodeFlags Flags
);
970 /// Return the number of values defined/returned by this operator.
971 unsigned getNumValues() const { return NumValues
; }
973 /// Return the type of a specified result.
974 EVT
getValueType(unsigned ResNo
) const {
975 assert(ResNo
< NumValues
&& "Illegal result number!");
976 return ValueList
[ResNo
];
979 /// Return the type of a specified result as a simple type.
980 MVT
getSimpleValueType(unsigned ResNo
) const {
981 return getValueType(ResNo
).getSimpleVT();
984 /// Returns MVT::getSizeInBits(getValueType(ResNo)).
985 unsigned getValueSizeInBits(unsigned ResNo
) const {
986 return getValueType(ResNo
).getSizeInBits();
989 using value_iterator
= const EVT
*;
991 value_iterator
value_begin() const { return ValueList
; }
992 value_iterator
value_end() const { return ValueList
+NumValues
; }
994 /// Return the opcode of this operation for printing.
995 std::string
getOperationName(const SelectionDAG
*G
= nullptr) const;
996 static const char* getIndexedModeName(ISD::MemIndexedMode AM
);
997 void print_types(raw_ostream
&OS
, const SelectionDAG
*G
) const;
998 void print_details(raw_ostream
&OS
, const SelectionDAG
*G
) const;
999 void print(raw_ostream
&OS
, const SelectionDAG
*G
= nullptr) const;
1000 void printr(raw_ostream
&OS
, const SelectionDAG
*G
= nullptr) const;
1002 /// Print a SelectionDAG node and all children down to
1003 /// the leaves. The given SelectionDAG allows target-specific nodes
1004 /// to be printed in human-readable form. Unlike printr, this will
1005 /// print the whole DAG, including children that appear multiple
1008 void printrFull(raw_ostream
&O
, const SelectionDAG
*G
= nullptr) const;
1010 /// Print a SelectionDAG node and children up to
1011 /// depth "depth." The given SelectionDAG allows target-specific
1012 /// nodes to be printed in human-readable form. Unlike printr, this
1013 /// will print children that appear multiple times wherever they are
1016 void printrWithDepth(raw_ostream
&O
, const SelectionDAG
*G
= nullptr,
1017 unsigned depth
= 100) const;
1019 /// Dump this node, for debugging.
1022 /// Dump (recursively) this node and its use-def subgraph.
1025 /// Dump this node, for debugging.
1026 /// The given SelectionDAG allows target-specific nodes to be printed
1027 /// in human-readable form.
1028 void dump(const SelectionDAG
*G
) const;
1030 /// Dump (recursively) this node and its use-def subgraph.
1031 /// The given SelectionDAG allows target-specific nodes to be printed
1032 /// in human-readable form.
1033 void dumpr(const SelectionDAG
*G
) const;
1035 /// printrFull to dbgs(). The given SelectionDAG allows
1036 /// target-specific nodes to be printed in human-readable form.
1037 /// Unlike dumpr, this will print the whole DAG, including children
1038 /// that appear multiple times.
1039 void dumprFull(const SelectionDAG
*G
= nullptr) const;
1041 /// printrWithDepth to dbgs(). The given
1042 /// SelectionDAG allows target-specific nodes to be printed in
1043 /// human-readable form. Unlike dumpr, this will print children
1044 /// that appear multiple times wherever they are used.
1046 void dumprWithDepth(const SelectionDAG
*G
= nullptr,
1047 unsigned depth
= 100) const;
1049 /// Gather unique data for the node.
1050 void Profile(FoldingSetNodeID
&ID
) const;
1052 /// This method should only be used by the SDUse class.
1053 void addUse(SDUse
&U
) { U
.addToList(&UseList
); }
1056 static SDVTList
getSDVTList(EVT VT
) {
1057 SDVTList Ret
= { getValueTypeList(VT
), 1 };
1061 /// Create an SDNode.
1063 /// SDNodes are created without any operands, and never own the operand
1064 /// storage. To add operands, see SelectionDAG::createOperands.
1065 SDNode(unsigned Opc
, unsigned Order
, DebugLoc dl
, SDVTList VTs
)
1066 : NodeType(Opc
), ValueList(VTs
.VTs
), NumValues(VTs
.NumVTs
),
1067 IROrder(Order
), debugLoc(std::move(dl
)) {
1068 memset(&RawSDNodeBits
, 0, sizeof(RawSDNodeBits
));
1069 assert(debugLoc
.hasTrivialDestructor() && "Expected trivial destructor");
1070 assert(NumValues
== VTs
.NumVTs
&&
1071 "NumValues wasn't wide enough for its operands!");
1074 /// Release the operands and set this node to have zero operands.
1075 void DropOperands();
1078 /// Wrapper class for IR location info (IR ordering and DebugLoc) to be passed
1079 /// into SDNode creation functions.
1080 /// When an SDNode is created from the DAGBuilder, the DebugLoc is extracted
1081 /// from the original Instruction, and IROrder is the ordinal position of
1082 /// the instruction.
1083 /// When an SDNode is created after the DAG is being built, both DebugLoc and
1084 /// the IROrder are propagated from the original SDNode.
1085 /// So SDLoc class provides two constructors besides the default one, one to
1086 /// be used by the DAGBuilder, the other to be used by others.
1094 SDLoc(const SDNode
*N
) : DL(N
->getDebugLoc()), IROrder(N
->getIROrder()) {}
1095 SDLoc(const SDValue V
) : SDLoc(V
.getNode()) {}
1096 SDLoc(const Instruction
*I
, int Order
) : IROrder(Order
) {
1097 assert(Order
>= 0 && "bad IROrder");
1099 DL
= I
->getDebugLoc();
1102 unsigned getIROrder() const { return IROrder
; }
1103 const DebugLoc
&getDebugLoc() const { return DL
; }
1106 // Define inline functions from the SDValue class.
1108 inline SDValue::SDValue(SDNode
*node
, unsigned resno
)
1109 : Node(node
), ResNo(resno
) {
1110 // Explicitly check for !ResNo to avoid use-after-free, because there are
1111 // callers that use SDValue(N, 0) with a deleted N to indicate successful
1113 assert((!Node
|| !ResNo
|| ResNo
< Node
->getNumValues()) &&
1114 "Invalid result number for the given node!");
1115 assert(ResNo
< -2U && "Cannot use result numbers reserved for DenseMaps.");
1118 inline unsigned SDValue::getOpcode() const {
1119 return Node
->getOpcode();
1122 inline EVT
SDValue::getValueType() const {
1123 return Node
->getValueType(ResNo
);
1126 inline unsigned SDValue::getNumOperands() const {
1127 return Node
->getNumOperands();
1130 inline const SDValue
&SDValue::getOperand(unsigned i
) const {
1131 return Node
->getOperand(i
);
1134 inline uint64_t SDValue::getConstantOperandVal(unsigned i
) const {
1135 return Node
->getConstantOperandVal(i
);
1138 inline const APInt
&SDValue::getConstantOperandAPInt(unsigned i
) const {
1139 return Node
->getConstantOperandAPInt(i
);
1142 inline bool SDValue::isTargetOpcode() const {
1143 return Node
->isTargetOpcode();
1146 inline bool SDValue::isTargetMemoryOpcode() const {
1147 return Node
->isTargetMemoryOpcode();
1150 inline bool SDValue::isMachineOpcode() const {
1151 return Node
->isMachineOpcode();
1154 inline unsigned SDValue::getMachineOpcode() const {
1155 return Node
->getMachineOpcode();
1158 inline bool SDValue::isUndef() const {
1159 return Node
->isUndef();
1162 inline bool SDValue::use_empty() const {
1163 return !Node
->hasAnyUseOfValue(ResNo
);
1166 inline bool SDValue::hasOneUse() const {
1167 return Node
->hasNUsesOfValue(1, ResNo
);
1170 inline const DebugLoc
&SDValue::getDebugLoc() const {
1171 return Node
->getDebugLoc();
1174 inline void SDValue::dump() const {
1175 return Node
->dump();
1178 inline void SDValue::dump(const SelectionDAG
*G
) const {
1179 return Node
->dump(G
);
1182 inline void SDValue::dumpr() const {
1183 return Node
->dumpr();
1186 inline void SDValue::dumpr(const SelectionDAG
*G
) const {
1187 return Node
->dumpr(G
);
1190 // Define inline functions from the SDUse class.
1192 inline void SDUse::set(const SDValue
&V
) {
1193 if (Val
.getNode()) removeFromList();
1195 if (V
.getNode()) V
.getNode()->addUse(*this);
1198 inline void SDUse::setInitial(const SDValue
&V
) {
1200 V
.getNode()->addUse(*this);
1203 inline void SDUse::setNode(SDNode
*N
) {
1204 if (Val
.getNode()) removeFromList();
1206 if (N
) N
->addUse(*this);
1209 /// This class is used to form a handle around another node that
1210 /// is persistent and is updated across invocations of replaceAllUsesWith on its
1211 /// operand. This node should be directly created by end-users and not added to
1212 /// the AllNodes list.
1213 class HandleSDNode
: public SDNode
{
1217 explicit HandleSDNode(SDValue X
)
1218 : SDNode(ISD::HANDLENODE
, 0, DebugLoc(), getSDVTList(MVT::Other
)) {
1219 // HandleSDNodes are never inserted into the DAG, so they won't be
1220 // auto-numbered. Use ID 65535 as a sentinel.
1221 PersistentId
= 0xffff;
1223 // Manually set up the operand list. This node type is special in that it's
1224 // always stack allocated and SelectionDAG does not manage its operands.
1225 // TODO: This should either (a) not be in the SDNode hierarchy, or (b) not
1234 const SDValue
&getValue() const { return Op
; }
1237 class AddrSpaceCastSDNode
: public SDNode
{
1239 unsigned SrcAddrSpace
;
1240 unsigned DestAddrSpace
;
1243 AddrSpaceCastSDNode(unsigned Order
, const DebugLoc
&dl
, EVT VT
,
1244 unsigned SrcAS
, unsigned DestAS
);
1246 unsigned getSrcAddressSpace() const { return SrcAddrSpace
; }
1247 unsigned getDestAddressSpace() const { return DestAddrSpace
; }
1249 static bool classof(const SDNode
*N
) {
1250 return N
->getOpcode() == ISD::ADDRSPACECAST
;
1254 /// This is an abstract virtual class for memory operations.
1255 class MemSDNode
: public SDNode
{
1257 // VT of in-memory value.
1261 /// Memory reference information.
1262 MachineMemOperand
*MMO
;
1265 MemSDNode(unsigned Opc
, unsigned Order
, const DebugLoc
&dl
, SDVTList VTs
,
1266 EVT memvt
, MachineMemOperand
*MMO
);
1268 bool readMem() const { return MMO
->isLoad(); }
1269 bool writeMem() const { return MMO
->isStore(); }
1271 /// Returns alignment and volatility of the memory access
1272 unsigned getOriginalAlignment() const {
1273 return MMO
->getBaseAlignment();
1275 unsigned getAlignment() const {
1276 return MMO
->getAlignment();
1279 /// Return the SubclassData value, without HasDebugValue. This contains an
1280 /// encoding of the volatile flag, as well as bits used by subclasses. This
1281 /// function should only be used to compute a FoldingSetNodeID value.
1282 /// The HasDebugValue bit is masked out because CSE map needs to match
1283 /// nodes with debug info with nodes without debug info. Same is about
1284 /// isDivergent bit.
1285 unsigned getRawSubclassData() const {
1288 char RawSDNodeBits
[sizeof(uint16_t)];
1289 SDNodeBitfields SDNodeBits
;
1291 memcpy(&RawSDNodeBits
, &this->RawSDNodeBits
, sizeof(this->RawSDNodeBits
));
1292 SDNodeBits
.HasDebugValue
= 0;
1293 SDNodeBits
.IsDivergent
= false;
1294 memcpy(&Data
, &RawSDNodeBits
, sizeof(RawSDNodeBits
));
1298 bool isVolatile() const { return MemSDNodeBits
.IsVolatile
; }
1299 bool isNonTemporal() const { return MemSDNodeBits
.IsNonTemporal
; }
1300 bool isDereferenceable() const { return MemSDNodeBits
.IsDereferenceable
; }
1301 bool isInvariant() const { return MemSDNodeBits
.IsInvariant
; }
1303 // Returns the offset from the location of the access.
1304 int64_t getSrcValueOffset() const { return MMO
->getOffset(); }
1306 /// Returns the AA info that describes the dereference.
1307 AAMDNodes
getAAInfo() const { return MMO
->getAAInfo(); }
1309 /// Returns the Ranges that describes the dereference.
1310 const MDNode
*getRanges() const { return MMO
->getRanges(); }
1312 /// Returns the synchronization scope ID for this memory operation.
1313 SyncScope::ID
getSyncScopeID() const { return MMO
->getSyncScopeID(); }
1315 /// Return the atomic ordering requirements for this memory operation. For
1316 /// cmpxchg atomic operations, return the atomic ordering requirements when
1318 AtomicOrdering
getOrdering() const { return MMO
->getOrdering(); }
1320 /// Return the type of the in-memory value.
1321 EVT
getMemoryVT() const { return MemoryVT
; }
1323 /// Return a MachineMemOperand object describing the memory
1324 /// reference performed by operation.
1325 MachineMemOperand
*getMemOperand() const { return MMO
; }
1327 const MachinePointerInfo
&getPointerInfo() const {
1328 return MMO
->getPointerInfo();
1331 /// Return the address space for the associated pointer
1332 unsigned getAddressSpace() const {
1333 return getPointerInfo().getAddrSpace();
1336 /// Update this MemSDNode's MachineMemOperand information
1337 /// to reflect the alignment of NewMMO, if it has a greater alignment.
1338 /// This must only be used when the new alignment applies to all users of
1339 /// this MachineMemOperand.
1340 void refineAlignment(const MachineMemOperand
*NewMMO
) {
1341 MMO
->refineAlignment(NewMMO
);
1344 const SDValue
&getChain() const { return getOperand(0); }
1345 const SDValue
&getBasePtr() const {
1346 return getOperand(getOpcode() == ISD::STORE
? 2 : 1);
1349 // Methods to support isa and dyn_cast
1350 static bool classof(const SDNode
*N
) {
1351 // For some targets, we lower some target intrinsics to a MemIntrinsicNode
1352 // with either an intrinsic or a target opcode.
1353 return N
->getOpcode() == ISD::LOAD
||
1354 N
->getOpcode() == ISD::STORE
||
1355 N
->getOpcode() == ISD::PREFETCH
||
1356 N
->getOpcode() == ISD::ATOMIC_CMP_SWAP
||
1357 N
->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS
||
1358 N
->getOpcode() == ISD::ATOMIC_SWAP
||
1359 N
->getOpcode() == ISD::ATOMIC_LOAD_ADD
||
1360 N
->getOpcode() == ISD::ATOMIC_LOAD_SUB
||
1361 N
->getOpcode() == ISD::ATOMIC_LOAD_AND
||
1362 N
->getOpcode() == ISD::ATOMIC_LOAD_CLR
||
1363 N
->getOpcode() == ISD::ATOMIC_LOAD_OR
||
1364 N
->getOpcode() == ISD::ATOMIC_LOAD_XOR
||
1365 N
->getOpcode() == ISD::ATOMIC_LOAD_NAND
||
1366 N
->getOpcode() == ISD::ATOMIC_LOAD_MIN
||
1367 N
->getOpcode() == ISD::ATOMIC_LOAD_MAX
||
1368 N
->getOpcode() == ISD::ATOMIC_LOAD_UMIN
||
1369 N
->getOpcode() == ISD::ATOMIC_LOAD_UMAX
||
1370 N
->getOpcode() == ISD::ATOMIC_LOAD_FADD
||
1371 N
->getOpcode() == ISD::ATOMIC_LOAD_FSUB
||
1372 N
->getOpcode() == ISD::ATOMIC_LOAD
||
1373 N
->getOpcode() == ISD::ATOMIC_STORE
||
1374 N
->getOpcode() == ISD::MLOAD
||
1375 N
->getOpcode() == ISD::MSTORE
||
1376 N
->getOpcode() == ISD::MGATHER
||
1377 N
->getOpcode() == ISD::MSCATTER
||
1378 N
->isMemIntrinsic() ||
1379 N
->isTargetMemoryOpcode();
1383 /// This is an SDNode representing atomic operations.
1384 class AtomicSDNode
: public MemSDNode
{
1386 AtomicSDNode(unsigned Opc
, unsigned Order
, const DebugLoc
&dl
, SDVTList VTL
,
1387 EVT MemVT
, MachineMemOperand
*MMO
)
1388 : MemSDNode(Opc
, Order
, dl
, VTL
, MemVT
, MMO
) {}
1390 const SDValue
&getBasePtr() const { return getOperand(1); }
1391 const SDValue
&getVal() const { return getOperand(2); }
1393 /// Returns true if this SDNode represents cmpxchg atomic operation, false
1395 bool isCompareAndSwap() const {
1396 unsigned Op
= getOpcode();
1397 return Op
== ISD::ATOMIC_CMP_SWAP
||
1398 Op
== ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS
;
1401 /// For cmpxchg atomic operations, return the atomic ordering requirements
1402 /// when store does not occur.
1403 AtomicOrdering
getFailureOrdering() const {
1404 assert(isCompareAndSwap() && "Must be cmpxchg operation");
1405 return MMO
->getFailureOrdering();
1408 // Methods to support isa and dyn_cast
1409 static bool classof(const SDNode
*N
) {
1410 return N
->getOpcode() == ISD::ATOMIC_CMP_SWAP
||
1411 N
->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS
||
1412 N
->getOpcode() == ISD::ATOMIC_SWAP
||
1413 N
->getOpcode() == ISD::ATOMIC_LOAD_ADD
||
1414 N
->getOpcode() == ISD::ATOMIC_LOAD_SUB
||
1415 N
->getOpcode() == ISD::ATOMIC_LOAD_AND
||
1416 N
->getOpcode() == ISD::ATOMIC_LOAD_CLR
||
1417 N
->getOpcode() == ISD::ATOMIC_LOAD_OR
||
1418 N
->getOpcode() == ISD::ATOMIC_LOAD_XOR
||
1419 N
->getOpcode() == ISD::ATOMIC_LOAD_NAND
||
1420 N
->getOpcode() == ISD::ATOMIC_LOAD_MIN
||
1421 N
->getOpcode() == ISD::ATOMIC_LOAD_MAX
||
1422 N
->getOpcode() == ISD::ATOMIC_LOAD_UMIN
||
1423 N
->getOpcode() == ISD::ATOMIC_LOAD_UMAX
||
1424 N
->getOpcode() == ISD::ATOMIC_LOAD_FADD
||
1425 N
->getOpcode() == ISD::ATOMIC_LOAD_FSUB
||
1426 N
->getOpcode() == ISD::ATOMIC_LOAD
||
1427 N
->getOpcode() == ISD::ATOMIC_STORE
;
1431 /// This SDNode is used for target intrinsics that touch
1432 /// memory and need an associated MachineMemOperand. Its opcode may be
1433 /// INTRINSIC_VOID, INTRINSIC_W_CHAIN, PREFETCH, or a target-specific opcode
1434 /// with a value not less than FIRST_TARGET_MEMORY_OPCODE.
1435 class MemIntrinsicSDNode
: public MemSDNode
{
1437 MemIntrinsicSDNode(unsigned Opc
, unsigned Order
, const DebugLoc
&dl
,
1438 SDVTList VTs
, EVT MemoryVT
, MachineMemOperand
*MMO
)
1439 : MemSDNode(Opc
, Order
, dl
, VTs
, MemoryVT
, MMO
) {
1440 SDNodeBits
.IsMemIntrinsic
= true;
1443 // Methods to support isa and dyn_cast
1444 static bool classof(const SDNode
*N
) {
1445 // We lower some target intrinsics to their target opcode
1446 // early a node with a target opcode can be of this class
1447 return N
->isMemIntrinsic() ||
1448 N
->getOpcode() == ISD::PREFETCH
||
1449 N
->isTargetMemoryOpcode();
1453 /// This SDNode is used to implement the code generator
1454 /// support for the llvm IR shufflevector instruction. It combines elements
1455 /// from two input vectors into a new input vector, with the selection and
1456 /// ordering of elements determined by an array of integers, referred to as
1457 /// the shuffle mask. For input vectors of width N, mask indices of 0..N-1
1458 /// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
1459 /// An index of -1 is treated as undef, such that the code generator may put
1460 /// any value in the corresponding element of the result.
1461 class ShuffleVectorSDNode
: public SDNode
{
1462 // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
1463 // is freed when the SelectionDAG object is destroyed.
1467 friend class SelectionDAG
;
1469 ShuffleVectorSDNode(EVT VT
, unsigned Order
, const DebugLoc
&dl
, const int *M
)
1470 : SDNode(ISD::VECTOR_SHUFFLE
, Order
, dl
, getSDVTList(VT
)), Mask(M
) {}
1473 ArrayRef
<int> getMask() const {
1474 EVT VT
= getValueType(0);
1475 return makeArrayRef(Mask
, VT
.getVectorNumElements());
1478 int getMaskElt(unsigned Idx
) const {
1479 assert(Idx
< getValueType(0).getVectorNumElements() && "Idx out of range!");
1483 bool isSplat() const { return isSplatMask(Mask
, getValueType(0)); }
1485 int getSplatIndex() const {
1486 assert(isSplat() && "Cannot get splat index for non-splat!");
1487 EVT VT
= getValueType(0);
1488 for (unsigned i
= 0, e
= VT
.getVectorNumElements(); i
!= e
; ++i
) {
1492 llvm_unreachable("Splat with all undef indices?");
1495 static bool isSplatMask(const int *Mask
, EVT VT
);
1497 /// Change values in a shuffle permute mask assuming
1498 /// the two vector operands have swapped position.
1499 static void commuteMask(MutableArrayRef
<int> Mask
) {
1500 unsigned NumElems
= Mask
.size();
1501 for (unsigned i
= 0; i
!= NumElems
; ++i
) {
1505 else if (idx
< (int)NumElems
)
1506 Mask
[i
] = idx
+ NumElems
;
1508 Mask
[i
] = idx
- NumElems
;
1512 static bool classof(const SDNode
*N
) {
1513 return N
->getOpcode() == ISD::VECTOR_SHUFFLE
;
1517 class ConstantSDNode
: public SDNode
{
1518 friend class SelectionDAG
;
1520 const ConstantInt
*Value
;
1522 ConstantSDNode(bool isTarget
, bool isOpaque
, const ConstantInt
*val
, EVT VT
)
1523 : SDNode(isTarget
? ISD::TargetConstant
: ISD::Constant
, 0, DebugLoc(),
1526 ConstantSDNodeBits
.IsOpaque
= isOpaque
;
1530 const ConstantInt
*getConstantIntValue() const { return Value
; }
1531 const APInt
&getAPIntValue() const { return Value
->getValue(); }
1532 uint64_t getZExtValue() const { return Value
->getZExtValue(); }
1533 int64_t getSExtValue() const { return Value
->getSExtValue(); }
1534 uint64_t getLimitedValue(uint64_t Limit
= UINT64_MAX
) {
1535 return Value
->getLimitedValue(Limit
);
1538 bool isOne() const { return Value
->isOne(); }
1539 bool isNullValue() const { return Value
->isZero(); }
1540 bool isAllOnesValue() const { return Value
->isMinusOne(); }
1542 bool isOpaque() const { return ConstantSDNodeBits
.IsOpaque
; }
1544 static bool classof(const SDNode
*N
) {
1545 return N
->getOpcode() == ISD::Constant
||
1546 N
->getOpcode() == ISD::TargetConstant
;
1550 uint64_t SDNode::getConstantOperandVal(unsigned Num
) const {
1551 return cast
<ConstantSDNode
>(getOperand(Num
))->getZExtValue();
1554 const APInt
&SDNode::getConstantOperandAPInt(unsigned Num
) const {
1555 return cast
<ConstantSDNode
>(getOperand(Num
))->getAPIntValue();
1558 class ConstantFPSDNode
: public SDNode
{
1559 friend class SelectionDAG
;
1561 const ConstantFP
*Value
;
1563 ConstantFPSDNode(bool isTarget
, const ConstantFP
*val
, EVT VT
)
1564 : SDNode(isTarget
? ISD::TargetConstantFP
: ISD::ConstantFP
, 0,
1565 DebugLoc(), getSDVTList(VT
)),
1569 const APFloat
& getValueAPF() const { return Value
->getValueAPF(); }
1570 const ConstantFP
*getConstantFPValue() const { return Value
; }
1572 /// Return true if the value is positive or negative zero.
1573 bool isZero() const { return Value
->isZero(); }
1575 /// Return true if the value is a NaN.
1576 bool isNaN() const { return Value
->isNaN(); }
1578 /// Return true if the value is an infinity
1579 bool isInfinity() const { return Value
->isInfinity(); }
1581 /// Return true if the value is negative.
1582 bool isNegative() const { return Value
->isNegative(); }
1584 /// We don't rely on operator== working on double values, as
1585 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1586 /// As such, this method can be used to do an exact bit-for-bit comparison of
1587 /// two floating point values.
1589 /// We leave the version with the double argument here because it's just so
1590 /// convenient to write "2.0" and the like. Without this function we'd
1591 /// have to duplicate its logic everywhere it's called.
1592 bool isExactlyValue(double V
) const {
1593 return Value
->getValueAPF().isExactlyValue(V
);
1595 bool isExactlyValue(const APFloat
& V
) const;
1597 static bool isValueValidForType(EVT VT
, const APFloat
& Val
);
1599 static bool classof(const SDNode
*N
) {
1600 return N
->getOpcode() == ISD::ConstantFP
||
1601 N
->getOpcode() == ISD::TargetConstantFP
;
1605 /// Returns true if \p V is a constant integer zero.
1606 bool isNullConstant(SDValue V
);
1608 /// Returns true if \p V is an FP constant with a value of positive zero.
1609 bool isNullFPConstant(SDValue V
);
1611 /// Returns true if \p V is an integer constant with all bits set.
1612 bool isAllOnesConstant(SDValue V
);
1614 /// Returns true if \p V is a constant integer one.
1615 bool isOneConstant(SDValue V
);
1617 /// Return the non-bitcasted source operand of \p V if it exists.
1618 /// If \p V is not a bitcasted value, it is returned as-is.
1619 SDValue
peekThroughBitcasts(SDValue V
);
1621 /// Return the non-bitcasted and one-use source operand of \p V if it exists.
1622 /// If \p V is not a bitcasted one-use value, it is returned as-is.
1623 SDValue
peekThroughOneUseBitcasts(SDValue V
);
1625 /// Returns true if \p V is a bitwise not operation. Assumes that an all ones
1626 /// constant is canonicalized to be operand 1.
1627 bool isBitwiseNot(SDValue V
);
1629 /// Returns the SDNode if it is a constant splat BuildVector or constant int.
1630 ConstantSDNode
*isConstOrConstSplat(SDValue N
, bool AllowUndefs
= false);
1632 /// Returns the SDNode if it is a constant splat BuildVector or constant float.
1633 ConstantFPSDNode
*isConstOrConstSplatFP(SDValue N
, bool AllowUndefs
= false);
1635 /// Return true if the value is a constant 0 integer or a splatted vector of
1636 /// a constant 0 integer (with no undefs by default).
1637 /// Build vector implicit truncation is not an issue for null values.
1638 bool isNullOrNullSplat(SDValue V
, bool AllowUndefs
= false);
1640 /// Return true if the value is a constant 1 integer or a splatted vector of a
1641 /// constant 1 integer (with no undefs).
1642 /// Does not permit build vector implicit truncation.
1643 bool isOneOrOneSplat(SDValue V
);
1645 /// Return true if the value is a constant -1 integer or a splatted vector of a
1646 /// constant -1 integer (with no undefs).
1647 /// Does not permit build vector implicit truncation.
1648 bool isAllOnesOrAllOnesSplat(SDValue V
);
1650 class GlobalAddressSDNode
: public SDNode
{
1651 friend class SelectionDAG
;
1653 const GlobalValue
*TheGlobal
;
1655 unsigned char TargetFlags
;
1657 GlobalAddressSDNode(unsigned Opc
, unsigned Order
, const DebugLoc
&DL
,
1658 const GlobalValue
*GA
, EVT VT
, int64_t o
,
1662 const GlobalValue
*getGlobal() const { return TheGlobal
; }
1663 int64_t getOffset() const { return Offset
; }
1664 unsigned char getTargetFlags() const { return TargetFlags
; }
1665 // Return the address space this GlobalAddress belongs to.
1666 unsigned getAddressSpace() const;
1668 static bool classof(const SDNode
*N
) {
1669 return N
->getOpcode() == ISD::GlobalAddress
||
1670 N
->getOpcode() == ISD::TargetGlobalAddress
||
1671 N
->getOpcode() == ISD::GlobalTLSAddress
||
1672 N
->getOpcode() == ISD::TargetGlobalTLSAddress
;
1676 class FrameIndexSDNode
: public SDNode
{
1677 friend class SelectionDAG
;
1681 FrameIndexSDNode(int fi
, EVT VT
, bool isTarg
)
1682 : SDNode(isTarg
? ISD::TargetFrameIndex
: ISD::FrameIndex
,
1683 0, DebugLoc(), getSDVTList(VT
)), FI(fi
) {
1687 int getIndex() const { return FI
; }
1689 static bool classof(const SDNode
*N
) {
1690 return N
->getOpcode() == ISD::FrameIndex
||
1691 N
->getOpcode() == ISD::TargetFrameIndex
;
1695 /// This SDNode is used for LIFETIME_START/LIFETIME_END values, which indicate
1696 /// the offet and size that are started/ended in the underlying FrameIndex.
1697 class LifetimeSDNode
: public SDNode
{
1699 int64_t Offset
; // -1 if offset is unknown.
1701 LifetimeSDNode(unsigned Opcode
, unsigned Order
, const DebugLoc
&dl
,
1702 SDVTList VTs
, int64_t Size
, int64_t Offset
)
1703 : SDNode(Opcode
, Order
, dl
, VTs
), Size(Size
), Offset(Offset
) {}
1705 int64_t getFrameIndex() const {
1706 return cast
<FrameIndexSDNode
>(getOperand(1))->getIndex();
1709 bool hasOffset() const { return Offset
>= 0; }
1710 int64_t getOffset() const {
1711 assert(hasOffset() && "offset is unknown");
1714 int64_t getSize() const {
1715 assert(hasOffset() && "offset is unknown");
1719 // Methods to support isa and dyn_cast
1720 static bool classof(const SDNode
*N
) {
1721 return N
->getOpcode() == ISD::LIFETIME_START
||
1722 N
->getOpcode() == ISD::LIFETIME_END
;
1726 class JumpTableSDNode
: public SDNode
{
1727 friend class SelectionDAG
;
1730 unsigned char TargetFlags
;
1732 JumpTableSDNode(int jti
, EVT VT
, bool isTarg
, unsigned char TF
)
1733 : SDNode(isTarg
? ISD::TargetJumpTable
: ISD::JumpTable
,
1734 0, DebugLoc(), getSDVTList(VT
)), JTI(jti
), TargetFlags(TF
) {
1738 int getIndex() const { return JTI
; }
1739 unsigned char getTargetFlags() const { return TargetFlags
; }
1741 static bool classof(const SDNode
*N
) {
1742 return N
->getOpcode() == ISD::JumpTable
||
1743 N
->getOpcode() == ISD::TargetJumpTable
;
1747 class ConstantPoolSDNode
: public SDNode
{
1748 friend class SelectionDAG
;
1751 const Constant
*ConstVal
;
1752 MachineConstantPoolValue
*MachineCPVal
;
1754 int Offset
; // It's a MachineConstantPoolValue if top bit is set.
1755 unsigned Alignment
; // Minimum alignment requirement of CP (not log2 value).
1756 unsigned char TargetFlags
;
1758 ConstantPoolSDNode(bool isTarget
, const Constant
*c
, EVT VT
, int o
,
1759 unsigned Align
, unsigned char TF
)
1760 : SDNode(isTarget
? ISD::TargetConstantPool
: ISD::ConstantPool
, 0,
1761 DebugLoc(), getSDVTList(VT
)), Offset(o
), Alignment(Align
),
1763 assert(Offset
>= 0 && "Offset is too large");
1767 ConstantPoolSDNode(bool isTarget
, MachineConstantPoolValue
*v
,
1768 EVT VT
, int o
, unsigned Align
, unsigned char TF
)
1769 : SDNode(isTarget
? ISD::TargetConstantPool
: ISD::ConstantPool
, 0,
1770 DebugLoc(), getSDVTList(VT
)), Offset(o
), Alignment(Align
),
1772 assert(Offset
>= 0 && "Offset is too large");
1773 Val
.MachineCPVal
= v
;
1774 Offset
|= 1 << (sizeof(unsigned)*CHAR_BIT
-1);
1778 bool isMachineConstantPoolEntry() const {
1782 const Constant
*getConstVal() const {
1783 assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1784 return Val
.ConstVal
;
1787 MachineConstantPoolValue
*getMachineCPVal() const {
1788 assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1789 return Val
.MachineCPVal
;
1792 int getOffset() const {
1793 return Offset
& ~(1 << (sizeof(unsigned)*CHAR_BIT
-1));
1796 // Return the alignment of this constant pool object, which is either 0 (for
1797 // default alignment) or the desired value.
1798 unsigned getAlignment() const { return Alignment
; }
1799 unsigned char getTargetFlags() const { return TargetFlags
; }
1801 Type
*getType() const;
1803 static bool classof(const SDNode
*N
) {
1804 return N
->getOpcode() == ISD::ConstantPool
||
1805 N
->getOpcode() == ISD::TargetConstantPool
;
1809 /// Completely target-dependent object reference.
1810 class TargetIndexSDNode
: public SDNode
{
1811 friend class SelectionDAG
;
1813 unsigned char TargetFlags
;
1818 TargetIndexSDNode(int Idx
, EVT VT
, int64_t Ofs
, unsigned char TF
)
1819 : SDNode(ISD::TargetIndex
, 0, DebugLoc(), getSDVTList(VT
)),
1820 TargetFlags(TF
), Index(Idx
), Offset(Ofs
) {}
1822 unsigned char getTargetFlags() const { return TargetFlags
; }
1823 int getIndex() const { return Index
; }
1824 int64_t getOffset() const { return Offset
; }
1826 static bool classof(const SDNode
*N
) {
1827 return N
->getOpcode() == ISD::TargetIndex
;
1831 class BasicBlockSDNode
: public SDNode
{
1832 friend class SelectionDAG
;
1834 MachineBasicBlock
*MBB
;
1836 /// Debug info is meaningful and potentially useful here, but we create
1837 /// blocks out of order when they're jumped to, which makes it a bit
1838 /// harder. Let's see if we need it first.
1839 explicit BasicBlockSDNode(MachineBasicBlock
*mbb
)
1840 : SDNode(ISD::BasicBlock
, 0, DebugLoc(), getSDVTList(MVT::Other
)), MBB(mbb
)
1844 MachineBasicBlock
*getBasicBlock() const { return MBB
; }
1846 static bool classof(const SDNode
*N
) {
1847 return N
->getOpcode() == ISD::BasicBlock
;
1851 /// A "pseudo-class" with methods for operating on BUILD_VECTORs.
1852 class BuildVectorSDNode
: public SDNode
{
1854 // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
1855 explicit BuildVectorSDNode() = delete;
1857 /// Check if this is a constant splat, and if so, find the
1858 /// smallest element size that splats the vector. If MinSplatBits is
1859 /// nonzero, the element size must be at least that large. Note that the
1860 /// splat element may be the entire vector (i.e., a one element vector).
1861 /// Returns the splat element value in SplatValue. Any undefined bits in
1862 /// that value are zero, and the corresponding bits in the SplatUndef mask
1863 /// are set. The SplatBitSize value is set to the splat element size in
1864 /// bits. HasAnyUndefs is set to true if any bits in the vector are
1865 /// undefined. isBigEndian describes the endianness of the target.
1866 bool isConstantSplat(APInt
&SplatValue
, APInt
&SplatUndef
,
1867 unsigned &SplatBitSize
, bool &HasAnyUndefs
,
1868 unsigned MinSplatBits
= 0,
1869 bool isBigEndian
= false) const;
1871 /// Returns the splatted value or a null value if this is not a splat.
1873 /// If passed a non-null UndefElements bitvector, it will resize it to match
1874 /// the vector width and set the bits where elements are undef.
1875 SDValue
getSplatValue(BitVector
*UndefElements
= nullptr) const;
1877 /// Returns the splatted constant or null if this is not a constant
1880 /// If passed a non-null UndefElements bitvector, it will resize it to match
1881 /// the vector width and set the bits where elements are undef.
1883 getConstantSplatNode(BitVector
*UndefElements
= nullptr) const;
1885 /// Returns the splatted constant FP or null if this is not a constant
1888 /// If passed a non-null UndefElements bitvector, it will resize it to match
1889 /// the vector width and set the bits where elements are undef.
1891 getConstantFPSplatNode(BitVector
*UndefElements
= nullptr) const;
1893 /// If this is a constant FP splat and the splatted constant FP is an
1894 /// exact power or 2, return the log base 2 integer value. Otherwise,
1897 /// The BitWidth specifies the necessary bit precision.
1898 int32_t getConstantFPSplatPow2ToLog2Int(BitVector
*UndefElements
,
1899 uint32_t BitWidth
) const;
1901 bool isConstant() const;
1903 static bool classof(const SDNode
*N
) {
1904 return N
->getOpcode() == ISD::BUILD_VECTOR
;
1908 /// An SDNode that holds an arbitrary LLVM IR Value. This is
1909 /// used when the SelectionDAG needs to make a simple reference to something
1910 /// in the LLVM IR representation.
1912 class SrcValueSDNode
: public SDNode
{
1913 friend class SelectionDAG
;
1917 /// Create a SrcValue for a general value.
1918 explicit SrcValueSDNode(const Value
*v
)
1919 : SDNode(ISD::SRCVALUE
, 0, DebugLoc(), getSDVTList(MVT::Other
)), V(v
) {}
1922 /// Return the contained Value.
1923 const Value
*getValue() const { return V
; }
1925 static bool classof(const SDNode
*N
) {
1926 return N
->getOpcode() == ISD::SRCVALUE
;
1930 class MDNodeSDNode
: public SDNode
{
1931 friend class SelectionDAG
;
1935 explicit MDNodeSDNode(const MDNode
*md
)
1936 : SDNode(ISD::MDNODE_SDNODE
, 0, DebugLoc(), getSDVTList(MVT::Other
)), MD(md
)
1940 const MDNode
*getMD() const { return MD
; }
1942 static bool classof(const SDNode
*N
) {
1943 return N
->getOpcode() == ISD::MDNODE_SDNODE
;
1947 class RegisterSDNode
: public SDNode
{
1948 friend class SelectionDAG
;
1952 RegisterSDNode(unsigned reg
, EVT VT
)
1953 : SDNode(ISD::Register
, 0, DebugLoc(), getSDVTList(VT
)), Reg(reg
) {}
1956 unsigned getReg() const { return Reg
; }
1958 static bool classof(const SDNode
*N
) {
1959 return N
->getOpcode() == ISD::Register
;
1963 class RegisterMaskSDNode
: public SDNode
{
1964 friend class SelectionDAG
;
1966 // The memory for RegMask is not owned by the node.
1967 const uint32_t *RegMask
;
1969 RegisterMaskSDNode(const uint32_t *mask
)
1970 : SDNode(ISD::RegisterMask
, 0, DebugLoc(), getSDVTList(MVT::Untyped
)),
1974 const uint32_t *getRegMask() const { return RegMask
; }
1976 static bool classof(const SDNode
*N
) {
1977 return N
->getOpcode() == ISD::RegisterMask
;
1981 class BlockAddressSDNode
: public SDNode
{
1982 friend class SelectionDAG
;
1984 const BlockAddress
*BA
;
1986 unsigned char TargetFlags
;
1988 BlockAddressSDNode(unsigned NodeTy
, EVT VT
, const BlockAddress
*ba
,
1989 int64_t o
, unsigned char Flags
)
1990 : SDNode(NodeTy
, 0, DebugLoc(), getSDVTList(VT
)),
1991 BA(ba
), Offset(o
), TargetFlags(Flags
) {}
1994 const BlockAddress
*getBlockAddress() const { return BA
; }
1995 int64_t getOffset() const { return Offset
; }
1996 unsigned char getTargetFlags() const { return TargetFlags
; }
1998 static bool classof(const SDNode
*N
) {
1999 return N
->getOpcode() == ISD::BlockAddress
||
2000 N
->getOpcode() == ISD::TargetBlockAddress
;
2004 class LabelSDNode
: public SDNode
{
2005 friend class SelectionDAG
;
2009 LabelSDNode(unsigned Order
, const DebugLoc
&dl
, MCSymbol
*L
)
2010 : SDNode(ISD::EH_LABEL
, Order
, dl
, getSDVTList(MVT::Other
)), Label(L
) {}
2013 MCSymbol
*getLabel() const { return Label
; }
2015 static bool classof(const SDNode
*N
) {
2016 return N
->getOpcode() == ISD::EH_LABEL
||
2017 N
->getOpcode() == ISD::ANNOTATION_LABEL
;
2021 class ExternalSymbolSDNode
: public SDNode
{
2022 friend class SelectionDAG
;
2025 unsigned char TargetFlags
;
2027 ExternalSymbolSDNode(bool isTarget
, const char *Sym
, unsigned char TF
, EVT VT
)
2028 : SDNode(isTarget
? ISD::TargetExternalSymbol
: ISD::ExternalSymbol
,
2029 0, DebugLoc(), getSDVTList(VT
)), Symbol(Sym
), TargetFlags(TF
) {}
2032 const char *getSymbol() const { return Symbol
; }
2033 unsigned char getTargetFlags() const { return TargetFlags
; }
2035 static bool classof(const SDNode
*N
) {
2036 return N
->getOpcode() == ISD::ExternalSymbol
||
2037 N
->getOpcode() == ISD::TargetExternalSymbol
;
2041 class MCSymbolSDNode
: public SDNode
{
2042 friend class SelectionDAG
;
2046 MCSymbolSDNode(MCSymbol
*Symbol
, EVT VT
)
2047 : SDNode(ISD::MCSymbol
, 0, DebugLoc(), getSDVTList(VT
)), Symbol(Symbol
) {}
2050 MCSymbol
*getMCSymbol() const { return Symbol
; }
2052 static bool classof(const SDNode
*N
) {
2053 return N
->getOpcode() == ISD::MCSymbol
;
2057 class CondCodeSDNode
: public SDNode
{
2058 friend class SelectionDAG
;
2060 ISD::CondCode Condition
;
2062 explicit CondCodeSDNode(ISD::CondCode Cond
)
2063 : SDNode(ISD::CONDCODE
, 0, DebugLoc(), getSDVTList(MVT::Other
)),
2067 ISD::CondCode
get() const { return Condition
; }
2069 static bool classof(const SDNode
*N
) {
2070 return N
->getOpcode() == ISD::CONDCODE
;
2074 /// This class is used to represent EVT's, which are used
2075 /// to parameterize some operations.
2076 class VTSDNode
: public SDNode
{
2077 friend class SelectionDAG
;
2081 explicit VTSDNode(EVT VT
)
2082 : SDNode(ISD::VALUETYPE
, 0, DebugLoc(), getSDVTList(MVT::Other
)),
2086 EVT
getVT() const { return ValueType
; }
2088 static bool classof(const SDNode
*N
) {
2089 return N
->getOpcode() == ISD::VALUETYPE
;
2093 /// Base class for LoadSDNode and StoreSDNode
2094 class LSBaseSDNode
: public MemSDNode
{
2096 LSBaseSDNode(ISD::NodeType NodeTy
, unsigned Order
, const DebugLoc
&dl
,
2097 SDVTList VTs
, ISD::MemIndexedMode AM
, EVT MemVT
,
2098 MachineMemOperand
*MMO
)
2099 : MemSDNode(NodeTy
, Order
, dl
, VTs
, MemVT
, MMO
) {
2100 LSBaseSDNodeBits
.AddressingMode
= AM
;
2101 assert(getAddressingMode() == AM
&& "Value truncated");
2104 const SDValue
&getOffset() const {
2105 return getOperand(getOpcode() == ISD::LOAD
? 2 : 3);
2108 /// Return the addressing mode for this load or store:
2109 /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
2110 ISD::MemIndexedMode
getAddressingMode() const {
2111 return static_cast<ISD::MemIndexedMode
>(LSBaseSDNodeBits
.AddressingMode
);
2114 /// Return true if this is a pre/post inc/dec load/store.
2115 bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED
; }
2117 /// Return true if this is NOT a pre/post inc/dec load/store.
2118 bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED
; }
2120 static bool classof(const SDNode
*N
) {
2121 return N
->getOpcode() == ISD::LOAD
||
2122 N
->getOpcode() == ISD::STORE
;
2126 /// This class is used to represent ISD::LOAD nodes.
2127 class LoadSDNode
: public LSBaseSDNode
{
2128 friend class SelectionDAG
;
2130 LoadSDNode(unsigned Order
, const DebugLoc
&dl
, SDVTList VTs
,
2131 ISD::MemIndexedMode AM
, ISD::LoadExtType ETy
, EVT MemVT
,
2132 MachineMemOperand
*MMO
)
2133 : LSBaseSDNode(ISD::LOAD
, Order
, dl
, VTs
, AM
, MemVT
, MMO
) {
2134 LoadSDNodeBits
.ExtTy
= ETy
;
2135 assert(readMem() && "Load MachineMemOperand is not a load!");
2136 assert(!writeMem() && "Load MachineMemOperand is a store!");
2140 /// Return whether this is a plain node,
2141 /// or one of the varieties of value-extending loads.
2142 ISD::LoadExtType
getExtensionType() const {
2143 return static_cast<ISD::LoadExtType
>(LoadSDNodeBits
.ExtTy
);
2146 const SDValue
&getBasePtr() const { return getOperand(1); }
2147 const SDValue
&getOffset() const { return getOperand(2); }
2149 static bool classof(const SDNode
*N
) {
2150 return N
->getOpcode() == ISD::LOAD
;
2154 /// This class is used to represent ISD::STORE nodes.
2155 class StoreSDNode
: public LSBaseSDNode
{
2156 friend class SelectionDAG
;
2158 StoreSDNode(unsigned Order
, const DebugLoc
&dl
, SDVTList VTs
,
2159 ISD::MemIndexedMode AM
, bool isTrunc
, EVT MemVT
,
2160 MachineMemOperand
*MMO
)
2161 : LSBaseSDNode(ISD::STORE
, Order
, dl
, VTs
, AM
, MemVT
, MMO
) {
2162 StoreSDNodeBits
.IsTruncating
= isTrunc
;
2163 assert(!readMem() && "Store MachineMemOperand is a load!");
2164 assert(writeMem() && "Store MachineMemOperand is not a store!");
2168 /// Return true if the op does a truncation before store.
2169 /// For integers this is the same as doing a TRUNCATE and storing the result.
2170 /// For floats, it is the same as doing an FP_ROUND and storing the result.
2171 bool isTruncatingStore() const { return StoreSDNodeBits
.IsTruncating
; }
2172 void setTruncatingStore(bool Truncating
) {
2173 StoreSDNodeBits
.IsTruncating
= Truncating
;
2176 const SDValue
&getValue() const { return getOperand(1); }
2177 const SDValue
&getBasePtr() const { return getOperand(2); }
2178 const SDValue
&getOffset() const { return getOperand(3); }
2180 static bool classof(const SDNode
*N
) {
2181 return N
->getOpcode() == ISD::STORE
;
2185 /// This base class is used to represent MLOAD and MSTORE nodes
2186 class MaskedLoadStoreSDNode
: public MemSDNode
{
2188 friend class SelectionDAG
;
2190 MaskedLoadStoreSDNode(ISD::NodeType NodeTy
, unsigned Order
,
2191 const DebugLoc
&dl
, SDVTList VTs
, EVT MemVT
,
2192 MachineMemOperand
*MMO
)
2193 : MemSDNode(NodeTy
, Order
, dl
, VTs
, MemVT
, MMO
) {}
2195 // MaskedLoadSDNode (Chain, ptr, mask, passthru)
2196 // MaskedStoreSDNode (Chain, data, ptr, mask)
2197 // Mask is a vector of i1 elements
2198 const SDValue
&getBasePtr() const {
2199 return getOperand(getOpcode() == ISD::MLOAD
? 1 : 2);
2201 const SDValue
&getMask() const {
2202 return getOperand(getOpcode() == ISD::MLOAD
? 2 : 3);
2205 static bool classof(const SDNode
*N
) {
2206 return N
->getOpcode() == ISD::MLOAD
||
2207 N
->getOpcode() == ISD::MSTORE
;
2211 /// This class is used to represent an MLOAD node
2212 class MaskedLoadSDNode
: public MaskedLoadStoreSDNode
{
2214 friend class SelectionDAG
;
2216 MaskedLoadSDNode(unsigned Order
, const DebugLoc
&dl
, SDVTList VTs
,
2217 ISD::LoadExtType ETy
, bool IsExpanding
, EVT MemVT
,
2218 MachineMemOperand
*MMO
)
2219 : MaskedLoadStoreSDNode(ISD::MLOAD
, Order
, dl
, VTs
, MemVT
, MMO
) {
2220 LoadSDNodeBits
.ExtTy
= ETy
;
2221 LoadSDNodeBits
.IsExpanding
= IsExpanding
;
2224 ISD::LoadExtType
getExtensionType() const {
2225 return static_cast<ISD::LoadExtType
>(LoadSDNodeBits
.ExtTy
);
2228 const SDValue
&getBasePtr() const { return getOperand(1); }
2229 const SDValue
&getMask() const { return getOperand(2); }
2230 const SDValue
&getPassThru() const { return getOperand(3); }
2232 static bool classof(const SDNode
*N
) {
2233 return N
->getOpcode() == ISD::MLOAD
;
2236 bool isExpandingLoad() const { return LoadSDNodeBits
.IsExpanding
; }
2239 /// This class is used to represent an MSTORE node
2240 class MaskedStoreSDNode
: public MaskedLoadStoreSDNode
{
2242 friend class SelectionDAG
;
2244 MaskedStoreSDNode(unsigned Order
, const DebugLoc
&dl
, SDVTList VTs
,
2245 bool isTrunc
, bool isCompressing
, EVT MemVT
,
2246 MachineMemOperand
*MMO
)
2247 : MaskedLoadStoreSDNode(ISD::MSTORE
, Order
, dl
, VTs
, MemVT
, MMO
) {
2248 StoreSDNodeBits
.IsTruncating
= isTrunc
;
2249 StoreSDNodeBits
.IsCompressing
= isCompressing
;
2252 /// Return true if the op does a truncation before store.
2253 /// For integers this is the same as doing a TRUNCATE and storing the result.
2254 /// For floats, it is the same as doing an FP_ROUND and storing the result.
2255 bool isTruncatingStore() const { return StoreSDNodeBits
.IsTruncating
; }
2257 /// Returns true if the op does a compression to the vector before storing.
2258 /// The node contiguously stores the active elements (integers or floats)
2259 /// in src (those with their respective bit set in writemask k) to unaligned
2260 /// memory at base_addr.
2261 bool isCompressingStore() const { return StoreSDNodeBits
.IsCompressing
; }
2263 const SDValue
&getValue() const { return getOperand(1); }
2264 const SDValue
&getBasePtr() const { return getOperand(2); }
2265 const SDValue
&getMask() const { return getOperand(3); }
2267 static bool classof(const SDNode
*N
) {
2268 return N
->getOpcode() == ISD::MSTORE
;
2272 /// This is a base class used to represent
2273 /// MGATHER and MSCATTER nodes
2275 class MaskedGatherScatterSDNode
: public MemSDNode
{
2277 friend class SelectionDAG
;
2279 MaskedGatherScatterSDNode(ISD::NodeType NodeTy
, unsigned Order
,
2280 const DebugLoc
&dl
, SDVTList VTs
, EVT MemVT
,
2281 MachineMemOperand
*MMO
)
2282 : MemSDNode(NodeTy
, Order
, dl
, VTs
, MemVT
, MMO
) {}
2284 // In the both nodes address is Op1, mask is Op2:
2285 // MaskedGatherSDNode (Chain, passthru, mask, base, index, scale)
2286 // MaskedScatterSDNode (Chain, value, mask, base, index, scale)
2287 // Mask is a vector of i1 elements
2288 const SDValue
&getBasePtr() const { return getOperand(3); }
2289 const SDValue
&getIndex() const { return getOperand(4); }
2290 const SDValue
&getMask() const { return getOperand(2); }
2291 const SDValue
&getScale() const { return getOperand(5); }
2293 static bool classof(const SDNode
*N
) {
2294 return N
->getOpcode() == ISD::MGATHER
||
2295 N
->getOpcode() == ISD::MSCATTER
;
2299 /// This class is used to represent an MGATHER node
2301 class MaskedGatherSDNode
: public MaskedGatherScatterSDNode
{
2303 friend class SelectionDAG
;
2305 MaskedGatherSDNode(unsigned Order
, const DebugLoc
&dl
, SDVTList VTs
,
2306 EVT MemVT
, MachineMemOperand
*MMO
)
2307 : MaskedGatherScatterSDNode(ISD::MGATHER
, Order
, dl
, VTs
, MemVT
, MMO
) {}
2309 const SDValue
&getPassThru() const { return getOperand(1); }
2311 static bool classof(const SDNode
*N
) {
2312 return N
->getOpcode() == ISD::MGATHER
;
2316 /// This class is used to represent an MSCATTER node
2318 class MaskedScatterSDNode
: public MaskedGatherScatterSDNode
{
2320 friend class SelectionDAG
;
2322 MaskedScatterSDNode(unsigned Order
, const DebugLoc
&dl
, SDVTList VTs
,
2323 EVT MemVT
, MachineMemOperand
*MMO
)
2324 : MaskedGatherScatterSDNode(ISD::MSCATTER
, Order
, dl
, VTs
, MemVT
, MMO
) {}
2326 const SDValue
&getValue() const { return getOperand(1); }
2328 static bool classof(const SDNode
*N
) {
2329 return N
->getOpcode() == ISD::MSCATTER
;
2333 /// An SDNode that represents everything that will be needed
2334 /// to construct a MachineInstr. These nodes are created during the
2335 /// instruction selection proper phase.
2337 /// Note that the only supported way to set the `memoperands` is by calling the
2338 /// `SelectionDAG::setNodeMemRefs` function as the memory management happens
2339 /// inside the DAG rather than in the node.
2340 class MachineSDNode
: public SDNode
{
2342 friend class SelectionDAG
;
2344 MachineSDNode(unsigned Opc
, unsigned Order
, const DebugLoc
&DL
, SDVTList VTs
)
2345 : SDNode(Opc
, Order
, DL
, VTs
) {}
2347 // We use a pointer union between a single `MachineMemOperand` pointer and
2348 // a pointer to an array of `MachineMemOperand` pointers. This is null when
2349 // the number of these is zero, the single pointer variant used when the
2350 // number is one, and the array is used for larger numbers.
2352 // The array is allocated via the `SelectionDAG`'s allocator and so will
2353 // always live until the DAG is cleaned up and doesn't require ownership here.
2355 // We can't use something simpler like `TinyPtrVector` here because `SDNode`
2356 // subclasses aren't managed in a conforming C++ manner. See the comments on
2357 // `SelectionDAG::MorphNodeTo` which details what all goes on, but the
2358 // constraint here is that these don't manage memory with their constructor or
2359 // destructor and can be initialized to a good state even if they start off
2361 PointerUnion
<MachineMemOperand
*, MachineMemOperand
**> MemRefs
= {};
2363 // Note that this could be folded into the above `MemRefs` member if doing so
2364 // is advantageous at some point. We don't need to store this in most cases.
2365 // However, at the moment this doesn't appear to make the allocation any
2366 // smaller and makes the code somewhat simpler to read.
2370 using mmo_iterator
= ArrayRef
<MachineMemOperand
*>::const_iterator
;
2372 ArrayRef
<MachineMemOperand
*> memoperands() const {
2373 // Special case the common cases.
2374 if (NumMemRefs
== 0)
2376 if (NumMemRefs
== 1)
2377 return makeArrayRef(MemRefs
.getAddrOfPtr1(), 1);
2379 // Otherwise we have an actual array.
2380 return makeArrayRef(MemRefs
.get
<MachineMemOperand
**>(), NumMemRefs
);
2382 mmo_iterator
memoperands_begin() const { return memoperands().begin(); }
2383 mmo_iterator
memoperands_end() const { return memoperands().end(); }
2384 bool memoperands_empty() const { return memoperands().empty(); }
2386 /// Clear out the memory reference descriptor list.
2387 void clearMemRefs() {
2392 static bool classof(const SDNode
*N
) {
2393 return N
->isMachineOpcode();
2397 class SDNodeIterator
: public std::iterator
<std::forward_iterator_tag
,
2398 SDNode
, ptrdiff_t> {
2402 SDNodeIterator(const SDNode
*N
, unsigned Op
) : Node(N
), Operand(Op
) {}
2405 bool operator==(const SDNodeIterator
& x
) const {
2406 return Operand
== x
.Operand
;
2408 bool operator!=(const SDNodeIterator
& x
) const { return !operator==(x
); }
2410 pointer
operator*() const {
2411 return Node
->getOperand(Operand
).getNode();
2413 pointer
operator->() const { return operator*(); }
2415 SDNodeIterator
& operator++() { // Preincrement
2419 SDNodeIterator
operator++(int) { // Postincrement
2420 SDNodeIterator tmp
= *this; ++*this; return tmp
;
2422 size_t operator-(SDNodeIterator Other
) const {
2423 assert(Node
== Other
.Node
&&
2424 "Cannot compare iterators of two different nodes!");
2425 return Operand
- Other
.Operand
;
2428 static SDNodeIterator
begin(const SDNode
*N
) { return SDNodeIterator(N
, 0); }
2429 static SDNodeIterator
end (const SDNode
*N
) {
2430 return SDNodeIterator(N
, N
->getNumOperands());
2433 unsigned getOperand() const { return Operand
; }
2434 const SDNode
*getNode() const { return Node
; }
2437 template <> struct GraphTraits
<SDNode
*> {
2438 using NodeRef
= SDNode
*;
2439 using ChildIteratorType
= SDNodeIterator
;
2441 static NodeRef
getEntryNode(SDNode
*N
) { return N
; }
2443 static ChildIteratorType
child_begin(NodeRef N
) {
2444 return SDNodeIterator::begin(N
);
2447 static ChildIteratorType
child_end(NodeRef N
) {
2448 return SDNodeIterator::end(N
);
2452 /// A representation of the largest SDNode, for use in sizeof().
2454 /// This needs to be a union because the largest node differs on 32 bit systems
2455 /// with 4 and 8 byte pointer alignment, respectively.
2456 using LargestSDNode
= AlignedCharArrayUnion
<AtomicSDNode
, TargetIndexSDNode
,
2458 GlobalAddressSDNode
>;
2460 /// The SDNode class with the greatest alignment requirement.
2461 using MostAlignedSDNode
= GlobalAddressSDNode
;
2465 /// Returns true if the specified node is a non-extending and unindexed load.
2466 inline bool isNormalLoad(const SDNode
*N
) {
2467 const LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(N
);
2468 return Ld
&& Ld
->getExtensionType() == ISD::NON_EXTLOAD
&&
2469 Ld
->getAddressingMode() == ISD::UNINDEXED
;
2472 /// Returns true if the specified node is a non-extending load.
2473 inline bool isNON_EXTLoad(const SDNode
*N
) {
2474 return isa
<LoadSDNode
>(N
) &&
2475 cast
<LoadSDNode
>(N
)->getExtensionType() == ISD::NON_EXTLOAD
;
2478 /// Returns true if the specified node is a EXTLOAD.
2479 inline bool isEXTLoad(const SDNode
*N
) {
2480 return isa
<LoadSDNode
>(N
) &&
2481 cast
<LoadSDNode
>(N
)->getExtensionType() == ISD::EXTLOAD
;
2484 /// Returns true if the specified node is a SEXTLOAD.
2485 inline bool isSEXTLoad(const SDNode
*N
) {
2486 return isa
<LoadSDNode
>(N
) &&
2487 cast
<LoadSDNode
>(N
)->getExtensionType() == ISD::SEXTLOAD
;
2490 /// Returns true if the specified node is a ZEXTLOAD.
2491 inline bool isZEXTLoad(const SDNode
*N
) {
2492 return isa
<LoadSDNode
>(N
) &&
2493 cast
<LoadSDNode
>(N
)->getExtensionType() == ISD::ZEXTLOAD
;
2496 /// Returns true if the specified node is an unindexed load.
2497 inline bool isUNINDEXEDLoad(const SDNode
*N
) {
2498 return isa
<LoadSDNode
>(N
) &&
2499 cast
<LoadSDNode
>(N
)->getAddressingMode() == ISD::UNINDEXED
;
2502 /// Returns true if the specified node is a non-truncating
2503 /// and unindexed store.
2504 inline bool isNormalStore(const SDNode
*N
) {
2505 const StoreSDNode
*St
= dyn_cast
<StoreSDNode
>(N
);
2506 return St
&& !St
->isTruncatingStore() &&
2507 St
->getAddressingMode() == ISD::UNINDEXED
;
2510 /// Returns true if the specified node is a non-truncating store.
2511 inline bool isNON_TRUNCStore(const SDNode
*N
) {
2512 return isa
<StoreSDNode
>(N
) && !cast
<StoreSDNode
>(N
)->isTruncatingStore();
2515 /// Returns true if the specified node is a truncating store.
2516 inline bool isTRUNCStore(const SDNode
*N
) {
2517 return isa
<StoreSDNode
>(N
) && cast
<StoreSDNode
>(N
)->isTruncatingStore();
2520 /// Returns true if the specified node is an unindexed store.
2521 inline bool isUNINDEXEDStore(const SDNode
*N
) {
2522 return isa
<StoreSDNode
>(N
) &&
2523 cast
<StoreSDNode
>(N
)->getAddressingMode() == ISD::UNINDEXED
;
2526 /// Return true if the node is a math/logic binary operator. This corresponds
2527 /// to the IR function of the same name.
2528 inline bool isBinaryOp(const SDNode
*N
) {
2529 auto Op
= N
->getOpcode();
2530 return (Op
== ISD::ADD
|| Op
== ISD::SUB
|| Op
== ISD::MUL
||
2531 Op
== ISD::AND
|| Op
== ISD::OR
|| Op
== ISD::XOR
||
2532 Op
== ISD::SHL
|| Op
== ISD::SRL
|| Op
== ISD::SRA
||
2533 Op
== ISD::SDIV
|| Op
== ISD::UDIV
|| Op
== ISD::SREM
||
2534 Op
== ISD::UREM
|| Op
== ISD::FADD
|| Op
== ISD::FSUB
||
2535 Op
== ISD::FMUL
|| Op
== ISD::FDIV
|| Op
== ISD::FREM
);
2538 /// Attempt to match a unary predicate against a scalar/splat constant or
2539 /// every element of a constant BUILD_VECTOR.
2540 /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
2541 bool matchUnaryPredicate(SDValue Op
,
2542 std::function
<bool(ConstantSDNode
*)> Match
,
2543 bool AllowUndefs
= false);
2545 /// Attempt to match a binary predicate against a pair of scalar/splat
2546 /// constants or every element of a pair of constant BUILD_VECTORs.
2547 /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
2548 bool matchBinaryPredicate(
2549 SDValue LHS
, SDValue RHS
,
2550 std::function
<bool(ConstantSDNode
*, ConstantSDNode
*)> Match
,
2551 bool AllowUndefs
= false);
2552 } // end namespace ISD
2554 } // end namespace llvm
2556 #endif // LLVM_CODEGEN_SELECTIONDAGNODES_H