[DAGCombiner] Eliminate dead stores to stack.
[llvm-complete.git] / lib / CodeGen / LiveDebugValues.cpp
blob449f10c7ef721d30a1ff562d9872370a7484138d
1 //===- LiveDebugValues.cpp - Tracking Debug Value MIs ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// This pass implements a data flow analysis that propagates debug location
10 /// information by inserting additional DBG_VALUE instructions into the machine
11 /// instruction stream. The pass internally builds debug location liveness
12 /// ranges to determine the points where additional DBG_VALUEs need to be
13 /// inserted.
14 ///
15 /// This is a separate pass from DbgValueHistoryCalculator to facilitate
16 /// testing and improve modularity.
17 ///
18 //===----------------------------------------------------------------------===//
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/ADT/PostOrderIterator.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/SparseBitVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/UniqueVector.h"
27 #include "llvm/CodeGen/LexicalScopes.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineMemOperand.h"
35 #include "llvm/CodeGen/MachineOperand.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/RegisterScavenging.h"
38 #include "llvm/CodeGen/TargetFrameLowering.h"
39 #include "llvm/CodeGen/TargetInstrInfo.h"
40 #include "llvm/CodeGen/TargetLowering.h"
41 #include "llvm/CodeGen/TargetRegisterInfo.h"
42 #include "llvm/CodeGen/TargetSubtargetInfo.h"
43 #include "llvm/Config/llvm-config.h"
44 #include "llvm/IR/DIBuilder.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/IR/Function.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/MC/MCRegisterInfo.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/Compiler.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include <algorithm>
56 #include <cassert>
57 #include <cstdint>
58 #include <functional>
59 #include <queue>
60 #include <utility>
61 #include <vector>
63 using namespace llvm;
65 #define DEBUG_TYPE "livedebugvalues"
67 STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted");
69 // If @MI is a DBG_VALUE with debug value described by a defined
70 // register, returns the number of this register. In the other case, returns 0.
71 static unsigned isDbgValueDescribedByReg(const MachineInstr &MI) {
72 assert(MI.isDebugValue() && "expected a DBG_VALUE");
73 assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE");
74 // If location of variable is described using a register (directly
75 // or indirectly), this register is always a first operand.
76 return MI.getOperand(0).isReg() ? MI.getOperand(0).getReg() : 0;
79 namespace {
81 class LiveDebugValues : public MachineFunctionPass {
82 private:
83 const TargetRegisterInfo *TRI;
84 const TargetInstrInfo *TII;
85 const TargetFrameLowering *TFI;
86 BitVector CalleeSavedRegs;
87 LexicalScopes LS;
89 enum struct TransferKind { TransferCopy, TransferSpill, TransferRestore };
91 /// Keeps track of lexical scopes associated with a user value's source
92 /// location.
93 class UserValueScopes {
94 DebugLoc DL;
95 LexicalScopes &LS;
96 SmallPtrSet<const MachineBasicBlock *, 4> LBlocks;
98 public:
99 UserValueScopes(DebugLoc D, LexicalScopes &L) : DL(std::move(D)), LS(L) {}
101 /// Return true if current scope dominates at least one machine
102 /// instruction in a given machine basic block.
103 bool dominates(MachineBasicBlock *MBB) {
104 if (LBlocks.empty())
105 LS.getMachineBasicBlocks(DL, LBlocks);
106 return LBlocks.count(MBB) != 0 || LS.dominates(DL, MBB);
110 /// Based on std::pair so it can be used as an index into a DenseMap.
111 using DebugVariableBase =
112 std::pair<const DILocalVariable *, const DILocation *>;
113 /// A potentially inlined instance of a variable.
114 struct DebugVariable : public DebugVariableBase {
115 DebugVariable(const DILocalVariable *Var, const DILocation *InlinedAt)
116 : DebugVariableBase(Var, InlinedAt) {}
118 const DILocalVariable *getVar() const { return this->first; }
119 const DILocation *getInlinedAt() const { return this->second; }
121 bool operator<(const DebugVariable &DV) const {
122 if (getVar() == DV.getVar())
123 return getInlinedAt() < DV.getInlinedAt();
124 return getVar() < DV.getVar();
128 /// A pair of debug variable and value location.
129 struct VarLoc {
130 // The location at which a spilled variable resides. It consists of a
131 // register and an offset.
132 struct SpillLoc {
133 unsigned SpillBase;
134 int SpillOffset;
135 bool operator==(const SpillLoc &Other) const {
136 return SpillBase == Other.SpillBase && SpillOffset == Other.SpillOffset;
140 const DebugVariable Var;
141 const MachineInstr &MI; ///< Only used for cloning a new DBG_VALUE.
142 mutable UserValueScopes UVS;
143 enum VarLocKind {
144 InvalidKind = 0,
145 RegisterKind,
146 SpillLocKind
147 } Kind = InvalidKind;
149 /// The value location. Stored separately to avoid repeatedly
150 /// extracting it from MI.
151 union {
152 uint64_t RegNo;
153 SpillLoc SpillLocation;
154 uint64_t Hash;
155 } Loc;
157 VarLoc(const MachineInstr &MI, LexicalScopes &LS)
158 : Var(MI.getDebugVariable(), MI.getDebugLoc()->getInlinedAt()), MI(MI),
159 UVS(MI.getDebugLoc(), LS) {
160 static_assert((sizeof(Loc) == sizeof(uint64_t)),
161 "hash does not cover all members of Loc");
162 assert(MI.isDebugValue() && "not a DBG_VALUE");
163 assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE");
164 if (int RegNo = isDbgValueDescribedByReg(MI)) {
165 Kind = RegisterKind;
166 Loc.RegNo = RegNo;
170 /// The constructor for spill locations.
171 VarLoc(const MachineInstr &MI, unsigned SpillBase, int SpillOffset,
172 LexicalScopes &LS)
173 : Var(MI.getDebugVariable(), MI.getDebugLoc()->getInlinedAt()), MI(MI),
174 UVS(MI.getDebugLoc(), LS) {
175 assert(MI.isDebugValue() && "not a DBG_VALUE");
176 assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE");
177 Kind = SpillLocKind;
178 Loc.SpillLocation = {SpillBase, SpillOffset};
181 /// If this variable is described by a register, return it,
182 /// otherwise return 0.
183 unsigned isDescribedByReg() const {
184 if (Kind == RegisterKind)
185 return Loc.RegNo;
186 return 0;
189 /// Determine whether the lexical scope of this value's debug location
190 /// dominates MBB.
191 bool dominates(MachineBasicBlock &MBB) const { return UVS.dominates(&MBB); }
193 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
194 LLVM_DUMP_METHOD void dump() const { MI.dump(); }
195 #endif
197 bool operator==(const VarLoc &Other) const {
198 return Var == Other.Var && Loc.Hash == Other.Loc.Hash;
201 /// This operator guarantees that VarLocs are sorted by Variable first.
202 bool operator<(const VarLoc &Other) const {
203 if (Var == Other.Var)
204 return Loc.Hash < Other.Loc.Hash;
205 return Var < Other.Var;
209 using VarLocMap = UniqueVector<VarLoc>;
210 using VarLocSet = SparseBitVector<>;
211 using VarLocInMBB = SmallDenseMap<const MachineBasicBlock *, VarLocSet>;
212 struct TransferDebugPair {
213 MachineInstr *TransferInst;
214 MachineInstr *DebugInst;
216 using TransferMap = SmallVector<TransferDebugPair, 4>;
218 /// This holds the working set of currently open ranges. For fast
219 /// access, this is done both as a set of VarLocIDs, and a map of
220 /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all
221 /// previous open ranges for the same variable.
222 class OpenRangesSet {
223 VarLocSet VarLocs;
224 SmallDenseMap<DebugVariableBase, unsigned, 8> Vars;
226 public:
227 const VarLocSet &getVarLocs() const { return VarLocs; }
229 /// Terminate all open ranges for Var by removing it from the set.
230 void erase(DebugVariable Var) {
231 auto It = Vars.find(Var);
232 if (It != Vars.end()) {
233 unsigned ID = It->second;
234 VarLocs.reset(ID);
235 Vars.erase(It);
239 /// Terminate all open ranges listed in \c KillSet by removing
240 /// them from the set.
241 void erase(const VarLocSet &KillSet, const VarLocMap &VarLocIDs) {
242 VarLocs.intersectWithComplement(KillSet);
243 for (unsigned ID : KillSet)
244 Vars.erase(VarLocIDs[ID].Var);
247 /// Insert a new range into the set.
248 void insert(unsigned VarLocID, DebugVariableBase Var) {
249 VarLocs.set(VarLocID);
250 Vars.insert({Var, VarLocID});
253 /// Empty the set.
254 void clear() {
255 VarLocs.clear();
256 Vars.clear();
259 /// Return whether the set is empty or not.
260 bool empty() const {
261 assert(Vars.empty() == VarLocs.empty() && "open ranges are inconsistent");
262 return VarLocs.empty();
266 bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF,
267 unsigned &Reg);
268 /// If a given instruction is identified as a spill, return the spill location
269 /// and set \p Reg to the spilled register.
270 Optional<VarLoc::SpillLoc> isRestoreInstruction(const MachineInstr &MI,
271 MachineFunction *MF,
272 unsigned &Reg);
273 /// Given a spill instruction, extract the register and offset used to
274 /// address the spill location in a target independent way.
275 VarLoc::SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI);
276 void insertTransferDebugPair(MachineInstr &MI, OpenRangesSet &OpenRanges,
277 TransferMap &Transfers, VarLocMap &VarLocIDs,
278 unsigned OldVarID, TransferKind Kind,
279 unsigned NewReg = 0);
281 void transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges,
282 VarLocMap &VarLocIDs);
283 void transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges,
284 VarLocMap &VarLocIDs, TransferMap &Transfers);
285 void transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges,
286 VarLocMap &VarLocIDs, TransferMap &Transfers);
287 void transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges,
288 const VarLocMap &VarLocIDs);
289 bool transferTerminatorInst(MachineInstr &MI, OpenRangesSet &OpenRanges,
290 VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs);
291 bool process(MachineInstr &MI, OpenRangesSet &OpenRanges,
292 VarLocInMBB &OutLocs, VarLocMap &VarLocIDs,
293 TransferMap &Transfers, bool transferChanges);
295 bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
296 const VarLocMap &VarLocIDs,
297 SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
298 SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks);
300 bool ExtendRanges(MachineFunction &MF);
302 public:
303 static char ID;
305 /// Default construct and initialize the pass.
306 LiveDebugValues();
308 /// Tell the pass manager which passes we depend on and what
309 /// information we preserve.
310 void getAnalysisUsage(AnalysisUsage &AU) const override;
312 MachineFunctionProperties getRequiredProperties() const override {
313 return MachineFunctionProperties().set(
314 MachineFunctionProperties::Property::NoVRegs);
317 /// Print to ostream with a message.
318 void printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V,
319 const VarLocMap &VarLocIDs, const char *msg,
320 raw_ostream &Out) const;
322 /// Calculate the liveness information for the given machine function.
323 bool runOnMachineFunction(MachineFunction &MF) override;
326 } // end anonymous namespace
328 //===----------------------------------------------------------------------===//
329 // Implementation
330 //===----------------------------------------------------------------------===//
332 char LiveDebugValues::ID = 0;
334 char &llvm::LiveDebugValuesID = LiveDebugValues::ID;
336 INITIALIZE_PASS(LiveDebugValues, DEBUG_TYPE, "Live DEBUG_VALUE analysis",
337 false, false)
339 /// Default construct and initialize the pass.
340 LiveDebugValues::LiveDebugValues() : MachineFunctionPass(ID) {
341 initializeLiveDebugValuesPass(*PassRegistry::getPassRegistry());
344 /// Tell the pass manager which passes we depend on and what information we
345 /// preserve.
346 void LiveDebugValues::getAnalysisUsage(AnalysisUsage &AU) const {
347 AU.setPreservesCFG();
348 MachineFunctionPass::getAnalysisUsage(AU);
351 //===----------------------------------------------------------------------===//
352 // Debug Range Extension Implementation
353 //===----------------------------------------------------------------------===//
355 #ifndef NDEBUG
356 void LiveDebugValues::printVarLocInMBB(const MachineFunction &MF,
357 const VarLocInMBB &V,
358 const VarLocMap &VarLocIDs,
359 const char *msg,
360 raw_ostream &Out) const {
361 Out << '\n' << msg << '\n';
362 for (const MachineBasicBlock &BB : MF) {
363 const VarLocSet &L = V.lookup(&BB);
364 if (L.empty())
365 continue;
366 Out << "MBB: " << BB.getNumber() << ":\n";
367 for (unsigned VLL : L) {
368 const VarLoc &VL = VarLocIDs[VLL];
369 Out << " Var: " << VL.Var.getVar()->getName();
370 Out << " MI: ";
371 VL.dump();
374 Out << "\n";
376 #endif
378 LiveDebugValues::VarLoc::SpillLoc
379 LiveDebugValues::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
380 assert(MI.hasOneMemOperand() &&
381 "Spill instruction does not have exactly one memory operand?");
382 auto MMOI = MI.memoperands_begin();
383 const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
384 assert(PVal->kind() == PseudoSourceValue::FixedStack &&
385 "Inconsistent memory operand in spill instruction");
386 int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
387 const MachineBasicBlock *MBB = MI.getParent();
388 unsigned Reg;
389 int Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
390 return {Reg, Offset};
393 /// End all previous ranges related to @MI and start a new range from @MI
394 /// if it is a DBG_VALUE instr.
395 void LiveDebugValues::transferDebugValue(const MachineInstr &MI,
396 OpenRangesSet &OpenRanges,
397 VarLocMap &VarLocIDs) {
398 if (!MI.isDebugValue())
399 return;
400 const DILocalVariable *Var = MI.getDebugVariable();
401 const DILocation *DebugLoc = MI.getDebugLoc();
402 const DILocation *InlinedAt = DebugLoc->getInlinedAt();
403 assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
404 "Expected inlined-at fields to agree");
406 // End all previous ranges of Var.
407 DebugVariable V(Var, InlinedAt);
408 OpenRanges.erase(V);
410 // Add the VarLoc to OpenRanges from this DBG_VALUE.
411 // TODO: Currently handles DBG_VALUE which has only reg as location.
412 if (isDbgValueDescribedByReg(MI)) {
413 VarLoc VL(MI, LS);
414 unsigned ID = VarLocIDs.insert(VL);
415 OpenRanges.insert(ID, VL.Var);
419 /// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc
420 /// with \p OldVarID should be deleted form \p OpenRanges and replaced with
421 /// new VarLoc. If \p NewReg is different than default zero value then the
422 /// new location will be register location created by the copy like instruction,
423 /// otherwise it is variable's location on the stack.
424 void LiveDebugValues::insertTransferDebugPair(
425 MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers,
426 VarLocMap &VarLocIDs, unsigned OldVarID, TransferKind Kind,
427 unsigned NewReg) {
428 const MachineInstr *DMI = &VarLocIDs[OldVarID].MI;
429 MachineFunction *MF = MI.getParent()->getParent();
430 MachineInstr *NewDMI;
432 auto ProcessVarLoc = [&MI, &OpenRanges, &Transfers,
433 &VarLocIDs](VarLoc &VL, MachineInstr *NewDMI) {
434 unsigned LocId = VarLocIDs.insert(VL);
435 OpenRanges.insert(LocId, VL.Var);
436 // The newly created DBG_VALUE instruction NewDMI must be inserted after
437 // MI. Keep track of the pairing.
438 TransferDebugPair MIP = {&MI, NewDMI};
439 Transfers.push_back(MIP);
442 // End all previous ranges of Var.
443 OpenRanges.erase(VarLocIDs[OldVarID].Var);
444 switch (Kind) {
445 case TransferKind::TransferCopy: {
446 assert(NewReg &&
447 "No register supplied when handling a copy of a debug value");
448 // Create a DBG_VALUE instruction to describe the Var in its new
449 // register location.
450 NewDMI = BuildMI(*MF, DMI->getDebugLoc(), DMI->getDesc(),
451 DMI->isIndirectDebugValue(), NewReg,
452 DMI->getDebugVariable(), DMI->getDebugExpression());
453 if (DMI->isIndirectDebugValue())
454 NewDMI->getOperand(1).setImm(DMI->getOperand(1).getImm());
455 VarLoc VL(*NewDMI, LS);
456 ProcessVarLoc(VL, NewDMI);
457 LLVM_DEBUG(dbgs() << "Creating DBG_VALUE inst for register copy: ";
458 NewDMI->print(dbgs(), false, false, false, TII));
459 return;
461 case TransferKind::TransferSpill: {
462 // Create a DBG_VALUE instruction to describe the Var in its spilled
463 // location.
464 VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI);
465 auto *SpillExpr =
466 DIExpression::prepend(DMI->getDebugExpression(), DIExpression::NoDeref,
467 SpillLocation.SpillOffset);
468 NewDMI =
469 BuildMI(*MF, DMI->getDebugLoc(), DMI->getDesc(), true,
470 SpillLocation.SpillBase, DMI->getDebugVariable(), SpillExpr);
471 VarLoc VL(*NewDMI, SpillLocation.SpillBase, SpillLocation.SpillOffset, LS);
472 ProcessVarLoc(VL, NewDMI);
473 LLVM_DEBUG(dbgs() << "Creating DBG_VALUE inst for spill: ";
474 NewDMI->print(dbgs(), false, false, false, TII));
475 return;
477 case TransferKind::TransferRestore: {
478 assert(NewReg &&
479 "No register supplied when handling a restore of a debug value");
480 MachineFunction *MF = MI.getMF();
481 DIBuilder DIB(*const_cast<Function &>(MF->getFunction()).getParent());
482 NewDMI = BuildMI(*MF, DMI->getDebugLoc(), DMI->getDesc(), false, NewReg,
483 DMI->getDebugVariable(), DIB.createExpression());
484 VarLoc VL(*NewDMI, LS);
485 ProcessVarLoc(VL, NewDMI);
486 LLVM_DEBUG(dbgs() << "Creating DBG_VALUE inst for register restore: ";
487 NewDMI->print(dbgs(), false, false, false, TII));
488 return;
491 llvm_unreachable("Invalid transfer kind");
494 /// A definition of a register may mark the end of a range.
495 void LiveDebugValues::transferRegisterDef(MachineInstr &MI,
496 OpenRangesSet &OpenRanges,
497 const VarLocMap &VarLocIDs) {
498 MachineFunction *MF = MI.getMF();
499 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
500 unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
501 SparseBitVector<> KillSet;
502 for (const MachineOperand &MO : MI.operands()) {
503 // Determine whether the operand is a register def. Assume that call
504 // instructions never clobber SP, because some backends (e.g., AArch64)
505 // never list SP in the regmask.
506 if (MO.isReg() && MO.isDef() && MO.getReg() &&
507 TRI->isPhysicalRegister(MO.getReg()) &&
508 !(MI.isCall() && MO.getReg() == SP)) {
509 // Remove ranges of all aliased registers.
510 for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
511 for (unsigned ID : OpenRanges.getVarLocs())
512 if (VarLocIDs[ID].isDescribedByReg() == *RAI)
513 KillSet.set(ID);
514 } else if (MO.isRegMask()) {
515 // Remove ranges of all clobbered registers. Register masks don't usually
516 // list SP as preserved. While the debug info may be off for an
517 // instruction or two around callee-cleanup calls, transferring the
518 // DEBUG_VALUE across the call is still a better user experience.
519 for (unsigned ID : OpenRanges.getVarLocs()) {
520 unsigned Reg = VarLocIDs[ID].isDescribedByReg();
521 if (Reg && Reg != SP && MO.clobbersPhysReg(Reg))
522 KillSet.set(ID);
526 OpenRanges.erase(KillSet, VarLocIDs);
529 /// Decide if @MI is a spill instruction and return true if it is. We use 2
530 /// criteria to make this decision:
531 /// - Is this instruction a store to a spill slot?
532 /// - Is there a register operand that is both used and killed?
533 /// TODO: Store optimization can fold spills into other stores (including
534 /// other spills). We do not handle this yet (more than one memory operand).
535 bool LiveDebugValues::isSpillInstruction(const MachineInstr &MI,
536 MachineFunction *MF, unsigned &Reg) {
537 SmallVector<const MachineMemOperand*, 1> Accesses;
539 // TODO: Handle multiple stores folded into one.
540 if (!MI.hasOneMemOperand())
541 return false;
543 if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
544 return false; // This is not a spill instruction, since no valid size was
545 // returned from either function.
547 auto isKilledReg = [&](const MachineOperand MO, unsigned &Reg) {
548 if (!MO.isReg() || !MO.isUse()) {
549 Reg = 0;
550 return false;
552 Reg = MO.getReg();
553 return MO.isKill();
556 for (const MachineOperand &MO : MI.operands()) {
557 // In a spill instruction generated by the InlineSpiller the spilled
558 // register has its kill flag set.
559 if (isKilledReg(MO, Reg))
560 return true;
561 if (Reg != 0) {
562 // Check whether next instruction kills the spilled register.
563 // FIXME: Current solution does not cover search for killed register in
564 // bundles and instructions further down the chain.
565 auto NextI = std::next(MI.getIterator());
566 // Skip next instruction that points to basic block end iterator.
567 if (MI.getParent()->end() == NextI)
568 continue;
569 unsigned RegNext;
570 for (const MachineOperand &MONext : NextI->operands()) {
571 // Return true if we came across the register from the
572 // previous spill instruction that is killed in NextI.
573 if (isKilledReg(MONext, RegNext) && RegNext == Reg)
574 return true;
578 // Return false if we didn't find spilled register.
579 return false;
582 Optional<LiveDebugValues::VarLoc::SpillLoc>
583 LiveDebugValues::isRestoreInstruction(const MachineInstr &MI,
584 MachineFunction *MF, unsigned &Reg) {
585 if (!MI.hasOneMemOperand())
586 return None;
588 // FIXME: Handle folded restore instructions with more than one memory
589 // operand.
590 if (MI.getRestoreSize(TII)) {
591 Reg = MI.getOperand(0).getReg();
592 return extractSpillBaseRegAndOffset(MI);
594 return None;
597 /// A spilled register may indicate that we have to end the current range of
598 /// a variable and create a new one for the spill location.
599 /// A restored register may indicate the reverse situation.
600 /// We don't want to insert any instructions in process(), so we just create
601 /// the DBG_VALUE without inserting it and keep track of it in \p Transfers.
602 /// It will be inserted into the BB when we're done iterating over the
603 /// instructions.
604 void LiveDebugValues::transferSpillOrRestoreInst(MachineInstr &MI,
605 OpenRangesSet &OpenRanges,
606 VarLocMap &VarLocIDs,
607 TransferMap &Transfers) {
608 MachineFunction *MF = MI.getMF();
609 TransferKind TKind;
610 unsigned Reg;
611 Optional<VarLoc::SpillLoc> Loc;
613 LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
615 if (isSpillInstruction(MI, MF, Reg)) {
616 TKind = TransferKind::TransferSpill;
617 LLVM_DEBUG(dbgs() << "Recognized as spill: "; MI.dump(););
618 LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI)
619 << "\n");
620 } else {
621 if (!(Loc = isRestoreInstruction(MI, MF, Reg)))
622 return;
623 TKind = TransferKind::TransferRestore;
624 LLVM_DEBUG(dbgs() << "Recognized as restore: "; MI.dump(););
625 LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI)
626 << "\n");
628 // Check if the register or spill location is the location of a debug value.
629 for (unsigned ID : OpenRanges.getVarLocs()) {
630 if (TKind == TransferKind::TransferSpill &&
631 VarLocIDs[ID].isDescribedByReg() == Reg) {
632 LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg, TRI) << '('
633 << VarLocIDs[ID].Var.getVar()->getName() << ")\n");
634 } else if (TKind == TransferKind::TransferRestore &&
635 VarLocIDs[ID].Loc.SpillLocation == *Loc) {
636 LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg, TRI) << '('
637 << VarLocIDs[ID].Var.getVar()->getName() << ")\n");
638 } else
639 continue;
640 insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, ID, TKind,
641 Reg);
642 return;
646 /// If \p MI is a register copy instruction, that copies a previously tracked
647 /// value from one register to another register that is callee saved, we
648 /// create new DBG_VALUE instruction described with copy destination register.
649 void LiveDebugValues::transferRegisterCopy(MachineInstr &MI,
650 OpenRangesSet &OpenRanges,
651 VarLocMap &VarLocIDs,
652 TransferMap &Transfers) {
653 const MachineOperand *SrcRegOp, *DestRegOp;
655 if (!TII->isCopyInstr(MI, SrcRegOp, DestRegOp) || !SrcRegOp->isKill() ||
656 !DestRegOp->isDef())
657 return;
659 auto isCalleSavedReg = [&](unsigned Reg) {
660 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
661 if (CalleeSavedRegs.test(*RAI))
662 return true;
663 return false;
666 unsigned SrcReg = SrcRegOp->getReg();
667 unsigned DestReg = DestRegOp->getReg();
669 // We want to recognize instructions where destination register is callee
670 // saved register. If register that could be clobbered by the call is
671 // included, there would be a great chance that it is going to be clobbered
672 // soon. It is more likely that previous register location, which is callee
673 // saved, is going to stay unclobbered longer, even if it is killed.
674 if (!isCalleSavedReg(DestReg))
675 return;
677 for (unsigned ID : OpenRanges.getVarLocs()) {
678 if (VarLocIDs[ID].isDescribedByReg() == SrcReg) {
679 insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, ID,
680 TransferKind::TransferCopy, DestReg);
681 return;
686 /// Terminate all open ranges at the end of the current basic block.
687 bool LiveDebugValues::transferTerminatorInst(MachineInstr &MI,
688 OpenRangesSet &OpenRanges,
689 VarLocInMBB &OutLocs,
690 const VarLocMap &VarLocIDs) {
691 bool Changed = false;
692 const MachineBasicBlock *CurMBB = MI.getParent();
693 if (!(MI.isTerminator() || (&MI == &CurMBB->back())))
694 return false;
696 if (OpenRanges.empty())
697 return false;
699 LLVM_DEBUG(for (unsigned ID
700 : OpenRanges.getVarLocs()) {
701 // Copy OpenRanges to OutLocs, if not already present.
702 dbgs() << "Add to OutLocs in MBB #" << CurMBB->getNumber() << ": ";
703 VarLocIDs[ID].dump();
705 VarLocSet &VLS = OutLocs[CurMBB];
706 Changed = VLS |= OpenRanges.getVarLocs();
707 OpenRanges.clear();
708 return Changed;
711 /// This routine creates OpenRanges and OutLocs.
712 bool LiveDebugValues::process(MachineInstr &MI, OpenRangesSet &OpenRanges,
713 VarLocInMBB &OutLocs, VarLocMap &VarLocIDs,
714 TransferMap &Transfers, bool transferChanges) {
715 bool Changed = false;
716 transferDebugValue(MI, OpenRanges, VarLocIDs);
717 transferRegisterDef(MI, OpenRanges, VarLocIDs);
718 if (transferChanges) {
719 transferRegisterCopy(MI, OpenRanges, VarLocIDs, Transfers);
720 transferSpillOrRestoreInst(MI, OpenRanges, VarLocIDs, Transfers);
722 Changed = transferTerminatorInst(MI, OpenRanges, OutLocs, VarLocIDs);
723 return Changed;
726 /// This routine joins the analysis results of all incoming edges in @MBB by
727 /// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same
728 /// source variable in all the predecessors of @MBB reside in the same location.
729 bool LiveDebugValues::join(
730 MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
731 const VarLocMap &VarLocIDs,
732 SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
733 SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks) {
734 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
735 bool Changed = false;
737 VarLocSet InLocsT; // Temporary incoming locations.
739 // For all predecessors of this MBB, find the set of VarLocs that
740 // can be joined.
741 int NumVisited = 0;
742 for (auto p : MBB.predecessors()) {
743 // Ignore unvisited predecessor blocks. As we are processing
744 // the blocks in reverse post-order any unvisited block can
745 // be considered to not remove any incoming values.
746 if (!Visited.count(p)) {
747 LLVM_DEBUG(dbgs() << " ignoring unvisited pred MBB: " << p->getNumber()
748 << "\n");
749 continue;
751 auto OL = OutLocs.find(p);
752 // Join is null in case of empty OutLocs from any of the pred.
753 if (OL == OutLocs.end())
754 return false;
756 // Just copy over the Out locs to incoming locs for the first visited
757 // predecessor, and for all other predecessors join the Out locs.
758 if (!NumVisited)
759 InLocsT = OL->second;
760 else
761 InLocsT &= OL->second;
763 LLVM_DEBUG({
764 if (!InLocsT.empty()) {
765 for (auto ID : InLocsT)
766 dbgs() << " gathered candidate incoming var: "
767 << VarLocIDs[ID].Var.getVar()->getName() << "\n";
771 NumVisited++;
774 // Filter out DBG_VALUES that are out of scope.
775 VarLocSet KillSet;
776 bool IsArtificial = ArtificialBlocks.count(&MBB);
777 if (!IsArtificial) {
778 for (auto ID : InLocsT) {
779 if (!VarLocIDs[ID].dominates(MBB)) {
780 KillSet.set(ID);
781 LLVM_DEBUG({
782 auto Name = VarLocIDs[ID].Var.getVar()->getName();
783 dbgs() << " killing " << Name << ", it doesn't dominate MBB\n";
788 InLocsT.intersectWithComplement(KillSet);
790 // As we are processing blocks in reverse post-order we
791 // should have processed at least one predecessor, unless it
792 // is the entry block which has no predecessor.
793 assert((NumVisited || MBB.pred_empty()) &&
794 "Should have processed at least one predecessor");
795 if (InLocsT.empty())
796 return false;
798 VarLocSet &ILS = InLocs[&MBB];
800 // Insert DBG_VALUE instructions, if not already inserted.
801 VarLocSet Diff = InLocsT;
802 Diff.intersectWithComplement(ILS);
803 for (auto ID : Diff) {
804 // This VarLoc is not found in InLocs i.e. it is not yet inserted. So, a
805 // new range is started for the var from the mbb's beginning by inserting
806 // a new DBG_VALUE. process() will end this range however appropriate.
807 const VarLoc &DiffIt = VarLocIDs[ID];
808 const MachineInstr *DMI = &DiffIt.MI;
809 MachineInstr *MI =
810 BuildMI(MBB, MBB.instr_begin(), DMI->getDebugLoc(), DMI->getDesc(),
811 DMI->isIndirectDebugValue(), DMI->getOperand(0).getReg(),
812 DMI->getDebugVariable(), DMI->getDebugExpression());
813 if (DMI->isIndirectDebugValue())
814 MI->getOperand(1).setImm(DMI->getOperand(1).getImm());
815 LLVM_DEBUG(dbgs() << "Inserted: "; MI->dump(););
816 ILS.set(ID);
817 ++NumInserted;
818 Changed = true;
820 return Changed;
823 /// Calculate the liveness information for the given machine function and
824 /// extend ranges across basic blocks.
825 bool LiveDebugValues::ExtendRanges(MachineFunction &MF) {
826 LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
828 bool Changed = false;
829 bool OLChanged = false;
830 bool MBBJoined = false;
832 VarLocMap VarLocIDs; // Map VarLoc<>unique ID for use in bitvectors.
833 OpenRangesSet OpenRanges; // Ranges that are open until end of bb.
834 VarLocInMBB OutLocs; // Ranges that exist beyond bb.
835 VarLocInMBB InLocs; // Ranges that are incoming after joining.
836 TransferMap Transfers; // DBG_VALUEs associated with spills.
838 // Blocks which are artificial, i.e. blocks which exclusively contain
839 // instructions without locations, or with line 0 locations.
840 SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks;
842 DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
843 DenseMap<MachineBasicBlock *, unsigned int> BBToOrder;
844 std::priority_queue<unsigned int, std::vector<unsigned int>,
845 std::greater<unsigned int>>
846 Worklist;
847 std::priority_queue<unsigned int, std::vector<unsigned int>,
848 std::greater<unsigned int>>
849 Pending;
851 enum : bool { dontTransferChanges = false, transferChanges = true };
853 // Initialize every mbb with OutLocs.
854 // We are not looking at any spill instructions during the initial pass
855 // over the BBs. The LiveDebugVariables pass has already created DBG_VALUE
856 // instructions for spills of registers that are known to be user variables
857 // within the BB in which the spill occurs.
858 for (auto &MBB : MF)
859 for (auto &MI : MBB)
860 process(MI, OpenRanges, OutLocs, VarLocIDs, Transfers,
861 dontTransferChanges);
863 auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
864 if (const DebugLoc &DL = MI.getDebugLoc())
865 return DL.getLine() != 0;
866 return false;
868 for (auto &MBB : MF)
869 if (none_of(MBB.instrs(), hasNonArtificialLocation))
870 ArtificialBlocks.insert(&MBB);
872 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
873 "OutLocs after initialization", dbgs()));
875 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
876 unsigned int RPONumber = 0;
877 for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) {
878 OrderToBB[RPONumber] = *RI;
879 BBToOrder[*RI] = RPONumber;
880 Worklist.push(RPONumber);
881 ++RPONumber;
883 // This is a standard "union of predecessor outs" dataflow problem.
884 // To solve it, we perform join() and process() using the two worklist method
885 // until the ranges converge.
886 // Ranges have converged when both worklists are empty.
887 SmallPtrSet<const MachineBasicBlock *, 16> Visited;
888 while (!Worklist.empty() || !Pending.empty()) {
889 // We track what is on the pending worklist to avoid inserting the same
890 // thing twice. We could avoid this with a custom priority queue, but this
891 // is probably not worth it.
892 SmallPtrSet<MachineBasicBlock *, 16> OnPending;
893 LLVM_DEBUG(dbgs() << "Processing Worklist\n");
894 while (!Worklist.empty()) {
895 MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
896 Worklist.pop();
897 MBBJoined =
898 join(*MBB, OutLocs, InLocs, VarLocIDs, Visited, ArtificialBlocks);
899 Visited.insert(MBB);
900 if (MBBJoined) {
901 MBBJoined = false;
902 Changed = true;
903 // Now that we have started to extend ranges across BBs we need to
904 // examine spill instructions to see whether they spill registers that
905 // correspond to user variables.
906 for (auto &MI : *MBB)
907 OLChanged |= process(MI, OpenRanges, OutLocs, VarLocIDs, Transfers,
908 transferChanges);
910 // Add any DBG_VALUE instructions necessitated by spills.
911 for (auto &TR : Transfers)
912 MBB->insertAfter(MachineBasicBlock::iterator(*TR.TransferInst),
913 TR.DebugInst);
914 Transfers.clear();
916 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
917 "OutLocs after propagating", dbgs()));
918 LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs,
919 "InLocs after propagating", dbgs()));
921 if (OLChanged) {
922 OLChanged = false;
923 for (auto s : MBB->successors())
924 if (OnPending.insert(s).second) {
925 Pending.push(BBToOrder[s]);
930 Worklist.swap(Pending);
931 // At this point, pending must be empty, since it was just the empty
932 // worklist
933 assert(Pending.empty() && "Pending should be empty");
936 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "Final OutLocs", dbgs()));
937 LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "Final InLocs", dbgs()));
938 return Changed;
941 bool LiveDebugValues::runOnMachineFunction(MachineFunction &MF) {
942 if (!MF.getFunction().getSubprogram())
943 // LiveDebugValues will already have removed all DBG_VALUEs.
944 return false;
946 // Skip functions from NoDebug compilation units.
947 if (MF.getFunction().getSubprogram()->getUnit()->getEmissionKind() ==
948 DICompileUnit::NoDebug)
949 return false;
951 TRI = MF.getSubtarget().getRegisterInfo();
952 TII = MF.getSubtarget().getInstrInfo();
953 TFI = MF.getSubtarget().getFrameLowering();
954 TFI->determineCalleeSaves(MF, CalleeSavedRegs,
955 make_unique<RegScavenger>().get());
956 LS.initialize(MF);
958 bool Changed = ExtendRanges(MF);
959 return Changed;