1 //===- SelectionDAG.cpp - Implement the SelectionDAG data structures ------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This implements the SelectionDAG class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/SelectionDAG.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/APSInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/BitVector.h"
20 #include "llvm/ADT/FoldingSet.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Triple.h"
26 #include "llvm/ADT/Twine.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/CodeGen/ISDOpcodes.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineConstantPool.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/RuntimeLibcalls.h"
35 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
36 #include "llvm/CodeGen/SelectionDAGNodes.h"
37 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/ValueTypes.h"
42 #include "llvm/IR/Constant.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/DebugLoc.h"
47 #include "llvm/IR/DerivedTypes.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Type.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CodeGen.h"
55 #include "llvm/Support/Compiler.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/ErrorHandling.h"
58 #include "llvm/Support/KnownBits.h"
59 #include "llvm/Support/MachineValueType.h"
60 #include "llvm/Support/ManagedStatic.h"
61 #include "llvm/Support/MathExtras.h"
62 #include "llvm/Support/Mutex.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetMachine.h"
65 #include "llvm/Target/TargetOptions.h"
78 /// makeVTList - Return an instance of the SDVTList struct initialized with the
79 /// specified members.
80 static SDVTList
makeVTList(const EVT
*VTs
, unsigned NumVTs
) {
81 SDVTList Res
= {VTs
, NumVTs
};
85 // Default null implementations of the callbacks.
86 void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode
*, SDNode
*) {}
87 void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode
*) {}
89 void SelectionDAG::DAGNodeDeletedListener::anchor() {}
91 #define DEBUG_TYPE "selectiondag"
93 static cl::opt
<bool> EnableMemCpyDAGOpt("enable-memcpy-dag-opt",
94 cl::Hidden
, cl::init(true),
95 cl::desc("Gang up loads and stores generated by inlining of memcpy"));
97 static cl::opt
<int> MaxLdStGlue("ldstmemcpy-glue-max",
98 cl::desc("Number limit for gluing ld/st of memcpy."),
99 cl::Hidden
, cl::init(0));
101 static void NewSDValueDbgMsg(SDValue V
, StringRef Msg
, SelectionDAG
*G
) {
102 LLVM_DEBUG(dbgs() << Msg
; V
.getNode()->dump(G
););
105 //===----------------------------------------------------------------------===//
106 // ConstantFPSDNode Class
107 //===----------------------------------------------------------------------===//
109 /// isExactlyValue - We don't rely on operator== working on double values, as
110 /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
111 /// As such, this method can be used to do an exact bit-for-bit comparison of
112 /// two floating point values.
113 bool ConstantFPSDNode::isExactlyValue(const APFloat
& V
) const {
114 return getValueAPF().bitwiseIsEqual(V
);
117 bool ConstantFPSDNode::isValueValidForType(EVT VT
,
118 const APFloat
& Val
) {
119 assert(VT
.isFloatingPoint() && "Can only convert between FP types");
121 // convert modifies in place, so make a copy.
122 APFloat Val2
= APFloat(Val
);
124 (void) Val2
.convert(SelectionDAG::EVTToAPFloatSemantics(VT
),
125 APFloat::rmNearestTiesToEven
,
130 //===----------------------------------------------------------------------===//
132 //===----------------------------------------------------------------------===//
134 bool ISD::isConstantSplatVector(const SDNode
*N
, APInt
&SplatVal
) {
135 auto *BV
= dyn_cast
<BuildVectorSDNode
>(N
);
140 unsigned SplatBitSize
;
142 unsigned EltSize
= N
->getValueType(0).getVectorElementType().getSizeInBits();
143 return BV
->isConstantSplat(SplatVal
, SplatUndef
, SplatBitSize
, HasUndefs
,
145 EltSize
== SplatBitSize
;
148 // FIXME: AllOnes and AllZeros duplicate a lot of code. Could these be
149 // specializations of the more general isConstantSplatVector()?
151 bool ISD::isBuildVectorAllOnes(const SDNode
*N
) {
152 // Look through a bit convert.
153 while (N
->getOpcode() == ISD::BITCAST
)
154 N
= N
->getOperand(0).getNode();
156 if (N
->getOpcode() != ISD::BUILD_VECTOR
) return false;
158 unsigned i
= 0, e
= N
->getNumOperands();
160 // Skip over all of the undef values.
161 while (i
!= e
&& N
->getOperand(i
).isUndef())
164 // Do not accept an all-undef vector.
165 if (i
== e
) return false;
167 // Do not accept build_vectors that aren't all constants or which have non-~0
168 // elements. We have to be a bit careful here, as the type of the constant
169 // may not be the same as the type of the vector elements due to type
170 // legalization (the elements are promoted to a legal type for the target and
171 // a vector of a type may be legal when the base element type is not).
172 // We only want to check enough bits to cover the vector elements, because
173 // we care if the resultant vector is all ones, not whether the individual
175 SDValue NotZero
= N
->getOperand(i
);
176 unsigned EltSize
= N
->getValueType(0).getScalarSizeInBits();
177 if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(NotZero
)) {
178 if (CN
->getAPIntValue().countTrailingOnes() < EltSize
)
180 } else if (ConstantFPSDNode
*CFPN
= dyn_cast
<ConstantFPSDNode
>(NotZero
)) {
181 if (CFPN
->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize
)
186 // Okay, we have at least one ~0 value, check to see if the rest match or are
187 // undefs. Even with the above element type twiddling, this should be OK, as
188 // the same type legalization should have applied to all the elements.
189 for (++i
; i
!= e
; ++i
)
190 if (N
->getOperand(i
) != NotZero
&& !N
->getOperand(i
).isUndef())
195 bool ISD::isBuildVectorAllZeros(const SDNode
*N
) {
196 // Look through a bit convert.
197 while (N
->getOpcode() == ISD::BITCAST
)
198 N
= N
->getOperand(0).getNode();
200 if (N
->getOpcode() != ISD::BUILD_VECTOR
) return false;
202 bool IsAllUndef
= true;
203 for (const SDValue
&Op
: N
->op_values()) {
207 // Do not accept build_vectors that aren't all constants or which have non-0
208 // elements. We have to be a bit careful here, as the type of the constant
209 // may not be the same as the type of the vector elements due to type
210 // legalization (the elements are promoted to a legal type for the target
211 // and a vector of a type may be legal when the base element type is not).
212 // We only want to check enough bits to cover the vector elements, because
213 // we care if the resultant vector is all zeros, not whether the individual
215 unsigned EltSize
= N
->getValueType(0).getScalarSizeInBits();
216 if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(Op
)) {
217 if (CN
->getAPIntValue().countTrailingZeros() < EltSize
)
219 } else if (ConstantFPSDNode
*CFPN
= dyn_cast
<ConstantFPSDNode
>(Op
)) {
220 if (CFPN
->getValueAPF().bitcastToAPInt().countTrailingZeros() < EltSize
)
226 // Do not accept an all-undef vector.
232 bool ISD::isBuildVectorOfConstantSDNodes(const SDNode
*N
) {
233 if (N
->getOpcode() != ISD::BUILD_VECTOR
)
236 for (const SDValue
&Op
: N
->op_values()) {
239 if (!isa
<ConstantSDNode
>(Op
))
245 bool ISD::isBuildVectorOfConstantFPSDNodes(const SDNode
*N
) {
246 if (N
->getOpcode() != ISD::BUILD_VECTOR
)
249 for (const SDValue
&Op
: N
->op_values()) {
252 if (!isa
<ConstantFPSDNode
>(Op
))
258 bool ISD::allOperandsUndef(const SDNode
*N
) {
259 // Return false if the node has no operands.
260 // This is "logically inconsistent" with the definition of "all" but
261 // is probably the desired behavior.
262 if (N
->getNumOperands() == 0)
265 for (const SDValue
&Op
: N
->op_values())
272 bool ISD::matchUnaryPredicate(SDValue Op
,
273 std::function
<bool(ConstantSDNode
*)> Match
,
275 // FIXME: Add support for scalar UNDEF cases?
276 if (auto *Cst
= dyn_cast
<ConstantSDNode
>(Op
))
279 // FIXME: Add support for vector UNDEF cases?
280 if (ISD::BUILD_VECTOR
!= Op
.getOpcode())
283 EVT SVT
= Op
.getValueType().getScalarType();
284 for (unsigned i
= 0, e
= Op
.getNumOperands(); i
!= e
; ++i
) {
285 if (AllowUndefs
&& Op
.getOperand(i
).isUndef()) {
291 auto *Cst
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(i
));
292 if (!Cst
|| Cst
->getValueType(0) != SVT
|| !Match(Cst
))
298 bool ISD::matchBinaryPredicate(
299 SDValue LHS
, SDValue RHS
,
300 std::function
<bool(ConstantSDNode
*, ConstantSDNode
*)> Match
,
302 if (LHS
.getValueType() != RHS
.getValueType())
305 // TODO: Add support for scalar UNDEF cases?
306 if (auto *LHSCst
= dyn_cast
<ConstantSDNode
>(LHS
))
307 if (auto *RHSCst
= dyn_cast
<ConstantSDNode
>(RHS
))
308 return Match(LHSCst
, RHSCst
);
310 // TODO: Add support for vector UNDEF cases?
311 if (ISD::BUILD_VECTOR
!= LHS
.getOpcode() ||
312 ISD::BUILD_VECTOR
!= RHS
.getOpcode())
315 EVT SVT
= LHS
.getValueType().getScalarType();
316 for (unsigned i
= 0, e
= LHS
.getNumOperands(); i
!= e
; ++i
) {
317 SDValue LHSOp
= LHS
.getOperand(i
);
318 SDValue RHSOp
= RHS
.getOperand(i
);
319 bool LHSUndef
= AllowUndefs
&& LHSOp
.isUndef();
320 bool RHSUndef
= AllowUndefs
&& RHSOp
.isUndef();
321 auto *LHSCst
= dyn_cast
<ConstantSDNode
>(LHSOp
);
322 auto *RHSCst
= dyn_cast
<ConstantSDNode
>(RHSOp
);
323 if ((!LHSCst
&& !LHSUndef
) || (!RHSCst
&& !RHSUndef
))
325 if (LHSOp
.getValueType() != SVT
||
326 LHSOp
.getValueType() != RHSOp
.getValueType())
328 if (!Match(LHSCst
, RHSCst
))
334 ISD::NodeType
ISD::getExtForLoadExtType(bool IsFP
, ISD::LoadExtType ExtType
) {
337 return IsFP
? ISD::FP_EXTEND
: ISD::ANY_EXTEND
;
339 return ISD::SIGN_EXTEND
;
341 return ISD::ZERO_EXTEND
;
346 llvm_unreachable("Invalid LoadExtType");
349 ISD::CondCode
ISD::getSetCCSwappedOperands(ISD::CondCode Operation
) {
350 // To perform this operation, we just need to swap the L and G bits of the
352 unsigned OldL
= (Operation
>> 2) & 1;
353 unsigned OldG
= (Operation
>> 1) & 1;
354 return ISD::CondCode((Operation
& ~6) | // Keep the N, U, E bits
355 (OldL
<< 1) | // New G bit
356 (OldG
<< 2)); // New L bit.
359 ISD::CondCode
ISD::getSetCCInverse(ISD::CondCode Op
, bool isInteger
) {
360 unsigned Operation
= Op
;
362 Operation
^= 7; // Flip L, G, E bits, but not U.
364 Operation
^= 15; // Flip all of the condition bits.
366 if (Operation
> ISD::SETTRUE2
)
367 Operation
&= ~8; // Don't let N and U bits get set.
369 return ISD::CondCode(Operation
);
372 /// For an integer comparison, return 1 if the comparison is a signed operation
373 /// and 2 if the result is an unsigned comparison. Return zero if the operation
374 /// does not depend on the sign of the input (setne and seteq).
375 static int isSignedOp(ISD::CondCode Opcode
) {
377 default: llvm_unreachable("Illegal integer setcc operation!");
379 case ISD::SETNE
: return 0;
383 case ISD::SETGE
: return 1;
387 case ISD::SETUGE
: return 2;
391 ISD::CondCode
ISD::getSetCCOrOperation(ISD::CondCode Op1
, ISD::CondCode Op2
,
393 if (IsInteger
&& (isSignedOp(Op1
) | isSignedOp(Op2
)) == 3)
394 // Cannot fold a signed integer setcc with an unsigned integer setcc.
395 return ISD::SETCC_INVALID
;
397 unsigned Op
= Op1
| Op2
; // Combine all of the condition bits.
399 // If the N and U bits get set, then the resultant comparison DOES suddenly
400 // care about orderedness, and it is true when ordered.
401 if (Op
> ISD::SETTRUE2
)
402 Op
&= ~16; // Clear the U bit if the N bit is set.
404 // Canonicalize illegal integer setcc's.
405 if (IsInteger
&& Op
== ISD::SETUNE
) // e.g. SETUGT | SETULT
408 return ISD::CondCode(Op
);
411 ISD::CondCode
ISD::getSetCCAndOperation(ISD::CondCode Op1
, ISD::CondCode Op2
,
413 if (IsInteger
&& (isSignedOp(Op1
) | isSignedOp(Op2
)) == 3)
414 // Cannot fold a signed setcc with an unsigned setcc.
415 return ISD::SETCC_INVALID
;
417 // Combine all of the condition bits.
418 ISD::CondCode Result
= ISD::CondCode(Op1
& Op2
);
420 // Canonicalize illegal integer setcc's.
424 case ISD::SETUO
: Result
= ISD::SETFALSE
; break; // SETUGT & SETULT
425 case ISD::SETOEQ
: // SETEQ & SETU[LG]E
426 case ISD::SETUEQ
: Result
= ISD::SETEQ
; break; // SETUGE & SETULE
427 case ISD::SETOLT
: Result
= ISD::SETULT
; break; // SETULT & SETNE
428 case ISD::SETOGT
: Result
= ISD::SETUGT
; break; // SETUGT & SETNE
435 //===----------------------------------------------------------------------===//
436 // SDNode Profile Support
437 //===----------------------------------------------------------------------===//
439 /// AddNodeIDOpcode - Add the node opcode to the NodeID data.
440 static void AddNodeIDOpcode(FoldingSetNodeID
&ID
, unsigned OpC
) {
444 /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
445 /// solely with their pointer.
446 static void AddNodeIDValueTypes(FoldingSetNodeID
&ID
, SDVTList VTList
) {
447 ID
.AddPointer(VTList
.VTs
);
450 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
451 static void AddNodeIDOperands(FoldingSetNodeID
&ID
,
452 ArrayRef
<SDValue
> Ops
) {
453 for (auto& Op
: Ops
) {
454 ID
.AddPointer(Op
.getNode());
455 ID
.AddInteger(Op
.getResNo());
459 /// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
460 static void AddNodeIDOperands(FoldingSetNodeID
&ID
,
461 ArrayRef
<SDUse
> Ops
) {
462 for (auto& Op
: Ops
) {
463 ID
.AddPointer(Op
.getNode());
464 ID
.AddInteger(Op
.getResNo());
468 static void AddNodeIDNode(FoldingSetNodeID
&ID
, unsigned short OpC
,
469 SDVTList VTList
, ArrayRef
<SDValue
> OpList
) {
470 AddNodeIDOpcode(ID
, OpC
);
471 AddNodeIDValueTypes(ID
, VTList
);
472 AddNodeIDOperands(ID
, OpList
);
475 /// If this is an SDNode with special info, add this info to the NodeID data.
476 static void AddNodeIDCustom(FoldingSetNodeID
&ID
, const SDNode
*N
) {
477 switch (N
->getOpcode()) {
478 case ISD::TargetExternalSymbol
:
479 case ISD::ExternalSymbol
:
481 llvm_unreachable("Should only be used on nodes with operands");
482 default: break; // Normal nodes don't need extra info.
483 case ISD::TargetConstant
:
484 case ISD::Constant
: {
485 const ConstantSDNode
*C
= cast
<ConstantSDNode
>(N
);
486 ID
.AddPointer(C
->getConstantIntValue());
487 ID
.AddBoolean(C
->isOpaque());
490 case ISD::TargetConstantFP
:
491 case ISD::ConstantFP
:
492 ID
.AddPointer(cast
<ConstantFPSDNode
>(N
)->getConstantFPValue());
494 case ISD::TargetGlobalAddress
:
495 case ISD::GlobalAddress
:
496 case ISD::TargetGlobalTLSAddress
:
497 case ISD::GlobalTLSAddress
: {
498 const GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(N
);
499 ID
.AddPointer(GA
->getGlobal());
500 ID
.AddInteger(GA
->getOffset());
501 ID
.AddInteger(GA
->getTargetFlags());
504 case ISD::BasicBlock
:
505 ID
.AddPointer(cast
<BasicBlockSDNode
>(N
)->getBasicBlock());
508 ID
.AddInteger(cast
<RegisterSDNode
>(N
)->getReg());
510 case ISD::RegisterMask
:
511 ID
.AddPointer(cast
<RegisterMaskSDNode
>(N
)->getRegMask());
514 ID
.AddPointer(cast
<SrcValueSDNode
>(N
)->getValue());
516 case ISD::FrameIndex
:
517 case ISD::TargetFrameIndex
:
518 ID
.AddInteger(cast
<FrameIndexSDNode
>(N
)->getIndex());
521 case ISD::TargetJumpTable
:
522 ID
.AddInteger(cast
<JumpTableSDNode
>(N
)->getIndex());
523 ID
.AddInteger(cast
<JumpTableSDNode
>(N
)->getTargetFlags());
525 case ISD::ConstantPool
:
526 case ISD::TargetConstantPool
: {
527 const ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(N
);
528 ID
.AddInteger(CP
->getAlignment());
529 ID
.AddInteger(CP
->getOffset());
530 if (CP
->isMachineConstantPoolEntry())
531 CP
->getMachineCPVal()->addSelectionDAGCSEId(ID
);
533 ID
.AddPointer(CP
->getConstVal());
534 ID
.AddInteger(CP
->getTargetFlags());
537 case ISD::TargetIndex
: {
538 const TargetIndexSDNode
*TI
= cast
<TargetIndexSDNode
>(N
);
539 ID
.AddInteger(TI
->getIndex());
540 ID
.AddInteger(TI
->getOffset());
541 ID
.AddInteger(TI
->getTargetFlags());
545 const LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
546 ID
.AddInteger(LD
->getMemoryVT().getRawBits());
547 ID
.AddInteger(LD
->getRawSubclassData());
548 ID
.AddInteger(LD
->getPointerInfo().getAddrSpace());
552 const StoreSDNode
*ST
= cast
<StoreSDNode
>(N
);
553 ID
.AddInteger(ST
->getMemoryVT().getRawBits());
554 ID
.AddInteger(ST
->getRawSubclassData());
555 ID
.AddInteger(ST
->getPointerInfo().getAddrSpace());
559 const MaskedLoadSDNode
*MLD
= cast
<MaskedLoadSDNode
>(N
);
560 ID
.AddInteger(MLD
->getMemoryVT().getRawBits());
561 ID
.AddInteger(MLD
->getRawSubclassData());
562 ID
.AddInteger(MLD
->getPointerInfo().getAddrSpace());
566 const MaskedStoreSDNode
*MST
= cast
<MaskedStoreSDNode
>(N
);
567 ID
.AddInteger(MST
->getMemoryVT().getRawBits());
568 ID
.AddInteger(MST
->getRawSubclassData());
569 ID
.AddInteger(MST
->getPointerInfo().getAddrSpace());
573 const MaskedGatherSDNode
*MG
= cast
<MaskedGatherSDNode
>(N
);
574 ID
.AddInteger(MG
->getMemoryVT().getRawBits());
575 ID
.AddInteger(MG
->getRawSubclassData());
576 ID
.AddInteger(MG
->getPointerInfo().getAddrSpace());
579 case ISD::MSCATTER
: {
580 const MaskedScatterSDNode
*MS
= cast
<MaskedScatterSDNode
>(N
);
581 ID
.AddInteger(MS
->getMemoryVT().getRawBits());
582 ID
.AddInteger(MS
->getRawSubclassData());
583 ID
.AddInteger(MS
->getPointerInfo().getAddrSpace());
586 case ISD::ATOMIC_CMP_SWAP
:
587 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS
:
588 case ISD::ATOMIC_SWAP
:
589 case ISD::ATOMIC_LOAD_ADD
:
590 case ISD::ATOMIC_LOAD_SUB
:
591 case ISD::ATOMIC_LOAD_AND
:
592 case ISD::ATOMIC_LOAD_CLR
:
593 case ISD::ATOMIC_LOAD_OR
:
594 case ISD::ATOMIC_LOAD_XOR
:
595 case ISD::ATOMIC_LOAD_NAND
:
596 case ISD::ATOMIC_LOAD_MIN
:
597 case ISD::ATOMIC_LOAD_MAX
:
598 case ISD::ATOMIC_LOAD_UMIN
:
599 case ISD::ATOMIC_LOAD_UMAX
:
600 case ISD::ATOMIC_LOAD
:
601 case ISD::ATOMIC_STORE
: {
602 const AtomicSDNode
*AT
= cast
<AtomicSDNode
>(N
);
603 ID
.AddInteger(AT
->getMemoryVT().getRawBits());
604 ID
.AddInteger(AT
->getRawSubclassData());
605 ID
.AddInteger(AT
->getPointerInfo().getAddrSpace());
608 case ISD::PREFETCH
: {
609 const MemSDNode
*PF
= cast
<MemSDNode
>(N
);
610 ID
.AddInteger(PF
->getPointerInfo().getAddrSpace());
613 case ISD::VECTOR_SHUFFLE
: {
614 const ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
615 for (unsigned i
= 0, e
= N
->getValueType(0).getVectorNumElements();
617 ID
.AddInteger(SVN
->getMaskElt(i
));
620 case ISD::TargetBlockAddress
:
621 case ISD::BlockAddress
: {
622 const BlockAddressSDNode
*BA
= cast
<BlockAddressSDNode
>(N
);
623 ID
.AddPointer(BA
->getBlockAddress());
624 ID
.AddInteger(BA
->getOffset());
625 ID
.AddInteger(BA
->getTargetFlags());
628 } // end switch (N->getOpcode())
630 // Target specific memory nodes could also have address spaces to check.
631 if (N
->isTargetMemoryOpcode())
632 ID
.AddInteger(cast
<MemSDNode
>(N
)->getPointerInfo().getAddrSpace());
635 /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
637 static void AddNodeIDNode(FoldingSetNodeID
&ID
, const SDNode
*N
) {
638 AddNodeIDOpcode(ID
, N
->getOpcode());
639 // Add the return value info.
640 AddNodeIDValueTypes(ID
, N
->getVTList());
641 // Add the operand info.
642 AddNodeIDOperands(ID
, N
->ops());
644 // Handle SDNode leafs with special info.
645 AddNodeIDCustom(ID
, N
);
648 //===----------------------------------------------------------------------===//
649 // SelectionDAG Class
650 //===----------------------------------------------------------------------===//
652 /// doNotCSE - Return true if CSE should not be performed for this node.
653 static bool doNotCSE(SDNode
*N
) {
654 if (N
->getValueType(0) == MVT::Glue
)
655 return true; // Never CSE anything that produces a flag.
657 switch (N
->getOpcode()) {
659 case ISD::HANDLENODE
:
661 return true; // Never CSE these nodes.
664 // Check that remaining values produced are not flags.
665 for (unsigned i
= 1, e
= N
->getNumValues(); i
!= e
; ++i
)
666 if (N
->getValueType(i
) == MVT::Glue
)
667 return true; // Never CSE anything that produces a flag.
672 /// RemoveDeadNodes - This method deletes all unreachable nodes in the
674 void SelectionDAG::RemoveDeadNodes() {
675 // Create a dummy node (which is not added to allnodes), that adds a reference
676 // to the root node, preventing it from being deleted.
677 HandleSDNode
Dummy(getRoot());
679 SmallVector
<SDNode
*, 128> DeadNodes
;
681 // Add all obviously-dead nodes to the DeadNodes worklist.
682 for (SDNode
&Node
: allnodes())
683 if (Node
.use_empty())
684 DeadNodes
.push_back(&Node
);
686 RemoveDeadNodes(DeadNodes
);
688 // If the root changed (e.g. it was a dead load, update the root).
689 setRoot(Dummy
.getValue());
692 /// RemoveDeadNodes - This method deletes the unreachable nodes in the
693 /// given list, and any nodes that become unreachable as a result.
694 void SelectionDAG::RemoveDeadNodes(SmallVectorImpl
<SDNode
*> &DeadNodes
) {
696 // Process the worklist, deleting the nodes and adding their uses to the
698 while (!DeadNodes
.empty()) {
699 SDNode
*N
= DeadNodes
.pop_back_val();
700 // Skip to next node if we've already managed to delete the node. This could
701 // happen if replacing a node causes a node previously added to the node to
703 if (N
->getOpcode() == ISD::DELETED_NODE
)
706 for (DAGUpdateListener
*DUL
= UpdateListeners
; DUL
; DUL
= DUL
->Next
)
707 DUL
->NodeDeleted(N
, nullptr);
709 // Take the node out of the appropriate CSE map.
710 RemoveNodeFromCSEMaps(N
);
712 // Next, brutally remove the operand list. This is safe to do, as there are
713 // no cycles in the graph.
714 for (SDNode::op_iterator I
= N
->op_begin(), E
= N
->op_end(); I
!= E
; ) {
716 SDNode
*Operand
= Use
.getNode();
719 // Now that we removed this operand, see if there are no uses of it left.
720 if (Operand
->use_empty())
721 DeadNodes
.push_back(Operand
);
728 void SelectionDAG::RemoveDeadNode(SDNode
*N
){
729 SmallVector
<SDNode
*, 16> DeadNodes(1, N
);
731 // Create a dummy node that adds a reference to the root node, preventing
732 // it from being deleted. (This matters if the root is an operand of the
734 HandleSDNode
Dummy(getRoot());
736 RemoveDeadNodes(DeadNodes
);
739 void SelectionDAG::DeleteNode(SDNode
*N
) {
740 // First take this out of the appropriate CSE map.
741 RemoveNodeFromCSEMaps(N
);
743 // Finally, remove uses due to operands of this node, remove from the
744 // AllNodes list, and delete the node.
745 DeleteNodeNotInCSEMaps(N
);
748 void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode
*N
) {
749 assert(N
->getIterator() != AllNodes
.begin() &&
750 "Cannot delete the entry node!");
751 assert(N
->use_empty() && "Cannot delete a node that is not dead!");
753 // Drop all of the operands and decrement used node's use counts.
759 void SDDbgInfo::erase(const SDNode
*Node
) {
760 DbgValMapType::iterator I
= DbgValMap
.find(Node
);
761 if (I
== DbgValMap
.end())
763 for (auto &Val
: I
->second
)
764 Val
->setIsInvalidated();
768 void SelectionDAG::DeallocateNode(SDNode
*N
) {
769 // If we have operands, deallocate them.
772 NodeAllocator
.Deallocate(AllNodes
.remove(N
));
774 // Set the opcode to DELETED_NODE to help catch bugs when node
775 // memory is reallocated.
776 // FIXME: There are places in SDag that have grown a dependency on the opcode
777 // value in the released node.
778 __asan_unpoison_memory_region(&N
->NodeType
, sizeof(N
->NodeType
));
779 N
->NodeType
= ISD::DELETED_NODE
;
781 // If any of the SDDbgValue nodes refer to this SDNode, invalidate
782 // them and forget about that node.
787 /// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid.
788 static void VerifySDNode(SDNode
*N
) {
789 switch (N
->getOpcode()) {
792 case ISD::BUILD_PAIR
: {
793 EVT VT
= N
->getValueType(0);
794 assert(N
->getNumValues() == 1 && "Too many results!");
795 assert(!VT
.isVector() && (VT
.isInteger() || VT
.isFloatingPoint()) &&
796 "Wrong return type!");
797 assert(N
->getNumOperands() == 2 && "Wrong number of operands!");
798 assert(N
->getOperand(0).getValueType() == N
->getOperand(1).getValueType() &&
799 "Mismatched operand types!");
800 assert(N
->getOperand(0).getValueType().isInteger() == VT
.isInteger() &&
801 "Wrong operand type!");
802 assert(VT
.getSizeInBits() == 2 * N
->getOperand(0).getValueSizeInBits() &&
803 "Wrong return type size");
806 case ISD::BUILD_VECTOR
: {
807 assert(N
->getNumValues() == 1 && "Too many results!");
808 assert(N
->getValueType(0).isVector() && "Wrong return type!");
809 assert(N
->getNumOperands() == N
->getValueType(0).getVectorNumElements() &&
810 "Wrong number of operands!");
811 EVT EltVT
= N
->getValueType(0).getVectorElementType();
812 for (SDNode::op_iterator I
= N
->op_begin(), E
= N
->op_end(); I
!= E
; ++I
) {
813 assert((I
->getValueType() == EltVT
||
814 (EltVT
.isInteger() && I
->getValueType().isInteger() &&
815 EltVT
.bitsLE(I
->getValueType()))) &&
816 "Wrong operand type!");
817 assert(I
->getValueType() == N
->getOperand(0).getValueType() &&
818 "Operands must all have the same type");
826 /// Insert a newly allocated node into the DAG.
828 /// Handles insertion into the all nodes list and CSE map, as well as
829 /// verification and other common operations when a new node is allocated.
830 void SelectionDAG::InsertNode(SDNode
*N
) {
831 AllNodes
.push_back(N
);
833 N
->PersistentId
= NextPersistentId
++;
838 /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
839 /// correspond to it. This is useful when we're about to delete or repurpose
840 /// the node. We don't want future request for structurally identical nodes
841 /// to return N anymore.
842 bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode
*N
) {
844 switch (N
->getOpcode()) {
845 case ISD::HANDLENODE
: return false; // noop.
847 assert(CondCodeNodes
[cast
<CondCodeSDNode
>(N
)->get()] &&
848 "Cond code doesn't exist!");
849 Erased
= CondCodeNodes
[cast
<CondCodeSDNode
>(N
)->get()] != nullptr;
850 CondCodeNodes
[cast
<CondCodeSDNode
>(N
)->get()] = nullptr;
852 case ISD::ExternalSymbol
:
853 Erased
= ExternalSymbols
.erase(cast
<ExternalSymbolSDNode
>(N
)->getSymbol());
855 case ISD::TargetExternalSymbol
: {
856 ExternalSymbolSDNode
*ESN
= cast
<ExternalSymbolSDNode
>(N
);
857 Erased
= TargetExternalSymbols
.erase(
858 std::pair
<std::string
,unsigned char>(ESN
->getSymbol(),
859 ESN
->getTargetFlags()));
862 case ISD::MCSymbol
: {
863 auto *MCSN
= cast
<MCSymbolSDNode
>(N
);
864 Erased
= MCSymbols
.erase(MCSN
->getMCSymbol());
867 case ISD::VALUETYPE
: {
868 EVT VT
= cast
<VTSDNode
>(N
)->getVT();
869 if (VT
.isExtended()) {
870 Erased
= ExtendedValueTypeNodes
.erase(VT
);
872 Erased
= ValueTypeNodes
[VT
.getSimpleVT().SimpleTy
] != nullptr;
873 ValueTypeNodes
[VT
.getSimpleVT().SimpleTy
] = nullptr;
878 // Remove it from the CSE Map.
879 assert(N
->getOpcode() != ISD::DELETED_NODE
&& "DELETED_NODE in CSEMap!");
880 assert(N
->getOpcode() != ISD::EntryToken
&& "EntryToken in CSEMap!");
881 Erased
= CSEMap
.RemoveNode(N
);
885 // Verify that the node was actually in one of the CSE maps, unless it has a
886 // flag result (which cannot be CSE'd) or is one of the special cases that are
887 // not subject to CSE.
888 if (!Erased
&& N
->getValueType(N
->getNumValues()-1) != MVT::Glue
&&
889 !N
->isMachineOpcode() && !doNotCSE(N
)) {
892 llvm_unreachable("Node is not in map!");
898 /// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
899 /// maps and modified in place. Add it back to the CSE maps, unless an identical
900 /// node already exists, in which case transfer all its users to the existing
901 /// node. This transfer can potentially trigger recursive merging.
903 SelectionDAG::AddModifiedNodeToCSEMaps(SDNode
*N
) {
904 // For node types that aren't CSE'd, just act as if no identical node
907 SDNode
*Existing
= CSEMap
.GetOrInsertNode(N
);
909 // If there was already an existing matching node, use ReplaceAllUsesWith
910 // to replace the dead one with the existing one. This can cause
911 // recursive merging of other unrelated nodes down the line.
912 ReplaceAllUsesWith(N
, Existing
);
914 // N is now dead. Inform the listeners and delete it.
915 for (DAGUpdateListener
*DUL
= UpdateListeners
; DUL
; DUL
= DUL
->Next
)
916 DUL
->NodeDeleted(N
, Existing
);
917 DeleteNodeNotInCSEMaps(N
);
922 // If the node doesn't already exist, we updated it. Inform listeners.
923 for (DAGUpdateListener
*DUL
= UpdateListeners
; DUL
; DUL
= DUL
->Next
)
927 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
928 /// were replaced with those specified. If this node is never memoized,
929 /// return null, otherwise return a pointer to the slot it would take. If a
930 /// node already exists with these operands, the slot will be non-null.
931 SDNode
*SelectionDAG::FindModifiedNodeSlot(SDNode
*N
, SDValue Op
,
936 SDValue Ops
[] = { Op
};
938 AddNodeIDNode(ID
, N
->getOpcode(), N
->getVTList(), Ops
);
939 AddNodeIDCustom(ID
, N
);
940 SDNode
*Node
= FindNodeOrInsertPos(ID
, SDLoc(N
), InsertPos
);
942 Node
->intersectFlagsWith(N
->getFlags());
946 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
947 /// were replaced with those specified. If this node is never memoized,
948 /// return null, otherwise return a pointer to the slot it would take. If a
949 /// node already exists with these operands, the slot will be non-null.
950 SDNode
*SelectionDAG::FindModifiedNodeSlot(SDNode
*N
,
951 SDValue Op1
, SDValue Op2
,
956 SDValue Ops
[] = { Op1
, Op2
};
958 AddNodeIDNode(ID
, N
->getOpcode(), N
->getVTList(), Ops
);
959 AddNodeIDCustom(ID
, N
);
960 SDNode
*Node
= FindNodeOrInsertPos(ID
, SDLoc(N
), InsertPos
);
962 Node
->intersectFlagsWith(N
->getFlags());
966 /// FindModifiedNodeSlot - Find a slot for the specified node if its operands
967 /// were replaced with those specified. If this node is never memoized,
968 /// return null, otherwise return a pointer to the slot it would take. If a
969 /// node already exists with these operands, the slot will be non-null.
970 SDNode
*SelectionDAG::FindModifiedNodeSlot(SDNode
*N
, ArrayRef
<SDValue
> Ops
,
976 AddNodeIDNode(ID
, N
->getOpcode(), N
->getVTList(), Ops
);
977 AddNodeIDCustom(ID
, N
);
978 SDNode
*Node
= FindNodeOrInsertPos(ID
, SDLoc(N
), InsertPos
);
980 Node
->intersectFlagsWith(N
->getFlags());
984 unsigned SelectionDAG::getEVTAlignment(EVT VT
) const {
985 Type
*Ty
= VT
== MVT::iPTR
?
986 PointerType::get(Type::getInt8Ty(*getContext()), 0) :
987 VT
.getTypeForEVT(*getContext());
989 return getDataLayout().getABITypeAlignment(Ty
);
992 // EntryNode could meaningfully have debug info if we can find it...
993 SelectionDAG::SelectionDAG(const TargetMachine
&tm
, CodeGenOpt::Level OL
)
994 : TM(tm
), OptLevel(OL
),
995 EntryNode(ISD::EntryToken
, 0, DebugLoc(), getVTList(MVT::Other
)),
996 Root(getEntryNode()) {
997 InsertNode(&EntryNode
);
998 DbgInfo
= new SDDbgInfo();
1001 void SelectionDAG::init(MachineFunction
&NewMF
,
1002 OptimizationRemarkEmitter
&NewORE
,
1003 Pass
*PassPtr
, const TargetLibraryInfo
*LibraryInfo
,
1004 LegacyDivergenceAnalysis
* Divergence
) {
1006 SDAGISelPass
= PassPtr
;
1008 TLI
= getSubtarget().getTargetLowering();
1009 TSI
= getSubtarget().getSelectionDAGInfo();
1010 LibInfo
= LibraryInfo
;
1011 Context
= &MF
->getFunction().getContext();
1015 SelectionDAG::~SelectionDAG() {
1016 assert(!UpdateListeners
&& "Dangling registered DAGUpdateListeners");
1018 OperandRecycler
.clear(OperandAllocator
);
1022 void SelectionDAG::allnodes_clear() {
1023 assert(&*AllNodes
.begin() == &EntryNode
);
1024 AllNodes
.remove(AllNodes
.begin());
1025 while (!AllNodes
.empty())
1026 DeallocateNode(&AllNodes
.front());
1028 NextPersistentId
= 0;
1032 SDNode
*SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID
&ID
,
1034 SDNode
*N
= CSEMap
.FindNodeOrInsertPos(ID
, InsertPos
);
1036 switch (N
->getOpcode()) {
1039 case ISD::ConstantFP
:
1040 llvm_unreachable("Querying for Constant and ConstantFP nodes requires "
1041 "debug location. Use another overload.");
1047 SDNode
*SelectionDAG::FindNodeOrInsertPos(const FoldingSetNodeID
&ID
,
1048 const SDLoc
&DL
, void *&InsertPos
) {
1049 SDNode
*N
= CSEMap
.FindNodeOrInsertPos(ID
, InsertPos
);
1051 switch (N
->getOpcode()) {
1053 case ISD::ConstantFP
:
1054 // Erase debug location from the node if the node is used at several
1055 // different places. Do not propagate one location to all uses as it
1056 // will cause a worse single stepping debugging experience.
1057 if (N
->getDebugLoc() != DL
.getDebugLoc())
1058 N
->setDebugLoc(DebugLoc());
1061 // When the node's point of use is located earlier in the instruction
1062 // sequence than its prior point of use, update its debug info to the
1063 // earlier location.
1064 if (DL
.getIROrder() && DL
.getIROrder() < N
->getIROrder())
1065 N
->setDebugLoc(DL
.getDebugLoc());
1072 void SelectionDAG::clear() {
1074 OperandRecycler
.clear(OperandAllocator
);
1075 OperandAllocator
.Reset();
1078 ExtendedValueTypeNodes
.clear();
1079 ExternalSymbols
.clear();
1080 TargetExternalSymbols
.clear();
1082 std::fill(CondCodeNodes
.begin(), CondCodeNodes
.end(),
1083 static_cast<CondCodeSDNode
*>(nullptr));
1084 std::fill(ValueTypeNodes
.begin(), ValueTypeNodes
.end(),
1085 static_cast<SDNode
*>(nullptr));
1087 EntryNode
.UseList
= nullptr;
1088 InsertNode(&EntryNode
);
1089 Root
= getEntryNode();
1093 SDValue
SelectionDAG::getFPExtendOrRound(SDValue Op
, const SDLoc
&DL
, EVT VT
) {
1094 return VT
.bitsGT(Op
.getValueType())
1095 ? getNode(ISD::FP_EXTEND
, DL
, VT
, Op
)
1096 : getNode(ISD::FP_ROUND
, DL
, VT
, Op
, getIntPtrConstant(0, DL
));
1099 SDValue
SelectionDAG::getAnyExtOrTrunc(SDValue Op
, const SDLoc
&DL
, EVT VT
) {
1100 return VT
.bitsGT(Op
.getValueType()) ?
1101 getNode(ISD::ANY_EXTEND
, DL
, VT
, Op
) :
1102 getNode(ISD::TRUNCATE
, DL
, VT
, Op
);
1105 SDValue
SelectionDAG::getSExtOrTrunc(SDValue Op
, const SDLoc
&DL
, EVT VT
) {
1106 return VT
.bitsGT(Op
.getValueType()) ?
1107 getNode(ISD::SIGN_EXTEND
, DL
, VT
, Op
) :
1108 getNode(ISD::TRUNCATE
, DL
, VT
, Op
);
1111 SDValue
SelectionDAG::getZExtOrTrunc(SDValue Op
, const SDLoc
&DL
, EVT VT
) {
1112 return VT
.bitsGT(Op
.getValueType()) ?
1113 getNode(ISD::ZERO_EXTEND
, DL
, VT
, Op
) :
1114 getNode(ISD::TRUNCATE
, DL
, VT
, Op
);
1117 SDValue
SelectionDAG::getBoolExtOrTrunc(SDValue Op
, const SDLoc
&SL
, EVT VT
,
1119 if (VT
.bitsLE(Op
.getValueType()))
1120 return getNode(ISD::TRUNCATE
, SL
, VT
, Op
);
1122 TargetLowering::BooleanContent BType
= TLI
->getBooleanContents(OpVT
);
1123 return getNode(TLI
->getExtendForContent(BType
), SL
, VT
, Op
);
1126 SDValue
SelectionDAG::getZeroExtendInReg(SDValue Op
, const SDLoc
&DL
, EVT VT
) {
1127 assert(!VT
.isVector() &&
1128 "getZeroExtendInReg should use the vector element type instead of "
1129 "the vector type!");
1130 if (Op
.getValueType().getScalarType() == VT
) return Op
;
1131 unsigned BitWidth
= Op
.getScalarValueSizeInBits();
1132 APInt Imm
= APInt::getLowBitsSet(BitWidth
,
1133 VT
.getSizeInBits());
1134 return getNode(ISD::AND
, DL
, Op
.getValueType(), Op
,
1135 getConstant(Imm
, DL
, Op
.getValueType()));
1138 /// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
1139 SDValue
SelectionDAG::getNOT(const SDLoc
&DL
, SDValue Val
, EVT VT
) {
1140 EVT EltVT
= VT
.getScalarType();
1142 getConstant(APInt::getAllOnesValue(EltVT
.getSizeInBits()), DL
, VT
);
1143 return getNode(ISD::XOR
, DL
, VT
, Val
, NegOne
);
1146 SDValue
SelectionDAG::getLogicalNOT(const SDLoc
&DL
, SDValue Val
, EVT VT
) {
1147 SDValue TrueValue
= getBoolConstant(true, DL
, VT
, VT
);
1148 return getNode(ISD::XOR
, DL
, VT
, Val
, TrueValue
);
1151 SDValue
SelectionDAG::getBoolConstant(bool V
, const SDLoc
&DL
, EVT VT
,
1154 return getConstant(0, DL
, VT
);
1156 switch (TLI
->getBooleanContents(OpVT
)) {
1157 case TargetLowering::ZeroOrOneBooleanContent
:
1158 case TargetLowering::UndefinedBooleanContent
:
1159 return getConstant(1, DL
, VT
);
1160 case TargetLowering::ZeroOrNegativeOneBooleanContent
:
1161 return getAllOnesConstant(DL
, VT
);
1163 llvm_unreachable("Unexpected boolean content enum!");
1166 SDValue
SelectionDAG::getConstant(uint64_t Val
, const SDLoc
&DL
, EVT VT
,
1167 bool isT
, bool isO
) {
1168 EVT EltVT
= VT
.getScalarType();
1169 assert((EltVT
.getSizeInBits() >= 64 ||
1170 (uint64_t)((int64_t)Val
>> EltVT
.getSizeInBits()) + 1 < 2) &&
1171 "getConstant with a uint64_t value that doesn't fit in the type!");
1172 return getConstant(APInt(EltVT
.getSizeInBits(), Val
), DL
, VT
, isT
, isO
);
1175 SDValue
SelectionDAG::getConstant(const APInt
&Val
, const SDLoc
&DL
, EVT VT
,
1176 bool isT
, bool isO
) {
1177 return getConstant(*ConstantInt::get(*Context
, Val
), DL
, VT
, isT
, isO
);
1180 SDValue
SelectionDAG::getConstant(const ConstantInt
&Val
, const SDLoc
&DL
,
1181 EVT VT
, bool isT
, bool isO
) {
1182 assert(VT
.isInteger() && "Cannot create FP integer constant!");
1184 EVT EltVT
= VT
.getScalarType();
1185 const ConstantInt
*Elt
= &Val
;
1187 // In some cases the vector type is legal but the element type is illegal and
1188 // needs to be promoted, for example v8i8 on ARM. In this case, promote the
1189 // inserted value (the type does not need to match the vector element type).
1190 // Any extra bits introduced will be truncated away.
1191 if (VT
.isVector() && TLI
->getTypeAction(*getContext(), EltVT
) ==
1192 TargetLowering::TypePromoteInteger
) {
1193 EltVT
= TLI
->getTypeToTransformTo(*getContext(), EltVT
);
1194 APInt NewVal
= Elt
->getValue().zextOrTrunc(EltVT
.getSizeInBits());
1195 Elt
= ConstantInt::get(*getContext(), NewVal
);
1197 // In other cases the element type is illegal and needs to be expanded, for
1198 // example v2i64 on MIPS32. In this case, find the nearest legal type, split
1199 // the value into n parts and use a vector type with n-times the elements.
1200 // Then bitcast to the type requested.
1201 // Legalizing constants too early makes the DAGCombiner's job harder so we
1202 // only legalize if the DAG tells us we must produce legal types.
1203 else if (NewNodesMustHaveLegalTypes
&& VT
.isVector() &&
1204 TLI
->getTypeAction(*getContext(), EltVT
) ==
1205 TargetLowering::TypeExpandInteger
) {
1206 const APInt
&NewVal
= Elt
->getValue();
1207 EVT ViaEltVT
= TLI
->getTypeToTransformTo(*getContext(), EltVT
);
1208 unsigned ViaEltSizeInBits
= ViaEltVT
.getSizeInBits();
1209 unsigned ViaVecNumElts
= VT
.getSizeInBits() / ViaEltSizeInBits
;
1210 EVT ViaVecVT
= EVT::getVectorVT(*getContext(), ViaEltVT
, ViaVecNumElts
);
1212 // Check the temporary vector is the correct size. If this fails then
1213 // getTypeToTransformTo() probably returned a type whose size (in bits)
1214 // isn't a power-of-2 factor of the requested type size.
1215 assert(ViaVecVT
.getSizeInBits() == VT
.getSizeInBits());
1217 SmallVector
<SDValue
, 2> EltParts
;
1218 for (unsigned i
= 0; i
< ViaVecNumElts
/ VT
.getVectorNumElements(); ++i
) {
1219 EltParts
.push_back(getConstant(NewVal
.lshr(i
* ViaEltSizeInBits
)
1220 .zextOrTrunc(ViaEltSizeInBits
), DL
,
1221 ViaEltVT
, isT
, isO
));
1224 // EltParts is currently in little endian order. If we actually want
1225 // big-endian order then reverse it now.
1226 if (getDataLayout().isBigEndian())
1227 std::reverse(EltParts
.begin(), EltParts
.end());
1229 // The elements must be reversed when the element order is different
1230 // to the endianness of the elements (because the BITCAST is itself a
1231 // vector shuffle in this situation). However, we do not need any code to
1232 // perform this reversal because getConstant() is producing a vector
1234 // This situation occurs in MIPS MSA.
1236 SmallVector
<SDValue
, 8> Ops
;
1237 for (unsigned i
= 0, e
= VT
.getVectorNumElements(); i
!= e
; ++i
)
1238 Ops
.insert(Ops
.end(), EltParts
.begin(), EltParts
.end());
1240 SDValue V
= getNode(ISD::BITCAST
, DL
, VT
, getBuildVector(ViaVecVT
, DL
, Ops
));
1244 assert(Elt
->getBitWidth() == EltVT
.getSizeInBits() &&
1245 "APInt size does not match type size!");
1246 unsigned Opc
= isT
? ISD::TargetConstant
: ISD::Constant
;
1247 FoldingSetNodeID ID
;
1248 AddNodeIDNode(ID
, Opc
, getVTList(EltVT
), None
);
1252 SDNode
*N
= nullptr;
1253 if ((N
= FindNodeOrInsertPos(ID
, DL
, IP
)))
1255 return SDValue(N
, 0);
1258 N
= newSDNode
<ConstantSDNode
>(isT
, isO
, Elt
, EltVT
);
1259 CSEMap
.InsertNode(N
, IP
);
1261 NewSDValueDbgMsg(SDValue(N
, 0), "Creating constant: ", this);
1264 SDValue
Result(N
, 0);
1266 Result
= getSplatBuildVector(VT
, DL
, Result
);
1271 SDValue
SelectionDAG::getIntPtrConstant(uint64_t Val
, const SDLoc
&DL
,
1273 return getConstant(Val
, DL
, TLI
->getPointerTy(getDataLayout()), isTarget
);
1276 SDValue
SelectionDAG::getConstantFP(const APFloat
&V
, const SDLoc
&DL
, EVT VT
,
1278 return getConstantFP(*ConstantFP::get(*getContext(), V
), DL
, VT
, isTarget
);
1281 SDValue
SelectionDAG::getConstantFP(const ConstantFP
&V
, const SDLoc
&DL
,
1282 EVT VT
, bool isTarget
) {
1283 assert(VT
.isFloatingPoint() && "Cannot create integer FP constant!");
1285 EVT EltVT
= VT
.getScalarType();
1287 // Do the map lookup using the actual bit pattern for the floating point
1288 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1289 // we don't have issues with SNANs.
1290 unsigned Opc
= isTarget
? ISD::TargetConstantFP
: ISD::ConstantFP
;
1291 FoldingSetNodeID ID
;
1292 AddNodeIDNode(ID
, Opc
, getVTList(EltVT
), None
);
1295 SDNode
*N
= nullptr;
1296 if ((N
= FindNodeOrInsertPos(ID
, DL
, IP
)))
1298 return SDValue(N
, 0);
1301 N
= newSDNode
<ConstantFPSDNode
>(isTarget
, &V
, EltVT
);
1302 CSEMap
.InsertNode(N
, IP
);
1306 SDValue
Result(N
, 0);
1308 Result
= getSplatBuildVector(VT
, DL
, Result
);
1309 NewSDValueDbgMsg(Result
, "Creating fp constant: ", this);
1313 SDValue
SelectionDAG::getConstantFP(double Val
, const SDLoc
&DL
, EVT VT
,
1315 EVT EltVT
= VT
.getScalarType();
1316 if (EltVT
== MVT::f32
)
1317 return getConstantFP(APFloat((float)Val
), DL
, VT
, isTarget
);
1318 else if (EltVT
== MVT::f64
)
1319 return getConstantFP(APFloat(Val
), DL
, VT
, isTarget
);
1320 else if (EltVT
== MVT::f80
|| EltVT
== MVT::f128
|| EltVT
== MVT::ppcf128
||
1321 EltVT
== MVT::f16
) {
1323 APFloat APF
= APFloat(Val
);
1324 APF
.convert(EVTToAPFloatSemantics(EltVT
), APFloat::rmNearestTiesToEven
,
1326 return getConstantFP(APF
, DL
, VT
, isTarget
);
1328 llvm_unreachable("Unsupported type in getConstantFP");
1331 SDValue
SelectionDAG::getGlobalAddress(const GlobalValue
*GV
, const SDLoc
&DL
,
1332 EVT VT
, int64_t Offset
, bool isTargetGA
,
1333 unsigned char TargetFlags
) {
1334 assert((TargetFlags
== 0 || isTargetGA
) &&
1335 "Cannot set target flags on target-independent globals");
1337 // Truncate (with sign-extension) the offset value to the pointer size.
1338 unsigned BitWidth
= getDataLayout().getPointerTypeSizeInBits(GV
->getType());
1340 Offset
= SignExtend64(Offset
, BitWidth
);
1343 if (GV
->isThreadLocal())
1344 Opc
= isTargetGA
? ISD::TargetGlobalTLSAddress
: ISD::GlobalTLSAddress
;
1346 Opc
= isTargetGA
? ISD::TargetGlobalAddress
: ISD::GlobalAddress
;
1348 FoldingSetNodeID ID
;
1349 AddNodeIDNode(ID
, Opc
, getVTList(VT
), None
);
1351 ID
.AddInteger(Offset
);
1352 ID
.AddInteger(TargetFlags
);
1354 if (SDNode
*E
= FindNodeOrInsertPos(ID
, DL
, IP
))
1355 return SDValue(E
, 0);
1357 auto *N
= newSDNode
<GlobalAddressSDNode
>(
1358 Opc
, DL
.getIROrder(), DL
.getDebugLoc(), GV
, VT
, Offset
, TargetFlags
);
1359 CSEMap
.InsertNode(N
, IP
);
1361 return SDValue(N
, 0);
1364 SDValue
SelectionDAG::getFrameIndex(int FI
, EVT VT
, bool isTarget
) {
1365 unsigned Opc
= isTarget
? ISD::TargetFrameIndex
: ISD::FrameIndex
;
1366 FoldingSetNodeID ID
;
1367 AddNodeIDNode(ID
, Opc
, getVTList(VT
), None
);
1370 if (SDNode
*E
= FindNodeOrInsertPos(ID
, IP
))
1371 return SDValue(E
, 0);
1373 auto *N
= newSDNode
<FrameIndexSDNode
>(FI
, VT
, isTarget
);
1374 CSEMap
.InsertNode(N
, IP
);
1376 return SDValue(N
, 0);
1379 SDValue
SelectionDAG::getJumpTable(int JTI
, EVT VT
, bool isTarget
,
1380 unsigned char TargetFlags
) {
1381 assert((TargetFlags
== 0 || isTarget
) &&
1382 "Cannot set target flags on target-independent jump tables");
1383 unsigned Opc
= isTarget
? ISD::TargetJumpTable
: ISD::JumpTable
;
1384 FoldingSetNodeID ID
;
1385 AddNodeIDNode(ID
, Opc
, getVTList(VT
), None
);
1387 ID
.AddInteger(TargetFlags
);
1389 if (SDNode
*E
= FindNodeOrInsertPos(ID
, IP
))
1390 return SDValue(E
, 0);
1392 auto *N
= newSDNode
<JumpTableSDNode
>(JTI
, VT
, isTarget
, TargetFlags
);
1393 CSEMap
.InsertNode(N
, IP
);
1395 return SDValue(N
, 0);
1398 SDValue
SelectionDAG::getConstantPool(const Constant
*C
, EVT VT
,
1399 unsigned Alignment
, int Offset
,
1401 unsigned char TargetFlags
) {
1402 assert((TargetFlags
== 0 || isTarget
) &&
1403 "Cannot set target flags on target-independent globals");
1405 Alignment
= MF
->getFunction().optForSize()
1406 ? getDataLayout().getABITypeAlignment(C
->getType())
1407 : getDataLayout().getPrefTypeAlignment(C
->getType());
1408 unsigned Opc
= isTarget
? ISD::TargetConstantPool
: ISD::ConstantPool
;
1409 FoldingSetNodeID ID
;
1410 AddNodeIDNode(ID
, Opc
, getVTList(VT
), None
);
1411 ID
.AddInteger(Alignment
);
1412 ID
.AddInteger(Offset
);
1414 ID
.AddInteger(TargetFlags
);
1416 if (SDNode
*E
= FindNodeOrInsertPos(ID
, IP
))
1417 return SDValue(E
, 0);
1419 auto *N
= newSDNode
<ConstantPoolSDNode
>(isTarget
, C
, VT
, Offset
, Alignment
,
1421 CSEMap
.InsertNode(N
, IP
);
1423 return SDValue(N
, 0);
1426 SDValue
SelectionDAG::getConstantPool(MachineConstantPoolValue
*C
, EVT VT
,
1427 unsigned Alignment
, int Offset
,
1429 unsigned char TargetFlags
) {
1430 assert((TargetFlags
== 0 || isTarget
) &&
1431 "Cannot set target flags on target-independent globals");
1433 Alignment
= getDataLayout().getPrefTypeAlignment(C
->getType());
1434 unsigned Opc
= isTarget
? ISD::TargetConstantPool
: ISD::ConstantPool
;
1435 FoldingSetNodeID ID
;
1436 AddNodeIDNode(ID
, Opc
, getVTList(VT
), None
);
1437 ID
.AddInteger(Alignment
);
1438 ID
.AddInteger(Offset
);
1439 C
->addSelectionDAGCSEId(ID
);
1440 ID
.AddInteger(TargetFlags
);
1442 if (SDNode
*E
= FindNodeOrInsertPos(ID
, IP
))
1443 return SDValue(E
, 0);
1445 auto *N
= newSDNode
<ConstantPoolSDNode
>(isTarget
, C
, VT
, Offset
, Alignment
,
1447 CSEMap
.InsertNode(N
, IP
);
1449 return SDValue(N
, 0);
1452 SDValue
SelectionDAG::getTargetIndex(int Index
, EVT VT
, int64_t Offset
,
1453 unsigned char TargetFlags
) {
1454 FoldingSetNodeID ID
;
1455 AddNodeIDNode(ID
, ISD::TargetIndex
, getVTList(VT
), None
);
1456 ID
.AddInteger(Index
);
1457 ID
.AddInteger(Offset
);
1458 ID
.AddInteger(TargetFlags
);
1460 if (SDNode
*E
= FindNodeOrInsertPos(ID
, IP
))
1461 return SDValue(E
, 0);
1463 auto *N
= newSDNode
<TargetIndexSDNode
>(Index
, VT
, Offset
, TargetFlags
);
1464 CSEMap
.InsertNode(N
, IP
);
1466 return SDValue(N
, 0);
1469 SDValue
SelectionDAG::getBasicBlock(MachineBasicBlock
*MBB
) {
1470 FoldingSetNodeID ID
;
1471 AddNodeIDNode(ID
, ISD::BasicBlock
, getVTList(MVT::Other
), None
);
1474 if (SDNode
*E
= FindNodeOrInsertPos(ID
, IP
))
1475 return SDValue(E
, 0);
1477 auto *N
= newSDNode
<BasicBlockSDNode
>(MBB
);
1478 CSEMap
.InsertNode(N
, IP
);
1480 return SDValue(N
, 0);
1483 SDValue
SelectionDAG::getValueType(EVT VT
) {
1484 if (VT
.isSimple() && (unsigned)VT
.getSimpleVT().SimpleTy
>=
1485 ValueTypeNodes
.size())
1486 ValueTypeNodes
.resize(VT
.getSimpleVT().SimpleTy
+1);
1488 SDNode
*&N
= VT
.isExtended() ?
1489 ExtendedValueTypeNodes
[VT
] : ValueTypeNodes
[VT
.getSimpleVT().SimpleTy
];
1491 if (N
) return SDValue(N
, 0);
1492 N
= newSDNode
<VTSDNode
>(VT
);
1494 return SDValue(N
, 0);
1497 SDValue
SelectionDAG::getExternalSymbol(const char *Sym
, EVT VT
) {
1498 SDNode
*&N
= ExternalSymbols
[Sym
];
1499 if (N
) return SDValue(N
, 0);
1500 N
= newSDNode
<ExternalSymbolSDNode
>(false, Sym
, 0, VT
);
1502 return SDValue(N
, 0);
1505 SDValue
SelectionDAG::getMCSymbol(MCSymbol
*Sym
, EVT VT
) {
1506 SDNode
*&N
= MCSymbols
[Sym
];
1508 return SDValue(N
, 0);
1509 N
= newSDNode
<MCSymbolSDNode
>(Sym
, VT
);
1511 return SDValue(N
, 0);
1514 SDValue
SelectionDAG::getTargetExternalSymbol(const char *Sym
, EVT VT
,
1515 unsigned char TargetFlags
) {
1517 TargetExternalSymbols
[std::pair
<std::string
,unsigned char>(Sym
,
1519 if (N
) return SDValue(N
, 0);
1520 N
= newSDNode
<ExternalSymbolSDNode
>(true, Sym
, TargetFlags
, VT
);
1522 return SDValue(N
, 0);
1525 SDValue
SelectionDAG::getCondCode(ISD::CondCode Cond
) {
1526 if ((unsigned)Cond
>= CondCodeNodes
.size())
1527 CondCodeNodes
.resize(Cond
+1);
1529 if (!CondCodeNodes
[Cond
]) {
1530 auto *N
= newSDNode
<CondCodeSDNode
>(Cond
);
1531 CondCodeNodes
[Cond
] = N
;
1535 return SDValue(CondCodeNodes
[Cond
], 0);
1538 /// Swaps the values of N1 and N2. Swaps all indices in the shuffle mask M that
1539 /// point at N1 to point at N2 and indices that point at N2 to point at N1.
1540 static void commuteShuffle(SDValue
&N1
, SDValue
&N2
, MutableArrayRef
<int> M
) {
1542 ShuffleVectorSDNode::commuteMask(M
);
1545 SDValue
SelectionDAG::getVectorShuffle(EVT VT
, const SDLoc
&dl
, SDValue N1
,
1546 SDValue N2
, ArrayRef
<int> Mask
) {
1547 assert(VT
.getVectorNumElements() == Mask
.size() &&
1548 "Must have the same number of vector elements as mask elements!");
1549 assert(VT
== N1
.getValueType() && VT
== N2
.getValueType() &&
1550 "Invalid VECTOR_SHUFFLE");
1552 // Canonicalize shuffle undef, undef -> undef
1553 if (N1
.isUndef() && N2
.isUndef())
1554 return getUNDEF(VT
);
1556 // Validate that all indices in Mask are within the range of the elements
1557 // input to the shuffle.
1558 int NElts
= Mask
.size();
1559 assert(llvm::all_of(Mask
,
1560 [&](int M
) { return M
< (NElts
* 2) && M
>= -1; }) &&
1561 "Index out of range");
1563 // Copy the mask so we can do any needed cleanup.
1564 SmallVector
<int, 8> MaskVec(Mask
.begin(), Mask
.end());
1566 // Canonicalize shuffle v, v -> v, undef
1569 for (int i
= 0; i
!= NElts
; ++i
)
1570 if (MaskVec
[i
] >= NElts
) MaskVec
[i
] -= NElts
;
1573 // Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
1575 commuteShuffle(N1
, N2
, MaskVec
);
1577 if (TLI
->hasVectorBlend()) {
1578 // If shuffling a splat, try to blend the splat instead. We do this here so
1579 // that even when this arises during lowering we don't have to re-handle it.
1580 auto BlendSplat
= [&](BuildVectorSDNode
*BV
, int Offset
) {
1581 BitVector UndefElements
;
1582 SDValue Splat
= BV
->getSplatValue(&UndefElements
);
1586 for (int i
= 0; i
< NElts
; ++i
) {
1587 if (MaskVec
[i
] < Offset
|| MaskVec
[i
] >= (Offset
+ NElts
))
1590 // If this input comes from undef, mark it as such.
1591 if (UndefElements
[MaskVec
[i
] - Offset
]) {
1596 // If we can blend a non-undef lane, use that instead.
1597 if (!UndefElements
[i
])
1598 MaskVec
[i
] = i
+ Offset
;
1601 if (auto *N1BV
= dyn_cast
<BuildVectorSDNode
>(N1
))
1602 BlendSplat(N1BV
, 0);
1603 if (auto *N2BV
= dyn_cast
<BuildVectorSDNode
>(N2
))
1604 BlendSplat(N2BV
, NElts
);
1607 // Canonicalize all index into lhs, -> shuffle lhs, undef
1608 // Canonicalize all index into rhs, -> shuffle rhs, undef
1609 bool AllLHS
= true, AllRHS
= true;
1610 bool N2Undef
= N2
.isUndef();
1611 for (int i
= 0; i
!= NElts
; ++i
) {
1612 if (MaskVec
[i
] >= NElts
) {
1617 } else if (MaskVec
[i
] >= 0) {
1621 if (AllLHS
&& AllRHS
)
1622 return getUNDEF(VT
);
1623 if (AllLHS
&& !N2Undef
)
1627 commuteShuffle(N1
, N2
, MaskVec
);
1629 // Reset our undef status after accounting for the mask.
1630 N2Undef
= N2
.isUndef();
1631 // Re-check whether both sides ended up undef.
1632 if (N1
.isUndef() && N2Undef
)
1633 return getUNDEF(VT
);
1635 // If Identity shuffle return that node.
1636 bool Identity
= true, AllSame
= true;
1637 for (int i
= 0; i
!= NElts
; ++i
) {
1638 if (MaskVec
[i
] >= 0 && MaskVec
[i
] != i
) Identity
= false;
1639 if (MaskVec
[i
] != MaskVec
[0]) AllSame
= false;
1641 if (Identity
&& NElts
)
1644 // Shuffling a constant splat doesn't change the result.
1648 // Look through any bitcasts. We check that these don't change the number
1649 // (and size) of elements and just changes their types.
1650 while (V
.getOpcode() == ISD::BITCAST
)
1651 V
= V
->getOperand(0);
1653 // A splat should always show up as a build vector node.
1654 if (auto *BV
= dyn_cast
<BuildVectorSDNode
>(V
)) {
1655 BitVector UndefElements
;
1656 SDValue Splat
= BV
->getSplatValue(&UndefElements
);
1657 // If this is a splat of an undef, shuffling it is also undef.
1658 if (Splat
&& Splat
.isUndef())
1659 return getUNDEF(VT
);
1662 V
.getValueType().getVectorNumElements() == VT
.getVectorNumElements();
1664 // We only have a splat which can skip shuffles if there is a splatted
1665 // value and no undef lanes rearranged by the shuffle.
1666 if (Splat
&& UndefElements
.none()) {
1667 // Splat of <x, x, ..., x>, return <x, x, ..., x>, provided that the
1668 // number of elements match or the value splatted is a zero constant.
1671 if (auto *C
= dyn_cast
<ConstantSDNode
>(Splat
))
1672 if (C
->isNullValue())
1676 // If the shuffle itself creates a splat, build the vector directly.
1677 if (AllSame
&& SameNumElts
) {
1678 EVT BuildVT
= BV
->getValueType(0);
1679 const SDValue
&Splatted
= BV
->getOperand(MaskVec
[0]);
1680 SDValue NewBV
= getSplatBuildVector(BuildVT
, dl
, Splatted
);
1682 // We may have jumped through bitcasts, so the type of the
1683 // BUILD_VECTOR may not match the type of the shuffle.
1685 NewBV
= getNode(ISD::BITCAST
, dl
, VT
, NewBV
);
1691 FoldingSetNodeID ID
;
1692 SDValue Ops
[2] = { N1
, N2
};
1693 AddNodeIDNode(ID
, ISD::VECTOR_SHUFFLE
, getVTList(VT
), Ops
);
1694 for (int i
= 0; i
!= NElts
; ++i
)
1695 ID
.AddInteger(MaskVec
[i
]);
1698 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
))
1699 return SDValue(E
, 0);
1701 // Allocate the mask array for the node out of the BumpPtrAllocator, since
1702 // SDNode doesn't have access to it. This memory will be "leaked" when
1703 // the node is deallocated, but recovered when the NodeAllocator is released.
1704 int *MaskAlloc
= OperandAllocator
.Allocate
<int>(NElts
);
1705 llvm::copy(MaskVec
, MaskAlloc
);
1707 auto *N
= newSDNode
<ShuffleVectorSDNode
>(VT
, dl
.getIROrder(),
1708 dl
.getDebugLoc(), MaskAlloc
);
1709 createOperands(N
, Ops
);
1711 CSEMap
.InsertNode(N
, IP
);
1713 SDValue V
= SDValue(N
, 0);
1714 NewSDValueDbgMsg(V
, "Creating new node: ", this);
1718 SDValue
SelectionDAG::getCommutedVectorShuffle(const ShuffleVectorSDNode
&SV
) {
1719 EVT VT
= SV
.getValueType(0);
1720 SmallVector
<int, 8> MaskVec(SV
.getMask().begin(), SV
.getMask().end());
1721 ShuffleVectorSDNode::commuteMask(MaskVec
);
1723 SDValue Op0
= SV
.getOperand(0);
1724 SDValue Op1
= SV
.getOperand(1);
1725 return getVectorShuffle(VT
, SDLoc(&SV
), Op1
, Op0
, MaskVec
);
1728 SDValue
SelectionDAG::getRegister(unsigned RegNo
, EVT VT
) {
1729 FoldingSetNodeID ID
;
1730 AddNodeIDNode(ID
, ISD::Register
, getVTList(VT
), None
);
1731 ID
.AddInteger(RegNo
);
1733 if (SDNode
*E
= FindNodeOrInsertPos(ID
, IP
))
1734 return SDValue(E
, 0);
1736 auto *N
= newSDNode
<RegisterSDNode
>(RegNo
, VT
);
1737 N
->SDNodeBits
.IsDivergent
= TLI
->isSDNodeSourceOfDivergence(N
, FLI
, DA
);
1738 CSEMap
.InsertNode(N
, IP
);
1740 return SDValue(N
, 0);
1743 SDValue
SelectionDAG::getRegisterMask(const uint32_t *RegMask
) {
1744 FoldingSetNodeID ID
;
1745 AddNodeIDNode(ID
, ISD::RegisterMask
, getVTList(MVT::Untyped
), None
);
1746 ID
.AddPointer(RegMask
);
1748 if (SDNode
*E
= FindNodeOrInsertPos(ID
, IP
))
1749 return SDValue(E
, 0);
1751 auto *N
= newSDNode
<RegisterMaskSDNode
>(RegMask
);
1752 CSEMap
.InsertNode(N
, IP
);
1754 return SDValue(N
, 0);
1757 SDValue
SelectionDAG::getEHLabel(const SDLoc
&dl
, SDValue Root
,
1759 return getLabelNode(ISD::EH_LABEL
, dl
, Root
, Label
);
1762 SDValue
SelectionDAG::getLabelNode(unsigned Opcode
, const SDLoc
&dl
,
1763 SDValue Root
, MCSymbol
*Label
) {
1764 FoldingSetNodeID ID
;
1765 SDValue Ops
[] = { Root
};
1766 AddNodeIDNode(ID
, Opcode
, getVTList(MVT::Other
), Ops
);
1767 ID
.AddPointer(Label
);
1769 if (SDNode
*E
= FindNodeOrInsertPos(ID
, IP
))
1770 return SDValue(E
, 0);
1772 auto *N
= newSDNode
<LabelSDNode
>(dl
.getIROrder(), dl
.getDebugLoc(), Label
);
1773 createOperands(N
, Ops
);
1775 CSEMap
.InsertNode(N
, IP
);
1777 return SDValue(N
, 0);
1780 SDValue
SelectionDAG::getBlockAddress(const BlockAddress
*BA
, EVT VT
,
1783 unsigned char TargetFlags
) {
1784 unsigned Opc
= isTarget
? ISD::TargetBlockAddress
: ISD::BlockAddress
;
1786 FoldingSetNodeID ID
;
1787 AddNodeIDNode(ID
, Opc
, getVTList(VT
), None
);
1789 ID
.AddInteger(Offset
);
1790 ID
.AddInteger(TargetFlags
);
1792 if (SDNode
*E
= FindNodeOrInsertPos(ID
, IP
))
1793 return SDValue(E
, 0);
1795 auto *N
= newSDNode
<BlockAddressSDNode
>(Opc
, VT
, BA
, Offset
, TargetFlags
);
1796 CSEMap
.InsertNode(N
, IP
);
1798 return SDValue(N
, 0);
1801 SDValue
SelectionDAG::getSrcValue(const Value
*V
) {
1802 assert((!V
|| V
->getType()->isPointerTy()) &&
1803 "SrcValue is not a pointer?");
1805 FoldingSetNodeID ID
;
1806 AddNodeIDNode(ID
, ISD::SRCVALUE
, getVTList(MVT::Other
), None
);
1810 if (SDNode
*E
= FindNodeOrInsertPos(ID
, IP
))
1811 return SDValue(E
, 0);
1813 auto *N
= newSDNode
<SrcValueSDNode
>(V
);
1814 CSEMap
.InsertNode(N
, IP
);
1816 return SDValue(N
, 0);
1819 SDValue
SelectionDAG::getMDNode(const MDNode
*MD
) {
1820 FoldingSetNodeID ID
;
1821 AddNodeIDNode(ID
, ISD::MDNODE_SDNODE
, getVTList(MVT::Other
), None
);
1825 if (SDNode
*E
= FindNodeOrInsertPos(ID
, IP
))
1826 return SDValue(E
, 0);
1828 auto *N
= newSDNode
<MDNodeSDNode
>(MD
);
1829 CSEMap
.InsertNode(N
, IP
);
1831 return SDValue(N
, 0);
1834 SDValue
SelectionDAG::getBitcast(EVT VT
, SDValue V
) {
1835 if (VT
== V
.getValueType())
1838 return getNode(ISD::BITCAST
, SDLoc(V
), VT
, V
);
1841 SDValue
SelectionDAG::getAddrSpaceCast(const SDLoc
&dl
, EVT VT
, SDValue Ptr
,
1842 unsigned SrcAS
, unsigned DestAS
) {
1843 SDValue Ops
[] = {Ptr
};
1844 FoldingSetNodeID ID
;
1845 AddNodeIDNode(ID
, ISD::ADDRSPACECAST
, getVTList(VT
), Ops
);
1846 ID
.AddInteger(SrcAS
);
1847 ID
.AddInteger(DestAS
);
1850 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
))
1851 return SDValue(E
, 0);
1853 auto *N
= newSDNode
<AddrSpaceCastSDNode
>(dl
.getIROrder(), dl
.getDebugLoc(),
1855 createOperands(N
, Ops
);
1857 CSEMap
.InsertNode(N
, IP
);
1859 return SDValue(N
, 0);
1862 /// getShiftAmountOperand - Return the specified value casted to
1863 /// the target's desired shift amount type.
1864 SDValue
SelectionDAG::getShiftAmountOperand(EVT LHSTy
, SDValue Op
) {
1865 EVT OpTy
= Op
.getValueType();
1866 EVT ShTy
= TLI
->getShiftAmountTy(LHSTy
, getDataLayout());
1867 if (OpTy
== ShTy
|| OpTy
.isVector()) return Op
;
1869 return getZExtOrTrunc(Op
, SDLoc(Op
), ShTy
);
1872 SDValue
SelectionDAG::expandVAArg(SDNode
*Node
) {
1874 const TargetLowering
&TLI
= getTargetLoweringInfo();
1875 const Value
*V
= cast
<SrcValueSDNode
>(Node
->getOperand(2))->getValue();
1876 EVT VT
= Node
->getValueType(0);
1877 SDValue Tmp1
= Node
->getOperand(0);
1878 SDValue Tmp2
= Node
->getOperand(1);
1879 unsigned Align
= Node
->getConstantOperandVal(3);
1881 SDValue VAListLoad
= getLoad(TLI
.getPointerTy(getDataLayout()), dl
, Tmp1
,
1882 Tmp2
, MachinePointerInfo(V
));
1883 SDValue VAList
= VAListLoad
;
1885 if (Align
> TLI
.getMinStackArgumentAlignment()) {
1886 assert(((Align
& (Align
-1)) == 0) && "Expected Align to be a power of 2");
1888 VAList
= getNode(ISD::ADD
, dl
, VAList
.getValueType(), VAList
,
1889 getConstant(Align
- 1, dl
, VAList
.getValueType()));
1891 VAList
= getNode(ISD::AND
, dl
, VAList
.getValueType(), VAList
,
1892 getConstant(-(int64_t)Align
, dl
, VAList
.getValueType()));
1895 // Increment the pointer, VAList, to the next vaarg
1896 Tmp1
= getNode(ISD::ADD
, dl
, VAList
.getValueType(), VAList
,
1897 getConstant(getDataLayout().getTypeAllocSize(
1898 VT
.getTypeForEVT(*getContext())),
1899 dl
, VAList
.getValueType()));
1900 // Store the incremented VAList to the legalized pointer
1902 getStore(VAListLoad
.getValue(1), dl
, Tmp1
, Tmp2
, MachinePointerInfo(V
));
1903 // Load the actual argument out of the pointer VAList
1904 return getLoad(VT
, dl
, Tmp1
, VAList
, MachinePointerInfo());
1907 SDValue
SelectionDAG::expandVACopy(SDNode
*Node
) {
1909 const TargetLowering
&TLI
= getTargetLoweringInfo();
1910 // This defaults to loading a pointer from the input and storing it to the
1911 // output, returning the chain.
1912 const Value
*VD
= cast
<SrcValueSDNode
>(Node
->getOperand(3))->getValue();
1913 const Value
*VS
= cast
<SrcValueSDNode
>(Node
->getOperand(4))->getValue();
1915 getLoad(TLI
.getPointerTy(getDataLayout()), dl
, Node
->getOperand(0),
1916 Node
->getOperand(2), MachinePointerInfo(VS
));
1917 return getStore(Tmp1
.getValue(1), dl
, Tmp1
, Node
->getOperand(1),
1918 MachinePointerInfo(VD
));
1921 SDValue
SelectionDAG::CreateStackTemporary(EVT VT
, unsigned minAlign
) {
1922 MachineFrameInfo
&MFI
= getMachineFunction().getFrameInfo();
1923 unsigned ByteSize
= VT
.getStoreSize();
1924 Type
*Ty
= VT
.getTypeForEVT(*getContext());
1925 unsigned StackAlign
=
1926 std::max((unsigned)getDataLayout().getPrefTypeAlignment(Ty
), minAlign
);
1928 int FrameIdx
= MFI
.CreateStackObject(ByteSize
, StackAlign
, false);
1929 return getFrameIndex(FrameIdx
, TLI
->getFrameIndexTy(getDataLayout()));
1932 SDValue
SelectionDAG::CreateStackTemporary(EVT VT1
, EVT VT2
) {
1933 unsigned Bytes
= std::max(VT1
.getStoreSize(), VT2
.getStoreSize());
1934 Type
*Ty1
= VT1
.getTypeForEVT(*getContext());
1935 Type
*Ty2
= VT2
.getTypeForEVT(*getContext());
1936 const DataLayout
&DL
= getDataLayout();
1938 std::max(DL
.getPrefTypeAlignment(Ty1
), DL
.getPrefTypeAlignment(Ty2
));
1940 MachineFrameInfo
&MFI
= getMachineFunction().getFrameInfo();
1941 int FrameIdx
= MFI
.CreateStackObject(Bytes
, Align
, false);
1942 return getFrameIndex(FrameIdx
, TLI
->getFrameIndexTy(getDataLayout()));
1945 SDValue
SelectionDAG::FoldSetCC(EVT VT
, SDValue N1
, SDValue N2
,
1946 ISD::CondCode Cond
, const SDLoc
&dl
) {
1947 EVT OpVT
= N1
.getValueType();
1949 // These setcc operations always fold.
1953 case ISD::SETFALSE2
: return getBoolConstant(false, dl
, VT
, OpVT
);
1955 case ISD::SETTRUE2
: return getBoolConstant(true, dl
, VT
, OpVT
);
1967 assert(!N1
.getValueType().isInteger() && "Illegal setcc for integer!");
1971 if (ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
)) {
1972 const APInt
&C2
= N2C
->getAPIntValue();
1973 if (ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
)) {
1974 const APInt
&C1
= N1C
->getAPIntValue();
1977 default: llvm_unreachable("Unknown integer setcc!");
1978 case ISD::SETEQ
: return getBoolConstant(C1
== C2
, dl
, VT
, OpVT
);
1979 case ISD::SETNE
: return getBoolConstant(C1
!= C2
, dl
, VT
, OpVT
);
1980 case ISD::SETULT
: return getBoolConstant(C1
.ult(C2
), dl
, VT
, OpVT
);
1981 case ISD::SETUGT
: return getBoolConstant(C1
.ugt(C2
), dl
, VT
, OpVT
);
1982 case ISD::SETULE
: return getBoolConstant(C1
.ule(C2
), dl
, VT
, OpVT
);
1983 case ISD::SETUGE
: return getBoolConstant(C1
.uge(C2
), dl
, VT
, OpVT
);
1984 case ISD::SETLT
: return getBoolConstant(C1
.slt(C2
), dl
, VT
, OpVT
);
1985 case ISD::SETGT
: return getBoolConstant(C1
.sgt(C2
), dl
, VT
, OpVT
);
1986 case ISD::SETLE
: return getBoolConstant(C1
.sle(C2
), dl
, VT
, OpVT
);
1987 case ISD::SETGE
: return getBoolConstant(C1
.sge(C2
), dl
, VT
, OpVT
);
1991 if (ConstantFPSDNode
*N1C
= dyn_cast
<ConstantFPSDNode
>(N1
)) {
1992 if (ConstantFPSDNode
*N2C
= dyn_cast
<ConstantFPSDNode
>(N2
)) {
1993 APFloat::cmpResult R
= N1C
->getValueAPF().compare(N2C
->getValueAPF());
1996 case ISD::SETEQ
: if (R
==APFloat::cmpUnordered
)
1997 return getUNDEF(VT
);
1999 case ISD::SETOEQ
: return getBoolConstant(R
==APFloat::cmpEqual
, dl
, VT
,
2001 case ISD::SETNE
: if (R
==APFloat::cmpUnordered
)
2002 return getUNDEF(VT
);
2004 case ISD::SETONE
: return getBoolConstant(R
==APFloat::cmpGreaterThan
||
2005 R
==APFloat::cmpLessThan
, dl
, VT
,
2007 case ISD::SETLT
: if (R
==APFloat::cmpUnordered
)
2008 return getUNDEF(VT
);
2010 case ISD::SETOLT
: return getBoolConstant(R
==APFloat::cmpLessThan
, dl
, VT
,
2012 case ISD::SETGT
: if (R
==APFloat::cmpUnordered
)
2013 return getUNDEF(VT
);
2015 case ISD::SETOGT
: return getBoolConstant(R
==APFloat::cmpGreaterThan
, dl
,
2017 case ISD::SETLE
: if (R
==APFloat::cmpUnordered
)
2018 return getUNDEF(VT
);
2020 case ISD::SETOLE
: return getBoolConstant(R
==APFloat::cmpLessThan
||
2021 R
==APFloat::cmpEqual
, dl
, VT
,
2023 case ISD::SETGE
: if (R
==APFloat::cmpUnordered
)
2024 return getUNDEF(VT
);
2026 case ISD::SETOGE
: return getBoolConstant(R
==APFloat::cmpGreaterThan
||
2027 R
==APFloat::cmpEqual
, dl
, VT
, OpVT
);
2028 case ISD::SETO
: return getBoolConstant(R
!=APFloat::cmpUnordered
, dl
, VT
,
2030 case ISD::SETUO
: return getBoolConstant(R
==APFloat::cmpUnordered
, dl
, VT
,
2032 case ISD::SETUEQ
: return getBoolConstant(R
==APFloat::cmpUnordered
||
2033 R
==APFloat::cmpEqual
, dl
, VT
,
2035 case ISD::SETUNE
: return getBoolConstant(R
!=APFloat::cmpEqual
, dl
, VT
,
2037 case ISD::SETULT
: return getBoolConstant(R
==APFloat::cmpUnordered
||
2038 R
==APFloat::cmpLessThan
, dl
, VT
,
2040 case ISD::SETUGT
: return getBoolConstant(R
==APFloat::cmpGreaterThan
||
2041 R
==APFloat::cmpUnordered
, dl
, VT
,
2043 case ISD::SETULE
: return getBoolConstant(R
!=APFloat::cmpGreaterThan
, dl
,
2045 case ISD::SETUGE
: return getBoolConstant(R
!=APFloat::cmpLessThan
, dl
, VT
,
2049 // Ensure that the constant occurs on the RHS.
2050 ISD::CondCode SwappedCond
= ISD::getSetCCSwappedOperands(Cond
);
2051 MVT CompVT
= N1
.getValueType().getSimpleVT();
2052 if (!TLI
->isCondCodeLegal(SwappedCond
, CompVT
))
2055 return getSetCC(dl
, VT
, N2
, N1
, SwappedCond
);
2059 // Could not fold it.
2063 /// See if the specified operand can be simplified with the knowledge that only
2064 /// the bits specified by Mask are used.
2065 SDValue
SelectionDAG::GetDemandedBits(SDValue V
, const APInt
&Mask
) {
2066 switch (V
.getOpcode()) {
2069 case ISD::Constant
: {
2070 const ConstantSDNode
*CV
= cast
<ConstantSDNode
>(V
.getNode());
2071 assert(CV
&& "Const value should be ConstSDNode.");
2072 const APInt
&CVal
= CV
->getAPIntValue();
2073 APInt NewVal
= CVal
& Mask
;
2075 return getConstant(NewVal
, SDLoc(V
), V
.getValueType());
2080 // If the LHS or RHS don't contribute bits to the or, drop them.
2081 if (MaskedValueIsZero(V
.getOperand(0), Mask
))
2082 return V
.getOperand(1);
2083 if (MaskedValueIsZero(V
.getOperand(1), Mask
))
2084 return V
.getOperand(0);
2087 // Only look at single-use SRLs.
2088 if (!V
.getNode()->hasOneUse())
2090 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(V
.getOperand(1))) {
2091 // See if we can recursively simplify the LHS.
2092 unsigned Amt
= RHSC
->getZExtValue();
2094 // Watch out for shift count overflow though.
2095 if (Amt
>= Mask
.getBitWidth())
2097 APInt NewMask
= Mask
<< Amt
;
2098 if (SDValue SimplifyLHS
= GetDemandedBits(V
.getOperand(0), NewMask
))
2099 return getNode(ISD::SRL
, SDLoc(V
), V
.getValueType(), SimplifyLHS
,
2104 // X & -1 -> X (ignoring bits which aren't demanded).
2105 ConstantSDNode
*AndVal
= isConstOrConstSplat(V
.getOperand(1));
2106 if (AndVal
&& Mask
.isSubsetOf(AndVal
->getAPIntValue()))
2107 return V
.getOperand(0);
2110 case ISD::ANY_EXTEND
: {
2111 SDValue Src
= V
.getOperand(0);
2112 unsigned SrcBitWidth
= Src
.getScalarValueSizeInBits();
2113 // Being conservative here - only peek through if we only demand bits in the
2114 // non-extended source (even though the extended bits are technically undef).
2115 if (Mask
.getActiveBits() > SrcBitWidth
)
2117 APInt SrcMask
= Mask
.trunc(SrcBitWidth
);
2118 if (SDValue DemandedSrc
= GetDemandedBits(Src
, SrcMask
))
2119 return getNode(ISD::ANY_EXTEND
, SDLoc(V
), V
.getValueType(), DemandedSrc
);
2122 case ISD::SIGN_EXTEND_INREG
:
2123 EVT ExVT
= cast
<VTSDNode
>(V
.getOperand(1))->getVT();
2124 unsigned ExVTBits
= ExVT
.getScalarSizeInBits();
2126 // If none of the extended bits are demanded, eliminate the sextinreg.
2127 if (Mask
.getActiveBits() <= ExVTBits
)
2128 return V
.getOperand(0);
2135 /// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
2136 /// use this predicate to simplify operations downstream.
2137 bool SelectionDAG::SignBitIsZero(SDValue Op
, unsigned Depth
) const {
2138 unsigned BitWidth
= Op
.getScalarValueSizeInBits();
2139 return MaskedValueIsZero(Op
, APInt::getSignMask(BitWidth
), Depth
);
2142 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
2143 /// this predicate to simplify operations downstream. Mask is known to be zero
2144 /// for bits that V cannot have.
2145 bool SelectionDAG::MaskedValueIsZero(SDValue Op
, const APInt
&Mask
,
2146 unsigned Depth
) const {
2147 return Mask
.isSubsetOf(computeKnownBits(Op
, Depth
).Zero
);
2150 /// isSplatValue - Return true if the vector V has the same value
2151 /// across all DemandedElts.
2152 bool SelectionDAG::isSplatValue(SDValue V
, const APInt
&DemandedElts
,
2155 return false; // No demanded elts, better to assume we don't know anything.
2157 EVT VT
= V
.getValueType();
2158 assert(VT
.isVector() && "Vector type expected");
2160 unsigned NumElts
= VT
.getVectorNumElements();
2161 assert(NumElts
== DemandedElts
.getBitWidth() && "Vector size mismatch");
2162 UndefElts
= APInt::getNullValue(NumElts
);
2164 switch (V
.getOpcode()) {
2165 case ISD::BUILD_VECTOR
: {
2167 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2168 SDValue Op
= V
.getOperand(i
);
2170 UndefElts
.setBit(i
);
2173 if (!DemandedElts
[i
])
2175 if (Scl
&& Scl
!= Op
)
2181 case ISD::VECTOR_SHUFFLE
: {
2182 // Check if this is a shuffle node doing a splat.
2183 // TODO: Do we need to handle shuffle(splat, undef, mask)?
2184 int SplatIndex
= -1;
2185 ArrayRef
<int> Mask
= cast
<ShuffleVectorSDNode
>(V
)->getMask();
2186 for (int i
= 0; i
!= (int)NumElts
; ++i
) {
2189 UndefElts
.setBit(i
);
2192 if (!DemandedElts
[i
])
2194 if (0 <= SplatIndex
&& SplatIndex
!= M
)
2200 case ISD::EXTRACT_SUBVECTOR
: {
2201 SDValue Src
= V
.getOperand(0);
2202 ConstantSDNode
*SubIdx
= dyn_cast
<ConstantSDNode
>(V
.getOperand(1));
2203 unsigned NumSrcElts
= Src
.getValueType().getVectorNumElements();
2204 if (SubIdx
&& SubIdx
->getAPIntValue().ule(NumSrcElts
- NumElts
)) {
2205 // Offset the demanded elts by the subvector index.
2206 uint64_t Idx
= SubIdx
->getZExtValue();
2208 APInt DemandedSrc
= DemandedElts
.zextOrSelf(NumSrcElts
).shl(Idx
);
2209 if (isSplatValue(Src
, DemandedSrc
, UndefSrcElts
)) {
2210 UndefElts
= UndefSrcElts
.extractBits(NumElts
, Idx
);
2219 APInt UndefLHS
, UndefRHS
;
2220 SDValue LHS
= V
.getOperand(0);
2221 SDValue RHS
= V
.getOperand(1);
2222 if (isSplatValue(LHS
, DemandedElts
, UndefLHS
) &&
2223 isSplatValue(RHS
, DemandedElts
, UndefRHS
)) {
2224 UndefElts
= UndefLHS
| UndefRHS
;
2234 /// Helper wrapper to main isSplatValue function.
2235 bool SelectionDAG::isSplatValue(SDValue V
, bool AllowUndefs
) {
2236 EVT VT
= V
.getValueType();
2237 assert(VT
.isVector() && "Vector type expected");
2238 unsigned NumElts
= VT
.getVectorNumElements();
2241 APInt DemandedElts
= APInt::getAllOnesValue(NumElts
);
2242 return isSplatValue(V
, DemandedElts
, UndefElts
) &&
2243 (AllowUndefs
|| !UndefElts
);
2246 /// Helper function that checks to see if a node is a constant or a
2247 /// build vector of splat constants at least within the demanded elts.
2248 static ConstantSDNode
*isConstOrDemandedConstSplat(SDValue N
,
2249 const APInt
&DemandedElts
) {
2250 if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(N
))
2252 if (N
.getOpcode() != ISD::BUILD_VECTOR
)
2254 EVT VT
= N
.getValueType();
2255 ConstantSDNode
*Cst
= nullptr;
2256 unsigned NumElts
= VT
.getVectorNumElements();
2257 assert(DemandedElts
.getBitWidth() == NumElts
&& "Unexpected vector size");
2258 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2259 if (!DemandedElts
[i
])
2261 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
.getOperand(i
));
2262 if (!C
|| (Cst
&& Cst
->getAPIntValue() != C
->getAPIntValue()) ||
2263 C
->getValueType(0) != VT
.getScalarType())
2270 /// If a SHL/SRA/SRL node has a constant or splat constant shift amount that
2271 /// is less than the element bit-width of the shift node, return it.
2272 static const APInt
*getValidShiftAmountConstant(SDValue V
) {
2273 if (ConstantSDNode
*SA
= isConstOrConstSplat(V
.getOperand(1))) {
2274 // Shifting more than the bitwidth is not valid.
2275 const APInt
&ShAmt
= SA
->getAPIntValue();
2276 if (ShAmt
.ult(V
.getScalarValueSizeInBits()))
2282 /// Determine which bits of Op are known to be either zero or one and return
2283 /// them in Known. For vectors, the known bits are those that are shared by
2284 /// every vector element.
2285 KnownBits
SelectionDAG::computeKnownBits(SDValue Op
, unsigned Depth
) const {
2286 EVT VT
= Op
.getValueType();
2287 APInt DemandedElts
= VT
.isVector()
2288 ? APInt::getAllOnesValue(VT
.getVectorNumElements())
2290 return computeKnownBits(Op
, DemandedElts
, Depth
);
2293 /// Determine which bits of Op are known to be either zero or one and return
2294 /// them in Known. The DemandedElts argument allows us to only collect the known
2295 /// bits that are shared by the requested vector elements.
2296 KnownBits
SelectionDAG::computeKnownBits(SDValue Op
, const APInt
&DemandedElts
,
2297 unsigned Depth
) const {
2298 unsigned BitWidth
= Op
.getScalarValueSizeInBits();
2300 KnownBits
Known(BitWidth
); // Don't know anything.
2302 if (auto *C
= dyn_cast
<ConstantSDNode
>(Op
)) {
2303 // We know all of the bits for a constant!
2304 Known
.One
= C
->getAPIntValue();
2305 Known
.Zero
= ~Known
.One
;
2308 if (auto *C
= dyn_cast
<ConstantFPSDNode
>(Op
)) {
2309 // We know all of the bits for a constant fp!
2310 Known
.One
= C
->getValueAPF().bitcastToAPInt();
2311 Known
.Zero
= ~Known
.One
;
2316 return Known
; // Limit search depth.
2319 unsigned NumElts
= DemandedElts
.getBitWidth();
2320 assert((!Op
.getValueType().isVector() ||
2321 NumElts
== Op
.getValueType().getVectorNumElements()) &&
2322 "Unexpected vector size");
2325 return Known
; // No demanded elts, better to assume we don't know anything.
2327 unsigned Opcode
= Op
.getOpcode();
2329 case ISD::BUILD_VECTOR
:
2330 // Collect the known bits that are shared by every demanded vector element.
2331 Known
.Zero
.setAllBits(); Known
.One
.setAllBits();
2332 for (unsigned i
= 0, e
= Op
.getNumOperands(); i
!= e
; ++i
) {
2333 if (!DemandedElts
[i
])
2336 SDValue SrcOp
= Op
.getOperand(i
);
2337 Known2
= computeKnownBits(SrcOp
, Depth
+ 1);
2339 // BUILD_VECTOR can implicitly truncate sources, we must handle this.
2340 if (SrcOp
.getValueSizeInBits() != BitWidth
) {
2341 assert(SrcOp
.getValueSizeInBits() > BitWidth
&&
2342 "Expected BUILD_VECTOR implicit truncation");
2343 Known2
= Known2
.trunc(BitWidth
);
2346 // Known bits are the values that are shared by every demanded element.
2347 Known
.One
&= Known2
.One
;
2348 Known
.Zero
&= Known2
.Zero
;
2350 // If we don't know any bits, early out.
2351 if (Known
.isUnknown())
2355 case ISD::VECTOR_SHUFFLE
: {
2356 // Collect the known bits that are shared by every vector element referenced
2358 APInt
DemandedLHS(NumElts
, 0), DemandedRHS(NumElts
, 0);
2359 Known
.Zero
.setAllBits(); Known
.One
.setAllBits();
2360 const ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(Op
);
2361 assert(NumElts
== SVN
->getMask().size() && "Unexpected vector size");
2362 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2363 if (!DemandedElts
[i
])
2366 int M
= SVN
->getMaskElt(i
);
2368 // For UNDEF elements, we don't know anything about the common state of
2369 // the shuffle result.
2371 DemandedLHS
.clearAllBits();
2372 DemandedRHS
.clearAllBits();
2376 if ((unsigned)M
< NumElts
)
2377 DemandedLHS
.setBit((unsigned)M
% NumElts
);
2379 DemandedRHS
.setBit((unsigned)M
% NumElts
);
2381 // Known bits are the values that are shared by every demanded element.
2382 if (!!DemandedLHS
) {
2383 SDValue LHS
= Op
.getOperand(0);
2384 Known2
= computeKnownBits(LHS
, DemandedLHS
, Depth
+ 1);
2385 Known
.One
&= Known2
.One
;
2386 Known
.Zero
&= Known2
.Zero
;
2388 // If we don't know any bits, early out.
2389 if (Known
.isUnknown())
2391 if (!!DemandedRHS
) {
2392 SDValue RHS
= Op
.getOperand(1);
2393 Known2
= computeKnownBits(RHS
, DemandedRHS
, Depth
+ 1);
2394 Known
.One
&= Known2
.One
;
2395 Known
.Zero
&= Known2
.Zero
;
2399 case ISD::CONCAT_VECTORS
: {
2400 // Split DemandedElts and test each of the demanded subvectors.
2401 Known
.Zero
.setAllBits(); Known
.One
.setAllBits();
2402 EVT SubVectorVT
= Op
.getOperand(0).getValueType();
2403 unsigned NumSubVectorElts
= SubVectorVT
.getVectorNumElements();
2404 unsigned NumSubVectors
= Op
.getNumOperands();
2405 for (unsigned i
= 0; i
!= NumSubVectors
; ++i
) {
2406 APInt DemandedSub
= DemandedElts
.lshr(i
* NumSubVectorElts
);
2407 DemandedSub
= DemandedSub
.trunc(NumSubVectorElts
);
2408 if (!!DemandedSub
) {
2409 SDValue Sub
= Op
.getOperand(i
);
2410 Known2
= computeKnownBits(Sub
, DemandedSub
, Depth
+ 1);
2411 Known
.One
&= Known2
.One
;
2412 Known
.Zero
&= Known2
.Zero
;
2414 // If we don't know any bits, early out.
2415 if (Known
.isUnknown())
2420 case ISD::INSERT_SUBVECTOR
: {
2421 // If we know the element index, demand any elements from the subvector and
2422 // the remainder from the src its inserted into, otherwise demand them all.
2423 SDValue Src
= Op
.getOperand(0);
2424 SDValue Sub
= Op
.getOperand(1);
2425 ConstantSDNode
*SubIdx
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
2426 unsigned NumSubElts
= Sub
.getValueType().getVectorNumElements();
2427 if (SubIdx
&& SubIdx
->getAPIntValue().ule(NumElts
- NumSubElts
)) {
2428 Known
.One
.setAllBits();
2429 Known
.Zero
.setAllBits();
2430 uint64_t Idx
= SubIdx
->getZExtValue();
2431 APInt DemandedSubElts
= DemandedElts
.extractBits(NumSubElts
, Idx
);
2432 if (!!DemandedSubElts
) {
2433 Known
= computeKnownBits(Sub
, DemandedSubElts
, Depth
+ 1);
2434 if (Known
.isUnknown())
2435 break; // early-out.
2437 APInt SubMask
= APInt::getBitsSet(NumElts
, Idx
, Idx
+ NumSubElts
);
2438 APInt DemandedSrcElts
= DemandedElts
& ~SubMask
;
2439 if (!!DemandedSrcElts
) {
2440 Known2
= computeKnownBits(Src
, DemandedSrcElts
, Depth
+ 1);
2441 Known
.One
&= Known2
.One
;
2442 Known
.Zero
&= Known2
.Zero
;
2445 Known
= computeKnownBits(Sub
, Depth
+ 1);
2446 if (Known
.isUnknown())
2447 break; // early-out.
2448 Known2
= computeKnownBits(Src
, Depth
+ 1);
2449 Known
.One
&= Known2
.One
;
2450 Known
.Zero
&= Known2
.Zero
;
2454 case ISD::EXTRACT_SUBVECTOR
: {
2455 // If we know the element index, just demand that subvector elements,
2456 // otherwise demand them all.
2457 SDValue Src
= Op
.getOperand(0);
2458 ConstantSDNode
*SubIdx
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
2459 unsigned NumSrcElts
= Src
.getValueType().getVectorNumElements();
2460 if (SubIdx
&& SubIdx
->getAPIntValue().ule(NumSrcElts
- NumElts
)) {
2461 // Offset the demanded elts by the subvector index.
2462 uint64_t Idx
= SubIdx
->getZExtValue();
2463 APInt DemandedSrc
= DemandedElts
.zextOrSelf(NumSrcElts
).shl(Idx
);
2464 Known
= computeKnownBits(Src
, DemandedSrc
, Depth
+ 1);
2466 Known
= computeKnownBits(Src
, Depth
+ 1);
2470 case ISD::SCALAR_TO_VECTOR
: {
2471 // We know about scalar_to_vector as much as we know about it source,
2472 // which becomes the first element of otherwise unknown vector.
2473 if (DemandedElts
!= 1)
2476 SDValue N0
= Op
.getOperand(0);
2477 Known
= computeKnownBits(N0
, Depth
+ 1);
2478 if (N0
.getValueSizeInBits() != BitWidth
)
2479 Known
= Known
.trunc(BitWidth
);
2483 case ISD::BITCAST
: {
2484 SDValue N0
= Op
.getOperand(0);
2485 EVT SubVT
= N0
.getValueType();
2486 unsigned SubBitWidth
= SubVT
.getScalarSizeInBits();
2488 // Ignore bitcasts from unsupported types.
2489 if (!(SubVT
.isInteger() || SubVT
.isFloatingPoint()))
2492 // Fast handling of 'identity' bitcasts.
2493 if (BitWidth
== SubBitWidth
) {
2494 Known
= computeKnownBits(N0
, DemandedElts
, Depth
+ 1);
2498 bool IsLE
= getDataLayout().isLittleEndian();
2500 // Bitcast 'small element' vector to 'large element' scalar/vector.
2501 if ((BitWidth
% SubBitWidth
) == 0) {
2502 assert(N0
.getValueType().isVector() && "Expected bitcast from vector");
2504 // Collect known bits for the (larger) output by collecting the known
2505 // bits from each set of sub elements and shift these into place.
2506 // We need to separately call computeKnownBits for each set of
2507 // sub elements as the knownbits for each is likely to be different.
2508 unsigned SubScale
= BitWidth
/ SubBitWidth
;
2509 APInt
SubDemandedElts(NumElts
* SubScale
, 0);
2510 for (unsigned i
= 0; i
!= NumElts
; ++i
)
2511 if (DemandedElts
[i
])
2512 SubDemandedElts
.setBit(i
* SubScale
);
2514 for (unsigned i
= 0; i
!= SubScale
; ++i
) {
2515 Known2
= computeKnownBits(N0
, SubDemandedElts
.shl(i
),
2517 unsigned Shifts
= IsLE
? i
: SubScale
- 1 - i
;
2518 Known
.One
|= Known2
.One
.zext(BitWidth
).shl(SubBitWidth
* Shifts
);
2519 Known
.Zero
|= Known2
.Zero
.zext(BitWidth
).shl(SubBitWidth
* Shifts
);
2523 // Bitcast 'large element' scalar/vector to 'small element' vector.
2524 if ((SubBitWidth
% BitWidth
) == 0) {
2525 assert(Op
.getValueType().isVector() && "Expected bitcast to vector");
2527 // Collect known bits for the (smaller) output by collecting the known
2528 // bits from the overlapping larger input elements and extracting the
2529 // sub sections we actually care about.
2530 unsigned SubScale
= SubBitWidth
/ BitWidth
;
2531 APInt
SubDemandedElts(NumElts
/ SubScale
, 0);
2532 for (unsigned i
= 0; i
!= NumElts
; ++i
)
2533 if (DemandedElts
[i
])
2534 SubDemandedElts
.setBit(i
/ SubScale
);
2536 Known2
= computeKnownBits(N0
, SubDemandedElts
, Depth
+ 1);
2538 Known
.Zero
.setAllBits(); Known
.One
.setAllBits();
2539 for (unsigned i
= 0; i
!= NumElts
; ++i
)
2540 if (DemandedElts
[i
]) {
2541 unsigned Shifts
= IsLE
? i
: NumElts
- 1 - i
;
2542 unsigned Offset
= (Shifts
% SubScale
) * BitWidth
;
2543 Known
.One
&= Known2
.One
.lshr(Offset
).trunc(BitWidth
);
2544 Known
.Zero
&= Known2
.Zero
.lshr(Offset
).trunc(BitWidth
);
2545 // If we don't know any bits, early out.
2546 if (Known
.isUnknown())
2553 // If either the LHS or the RHS are Zero, the result is zero.
2554 Known
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
2555 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
2557 // Output known-1 bits are only known if set in both the LHS & RHS.
2558 Known
.One
&= Known2
.One
;
2559 // Output known-0 are known to be clear if zero in either the LHS | RHS.
2560 Known
.Zero
|= Known2
.Zero
;
2563 Known
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
2564 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
2566 // Output known-0 bits are only known if clear in both the LHS & RHS.
2567 Known
.Zero
&= Known2
.Zero
;
2568 // Output known-1 are known to be set if set in either the LHS | RHS.
2569 Known
.One
|= Known2
.One
;
2572 Known
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
2573 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
2575 // Output known-0 bits are known if clear or set in both the LHS & RHS.
2576 APInt KnownZeroOut
= (Known
.Zero
& Known2
.Zero
) | (Known
.One
& Known2
.One
);
2577 // Output known-1 are known to be set if set in only one of the LHS, RHS.
2578 Known
.One
= (Known
.Zero
& Known2
.One
) | (Known
.One
& Known2
.Zero
);
2579 Known
.Zero
= KnownZeroOut
;
2583 Known
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
2584 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
2586 // If low bits are zero in either operand, output low known-0 bits.
2587 // Also compute a conservative estimate for high known-0 bits.
2588 // More trickiness is possible, but this is sufficient for the
2589 // interesting case of alignment computation.
2590 unsigned TrailZ
= Known
.countMinTrailingZeros() +
2591 Known2
.countMinTrailingZeros();
2592 unsigned LeadZ
= std::max(Known
.countMinLeadingZeros() +
2593 Known2
.countMinLeadingZeros(),
2594 BitWidth
) - BitWidth
;
2597 Known
.Zero
.setLowBits(std::min(TrailZ
, BitWidth
));
2598 Known
.Zero
.setHighBits(std::min(LeadZ
, BitWidth
));
2602 // For the purposes of computing leading zeros we can conservatively
2603 // treat a udiv as a logical right shift by the power of 2 known to
2604 // be less than the denominator.
2605 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
2606 unsigned LeadZ
= Known2
.countMinLeadingZeros();
2608 Known2
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
2609 unsigned RHSMaxLeadingZeros
= Known2
.countMaxLeadingZeros();
2610 if (RHSMaxLeadingZeros
!= BitWidth
)
2611 LeadZ
= std::min(BitWidth
, LeadZ
+ BitWidth
- RHSMaxLeadingZeros
- 1);
2613 Known
.Zero
.setHighBits(LeadZ
);
2618 Known
= computeKnownBits(Op
.getOperand(2), DemandedElts
, Depth
+1);
2619 // If we don't know any bits, early out.
2620 if (Known
.isUnknown())
2622 Known2
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+1);
2624 // Only known if known in both the LHS and RHS.
2625 Known
.One
&= Known2
.One
;
2626 Known
.Zero
&= Known2
.Zero
;
2628 case ISD::SELECT_CC
:
2629 Known
= computeKnownBits(Op
.getOperand(3), DemandedElts
, Depth
+1);
2630 // If we don't know any bits, early out.
2631 if (Known
.isUnknown())
2633 Known2
= computeKnownBits(Op
.getOperand(2), DemandedElts
, Depth
+1);
2635 // Only known if known in both the LHS and RHS.
2636 Known
.One
&= Known2
.One
;
2637 Known
.Zero
&= Known2
.Zero
;
2641 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS
:
2642 if (Op
.getResNo() != 1)
2644 // The boolean result conforms to getBooleanContents.
2645 // If we know the result of a setcc has the top bits zero, use this info.
2646 // We know that we have an integer-based boolean since these operations
2647 // are only available for integer.
2648 if (TLI
->getBooleanContents(Op
.getValueType().isVector(), false) ==
2649 TargetLowering::ZeroOrOneBooleanContent
&&
2651 Known
.Zero
.setBitsFrom(1);
2654 // If we know the result of a setcc has the top bits zero, use this info.
2655 if (TLI
->getBooleanContents(Op
.getOperand(0).getValueType()) ==
2656 TargetLowering::ZeroOrOneBooleanContent
&&
2658 Known
.Zero
.setBitsFrom(1);
2661 if (const APInt
*ShAmt
= getValidShiftAmountConstant(Op
)) {
2662 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
2663 unsigned Shift
= ShAmt
->getZExtValue();
2664 Known
.Zero
<<= Shift
;
2665 Known
.One
<<= Shift
;
2666 // Low bits are known zero.
2667 Known
.Zero
.setLowBits(Shift
);
2671 if (const APInt
*ShAmt
= getValidShiftAmountConstant(Op
)) {
2672 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
2673 unsigned Shift
= ShAmt
->getZExtValue();
2674 Known
.Zero
.lshrInPlace(Shift
);
2675 Known
.One
.lshrInPlace(Shift
);
2676 // High bits are known zero.
2677 Known
.Zero
.setHighBits(Shift
);
2678 } else if (auto *BV
= dyn_cast
<BuildVectorSDNode
>(Op
.getOperand(1))) {
2679 // If the shift amount is a vector of constants see if we can bound
2680 // the number of upper zero bits.
2681 unsigned ShiftAmountMin
= BitWidth
;
2682 for (unsigned i
= 0; i
!= BV
->getNumOperands(); ++i
) {
2683 if (auto *C
= dyn_cast
<ConstantSDNode
>(BV
->getOperand(i
))) {
2684 const APInt
&ShAmt
= C
->getAPIntValue();
2685 if (ShAmt
.ult(BitWidth
)) {
2686 ShiftAmountMin
= std::min
<unsigned>(ShiftAmountMin
,
2687 ShAmt
.getZExtValue());
2691 // Don't know anything.
2696 Known
.Zero
.setHighBits(ShiftAmountMin
);
2700 if (const APInt
*ShAmt
= getValidShiftAmountConstant(Op
)) {
2701 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
2702 unsigned Shift
= ShAmt
->getZExtValue();
2703 // Sign extend known zero/one bit (else is unknown).
2704 Known
.Zero
.ashrInPlace(Shift
);
2705 Known
.One
.ashrInPlace(Shift
);
2710 if (ConstantSDNode
*C
=
2711 isConstOrDemandedConstSplat(Op
.getOperand(2), DemandedElts
)) {
2712 unsigned Amt
= C
->getAPIntValue().urem(BitWidth
);
2714 // For fshl, 0-shift returns the 1st arg.
2715 // For fshr, 0-shift returns the 2nd arg.
2717 Known
= computeKnownBits(Op
.getOperand(Opcode
== ISD::FSHL
? 0 : 1),
2718 DemandedElts
, Depth
+ 1);
2722 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
2723 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
2724 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
2725 Known2
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
2726 if (Opcode
== ISD::FSHL
) {
2729 Known2
.One
.lshrInPlace(BitWidth
- Amt
);
2730 Known2
.Zero
.lshrInPlace(BitWidth
- Amt
);
2732 Known
.One
<<= BitWidth
- Amt
;
2733 Known
.Zero
<<= BitWidth
- Amt
;
2734 Known2
.One
.lshrInPlace(Amt
);
2735 Known2
.Zero
.lshrInPlace(Amt
);
2737 Known
.One
|= Known2
.One
;
2738 Known
.Zero
|= Known2
.Zero
;
2741 case ISD::SIGN_EXTEND_INREG
: {
2742 EVT EVT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
2743 unsigned EBits
= EVT
.getScalarSizeInBits();
2745 // Sign extension. Compute the demanded bits in the result that are not
2746 // present in the input.
2747 APInt NewBits
= APInt::getHighBitsSet(BitWidth
, BitWidth
- EBits
);
2749 APInt InSignMask
= APInt::getSignMask(EBits
);
2750 APInt InputDemandedBits
= APInt::getLowBitsSet(BitWidth
, EBits
);
2752 // If the sign extended bits are demanded, we know that the sign
2754 InSignMask
= InSignMask
.zext(BitWidth
);
2755 if (NewBits
.getBoolValue())
2756 InputDemandedBits
|= InSignMask
;
2758 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
2759 Known
.One
&= InputDemandedBits
;
2760 Known
.Zero
&= InputDemandedBits
;
2762 // If the sign bit of the input is known set or clear, then we know the
2763 // top bits of the result.
2764 if (Known
.Zero
.intersects(InSignMask
)) { // Input sign bit known clear
2765 Known
.Zero
|= NewBits
;
2766 Known
.One
&= ~NewBits
;
2767 } else if (Known
.One
.intersects(InSignMask
)) { // Input sign bit known set
2768 Known
.One
|= NewBits
;
2769 Known
.Zero
&= ~NewBits
;
2770 } else { // Input sign bit unknown
2771 Known
.Zero
&= ~NewBits
;
2772 Known
.One
&= ~NewBits
;
2777 case ISD::CTTZ_ZERO_UNDEF
: {
2778 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
2779 // If we have a known 1, its position is our upper bound.
2780 unsigned PossibleTZ
= Known2
.countMaxTrailingZeros();
2781 unsigned LowBits
= Log2_32(PossibleTZ
) + 1;
2782 Known
.Zero
.setBitsFrom(LowBits
);
2786 case ISD::CTLZ_ZERO_UNDEF
: {
2787 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
2788 // If we have a known 1, its position is our upper bound.
2789 unsigned PossibleLZ
= Known2
.countMaxLeadingZeros();
2790 unsigned LowBits
= Log2_32(PossibleLZ
) + 1;
2791 Known
.Zero
.setBitsFrom(LowBits
);
2795 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
2796 // If we know some of the bits are zero, they can't be one.
2797 unsigned PossibleOnes
= Known2
.countMaxPopulation();
2798 Known
.Zero
.setBitsFrom(Log2_32(PossibleOnes
) + 1);
2802 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
2803 // If this is a ZEXTLoad and we are looking at the loaded value.
2804 if (ISD::isZEXTLoad(Op
.getNode()) && Op
.getResNo() == 0) {
2805 EVT VT
= LD
->getMemoryVT();
2806 unsigned MemBits
= VT
.getScalarSizeInBits();
2807 Known
.Zero
.setBitsFrom(MemBits
);
2808 } else if (const MDNode
*Ranges
= LD
->getRanges()) {
2809 if (LD
->getExtensionType() == ISD::NON_EXTLOAD
)
2810 computeKnownBitsFromRangeMetadata(*Ranges
, Known
);
2814 case ISD::ZERO_EXTEND_VECTOR_INREG
: {
2815 EVT InVT
= Op
.getOperand(0).getValueType();
2816 APInt InDemandedElts
= DemandedElts
.zextOrSelf(InVT
.getVectorNumElements());
2817 Known
= computeKnownBits(Op
.getOperand(0), InDemandedElts
, Depth
+ 1);
2818 Known
= Known
.zext(BitWidth
);
2819 Known
.Zero
.setBitsFrom(InVT
.getScalarSizeInBits());
2822 case ISD::ZERO_EXTEND
: {
2823 EVT InVT
= Op
.getOperand(0).getValueType();
2824 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
2825 Known
= Known
.zext(BitWidth
);
2826 Known
.Zero
.setBitsFrom(InVT
.getScalarSizeInBits());
2829 case ISD::SIGN_EXTEND_VECTOR_INREG
: {
2830 EVT InVT
= Op
.getOperand(0).getValueType();
2831 APInt InDemandedElts
= DemandedElts
.zextOrSelf(InVT
.getVectorNumElements());
2832 Known
= computeKnownBits(Op
.getOperand(0), InDemandedElts
, Depth
+ 1);
2833 // If the sign bit is known to be zero or one, then sext will extend
2834 // it to the top bits, else it will just zext.
2835 Known
= Known
.sext(BitWidth
);
2838 case ISD::SIGN_EXTEND
: {
2839 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
2840 // If the sign bit is known to be zero or one, then sext will extend
2841 // it to the top bits, else it will just zext.
2842 Known
= Known
.sext(BitWidth
);
2845 case ISD::ANY_EXTEND
: {
2846 Known
= computeKnownBits(Op
.getOperand(0), Depth
+1);
2847 Known
= Known
.zext(BitWidth
);
2850 case ISD::TRUNCATE
: {
2851 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
2852 Known
= Known
.trunc(BitWidth
);
2855 case ISD::AssertZext
: {
2856 EVT VT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
2857 APInt InMask
= APInt::getLowBitsSet(BitWidth
, VT
.getSizeInBits());
2858 Known
= computeKnownBits(Op
.getOperand(0), Depth
+1);
2859 Known
.Zero
|= (~InMask
);
2860 Known
.One
&= (~Known
.Zero
);
2864 // All bits are zero except the low bit.
2865 Known
.Zero
.setBitsFrom(1);
2869 if (Op
.getResNo() == 1) {
2870 // If we know the result of a setcc has the top bits zero, use this info.
2871 if (TLI
->getBooleanContents(Op
.getOperand(0).getValueType()) ==
2872 TargetLowering::ZeroOrOneBooleanContent
&&
2874 Known
.Zero
.setBitsFrom(1);
2880 if (ConstantSDNode
*CLHS
= isConstOrConstSplat(Op
.getOperand(0))) {
2881 // We know that the top bits of C-X are clear if X contains less bits
2882 // than C (i.e. no wrap-around can happen). For example, 20-X is
2883 // positive if we can prove that X is >= 0 and < 16.
2884 if (CLHS
->getAPIntValue().isNonNegative()) {
2885 unsigned NLZ
= (CLHS
->getAPIntValue()+1).countLeadingZeros();
2886 // NLZ can't be BitWidth with no sign bit
2887 APInt MaskV
= APInt::getHighBitsSet(BitWidth
, NLZ
+1);
2888 Known2
= computeKnownBits(Op
.getOperand(1), DemandedElts
,
2891 // If all of the MaskV bits are known to be zero, then we know the
2892 // output top bits are zero, because we now know that the output is
2894 if ((Known2
.Zero
& MaskV
) == MaskV
) {
2895 unsigned NLZ2
= CLHS
->getAPIntValue().countLeadingZeros();
2896 // Top bits known zero.
2897 Known
.Zero
.setHighBits(NLZ2
);
2902 // If low bits are know to be zero in both operands, then we know they are
2903 // going to be 0 in the result. Both addition and complement operations
2904 // preserve the low zero bits.
2905 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
2906 unsigned KnownZeroLow
= Known2
.countMinTrailingZeros();
2907 if (KnownZeroLow
== 0)
2910 Known2
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
2911 KnownZeroLow
= std::min(KnownZeroLow
, Known2
.countMinTrailingZeros());
2912 Known
.Zero
.setLowBits(KnownZeroLow
);
2918 if (Op
.getResNo() == 1) {
2919 // If we know the result of a setcc has the top bits zero, use this info.
2920 if (TLI
->getBooleanContents(Op
.getOperand(0).getValueType()) ==
2921 TargetLowering::ZeroOrOneBooleanContent
&&
2923 Known
.Zero
.setBitsFrom(1);
2930 // Output known-0 bits are known if clear or set in both the low clear bits
2931 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
2932 // low 3 bits clear.
2933 // Output known-0 bits are also known if the top bits of each input are
2934 // known to be clear. For example, if one input has the top 10 bits clear
2935 // and the other has the top 8 bits clear, we know the top 7 bits of the
2936 // output must be clear.
2937 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
2938 unsigned KnownZeroHigh
= Known2
.countMinLeadingZeros();
2939 unsigned KnownZeroLow
= Known2
.countMinTrailingZeros();
2941 Known2
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
2942 KnownZeroHigh
= std::min(KnownZeroHigh
, Known2
.countMinLeadingZeros());
2943 KnownZeroLow
= std::min(KnownZeroLow
, Known2
.countMinTrailingZeros());
2945 if (Opcode
== ISD::ADDE
|| Opcode
== ISD::ADDCARRY
) {
2946 // With ADDE and ADDCARRY, a carry bit may be added in, so we can only
2947 // use this information if we know (at least) that the low two bits are
2948 // clear. We then return to the caller that the low bit is unknown but
2949 // that other bits are known zero.
2950 if (KnownZeroLow
>= 2)
2951 Known
.Zero
.setBits(1, KnownZeroLow
);
2955 Known
.Zero
.setLowBits(KnownZeroLow
);
2956 if (KnownZeroHigh
> 1)
2957 Known
.Zero
.setHighBits(KnownZeroHigh
- 1);
2961 if (ConstantSDNode
*Rem
= isConstOrConstSplat(Op
.getOperand(1))) {
2962 const APInt
&RA
= Rem
->getAPIntValue().abs();
2963 if (RA
.isPowerOf2()) {
2964 APInt LowBits
= RA
- 1;
2965 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
2967 // The low bits of the first operand are unchanged by the srem.
2968 Known
.Zero
= Known2
.Zero
& LowBits
;
2969 Known
.One
= Known2
.One
& LowBits
;
2971 // If the first operand is non-negative or has all low bits zero, then
2972 // the upper bits are all zero.
2973 if (Known2
.Zero
[BitWidth
-1] || ((Known2
.Zero
& LowBits
) == LowBits
))
2974 Known
.Zero
|= ~LowBits
;
2976 // If the first operand is negative and not all low bits are zero, then
2977 // the upper bits are all one.
2978 if (Known2
.One
[BitWidth
-1] && ((Known2
.One
& LowBits
) != 0))
2979 Known
.One
|= ~LowBits
;
2980 assert((Known
.Zero
& Known
.One
) == 0&&"Bits known to be one AND zero?");
2985 if (ConstantSDNode
*Rem
= isConstOrConstSplat(Op
.getOperand(1))) {
2986 const APInt
&RA
= Rem
->getAPIntValue();
2987 if (RA
.isPowerOf2()) {
2988 APInt LowBits
= (RA
- 1);
2989 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
2991 // The upper bits are all zero, the lower ones are unchanged.
2992 Known
.Zero
= Known2
.Zero
| ~LowBits
;
2993 Known
.One
= Known2
.One
& LowBits
;
2998 // Since the result is less than or equal to either operand, any leading
2999 // zero bits in either operand must also exist in the result.
3000 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3001 Known2
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
3004 std::max(Known
.countMinLeadingZeros(), Known2
.countMinLeadingZeros());
3006 Known
.Zero
.setHighBits(Leaders
);
3009 case ISD::EXTRACT_ELEMENT
: {
3010 Known
= computeKnownBits(Op
.getOperand(0), Depth
+1);
3011 const unsigned Index
= Op
.getConstantOperandVal(1);
3012 const unsigned BitWidth
= Op
.getValueSizeInBits();
3014 // Remove low part of known bits mask
3015 Known
.Zero
= Known
.Zero
.getHiBits(Known
.Zero
.getBitWidth() - Index
* BitWidth
);
3016 Known
.One
= Known
.One
.getHiBits(Known
.One
.getBitWidth() - Index
* BitWidth
);
3018 // Remove high part of known bit mask
3019 Known
= Known
.trunc(BitWidth
);
3022 case ISD::EXTRACT_VECTOR_ELT
: {
3023 SDValue InVec
= Op
.getOperand(0);
3024 SDValue EltNo
= Op
.getOperand(1);
3025 EVT VecVT
= InVec
.getValueType();
3026 const unsigned BitWidth
= Op
.getValueSizeInBits();
3027 const unsigned EltBitWidth
= VecVT
.getScalarSizeInBits();
3028 const unsigned NumSrcElts
= VecVT
.getVectorNumElements();
3029 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
3030 // anything about the extended bits.
3031 if (BitWidth
> EltBitWidth
)
3032 Known
= Known
.trunc(EltBitWidth
);
3033 ConstantSDNode
*ConstEltNo
= dyn_cast
<ConstantSDNode
>(EltNo
);
3034 if (ConstEltNo
&& ConstEltNo
->getAPIntValue().ult(NumSrcElts
)) {
3035 // If we know the element index, just demand that vector element.
3036 unsigned Idx
= ConstEltNo
->getZExtValue();
3037 APInt DemandedElt
= APInt::getOneBitSet(NumSrcElts
, Idx
);
3038 Known
= computeKnownBits(InVec
, DemandedElt
, Depth
+ 1);
3040 // Unknown element index, so ignore DemandedElts and demand them all.
3041 Known
= computeKnownBits(InVec
, Depth
+ 1);
3043 if (BitWidth
> EltBitWidth
)
3044 Known
= Known
.zext(BitWidth
);
3047 case ISD::INSERT_VECTOR_ELT
: {
3048 SDValue InVec
= Op
.getOperand(0);
3049 SDValue InVal
= Op
.getOperand(1);
3050 SDValue EltNo
= Op
.getOperand(2);
3052 ConstantSDNode
*CEltNo
= dyn_cast
<ConstantSDNode
>(EltNo
);
3053 if (CEltNo
&& CEltNo
->getAPIntValue().ult(NumElts
)) {
3054 // If we know the element index, split the demand between the
3055 // source vector and the inserted element.
3056 Known
.Zero
= Known
.One
= APInt::getAllOnesValue(BitWidth
);
3057 unsigned EltIdx
= CEltNo
->getZExtValue();
3059 // If we demand the inserted element then add its common known bits.
3060 if (DemandedElts
[EltIdx
]) {
3061 Known2
= computeKnownBits(InVal
, Depth
+ 1);
3062 Known
.One
&= Known2
.One
.zextOrTrunc(Known
.One
.getBitWidth());
3063 Known
.Zero
&= Known2
.Zero
.zextOrTrunc(Known
.Zero
.getBitWidth());
3066 // If we demand the source vector then add its common known bits, ensuring
3067 // that we don't demand the inserted element.
3068 APInt VectorElts
= DemandedElts
& ~(APInt::getOneBitSet(NumElts
, EltIdx
));
3070 Known2
= computeKnownBits(InVec
, VectorElts
, Depth
+ 1);
3071 Known
.One
&= Known2
.One
;
3072 Known
.Zero
&= Known2
.Zero
;
3075 // Unknown element index, so ignore DemandedElts and demand them all.
3076 Known
= computeKnownBits(InVec
, Depth
+ 1);
3077 Known2
= computeKnownBits(InVal
, Depth
+ 1);
3078 Known
.One
&= Known2
.One
.zextOrTrunc(Known
.One
.getBitWidth());
3079 Known
.Zero
&= Known2
.Zero
.zextOrTrunc(Known
.Zero
.getBitWidth());
3083 case ISD::BITREVERSE
: {
3084 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3085 Known
.Zero
= Known2
.Zero
.reverseBits();
3086 Known
.One
= Known2
.One
.reverseBits();
3090 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3091 Known
.Zero
= Known2
.Zero
.byteSwap();
3092 Known
.One
= Known2
.One
.byteSwap();
3096 Known2
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3098 // If the source's MSB is zero then we know the rest of the bits already.
3099 if (Known2
.isNonNegative()) {
3100 Known
.Zero
= Known2
.Zero
;
3101 Known
.One
= Known2
.One
;
3105 // We only know that the absolute values's MSB will be zero iff there is
3106 // a set bit that isn't the sign bit (otherwise it could be INT_MIN).
3107 Known2
.One
.clearSignBit();
3108 if (Known2
.One
.getBoolValue()) {
3109 Known
.Zero
= APInt::getSignMask(BitWidth
);
3115 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3116 Known2
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
3118 // UMIN - we know that the result will have the maximum of the
3119 // known zero leading bits of the inputs.
3120 unsigned LeadZero
= Known
.countMinLeadingZeros();
3121 LeadZero
= std::max(LeadZero
, Known2
.countMinLeadingZeros());
3123 Known
.Zero
&= Known2
.Zero
;
3124 Known
.One
&= Known2
.One
;
3125 Known
.Zero
.setHighBits(LeadZero
);
3129 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3130 Known2
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
3132 // UMAX - we know that the result will have the maximum of the
3133 // known one leading bits of the inputs.
3134 unsigned LeadOne
= Known
.countMinLeadingOnes();
3135 LeadOne
= std::max(LeadOne
, Known2
.countMinLeadingOnes());
3137 Known
.Zero
&= Known2
.Zero
;
3138 Known
.One
&= Known2
.One
;
3139 Known
.One
.setHighBits(LeadOne
);
3144 // If we have a clamp pattern, we know that the number of sign bits will be
3145 // the minimum of the clamp min/max range.
3146 bool IsMax
= (Opcode
== ISD::SMAX
);
3147 ConstantSDNode
*CstLow
= nullptr, *CstHigh
= nullptr;
3148 if ((CstLow
= isConstOrDemandedConstSplat(Op
.getOperand(1), DemandedElts
)))
3149 if (Op
.getOperand(0).getOpcode() == (IsMax
? ISD::SMIN
: ISD::SMAX
))
3150 CstHigh
= isConstOrDemandedConstSplat(Op
.getOperand(0).getOperand(1),
3152 if (CstLow
&& CstHigh
) {
3154 std::swap(CstLow
, CstHigh
);
3156 const APInt
&ValueLow
= CstLow
->getAPIntValue();
3157 const APInt
&ValueHigh
= CstHigh
->getAPIntValue();
3158 if (ValueLow
.sle(ValueHigh
)) {
3159 unsigned LowSignBits
= ValueLow
.getNumSignBits();
3160 unsigned HighSignBits
= ValueHigh
.getNumSignBits();
3161 unsigned MinSignBits
= std::min(LowSignBits
, HighSignBits
);
3162 if (ValueLow
.isNegative() && ValueHigh
.isNegative()) {
3163 Known
.One
.setHighBits(MinSignBits
);
3166 if (ValueLow
.isNonNegative() && ValueHigh
.isNonNegative()) {
3167 Known
.Zero
.setHighBits(MinSignBits
);
3173 // Fallback - just get the shared known bits of the operands.
3174 Known
= computeKnownBits(Op
.getOperand(0), DemandedElts
, Depth
+ 1);
3175 if (Known
.isUnknown()) break; // Early-out
3176 Known2
= computeKnownBits(Op
.getOperand(1), DemandedElts
, Depth
+ 1);
3177 Known
.Zero
&= Known2
.Zero
;
3178 Known
.One
&= Known2
.One
;
3181 case ISD::FrameIndex
:
3182 case ISD::TargetFrameIndex
:
3183 TLI
->computeKnownBitsForFrameIndex(Op
, Known
, DemandedElts
, *this, Depth
);
3187 if (Opcode
< ISD::BUILTIN_OP_END
)
3190 case ISD::INTRINSIC_WO_CHAIN
:
3191 case ISD::INTRINSIC_W_CHAIN
:
3192 case ISD::INTRINSIC_VOID
:
3193 // Allow the target to implement this method for its nodes.
3194 TLI
->computeKnownBitsForTargetNode(Op
, Known
, DemandedElts
, *this, Depth
);
3198 assert(!Known
.hasConflict() && "Bits known to be one AND zero?");
3202 SelectionDAG::OverflowKind
SelectionDAG::computeOverflowKind(SDValue N0
,
3204 // X + 0 never overflow
3205 if (isNullConstant(N1
))
3208 KnownBits N1Known
= computeKnownBits(N1
);
3209 if (N1Known
.Zero
.getBoolValue()) {
3210 KnownBits N0Known
= computeKnownBits(N0
);
3213 (void)(~N0Known
.Zero
).uadd_ov(~N1Known
.Zero
, overflow
);
3218 // mulhi + 1 never overflow
3219 if (N0
.getOpcode() == ISD::UMUL_LOHI
&& N0
.getResNo() == 1 &&
3220 (~N1Known
.Zero
& 0x01) == ~N1Known
.Zero
)
3223 if (N1
.getOpcode() == ISD::UMUL_LOHI
&& N1
.getResNo() == 1) {
3224 KnownBits N0Known
= computeKnownBits(N0
);
3226 if ((~N0Known
.Zero
& 0x01) == ~N0Known
.Zero
)
3230 return OFK_Sometime
;
3233 bool SelectionDAG::isKnownToBeAPowerOfTwo(SDValue Val
) const {
3234 EVT OpVT
= Val
.getValueType();
3235 unsigned BitWidth
= OpVT
.getScalarSizeInBits();
3237 // Is the constant a known power of 2?
3238 if (ConstantSDNode
*Const
= dyn_cast
<ConstantSDNode
>(Val
))
3239 return Const
->getAPIntValue().zextOrTrunc(BitWidth
).isPowerOf2();
3241 // A left-shift of a constant one will have exactly one bit set because
3242 // shifting the bit off the end is undefined.
3243 if (Val
.getOpcode() == ISD::SHL
) {
3244 auto *C
= isConstOrConstSplat(Val
.getOperand(0));
3245 if (C
&& C
->getAPIntValue() == 1)
3249 // Similarly, a logical right-shift of a constant sign-bit will have exactly
3251 if (Val
.getOpcode() == ISD::SRL
) {
3252 auto *C
= isConstOrConstSplat(Val
.getOperand(0));
3253 if (C
&& C
->getAPIntValue().isSignMask())
3257 // Are all operands of a build vector constant powers of two?
3258 if (Val
.getOpcode() == ISD::BUILD_VECTOR
)
3259 if (llvm::all_of(Val
->ops(), [BitWidth
](SDValue E
) {
3260 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(E
))
3261 return C
->getAPIntValue().zextOrTrunc(BitWidth
).isPowerOf2();
3266 // More could be done here, though the above checks are enough
3267 // to handle some common cases.
3269 // Fall back to computeKnownBits to catch other known cases.
3270 KnownBits Known
= computeKnownBits(Val
);
3271 return (Known
.countMaxPopulation() == 1) && (Known
.countMinPopulation() == 1);
3274 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op
, unsigned Depth
) const {
3275 EVT VT
= Op
.getValueType();
3276 APInt DemandedElts
= VT
.isVector()
3277 ? APInt::getAllOnesValue(VT
.getVectorNumElements())
3279 return ComputeNumSignBits(Op
, DemandedElts
, Depth
);
3282 unsigned SelectionDAG::ComputeNumSignBits(SDValue Op
, const APInt
&DemandedElts
,
3283 unsigned Depth
) const {
3284 EVT VT
= Op
.getValueType();
3285 assert((VT
.isInteger() || VT
.isFloatingPoint()) && "Invalid VT!");
3286 unsigned VTBits
= VT
.getScalarSizeInBits();
3287 unsigned NumElts
= DemandedElts
.getBitWidth();
3289 unsigned FirstAnswer
= 1;
3291 if (auto *C
= dyn_cast
<ConstantSDNode
>(Op
)) {
3292 const APInt
&Val
= C
->getAPIntValue();
3293 return Val
.getNumSignBits();
3297 return 1; // Limit search depth.
3300 return 1; // No demanded elts, better to assume we don't know anything.
3302 unsigned Opcode
= Op
.getOpcode();
3305 case ISD::AssertSext
:
3306 Tmp
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT().getSizeInBits();
3307 return VTBits
-Tmp
+1;
3308 case ISD::AssertZext
:
3309 Tmp
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT().getSizeInBits();
3312 case ISD::BUILD_VECTOR
:
3314 for (unsigned i
= 0, e
= Op
.getNumOperands(); (i
< e
) && (Tmp
> 1); ++i
) {
3315 if (!DemandedElts
[i
])
3318 SDValue SrcOp
= Op
.getOperand(i
);
3319 Tmp2
= ComputeNumSignBits(Op
.getOperand(i
), Depth
+ 1);
3321 // BUILD_VECTOR can implicitly truncate sources, we must handle this.
3322 if (SrcOp
.getValueSizeInBits() != VTBits
) {
3323 assert(SrcOp
.getValueSizeInBits() > VTBits
&&
3324 "Expected BUILD_VECTOR implicit truncation");
3325 unsigned ExtraBits
= SrcOp
.getValueSizeInBits() - VTBits
;
3326 Tmp2
= (Tmp2
> ExtraBits
? Tmp2
- ExtraBits
: 1);
3328 Tmp
= std::min(Tmp
, Tmp2
);
3332 case ISD::VECTOR_SHUFFLE
: {
3333 // Collect the minimum number of sign bits that are shared by every vector
3334 // element referenced by the shuffle.
3335 APInt
DemandedLHS(NumElts
, 0), DemandedRHS(NumElts
, 0);
3336 const ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(Op
);
3337 assert(NumElts
== SVN
->getMask().size() && "Unexpected vector size");
3338 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
3339 int M
= SVN
->getMaskElt(i
);
3340 if (!DemandedElts
[i
])
3342 // For UNDEF elements, we don't know anything about the common state of
3343 // the shuffle result.
3346 if ((unsigned)M
< NumElts
)
3347 DemandedLHS
.setBit((unsigned)M
% NumElts
);
3349 DemandedRHS
.setBit((unsigned)M
% NumElts
);
3351 Tmp
= std::numeric_limits
<unsigned>::max();
3353 Tmp
= ComputeNumSignBits(Op
.getOperand(0), DemandedLHS
, Depth
+ 1);
3354 if (!!DemandedRHS
) {
3355 Tmp2
= ComputeNumSignBits(Op
.getOperand(1), DemandedRHS
, Depth
+ 1);
3356 Tmp
= std::min(Tmp
, Tmp2
);
3358 // If we don't know anything, early out and try computeKnownBits fall-back.
3361 assert(Tmp
<= VTBits
&& "Failed to determine minimum sign bits");
3365 case ISD::BITCAST
: {
3366 SDValue N0
= Op
.getOperand(0);
3367 EVT SrcVT
= N0
.getValueType();
3368 unsigned SrcBits
= SrcVT
.getScalarSizeInBits();
3370 // Ignore bitcasts from unsupported types..
3371 if (!(SrcVT
.isInteger() || SrcVT
.isFloatingPoint()))
3374 // Fast handling of 'identity' bitcasts.
3375 if (VTBits
== SrcBits
)
3376 return ComputeNumSignBits(N0
, DemandedElts
, Depth
+ 1);
3378 bool IsLE
= getDataLayout().isLittleEndian();
3380 // Bitcast 'large element' scalar/vector to 'small element' vector.
3381 if ((SrcBits
% VTBits
) == 0) {
3382 assert(VT
.isVector() && "Expected bitcast to vector");
3384 unsigned Scale
= SrcBits
/ VTBits
;
3385 APInt
SrcDemandedElts(NumElts
/ Scale
, 0);
3386 for (unsigned i
= 0; i
!= NumElts
; ++i
)
3387 if (DemandedElts
[i
])
3388 SrcDemandedElts
.setBit(i
/ Scale
);
3390 // Fast case - sign splat can be simply split across the small elements.
3391 Tmp
= ComputeNumSignBits(N0
, SrcDemandedElts
, Depth
+ 1);
3395 // Slow case - determine how far the sign extends into each sub-element.
3397 for (unsigned i
= 0; i
!= NumElts
; ++i
)
3398 if (DemandedElts
[i
]) {
3399 unsigned SubOffset
= i
% Scale
;
3400 SubOffset
= (IsLE
? ((Scale
- 1) - SubOffset
) : SubOffset
);
3401 SubOffset
= SubOffset
* VTBits
;
3402 if (Tmp
<= SubOffset
)
3404 Tmp2
= std::min(Tmp2
, Tmp
- SubOffset
);
3411 case ISD::SIGN_EXTEND
:
3412 Tmp
= VTBits
- Op
.getOperand(0).getScalarValueSizeInBits();
3413 return ComputeNumSignBits(Op
.getOperand(0), DemandedElts
, Depth
+1) + Tmp
;
3414 case ISD::SIGN_EXTEND_INREG
:
3415 // Max of the input and what this extends.
3416 Tmp
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT().getScalarSizeInBits();
3418 Tmp2
= ComputeNumSignBits(Op
.getOperand(0), DemandedElts
, Depth
+1);
3419 return std::max(Tmp
, Tmp2
);
3420 case ISD::SIGN_EXTEND_VECTOR_INREG
: {
3421 SDValue Src
= Op
.getOperand(0);
3422 EVT SrcVT
= Src
.getValueType();
3423 APInt DemandedSrcElts
= DemandedElts
.zextOrSelf(SrcVT
.getVectorNumElements());
3424 Tmp
= VTBits
- SrcVT
.getScalarSizeInBits();
3425 return ComputeNumSignBits(Src
, DemandedSrcElts
, Depth
+1) + Tmp
;
3429 Tmp
= ComputeNumSignBits(Op
.getOperand(0), DemandedElts
, Depth
+1);
3430 // SRA X, C -> adds C sign bits.
3431 if (ConstantSDNode
*C
=
3432 isConstOrDemandedConstSplat(Op
.getOperand(1), DemandedElts
)) {
3433 APInt ShiftVal
= C
->getAPIntValue();
3435 Tmp
= ShiftVal
.uge(VTBits
) ? VTBits
: ShiftVal
.getZExtValue();
3439 if (ConstantSDNode
*C
=
3440 isConstOrDemandedConstSplat(Op
.getOperand(1), DemandedElts
)) {
3441 // shl destroys sign bits.
3442 Tmp
= ComputeNumSignBits(Op
.getOperand(0), DemandedElts
, Depth
+1);
3443 if (C
->getAPIntValue().uge(VTBits
) || // Bad shift.
3444 C
->getAPIntValue().uge(Tmp
)) break; // Shifted all sign bits out.
3445 return Tmp
- C
->getZExtValue();
3450 case ISD::XOR
: // NOT is handled here.
3451 // Logical binary ops preserve the number of sign bits at the worst.
3452 Tmp
= ComputeNumSignBits(Op
.getOperand(0), DemandedElts
, Depth
+1);
3454 Tmp2
= ComputeNumSignBits(Op
.getOperand(1), DemandedElts
, Depth
+1);
3455 FirstAnswer
= std::min(Tmp
, Tmp2
);
3456 // We computed what we know about the sign bits as our first
3457 // answer. Now proceed to the generic code that uses
3458 // computeKnownBits, and pick whichever answer is better.
3464 Tmp
= ComputeNumSignBits(Op
.getOperand(1), DemandedElts
, Depth
+1);
3465 if (Tmp
== 1) return 1; // Early out.
3466 Tmp2
= ComputeNumSignBits(Op
.getOperand(2), DemandedElts
, Depth
+1);
3467 return std::min(Tmp
, Tmp2
);
3468 case ISD::SELECT_CC
:
3469 Tmp
= ComputeNumSignBits(Op
.getOperand(2), DemandedElts
, Depth
+1);
3470 if (Tmp
== 1) return 1; // Early out.
3471 Tmp2
= ComputeNumSignBits(Op
.getOperand(3), DemandedElts
, Depth
+1);
3472 return std::min(Tmp
, Tmp2
);
3476 // If we have a clamp pattern, we know that the number of sign bits will be
3477 // the minimum of the clamp min/max range.
3478 bool IsMax
= (Opcode
== ISD::SMAX
);
3479 ConstantSDNode
*CstLow
= nullptr, *CstHigh
= nullptr;
3480 if ((CstLow
= isConstOrDemandedConstSplat(Op
.getOperand(1), DemandedElts
)))
3481 if (Op
.getOperand(0).getOpcode() == (IsMax
? ISD::SMIN
: ISD::SMAX
))
3482 CstHigh
= isConstOrDemandedConstSplat(Op
.getOperand(0).getOperand(1),
3484 if (CstLow
&& CstHigh
) {
3486 std::swap(CstLow
, CstHigh
);
3487 if (CstLow
->getAPIntValue().sle(CstHigh
->getAPIntValue())) {
3488 Tmp
= CstLow
->getAPIntValue().getNumSignBits();
3489 Tmp2
= CstHigh
->getAPIntValue().getNumSignBits();
3490 return std::min(Tmp
, Tmp2
);
3494 // Fallback - just get the minimum number of sign bits of the operands.
3495 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+ 1);
3497 return 1; // Early out.
3498 Tmp2
= ComputeNumSignBits(Op
.getOperand(1), Depth
+ 1);
3499 return std::min(Tmp
, Tmp2
);
3503 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+ 1);
3505 return 1; // Early out.
3506 Tmp2
= ComputeNumSignBits(Op
.getOperand(1), Depth
+ 1);
3507 return std::min(Tmp
, Tmp2
);
3514 if (Op
.getResNo() != 1)
3516 // The boolean result conforms to getBooleanContents. Fall through.
3517 // If setcc returns 0/-1, all bits are sign bits.
3518 // We know that we have an integer-based boolean since these operations
3519 // are only available for integer.
3520 if (TLI
->getBooleanContents(VT
.isVector(), false) ==
3521 TargetLowering::ZeroOrNegativeOneBooleanContent
)
3525 // If setcc returns 0/-1, all bits are sign bits.
3526 if (TLI
->getBooleanContents(Op
.getOperand(0).getValueType()) ==
3527 TargetLowering::ZeroOrNegativeOneBooleanContent
)
3532 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
3533 unsigned RotAmt
= C
->getAPIntValue().urem(VTBits
);
3535 // Handle rotate right by N like a rotate left by 32-N.
3536 if (Opcode
== ISD::ROTR
)
3537 RotAmt
= (VTBits
- RotAmt
) % VTBits
;
3539 // If we aren't rotating out all of the known-in sign bits, return the
3540 // number that are left. This handles rotl(sext(x), 1) for example.
3541 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
3542 if (Tmp
> (RotAmt
+ 1)) return (Tmp
- RotAmt
);
3547 // Add can have at most one carry bit. Thus we know that the output
3548 // is, at worst, one more bit than the inputs.
3549 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
3550 if (Tmp
== 1) return 1; // Early out.
3552 // Special case decrementing a value (ADD X, -1):
3553 if (ConstantSDNode
*CRHS
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
3554 if (CRHS
->isAllOnesValue()) {
3555 KnownBits Known
= computeKnownBits(Op
.getOperand(0), Depth
+1);
3557 // If the input is known to be 0 or 1, the output is 0/-1, which is all
3559 if ((Known
.Zero
| 1).isAllOnesValue())
3562 // If we are subtracting one from a positive number, there is no carry
3563 // out of the result.
3564 if (Known
.isNonNegative())
3568 Tmp2
= ComputeNumSignBits(Op
.getOperand(1), Depth
+1);
3569 if (Tmp2
== 1) return 1;
3570 return std::min(Tmp
, Tmp2
)-1;
3573 Tmp2
= ComputeNumSignBits(Op
.getOperand(1), Depth
+1);
3574 if (Tmp2
== 1) return 1;
3577 if (ConstantSDNode
*CLHS
= isConstOrConstSplat(Op
.getOperand(0)))
3578 if (CLHS
->isNullValue()) {
3579 KnownBits Known
= computeKnownBits(Op
.getOperand(1), Depth
+1);
3580 // If the input is known to be 0 or 1, the output is 0/-1, which is all
3582 if ((Known
.Zero
| 1).isAllOnesValue())
3585 // If the input is known to be positive (the sign bit is known clear),
3586 // the output of the NEG has the same number of sign bits as the input.
3587 if (Known
.isNonNegative())
3590 // Otherwise, we treat this like a SUB.
3593 // Sub can have at most one carry bit. Thus we know that the output
3594 // is, at worst, one more bit than the inputs.
3595 Tmp
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
3596 if (Tmp
== 1) return 1; // Early out.
3597 return std::min(Tmp
, Tmp2
)-1;
3598 case ISD::TRUNCATE
: {
3599 // Check if the sign bits of source go down as far as the truncated value.
3600 unsigned NumSrcBits
= Op
.getOperand(0).getScalarValueSizeInBits();
3601 unsigned NumSrcSignBits
= ComputeNumSignBits(Op
.getOperand(0), Depth
+ 1);
3602 if (NumSrcSignBits
> (NumSrcBits
- VTBits
))
3603 return NumSrcSignBits
- (NumSrcBits
- VTBits
);
3606 case ISD::EXTRACT_ELEMENT
: {
3607 const int KnownSign
= ComputeNumSignBits(Op
.getOperand(0), Depth
+1);
3608 const int BitWidth
= Op
.getValueSizeInBits();
3609 const int Items
= Op
.getOperand(0).getValueSizeInBits() / BitWidth
;
3611 // Get reverse index (starting from 1), Op1 value indexes elements from
3612 // little end. Sign starts at big end.
3613 const int rIndex
= Items
- 1 - Op
.getConstantOperandVal(1);
3615 // If the sign portion ends in our element the subtraction gives correct
3616 // result. Otherwise it gives either negative or > bitwidth result
3617 return std::max(std::min(KnownSign
- rIndex
* BitWidth
, BitWidth
), 0);
3619 case ISD::INSERT_VECTOR_ELT
: {
3620 SDValue InVec
= Op
.getOperand(0);
3621 SDValue InVal
= Op
.getOperand(1);
3622 SDValue EltNo
= Op
.getOperand(2);
3623 unsigned NumElts
= InVec
.getValueType().getVectorNumElements();
3625 ConstantSDNode
*CEltNo
= dyn_cast
<ConstantSDNode
>(EltNo
);
3626 if (CEltNo
&& CEltNo
->getAPIntValue().ult(NumElts
)) {
3627 // If we know the element index, split the demand between the
3628 // source vector and the inserted element.
3629 unsigned EltIdx
= CEltNo
->getZExtValue();
3631 // If we demand the inserted element then get its sign bits.
3632 Tmp
= std::numeric_limits
<unsigned>::max();
3633 if (DemandedElts
[EltIdx
]) {
3634 // TODO - handle implicit truncation of inserted elements.
3635 if (InVal
.getScalarValueSizeInBits() != VTBits
)
3637 Tmp
= ComputeNumSignBits(InVal
, Depth
+ 1);
3640 // If we demand the source vector then get its sign bits, and determine
3642 APInt VectorElts
= DemandedElts
;
3643 VectorElts
.clearBit(EltIdx
);
3645 Tmp2
= ComputeNumSignBits(InVec
, VectorElts
, Depth
+ 1);
3646 Tmp
= std::min(Tmp
, Tmp2
);
3649 // Unknown element index, so ignore DemandedElts and demand them all.
3650 Tmp
= ComputeNumSignBits(InVec
, Depth
+ 1);
3651 Tmp2
= ComputeNumSignBits(InVal
, Depth
+ 1);
3652 Tmp
= std::min(Tmp
, Tmp2
);
3654 assert(Tmp
<= VTBits
&& "Failed to determine minimum sign bits");
3657 case ISD::EXTRACT_VECTOR_ELT
: {
3658 SDValue InVec
= Op
.getOperand(0);
3659 SDValue EltNo
= Op
.getOperand(1);
3660 EVT VecVT
= InVec
.getValueType();
3661 const unsigned BitWidth
= Op
.getValueSizeInBits();
3662 const unsigned EltBitWidth
= Op
.getOperand(0).getScalarValueSizeInBits();
3663 const unsigned NumSrcElts
= VecVT
.getVectorNumElements();
3665 // If BitWidth > EltBitWidth the value is anyext:ed, and we do not know
3666 // anything about sign bits. But if the sizes match we can derive knowledge
3667 // about sign bits from the vector operand.
3668 if (BitWidth
!= EltBitWidth
)
3671 // If we know the element index, just demand that vector element, else for
3672 // an unknown element index, ignore DemandedElts and demand them all.
3673 APInt DemandedSrcElts
= APInt::getAllOnesValue(NumSrcElts
);
3674 ConstantSDNode
*ConstEltNo
= dyn_cast
<ConstantSDNode
>(EltNo
);
3675 if (ConstEltNo
&& ConstEltNo
->getAPIntValue().ult(NumSrcElts
))
3677 APInt::getOneBitSet(NumSrcElts
, ConstEltNo
->getZExtValue());
3679 return ComputeNumSignBits(InVec
, DemandedSrcElts
, Depth
+ 1);
3681 case ISD::EXTRACT_SUBVECTOR
: {
3682 // If we know the element index, just demand that subvector elements,
3683 // otherwise demand them all.
3684 SDValue Src
= Op
.getOperand(0);
3685 ConstantSDNode
*SubIdx
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
3686 unsigned NumSrcElts
= Src
.getValueType().getVectorNumElements();
3687 if (SubIdx
&& SubIdx
->getAPIntValue().ule(NumSrcElts
- NumElts
)) {
3688 // Offset the demanded elts by the subvector index.
3689 uint64_t Idx
= SubIdx
->getZExtValue();
3690 APInt DemandedSrc
= DemandedElts
.zextOrSelf(NumSrcElts
).shl(Idx
);
3691 return ComputeNumSignBits(Src
, DemandedSrc
, Depth
+ 1);
3693 return ComputeNumSignBits(Src
, Depth
+ 1);
3695 case ISD::CONCAT_VECTORS
: {
3696 // Determine the minimum number of sign bits across all demanded
3697 // elts of the input vectors. Early out if the result is already 1.
3698 Tmp
= std::numeric_limits
<unsigned>::max();
3699 EVT SubVectorVT
= Op
.getOperand(0).getValueType();
3700 unsigned NumSubVectorElts
= SubVectorVT
.getVectorNumElements();
3701 unsigned NumSubVectors
= Op
.getNumOperands();
3702 for (unsigned i
= 0; (i
< NumSubVectors
) && (Tmp
> 1); ++i
) {
3703 APInt DemandedSub
= DemandedElts
.lshr(i
* NumSubVectorElts
);
3704 DemandedSub
= DemandedSub
.trunc(NumSubVectorElts
);
3707 Tmp2
= ComputeNumSignBits(Op
.getOperand(i
), DemandedSub
, Depth
+ 1);
3708 Tmp
= std::min(Tmp
, Tmp2
);
3710 assert(Tmp
<= VTBits
&& "Failed to determine minimum sign bits");
3713 case ISD::INSERT_SUBVECTOR
: {
3714 // If we know the element index, demand any elements from the subvector and
3715 // the remainder from the src its inserted into, otherwise demand them all.
3716 SDValue Src
= Op
.getOperand(0);
3717 SDValue Sub
= Op
.getOperand(1);
3718 auto *SubIdx
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
3719 unsigned NumSubElts
= Sub
.getValueType().getVectorNumElements();
3720 if (SubIdx
&& SubIdx
->getAPIntValue().ule(NumElts
- NumSubElts
)) {
3721 Tmp
= std::numeric_limits
<unsigned>::max();
3722 uint64_t Idx
= SubIdx
->getZExtValue();
3723 APInt DemandedSubElts
= DemandedElts
.extractBits(NumSubElts
, Idx
);
3724 if (!!DemandedSubElts
) {
3725 Tmp
= ComputeNumSignBits(Sub
, DemandedSubElts
, Depth
+ 1);
3726 if (Tmp
== 1) return 1; // early-out
3728 APInt SubMask
= APInt::getBitsSet(NumElts
, Idx
, Idx
+ NumSubElts
);
3729 APInt DemandedSrcElts
= DemandedElts
& ~SubMask
;
3730 if (!!DemandedSrcElts
) {
3731 Tmp2
= ComputeNumSignBits(Src
, DemandedSrcElts
, Depth
+ 1);
3732 Tmp
= std::min(Tmp
, Tmp2
);
3734 assert(Tmp
<= VTBits
&& "Failed to determine minimum sign bits");
3738 // Not able to determine the index so just assume worst case.
3739 Tmp
= ComputeNumSignBits(Sub
, Depth
+ 1);
3740 if (Tmp
== 1) return 1; // early-out
3741 Tmp2
= ComputeNumSignBits(Src
, Depth
+ 1);
3742 Tmp
= std::min(Tmp
, Tmp2
);
3743 assert(Tmp
<= VTBits
&& "Failed to determine minimum sign bits");
3748 // If we are looking at the loaded value of the SDNode.
3749 if (Op
.getResNo() == 0) {
3750 // Handle LOADX separately here. EXTLOAD case will fallthrough.
3751 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(Op
)) {
3752 unsigned ExtType
= LD
->getExtensionType();
3755 case ISD::SEXTLOAD
: // '17' bits known
3756 Tmp
= LD
->getMemoryVT().getScalarSizeInBits();
3757 return VTBits
-Tmp
+1;
3758 case ISD::ZEXTLOAD
: // '16' bits known
3759 Tmp
= LD
->getMemoryVT().getScalarSizeInBits();
3765 // Allow the target to implement this method for its nodes.
3766 if (Opcode
>= ISD::BUILTIN_OP_END
||
3767 Opcode
== ISD::INTRINSIC_WO_CHAIN
||
3768 Opcode
== ISD::INTRINSIC_W_CHAIN
||
3769 Opcode
== ISD::INTRINSIC_VOID
) {
3771 TLI
->ComputeNumSignBitsForTargetNode(Op
, DemandedElts
, *this, Depth
);
3773 FirstAnswer
= std::max(FirstAnswer
, NumBits
);
3776 // Finally, if we can prove that the top bits of the result are 0's or 1's,
3777 // use this information.
3778 KnownBits Known
= computeKnownBits(Op
, DemandedElts
, Depth
);
3781 if (Known
.isNonNegative()) { // sign bit is 0
3783 } else if (Known
.isNegative()) { // sign bit is 1;
3790 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
3791 // the number of identical bits in the top of the input value.
3793 Mask
<<= Mask
.getBitWidth()-VTBits
;
3794 // Return # leading zeros. We use 'min' here in case Val was zero before
3795 // shifting. We don't want to return '64' as for an i32 "0".
3796 return std::max(FirstAnswer
, std::min(VTBits
, Mask
.countLeadingZeros()));
3799 bool SelectionDAG::isBaseWithConstantOffset(SDValue Op
) const {
3800 if ((Op
.getOpcode() != ISD::ADD
&& Op
.getOpcode() != ISD::OR
) ||
3801 !isa
<ConstantSDNode
>(Op
.getOperand(1)))
3804 if (Op
.getOpcode() == ISD::OR
&&
3805 !MaskedValueIsZero(Op
.getOperand(0),
3806 cast
<ConstantSDNode
>(Op
.getOperand(1))->getAPIntValue()))
3812 bool SelectionDAG::isKnownNeverNaN(SDValue Op
, bool SNaN
, unsigned Depth
) const {
3813 // If we're told that NaNs won't happen, assume they won't.
3814 if (getTarget().Options
.NoNaNsFPMath
|| Op
->getFlags().hasNoNaNs())
3818 return false; // Limit search depth.
3820 // TODO: Handle vectors.
3821 // If the value is a constant, we can obviously see if it is a NaN or not.
3822 if (const ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(Op
)) {
3823 return !C
->getValueAPF().isNaN() ||
3824 (SNaN
&& !C
->getValueAPF().isSignaling());
3827 unsigned Opcode
= Op
.getOpcode();
3838 // TODO: Need isKnownNeverInfinity
3841 case ISD::FCANONICALIZE
:
3849 case ISD::FNEARBYINT
: {
3852 return isKnownNeverNaN(Op
.getOperand(0), SNaN
, Depth
+ 1);
3856 case ISD::FCOPYSIGN
: {
3857 return isKnownNeverNaN(Op
.getOperand(0), SNaN
, Depth
+ 1);
3860 return isKnownNeverNaN(Op
.getOperand(1), SNaN
, Depth
+ 1) &&
3861 isKnownNeverNaN(Op
.getOperand(2), SNaN
, Depth
+ 1);
3862 case ISD::FP_EXTEND
:
3863 case ISD::FP_ROUND
: {
3866 return isKnownNeverNaN(Op
.getOperand(0), SNaN
, Depth
+ 1);
3868 case ISD::SINT_TO_FP
:
3869 case ISD::UINT_TO_FP
:
3875 return isKnownNeverNaN(Op
.getOperand(0), SNaN
, Depth
+ 1) &&
3876 isKnownNeverNaN(Op
.getOperand(1), SNaN
, Depth
+ 1) &&
3877 isKnownNeverNaN(Op
.getOperand(2), SNaN
, Depth
+ 1);
3879 case ISD::FSQRT
: // Need is known positive
3887 // TODO: Refine on operand
3891 case ISD::FMAXNUM
: {
3892 // Only one needs to be known not-nan, since it will be returned if the
3893 // other ends up being one.
3894 return isKnownNeverNaN(Op
.getOperand(0), SNaN
, Depth
+ 1) ||
3895 isKnownNeverNaN(Op
.getOperand(1), SNaN
, Depth
+ 1);
3897 case ISD::FMINNUM_IEEE
:
3898 case ISD::FMAXNUM_IEEE
: {
3901 // This can return a NaN if either operand is an sNaN, or if both operands
3903 return (isKnownNeverNaN(Op
.getOperand(0), false, Depth
+ 1) &&
3904 isKnownNeverSNaN(Op
.getOperand(1), Depth
+ 1)) ||
3905 (isKnownNeverNaN(Op
.getOperand(1), false, Depth
+ 1) &&
3906 isKnownNeverSNaN(Op
.getOperand(0), Depth
+ 1));
3909 case ISD::FMAXIMUM
: {
3910 // TODO: Does this quiet or return the origina NaN as-is?
3911 return isKnownNeverNaN(Op
.getOperand(0), SNaN
, Depth
+ 1) &&
3912 isKnownNeverNaN(Op
.getOperand(1), SNaN
, Depth
+ 1);
3914 case ISD::EXTRACT_VECTOR_ELT
: {
3915 return isKnownNeverNaN(Op
.getOperand(0), SNaN
, Depth
+ 1);
3918 if (Opcode
>= ISD::BUILTIN_OP_END
||
3919 Opcode
== ISD::INTRINSIC_WO_CHAIN
||
3920 Opcode
== ISD::INTRINSIC_W_CHAIN
||
3921 Opcode
== ISD::INTRINSIC_VOID
) {
3922 return TLI
->isKnownNeverNaNForTargetNode(Op
, *this, SNaN
, Depth
);
3929 bool SelectionDAG::isKnownNeverZeroFloat(SDValue Op
) const {
3930 assert(Op
.getValueType().isFloatingPoint() &&
3931 "Floating point type expected");
3933 // If the value is a constant, we can obviously see if it is a zero or not.
3934 // TODO: Add BuildVector support.
3935 if (const ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(Op
))
3936 return !C
->isZero();
3940 bool SelectionDAG::isKnownNeverZero(SDValue Op
) const {
3941 assert(!Op
.getValueType().isFloatingPoint() &&
3942 "Floating point types unsupported - use isKnownNeverZeroFloat");
3944 // If the value is a constant, we can obviously see if it is a zero or not.
3945 if (ISD::matchUnaryPredicate(
3946 Op
, [](ConstantSDNode
*C
) { return !C
->isNullValue(); }))
3949 // TODO: Recognize more cases here.
3950 switch (Op
.getOpcode()) {
3953 if (isKnownNeverZero(Op
.getOperand(1)) ||
3954 isKnownNeverZero(Op
.getOperand(0)))
3962 bool SelectionDAG::isEqualTo(SDValue A
, SDValue B
) const {
3963 // Check the obvious case.
3964 if (A
== B
) return true;
3966 // For for negative and positive zero.
3967 if (const ConstantFPSDNode
*CA
= dyn_cast
<ConstantFPSDNode
>(A
))
3968 if (const ConstantFPSDNode
*CB
= dyn_cast
<ConstantFPSDNode
>(B
))
3969 if (CA
->isZero() && CB
->isZero()) return true;
3971 // Otherwise they may not be equal.
3975 // FIXME: unify with llvm::haveNoCommonBitsSet.
3976 // FIXME: could also handle masked merge pattern (X & ~M) op (Y & M)
3977 bool SelectionDAG::haveNoCommonBitsSet(SDValue A
, SDValue B
) const {
3978 assert(A
.getValueType() == B
.getValueType() &&
3979 "Values must have the same type");
3980 return (computeKnownBits(A
).Zero
| computeKnownBits(B
).Zero
).isAllOnesValue();
3983 static SDValue
FoldBUILD_VECTOR(const SDLoc
&DL
, EVT VT
,
3984 ArrayRef
<SDValue
> Ops
,
3985 SelectionDAG
&DAG
) {
3986 int NumOps
= Ops
.size();
3987 assert(NumOps
!= 0 && "Can't build an empty vector!");
3988 assert(VT
.getVectorNumElements() == (unsigned)NumOps
&&
3989 "Incorrect element count in BUILD_VECTOR!");
3991 // BUILD_VECTOR of UNDEFs is UNDEF.
3992 if (llvm::all_of(Ops
, [](SDValue Op
) { return Op
.isUndef(); }))
3993 return DAG
.getUNDEF(VT
);
3995 // BUILD_VECTOR of seq extract/insert from the same vector + type is Identity.
3996 SDValue IdentitySrc
;
3997 bool IsIdentity
= true;
3998 for (int i
= 0; i
!= NumOps
; ++i
) {
3999 if (Ops
[i
].getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
4000 Ops
[i
].getOperand(0).getValueType() != VT
||
4001 (IdentitySrc
&& Ops
[i
].getOperand(0) != IdentitySrc
) ||
4002 !isa
<ConstantSDNode
>(Ops
[i
].getOperand(1)) ||
4003 cast
<ConstantSDNode
>(Ops
[i
].getOperand(1))->getAPIntValue() != i
) {
4007 IdentitySrc
= Ops
[i
].getOperand(0);
4015 static SDValue
FoldCONCAT_VECTORS(const SDLoc
&DL
, EVT VT
,
4016 ArrayRef
<SDValue
> Ops
,
4017 SelectionDAG
&DAG
) {
4018 assert(!Ops
.empty() && "Can't concatenate an empty list of vectors!");
4019 assert(llvm::all_of(Ops
,
4021 return Ops
[0].getValueType() == Op
.getValueType();
4023 "Concatenation of vectors with inconsistent value types!");
4024 assert((Ops
.size() * Ops
[0].getValueType().getVectorNumElements()) ==
4025 VT
.getVectorNumElements() &&
4026 "Incorrect element count in vector concatenation!");
4028 if (Ops
.size() == 1)
4031 // Concat of UNDEFs is UNDEF.
4032 if (llvm::all_of(Ops
, [](SDValue Op
) { return Op
.isUndef(); }))
4033 return DAG
.getUNDEF(VT
);
4035 // A CONCAT_VECTOR with all UNDEF/BUILD_VECTOR operands can be
4036 // simplified to one big BUILD_VECTOR.
4037 // FIXME: Add support for SCALAR_TO_VECTOR as well.
4038 EVT SVT
= VT
.getScalarType();
4039 SmallVector
<SDValue
, 16> Elts
;
4040 for (SDValue Op
: Ops
) {
4041 EVT OpVT
= Op
.getValueType();
4043 Elts
.append(OpVT
.getVectorNumElements(), DAG
.getUNDEF(SVT
));
4044 else if (Op
.getOpcode() == ISD::BUILD_VECTOR
)
4045 Elts
.append(Op
->op_begin(), Op
->op_end());
4050 // BUILD_VECTOR requires all inputs to be of the same type, find the
4051 // maximum type and extend them all.
4052 for (SDValue Op
: Elts
)
4053 SVT
= (SVT
.bitsLT(Op
.getValueType()) ? Op
.getValueType() : SVT
);
4055 if (SVT
.bitsGT(VT
.getScalarType()))
4056 for (SDValue
&Op
: Elts
)
4057 Op
= DAG
.getTargetLoweringInfo().isZExtFree(Op
.getValueType(), SVT
)
4058 ? DAG
.getZExtOrTrunc(Op
, DL
, SVT
)
4059 : DAG
.getSExtOrTrunc(Op
, DL
, SVT
);
4061 SDValue V
= DAG
.getBuildVector(VT
, DL
, Elts
);
4062 NewSDValueDbgMsg(V
, "New node fold concat vectors: ", &DAG
);
4066 /// Gets or creates the specified node.
4067 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
) {
4068 FoldingSetNodeID ID
;
4069 AddNodeIDNode(ID
, Opcode
, getVTList(VT
), None
);
4071 if (SDNode
*E
= FindNodeOrInsertPos(ID
, DL
, IP
))
4072 return SDValue(E
, 0);
4074 auto *N
= newSDNode
<SDNode
>(Opcode
, DL
.getIROrder(), DL
.getDebugLoc(),
4076 CSEMap
.InsertNode(N
, IP
);
4079 SDValue V
= SDValue(N
, 0);
4080 NewSDValueDbgMsg(V
, "Creating new node: ", this);
4084 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
4085 SDValue Operand
, const SDNodeFlags Flags
) {
4086 // Constant fold unary operations with an integer constant operand. Even
4087 // opaque constant will be folded, because the folding of unary operations
4088 // doesn't create new constants with different values. Nevertheless, the
4089 // opaque flag is preserved during folding to prevent future folding with
4091 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Operand
)) {
4092 const APInt
&Val
= C
->getAPIntValue();
4095 case ISD::SIGN_EXTEND
:
4096 return getConstant(Val
.sextOrTrunc(VT
.getSizeInBits()), DL
, VT
,
4097 C
->isTargetOpcode(), C
->isOpaque());
4102 case ISD::ANY_EXTEND
:
4103 case ISD::ZERO_EXTEND
:
4104 return getConstant(Val
.zextOrTrunc(VT
.getSizeInBits()), DL
, VT
,
4105 C
->isTargetOpcode(), C
->isOpaque());
4106 case ISD::UINT_TO_FP
:
4107 case ISD::SINT_TO_FP
: {
4108 APFloat
apf(EVTToAPFloatSemantics(VT
),
4109 APInt::getNullValue(VT
.getSizeInBits()));
4110 (void)apf
.convertFromAPInt(Val
,
4111 Opcode
==ISD::SINT_TO_FP
,
4112 APFloat::rmNearestTiesToEven
);
4113 return getConstantFP(apf
, DL
, VT
);
4116 if (VT
== MVT::f16
&& C
->getValueType(0) == MVT::i16
)
4117 return getConstantFP(APFloat(APFloat::IEEEhalf(), Val
), DL
, VT
);
4118 if (VT
== MVT::f32
&& C
->getValueType(0) == MVT::i32
)
4119 return getConstantFP(APFloat(APFloat::IEEEsingle(), Val
), DL
, VT
);
4120 if (VT
== MVT::f64
&& C
->getValueType(0) == MVT::i64
)
4121 return getConstantFP(APFloat(APFloat::IEEEdouble(), Val
), DL
, VT
);
4122 if (VT
== MVT::f128
&& C
->getValueType(0) == MVT::i128
)
4123 return getConstantFP(APFloat(APFloat::IEEEquad(), Val
), DL
, VT
);
4126 return getConstant(Val
.abs(), DL
, VT
, C
->isTargetOpcode(),
4128 case ISD::BITREVERSE
:
4129 return getConstant(Val
.reverseBits(), DL
, VT
, C
->isTargetOpcode(),
4132 return getConstant(Val
.byteSwap(), DL
, VT
, C
->isTargetOpcode(),
4135 return getConstant(Val
.countPopulation(), DL
, VT
, C
->isTargetOpcode(),
4138 case ISD::CTLZ_ZERO_UNDEF
:
4139 return getConstant(Val
.countLeadingZeros(), DL
, VT
, C
->isTargetOpcode(),
4142 case ISD::CTTZ_ZERO_UNDEF
:
4143 return getConstant(Val
.countTrailingZeros(), DL
, VT
, C
->isTargetOpcode(),
4145 case ISD::FP16_TO_FP
: {
4147 APFloat
FPV(APFloat::IEEEhalf(),
4148 (Val
.getBitWidth() == 16) ? Val
: Val
.trunc(16));
4150 // This can return overflow, underflow, or inexact; we don't care.
4151 // FIXME need to be more flexible about rounding mode.
4152 (void)FPV
.convert(EVTToAPFloatSemantics(VT
),
4153 APFloat::rmNearestTiesToEven
, &Ignored
);
4154 return getConstantFP(FPV
, DL
, VT
);
4159 // Constant fold unary operations with a floating point constant operand.
4160 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(Operand
)) {
4161 APFloat V
= C
->getValueAPF(); // make copy
4165 return getConstantFP(V
, DL
, VT
);
4168 return getConstantFP(V
, DL
, VT
);
4170 APFloat::opStatus fs
= V
.roundToIntegral(APFloat::rmTowardPositive
);
4171 if (fs
== APFloat::opOK
|| fs
== APFloat::opInexact
)
4172 return getConstantFP(V
, DL
, VT
);
4176 APFloat::opStatus fs
= V
.roundToIntegral(APFloat::rmTowardZero
);
4177 if (fs
== APFloat::opOK
|| fs
== APFloat::opInexact
)
4178 return getConstantFP(V
, DL
, VT
);
4182 APFloat::opStatus fs
= V
.roundToIntegral(APFloat::rmTowardNegative
);
4183 if (fs
== APFloat::opOK
|| fs
== APFloat::opInexact
)
4184 return getConstantFP(V
, DL
, VT
);
4187 case ISD::FP_EXTEND
: {
4189 // This can return overflow, underflow, or inexact; we don't care.
4190 // FIXME need to be more flexible about rounding mode.
4191 (void)V
.convert(EVTToAPFloatSemantics(VT
),
4192 APFloat::rmNearestTiesToEven
, &ignored
);
4193 return getConstantFP(V
, DL
, VT
);
4195 case ISD::FP_TO_SINT
:
4196 case ISD::FP_TO_UINT
: {
4198 APSInt
IntVal(VT
.getSizeInBits(), Opcode
== ISD::FP_TO_UINT
);
4199 // FIXME need to be more flexible about rounding mode.
4200 APFloat::opStatus s
=
4201 V
.convertToInteger(IntVal
, APFloat::rmTowardZero
, &ignored
);
4202 if (s
== APFloat::opInvalidOp
) // inexact is OK, in fact usual
4204 return getConstant(IntVal
, DL
, VT
);
4207 if (VT
== MVT::i16
&& C
->getValueType(0) == MVT::f16
)
4208 return getConstant((uint16_t)V
.bitcastToAPInt().getZExtValue(), DL
, VT
);
4209 else if (VT
== MVT::i32
&& C
->getValueType(0) == MVT::f32
)
4210 return getConstant((uint32_t)V
.bitcastToAPInt().getZExtValue(), DL
, VT
);
4211 else if (VT
== MVT::i64
&& C
->getValueType(0) == MVT::f64
)
4212 return getConstant(V
.bitcastToAPInt().getZExtValue(), DL
, VT
);
4214 case ISD::FP_TO_FP16
: {
4216 // This can return overflow, underflow, or inexact; we don't care.
4217 // FIXME need to be more flexible about rounding mode.
4218 (void)V
.convert(APFloat::IEEEhalf(),
4219 APFloat::rmNearestTiesToEven
, &Ignored
);
4220 return getConstant(V
.bitcastToAPInt(), DL
, VT
);
4225 // Constant fold unary operations with a vector integer or float operand.
4226 if (BuildVectorSDNode
*BV
= dyn_cast
<BuildVectorSDNode
>(Operand
)) {
4227 if (BV
->isConstant()) {
4230 // FIXME: Entirely reasonable to perform folding of other unary
4231 // operations here as the need arises.
4238 case ISD::FP_EXTEND
:
4239 case ISD::FP_TO_SINT
:
4240 case ISD::FP_TO_UINT
:
4242 case ISD::ANY_EXTEND
:
4243 case ISD::ZERO_EXTEND
:
4244 case ISD::SIGN_EXTEND
:
4245 case ISD::UINT_TO_FP
:
4246 case ISD::SINT_TO_FP
:
4248 case ISD::BITREVERSE
:
4251 case ISD::CTLZ_ZERO_UNDEF
:
4253 case ISD::CTTZ_ZERO_UNDEF
:
4255 SDValue Ops
= { Operand
};
4256 if (SDValue Fold
= FoldConstantVectorArithmetic(Opcode
, DL
, VT
, Ops
))
4263 unsigned OpOpcode
= Operand
.getNode()->getOpcode();
4265 case ISD::TokenFactor
:
4266 case ISD::MERGE_VALUES
:
4267 case ISD::CONCAT_VECTORS
:
4268 return Operand
; // Factor, merge or concat of one node? No need.
4269 case ISD::BUILD_VECTOR
: {
4270 // Attempt to simplify BUILD_VECTOR.
4271 SDValue Ops
[] = {Operand
};
4272 if (SDValue V
= FoldBUILD_VECTOR(DL
, VT
, Ops
, *this))
4276 case ISD::FP_ROUND
: llvm_unreachable("Invalid method to make FP_ROUND node");
4277 case ISD::FP_EXTEND
:
4278 assert(VT
.isFloatingPoint() &&
4279 Operand
.getValueType().isFloatingPoint() && "Invalid FP cast!");
4280 if (Operand
.getValueType() == VT
) return Operand
; // noop conversion.
4281 assert((!VT
.isVector() ||
4282 VT
.getVectorNumElements() ==
4283 Operand
.getValueType().getVectorNumElements()) &&
4284 "Vector element count mismatch!");
4285 assert(Operand
.getValueType().bitsLT(VT
) &&
4286 "Invalid fpext node, dst < src!");
4287 if (Operand
.isUndef())
4288 return getUNDEF(VT
);
4290 case ISD::SIGN_EXTEND
:
4291 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
4292 "Invalid SIGN_EXTEND!");
4293 if (Operand
.getValueType() == VT
) return Operand
; // noop extension
4294 assert((!VT
.isVector() ||
4295 VT
.getVectorNumElements() ==
4296 Operand
.getValueType().getVectorNumElements()) &&
4297 "Vector element count mismatch!");
4298 assert(Operand
.getValueType().bitsLT(VT
) &&
4299 "Invalid sext node, dst < src!");
4300 if (OpOpcode
== ISD::SIGN_EXTEND
|| OpOpcode
== ISD::ZERO_EXTEND
)
4301 return getNode(OpOpcode
, DL
, VT
, Operand
.getOperand(0));
4302 else if (OpOpcode
== ISD::UNDEF
)
4303 // sext(undef) = 0, because the top bits will all be the same.
4304 return getConstant(0, DL
, VT
);
4306 case ISD::ZERO_EXTEND
:
4307 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
4308 "Invalid ZERO_EXTEND!");
4309 if (Operand
.getValueType() == VT
) return Operand
; // noop extension
4310 assert((!VT
.isVector() ||
4311 VT
.getVectorNumElements() ==
4312 Operand
.getValueType().getVectorNumElements()) &&
4313 "Vector element count mismatch!");
4314 assert(Operand
.getValueType().bitsLT(VT
) &&
4315 "Invalid zext node, dst < src!");
4316 if (OpOpcode
== ISD::ZERO_EXTEND
) // (zext (zext x)) -> (zext x)
4317 return getNode(ISD::ZERO_EXTEND
, DL
, VT
, Operand
.getOperand(0));
4318 else if (OpOpcode
== ISD::UNDEF
)
4319 // zext(undef) = 0, because the top bits will be zero.
4320 return getConstant(0, DL
, VT
);
4322 case ISD::ANY_EXTEND
:
4323 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
4324 "Invalid ANY_EXTEND!");
4325 if (Operand
.getValueType() == VT
) return Operand
; // noop extension
4326 assert((!VT
.isVector() ||
4327 VT
.getVectorNumElements() ==
4328 Operand
.getValueType().getVectorNumElements()) &&
4329 "Vector element count mismatch!");
4330 assert(Operand
.getValueType().bitsLT(VT
) &&
4331 "Invalid anyext node, dst < src!");
4333 if (OpOpcode
== ISD::ZERO_EXTEND
|| OpOpcode
== ISD::SIGN_EXTEND
||
4334 OpOpcode
== ISD::ANY_EXTEND
)
4335 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
4336 return getNode(OpOpcode
, DL
, VT
, Operand
.getOperand(0));
4337 else if (OpOpcode
== ISD::UNDEF
)
4338 return getUNDEF(VT
);
4340 // (ext (trunc x)) -> x
4341 if (OpOpcode
== ISD::TRUNCATE
) {
4342 SDValue OpOp
= Operand
.getOperand(0);
4343 if (OpOp
.getValueType() == VT
) {
4344 transferDbgValues(Operand
, OpOp
);
4350 assert(VT
.isInteger() && Operand
.getValueType().isInteger() &&
4351 "Invalid TRUNCATE!");
4352 if (Operand
.getValueType() == VT
) return Operand
; // noop truncate
4353 assert((!VT
.isVector() ||
4354 VT
.getVectorNumElements() ==
4355 Operand
.getValueType().getVectorNumElements()) &&
4356 "Vector element count mismatch!");
4357 assert(Operand
.getValueType().bitsGT(VT
) &&
4358 "Invalid truncate node, src < dst!");
4359 if (OpOpcode
== ISD::TRUNCATE
)
4360 return getNode(ISD::TRUNCATE
, DL
, VT
, Operand
.getOperand(0));
4361 if (OpOpcode
== ISD::ZERO_EXTEND
|| OpOpcode
== ISD::SIGN_EXTEND
||
4362 OpOpcode
== ISD::ANY_EXTEND
) {
4363 // If the source is smaller than the dest, we still need an extend.
4364 if (Operand
.getOperand(0).getValueType().getScalarType()
4365 .bitsLT(VT
.getScalarType()))
4366 return getNode(OpOpcode
, DL
, VT
, Operand
.getOperand(0));
4367 if (Operand
.getOperand(0).getValueType().bitsGT(VT
))
4368 return getNode(ISD::TRUNCATE
, DL
, VT
, Operand
.getOperand(0));
4369 return Operand
.getOperand(0);
4371 if (OpOpcode
== ISD::UNDEF
)
4372 return getUNDEF(VT
);
4374 case ISD::ANY_EXTEND_VECTOR_INREG
:
4375 case ISD::ZERO_EXTEND_VECTOR_INREG
:
4376 case ISD::SIGN_EXTEND_VECTOR_INREG
:
4377 assert(VT
.isVector() && "This DAG node is restricted to vector types.");
4378 assert(Operand
.getValueType().bitsLE(VT
) &&
4379 "The input must be the same size or smaller than the result.");
4380 assert(VT
.getVectorNumElements() <
4381 Operand
.getValueType().getVectorNumElements() &&
4382 "The destination vector type must have fewer lanes than the input.");
4385 assert(VT
.isInteger() && VT
== Operand
.getValueType() &&
4387 if (OpOpcode
== ISD::UNDEF
)
4388 return getUNDEF(VT
);
4391 assert(VT
.isInteger() && VT
== Operand
.getValueType() &&
4393 assert((VT
.getScalarSizeInBits() % 16 == 0) &&
4394 "BSWAP types must be a multiple of 16 bits!");
4395 if (OpOpcode
== ISD::UNDEF
)
4396 return getUNDEF(VT
);
4398 case ISD::BITREVERSE
:
4399 assert(VT
.isInteger() && VT
== Operand
.getValueType() &&
4400 "Invalid BITREVERSE!");
4401 if (OpOpcode
== ISD::UNDEF
)
4402 return getUNDEF(VT
);
4405 // Basic sanity checking.
4406 assert(VT
.getSizeInBits() == Operand
.getValueSizeInBits() &&
4407 "Cannot BITCAST between types of different sizes!");
4408 if (VT
== Operand
.getValueType()) return Operand
; // noop conversion.
4409 if (OpOpcode
== ISD::BITCAST
) // bitconv(bitconv(x)) -> bitconv(x)
4410 return getNode(ISD::BITCAST
, DL
, VT
, Operand
.getOperand(0));
4411 if (OpOpcode
== ISD::UNDEF
)
4412 return getUNDEF(VT
);
4414 case ISD::SCALAR_TO_VECTOR
:
4415 assert(VT
.isVector() && !Operand
.getValueType().isVector() &&
4416 (VT
.getVectorElementType() == Operand
.getValueType() ||
4417 (VT
.getVectorElementType().isInteger() &&
4418 Operand
.getValueType().isInteger() &&
4419 VT
.getVectorElementType().bitsLE(Operand
.getValueType()))) &&
4420 "Illegal SCALAR_TO_VECTOR node!");
4421 if (OpOpcode
== ISD::UNDEF
)
4422 return getUNDEF(VT
);
4423 // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
4424 if (OpOpcode
== ISD::EXTRACT_VECTOR_ELT
&&
4425 isa
<ConstantSDNode
>(Operand
.getOperand(1)) &&
4426 Operand
.getConstantOperandVal(1) == 0 &&
4427 Operand
.getOperand(0).getValueType() == VT
)
4428 return Operand
.getOperand(0);
4431 // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
4432 if ((getTarget().Options
.UnsafeFPMath
|| Flags
.hasNoSignedZeros()) &&
4433 OpOpcode
== ISD::FSUB
)
4434 return getNode(ISD::FSUB
, DL
, VT
, Operand
.getOperand(1),
4435 Operand
.getOperand(0), Flags
);
4436 if (OpOpcode
== ISD::FNEG
) // --X -> X
4437 return Operand
.getOperand(0);
4440 if (OpOpcode
== ISD::FNEG
) // abs(-X) -> abs(X)
4441 return getNode(ISD::FABS
, DL
, VT
, Operand
.getOperand(0));
4446 SDVTList VTs
= getVTList(VT
);
4447 SDValue Ops
[] = {Operand
};
4448 if (VT
!= MVT::Glue
) { // Don't CSE flag producing nodes
4449 FoldingSetNodeID ID
;
4450 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
);
4452 if (SDNode
*E
= FindNodeOrInsertPos(ID
, DL
, IP
)) {
4453 E
->intersectFlagsWith(Flags
);
4454 return SDValue(E
, 0);
4457 N
= newSDNode
<SDNode
>(Opcode
, DL
.getIROrder(), DL
.getDebugLoc(), VTs
);
4459 createOperands(N
, Ops
);
4460 CSEMap
.InsertNode(N
, IP
);
4462 N
= newSDNode
<SDNode
>(Opcode
, DL
.getIROrder(), DL
.getDebugLoc(), VTs
);
4463 createOperands(N
, Ops
);
4467 SDValue V
= SDValue(N
, 0);
4468 NewSDValueDbgMsg(V
, "Creating new node: ", this);
4472 static std::pair
<APInt
, bool> FoldValue(unsigned Opcode
, const APInt
&C1
,
4475 case ISD::ADD
: return std::make_pair(C1
+ C2
, true);
4476 case ISD::SUB
: return std::make_pair(C1
- C2
, true);
4477 case ISD::MUL
: return std::make_pair(C1
* C2
, true);
4478 case ISD::AND
: return std::make_pair(C1
& C2
, true);
4479 case ISD::OR
: return std::make_pair(C1
| C2
, true);
4480 case ISD::XOR
: return std::make_pair(C1
^ C2
, true);
4481 case ISD::SHL
: return std::make_pair(C1
<< C2
, true);
4482 case ISD::SRL
: return std::make_pair(C1
.lshr(C2
), true);
4483 case ISD::SRA
: return std::make_pair(C1
.ashr(C2
), true);
4484 case ISD::ROTL
: return std::make_pair(C1
.rotl(C2
), true);
4485 case ISD::ROTR
: return std::make_pair(C1
.rotr(C2
), true);
4486 case ISD::SMIN
: return std::make_pair(C1
.sle(C2
) ? C1
: C2
, true);
4487 case ISD::SMAX
: return std::make_pair(C1
.sge(C2
) ? C1
: C2
, true);
4488 case ISD::UMIN
: return std::make_pair(C1
.ule(C2
) ? C1
: C2
, true);
4489 case ISD::UMAX
: return std::make_pair(C1
.uge(C2
) ? C1
: C2
, true);
4490 case ISD::SADDSAT
: return std::make_pair(C1
.sadd_sat(C2
), true);
4491 case ISD::UADDSAT
: return std::make_pair(C1
.uadd_sat(C2
), true);
4492 case ISD::SSUBSAT
: return std::make_pair(C1
.ssub_sat(C2
), true);
4493 case ISD::USUBSAT
: return std::make_pair(C1
.usub_sat(C2
), true);
4495 if (!C2
.getBoolValue())
4497 return std::make_pair(C1
.udiv(C2
), true);
4499 if (!C2
.getBoolValue())
4501 return std::make_pair(C1
.urem(C2
), true);
4503 if (!C2
.getBoolValue())
4505 return std::make_pair(C1
.sdiv(C2
), true);
4507 if (!C2
.getBoolValue())
4509 return std::make_pair(C1
.srem(C2
), true);
4511 return std::make_pair(APInt(1, 0), false);
4514 SDValue
SelectionDAG::FoldConstantArithmetic(unsigned Opcode
, const SDLoc
&DL
,
4515 EVT VT
, const ConstantSDNode
*C1
,
4516 const ConstantSDNode
*C2
) {
4517 if (C1
->isOpaque() || C2
->isOpaque())
4520 std::pair
<APInt
, bool> Folded
= FoldValue(Opcode
, C1
->getAPIntValue(),
4521 C2
->getAPIntValue());
4524 return getConstant(Folded
.first
, DL
, VT
);
4527 SDValue
SelectionDAG::FoldSymbolOffset(unsigned Opcode
, EVT VT
,
4528 const GlobalAddressSDNode
*GA
,
4530 if (GA
->getOpcode() != ISD::GlobalAddress
)
4532 if (!TLI
->isOffsetFoldingLegal(GA
))
4534 auto *C2
= dyn_cast
<ConstantSDNode
>(N2
);
4537 int64_t Offset
= C2
->getSExtValue();
4539 case ISD::ADD
: break;
4540 case ISD::SUB
: Offset
= -uint64_t(Offset
); break;
4541 default: return SDValue();
4543 return getGlobalAddress(GA
->getGlobal(), SDLoc(C2
), VT
,
4544 GA
->getOffset() + uint64_t(Offset
));
4547 bool SelectionDAG::isUndef(unsigned Opcode
, ArrayRef
<SDValue
> Ops
) {
4553 // If a divisor is zero/undef or any element of a divisor vector is
4554 // zero/undef, the whole op is undef.
4555 assert(Ops
.size() == 2 && "Div/rem should have 2 operands");
4556 SDValue Divisor
= Ops
[1];
4557 if (Divisor
.isUndef() || isNullConstant(Divisor
))
4560 return ISD::isBuildVectorOfConstantSDNodes(Divisor
.getNode()) &&
4561 llvm::any_of(Divisor
->op_values(),
4562 [](SDValue V
) { return V
.isUndef() ||
4563 isNullConstant(V
); });
4564 // TODO: Handle signed overflow.
4566 // TODO: Handle oversized shifts.
4572 SDValue
SelectionDAG::FoldConstantArithmetic(unsigned Opcode
, const SDLoc
&DL
,
4573 EVT VT
, SDNode
*N1
, SDNode
*N2
) {
4574 // If the opcode is a target-specific ISD node, there's nothing we can
4575 // do here and the operand rules may not line up with the below, so
4577 if (Opcode
>= ISD::BUILTIN_OP_END
)
4580 if (isUndef(Opcode
, {SDValue(N1
, 0), SDValue(N2
, 0)}))
4581 return getUNDEF(VT
);
4583 // Handle the case of two scalars.
4584 if (auto *C1
= dyn_cast
<ConstantSDNode
>(N1
)) {
4585 if (auto *C2
= dyn_cast
<ConstantSDNode
>(N2
)) {
4586 SDValue Folded
= FoldConstantArithmetic(Opcode
, DL
, VT
, C1
, C2
);
4587 assert((!Folded
|| !VT
.isVector()) &&
4588 "Can't fold vectors ops with scalar operands");
4593 // fold (add Sym, c) -> Sym+c
4594 if (GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(N1
))
4595 return FoldSymbolOffset(Opcode
, VT
, GA
, N2
);
4596 if (TLI
->isCommutativeBinOp(Opcode
))
4597 if (GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(N2
))
4598 return FoldSymbolOffset(Opcode
, VT
, GA
, N1
);
4600 // For vectors, extract each constant element and fold them individually.
4601 // Either input may be an undef value.
4602 auto *BV1
= dyn_cast
<BuildVectorSDNode
>(N1
);
4603 if (!BV1
&& !N1
->isUndef())
4605 auto *BV2
= dyn_cast
<BuildVectorSDNode
>(N2
);
4606 if (!BV2
&& !N2
->isUndef())
4608 // If both operands are undef, that's handled the same way as scalars.
4612 assert((!BV1
|| !BV2
|| BV1
->getNumOperands() == BV2
->getNumOperands()) &&
4613 "Vector binop with different number of elements in operands?");
4615 EVT SVT
= VT
.getScalarType();
4617 if (NewNodesMustHaveLegalTypes
&& LegalSVT
.isInteger()) {
4618 LegalSVT
= TLI
->getTypeToTransformTo(*getContext(), LegalSVT
);
4619 if (LegalSVT
.bitsLT(SVT
))
4622 SmallVector
<SDValue
, 4> Outputs
;
4623 unsigned NumOps
= BV1
? BV1
->getNumOperands() : BV2
->getNumOperands();
4624 for (unsigned I
= 0; I
!= NumOps
; ++I
) {
4625 SDValue V1
= BV1
? BV1
->getOperand(I
) : getUNDEF(SVT
);
4626 SDValue V2
= BV2
? BV2
->getOperand(I
) : getUNDEF(SVT
);
4627 if (SVT
.isInteger()) {
4628 if (V1
->getValueType(0).bitsGT(SVT
))
4629 V1
= getNode(ISD::TRUNCATE
, DL
, SVT
, V1
);
4630 if (V2
->getValueType(0).bitsGT(SVT
))
4631 V2
= getNode(ISD::TRUNCATE
, DL
, SVT
, V2
);
4634 if (V1
->getValueType(0) != SVT
|| V2
->getValueType(0) != SVT
)
4637 // Fold one vector element.
4638 SDValue ScalarResult
= getNode(Opcode
, DL
, SVT
, V1
, V2
);
4639 if (LegalSVT
!= SVT
)
4640 ScalarResult
= getNode(ISD::SIGN_EXTEND
, DL
, LegalSVT
, ScalarResult
);
4642 // Scalar folding only succeeded if the result is a constant or UNDEF.
4643 if (!ScalarResult
.isUndef() && ScalarResult
.getOpcode() != ISD::Constant
&&
4644 ScalarResult
.getOpcode() != ISD::ConstantFP
)
4646 Outputs
.push_back(ScalarResult
);
4649 assert(VT
.getVectorNumElements() == Outputs
.size() &&
4650 "Vector size mismatch!");
4652 // We may have a vector type but a scalar result. Create a splat.
4653 Outputs
.resize(VT
.getVectorNumElements(), Outputs
.back());
4655 // Build a big vector out of the scalar elements we generated.
4656 return getBuildVector(VT
, SDLoc(), Outputs
);
4659 // TODO: Merge with FoldConstantArithmetic
4660 SDValue
SelectionDAG::FoldConstantVectorArithmetic(unsigned Opcode
,
4661 const SDLoc
&DL
, EVT VT
,
4662 ArrayRef
<SDValue
> Ops
,
4663 const SDNodeFlags Flags
) {
4664 // If the opcode is a target-specific ISD node, there's nothing we can
4665 // do here and the operand rules may not line up with the below, so
4667 if (Opcode
>= ISD::BUILTIN_OP_END
)
4670 if (isUndef(Opcode
, Ops
))
4671 return getUNDEF(VT
);
4673 // We can only fold vectors - maybe merge with FoldConstantArithmetic someday?
4677 unsigned NumElts
= VT
.getVectorNumElements();
4679 auto IsScalarOrSameVectorSize
= [&](const SDValue
&Op
) {
4680 return !Op
.getValueType().isVector() ||
4681 Op
.getValueType().getVectorNumElements() == NumElts
;
4684 auto IsConstantBuildVectorOrUndef
= [&](const SDValue
&Op
) {
4685 BuildVectorSDNode
*BV
= dyn_cast
<BuildVectorSDNode
>(Op
);
4686 return (Op
.isUndef()) || (Op
.getOpcode() == ISD::CONDCODE
) ||
4687 (BV
&& BV
->isConstant());
4690 // All operands must be vector types with the same number of elements as
4691 // the result type and must be either UNDEF or a build vector of constant
4692 // or UNDEF scalars.
4693 if (!llvm::all_of(Ops
, IsConstantBuildVectorOrUndef
) ||
4694 !llvm::all_of(Ops
, IsScalarOrSameVectorSize
))
4697 // If we are comparing vectors, then the result needs to be a i1 boolean
4698 // that is then sign-extended back to the legal result type.
4699 EVT SVT
= (Opcode
== ISD::SETCC
? MVT::i1
: VT
.getScalarType());
4701 // Find legal integer scalar type for constant promotion and
4702 // ensure that its scalar size is at least as large as source.
4703 EVT LegalSVT
= VT
.getScalarType();
4704 if (NewNodesMustHaveLegalTypes
&& LegalSVT
.isInteger()) {
4705 LegalSVT
= TLI
->getTypeToTransformTo(*getContext(), LegalSVT
);
4706 if (LegalSVT
.bitsLT(VT
.getScalarType()))
4710 // Constant fold each scalar lane separately.
4711 SmallVector
<SDValue
, 4> ScalarResults
;
4712 for (unsigned i
= 0; i
!= NumElts
; i
++) {
4713 SmallVector
<SDValue
, 4> ScalarOps
;
4714 for (SDValue Op
: Ops
) {
4715 EVT InSVT
= Op
.getValueType().getScalarType();
4716 BuildVectorSDNode
*InBV
= dyn_cast
<BuildVectorSDNode
>(Op
);
4718 // We've checked that this is UNDEF or a constant of some kind.
4720 ScalarOps
.push_back(getUNDEF(InSVT
));
4722 ScalarOps
.push_back(Op
);
4726 SDValue ScalarOp
= InBV
->getOperand(i
);
4727 EVT ScalarVT
= ScalarOp
.getValueType();
4729 // Build vector (integer) scalar operands may need implicit
4730 // truncation - do this before constant folding.
4731 if (ScalarVT
.isInteger() && ScalarVT
.bitsGT(InSVT
))
4732 ScalarOp
= getNode(ISD::TRUNCATE
, DL
, InSVT
, ScalarOp
);
4734 ScalarOps
.push_back(ScalarOp
);
4737 // Constant fold the scalar operands.
4738 SDValue ScalarResult
= getNode(Opcode
, DL
, SVT
, ScalarOps
, Flags
);
4740 // Legalize the (integer) scalar constant if necessary.
4741 if (LegalSVT
!= SVT
)
4742 ScalarResult
= getNode(ISD::SIGN_EXTEND
, DL
, LegalSVT
, ScalarResult
);
4744 // Scalar folding only succeeded if the result is a constant or UNDEF.
4745 if (!ScalarResult
.isUndef() && ScalarResult
.getOpcode() != ISD::Constant
&&
4746 ScalarResult
.getOpcode() != ISD::ConstantFP
)
4748 ScalarResults
.push_back(ScalarResult
);
4751 SDValue V
= getBuildVector(VT
, DL
, ScalarResults
);
4752 NewSDValueDbgMsg(V
, "New node fold constant vector: ", this);
4756 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
4757 SDValue N1
, SDValue N2
, const SDNodeFlags Flags
) {
4758 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
4759 ConstantSDNode
*N2C
= dyn_cast
<ConstantSDNode
>(N2
);
4760 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
4761 ConstantFPSDNode
*N2CFP
= dyn_cast
<ConstantFPSDNode
>(N2
);
4763 // Canonicalize constant to RHS if commutative.
4764 if (TLI
->isCommutativeBinOp(Opcode
)) {
4766 std::swap(N1C
, N2C
);
4768 } else if (N1CFP
&& !N2CFP
) {
4769 std::swap(N1CFP
, N2CFP
);
4776 case ISD::TokenFactor
:
4777 assert(VT
== MVT::Other
&& N1
.getValueType() == MVT::Other
&&
4778 N2
.getValueType() == MVT::Other
&& "Invalid token factor!");
4779 // Fold trivial token factors.
4780 if (N1
.getOpcode() == ISD::EntryToken
) return N2
;
4781 if (N2
.getOpcode() == ISD::EntryToken
) return N1
;
4782 if (N1
== N2
) return N1
;
4784 case ISD::BUILD_VECTOR
: {
4785 // Attempt to simplify BUILD_VECTOR.
4786 SDValue Ops
[] = {N1
, N2
};
4787 if (SDValue V
= FoldBUILD_VECTOR(DL
, VT
, Ops
, *this))
4791 case ISD::CONCAT_VECTORS
: {
4792 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
4793 SDValue Ops
[] = {N1
, N2
};
4794 if (SDValue V
= FoldCONCAT_VECTORS(DL
, VT
, Ops
, *this))
4799 assert(VT
.isInteger() && "This operator does not apply to FP types!");
4800 assert(N1
.getValueType() == N2
.getValueType() &&
4801 N1
.getValueType() == VT
&& "Binary operator types must match!");
4802 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
4803 // worth handling here.
4804 if (N2C
&& N2C
->isNullValue())
4806 if (N2C
&& N2C
->isAllOnesValue()) // X & -1 -> X
4813 assert(VT
.isInteger() && "This operator does not apply to FP types!");
4814 assert(N1
.getValueType() == N2
.getValueType() &&
4815 N1
.getValueType() == VT
&& "Binary operator types must match!");
4816 // (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
4817 // it's worth handling here.
4818 if (N2C
&& N2C
->isNullValue())
4836 assert(VT
.isInteger() && "This operator does not apply to FP types!");
4837 assert(N1
.getValueType() == N2
.getValueType() &&
4838 N1
.getValueType() == VT
&& "Binary operator types must match!");
4845 assert(VT
.isFloatingPoint() && "This operator only applies to FP types!");
4846 assert(N1
.getValueType() == N2
.getValueType() &&
4847 N1
.getValueType() == VT
&& "Binary operator types must match!");
4849 case ISD::FCOPYSIGN
: // N1 and result must match. N1/N2 need not match.
4850 assert(N1
.getValueType() == VT
&&
4851 N1
.getValueType().isFloatingPoint() &&
4852 N2
.getValueType().isFloatingPoint() &&
4853 "Invalid FCOPYSIGN!");
4858 if (SDValue V
= simplifyShift(N1
, N2
))
4863 assert(VT
== N1
.getValueType() &&
4864 "Shift operators return type must be the same as their first arg");
4865 assert(VT
.isInteger() && N2
.getValueType().isInteger() &&
4866 "Shifts only work on integers");
4867 assert((!VT
.isVector() || VT
== N2
.getValueType()) &&
4868 "Vector shift amounts must be in the same as their first arg");
4869 // Verify that the shift amount VT is big enough to hold valid shift
4870 // amounts. This catches things like trying to shift an i1024 value by an
4871 // i8, which is easy to fall into in generic code that uses
4872 // TLI.getShiftAmount().
4873 assert(N2
.getValueSizeInBits() >= Log2_32_Ceil(N1
.getValueSizeInBits()) &&
4874 "Invalid use of small shift amount with oversized value!");
4876 // Always fold shifts of i1 values so the code generator doesn't need to
4877 // handle them. Since we know the size of the shift has to be less than the
4878 // size of the value, the shift/rotate count is guaranteed to be zero.
4881 if (N2C
&& N2C
->isNullValue())
4884 case ISD::FP_ROUND_INREG
: {
4885 EVT EVT
= cast
<VTSDNode
>(N2
)->getVT();
4886 assert(VT
== N1
.getValueType() && "Not an inreg round!");
4887 assert(VT
.isFloatingPoint() && EVT
.isFloatingPoint() &&
4888 "Cannot FP_ROUND_INREG integer types");
4889 assert(EVT
.isVector() == VT
.isVector() &&
4890 "FP_ROUND_INREG type should be vector iff the operand "
4892 assert((!EVT
.isVector() ||
4893 EVT
.getVectorNumElements() == VT
.getVectorNumElements()) &&
4894 "Vector element counts must match in FP_ROUND_INREG");
4895 assert(EVT
.bitsLE(VT
) && "Not rounding down!");
4897 if (cast
<VTSDNode
>(N2
)->getVT() == VT
) return N1
; // Not actually rounding.
4901 assert(VT
.isFloatingPoint() &&
4902 N1
.getValueType().isFloatingPoint() &&
4903 VT
.bitsLE(N1
.getValueType()) &&
4904 N2C
&& (N2C
->getZExtValue() == 0 || N2C
->getZExtValue() == 1) &&
4905 "Invalid FP_ROUND!");
4906 if (N1
.getValueType() == VT
) return N1
; // noop conversion.
4908 case ISD::AssertSext
:
4909 case ISD::AssertZext
: {
4910 EVT EVT
= cast
<VTSDNode
>(N2
)->getVT();
4911 assert(VT
== N1
.getValueType() && "Not an inreg extend!");
4912 assert(VT
.isInteger() && EVT
.isInteger() &&
4913 "Cannot *_EXTEND_INREG FP types");
4914 assert(!EVT
.isVector() &&
4915 "AssertSExt/AssertZExt type should be the vector element type "
4916 "rather than the vector type!");
4917 assert(EVT
.bitsLE(VT
.getScalarType()) && "Not extending!");
4918 if (VT
.getScalarType() == EVT
) return N1
; // noop assertion.
4921 case ISD::SIGN_EXTEND_INREG
: {
4922 EVT EVT
= cast
<VTSDNode
>(N2
)->getVT();
4923 assert(VT
== N1
.getValueType() && "Not an inreg extend!");
4924 assert(VT
.isInteger() && EVT
.isInteger() &&
4925 "Cannot *_EXTEND_INREG FP types");
4926 assert(EVT
.isVector() == VT
.isVector() &&
4927 "SIGN_EXTEND_INREG type should be vector iff the operand "
4929 assert((!EVT
.isVector() ||
4930 EVT
.getVectorNumElements() == VT
.getVectorNumElements()) &&
4931 "Vector element counts must match in SIGN_EXTEND_INREG");
4932 assert(EVT
.bitsLE(VT
) && "Not extending!");
4933 if (EVT
== VT
) return N1
; // Not actually extending
4935 auto SignExtendInReg
= [&](APInt Val
, llvm::EVT ConstantVT
) {
4936 unsigned FromBits
= EVT
.getScalarSizeInBits();
4937 Val
<<= Val
.getBitWidth() - FromBits
;
4938 Val
.ashrInPlace(Val
.getBitWidth() - FromBits
);
4939 return getConstant(Val
, DL
, ConstantVT
);
4943 const APInt
&Val
= N1C
->getAPIntValue();
4944 return SignExtendInReg(Val
, VT
);
4946 if (ISD::isBuildVectorOfConstantSDNodes(N1
.getNode())) {
4947 SmallVector
<SDValue
, 8> Ops
;
4948 llvm::EVT OpVT
= N1
.getOperand(0).getValueType();
4949 for (int i
= 0, e
= VT
.getVectorNumElements(); i
!= e
; ++i
) {
4950 SDValue Op
= N1
.getOperand(i
);
4952 Ops
.push_back(getUNDEF(OpVT
));
4955 ConstantSDNode
*C
= cast
<ConstantSDNode
>(Op
);
4956 APInt Val
= C
->getAPIntValue();
4957 Ops
.push_back(SignExtendInReg(Val
, OpVT
));
4959 return getBuildVector(VT
, DL
, Ops
);
4963 case ISD::EXTRACT_VECTOR_ELT
:
4964 assert(VT
.getSizeInBits() >= N1
.getValueType().getScalarSizeInBits() &&
4965 "The result of EXTRACT_VECTOR_ELT must be at least as wide as the \
4966 element type of the vector.");
4968 // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
4970 return getUNDEF(VT
);
4972 // EXTRACT_VECTOR_ELT of out-of-bounds element is an UNDEF
4973 if (N2C
&& N2C
->getAPIntValue().uge(N1
.getValueType().getVectorNumElements()))
4974 return getUNDEF(VT
);
4976 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
4977 // expanding copies of large vectors from registers.
4979 N1
.getOpcode() == ISD::CONCAT_VECTORS
&&
4980 N1
.getNumOperands() > 0) {
4982 N1
.getOperand(0).getValueType().getVectorNumElements();
4983 return getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, VT
,
4984 N1
.getOperand(N2C
->getZExtValue() / Factor
),
4985 getConstant(N2C
->getZExtValue() % Factor
, DL
,
4986 N2
.getValueType()));
4989 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
4990 // expanding large vector constants.
4991 if (N2C
&& N1
.getOpcode() == ISD::BUILD_VECTOR
) {
4992 SDValue Elt
= N1
.getOperand(N2C
->getZExtValue());
4994 if (VT
!= Elt
.getValueType())
4995 // If the vector element type is not legal, the BUILD_VECTOR operands
4996 // are promoted and implicitly truncated, and the result implicitly
4997 // extended. Make that explicit here.
4998 Elt
= getAnyExtOrTrunc(Elt
, DL
, VT
);
5003 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
5004 // operations are lowered to scalars.
5005 if (N1
.getOpcode() == ISD::INSERT_VECTOR_ELT
) {
5006 // If the indices are the same, return the inserted element else
5007 // if the indices are known different, extract the element from
5008 // the original vector.
5009 SDValue N1Op2
= N1
.getOperand(2);
5010 ConstantSDNode
*N1Op2C
= dyn_cast
<ConstantSDNode
>(N1Op2
);
5012 if (N1Op2C
&& N2C
) {
5013 if (N1Op2C
->getZExtValue() == N2C
->getZExtValue()) {
5014 if (VT
== N1
.getOperand(1).getValueType())
5015 return N1
.getOperand(1);
5017 return getSExtOrTrunc(N1
.getOperand(1), DL
, VT
);
5020 return getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, VT
, N1
.getOperand(0), N2
);
5024 // EXTRACT_VECTOR_ELT of v1iX EXTRACT_SUBVECTOR could be formed
5025 // when vector types are scalarized and v1iX is legal.
5026 // vextract (v1iX extract_subvector(vNiX, Idx)) -> vextract(vNiX,Idx)
5027 if (N1
.getOpcode() == ISD::EXTRACT_SUBVECTOR
&&
5028 N1
.getValueType().getVectorNumElements() == 1) {
5029 return getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, VT
, N1
.getOperand(0),
5033 case ISD::EXTRACT_ELEMENT
:
5034 assert(N2C
&& (unsigned)N2C
->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
5035 assert(!N1
.getValueType().isVector() && !VT
.isVector() &&
5036 (N1
.getValueType().isInteger() == VT
.isInteger()) &&
5037 N1
.getValueType() != VT
&&
5038 "Wrong types for EXTRACT_ELEMENT!");
5040 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
5041 // 64-bit integers into 32-bit parts. Instead of building the extract of
5042 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
5043 if (N1
.getOpcode() == ISD::BUILD_PAIR
)
5044 return N1
.getOperand(N2C
->getZExtValue());
5046 // EXTRACT_ELEMENT of a constant int is also very common.
5048 unsigned ElementSize
= VT
.getSizeInBits();
5049 unsigned Shift
= ElementSize
* N2C
->getZExtValue();
5050 APInt ShiftedVal
= N1C
->getAPIntValue().lshr(Shift
);
5051 return getConstant(ShiftedVal
.trunc(ElementSize
), DL
, VT
);
5054 case ISD::EXTRACT_SUBVECTOR
:
5055 if (VT
.isSimple() && N1
.getValueType().isSimple()) {
5056 assert(VT
.isVector() && N1
.getValueType().isVector() &&
5057 "Extract subvector VTs must be a vectors!");
5058 assert(VT
.getVectorElementType() ==
5059 N1
.getValueType().getVectorElementType() &&
5060 "Extract subvector VTs must have the same element type!");
5061 assert(VT
.getSimpleVT() <= N1
.getSimpleValueType() &&
5062 "Extract subvector must be from larger vector to smaller vector!");
5065 assert((VT
.getVectorNumElements() + N2C
->getZExtValue()
5066 <= N1
.getValueType().getVectorNumElements())
5067 && "Extract subvector overflow!");
5070 // Trivial extraction.
5071 if (VT
.getSimpleVT() == N1
.getSimpleValueType())
5074 // EXTRACT_SUBVECTOR of an UNDEF is an UNDEF.
5076 return getUNDEF(VT
);
5078 // EXTRACT_SUBVECTOR of CONCAT_VECTOR can be simplified if the pieces of
5079 // the concat have the same type as the extract.
5080 if (N2C
&& N1
.getOpcode() == ISD::CONCAT_VECTORS
&&
5081 N1
.getNumOperands() > 0 &&
5082 VT
== N1
.getOperand(0).getValueType()) {
5083 unsigned Factor
= VT
.getVectorNumElements();
5084 return N1
.getOperand(N2C
->getZExtValue() / Factor
);
5087 // EXTRACT_SUBVECTOR of INSERT_SUBVECTOR is often created
5088 // during shuffle legalization.
5089 if (N1
.getOpcode() == ISD::INSERT_SUBVECTOR
&& N2
== N1
.getOperand(2) &&
5090 VT
== N1
.getOperand(1).getValueType())
5091 return N1
.getOperand(1);
5096 // Perform trivial constant folding.
5098 FoldConstantArithmetic(Opcode
, DL
, VT
, N1
.getNode(), N2
.getNode()))
5101 // Constant fold FP operations.
5102 bool HasFPExceptions
= TLI
->hasFloatingPointExceptions();
5105 APFloat V1
= N1CFP
->getValueAPF(), V2
= N2CFP
->getValueAPF();
5106 APFloat::opStatus s
;
5109 s
= V1
.add(V2
, APFloat::rmNearestTiesToEven
);
5110 if (!HasFPExceptions
|| s
!= APFloat::opInvalidOp
)
5111 return getConstantFP(V1
, DL
, VT
);
5114 s
= V1
.subtract(V2
, APFloat::rmNearestTiesToEven
);
5115 if (!HasFPExceptions
|| s
!=APFloat::opInvalidOp
)
5116 return getConstantFP(V1
, DL
, VT
);
5119 s
= V1
.multiply(V2
, APFloat::rmNearestTiesToEven
);
5120 if (!HasFPExceptions
|| s
!=APFloat::opInvalidOp
)
5121 return getConstantFP(V1
, DL
, VT
);
5124 s
= V1
.divide(V2
, APFloat::rmNearestTiesToEven
);
5125 if (!HasFPExceptions
|| (s
!=APFloat::opInvalidOp
&&
5126 s
!=APFloat::opDivByZero
)) {
5127 return getConstantFP(V1
, DL
, VT
);
5132 if (!HasFPExceptions
|| (s
!=APFloat::opInvalidOp
&&
5133 s
!=APFloat::opDivByZero
)) {
5134 return getConstantFP(V1
, DL
, VT
);
5137 case ISD::FCOPYSIGN
:
5139 return getConstantFP(V1
, DL
, VT
);
5144 if (Opcode
== ISD::FP_ROUND
) {
5145 APFloat V
= N1CFP
->getValueAPF(); // make copy
5147 // This can return overflow, underflow, or inexact; we don't care.
5148 // FIXME need to be more flexible about rounding mode.
5149 (void)V
.convert(EVTToAPFloatSemantics(VT
),
5150 APFloat::rmNearestTiesToEven
, &ignored
);
5151 return getConstantFP(V
, DL
, VT
);
5161 // If both operands are undef, the result is undef. If 1 operand is undef,
5162 // the result is NaN. This should match the behavior of the IR optimizer.
5163 if (N1
.isUndef() && N2
.isUndef())
5164 return getUNDEF(VT
);
5165 if (N1
.isUndef() || N2
.isUndef())
5166 return getConstantFP(APFloat::getNaN(EVTToAPFloatSemantics(VT
)), DL
, VT
);
5169 // Canonicalize an UNDEF to the RHS, even over a constant.
5171 if (TLI
->isCommutativeBinOp(Opcode
)) {
5175 case ISD::FP_ROUND_INREG
:
5176 case ISD::SIGN_EXTEND_INREG
:
5178 return getUNDEF(VT
); // fold op(undef, arg2) -> undef
5185 return getConstant(0, DL
, VT
); // fold op(undef, arg2) -> 0
5190 // Fold a bunch of operators when the RHS is undef.
5195 // Handle undef ^ undef -> 0 special case. This is a common
5197 return getConstant(0, DL
, VT
);
5205 return getUNDEF(VT
); // fold op(arg1, undef) -> undef
5210 return getConstant(0, DL
, VT
); // fold op(arg1, undef) -> 0
5214 return getAllOnesConstant(DL
, VT
);
5218 // Memoize this node if possible.
5220 SDVTList VTs
= getVTList(VT
);
5221 SDValue Ops
[] = {N1
, N2
};
5222 if (VT
!= MVT::Glue
) {
5223 FoldingSetNodeID ID
;
5224 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
);
5226 if (SDNode
*E
= FindNodeOrInsertPos(ID
, DL
, IP
)) {
5227 E
->intersectFlagsWith(Flags
);
5228 return SDValue(E
, 0);
5231 N
= newSDNode
<SDNode
>(Opcode
, DL
.getIROrder(), DL
.getDebugLoc(), VTs
);
5233 createOperands(N
, Ops
);
5234 CSEMap
.InsertNode(N
, IP
);
5236 N
= newSDNode
<SDNode
>(Opcode
, DL
.getIROrder(), DL
.getDebugLoc(), VTs
);
5237 createOperands(N
, Ops
);
5241 SDValue V
= SDValue(N
, 0);
5242 NewSDValueDbgMsg(V
, "Creating new node: ", this);
5246 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
5247 SDValue N1
, SDValue N2
, SDValue N3
,
5248 const SDNodeFlags Flags
) {
5249 // Perform various simplifications.
5252 assert(VT
.isFloatingPoint() && "This operator only applies to FP types!");
5253 assert(N1
.getValueType() == VT
&& N2
.getValueType() == VT
&&
5254 N3
.getValueType() == VT
&& "FMA types must match!");
5255 ConstantFPSDNode
*N1CFP
= dyn_cast
<ConstantFPSDNode
>(N1
);
5256 ConstantFPSDNode
*N2CFP
= dyn_cast
<ConstantFPSDNode
>(N2
);
5257 ConstantFPSDNode
*N3CFP
= dyn_cast
<ConstantFPSDNode
>(N3
);
5258 if (N1CFP
&& N2CFP
&& N3CFP
) {
5259 APFloat V1
= N1CFP
->getValueAPF();
5260 const APFloat
&V2
= N2CFP
->getValueAPF();
5261 const APFloat
&V3
= N3CFP
->getValueAPF();
5262 APFloat::opStatus s
=
5263 V1
.fusedMultiplyAdd(V2
, V3
, APFloat::rmNearestTiesToEven
);
5264 if (!TLI
->hasFloatingPointExceptions() || s
!= APFloat::opInvalidOp
)
5265 return getConstantFP(V1
, DL
, VT
);
5269 case ISD::BUILD_VECTOR
: {
5270 // Attempt to simplify BUILD_VECTOR.
5271 SDValue Ops
[] = {N1
, N2
, N3
};
5272 if (SDValue V
= FoldBUILD_VECTOR(DL
, VT
, Ops
, *this))
5276 case ISD::CONCAT_VECTORS
: {
5277 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
5278 SDValue Ops
[] = {N1
, N2
, N3
};
5279 if (SDValue V
= FoldCONCAT_VECTORS(DL
, VT
, Ops
, *this))
5284 assert(VT
.isInteger() && "SETCC result type must be an integer!");
5285 assert(N1
.getValueType() == N2
.getValueType() &&
5286 "SETCC operands must have the same type!");
5287 assert(VT
.isVector() == N1
.getValueType().isVector() &&
5288 "SETCC type should be vector iff the operand type is vector!");
5289 assert((!VT
.isVector() ||
5290 VT
.getVectorNumElements() == N1
.getValueType().getVectorNumElements()) &&
5291 "SETCC vector element counts must match!");
5292 // Use FoldSetCC to simplify SETCC's.
5293 if (SDValue V
= FoldSetCC(VT
, N1
, N2
, cast
<CondCodeSDNode
>(N3
)->get(), DL
))
5295 // Vector constant folding.
5296 SDValue Ops
[] = {N1
, N2
, N3
};
5297 if (SDValue V
= FoldConstantVectorArithmetic(Opcode
, DL
, VT
, Ops
)) {
5298 NewSDValueDbgMsg(V
, "New node vector constant folding: ", this);
5305 if (SDValue V
= simplifySelect(N1
, N2
, N3
))
5308 case ISD::VECTOR_SHUFFLE
:
5309 llvm_unreachable("should use getVectorShuffle constructor!");
5310 case ISD::INSERT_VECTOR_ELT
: {
5311 ConstantSDNode
*N3C
= dyn_cast
<ConstantSDNode
>(N3
);
5312 // INSERT_VECTOR_ELT into out-of-bounds element is an UNDEF
5313 if (N3C
&& N3C
->getZExtValue() >= N1
.getValueType().getVectorNumElements())
5314 return getUNDEF(VT
);
5317 case ISD::INSERT_SUBVECTOR
: {
5319 if (VT
.isSimple() && N1
.getValueType().isSimple()
5320 && N2
.getValueType().isSimple()) {
5321 assert(VT
.isVector() && N1
.getValueType().isVector() &&
5322 N2
.getValueType().isVector() &&
5323 "Insert subvector VTs must be a vectors");
5324 assert(VT
== N1
.getValueType() &&
5325 "Dest and insert subvector source types must match!");
5326 assert(N2
.getSimpleValueType() <= N1
.getSimpleValueType() &&
5327 "Insert subvector must be from smaller vector to larger vector!");
5328 if (isa
<ConstantSDNode
>(Index
)) {
5329 assert((N2
.getValueType().getVectorNumElements() +
5330 cast
<ConstantSDNode
>(Index
)->getZExtValue()
5331 <= VT
.getVectorNumElements())
5332 && "Insert subvector overflow!");
5335 // Trivial insertion.
5336 if (VT
.getSimpleVT() == N2
.getSimpleValueType())
5342 // Fold bit_convert nodes from a type to themselves.
5343 if (N1
.getValueType() == VT
)
5348 // Memoize node if it doesn't produce a flag.
5350 SDVTList VTs
= getVTList(VT
);
5351 SDValue Ops
[] = {N1
, N2
, N3
};
5352 if (VT
!= MVT::Glue
) {
5353 FoldingSetNodeID ID
;
5354 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
);
5356 if (SDNode
*E
= FindNodeOrInsertPos(ID
, DL
, IP
)) {
5357 E
->intersectFlagsWith(Flags
);
5358 return SDValue(E
, 0);
5361 N
= newSDNode
<SDNode
>(Opcode
, DL
.getIROrder(), DL
.getDebugLoc(), VTs
);
5363 createOperands(N
, Ops
);
5364 CSEMap
.InsertNode(N
, IP
);
5366 N
= newSDNode
<SDNode
>(Opcode
, DL
.getIROrder(), DL
.getDebugLoc(), VTs
);
5367 createOperands(N
, Ops
);
5371 SDValue V
= SDValue(N
, 0);
5372 NewSDValueDbgMsg(V
, "Creating new node: ", this);
5376 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
5377 SDValue N1
, SDValue N2
, SDValue N3
, SDValue N4
) {
5378 SDValue Ops
[] = { N1
, N2
, N3
, N4
};
5379 return getNode(Opcode
, DL
, VT
, Ops
);
5382 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
5383 SDValue N1
, SDValue N2
, SDValue N3
, SDValue N4
,
5385 SDValue Ops
[] = { N1
, N2
, N3
, N4
, N5
};
5386 return getNode(Opcode
, DL
, VT
, Ops
);
5389 /// getStackArgumentTokenFactor - Compute a TokenFactor to force all
5390 /// the incoming stack arguments to be loaded from the stack.
5391 SDValue
SelectionDAG::getStackArgumentTokenFactor(SDValue Chain
) {
5392 SmallVector
<SDValue
, 8> ArgChains
;
5394 // Include the original chain at the beginning of the list. When this is
5395 // used by target LowerCall hooks, this helps legalize find the
5396 // CALLSEQ_BEGIN node.
5397 ArgChains
.push_back(Chain
);
5399 // Add a chain value for each stack argument.
5400 for (SDNode::use_iterator U
= getEntryNode().getNode()->use_begin(),
5401 UE
= getEntryNode().getNode()->use_end(); U
!= UE
; ++U
)
5402 if (LoadSDNode
*L
= dyn_cast
<LoadSDNode
>(*U
))
5403 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(L
->getBasePtr()))
5404 if (FI
->getIndex() < 0)
5405 ArgChains
.push_back(SDValue(L
, 1));
5407 // Build a tokenfactor for all the chains.
5408 return getNode(ISD::TokenFactor
, SDLoc(Chain
), MVT::Other
, ArgChains
);
5411 /// getMemsetValue - Vectorized representation of the memset value
5413 static SDValue
getMemsetValue(SDValue Value
, EVT VT
, SelectionDAG
&DAG
,
5415 assert(!Value
.isUndef());
5417 unsigned NumBits
= VT
.getScalarSizeInBits();
5418 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Value
)) {
5419 assert(C
->getAPIntValue().getBitWidth() == 8);
5420 APInt Val
= APInt::getSplat(NumBits
, C
->getAPIntValue());
5421 if (VT
.isInteger()) {
5422 bool IsOpaque
= VT
.getSizeInBits() > 64 ||
5423 !DAG
.getTargetLoweringInfo().isLegalStoreImmediate(C
->getSExtValue());
5424 return DAG
.getConstant(Val
, dl
, VT
, false, IsOpaque
);
5426 return DAG
.getConstantFP(APFloat(DAG
.EVTToAPFloatSemantics(VT
), Val
), dl
,
5430 assert(Value
.getValueType() == MVT::i8
&& "memset with non-byte fill value?");
5431 EVT IntVT
= VT
.getScalarType();
5432 if (!IntVT
.isInteger())
5433 IntVT
= EVT::getIntegerVT(*DAG
.getContext(), IntVT
.getSizeInBits());
5435 Value
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, IntVT
, Value
);
5437 // Use a multiplication with 0x010101... to extend the input to the
5439 APInt Magic
= APInt::getSplat(NumBits
, APInt(8, 0x01));
5440 Value
= DAG
.getNode(ISD::MUL
, dl
, IntVT
, Value
,
5441 DAG
.getConstant(Magic
, dl
, IntVT
));
5444 if (VT
!= Value
.getValueType() && !VT
.isInteger())
5445 Value
= DAG
.getBitcast(VT
.getScalarType(), Value
);
5446 if (VT
!= Value
.getValueType())
5447 Value
= DAG
.getSplatBuildVector(VT
, dl
, Value
);
5452 /// getMemsetStringVal - Similar to getMemsetValue. Except this is only
5453 /// used when a memcpy is turned into a memset when the source is a constant
5455 static SDValue
getMemsetStringVal(EVT VT
, const SDLoc
&dl
, SelectionDAG
&DAG
,
5456 const TargetLowering
&TLI
,
5457 const ConstantDataArraySlice
&Slice
) {
5458 // Handle vector with all elements zero.
5459 if (Slice
.Array
== nullptr) {
5461 return DAG
.getConstant(0, dl
, VT
);
5462 else if (VT
== MVT::f32
|| VT
== MVT::f64
|| VT
== MVT::f128
)
5463 return DAG
.getConstantFP(0.0, dl
, VT
);
5464 else if (VT
.isVector()) {
5465 unsigned NumElts
= VT
.getVectorNumElements();
5466 MVT EltVT
= (VT
.getVectorElementType() == MVT::f32
) ? MVT::i32
: MVT::i64
;
5467 return DAG
.getNode(ISD::BITCAST
, dl
, VT
,
5468 DAG
.getConstant(0, dl
,
5469 EVT::getVectorVT(*DAG
.getContext(),
5472 llvm_unreachable("Expected type!");
5475 assert(!VT
.isVector() && "Can't handle vector type here!");
5476 unsigned NumVTBits
= VT
.getSizeInBits();
5477 unsigned NumVTBytes
= NumVTBits
/ 8;
5478 unsigned NumBytes
= std::min(NumVTBytes
, unsigned(Slice
.Length
));
5480 APInt
Val(NumVTBits
, 0);
5481 if (DAG
.getDataLayout().isLittleEndian()) {
5482 for (unsigned i
= 0; i
!= NumBytes
; ++i
)
5483 Val
|= (uint64_t)(unsigned char)Slice
[i
] << i
*8;
5485 for (unsigned i
= 0; i
!= NumBytes
; ++i
)
5486 Val
|= (uint64_t)(unsigned char)Slice
[i
] << (NumVTBytes
-i
-1)*8;
5489 // If the "cost" of materializing the integer immediate is less than the cost
5490 // of a load, then it is cost effective to turn the load into the immediate.
5491 Type
*Ty
= VT
.getTypeForEVT(*DAG
.getContext());
5492 if (TLI
.shouldConvertConstantLoadToIntImm(Val
, Ty
))
5493 return DAG
.getConstant(Val
, dl
, VT
);
5494 return SDValue(nullptr, 0);
5497 SDValue
SelectionDAG::getMemBasePlusOffset(SDValue Base
, unsigned Offset
,
5499 EVT VT
= Base
.getValueType();
5500 return getNode(ISD::ADD
, DL
, VT
, Base
, getConstant(Offset
, DL
, VT
));
5503 /// Returns true if memcpy source is constant data.
5504 static bool isMemSrcFromConstant(SDValue Src
, ConstantDataArraySlice
&Slice
) {
5505 uint64_t SrcDelta
= 0;
5506 GlobalAddressSDNode
*G
= nullptr;
5507 if (Src
.getOpcode() == ISD::GlobalAddress
)
5508 G
= cast
<GlobalAddressSDNode
>(Src
);
5509 else if (Src
.getOpcode() == ISD::ADD
&&
5510 Src
.getOperand(0).getOpcode() == ISD::GlobalAddress
&&
5511 Src
.getOperand(1).getOpcode() == ISD::Constant
) {
5512 G
= cast
<GlobalAddressSDNode
>(Src
.getOperand(0));
5513 SrcDelta
= cast
<ConstantSDNode
>(Src
.getOperand(1))->getZExtValue();
5518 return getConstantDataArrayInfo(G
->getGlobal(), Slice
, 8,
5519 SrcDelta
+ G
->getOffset());
5522 /// Determines the optimal series of memory ops to replace the memset / memcpy.
5523 /// Return true if the number of memory ops is below the threshold (Limit).
5524 /// It returns the types of the sequence of memory ops to perform
5525 /// memset / memcpy by reference.
5526 static bool FindOptimalMemOpLowering(std::vector
<EVT
> &MemOps
,
5527 unsigned Limit
, uint64_t Size
,
5528 unsigned DstAlign
, unsigned SrcAlign
,
5533 unsigned DstAS
, unsigned SrcAS
,
5535 const TargetLowering
&TLI
) {
5536 assert((SrcAlign
== 0 || SrcAlign
>= DstAlign
) &&
5537 "Expecting memcpy / memset source to meet alignment requirement!");
5538 // If 'SrcAlign' is zero, that means the memory operation does not need to
5539 // load the value, i.e. memset or memcpy from constant string. Otherwise,
5540 // it's the inferred alignment of the source. 'DstAlign', on the other hand,
5541 // is the specified alignment of the memory operation. If it is zero, that
5542 // means it's possible to change the alignment of the destination.
5543 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
5544 // not need to be loaded.
5545 EVT VT
= TLI
.getOptimalMemOpType(Size
, DstAlign
, SrcAlign
,
5546 IsMemset
, ZeroMemset
, MemcpyStrSrc
,
5547 DAG
.getMachineFunction());
5549 if (VT
== MVT::Other
) {
5550 // Use the largest integer type whose alignment constraints are satisfied.
5551 // We only need to check DstAlign here as SrcAlign is always greater or
5552 // equal to DstAlign (or zero).
5554 while (DstAlign
&& DstAlign
< VT
.getSizeInBits() / 8 &&
5555 !TLI
.allowsMisalignedMemoryAccesses(VT
, DstAS
, DstAlign
))
5556 VT
= (MVT::SimpleValueType
)(VT
.getSimpleVT().SimpleTy
- 1);
5557 assert(VT
.isInteger());
5559 // Find the largest legal integer type.
5561 while (!TLI
.isTypeLegal(LVT
))
5562 LVT
= (MVT::SimpleValueType
)(LVT
.SimpleTy
- 1);
5563 assert(LVT
.isInteger());
5565 // If the type we've chosen is larger than the largest legal integer type
5566 // then use that instead.
5571 unsigned NumMemOps
= 0;
5573 unsigned VTSize
= VT
.getSizeInBits() / 8;
5574 while (VTSize
> Size
) {
5575 // For now, only use non-vector load / store's for the left-over pieces.
5580 if (VT
.isVector() || VT
.isFloatingPoint()) {
5581 NewVT
= (VT
.getSizeInBits() > 64) ? MVT::i64
: MVT::i32
;
5582 if (TLI
.isOperationLegalOrCustom(ISD::STORE
, NewVT
) &&
5583 TLI
.isSafeMemOpType(NewVT
.getSimpleVT()))
5585 else if (NewVT
== MVT::i64
&&
5586 TLI
.isOperationLegalOrCustom(ISD::STORE
, MVT::f64
) &&
5587 TLI
.isSafeMemOpType(MVT::f64
)) {
5588 // i64 is usually not legal on 32-bit targets, but f64 may be.
5596 NewVT
= (MVT::SimpleValueType
)(NewVT
.getSimpleVT().SimpleTy
- 1);
5597 if (NewVT
== MVT::i8
)
5599 } while (!TLI
.isSafeMemOpType(NewVT
.getSimpleVT()));
5601 NewVTSize
= NewVT
.getSizeInBits() / 8;
5603 // If the new VT cannot cover all of the remaining bits, then consider
5604 // issuing a (or a pair of) unaligned and overlapping load / store.
5606 if (NumMemOps
&& AllowOverlap
&& NewVTSize
< Size
&&
5607 TLI
.allowsMisalignedMemoryAccesses(VT
, DstAS
, DstAlign
, &Fast
) &&
5616 if (++NumMemOps
> Limit
)
5619 MemOps
.push_back(VT
);
5626 static bool shouldLowerMemFuncForSize(const MachineFunction
&MF
) {
5627 // On Darwin, -Os means optimize for size without hurting performance, so
5628 // only really optimize for size when -Oz (MinSize) is used.
5629 if (MF
.getTarget().getTargetTriple().isOSDarwin())
5630 return MF
.getFunction().optForMinSize();
5631 return MF
.getFunction().optForSize();
5634 static void chainLoadsAndStoresForMemcpy(SelectionDAG
&DAG
, const SDLoc
&dl
,
5635 SmallVector
<SDValue
, 32> &OutChains
, unsigned From
,
5636 unsigned To
, SmallVector
<SDValue
, 16> &OutLoadChains
,
5637 SmallVector
<SDValue
, 16> &OutStoreChains
) {
5638 assert(OutLoadChains
.size() && "Missing loads in memcpy inlining");
5639 assert(OutStoreChains
.size() && "Missing stores in memcpy inlining");
5640 SmallVector
<SDValue
, 16> GluedLoadChains
;
5641 for (unsigned i
= From
; i
< To
; ++i
) {
5642 OutChains
.push_back(OutLoadChains
[i
]);
5643 GluedLoadChains
.push_back(OutLoadChains
[i
]);
5646 // Chain for all loads.
5647 SDValue LoadToken
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
5650 for (unsigned i
= From
; i
< To
; ++i
) {
5651 StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(OutStoreChains
[i
]);
5652 SDValue NewStore
= DAG
.getTruncStore(LoadToken
, dl
, ST
->getValue(),
5653 ST
->getBasePtr(), ST
->getMemoryVT(),
5654 ST
->getMemOperand());
5655 OutChains
.push_back(NewStore
);
5659 static SDValue
getMemcpyLoadsAndStores(SelectionDAG
&DAG
, const SDLoc
&dl
,
5660 SDValue Chain
, SDValue Dst
, SDValue Src
,
5661 uint64_t Size
, unsigned Align
,
5662 bool isVol
, bool AlwaysInline
,
5663 MachinePointerInfo DstPtrInfo
,
5664 MachinePointerInfo SrcPtrInfo
) {
5665 // Turn a memcpy of undef to nop.
5669 // Expand memcpy to a series of load and store ops if the size operand falls
5670 // below a certain threshold.
5671 // TODO: In the AlwaysInline case, if the size is big then generate a loop
5672 // rather than maybe a humongous number of loads and stores.
5673 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
5674 const DataLayout
&DL
= DAG
.getDataLayout();
5675 LLVMContext
&C
= *DAG
.getContext();
5676 std::vector
<EVT
> MemOps
;
5677 bool DstAlignCanChange
= false;
5678 MachineFunction
&MF
= DAG
.getMachineFunction();
5679 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
5680 bool OptSize
= shouldLowerMemFuncForSize(MF
);
5681 FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(Dst
);
5682 if (FI
&& !MFI
.isFixedObjectIndex(FI
->getIndex()))
5683 DstAlignCanChange
= true;
5684 unsigned SrcAlign
= DAG
.InferPtrAlignment(Src
);
5685 if (Align
> SrcAlign
)
5687 ConstantDataArraySlice Slice
;
5688 bool CopyFromConstant
= isMemSrcFromConstant(Src
, Slice
);
5689 bool isZeroConstant
= CopyFromConstant
&& Slice
.Array
== nullptr;
5690 unsigned Limit
= AlwaysInline
? ~0U : TLI
.getMaxStoresPerMemcpy(OptSize
);
5692 if (!FindOptimalMemOpLowering(MemOps
, Limit
, Size
,
5693 (DstAlignCanChange
? 0 : Align
),
5694 (isZeroConstant
? 0 : SrcAlign
),
5695 false, false, CopyFromConstant
, true,
5696 DstPtrInfo
.getAddrSpace(),
5697 SrcPtrInfo
.getAddrSpace(),
5701 if (DstAlignCanChange
) {
5702 Type
*Ty
= MemOps
[0].getTypeForEVT(C
);
5703 unsigned NewAlign
= (unsigned)DL
.getABITypeAlignment(Ty
);
5705 // Don't promote to an alignment that would require dynamic stack
5707 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
5708 if (!TRI
->needsStackRealignment(MF
))
5709 while (NewAlign
> Align
&&
5710 DL
.exceedsNaturalStackAlignment(NewAlign
))
5713 if (NewAlign
> Align
) {
5714 // Give the stack frame object a larger alignment if needed.
5715 if (MFI
.getObjectAlignment(FI
->getIndex()) < NewAlign
)
5716 MFI
.setObjectAlignment(FI
->getIndex(), NewAlign
);
5721 MachineMemOperand::Flags MMOFlags
=
5722 isVol
? MachineMemOperand::MOVolatile
: MachineMemOperand::MONone
;
5723 SmallVector
<SDValue
, 16> OutLoadChains
;
5724 SmallVector
<SDValue
, 16> OutStoreChains
;
5725 SmallVector
<SDValue
, 32> OutChains
;
5726 unsigned NumMemOps
= MemOps
.size();
5727 uint64_t SrcOff
= 0, DstOff
= 0;
5728 for (unsigned i
= 0; i
!= NumMemOps
; ++i
) {
5730 unsigned VTSize
= VT
.getSizeInBits() / 8;
5731 SDValue Value
, Store
;
5733 if (VTSize
> Size
) {
5734 // Issuing an unaligned load / store pair that overlaps with the previous
5735 // pair. Adjust the offset accordingly.
5736 assert(i
== NumMemOps
-1 && i
!= 0);
5737 SrcOff
-= VTSize
- Size
;
5738 DstOff
-= VTSize
- Size
;
5741 if (CopyFromConstant
&&
5742 (isZeroConstant
|| (VT
.isInteger() && !VT
.isVector()))) {
5743 // It's unlikely a store of a vector immediate can be done in a single
5744 // instruction. It would require a load from a constantpool first.
5745 // We only handle zero vectors here.
5746 // FIXME: Handle other cases where store of vector immediate is done in
5747 // a single instruction.
5748 ConstantDataArraySlice SubSlice
;
5749 if (SrcOff
< Slice
.Length
) {
5751 SubSlice
.move(SrcOff
);
5753 // This is an out-of-bounds access and hence UB. Pretend we read zero.
5754 SubSlice
.Array
= nullptr;
5755 SubSlice
.Offset
= 0;
5756 SubSlice
.Length
= VTSize
;
5758 Value
= getMemsetStringVal(VT
, dl
, DAG
, TLI
, SubSlice
);
5759 if (Value
.getNode()) {
5760 Store
= DAG
.getStore(Chain
, dl
, Value
,
5761 DAG
.getMemBasePlusOffset(Dst
, DstOff
, dl
),
5762 DstPtrInfo
.getWithOffset(DstOff
), Align
,
5764 OutChains
.push_back(Store
);
5768 if (!Store
.getNode()) {
5769 // The type might not be legal for the target. This should only happen
5770 // if the type is smaller than a legal type, as on PPC, so the right
5771 // thing to do is generate a LoadExt/StoreTrunc pair. These simplify
5772 // to Load/Store if NVT==VT.
5773 // FIXME does the case above also need this?
5774 EVT NVT
= TLI
.getTypeToTransformTo(C
, VT
);
5775 assert(NVT
.bitsGE(VT
));
5777 bool isDereferenceable
=
5778 SrcPtrInfo
.getWithOffset(SrcOff
).isDereferenceable(VTSize
, C
, DL
);
5779 MachineMemOperand::Flags SrcMMOFlags
= MMOFlags
;
5780 if (isDereferenceable
)
5781 SrcMMOFlags
|= MachineMemOperand::MODereferenceable
;
5783 Value
= DAG
.getExtLoad(ISD::EXTLOAD
, dl
, NVT
, Chain
,
5784 DAG
.getMemBasePlusOffset(Src
, SrcOff
, dl
),
5785 SrcPtrInfo
.getWithOffset(SrcOff
), VT
,
5786 MinAlign(SrcAlign
, SrcOff
), SrcMMOFlags
);
5787 OutLoadChains
.push_back(Value
.getValue(1));
5789 Store
= DAG
.getTruncStore(
5790 Chain
, dl
, Value
, DAG
.getMemBasePlusOffset(Dst
, DstOff
, dl
),
5791 DstPtrInfo
.getWithOffset(DstOff
), VT
, Align
, MMOFlags
);
5792 OutStoreChains
.push_back(Store
);
5799 unsigned GluedLdStLimit
= MaxLdStGlue
== 0 ?
5800 TLI
.getMaxGluedStoresPerMemcpy() : MaxLdStGlue
;
5801 unsigned NumLdStInMemcpy
= OutStoreChains
.size();
5803 if (NumLdStInMemcpy
) {
5804 // It may be that memcpy might be converted to memset if it's memcpy
5805 // of constants. In such a case, we won't have loads and stores, but
5806 // just stores. In the absence of loads, there is nothing to gang up.
5807 if ((GluedLdStLimit
<= 1) || !EnableMemCpyDAGOpt
) {
5808 // If target does not care, just leave as it.
5809 for (unsigned i
= 0; i
< NumLdStInMemcpy
; ++i
) {
5810 OutChains
.push_back(OutLoadChains
[i
]);
5811 OutChains
.push_back(OutStoreChains
[i
]);
5814 // Ld/St less than/equal limit set by target.
5815 if (NumLdStInMemcpy
<= GluedLdStLimit
) {
5816 chainLoadsAndStoresForMemcpy(DAG
, dl
, OutChains
, 0,
5817 NumLdStInMemcpy
, OutLoadChains
,
5820 unsigned NumberLdChain
= NumLdStInMemcpy
/ GluedLdStLimit
;
5821 unsigned RemainingLdStInMemcpy
= NumLdStInMemcpy
% GluedLdStLimit
;
5822 unsigned GlueIter
= 0;
5824 for (unsigned cnt
= 0; cnt
< NumberLdChain
; ++cnt
) {
5825 unsigned IndexFrom
= NumLdStInMemcpy
- GlueIter
- GluedLdStLimit
;
5826 unsigned IndexTo
= NumLdStInMemcpy
- GlueIter
;
5828 chainLoadsAndStoresForMemcpy(DAG
, dl
, OutChains
, IndexFrom
, IndexTo
,
5829 OutLoadChains
, OutStoreChains
);
5830 GlueIter
+= GluedLdStLimit
;
5834 if (RemainingLdStInMemcpy
) {
5835 chainLoadsAndStoresForMemcpy(DAG
, dl
, OutChains
, 0,
5836 RemainingLdStInMemcpy
, OutLoadChains
,
5842 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, OutChains
);
5845 static SDValue
getMemmoveLoadsAndStores(SelectionDAG
&DAG
, const SDLoc
&dl
,
5846 SDValue Chain
, SDValue Dst
, SDValue Src
,
5847 uint64_t Size
, unsigned Align
,
5848 bool isVol
, bool AlwaysInline
,
5849 MachinePointerInfo DstPtrInfo
,
5850 MachinePointerInfo SrcPtrInfo
) {
5851 // Turn a memmove of undef to nop.
5855 // Expand memmove to a series of load and store ops if the size operand falls
5856 // below a certain threshold.
5857 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
5858 const DataLayout
&DL
= DAG
.getDataLayout();
5859 LLVMContext
&C
= *DAG
.getContext();
5860 std::vector
<EVT
> MemOps
;
5861 bool DstAlignCanChange
= false;
5862 MachineFunction
&MF
= DAG
.getMachineFunction();
5863 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
5864 bool OptSize
= shouldLowerMemFuncForSize(MF
);
5865 FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(Dst
);
5866 if (FI
&& !MFI
.isFixedObjectIndex(FI
->getIndex()))
5867 DstAlignCanChange
= true;
5868 unsigned SrcAlign
= DAG
.InferPtrAlignment(Src
);
5869 if (Align
> SrcAlign
)
5871 unsigned Limit
= AlwaysInline
? ~0U : TLI
.getMaxStoresPerMemmove(OptSize
);
5873 if (!FindOptimalMemOpLowering(MemOps
, Limit
, Size
,
5874 (DstAlignCanChange
? 0 : Align
), SrcAlign
,
5875 false, false, false, false,
5876 DstPtrInfo
.getAddrSpace(),
5877 SrcPtrInfo
.getAddrSpace(),
5881 if (DstAlignCanChange
) {
5882 Type
*Ty
= MemOps
[0].getTypeForEVT(C
);
5883 unsigned NewAlign
= (unsigned)DL
.getABITypeAlignment(Ty
);
5884 if (NewAlign
> Align
) {
5885 // Give the stack frame object a larger alignment if needed.
5886 if (MFI
.getObjectAlignment(FI
->getIndex()) < NewAlign
)
5887 MFI
.setObjectAlignment(FI
->getIndex(), NewAlign
);
5892 MachineMemOperand::Flags MMOFlags
=
5893 isVol
? MachineMemOperand::MOVolatile
: MachineMemOperand::MONone
;
5894 uint64_t SrcOff
= 0, DstOff
= 0;
5895 SmallVector
<SDValue
, 8> LoadValues
;
5896 SmallVector
<SDValue
, 8> LoadChains
;
5897 SmallVector
<SDValue
, 8> OutChains
;
5898 unsigned NumMemOps
= MemOps
.size();
5899 for (unsigned i
= 0; i
< NumMemOps
; i
++) {
5901 unsigned VTSize
= VT
.getSizeInBits() / 8;
5904 bool isDereferenceable
=
5905 SrcPtrInfo
.getWithOffset(SrcOff
).isDereferenceable(VTSize
, C
, DL
);
5906 MachineMemOperand::Flags SrcMMOFlags
= MMOFlags
;
5907 if (isDereferenceable
)
5908 SrcMMOFlags
|= MachineMemOperand::MODereferenceable
;
5911 DAG
.getLoad(VT
, dl
, Chain
, DAG
.getMemBasePlusOffset(Src
, SrcOff
, dl
),
5912 SrcPtrInfo
.getWithOffset(SrcOff
), SrcAlign
, SrcMMOFlags
);
5913 LoadValues
.push_back(Value
);
5914 LoadChains
.push_back(Value
.getValue(1));
5917 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, LoadChains
);
5919 for (unsigned i
= 0; i
< NumMemOps
; i
++) {
5921 unsigned VTSize
= VT
.getSizeInBits() / 8;
5924 Store
= DAG
.getStore(Chain
, dl
, LoadValues
[i
],
5925 DAG
.getMemBasePlusOffset(Dst
, DstOff
, dl
),
5926 DstPtrInfo
.getWithOffset(DstOff
), Align
, MMOFlags
);
5927 OutChains
.push_back(Store
);
5931 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, OutChains
);
5934 /// Lower the call to 'memset' intrinsic function into a series of store
5937 /// \param DAG Selection DAG where lowered code is placed.
5938 /// \param dl Link to corresponding IR location.
5939 /// \param Chain Control flow dependency.
5940 /// \param Dst Pointer to destination memory location.
5941 /// \param Src Value of byte to write into the memory.
5942 /// \param Size Number of bytes to write.
5943 /// \param Align Alignment of the destination in bytes.
5944 /// \param isVol True if destination is volatile.
5945 /// \param DstPtrInfo IR information on the memory pointer.
5946 /// \returns New head in the control flow, if lowering was successful, empty
5947 /// SDValue otherwise.
5949 /// The function tries to replace 'llvm.memset' intrinsic with several store
5950 /// operations and value calculation code. This is usually profitable for small
5952 static SDValue
getMemsetStores(SelectionDAG
&DAG
, const SDLoc
&dl
,
5953 SDValue Chain
, SDValue Dst
, SDValue Src
,
5954 uint64_t Size
, unsigned Align
, bool isVol
,
5955 MachinePointerInfo DstPtrInfo
) {
5956 // Turn a memset of undef to nop.
5960 // Expand memset to a series of load/store ops if the size operand
5961 // falls below a certain threshold.
5962 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
5963 std::vector
<EVT
> MemOps
;
5964 bool DstAlignCanChange
= false;
5965 MachineFunction
&MF
= DAG
.getMachineFunction();
5966 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
5967 bool OptSize
= shouldLowerMemFuncForSize(MF
);
5968 FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(Dst
);
5969 if (FI
&& !MFI
.isFixedObjectIndex(FI
->getIndex()))
5970 DstAlignCanChange
= true;
5972 isa
<ConstantSDNode
>(Src
) && cast
<ConstantSDNode
>(Src
)->isNullValue();
5973 if (!FindOptimalMemOpLowering(MemOps
, TLI
.getMaxStoresPerMemset(OptSize
),
5974 Size
, (DstAlignCanChange
? 0 : Align
), 0,
5975 true, IsZeroVal
, false, true,
5976 DstPtrInfo
.getAddrSpace(), ~0u,
5980 if (DstAlignCanChange
) {
5981 Type
*Ty
= MemOps
[0].getTypeForEVT(*DAG
.getContext());
5982 unsigned NewAlign
= (unsigned)DAG
.getDataLayout().getABITypeAlignment(Ty
);
5983 if (NewAlign
> Align
) {
5984 // Give the stack frame object a larger alignment if needed.
5985 if (MFI
.getObjectAlignment(FI
->getIndex()) < NewAlign
)
5986 MFI
.setObjectAlignment(FI
->getIndex(), NewAlign
);
5991 SmallVector
<SDValue
, 8> OutChains
;
5992 uint64_t DstOff
= 0;
5993 unsigned NumMemOps
= MemOps
.size();
5995 // Find the largest store and generate the bit pattern for it.
5996 EVT LargestVT
= MemOps
[0];
5997 for (unsigned i
= 1; i
< NumMemOps
; i
++)
5998 if (MemOps
[i
].bitsGT(LargestVT
))
5999 LargestVT
= MemOps
[i
];
6000 SDValue MemSetValue
= getMemsetValue(Src
, LargestVT
, DAG
, dl
);
6002 for (unsigned i
= 0; i
< NumMemOps
; i
++) {
6004 unsigned VTSize
= VT
.getSizeInBits() / 8;
6005 if (VTSize
> Size
) {
6006 // Issuing an unaligned load / store pair that overlaps with the previous
6007 // pair. Adjust the offset accordingly.
6008 assert(i
== NumMemOps
-1 && i
!= 0);
6009 DstOff
-= VTSize
- Size
;
6012 // If this store is smaller than the largest store see whether we can get
6013 // the smaller value for free with a truncate.
6014 SDValue Value
= MemSetValue
;
6015 if (VT
.bitsLT(LargestVT
)) {
6016 if (!LargestVT
.isVector() && !VT
.isVector() &&
6017 TLI
.isTruncateFree(LargestVT
, VT
))
6018 Value
= DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, MemSetValue
);
6020 Value
= getMemsetValue(Src
, VT
, DAG
, dl
);
6022 assert(Value
.getValueType() == VT
&& "Value with wrong type.");
6023 SDValue Store
= DAG
.getStore(
6024 Chain
, dl
, Value
, DAG
.getMemBasePlusOffset(Dst
, DstOff
, dl
),
6025 DstPtrInfo
.getWithOffset(DstOff
), Align
,
6026 isVol
? MachineMemOperand::MOVolatile
: MachineMemOperand::MONone
);
6027 OutChains
.push_back(Store
);
6028 DstOff
+= VT
.getSizeInBits() / 8;
6032 return DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, OutChains
);
6035 static void checkAddrSpaceIsValidForLibcall(const TargetLowering
*TLI
,
6037 // Lowering memcpy / memset / memmove intrinsics to calls is only valid if all
6038 // pointer operands can be losslessly bitcasted to pointers of address space 0
6039 if (AS
!= 0 && !TLI
->isNoopAddrSpaceCast(AS
, 0)) {
6040 report_fatal_error("cannot lower memory intrinsic in address space " +
6045 SDValue
SelectionDAG::getMemcpy(SDValue Chain
, const SDLoc
&dl
, SDValue Dst
,
6046 SDValue Src
, SDValue Size
, unsigned Align
,
6047 bool isVol
, bool AlwaysInline
, bool isTailCall
,
6048 MachinePointerInfo DstPtrInfo
,
6049 MachinePointerInfo SrcPtrInfo
) {
6050 assert(Align
&& "The SDAG layer expects explicit alignment and reserves 0");
6052 // Check to see if we should lower the memcpy to loads and stores first.
6053 // For cases within the target-specified limits, this is the best choice.
6054 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
6056 // Memcpy with size zero? Just return the original chain.
6057 if (ConstantSize
->isNullValue())
6060 SDValue Result
= getMemcpyLoadsAndStores(*this, dl
, Chain
, Dst
, Src
,
6061 ConstantSize
->getZExtValue(),Align
,
6062 isVol
, false, DstPtrInfo
, SrcPtrInfo
);
6063 if (Result
.getNode())
6067 // Then check to see if we should lower the memcpy with target-specific
6068 // code. If the target chooses to do this, this is the next best.
6070 SDValue Result
= TSI
->EmitTargetCodeForMemcpy(
6071 *this, dl
, Chain
, Dst
, Src
, Size
, Align
, isVol
, AlwaysInline
,
6072 DstPtrInfo
, SrcPtrInfo
);
6073 if (Result
.getNode())
6077 // If we really need inline code and the target declined to provide it,
6078 // use a (potentially long) sequence of loads and stores.
6080 assert(ConstantSize
&& "AlwaysInline requires a constant size!");
6081 return getMemcpyLoadsAndStores(*this, dl
, Chain
, Dst
, Src
,
6082 ConstantSize
->getZExtValue(), Align
, isVol
,
6083 true, DstPtrInfo
, SrcPtrInfo
);
6086 checkAddrSpaceIsValidForLibcall(TLI
, DstPtrInfo
.getAddrSpace());
6087 checkAddrSpaceIsValidForLibcall(TLI
, SrcPtrInfo
.getAddrSpace());
6089 // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
6090 // memcpy is not guaranteed to be safe. libc memcpys aren't required to
6091 // respect volatile, so they may do things like read or write memory
6092 // beyond the given memory regions. But fixing this isn't easy, and most
6093 // people don't care.
6095 // Emit a library call.
6096 TargetLowering::ArgListTy Args
;
6097 TargetLowering::ArgListEntry Entry
;
6098 Entry
.Ty
= getDataLayout().getIntPtrType(*getContext());
6099 Entry
.Node
= Dst
; Args
.push_back(Entry
);
6100 Entry
.Node
= Src
; Args
.push_back(Entry
);
6101 Entry
.Node
= Size
; Args
.push_back(Entry
);
6102 // FIXME: pass in SDLoc
6103 TargetLowering::CallLoweringInfo
CLI(*this);
6106 .setLibCallee(TLI
->getLibcallCallingConv(RTLIB::MEMCPY
),
6107 Dst
.getValueType().getTypeForEVT(*getContext()),
6108 getExternalSymbol(TLI
->getLibcallName(RTLIB::MEMCPY
),
6109 TLI
->getPointerTy(getDataLayout())),
6112 .setTailCall(isTailCall
);
6114 std::pair
<SDValue
,SDValue
> CallResult
= TLI
->LowerCallTo(CLI
);
6115 return CallResult
.second
;
6118 SDValue
SelectionDAG::getAtomicMemcpy(SDValue Chain
, const SDLoc
&dl
,
6119 SDValue Dst
, unsigned DstAlign
,
6120 SDValue Src
, unsigned SrcAlign
,
6121 SDValue Size
, Type
*SizeTy
,
6122 unsigned ElemSz
, bool isTailCall
,
6123 MachinePointerInfo DstPtrInfo
,
6124 MachinePointerInfo SrcPtrInfo
) {
6125 // Emit a library call.
6126 TargetLowering::ArgListTy Args
;
6127 TargetLowering::ArgListEntry Entry
;
6128 Entry
.Ty
= getDataLayout().getIntPtrType(*getContext());
6130 Args
.push_back(Entry
);
6133 Args
.push_back(Entry
);
6137 Args
.push_back(Entry
);
6139 RTLIB::Libcall LibraryCall
=
6140 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElemSz
);
6141 if (LibraryCall
== RTLIB::UNKNOWN_LIBCALL
)
6142 report_fatal_error("Unsupported element size");
6144 TargetLowering::CallLoweringInfo
CLI(*this);
6147 .setLibCallee(TLI
->getLibcallCallingConv(LibraryCall
),
6148 Type::getVoidTy(*getContext()),
6149 getExternalSymbol(TLI
->getLibcallName(LibraryCall
),
6150 TLI
->getPointerTy(getDataLayout())),
6153 .setTailCall(isTailCall
);
6155 std::pair
<SDValue
, SDValue
> CallResult
= TLI
->LowerCallTo(CLI
);
6156 return CallResult
.second
;
6159 SDValue
SelectionDAG::getMemmove(SDValue Chain
, const SDLoc
&dl
, SDValue Dst
,
6160 SDValue Src
, SDValue Size
, unsigned Align
,
6161 bool isVol
, bool isTailCall
,
6162 MachinePointerInfo DstPtrInfo
,
6163 MachinePointerInfo SrcPtrInfo
) {
6164 assert(Align
&& "The SDAG layer expects explicit alignment and reserves 0");
6166 // Check to see if we should lower the memmove to loads and stores first.
6167 // For cases within the target-specified limits, this is the best choice.
6168 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
6170 // Memmove with size zero? Just return the original chain.
6171 if (ConstantSize
->isNullValue())
6175 getMemmoveLoadsAndStores(*this, dl
, Chain
, Dst
, Src
,
6176 ConstantSize
->getZExtValue(), Align
, isVol
,
6177 false, DstPtrInfo
, SrcPtrInfo
);
6178 if (Result
.getNode())
6182 // Then check to see if we should lower the memmove with target-specific
6183 // code. If the target chooses to do this, this is the next best.
6185 SDValue Result
= TSI
->EmitTargetCodeForMemmove(
6186 *this, dl
, Chain
, Dst
, Src
, Size
, Align
, isVol
, DstPtrInfo
, SrcPtrInfo
);
6187 if (Result
.getNode())
6191 checkAddrSpaceIsValidForLibcall(TLI
, DstPtrInfo
.getAddrSpace());
6192 checkAddrSpaceIsValidForLibcall(TLI
, SrcPtrInfo
.getAddrSpace());
6194 // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
6195 // not be safe. See memcpy above for more details.
6197 // Emit a library call.
6198 TargetLowering::ArgListTy Args
;
6199 TargetLowering::ArgListEntry Entry
;
6200 Entry
.Ty
= getDataLayout().getIntPtrType(*getContext());
6201 Entry
.Node
= Dst
; Args
.push_back(Entry
);
6202 Entry
.Node
= Src
; Args
.push_back(Entry
);
6203 Entry
.Node
= Size
; Args
.push_back(Entry
);
6204 // FIXME: pass in SDLoc
6205 TargetLowering::CallLoweringInfo
CLI(*this);
6208 .setLibCallee(TLI
->getLibcallCallingConv(RTLIB::MEMMOVE
),
6209 Dst
.getValueType().getTypeForEVT(*getContext()),
6210 getExternalSymbol(TLI
->getLibcallName(RTLIB::MEMMOVE
),
6211 TLI
->getPointerTy(getDataLayout())),
6214 .setTailCall(isTailCall
);
6216 std::pair
<SDValue
,SDValue
> CallResult
= TLI
->LowerCallTo(CLI
);
6217 return CallResult
.second
;
6220 SDValue
SelectionDAG::getAtomicMemmove(SDValue Chain
, const SDLoc
&dl
,
6221 SDValue Dst
, unsigned DstAlign
,
6222 SDValue Src
, unsigned SrcAlign
,
6223 SDValue Size
, Type
*SizeTy
,
6224 unsigned ElemSz
, bool isTailCall
,
6225 MachinePointerInfo DstPtrInfo
,
6226 MachinePointerInfo SrcPtrInfo
) {
6227 // Emit a library call.
6228 TargetLowering::ArgListTy Args
;
6229 TargetLowering::ArgListEntry Entry
;
6230 Entry
.Ty
= getDataLayout().getIntPtrType(*getContext());
6232 Args
.push_back(Entry
);
6235 Args
.push_back(Entry
);
6239 Args
.push_back(Entry
);
6241 RTLIB::Libcall LibraryCall
=
6242 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElemSz
);
6243 if (LibraryCall
== RTLIB::UNKNOWN_LIBCALL
)
6244 report_fatal_error("Unsupported element size");
6246 TargetLowering::CallLoweringInfo
CLI(*this);
6249 .setLibCallee(TLI
->getLibcallCallingConv(LibraryCall
),
6250 Type::getVoidTy(*getContext()),
6251 getExternalSymbol(TLI
->getLibcallName(LibraryCall
),
6252 TLI
->getPointerTy(getDataLayout())),
6255 .setTailCall(isTailCall
);
6257 std::pair
<SDValue
, SDValue
> CallResult
= TLI
->LowerCallTo(CLI
);
6258 return CallResult
.second
;
6261 SDValue
SelectionDAG::getMemset(SDValue Chain
, const SDLoc
&dl
, SDValue Dst
,
6262 SDValue Src
, SDValue Size
, unsigned Align
,
6263 bool isVol
, bool isTailCall
,
6264 MachinePointerInfo DstPtrInfo
) {
6265 assert(Align
&& "The SDAG layer expects explicit alignment and reserves 0");
6267 // Check to see if we should lower the memset to stores first.
6268 // For cases within the target-specified limits, this is the best choice.
6269 ConstantSDNode
*ConstantSize
= dyn_cast
<ConstantSDNode
>(Size
);
6271 // Memset with size zero? Just return the original chain.
6272 if (ConstantSize
->isNullValue())
6276 getMemsetStores(*this, dl
, Chain
, Dst
, Src
, ConstantSize
->getZExtValue(),
6277 Align
, isVol
, DstPtrInfo
);
6279 if (Result
.getNode())
6283 // Then check to see if we should lower the memset with target-specific
6284 // code. If the target chooses to do this, this is the next best.
6286 SDValue Result
= TSI
->EmitTargetCodeForMemset(
6287 *this, dl
, Chain
, Dst
, Src
, Size
, Align
, isVol
, DstPtrInfo
);
6288 if (Result
.getNode())
6292 checkAddrSpaceIsValidForLibcall(TLI
, DstPtrInfo
.getAddrSpace());
6294 // Emit a library call.
6295 Type
*IntPtrTy
= getDataLayout().getIntPtrType(*getContext());
6296 TargetLowering::ArgListTy Args
;
6297 TargetLowering::ArgListEntry Entry
;
6298 Entry
.Node
= Dst
; Entry
.Ty
= IntPtrTy
;
6299 Args
.push_back(Entry
);
6301 Entry
.Ty
= Src
.getValueType().getTypeForEVT(*getContext());
6302 Args
.push_back(Entry
);
6304 Entry
.Ty
= IntPtrTy
;
6305 Args
.push_back(Entry
);
6307 // FIXME: pass in SDLoc
6308 TargetLowering::CallLoweringInfo
CLI(*this);
6311 .setLibCallee(TLI
->getLibcallCallingConv(RTLIB::MEMSET
),
6312 Dst
.getValueType().getTypeForEVT(*getContext()),
6313 getExternalSymbol(TLI
->getLibcallName(RTLIB::MEMSET
),
6314 TLI
->getPointerTy(getDataLayout())),
6317 .setTailCall(isTailCall
);
6319 std::pair
<SDValue
,SDValue
> CallResult
= TLI
->LowerCallTo(CLI
);
6320 return CallResult
.second
;
6323 SDValue
SelectionDAG::getAtomicMemset(SDValue Chain
, const SDLoc
&dl
,
6324 SDValue Dst
, unsigned DstAlign
,
6325 SDValue Value
, SDValue Size
, Type
*SizeTy
,
6326 unsigned ElemSz
, bool isTailCall
,
6327 MachinePointerInfo DstPtrInfo
) {
6328 // Emit a library call.
6329 TargetLowering::ArgListTy Args
;
6330 TargetLowering::ArgListEntry Entry
;
6331 Entry
.Ty
= getDataLayout().getIntPtrType(*getContext());
6333 Args
.push_back(Entry
);
6335 Entry
.Ty
= Type::getInt8Ty(*getContext());
6337 Args
.push_back(Entry
);
6341 Args
.push_back(Entry
);
6343 RTLIB::Libcall LibraryCall
=
6344 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElemSz
);
6345 if (LibraryCall
== RTLIB::UNKNOWN_LIBCALL
)
6346 report_fatal_error("Unsupported element size");
6348 TargetLowering::CallLoweringInfo
CLI(*this);
6351 .setLibCallee(TLI
->getLibcallCallingConv(LibraryCall
),
6352 Type::getVoidTy(*getContext()),
6353 getExternalSymbol(TLI
->getLibcallName(LibraryCall
),
6354 TLI
->getPointerTy(getDataLayout())),
6357 .setTailCall(isTailCall
);
6359 std::pair
<SDValue
, SDValue
> CallResult
= TLI
->LowerCallTo(CLI
);
6360 return CallResult
.second
;
6363 SDValue
SelectionDAG::getAtomic(unsigned Opcode
, const SDLoc
&dl
, EVT MemVT
,
6364 SDVTList VTList
, ArrayRef
<SDValue
> Ops
,
6365 MachineMemOperand
*MMO
) {
6366 FoldingSetNodeID ID
;
6367 ID
.AddInteger(MemVT
.getRawBits());
6368 AddNodeIDNode(ID
, Opcode
, VTList
, Ops
);
6369 ID
.AddInteger(MMO
->getPointerInfo().getAddrSpace());
6371 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
)) {
6372 cast
<AtomicSDNode
>(E
)->refineAlignment(MMO
);
6373 return SDValue(E
, 0);
6376 auto *N
= newSDNode
<AtomicSDNode
>(Opcode
, dl
.getIROrder(), dl
.getDebugLoc(),
6377 VTList
, MemVT
, MMO
);
6378 createOperands(N
, Ops
);
6380 CSEMap
.InsertNode(N
, IP
);
6382 return SDValue(N
, 0);
6385 SDValue
SelectionDAG::getAtomicCmpSwap(unsigned Opcode
, const SDLoc
&dl
,
6386 EVT MemVT
, SDVTList VTs
, SDValue Chain
,
6387 SDValue Ptr
, SDValue Cmp
, SDValue Swp
,
6388 MachineMemOperand
*MMO
) {
6389 assert(Opcode
== ISD::ATOMIC_CMP_SWAP
||
6390 Opcode
== ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS
);
6391 assert(Cmp
.getValueType() == Swp
.getValueType() && "Invalid Atomic Op Types");
6393 SDValue Ops
[] = {Chain
, Ptr
, Cmp
, Swp
};
6394 return getAtomic(Opcode
, dl
, MemVT
, VTs
, Ops
, MMO
);
6397 SDValue
SelectionDAG::getAtomic(unsigned Opcode
, const SDLoc
&dl
, EVT MemVT
,
6398 SDValue Chain
, SDValue Ptr
, SDValue Val
,
6399 MachineMemOperand
*MMO
) {
6400 assert((Opcode
== ISD::ATOMIC_LOAD_ADD
||
6401 Opcode
== ISD::ATOMIC_LOAD_SUB
||
6402 Opcode
== ISD::ATOMIC_LOAD_AND
||
6403 Opcode
== ISD::ATOMIC_LOAD_CLR
||
6404 Opcode
== ISD::ATOMIC_LOAD_OR
||
6405 Opcode
== ISD::ATOMIC_LOAD_XOR
||
6406 Opcode
== ISD::ATOMIC_LOAD_NAND
||
6407 Opcode
== ISD::ATOMIC_LOAD_MIN
||
6408 Opcode
== ISD::ATOMIC_LOAD_MAX
||
6409 Opcode
== ISD::ATOMIC_LOAD_UMIN
||
6410 Opcode
== ISD::ATOMIC_LOAD_UMAX
||
6411 Opcode
== ISD::ATOMIC_LOAD_FADD
||
6412 Opcode
== ISD::ATOMIC_LOAD_FSUB
||
6413 Opcode
== ISD::ATOMIC_SWAP
||
6414 Opcode
== ISD::ATOMIC_STORE
) &&
6415 "Invalid Atomic Op");
6417 EVT VT
= Val
.getValueType();
6419 SDVTList VTs
= Opcode
== ISD::ATOMIC_STORE
? getVTList(MVT::Other
) :
6420 getVTList(VT
, MVT::Other
);
6421 SDValue Ops
[] = {Chain
, Ptr
, Val
};
6422 return getAtomic(Opcode
, dl
, MemVT
, VTs
, Ops
, MMO
);
6425 SDValue
SelectionDAG::getAtomic(unsigned Opcode
, const SDLoc
&dl
, EVT MemVT
,
6426 EVT VT
, SDValue Chain
, SDValue Ptr
,
6427 MachineMemOperand
*MMO
) {
6428 assert(Opcode
== ISD::ATOMIC_LOAD
&& "Invalid Atomic Op");
6430 SDVTList VTs
= getVTList(VT
, MVT::Other
);
6431 SDValue Ops
[] = {Chain
, Ptr
};
6432 return getAtomic(Opcode
, dl
, MemVT
, VTs
, Ops
, MMO
);
6435 /// getMergeValues - Create a MERGE_VALUES node from the given operands.
6436 SDValue
SelectionDAG::getMergeValues(ArrayRef
<SDValue
> Ops
, const SDLoc
&dl
) {
6437 if (Ops
.size() == 1)
6440 SmallVector
<EVT
, 4> VTs
;
6441 VTs
.reserve(Ops
.size());
6442 for (unsigned i
= 0; i
< Ops
.size(); ++i
)
6443 VTs
.push_back(Ops
[i
].getValueType());
6444 return getNode(ISD::MERGE_VALUES
, dl
, getVTList(VTs
), Ops
);
6447 SDValue
SelectionDAG::getMemIntrinsicNode(
6448 unsigned Opcode
, const SDLoc
&dl
, SDVTList VTList
, ArrayRef
<SDValue
> Ops
,
6449 EVT MemVT
, MachinePointerInfo PtrInfo
, unsigned Align
,
6450 MachineMemOperand::Flags Flags
, unsigned Size
) {
6451 if (Align
== 0) // Ensure that codegen never sees alignment 0
6452 Align
= getEVTAlignment(MemVT
);
6455 Size
= MemVT
.getStoreSize();
6457 MachineFunction
&MF
= getMachineFunction();
6458 MachineMemOperand
*MMO
=
6459 MF
.getMachineMemOperand(PtrInfo
, Flags
, Size
, Align
);
6461 return getMemIntrinsicNode(Opcode
, dl
, VTList
, Ops
, MemVT
, MMO
);
6464 SDValue
SelectionDAG::getMemIntrinsicNode(unsigned Opcode
, const SDLoc
&dl
,
6466 ArrayRef
<SDValue
> Ops
, EVT MemVT
,
6467 MachineMemOperand
*MMO
) {
6468 assert((Opcode
== ISD::INTRINSIC_VOID
||
6469 Opcode
== ISD::INTRINSIC_W_CHAIN
||
6470 Opcode
== ISD::PREFETCH
||
6471 Opcode
== ISD::LIFETIME_START
||
6472 Opcode
== ISD::LIFETIME_END
||
6473 ((int)Opcode
<= std::numeric_limits
<int>::max() &&
6474 (int)Opcode
>= ISD::FIRST_TARGET_MEMORY_OPCODE
)) &&
6475 "Opcode is not a memory-accessing opcode!");
6477 // Memoize the node unless it returns a flag.
6478 MemIntrinsicSDNode
*N
;
6479 if (VTList
.VTs
[VTList
.NumVTs
-1] != MVT::Glue
) {
6480 FoldingSetNodeID ID
;
6481 AddNodeIDNode(ID
, Opcode
, VTList
, Ops
);
6482 ID
.AddInteger(getSyntheticNodeSubclassData
<MemIntrinsicSDNode
>(
6483 Opcode
, dl
.getIROrder(), VTList
, MemVT
, MMO
));
6484 ID
.AddInteger(MMO
->getPointerInfo().getAddrSpace());
6486 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
)) {
6487 cast
<MemIntrinsicSDNode
>(E
)->refineAlignment(MMO
);
6488 return SDValue(E
, 0);
6491 N
= newSDNode
<MemIntrinsicSDNode
>(Opcode
, dl
.getIROrder(), dl
.getDebugLoc(),
6492 VTList
, MemVT
, MMO
);
6493 createOperands(N
, Ops
);
6495 CSEMap
.InsertNode(N
, IP
);
6497 N
= newSDNode
<MemIntrinsicSDNode
>(Opcode
, dl
.getIROrder(), dl
.getDebugLoc(),
6498 VTList
, MemVT
, MMO
);
6499 createOperands(N
, Ops
);
6502 return SDValue(N
, 0);
6505 SDValue
SelectionDAG::getLifetimeNode(bool IsStart
, const SDLoc
&dl
,
6506 SDValue Chain
, int FrameIndex
,
6507 int64_t Size
, int64_t Offset
) {
6508 const unsigned Opcode
= IsStart
? ISD::LIFETIME_START
: ISD::LIFETIME_END
;
6509 const auto VTs
= getVTList(MVT::Other
);
6512 getFrameIndex(FrameIndex
,
6513 getTargetLoweringInfo().getFrameIndexTy(getDataLayout()),
6516 FoldingSetNodeID ID
;
6517 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
);
6518 ID
.AddInteger(FrameIndex
);
6519 ID
.AddInteger(Size
);
6520 ID
.AddInteger(Offset
);
6522 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
))
6523 return SDValue(E
, 0);
6525 LifetimeSDNode
*N
= newSDNode
<LifetimeSDNode
>(
6526 Opcode
, dl
.getIROrder(), dl
.getDebugLoc(), VTs
, Size
, Offset
);
6527 createOperands(N
, Ops
);
6528 CSEMap
.InsertNode(N
, IP
);
6531 NewSDValueDbgMsg(V
, "Creating new node: ", this);
6535 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6536 /// MachinePointerInfo record from it. This is particularly useful because the
6537 /// code generator has many cases where it doesn't bother passing in a
6538 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6539 static MachinePointerInfo
InferPointerInfo(const MachinePointerInfo
&Info
,
6540 SelectionDAG
&DAG
, SDValue Ptr
,
6541 int64_t Offset
= 0) {
6542 // If this is FI+Offset, we can model it.
6543 if (const FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(Ptr
))
6544 return MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(),
6545 FI
->getIndex(), Offset
);
6547 // If this is (FI+Offset1)+Offset2, we can model it.
6548 if (Ptr
.getOpcode() != ISD::ADD
||
6549 !isa
<ConstantSDNode
>(Ptr
.getOperand(1)) ||
6550 !isa
<FrameIndexSDNode
>(Ptr
.getOperand(0)))
6553 int FI
= cast
<FrameIndexSDNode
>(Ptr
.getOperand(0))->getIndex();
6554 return MachinePointerInfo::getFixedStack(
6555 DAG
.getMachineFunction(), FI
,
6556 Offset
+ cast
<ConstantSDNode
>(Ptr
.getOperand(1))->getSExtValue());
6559 /// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
6560 /// MachinePointerInfo record from it. This is particularly useful because the
6561 /// code generator has many cases where it doesn't bother passing in a
6562 /// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
6563 static MachinePointerInfo
InferPointerInfo(const MachinePointerInfo
&Info
,
6564 SelectionDAG
&DAG
, SDValue Ptr
,
6566 // If the 'Offset' value isn't a constant, we can't handle this.
6567 if (ConstantSDNode
*OffsetNode
= dyn_cast
<ConstantSDNode
>(OffsetOp
))
6568 return InferPointerInfo(Info
, DAG
, Ptr
, OffsetNode
->getSExtValue());
6569 if (OffsetOp
.isUndef())
6570 return InferPointerInfo(Info
, DAG
, Ptr
);
6574 SDValue
SelectionDAG::getLoad(ISD::MemIndexedMode AM
, ISD::LoadExtType ExtType
,
6575 EVT VT
, const SDLoc
&dl
, SDValue Chain
,
6576 SDValue Ptr
, SDValue Offset
,
6577 MachinePointerInfo PtrInfo
, EVT MemVT
,
6579 MachineMemOperand::Flags MMOFlags
,
6580 const AAMDNodes
&AAInfo
, const MDNode
*Ranges
) {
6581 assert(Chain
.getValueType() == MVT::Other
&&
6582 "Invalid chain type");
6583 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
6584 Alignment
= getEVTAlignment(MemVT
);
6586 MMOFlags
|= MachineMemOperand::MOLoad
;
6587 assert((MMOFlags
& MachineMemOperand::MOStore
) == 0);
6588 // If we don't have a PtrInfo, infer the trivial frame index case to simplify
6590 if (PtrInfo
.V
.isNull())
6591 PtrInfo
= InferPointerInfo(PtrInfo
, *this, Ptr
, Offset
);
6593 MachineFunction
&MF
= getMachineFunction();
6594 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
6595 PtrInfo
, MMOFlags
, MemVT
.getStoreSize(), Alignment
, AAInfo
, Ranges
);
6596 return getLoad(AM
, ExtType
, VT
, dl
, Chain
, Ptr
, Offset
, MemVT
, MMO
);
6599 SDValue
SelectionDAG::getLoad(ISD::MemIndexedMode AM
, ISD::LoadExtType ExtType
,
6600 EVT VT
, const SDLoc
&dl
, SDValue Chain
,
6601 SDValue Ptr
, SDValue Offset
, EVT MemVT
,
6602 MachineMemOperand
*MMO
) {
6604 ExtType
= ISD::NON_EXTLOAD
;
6605 } else if (ExtType
== ISD::NON_EXTLOAD
) {
6606 assert(VT
== MemVT
&& "Non-extending load from different memory type!");
6609 assert(MemVT
.getScalarType().bitsLT(VT
.getScalarType()) &&
6610 "Should only be an extending load, not truncating!");
6611 assert(VT
.isInteger() == MemVT
.isInteger() &&
6612 "Cannot convert from FP to Int or Int -> FP!");
6613 assert(VT
.isVector() == MemVT
.isVector() &&
6614 "Cannot use an ext load to convert to or from a vector!");
6615 assert((!VT
.isVector() ||
6616 VT
.getVectorNumElements() == MemVT
.getVectorNumElements()) &&
6617 "Cannot use an ext load to change the number of vector elements!");
6620 bool Indexed
= AM
!= ISD::UNINDEXED
;
6621 assert((Indexed
|| Offset
.isUndef()) && "Unindexed load with an offset!");
6623 SDVTList VTs
= Indexed
?
6624 getVTList(VT
, Ptr
.getValueType(), MVT::Other
) : getVTList(VT
, MVT::Other
);
6625 SDValue Ops
[] = { Chain
, Ptr
, Offset
};
6626 FoldingSetNodeID ID
;
6627 AddNodeIDNode(ID
, ISD::LOAD
, VTs
, Ops
);
6628 ID
.AddInteger(MemVT
.getRawBits());
6629 ID
.AddInteger(getSyntheticNodeSubclassData
<LoadSDNode
>(
6630 dl
.getIROrder(), VTs
, AM
, ExtType
, MemVT
, MMO
));
6631 ID
.AddInteger(MMO
->getPointerInfo().getAddrSpace());
6633 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
)) {
6634 cast
<LoadSDNode
>(E
)->refineAlignment(MMO
);
6635 return SDValue(E
, 0);
6637 auto *N
= newSDNode
<LoadSDNode
>(dl
.getIROrder(), dl
.getDebugLoc(), VTs
, AM
,
6638 ExtType
, MemVT
, MMO
);
6639 createOperands(N
, Ops
);
6641 CSEMap
.InsertNode(N
, IP
);
6644 NewSDValueDbgMsg(V
, "Creating new node: ", this);
6648 SDValue
SelectionDAG::getLoad(EVT VT
, const SDLoc
&dl
, SDValue Chain
,
6649 SDValue Ptr
, MachinePointerInfo PtrInfo
,
6651 MachineMemOperand::Flags MMOFlags
,
6652 const AAMDNodes
&AAInfo
, const MDNode
*Ranges
) {
6653 SDValue Undef
= getUNDEF(Ptr
.getValueType());
6654 return getLoad(ISD::UNINDEXED
, ISD::NON_EXTLOAD
, VT
, dl
, Chain
, Ptr
, Undef
,
6655 PtrInfo
, VT
, Alignment
, MMOFlags
, AAInfo
, Ranges
);
6658 SDValue
SelectionDAG::getLoad(EVT VT
, const SDLoc
&dl
, SDValue Chain
,
6659 SDValue Ptr
, MachineMemOperand
*MMO
) {
6660 SDValue Undef
= getUNDEF(Ptr
.getValueType());
6661 return getLoad(ISD::UNINDEXED
, ISD::NON_EXTLOAD
, VT
, dl
, Chain
, Ptr
, Undef
,
6665 SDValue
SelectionDAG::getExtLoad(ISD::LoadExtType ExtType
, const SDLoc
&dl
,
6666 EVT VT
, SDValue Chain
, SDValue Ptr
,
6667 MachinePointerInfo PtrInfo
, EVT MemVT
,
6669 MachineMemOperand::Flags MMOFlags
,
6670 const AAMDNodes
&AAInfo
) {
6671 SDValue Undef
= getUNDEF(Ptr
.getValueType());
6672 return getLoad(ISD::UNINDEXED
, ExtType
, VT
, dl
, Chain
, Ptr
, Undef
, PtrInfo
,
6673 MemVT
, Alignment
, MMOFlags
, AAInfo
);
6676 SDValue
SelectionDAG::getExtLoad(ISD::LoadExtType ExtType
, const SDLoc
&dl
,
6677 EVT VT
, SDValue Chain
, SDValue Ptr
, EVT MemVT
,
6678 MachineMemOperand
*MMO
) {
6679 SDValue Undef
= getUNDEF(Ptr
.getValueType());
6680 return getLoad(ISD::UNINDEXED
, ExtType
, VT
, dl
, Chain
, Ptr
, Undef
,
6684 SDValue
SelectionDAG::getIndexedLoad(SDValue OrigLoad
, const SDLoc
&dl
,
6685 SDValue Base
, SDValue Offset
,
6686 ISD::MemIndexedMode AM
) {
6687 LoadSDNode
*LD
= cast
<LoadSDNode
>(OrigLoad
);
6688 assert(LD
->getOffset().isUndef() && "Load is already a indexed load!");
6689 // Don't propagate the invariant or dereferenceable flags.
6691 LD
->getMemOperand()->getFlags() &
6692 ~(MachineMemOperand::MOInvariant
| MachineMemOperand::MODereferenceable
);
6693 return getLoad(AM
, LD
->getExtensionType(), OrigLoad
.getValueType(), dl
,
6694 LD
->getChain(), Base
, Offset
, LD
->getPointerInfo(),
6695 LD
->getMemoryVT(), LD
->getAlignment(), MMOFlags
,
6699 SDValue
SelectionDAG::getStore(SDValue Chain
, const SDLoc
&dl
, SDValue Val
,
6700 SDValue Ptr
, MachinePointerInfo PtrInfo
,
6702 MachineMemOperand::Flags MMOFlags
,
6703 const AAMDNodes
&AAInfo
) {
6704 assert(Chain
.getValueType() == MVT::Other
&& "Invalid chain type");
6705 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
6706 Alignment
= getEVTAlignment(Val
.getValueType());
6708 MMOFlags
|= MachineMemOperand::MOStore
;
6709 assert((MMOFlags
& MachineMemOperand::MOLoad
) == 0);
6711 if (PtrInfo
.V
.isNull())
6712 PtrInfo
= InferPointerInfo(PtrInfo
, *this, Ptr
);
6714 MachineFunction
&MF
= getMachineFunction();
6715 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
6716 PtrInfo
, MMOFlags
, Val
.getValueType().getStoreSize(), Alignment
, AAInfo
);
6717 return getStore(Chain
, dl
, Val
, Ptr
, MMO
);
6720 SDValue
SelectionDAG::getStore(SDValue Chain
, const SDLoc
&dl
, SDValue Val
,
6721 SDValue Ptr
, MachineMemOperand
*MMO
) {
6722 assert(Chain
.getValueType() == MVT::Other
&&
6723 "Invalid chain type");
6724 EVT VT
= Val
.getValueType();
6725 SDVTList VTs
= getVTList(MVT::Other
);
6726 SDValue Undef
= getUNDEF(Ptr
.getValueType());
6727 SDValue Ops
[] = { Chain
, Val
, Ptr
, Undef
};
6728 FoldingSetNodeID ID
;
6729 AddNodeIDNode(ID
, ISD::STORE
, VTs
, Ops
);
6730 ID
.AddInteger(VT
.getRawBits());
6731 ID
.AddInteger(getSyntheticNodeSubclassData
<StoreSDNode
>(
6732 dl
.getIROrder(), VTs
, ISD::UNINDEXED
, false, VT
, MMO
));
6733 ID
.AddInteger(MMO
->getPointerInfo().getAddrSpace());
6735 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
)) {
6736 cast
<StoreSDNode
>(E
)->refineAlignment(MMO
);
6737 return SDValue(E
, 0);
6739 auto *N
= newSDNode
<StoreSDNode
>(dl
.getIROrder(), dl
.getDebugLoc(), VTs
,
6740 ISD::UNINDEXED
, false, VT
, MMO
);
6741 createOperands(N
, Ops
);
6743 CSEMap
.InsertNode(N
, IP
);
6746 NewSDValueDbgMsg(V
, "Creating new node: ", this);
6750 SDValue
SelectionDAG::getTruncStore(SDValue Chain
, const SDLoc
&dl
, SDValue Val
,
6751 SDValue Ptr
, MachinePointerInfo PtrInfo
,
6752 EVT SVT
, unsigned Alignment
,
6753 MachineMemOperand::Flags MMOFlags
,
6754 const AAMDNodes
&AAInfo
) {
6755 assert(Chain
.getValueType() == MVT::Other
&&
6756 "Invalid chain type");
6757 if (Alignment
== 0) // Ensure that codegen never sees alignment 0
6758 Alignment
= getEVTAlignment(SVT
);
6760 MMOFlags
|= MachineMemOperand::MOStore
;
6761 assert((MMOFlags
& MachineMemOperand::MOLoad
) == 0);
6763 if (PtrInfo
.V
.isNull())
6764 PtrInfo
= InferPointerInfo(PtrInfo
, *this, Ptr
);
6766 MachineFunction
&MF
= getMachineFunction();
6767 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
6768 PtrInfo
, MMOFlags
, SVT
.getStoreSize(), Alignment
, AAInfo
);
6769 return getTruncStore(Chain
, dl
, Val
, Ptr
, SVT
, MMO
);
6772 SDValue
SelectionDAG::getTruncStore(SDValue Chain
, const SDLoc
&dl
, SDValue Val
,
6773 SDValue Ptr
, EVT SVT
,
6774 MachineMemOperand
*MMO
) {
6775 EVT VT
= Val
.getValueType();
6777 assert(Chain
.getValueType() == MVT::Other
&&
6778 "Invalid chain type");
6780 return getStore(Chain
, dl
, Val
, Ptr
, MMO
);
6782 assert(SVT
.getScalarType().bitsLT(VT
.getScalarType()) &&
6783 "Should only be a truncating store, not extending!");
6784 assert(VT
.isInteger() == SVT
.isInteger() &&
6785 "Can't do FP-INT conversion!");
6786 assert(VT
.isVector() == SVT
.isVector() &&
6787 "Cannot use trunc store to convert to or from a vector!");
6788 assert((!VT
.isVector() ||
6789 VT
.getVectorNumElements() == SVT
.getVectorNumElements()) &&
6790 "Cannot use trunc store to change the number of vector elements!");
6792 SDVTList VTs
= getVTList(MVT::Other
);
6793 SDValue Undef
= getUNDEF(Ptr
.getValueType());
6794 SDValue Ops
[] = { Chain
, Val
, Ptr
, Undef
};
6795 FoldingSetNodeID ID
;
6796 AddNodeIDNode(ID
, ISD::STORE
, VTs
, Ops
);
6797 ID
.AddInteger(SVT
.getRawBits());
6798 ID
.AddInteger(getSyntheticNodeSubclassData
<StoreSDNode
>(
6799 dl
.getIROrder(), VTs
, ISD::UNINDEXED
, true, SVT
, MMO
));
6800 ID
.AddInteger(MMO
->getPointerInfo().getAddrSpace());
6802 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
)) {
6803 cast
<StoreSDNode
>(E
)->refineAlignment(MMO
);
6804 return SDValue(E
, 0);
6806 auto *N
= newSDNode
<StoreSDNode
>(dl
.getIROrder(), dl
.getDebugLoc(), VTs
,
6807 ISD::UNINDEXED
, true, SVT
, MMO
);
6808 createOperands(N
, Ops
);
6810 CSEMap
.InsertNode(N
, IP
);
6813 NewSDValueDbgMsg(V
, "Creating new node: ", this);
6817 SDValue
SelectionDAG::getIndexedStore(SDValue OrigStore
, const SDLoc
&dl
,
6818 SDValue Base
, SDValue Offset
,
6819 ISD::MemIndexedMode AM
) {
6820 StoreSDNode
*ST
= cast
<StoreSDNode
>(OrigStore
);
6821 assert(ST
->getOffset().isUndef() && "Store is already a indexed store!");
6822 SDVTList VTs
= getVTList(Base
.getValueType(), MVT::Other
);
6823 SDValue Ops
[] = { ST
->getChain(), ST
->getValue(), Base
, Offset
};
6824 FoldingSetNodeID ID
;
6825 AddNodeIDNode(ID
, ISD::STORE
, VTs
, Ops
);
6826 ID
.AddInteger(ST
->getMemoryVT().getRawBits());
6827 ID
.AddInteger(ST
->getRawSubclassData());
6828 ID
.AddInteger(ST
->getPointerInfo().getAddrSpace());
6830 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
))
6831 return SDValue(E
, 0);
6833 auto *N
= newSDNode
<StoreSDNode
>(dl
.getIROrder(), dl
.getDebugLoc(), VTs
, AM
,
6834 ST
->isTruncatingStore(), ST
->getMemoryVT(),
6835 ST
->getMemOperand());
6836 createOperands(N
, Ops
);
6838 CSEMap
.InsertNode(N
, IP
);
6841 NewSDValueDbgMsg(V
, "Creating new node: ", this);
6845 SDValue
SelectionDAG::getMaskedLoad(EVT VT
, const SDLoc
&dl
, SDValue Chain
,
6846 SDValue Ptr
, SDValue Mask
, SDValue PassThru
,
6847 EVT MemVT
, MachineMemOperand
*MMO
,
6848 ISD::LoadExtType ExtTy
, bool isExpanding
) {
6849 SDVTList VTs
= getVTList(VT
, MVT::Other
);
6850 SDValue Ops
[] = { Chain
, Ptr
, Mask
, PassThru
};
6851 FoldingSetNodeID ID
;
6852 AddNodeIDNode(ID
, ISD::MLOAD
, VTs
, Ops
);
6853 ID
.AddInteger(VT
.getRawBits());
6854 ID
.AddInteger(getSyntheticNodeSubclassData
<MaskedLoadSDNode
>(
6855 dl
.getIROrder(), VTs
, ExtTy
, isExpanding
, MemVT
, MMO
));
6856 ID
.AddInteger(MMO
->getPointerInfo().getAddrSpace());
6858 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
)) {
6859 cast
<MaskedLoadSDNode
>(E
)->refineAlignment(MMO
);
6860 return SDValue(E
, 0);
6862 auto *N
= newSDNode
<MaskedLoadSDNode
>(dl
.getIROrder(), dl
.getDebugLoc(), VTs
,
6863 ExtTy
, isExpanding
, MemVT
, MMO
);
6864 createOperands(N
, Ops
);
6866 CSEMap
.InsertNode(N
, IP
);
6869 NewSDValueDbgMsg(V
, "Creating new node: ", this);
6873 SDValue
SelectionDAG::getMaskedStore(SDValue Chain
, const SDLoc
&dl
,
6874 SDValue Val
, SDValue Ptr
, SDValue Mask
,
6875 EVT MemVT
, MachineMemOperand
*MMO
,
6876 bool IsTruncating
, bool IsCompressing
) {
6877 assert(Chain
.getValueType() == MVT::Other
&&
6878 "Invalid chain type");
6879 EVT VT
= Val
.getValueType();
6880 SDVTList VTs
= getVTList(MVT::Other
);
6881 SDValue Ops
[] = { Chain
, Val
, Ptr
, Mask
};
6882 FoldingSetNodeID ID
;
6883 AddNodeIDNode(ID
, ISD::MSTORE
, VTs
, Ops
);
6884 ID
.AddInteger(VT
.getRawBits());
6885 ID
.AddInteger(getSyntheticNodeSubclassData
<MaskedStoreSDNode
>(
6886 dl
.getIROrder(), VTs
, IsTruncating
, IsCompressing
, MemVT
, MMO
));
6887 ID
.AddInteger(MMO
->getPointerInfo().getAddrSpace());
6889 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
)) {
6890 cast
<MaskedStoreSDNode
>(E
)->refineAlignment(MMO
);
6891 return SDValue(E
, 0);
6893 auto *N
= newSDNode
<MaskedStoreSDNode
>(dl
.getIROrder(), dl
.getDebugLoc(), VTs
,
6894 IsTruncating
, IsCompressing
, MemVT
, MMO
);
6895 createOperands(N
, Ops
);
6897 CSEMap
.InsertNode(N
, IP
);
6900 NewSDValueDbgMsg(V
, "Creating new node: ", this);
6904 SDValue
SelectionDAG::getMaskedGather(SDVTList VTs
, EVT VT
, const SDLoc
&dl
,
6905 ArrayRef
<SDValue
> Ops
,
6906 MachineMemOperand
*MMO
) {
6907 assert(Ops
.size() == 6 && "Incompatible number of operands");
6909 FoldingSetNodeID ID
;
6910 AddNodeIDNode(ID
, ISD::MGATHER
, VTs
, Ops
);
6911 ID
.AddInteger(VT
.getRawBits());
6912 ID
.AddInteger(getSyntheticNodeSubclassData
<MaskedGatherSDNode
>(
6913 dl
.getIROrder(), VTs
, VT
, MMO
));
6914 ID
.AddInteger(MMO
->getPointerInfo().getAddrSpace());
6916 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
)) {
6917 cast
<MaskedGatherSDNode
>(E
)->refineAlignment(MMO
);
6918 return SDValue(E
, 0);
6921 auto *N
= newSDNode
<MaskedGatherSDNode
>(dl
.getIROrder(), dl
.getDebugLoc(),
6923 createOperands(N
, Ops
);
6925 assert(N
->getPassThru().getValueType() == N
->getValueType(0) &&
6926 "Incompatible type of the PassThru value in MaskedGatherSDNode");
6927 assert(N
->getMask().getValueType().getVectorNumElements() ==
6928 N
->getValueType(0).getVectorNumElements() &&
6929 "Vector width mismatch between mask and data");
6930 assert(N
->getIndex().getValueType().getVectorNumElements() >=
6931 N
->getValueType(0).getVectorNumElements() &&
6932 "Vector width mismatch between index and data");
6933 assert(isa
<ConstantSDNode
>(N
->getScale()) &&
6934 cast
<ConstantSDNode
>(N
->getScale())->getAPIntValue().isPowerOf2() &&
6935 "Scale should be a constant power of 2");
6937 CSEMap
.InsertNode(N
, IP
);
6940 NewSDValueDbgMsg(V
, "Creating new node: ", this);
6944 SDValue
SelectionDAG::getMaskedScatter(SDVTList VTs
, EVT VT
, const SDLoc
&dl
,
6945 ArrayRef
<SDValue
> Ops
,
6946 MachineMemOperand
*MMO
) {
6947 assert(Ops
.size() == 6 && "Incompatible number of operands");
6949 FoldingSetNodeID ID
;
6950 AddNodeIDNode(ID
, ISD::MSCATTER
, VTs
, Ops
);
6951 ID
.AddInteger(VT
.getRawBits());
6952 ID
.AddInteger(getSyntheticNodeSubclassData
<MaskedScatterSDNode
>(
6953 dl
.getIROrder(), VTs
, VT
, MMO
));
6954 ID
.AddInteger(MMO
->getPointerInfo().getAddrSpace());
6956 if (SDNode
*E
= FindNodeOrInsertPos(ID
, dl
, IP
)) {
6957 cast
<MaskedScatterSDNode
>(E
)->refineAlignment(MMO
);
6958 return SDValue(E
, 0);
6960 auto *N
= newSDNode
<MaskedScatterSDNode
>(dl
.getIROrder(), dl
.getDebugLoc(),
6962 createOperands(N
, Ops
);
6964 assert(N
->getMask().getValueType().getVectorNumElements() ==
6965 N
->getValue().getValueType().getVectorNumElements() &&
6966 "Vector width mismatch between mask and data");
6967 assert(N
->getIndex().getValueType().getVectorNumElements() >=
6968 N
->getValue().getValueType().getVectorNumElements() &&
6969 "Vector width mismatch between index and data");
6970 assert(isa
<ConstantSDNode
>(N
->getScale()) &&
6971 cast
<ConstantSDNode
>(N
->getScale())->getAPIntValue().isPowerOf2() &&
6972 "Scale should be a constant power of 2");
6974 CSEMap
.InsertNode(N
, IP
);
6977 NewSDValueDbgMsg(V
, "Creating new node: ", this);
6981 SDValue
SelectionDAG::simplifySelect(SDValue Cond
, SDValue T
, SDValue F
) {
6982 // select undef, T, F --> T (if T is a constant), otherwise F
6983 // select, ?, undef, F --> F
6984 // select, ?, T, undef --> T
6986 return isConstantValueOfAnyType(T
) ? T
: F
;
6992 // select true, T, F --> T
6993 // select false, T, F --> F
6994 if (auto *CondC
= dyn_cast
<ConstantSDNode
>(Cond
))
6995 return CondC
->isNullValue() ? F
: T
;
6997 // TODO: This should simplify VSELECT with constant condition using something
6998 // like this (but check boolean contents to be complete?):
6999 // if (ISD::isBuildVectorAllOnes(Cond.getNode()))
7001 // if (ISD::isBuildVectorAllZeros(Cond.getNode()))
7004 // select ?, T, T --> T
7011 SDValue
SelectionDAG::simplifyShift(SDValue X
, SDValue Y
) {
7012 // shift undef, Y --> 0 (can always assume that the undef value is 0)
7014 return getConstant(0, SDLoc(X
.getNode()), X
.getValueType());
7015 // shift X, undef --> undef (because it may shift by the bitwidth)
7017 return getUNDEF(X
.getValueType());
7021 if (isNullOrNullSplat(X
) || isNullOrNullSplat(Y
))
7024 // shift X, C >= bitwidth(X) --> undef
7025 // All vector elements must be too big (or undef) to avoid partial undefs.
7026 auto isShiftTooBig
= [X
](ConstantSDNode
*Val
) {
7027 return !Val
|| Val
->getAPIntValue().uge(X
.getScalarValueSizeInBits());
7029 if (ISD::matchUnaryPredicate(Y
, isShiftTooBig
, true))
7030 return getUNDEF(X
.getValueType());
7035 SDValue
SelectionDAG::getVAArg(EVT VT
, const SDLoc
&dl
, SDValue Chain
,
7036 SDValue Ptr
, SDValue SV
, unsigned Align
) {
7037 SDValue Ops
[] = { Chain
, Ptr
, SV
, getTargetConstant(Align
, dl
, MVT::i32
) };
7038 return getNode(ISD::VAARG
, dl
, getVTList(VT
, MVT::Other
), Ops
);
7041 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
7042 ArrayRef
<SDUse
> Ops
) {
7043 switch (Ops
.size()) {
7044 case 0: return getNode(Opcode
, DL
, VT
);
7045 case 1: return getNode(Opcode
, DL
, VT
, static_cast<const SDValue
>(Ops
[0]));
7046 case 2: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1]);
7047 case 3: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1], Ops
[2]);
7051 // Copy from an SDUse array into an SDValue array for use with
7052 // the regular getNode logic.
7053 SmallVector
<SDValue
, 8> NewOps(Ops
.begin(), Ops
.end());
7054 return getNode(Opcode
, DL
, VT
, NewOps
);
7057 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, EVT VT
,
7058 ArrayRef
<SDValue
> Ops
, const SDNodeFlags Flags
) {
7059 unsigned NumOps
= Ops
.size();
7061 case 0: return getNode(Opcode
, DL
, VT
);
7062 case 1: return getNode(Opcode
, DL
, VT
, Ops
[0], Flags
);
7063 case 2: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1], Flags
);
7064 case 3: return getNode(Opcode
, DL
, VT
, Ops
[0], Ops
[1], Ops
[2], Flags
);
7070 case ISD::BUILD_VECTOR
:
7071 // Attempt to simplify BUILD_VECTOR.
7072 if (SDValue V
= FoldBUILD_VECTOR(DL
, VT
, Ops
, *this))
7075 case ISD::CONCAT_VECTORS
:
7076 // Attempt to fold CONCAT_VECTORS into BUILD_VECTOR or UNDEF.
7077 if (SDValue V
= FoldCONCAT_VECTORS(DL
, VT
, Ops
, *this))
7080 case ISD::SELECT_CC
:
7081 assert(NumOps
== 5 && "SELECT_CC takes 5 operands!");
7082 assert(Ops
[0].getValueType() == Ops
[1].getValueType() &&
7083 "LHS and RHS of condition must have same type!");
7084 assert(Ops
[2].getValueType() == Ops
[3].getValueType() &&
7085 "True and False arms of SelectCC must have same type!");
7086 assert(Ops
[2].getValueType() == VT
&&
7087 "select_cc node must be of same type as true and false value!");
7090 assert(NumOps
== 5 && "BR_CC takes 5 operands!");
7091 assert(Ops
[2].getValueType() == Ops
[3].getValueType() &&
7092 "LHS/RHS of comparison should match types!");
7098 SDVTList VTs
= getVTList(VT
);
7100 if (VT
!= MVT::Glue
) {
7101 FoldingSetNodeID ID
;
7102 AddNodeIDNode(ID
, Opcode
, VTs
, Ops
);
7105 if (SDNode
*E
= FindNodeOrInsertPos(ID
, DL
, IP
))
7106 return SDValue(E
, 0);
7108 N
= newSDNode
<SDNode
>(Opcode
, DL
.getIROrder(), DL
.getDebugLoc(), VTs
);
7109 createOperands(N
, Ops
);
7111 CSEMap
.InsertNode(N
, IP
);
7113 N
= newSDNode
<SDNode
>(Opcode
, DL
.getIROrder(), DL
.getDebugLoc(), VTs
);
7114 createOperands(N
, Ops
);
7119 NewSDValueDbgMsg(V
, "Creating new node: ", this);
7123 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
,
7124 ArrayRef
<EVT
> ResultTys
, ArrayRef
<SDValue
> Ops
) {
7125 return getNode(Opcode
, DL
, getVTList(ResultTys
), Ops
);
7128 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
,
7129 ArrayRef
<SDValue
> Ops
) {
7130 if (VTList
.NumVTs
== 1)
7131 return getNode(Opcode
, DL
, VTList
.VTs
[0], Ops
);
7135 // FIXME: figure out how to safely handle things like
7136 // int foo(int x) { return 1 << (x & 255); }
7137 // int bar() { return foo(256); }
7138 case ISD::SRA_PARTS
:
7139 case ISD::SRL_PARTS
:
7140 case ISD::SHL_PARTS
:
7141 if (N3
.getOpcode() == ISD::SIGN_EXTEND_INREG
&&
7142 cast
<VTSDNode
>(N3
.getOperand(1))->getVT() != MVT::i1
)
7143 return getNode(Opcode
, DL
, VT
, N1
, N2
, N3
.getOperand(0));
7144 else if (N3
.getOpcode() == ISD::AND
)
7145 if (ConstantSDNode
*AndRHS
= dyn_cast
<ConstantSDNode
>(N3
.getOperand(1))) {
7146 // If the and is only masking out bits that cannot effect the shift,
7147 // eliminate the and.
7148 unsigned NumBits
= VT
.getScalarSizeInBits()*2;
7149 if ((AndRHS
->getValue() & (NumBits
-1)) == NumBits
-1)
7150 return getNode(Opcode
, DL
, VT
, N1
, N2
, N3
.getOperand(0));
7156 // Memoize the node unless it returns a flag.
7158 if (VTList
.VTs
[VTList
.NumVTs
-1] != MVT::Glue
) {
7159 FoldingSetNodeID ID
;
7160 AddNodeIDNode(ID
, Opcode
, VTList
, Ops
);
7162 if (SDNode
*E
= FindNodeOrInsertPos(ID
, DL
, IP
))
7163 return SDValue(E
, 0);
7165 N
= newSDNode
<SDNode
>(Opcode
, DL
.getIROrder(), DL
.getDebugLoc(), VTList
);
7166 createOperands(N
, Ops
);
7167 CSEMap
.InsertNode(N
, IP
);
7169 N
= newSDNode
<SDNode
>(Opcode
, DL
.getIROrder(), DL
.getDebugLoc(), VTList
);
7170 createOperands(N
, Ops
);
7174 NewSDValueDbgMsg(V
, "Creating new node: ", this);
7178 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
,
7180 return getNode(Opcode
, DL
, VTList
, None
);
7183 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
,
7185 SDValue Ops
[] = { N1
};
7186 return getNode(Opcode
, DL
, VTList
, Ops
);
7189 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
,
7190 SDValue N1
, SDValue N2
) {
7191 SDValue Ops
[] = { N1
, N2
};
7192 return getNode(Opcode
, DL
, VTList
, Ops
);
7195 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
,
7196 SDValue N1
, SDValue N2
, SDValue N3
) {
7197 SDValue Ops
[] = { N1
, N2
, N3
};
7198 return getNode(Opcode
, DL
, VTList
, Ops
);
7201 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
,
7202 SDValue N1
, SDValue N2
, SDValue N3
, SDValue N4
) {
7203 SDValue Ops
[] = { N1
, N2
, N3
, N4
};
7204 return getNode(Opcode
, DL
, VTList
, Ops
);
7207 SDValue
SelectionDAG::getNode(unsigned Opcode
, const SDLoc
&DL
, SDVTList VTList
,
7208 SDValue N1
, SDValue N2
, SDValue N3
, SDValue N4
,
7210 SDValue Ops
[] = { N1
, N2
, N3
, N4
, N5
};
7211 return getNode(Opcode
, DL
, VTList
, Ops
);
7214 SDVTList
SelectionDAG::getVTList(EVT VT
) {
7215 return makeVTList(SDNode::getValueTypeList(VT
), 1);
7218 SDVTList
SelectionDAG::getVTList(EVT VT1
, EVT VT2
) {
7219 FoldingSetNodeID ID
;
7221 ID
.AddInteger(VT1
.getRawBits());
7222 ID
.AddInteger(VT2
.getRawBits());
7225 SDVTListNode
*Result
= VTListMap
.FindNodeOrInsertPos(ID
, IP
);
7227 EVT
*Array
= Allocator
.Allocate
<EVT
>(2);
7230 Result
= new (Allocator
) SDVTListNode(ID
.Intern(Allocator
), Array
, 2);
7231 VTListMap
.InsertNode(Result
, IP
);
7233 return Result
->getSDVTList();
7236 SDVTList
SelectionDAG::getVTList(EVT VT1
, EVT VT2
, EVT VT3
) {
7237 FoldingSetNodeID ID
;
7239 ID
.AddInteger(VT1
.getRawBits());
7240 ID
.AddInteger(VT2
.getRawBits());
7241 ID
.AddInteger(VT3
.getRawBits());
7244 SDVTListNode
*Result
= VTListMap
.FindNodeOrInsertPos(ID
, IP
);
7246 EVT
*Array
= Allocator
.Allocate
<EVT
>(3);
7250 Result
= new (Allocator
) SDVTListNode(ID
.Intern(Allocator
), Array
, 3);
7251 VTListMap
.InsertNode(Result
, IP
);
7253 return Result
->getSDVTList();
7256 SDVTList
SelectionDAG::getVTList(EVT VT1
, EVT VT2
, EVT VT3
, EVT VT4
) {
7257 FoldingSetNodeID ID
;
7259 ID
.AddInteger(VT1
.getRawBits());
7260 ID
.AddInteger(VT2
.getRawBits());
7261 ID
.AddInteger(VT3
.getRawBits());
7262 ID
.AddInteger(VT4
.getRawBits());
7265 SDVTListNode
*Result
= VTListMap
.FindNodeOrInsertPos(ID
, IP
);
7267 EVT
*Array
= Allocator
.Allocate
<EVT
>(4);
7272 Result
= new (Allocator
) SDVTListNode(ID
.Intern(Allocator
), Array
, 4);
7273 VTListMap
.InsertNode(Result
, IP
);
7275 return Result
->getSDVTList();
7278 SDVTList
SelectionDAG::getVTList(ArrayRef
<EVT
> VTs
) {
7279 unsigned NumVTs
= VTs
.size();
7280 FoldingSetNodeID ID
;
7281 ID
.AddInteger(NumVTs
);
7282 for (unsigned index
= 0; index
< NumVTs
; index
++) {
7283 ID
.AddInteger(VTs
[index
].getRawBits());
7287 SDVTListNode
*Result
= VTListMap
.FindNodeOrInsertPos(ID
, IP
);
7289 EVT
*Array
= Allocator
.Allocate
<EVT
>(NumVTs
);
7290 llvm::copy(VTs
, Array
);
7291 Result
= new (Allocator
) SDVTListNode(ID
.Intern(Allocator
), Array
, NumVTs
);
7292 VTListMap
.InsertNode(Result
, IP
);
7294 return Result
->getSDVTList();
7298 /// UpdateNodeOperands - *Mutate* the specified node in-place to have the
7299 /// specified operands. If the resultant node already exists in the DAG,
7300 /// this does not modify the specified node, instead it returns the node that
7301 /// already exists. If the resultant node does not exist in the DAG, the
7302 /// input node is returned. As a degenerate case, if you specify the same
7303 /// input operands as the node already has, the input node is returned.
7304 SDNode
*SelectionDAG::UpdateNodeOperands(SDNode
*N
, SDValue Op
) {
7305 assert(N
->getNumOperands() == 1 && "Update with wrong number of operands");
7307 // Check to see if there is no change.
7308 if (Op
== N
->getOperand(0)) return N
;
7310 // See if the modified node already exists.
7311 void *InsertPos
= nullptr;
7312 if (SDNode
*Existing
= FindModifiedNodeSlot(N
, Op
, InsertPos
))
7315 // Nope it doesn't. Remove the node from its current place in the maps.
7317 if (!RemoveNodeFromCSEMaps(N
))
7318 InsertPos
= nullptr;
7320 // Now we update the operands.
7321 N
->OperandList
[0].set(Op
);
7323 updateDivergence(N
);
7324 // If this gets put into a CSE map, add it.
7325 if (InsertPos
) CSEMap
.InsertNode(N
, InsertPos
);
7329 SDNode
*SelectionDAG::UpdateNodeOperands(SDNode
*N
, SDValue Op1
, SDValue Op2
) {
7330 assert(N
->getNumOperands() == 2 && "Update with wrong number of operands");
7332 // Check to see if there is no change.
7333 if (Op1
== N
->getOperand(0) && Op2
== N
->getOperand(1))
7334 return N
; // No operands changed, just return the input node.
7336 // See if the modified node already exists.
7337 void *InsertPos
= nullptr;
7338 if (SDNode
*Existing
= FindModifiedNodeSlot(N
, Op1
, Op2
, InsertPos
))
7341 // Nope it doesn't. Remove the node from its current place in the maps.
7343 if (!RemoveNodeFromCSEMaps(N
))
7344 InsertPos
= nullptr;
7346 // Now we update the operands.
7347 if (N
->OperandList
[0] != Op1
)
7348 N
->OperandList
[0].set(Op1
);
7349 if (N
->OperandList
[1] != Op2
)
7350 N
->OperandList
[1].set(Op2
);
7352 updateDivergence(N
);
7353 // If this gets put into a CSE map, add it.
7354 if (InsertPos
) CSEMap
.InsertNode(N
, InsertPos
);
7358 SDNode
*SelectionDAG::
7359 UpdateNodeOperands(SDNode
*N
, SDValue Op1
, SDValue Op2
, SDValue Op3
) {
7360 SDValue Ops
[] = { Op1
, Op2
, Op3
};
7361 return UpdateNodeOperands(N
, Ops
);
7364 SDNode
*SelectionDAG::
7365 UpdateNodeOperands(SDNode
*N
, SDValue Op1
, SDValue Op2
,
7366 SDValue Op3
, SDValue Op4
) {
7367 SDValue Ops
[] = { Op1
, Op2
, Op3
, Op4
};
7368 return UpdateNodeOperands(N
, Ops
);
7371 SDNode
*SelectionDAG::
7372 UpdateNodeOperands(SDNode
*N
, SDValue Op1
, SDValue Op2
,
7373 SDValue Op3
, SDValue Op4
, SDValue Op5
) {
7374 SDValue Ops
[] = { Op1
, Op2
, Op3
, Op4
, Op5
};
7375 return UpdateNodeOperands(N
, Ops
);
7378 SDNode
*SelectionDAG::
7379 UpdateNodeOperands(SDNode
*N
, ArrayRef
<SDValue
> Ops
) {
7380 unsigned NumOps
= Ops
.size();
7381 assert(N
->getNumOperands() == NumOps
&&
7382 "Update with wrong number of operands");
7384 // If no operands changed just return the input node.
7385 if (std::equal(Ops
.begin(), Ops
.end(), N
->op_begin()))
7388 // See if the modified node already exists.
7389 void *InsertPos
= nullptr;
7390 if (SDNode
*Existing
= FindModifiedNodeSlot(N
, Ops
, InsertPos
))
7393 // Nope it doesn't. Remove the node from its current place in the maps.
7395 if (!RemoveNodeFromCSEMaps(N
))
7396 InsertPos
= nullptr;
7398 // Now we update the operands.
7399 for (unsigned i
= 0; i
!= NumOps
; ++i
)
7400 if (N
->OperandList
[i
] != Ops
[i
])
7401 N
->OperandList
[i
].set(Ops
[i
]);
7403 updateDivergence(N
);
7404 // If this gets put into a CSE map, add it.
7405 if (InsertPos
) CSEMap
.InsertNode(N
, InsertPos
);
7409 /// DropOperands - Release the operands and set this node to have
7411 void SDNode::DropOperands() {
7412 // Unlike the code in MorphNodeTo that does this, we don't need to
7413 // watch for dead nodes here.
7414 for (op_iterator I
= op_begin(), E
= op_end(); I
!= E
; ) {
7420 void SelectionDAG::setNodeMemRefs(MachineSDNode
*N
,
7421 ArrayRef
<MachineMemOperand
*> NewMemRefs
) {
7422 if (NewMemRefs
.empty()) {
7427 // Check if we can avoid allocating by storing a single reference directly.
7428 if (NewMemRefs
.size() == 1) {
7429 N
->MemRefs
= NewMemRefs
[0];
7434 MachineMemOperand
**MemRefsBuffer
=
7435 Allocator
.template Allocate
<MachineMemOperand
*>(NewMemRefs
.size());
7436 llvm::copy(NewMemRefs
, MemRefsBuffer
);
7437 N
->MemRefs
= MemRefsBuffer
;
7438 N
->NumMemRefs
= static_cast<int>(NewMemRefs
.size());
7441 /// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
7444 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
7446 SDVTList VTs
= getVTList(VT
);
7447 return SelectNodeTo(N
, MachineOpc
, VTs
, None
);
7450 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
7451 EVT VT
, SDValue Op1
) {
7452 SDVTList VTs
= getVTList(VT
);
7453 SDValue Ops
[] = { Op1
};
7454 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
);
7457 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
7458 EVT VT
, SDValue Op1
,
7460 SDVTList VTs
= getVTList(VT
);
7461 SDValue Ops
[] = { Op1
, Op2
};
7462 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
);
7465 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
7466 EVT VT
, SDValue Op1
,
7467 SDValue Op2
, SDValue Op3
) {
7468 SDVTList VTs
= getVTList(VT
);
7469 SDValue Ops
[] = { Op1
, Op2
, Op3
};
7470 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
);
7473 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
7474 EVT VT
, ArrayRef
<SDValue
> Ops
) {
7475 SDVTList VTs
= getVTList(VT
);
7476 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
);
7479 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
7480 EVT VT1
, EVT VT2
, ArrayRef
<SDValue
> Ops
) {
7481 SDVTList VTs
= getVTList(VT1
, VT2
);
7482 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
);
7485 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
7487 SDVTList VTs
= getVTList(VT1
, VT2
);
7488 return SelectNodeTo(N
, MachineOpc
, VTs
, None
);
7491 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
7492 EVT VT1
, EVT VT2
, EVT VT3
,
7493 ArrayRef
<SDValue
> Ops
) {
7494 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
7495 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
);
7498 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
7500 SDValue Op1
, SDValue Op2
) {
7501 SDVTList VTs
= getVTList(VT1
, VT2
);
7502 SDValue Ops
[] = { Op1
, Op2
};
7503 return SelectNodeTo(N
, MachineOpc
, VTs
, Ops
);
7506 SDNode
*SelectionDAG::SelectNodeTo(SDNode
*N
, unsigned MachineOpc
,
7507 SDVTList VTs
,ArrayRef
<SDValue
> Ops
) {
7508 SDNode
*New
= MorphNodeTo(N
, ~MachineOpc
, VTs
, Ops
);
7509 // Reset the NodeID to -1.
7512 ReplaceAllUsesWith(N
, New
);
7518 /// UpdateSDLocOnMergeSDNode - If the opt level is -O0 then it throws away
7519 /// the line number information on the merged node since it is not possible to
7520 /// preserve the information that operation is associated with multiple lines.
7521 /// This will make the debugger working better at -O0, were there is a higher
7522 /// probability having other instructions associated with that line.
7524 /// For IROrder, we keep the smaller of the two
7525 SDNode
*SelectionDAG::UpdateSDLocOnMergeSDNode(SDNode
*N
, const SDLoc
&OLoc
) {
7526 DebugLoc NLoc
= N
->getDebugLoc();
7527 if (NLoc
&& OptLevel
== CodeGenOpt::None
&& OLoc
.getDebugLoc() != NLoc
) {
7528 N
->setDebugLoc(DebugLoc());
7530 unsigned Order
= std::min(N
->getIROrder(), OLoc
.getIROrder());
7531 N
->setIROrder(Order
);
7535 /// MorphNodeTo - This *mutates* the specified node to have the specified
7536 /// return type, opcode, and operands.
7538 /// Note that MorphNodeTo returns the resultant node. If there is already a
7539 /// node of the specified opcode and operands, it returns that node instead of
7540 /// the current one. Note that the SDLoc need not be the same.
7542 /// Using MorphNodeTo is faster than creating a new node and swapping it in
7543 /// with ReplaceAllUsesWith both because it often avoids allocating a new
7544 /// node, and because it doesn't require CSE recalculation for any of
7545 /// the node's users.
7547 /// However, note that MorphNodeTo recursively deletes dead nodes from the DAG.
7548 /// As a consequence it isn't appropriate to use from within the DAG combiner or
7549 /// the legalizer which maintain worklists that would need to be updated when
7550 /// deleting things.
7551 SDNode
*SelectionDAG::MorphNodeTo(SDNode
*N
, unsigned Opc
,
7552 SDVTList VTs
, ArrayRef
<SDValue
> Ops
) {
7553 // If an identical node already exists, use it.
7555 if (VTs
.VTs
[VTs
.NumVTs
-1] != MVT::Glue
) {
7556 FoldingSetNodeID ID
;
7557 AddNodeIDNode(ID
, Opc
, VTs
, Ops
);
7558 if (SDNode
*ON
= FindNodeOrInsertPos(ID
, SDLoc(N
), IP
))
7559 return UpdateSDLocOnMergeSDNode(ON
, SDLoc(N
));
7562 if (!RemoveNodeFromCSEMaps(N
))
7565 // Start the morphing.
7567 N
->ValueList
= VTs
.VTs
;
7568 N
->NumValues
= VTs
.NumVTs
;
7570 // Clear the operands list, updating used nodes to remove this from their
7571 // use list. Keep track of any operands that become dead as a result.
7572 SmallPtrSet
<SDNode
*, 16> DeadNodeSet
;
7573 for (SDNode::op_iterator I
= N
->op_begin(), E
= N
->op_end(); I
!= E
; ) {
7575 SDNode
*Used
= Use
.getNode();
7577 if (Used
->use_empty())
7578 DeadNodeSet
.insert(Used
);
7581 // For MachineNode, initialize the memory references information.
7582 if (MachineSDNode
*MN
= dyn_cast
<MachineSDNode
>(N
))
7585 // Swap for an appropriately sized array from the recycler.
7587 createOperands(N
, Ops
);
7589 // Delete any nodes that are still dead after adding the uses for the
7591 if (!DeadNodeSet
.empty()) {
7592 SmallVector
<SDNode
*, 16> DeadNodes
;
7593 for (SDNode
*N
: DeadNodeSet
)
7595 DeadNodes
.push_back(N
);
7596 RemoveDeadNodes(DeadNodes
);
7600 CSEMap
.InsertNode(N
, IP
); // Memoize the new node.
7604 SDNode
* SelectionDAG::mutateStrictFPToFP(SDNode
*Node
) {
7605 unsigned OrigOpc
= Node
->getOpcode();
7607 bool IsUnary
= false;
7608 bool IsTernary
= false;
7611 llvm_unreachable("mutateStrictFPToFP called with unexpected opcode!");
7612 case ISD::STRICT_FADD
: NewOpc
= ISD::FADD
; break;
7613 case ISD::STRICT_FSUB
: NewOpc
= ISD::FSUB
; break;
7614 case ISD::STRICT_FMUL
: NewOpc
= ISD::FMUL
; break;
7615 case ISD::STRICT_FDIV
: NewOpc
= ISD::FDIV
; break;
7616 case ISD::STRICT_FREM
: NewOpc
= ISD::FREM
; break;
7617 case ISD::STRICT_FMA
: NewOpc
= ISD::FMA
; IsTernary
= true; break;
7618 case ISD::STRICT_FSQRT
: NewOpc
= ISD::FSQRT
; IsUnary
= true; break;
7619 case ISD::STRICT_FPOW
: NewOpc
= ISD::FPOW
; break;
7620 case ISD::STRICT_FPOWI
: NewOpc
= ISD::FPOWI
; break;
7621 case ISD::STRICT_FSIN
: NewOpc
= ISD::FSIN
; IsUnary
= true; break;
7622 case ISD::STRICT_FCOS
: NewOpc
= ISD::FCOS
; IsUnary
= true; break;
7623 case ISD::STRICT_FEXP
: NewOpc
= ISD::FEXP
; IsUnary
= true; break;
7624 case ISD::STRICT_FEXP2
: NewOpc
= ISD::FEXP2
; IsUnary
= true; break;
7625 case ISD::STRICT_FLOG
: NewOpc
= ISD::FLOG
; IsUnary
= true; break;
7626 case ISD::STRICT_FLOG10
: NewOpc
= ISD::FLOG10
; IsUnary
= true; break;
7627 case ISD::STRICT_FLOG2
: NewOpc
= ISD::FLOG2
; IsUnary
= true; break;
7628 case ISD::STRICT_FRINT
: NewOpc
= ISD::FRINT
; IsUnary
= true; break;
7629 case ISD::STRICT_FNEARBYINT
:
7630 NewOpc
= ISD::FNEARBYINT
;
7633 case ISD::STRICT_FMAXNUM
: NewOpc
= ISD::FMAXNUM
; break;
7634 case ISD::STRICT_FMINNUM
: NewOpc
= ISD::FMINNUM
; break;
7635 case ISD::STRICT_FCEIL
: NewOpc
= ISD::FCEIL
; IsUnary
= true; break;
7636 case ISD::STRICT_FFLOOR
: NewOpc
= ISD::FFLOOR
; IsUnary
= true; break;
7637 case ISD::STRICT_FROUND
: NewOpc
= ISD::FROUND
; IsUnary
= true; break;
7638 case ISD::STRICT_FTRUNC
: NewOpc
= ISD::FTRUNC
; IsUnary
= true; break;
7641 // We're taking this node out of the chain, so we need to re-link things.
7642 SDValue InputChain
= Node
->getOperand(0);
7643 SDValue OutputChain
= SDValue(Node
, 1);
7644 ReplaceAllUsesOfValueWith(OutputChain
, InputChain
);
7646 SDVTList VTs
= getVTList(Node
->getOperand(1).getValueType());
7647 SDNode
*Res
= nullptr;
7649 Res
= MorphNodeTo(Node
, NewOpc
, VTs
, { Node
->getOperand(1) });
7651 Res
= MorphNodeTo(Node
, NewOpc
, VTs
, { Node
->getOperand(1),
7652 Node
->getOperand(2),
7653 Node
->getOperand(3)});
7655 Res
= MorphNodeTo(Node
, NewOpc
, VTs
, { Node
->getOperand(1),
7656 Node
->getOperand(2) });
7658 // MorphNodeTo can operate in two ways: if an existing node with the
7659 // specified operands exists, it can just return it. Otherwise, it
7660 // updates the node in place to have the requested operands.
7662 // If we updated the node in place, reset the node ID. To the isel,
7663 // this should be just like a newly allocated machine node.
7666 ReplaceAllUsesWith(Node
, Res
);
7667 RemoveDeadNode(Node
);
7673 /// getMachineNode - These are used for target selectors to create a new node
7674 /// with specified return type(s), MachineInstr opcode, and operands.
7676 /// Note that getMachineNode returns the resultant node. If there is already a
7677 /// node of the specified opcode and operands, it returns that node instead of
7678 /// the current one.
7679 MachineSDNode
*SelectionDAG::getMachineNode(unsigned Opcode
, const SDLoc
&dl
,
7681 SDVTList VTs
= getVTList(VT
);
7682 return getMachineNode(Opcode
, dl
, VTs
, None
);
7685 MachineSDNode
*SelectionDAG::getMachineNode(unsigned Opcode
, const SDLoc
&dl
,
7686 EVT VT
, SDValue Op1
) {
7687 SDVTList VTs
= getVTList(VT
);
7688 SDValue Ops
[] = { Op1
};
7689 return getMachineNode(Opcode
, dl
, VTs
, Ops
);
7692 MachineSDNode
*SelectionDAG::getMachineNode(unsigned Opcode
, const SDLoc
&dl
,
7693 EVT VT
, SDValue Op1
, SDValue Op2
) {
7694 SDVTList VTs
= getVTList(VT
);
7695 SDValue Ops
[] = { Op1
, Op2
};
7696 return getMachineNode(Opcode
, dl
, VTs
, Ops
);
7699 MachineSDNode
*SelectionDAG::getMachineNode(unsigned Opcode
, const SDLoc
&dl
,
7700 EVT VT
, SDValue Op1
, SDValue Op2
,
7702 SDVTList VTs
= getVTList(VT
);
7703 SDValue Ops
[] = { Op1
, Op2
, Op3
};
7704 return getMachineNode(Opcode
, dl
, VTs
, Ops
);
7707 MachineSDNode
*SelectionDAG::getMachineNode(unsigned Opcode
, const SDLoc
&dl
,
7708 EVT VT
, ArrayRef
<SDValue
> Ops
) {
7709 SDVTList VTs
= getVTList(VT
);
7710 return getMachineNode(Opcode
, dl
, VTs
, Ops
);
7713 MachineSDNode
*SelectionDAG::getMachineNode(unsigned Opcode
, const SDLoc
&dl
,
7714 EVT VT1
, EVT VT2
, SDValue Op1
,
7716 SDVTList VTs
= getVTList(VT1
, VT2
);
7717 SDValue Ops
[] = { Op1
, Op2
};
7718 return getMachineNode(Opcode
, dl
, VTs
, Ops
);
7721 MachineSDNode
*SelectionDAG::getMachineNode(unsigned Opcode
, const SDLoc
&dl
,
7722 EVT VT1
, EVT VT2
, SDValue Op1
,
7723 SDValue Op2
, SDValue Op3
) {
7724 SDVTList VTs
= getVTList(VT1
, VT2
);
7725 SDValue Ops
[] = { Op1
, Op2
, Op3
};
7726 return getMachineNode(Opcode
, dl
, VTs
, Ops
);
7729 MachineSDNode
*SelectionDAG::getMachineNode(unsigned Opcode
, const SDLoc
&dl
,
7731 ArrayRef
<SDValue
> Ops
) {
7732 SDVTList VTs
= getVTList(VT1
, VT2
);
7733 return getMachineNode(Opcode
, dl
, VTs
, Ops
);
7736 MachineSDNode
*SelectionDAG::getMachineNode(unsigned Opcode
, const SDLoc
&dl
,
7737 EVT VT1
, EVT VT2
, EVT VT3
,
7738 SDValue Op1
, SDValue Op2
) {
7739 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
7740 SDValue Ops
[] = { Op1
, Op2
};
7741 return getMachineNode(Opcode
, dl
, VTs
, Ops
);
7744 MachineSDNode
*SelectionDAG::getMachineNode(unsigned Opcode
, const SDLoc
&dl
,
7745 EVT VT1
, EVT VT2
, EVT VT3
,
7746 SDValue Op1
, SDValue Op2
,
7748 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
7749 SDValue Ops
[] = { Op1
, Op2
, Op3
};
7750 return getMachineNode(Opcode
, dl
, VTs
, Ops
);
7753 MachineSDNode
*SelectionDAG::getMachineNode(unsigned Opcode
, const SDLoc
&dl
,
7754 EVT VT1
, EVT VT2
, EVT VT3
,
7755 ArrayRef
<SDValue
> Ops
) {
7756 SDVTList VTs
= getVTList(VT1
, VT2
, VT3
);
7757 return getMachineNode(Opcode
, dl
, VTs
, Ops
);
7760 MachineSDNode
*SelectionDAG::getMachineNode(unsigned Opcode
, const SDLoc
&dl
,
7761 ArrayRef
<EVT
> ResultTys
,
7762 ArrayRef
<SDValue
> Ops
) {
7763 SDVTList VTs
= getVTList(ResultTys
);
7764 return getMachineNode(Opcode
, dl
, VTs
, Ops
);
7767 MachineSDNode
*SelectionDAG::getMachineNode(unsigned Opcode
, const SDLoc
&DL
,
7769 ArrayRef
<SDValue
> Ops
) {
7770 bool DoCSE
= VTs
.VTs
[VTs
.NumVTs
-1] != MVT::Glue
;
7775 FoldingSetNodeID ID
;
7776 AddNodeIDNode(ID
, ~Opcode
, VTs
, Ops
);
7778 if (SDNode
*E
= FindNodeOrInsertPos(ID
, DL
, IP
)) {
7779 return cast
<MachineSDNode
>(UpdateSDLocOnMergeSDNode(E
, DL
));
7783 // Allocate a new MachineSDNode.
7784 N
= newSDNode
<MachineSDNode
>(~Opcode
, DL
.getIROrder(), DL
.getDebugLoc(), VTs
);
7785 createOperands(N
, Ops
);
7788 CSEMap
.InsertNode(N
, IP
);
7794 /// getTargetExtractSubreg - A convenience function for creating
7795 /// TargetOpcode::EXTRACT_SUBREG nodes.
7796 SDValue
SelectionDAG::getTargetExtractSubreg(int SRIdx
, const SDLoc
&DL
, EVT VT
,
7798 SDValue SRIdxVal
= getTargetConstant(SRIdx
, DL
, MVT::i32
);
7799 SDNode
*Subreg
= getMachineNode(TargetOpcode::EXTRACT_SUBREG
, DL
,
7800 VT
, Operand
, SRIdxVal
);
7801 return SDValue(Subreg
, 0);
7804 /// getTargetInsertSubreg - A convenience function for creating
7805 /// TargetOpcode::INSERT_SUBREG nodes.
7806 SDValue
SelectionDAG::getTargetInsertSubreg(int SRIdx
, const SDLoc
&DL
, EVT VT
,
7807 SDValue Operand
, SDValue Subreg
) {
7808 SDValue SRIdxVal
= getTargetConstant(SRIdx
, DL
, MVT::i32
);
7809 SDNode
*Result
= getMachineNode(TargetOpcode::INSERT_SUBREG
, DL
,
7810 VT
, Operand
, Subreg
, SRIdxVal
);
7811 return SDValue(Result
, 0);
7814 /// getNodeIfExists - Get the specified node if it's already available, or
7815 /// else return NULL.
7816 SDNode
*SelectionDAG::getNodeIfExists(unsigned Opcode
, SDVTList VTList
,
7817 ArrayRef
<SDValue
> Ops
,
7818 const SDNodeFlags Flags
) {
7819 if (VTList
.VTs
[VTList
.NumVTs
- 1] != MVT::Glue
) {
7820 FoldingSetNodeID ID
;
7821 AddNodeIDNode(ID
, Opcode
, VTList
, Ops
);
7823 if (SDNode
*E
= FindNodeOrInsertPos(ID
, SDLoc(), IP
)) {
7824 E
->intersectFlagsWith(Flags
);
7831 /// getDbgValue - Creates a SDDbgValue node.
7834 SDDbgValue
*SelectionDAG::getDbgValue(DIVariable
*Var
, DIExpression
*Expr
,
7835 SDNode
*N
, unsigned R
, bool IsIndirect
,
7836 const DebugLoc
&DL
, unsigned O
) {
7837 assert(cast
<DILocalVariable
>(Var
)->isValidLocationForIntrinsic(DL
) &&
7838 "Expected inlined-at fields to agree");
7839 return new (DbgInfo
->getAlloc())
7840 SDDbgValue(Var
, Expr
, N
, R
, IsIndirect
, DL
, O
);
7844 SDDbgValue
*SelectionDAG::getConstantDbgValue(DIVariable
*Var
,
7847 const DebugLoc
&DL
, unsigned O
) {
7848 assert(cast
<DILocalVariable
>(Var
)->isValidLocationForIntrinsic(DL
) &&
7849 "Expected inlined-at fields to agree");
7850 return new (DbgInfo
->getAlloc()) SDDbgValue(Var
, Expr
, C
, DL
, O
);
7854 SDDbgValue
*SelectionDAG::getFrameIndexDbgValue(DIVariable
*Var
,
7855 DIExpression
*Expr
, unsigned FI
,
7859 assert(cast
<DILocalVariable
>(Var
)->isValidLocationForIntrinsic(DL
) &&
7860 "Expected inlined-at fields to agree");
7861 return new (DbgInfo
->getAlloc())
7862 SDDbgValue(Var
, Expr
, FI
, IsIndirect
, DL
, O
, SDDbgValue::FRAMEIX
);
7866 SDDbgValue
*SelectionDAG::getVRegDbgValue(DIVariable
*Var
,
7868 unsigned VReg
, bool IsIndirect
,
7869 const DebugLoc
&DL
, unsigned O
) {
7870 assert(cast
<DILocalVariable
>(Var
)->isValidLocationForIntrinsic(DL
) &&
7871 "Expected inlined-at fields to agree");
7872 return new (DbgInfo
->getAlloc())
7873 SDDbgValue(Var
, Expr
, VReg
, IsIndirect
, DL
, O
, SDDbgValue::VREG
);
7876 void SelectionDAG::transferDbgValues(SDValue From
, SDValue To
,
7877 unsigned OffsetInBits
, unsigned SizeInBits
,
7878 bool InvalidateDbg
) {
7879 SDNode
*FromNode
= From
.getNode();
7880 SDNode
*ToNode
= To
.getNode();
7881 assert(FromNode
&& ToNode
&& "Can't modify dbg values");
7884 // TODO: assert(From != To && "Redundant dbg value transfer");
7885 // TODO: assert(FromNode != ToNode && "Intranode dbg value transfer");
7886 if (From
== To
|| FromNode
== ToNode
)
7889 if (!FromNode
->getHasDebugValue())
7892 SmallVector
<SDDbgValue
*, 2> ClonedDVs
;
7893 for (SDDbgValue
*Dbg
: GetDbgValues(FromNode
)) {
7894 if (Dbg
->getKind() != SDDbgValue::SDNODE
|| Dbg
->isInvalidated())
7897 // TODO: assert(!Dbg->isInvalidated() && "Transfer of invalid dbg value");
7899 // Just transfer the dbg value attached to From.
7900 if (Dbg
->getResNo() != From
.getResNo())
7903 DIVariable
*Var
= Dbg
->getVariable();
7904 auto *Expr
= Dbg
->getExpression();
7905 // If a fragment is requested, update the expression.
7907 // When splitting a larger (e.g., sign-extended) value whose
7908 // lower bits are described with an SDDbgValue, do not attempt
7909 // to transfer the SDDbgValue to the upper bits.
7910 if (auto FI
= Expr
->getFragmentInfo())
7911 if (OffsetInBits
+ SizeInBits
> FI
->SizeInBits
)
7913 auto Fragment
= DIExpression::createFragmentExpression(Expr
, OffsetInBits
,
7919 // Clone the SDDbgValue and move it to To.
7921 getDbgValue(Var
, Expr
, ToNode
, To
.getResNo(), Dbg
->isIndirect(),
7922 Dbg
->getDebugLoc(), Dbg
->getOrder());
7923 ClonedDVs
.push_back(Clone
);
7925 if (InvalidateDbg
) {
7926 // Invalidate value and indicate the SDDbgValue should not be emitted.
7927 Dbg
->setIsInvalidated();
7928 Dbg
->setIsEmitted();
7932 for (SDDbgValue
*Dbg
: ClonedDVs
)
7933 AddDbgValue(Dbg
, ToNode
, false);
7936 void SelectionDAG::salvageDebugInfo(SDNode
&N
) {
7937 if (!N
.getHasDebugValue())
7940 SmallVector
<SDDbgValue
*, 2> ClonedDVs
;
7941 for (auto DV
: GetDbgValues(&N
)) {
7942 if (DV
->isInvalidated())
7944 switch (N
.getOpcode()) {
7948 SDValue N0
= N
.getOperand(0);
7949 SDValue N1
= N
.getOperand(1);
7950 if (!isConstantIntBuildVectorOrConstantInt(N0
) &&
7951 isConstantIntBuildVectorOrConstantInt(N1
)) {
7952 uint64_t Offset
= N
.getConstantOperandVal(1);
7953 // Rewrite an ADD constant node into a DIExpression. Since we are
7954 // performing arithmetic to compute the variable's *value* in the
7955 // DIExpression, we need to mark the expression with a
7956 // DW_OP_stack_value.
7957 auto *DIExpr
= DV
->getExpression();
7958 DIExpr
= DIExpression::prepend(DIExpr
, DIExpression::NoDeref
, Offset
,
7959 DIExpression::NoDeref
,
7960 DIExpression::WithStackValue
);
7962 getDbgValue(DV
->getVariable(), DIExpr
, N0
.getNode(), N0
.getResNo(),
7963 DV
->isIndirect(), DV
->getDebugLoc(), DV
->getOrder());
7964 ClonedDVs
.push_back(Clone
);
7965 DV
->setIsInvalidated();
7967 LLVM_DEBUG(dbgs() << "SALVAGE: Rewriting";
7968 N0
.getNode()->dumprFull(this);
7969 dbgs() << " into " << *DIExpr
<< '\n');
7974 for (SDDbgValue
*Dbg
: ClonedDVs
)
7975 AddDbgValue(Dbg
, Dbg
->getSDNode(), false);
7978 /// Creates a SDDbgLabel node.
7979 SDDbgLabel
*SelectionDAG::getDbgLabel(DILabel
*Label
,
7980 const DebugLoc
&DL
, unsigned O
) {
7981 assert(cast
<DILabel
>(Label
)->isValidLocationForIntrinsic(DL
) &&
7982 "Expected inlined-at fields to agree");
7983 return new (DbgInfo
->getAlloc()) SDDbgLabel(Label
, DL
, O
);
7988 /// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
7989 /// pointed to by a use iterator is deleted, increment the use iterator
7990 /// so that it doesn't dangle.
7992 class RAUWUpdateListener
: public SelectionDAG::DAGUpdateListener
{
7993 SDNode::use_iterator
&UI
;
7994 SDNode::use_iterator
&UE
;
7996 void NodeDeleted(SDNode
*N
, SDNode
*E
) override
{
7997 // Increment the iterator as needed.
7998 while (UI
!= UE
&& N
== *UI
)
8003 RAUWUpdateListener(SelectionDAG
&d
,
8004 SDNode::use_iterator
&ui
,
8005 SDNode::use_iterator
&ue
)
8006 : SelectionDAG::DAGUpdateListener(d
), UI(ui
), UE(ue
) {}
8009 } // end anonymous namespace
8011 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8012 /// This can cause recursive merging of nodes in the DAG.
8014 /// This version assumes From has a single result value.
8016 void SelectionDAG::ReplaceAllUsesWith(SDValue FromN
, SDValue To
) {
8017 SDNode
*From
= FromN
.getNode();
8018 assert(From
->getNumValues() == 1 && FromN
.getResNo() == 0 &&
8019 "Cannot replace with this method!");
8020 assert(From
!= To
.getNode() && "Cannot replace uses of with self");
8022 // Preserve Debug Values
8023 transferDbgValues(FromN
, To
);
8025 // Iterate over all the existing uses of From. New uses will be added
8026 // to the beginning of the use list, which we avoid visiting.
8027 // This specifically avoids visiting uses of From that arise while the
8028 // replacement is happening, because any such uses would be the result
8029 // of CSE: If an existing node looks like From after one of its operands
8030 // is replaced by To, we don't want to replace of all its users with To
8031 // too. See PR3018 for more info.
8032 SDNode::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
8033 RAUWUpdateListener
Listener(*this, UI
, UE
);
8037 // This node is about to morph, remove its old self from the CSE maps.
8038 RemoveNodeFromCSEMaps(User
);
8040 // A user can appear in a use list multiple times, and when this
8041 // happens the uses are usually next to each other in the list.
8042 // To help reduce the number of CSE recomputations, process all
8043 // the uses of this user that we can find this way.
8045 SDUse
&Use
= UI
.getUse();
8048 if (To
->isDivergent() != From
->isDivergent())
8049 updateDivergence(User
);
8050 } while (UI
!= UE
&& *UI
== User
);
8051 // Now that we have modified User, add it back to the CSE maps. If it
8052 // already exists there, recursively merge the results together.
8053 AddModifiedNodeToCSEMaps(User
);
8056 // If we just RAUW'd the root, take note.
8057 if (FromN
== getRoot())
8061 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8062 /// This can cause recursive merging of nodes in the DAG.
8064 /// This version assumes that for each value of From, there is a
8065 /// corresponding value in To in the same position with the same type.
8067 void SelectionDAG::ReplaceAllUsesWith(SDNode
*From
, SDNode
*To
) {
8069 for (unsigned i
= 0, e
= From
->getNumValues(); i
!= e
; ++i
)
8070 assert((!From
->hasAnyUseOfValue(i
) ||
8071 From
->getValueType(i
) == To
->getValueType(i
)) &&
8072 "Cannot use this version of ReplaceAllUsesWith!");
8075 // Handle the trivial case.
8079 // Preserve Debug Info. Only do this if there's a use.
8080 for (unsigned i
= 0, e
= From
->getNumValues(); i
!= e
; ++i
)
8081 if (From
->hasAnyUseOfValue(i
)) {
8082 assert((i
< To
->getNumValues()) && "Invalid To location");
8083 transferDbgValues(SDValue(From
, i
), SDValue(To
, i
));
8086 // Iterate over just the existing users of From. See the comments in
8087 // the ReplaceAllUsesWith above.
8088 SDNode::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
8089 RAUWUpdateListener
Listener(*this, UI
, UE
);
8093 // This node is about to morph, remove its old self from the CSE maps.
8094 RemoveNodeFromCSEMaps(User
);
8096 // A user can appear in a use list multiple times, and when this
8097 // happens the uses are usually next to each other in the list.
8098 // To help reduce the number of CSE recomputations, process all
8099 // the uses of this user that we can find this way.
8101 SDUse
&Use
= UI
.getUse();
8104 if (To
->isDivergent() != From
->isDivergent())
8105 updateDivergence(User
);
8106 } while (UI
!= UE
&& *UI
== User
);
8108 // Now that we have modified User, add it back to the CSE maps. If it
8109 // already exists there, recursively merge the results together.
8110 AddModifiedNodeToCSEMaps(User
);
8113 // If we just RAUW'd the root, take note.
8114 if (From
== getRoot().getNode())
8115 setRoot(SDValue(To
, getRoot().getResNo()));
8118 /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
8119 /// This can cause recursive merging of nodes in the DAG.
8121 /// This version can replace From with any result values. To must match the
8122 /// number and types of values returned by From.
8123 void SelectionDAG::ReplaceAllUsesWith(SDNode
*From
, const SDValue
*To
) {
8124 if (From
->getNumValues() == 1) // Handle the simple case efficiently.
8125 return ReplaceAllUsesWith(SDValue(From
, 0), To
[0]);
8127 // Preserve Debug Info.
8128 for (unsigned i
= 0, e
= From
->getNumValues(); i
!= e
; ++i
)
8129 transferDbgValues(SDValue(From
, i
), To
[i
]);
8131 // Iterate over just the existing users of From. See the comments in
8132 // the ReplaceAllUsesWith above.
8133 SDNode::use_iterator UI
= From
->use_begin(), UE
= From
->use_end();
8134 RAUWUpdateListener
Listener(*this, UI
, UE
);
8138 // This node is about to morph, remove its old self from the CSE maps.
8139 RemoveNodeFromCSEMaps(User
);
8141 // A user can appear in a use list multiple times, and when this happens the
8142 // uses are usually next to each other in the list. To help reduce the
8143 // number of CSE and divergence recomputations, process all the uses of this
8144 // user that we can find this way.
8145 bool To_IsDivergent
= false;
8147 SDUse
&Use
= UI
.getUse();
8148 const SDValue
&ToOp
= To
[Use
.getResNo()];
8151 To_IsDivergent
|= ToOp
->isDivergent();
8152 } while (UI
!= UE
&& *UI
== User
);
8154 if (To_IsDivergent
!= From
->isDivergent())
8155 updateDivergence(User
);
8157 // Now that we have modified User, add it back to the CSE maps. If it
8158 // already exists there, recursively merge the results together.
8159 AddModifiedNodeToCSEMaps(User
);
8162 // If we just RAUW'd the root, take note.
8163 if (From
== getRoot().getNode())
8164 setRoot(SDValue(To
[getRoot().getResNo()]));
8167 /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
8168 /// uses of other values produced by From.getNode() alone. The Deleted
8169 /// vector is handled the same way as for ReplaceAllUsesWith.
8170 void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From
, SDValue To
){
8171 // Handle the really simple, really trivial case efficiently.
8172 if (From
== To
) return;
8174 // Handle the simple, trivial, case efficiently.
8175 if (From
.getNode()->getNumValues() == 1) {
8176 ReplaceAllUsesWith(From
, To
);
8180 // Preserve Debug Info.
8181 transferDbgValues(From
, To
);
8183 // Iterate over just the existing users of From. See the comments in
8184 // the ReplaceAllUsesWith above.
8185 SDNode::use_iterator UI
= From
.getNode()->use_begin(),
8186 UE
= From
.getNode()->use_end();
8187 RAUWUpdateListener
Listener(*this, UI
, UE
);
8190 bool UserRemovedFromCSEMaps
= false;
8192 // A user can appear in a use list multiple times, and when this
8193 // happens the uses are usually next to each other in the list.
8194 // To help reduce the number of CSE recomputations, process all
8195 // the uses of this user that we can find this way.
8197 SDUse
&Use
= UI
.getUse();
8199 // Skip uses of different values from the same node.
8200 if (Use
.getResNo() != From
.getResNo()) {
8205 // If this node hasn't been modified yet, it's still in the CSE maps,
8206 // so remove its old self from the CSE maps.
8207 if (!UserRemovedFromCSEMaps
) {
8208 RemoveNodeFromCSEMaps(User
);
8209 UserRemovedFromCSEMaps
= true;
8214 if (To
->isDivergent() != From
->isDivergent())
8215 updateDivergence(User
);
8216 } while (UI
!= UE
&& *UI
== User
);
8217 // We are iterating over all uses of the From node, so if a use
8218 // doesn't use the specific value, no changes are made.
8219 if (!UserRemovedFromCSEMaps
)
8222 // Now that we have modified User, add it back to the CSE maps. If it
8223 // already exists there, recursively merge the results together.
8224 AddModifiedNodeToCSEMaps(User
);
8227 // If we just RAUW'd the root, take note.
8228 if (From
== getRoot())
8234 /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
8235 /// to record information about a use.
8242 /// operator< - Sort Memos by User.
8243 bool operator<(const UseMemo
&L
, const UseMemo
&R
) {
8244 return (intptr_t)L
.User
< (intptr_t)R
.User
;
8247 } // end anonymous namespace
8249 void SelectionDAG::updateDivergence(SDNode
* N
)
8251 if (TLI
->isSDNodeAlwaysUniform(N
))
8253 bool IsDivergent
= TLI
->isSDNodeSourceOfDivergence(N
, FLI
, DA
);
8254 for (auto &Op
: N
->ops()) {
8255 if (Op
.Val
.getValueType() != MVT::Other
)
8256 IsDivergent
|= Op
.getNode()->isDivergent();
8258 if (N
->SDNodeBits
.IsDivergent
!= IsDivergent
) {
8259 N
->SDNodeBits
.IsDivergent
= IsDivergent
;
8260 for (auto U
: N
->uses()) {
8261 updateDivergence(U
);
8267 void SelectionDAG::CreateTopologicalOrder(std::vector
<SDNode
*>& Order
) {
8268 DenseMap
<SDNode
*, unsigned> Degree
;
8269 Order
.reserve(AllNodes
.size());
8270 for (auto & N
: allnodes()) {
8271 unsigned NOps
= N
.getNumOperands();
8274 Order
.push_back(&N
);
8276 for (std::vector
<SDNode
*>::iterator I
= Order
.begin();
8277 I
!=Order
.end();++I
) {
8279 for (auto U
: N
->uses()) {
8280 unsigned &UnsortedOps
= Degree
[U
];
8281 if (0 == --UnsortedOps
)
8288 void SelectionDAG::VerifyDAGDiverence()
8290 std::vector
<SDNode
*> TopoOrder
;
8291 CreateTopologicalOrder(TopoOrder
);
8292 const TargetLowering
&TLI
= getTargetLoweringInfo();
8293 DenseMap
<const SDNode
*, bool> DivergenceMap
;
8294 for (auto &N
: allnodes()) {
8295 DivergenceMap
[&N
] = false;
8297 for (auto N
: TopoOrder
) {
8298 bool IsDivergent
= DivergenceMap
[N
];
8299 bool IsSDNodeDivergent
= TLI
.isSDNodeSourceOfDivergence(N
, FLI
, DA
);
8300 for (auto &Op
: N
->ops()) {
8301 if (Op
.Val
.getValueType() != MVT::Other
)
8302 IsSDNodeDivergent
|= DivergenceMap
[Op
.getNode()];
8304 if (!IsDivergent
&& IsSDNodeDivergent
&& !TLI
.isSDNodeAlwaysUniform(N
)) {
8305 DivergenceMap
[N
] = true;
8308 for (auto &N
: allnodes()) {
8310 assert(DivergenceMap
[&N
] == N
.isDivergent() &&
8311 "Divergence bit inconsistency detected\n");
8317 /// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
8318 /// uses of other values produced by From.getNode() alone. The same value
8319 /// may appear in both the From and To list. The Deleted vector is
8320 /// handled the same way as for ReplaceAllUsesWith.
8321 void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue
*From
,
8324 // Handle the simple, trivial case efficiently.
8326 return ReplaceAllUsesOfValueWith(*From
, *To
);
8328 transferDbgValues(*From
, *To
);
8330 // Read up all the uses and make records of them. This helps
8331 // processing new uses that are introduced during the
8332 // replacement process.
8333 SmallVector
<UseMemo
, 4> Uses
;
8334 for (unsigned i
= 0; i
!= Num
; ++i
) {
8335 unsigned FromResNo
= From
[i
].getResNo();
8336 SDNode
*FromNode
= From
[i
].getNode();
8337 for (SDNode::use_iterator UI
= FromNode
->use_begin(),
8338 E
= FromNode
->use_end(); UI
!= E
; ++UI
) {
8339 SDUse
&Use
= UI
.getUse();
8340 if (Use
.getResNo() == FromResNo
) {
8341 UseMemo Memo
= { *UI
, i
, &Use
};
8342 Uses
.push_back(Memo
);
8347 // Sort the uses, so that all the uses from a given User are together.
8350 for (unsigned UseIndex
= 0, UseIndexEnd
= Uses
.size();
8351 UseIndex
!= UseIndexEnd
; ) {
8352 // We know that this user uses some value of From. If it is the right
8353 // value, update it.
8354 SDNode
*User
= Uses
[UseIndex
].User
;
8356 // This node is about to morph, remove its old self from the CSE maps.
8357 RemoveNodeFromCSEMaps(User
);
8359 // The Uses array is sorted, so all the uses for a given User
8360 // are next to each other in the list.
8361 // To help reduce the number of CSE recomputations, process all
8362 // the uses of this user that we can find this way.
8364 unsigned i
= Uses
[UseIndex
].Index
;
8365 SDUse
&Use
= *Uses
[UseIndex
].Use
;
8369 } while (UseIndex
!= UseIndexEnd
&& Uses
[UseIndex
].User
== User
);
8371 // Now that we have modified User, add it back to the CSE maps. If it
8372 // already exists there, recursively merge the results together.
8373 AddModifiedNodeToCSEMaps(User
);
8377 /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
8378 /// based on their topological order. It returns the maximum id and a vector
8379 /// of the SDNodes* in assigned order by reference.
8380 unsigned SelectionDAG::AssignTopologicalOrder() {
8381 unsigned DAGSize
= 0;
8383 // SortedPos tracks the progress of the algorithm. Nodes before it are
8384 // sorted, nodes after it are unsorted. When the algorithm completes
8385 // it is at the end of the list.
8386 allnodes_iterator SortedPos
= allnodes_begin();
8388 // Visit all the nodes. Move nodes with no operands to the front of
8389 // the list immediately. Annotate nodes that do have operands with their
8390 // operand count. Before we do this, the Node Id fields of the nodes
8391 // may contain arbitrary values. After, the Node Id fields for nodes
8392 // before SortedPos will contain the topological sort index, and the
8393 // Node Id fields for nodes At SortedPos and after will contain the
8394 // count of outstanding operands.
8395 for (allnodes_iterator I
= allnodes_begin(),E
= allnodes_end(); I
!= E
; ) {
8397 checkForCycles(N
, this);
8398 unsigned Degree
= N
->getNumOperands();
8400 // A node with no uses, add it to the result array immediately.
8401 N
->setNodeId(DAGSize
++);
8402 allnodes_iterator
Q(N
);
8404 SortedPos
= AllNodes
.insert(SortedPos
, AllNodes
.remove(Q
));
8405 assert(SortedPos
!= AllNodes
.end() && "Overran node list");
8408 // Temporarily use the Node Id as scratch space for the degree count.
8409 N
->setNodeId(Degree
);
8413 // Visit all the nodes. As we iterate, move nodes into sorted order,
8414 // such that by the time the end is reached all nodes will be sorted.
8415 for (SDNode
&Node
: allnodes()) {
8417 checkForCycles(N
, this);
8418 // N is in sorted position, so all its uses have one less operand
8419 // that needs to be sorted.
8420 for (SDNode::use_iterator UI
= N
->use_begin(), UE
= N
->use_end();
8423 unsigned Degree
= P
->getNodeId();
8424 assert(Degree
!= 0 && "Invalid node degree");
8427 // All of P's operands are sorted, so P may sorted now.
8428 P
->setNodeId(DAGSize
++);
8429 if (P
->getIterator() != SortedPos
)
8430 SortedPos
= AllNodes
.insert(SortedPos
, AllNodes
.remove(P
));
8431 assert(SortedPos
!= AllNodes
.end() && "Overran node list");
8434 // Update P's outstanding operand count.
8435 P
->setNodeId(Degree
);
8438 if (Node
.getIterator() == SortedPos
) {
8440 allnodes_iterator
I(N
);
8442 dbgs() << "Overran sorted position:\n";
8443 S
->dumprFull(this); dbgs() << "\n";
8444 dbgs() << "Checking if this is due to cycles\n";
8445 checkForCycles(this, true);
8447 llvm_unreachable(nullptr);
8451 assert(SortedPos
== AllNodes
.end() &&
8452 "Topological sort incomplete!");
8453 assert(AllNodes
.front().getOpcode() == ISD::EntryToken
&&
8454 "First node in topological sort is not the entry token!");
8455 assert(AllNodes
.front().getNodeId() == 0 &&
8456 "First node in topological sort has non-zero id!");
8457 assert(AllNodes
.front().getNumOperands() == 0 &&
8458 "First node in topological sort has operands!");
8459 assert(AllNodes
.back().getNodeId() == (int)DAGSize
-1 &&
8460 "Last node in topologic sort has unexpected id!");
8461 assert(AllNodes
.back().use_empty() &&
8462 "Last node in topologic sort has users!");
8463 assert(DAGSize
== allnodes_size() && "Node count mismatch!");
8467 /// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
8468 /// value is produced by SD.
8469 void SelectionDAG::AddDbgValue(SDDbgValue
*DB
, SDNode
*SD
, bool isParameter
) {
8471 assert(DbgInfo
->getSDDbgValues(SD
).empty() || SD
->getHasDebugValue());
8472 SD
->setHasDebugValue(true);
8474 DbgInfo
->add(DB
, SD
, isParameter
);
8477 void SelectionDAG::AddDbgLabel(SDDbgLabel
*DB
) {
8481 SDValue
SelectionDAG::makeEquivalentMemoryOrdering(LoadSDNode
*OldLoad
,
8483 assert(isa
<MemSDNode
>(NewMemOp
.getNode()) && "Expected a memop node");
8484 // The new memory operation must have the same position as the old load in
8485 // terms of memory dependency. Create a TokenFactor for the old load and new
8486 // memory operation and update uses of the old load's output chain to use that
8488 SDValue OldChain
= SDValue(OldLoad
, 1);
8489 SDValue NewChain
= SDValue(NewMemOp
.getNode(), 1);
8490 if (!OldLoad
->hasAnyUseOfValue(1))
8493 SDValue TokenFactor
=
8494 getNode(ISD::TokenFactor
, SDLoc(OldLoad
), MVT::Other
, OldChain
, NewChain
);
8495 ReplaceAllUsesOfValueWith(OldChain
, TokenFactor
);
8496 UpdateNodeOperands(TokenFactor
.getNode(), OldChain
, NewChain
);
8500 SDValue
SelectionDAG::getSymbolFunctionGlobalAddress(SDValue Op
,
8501 Function
**OutFunction
) {
8502 assert(isa
<ExternalSymbolSDNode
>(Op
) && "Node should be an ExternalSymbol");
8504 auto *Symbol
= cast
<ExternalSymbolSDNode
>(Op
)->getSymbol();
8505 auto *Module
= MF
->getFunction().getParent();
8506 auto *Function
= Module
->getFunction(Symbol
);
8508 if (OutFunction
!= nullptr)
8509 *OutFunction
= Function
;
8511 if (Function
!= nullptr) {
8512 auto PtrTy
= TLI
->getPointerTy(getDataLayout(), Function
->getAddressSpace());
8513 return getGlobalAddress(Function
, SDLoc(Op
), PtrTy
);
8516 std::string ErrorStr
;
8517 raw_string_ostream
ErrorFormatter(ErrorStr
);
8519 ErrorFormatter
<< "Undefined external symbol ";
8520 ErrorFormatter
<< '"' << Symbol
<< '"';
8521 ErrorFormatter
.flush();
8523 report_fatal_error(ErrorStr
);
8526 //===----------------------------------------------------------------------===//
8528 //===----------------------------------------------------------------------===//
8530 bool llvm::isNullConstant(SDValue V
) {
8531 ConstantSDNode
*Const
= dyn_cast
<ConstantSDNode
>(V
);
8532 return Const
!= nullptr && Const
->isNullValue();
8535 bool llvm::isNullFPConstant(SDValue V
) {
8536 ConstantFPSDNode
*Const
= dyn_cast
<ConstantFPSDNode
>(V
);
8537 return Const
!= nullptr && Const
->isZero() && !Const
->isNegative();
8540 bool llvm::isAllOnesConstant(SDValue V
) {
8541 ConstantSDNode
*Const
= dyn_cast
<ConstantSDNode
>(V
);
8542 return Const
!= nullptr && Const
->isAllOnesValue();
8545 bool llvm::isOneConstant(SDValue V
) {
8546 ConstantSDNode
*Const
= dyn_cast
<ConstantSDNode
>(V
);
8547 return Const
!= nullptr && Const
->isOne();
8550 SDValue
llvm::peekThroughBitcasts(SDValue V
) {
8551 while (V
.getOpcode() == ISD::BITCAST
)
8552 V
= V
.getOperand(0);
8556 SDValue
llvm::peekThroughOneUseBitcasts(SDValue V
) {
8557 while (V
.getOpcode() == ISD::BITCAST
&& V
.getOperand(0).hasOneUse())
8558 V
= V
.getOperand(0);
8562 bool llvm::isBitwiseNot(SDValue V
) {
8563 if (V
.getOpcode() != ISD::XOR
)
8565 ConstantSDNode
*C
= isConstOrConstSplat(peekThroughBitcasts(V
.getOperand(1)));
8566 return C
&& C
->isAllOnesValue();
8569 ConstantSDNode
*llvm::isConstOrConstSplat(SDValue N
, bool AllowUndefs
) {
8570 if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(N
))
8573 if (BuildVectorSDNode
*BV
= dyn_cast
<BuildVectorSDNode
>(N
)) {
8574 BitVector UndefElements
;
8575 ConstantSDNode
*CN
= BV
->getConstantSplatNode(&UndefElements
);
8577 // BuildVectors can truncate their operands. Ignore that case here.
8578 if (CN
&& (UndefElements
.none() || AllowUndefs
) &&
8579 CN
->getValueType(0) == N
.getValueType().getScalarType())
8586 ConstantFPSDNode
*llvm::isConstOrConstSplatFP(SDValue N
, bool AllowUndefs
) {
8587 if (ConstantFPSDNode
*CN
= dyn_cast
<ConstantFPSDNode
>(N
))
8590 if (BuildVectorSDNode
*BV
= dyn_cast
<BuildVectorSDNode
>(N
)) {
8591 BitVector UndefElements
;
8592 ConstantFPSDNode
*CN
= BV
->getConstantFPSplatNode(&UndefElements
);
8593 if (CN
&& (UndefElements
.none() || AllowUndefs
))
8600 bool llvm::isNullOrNullSplat(SDValue N
, bool AllowUndefs
) {
8601 // TODO: may want to use peekThroughBitcast() here.
8602 ConstantSDNode
*C
= isConstOrConstSplat(N
, AllowUndefs
);
8603 return C
&& C
->isNullValue();
8606 bool llvm::isOneOrOneSplat(SDValue N
) {
8607 // TODO: may want to use peekThroughBitcast() here.
8608 unsigned BitWidth
= N
.getScalarValueSizeInBits();
8609 ConstantSDNode
*C
= isConstOrConstSplat(N
);
8610 return C
&& C
->isOne() && C
->getValueSizeInBits(0) == BitWidth
;
8613 bool llvm::isAllOnesOrAllOnesSplat(SDValue N
) {
8614 N
= peekThroughBitcasts(N
);
8615 unsigned BitWidth
= N
.getScalarValueSizeInBits();
8616 ConstantSDNode
*C
= isConstOrConstSplat(N
);
8617 return C
&& C
->isAllOnesValue() && C
->getValueSizeInBits(0) == BitWidth
;
8620 HandleSDNode::~HandleSDNode() {
8624 GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc
, unsigned Order
,
8626 const GlobalValue
*GA
, EVT VT
,
8627 int64_t o
, unsigned char TF
)
8628 : SDNode(Opc
, Order
, DL
, getSDVTList(VT
)), Offset(o
), TargetFlags(TF
) {
8632 AddrSpaceCastSDNode::AddrSpaceCastSDNode(unsigned Order
, const DebugLoc
&dl
,
8633 EVT VT
, unsigned SrcAS
,
8635 : SDNode(ISD::ADDRSPACECAST
, Order
, dl
, getSDVTList(VT
)),
8636 SrcAddrSpace(SrcAS
), DestAddrSpace(DestAS
) {}
8638 MemSDNode::MemSDNode(unsigned Opc
, unsigned Order
, const DebugLoc
&dl
,
8639 SDVTList VTs
, EVT memvt
, MachineMemOperand
*mmo
)
8640 : SDNode(Opc
, Order
, dl
, VTs
), MemoryVT(memvt
), MMO(mmo
) {
8641 MemSDNodeBits
.IsVolatile
= MMO
->isVolatile();
8642 MemSDNodeBits
.IsNonTemporal
= MMO
->isNonTemporal();
8643 MemSDNodeBits
.IsDereferenceable
= MMO
->isDereferenceable();
8644 MemSDNodeBits
.IsInvariant
= MMO
->isInvariant();
8646 // We check here that the size of the memory operand fits within the size of
8647 // the MMO. This is because the MMO might indicate only a possible address
8648 // range instead of specifying the affected memory addresses precisely.
8649 assert(memvt
.getStoreSize() <= MMO
->getSize() && "Size mismatch!");
8652 /// Profile - Gather unique data for the node.
8654 void SDNode::Profile(FoldingSetNodeID
&ID
) const {
8655 AddNodeIDNode(ID
, this);
8661 std::vector
<EVT
> VTs
;
8664 VTs
.reserve(MVT::LAST_VALUETYPE
);
8665 for (unsigned i
= 0; i
< MVT::LAST_VALUETYPE
; ++i
)
8666 VTs
.push_back(MVT((MVT::SimpleValueType
)i
));
8670 } // end anonymous namespace
8672 static ManagedStatic
<std::set
<EVT
, EVT::compareRawBits
>> EVTs
;
8673 static ManagedStatic
<EVTArray
> SimpleVTArray
;
8674 static ManagedStatic
<sys::SmartMutex
<true>> VTMutex
;
8676 /// getValueTypeList - Return a pointer to the specified value type.
8678 const EVT
*SDNode::getValueTypeList(EVT VT
) {
8679 if (VT
.isExtended()) {
8680 sys::SmartScopedLock
<true> Lock(*VTMutex
);
8681 return &(*EVTs
->insert(VT
).first
);
8683 assert(VT
.getSimpleVT() < MVT::LAST_VALUETYPE
&&
8684 "Value type out of range!");
8685 return &SimpleVTArray
->VTs
[VT
.getSimpleVT().SimpleTy
];
8689 /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
8690 /// indicated value. This method ignores uses of other values defined by this
8692 bool SDNode::hasNUsesOfValue(unsigned NUses
, unsigned Value
) const {
8693 assert(Value
< getNumValues() && "Bad value!");
8695 // TODO: Only iterate over uses of a given value of the node
8696 for (SDNode::use_iterator UI
= use_begin(), E
= use_end(); UI
!= E
; ++UI
) {
8697 if (UI
.getUse().getResNo() == Value
) {
8704 // Found exactly the right number of uses?
8708 /// hasAnyUseOfValue - Return true if there are any use of the indicated
8709 /// value. This method ignores uses of other values defined by this operation.
8710 bool SDNode::hasAnyUseOfValue(unsigned Value
) const {
8711 assert(Value
< getNumValues() && "Bad value!");
8713 for (SDNode::use_iterator UI
= use_begin(), E
= use_end(); UI
!= E
; ++UI
)
8714 if (UI
.getUse().getResNo() == Value
)
8720 /// isOnlyUserOf - Return true if this node is the only use of N.
8721 bool SDNode::isOnlyUserOf(const SDNode
*N
) const {
8723 for (SDNode::use_iterator I
= N
->use_begin(), E
= N
->use_end(); I
!= E
; ++I
) {
8734 /// Return true if the only users of N are contained in Nodes.
8735 bool SDNode::areOnlyUsersOf(ArrayRef
<const SDNode
*> Nodes
, const SDNode
*N
) {
8737 for (SDNode::use_iterator I
= N
->use_begin(), E
= N
->use_end(); I
!= E
; ++I
) {
8739 if (llvm::any_of(Nodes
,
8740 [&User
](const SDNode
*Node
) { return User
== Node
; }))
8749 /// isOperand - Return true if this node is an operand of N.
8750 bool SDValue::isOperandOf(const SDNode
*N
) const {
8751 for (const SDValue
&Op
: N
->op_values())
8757 bool SDNode::isOperandOf(const SDNode
*N
) const {
8758 for (const SDValue
&Op
: N
->op_values())
8759 if (this == Op
.getNode())
8764 /// reachesChainWithoutSideEffects - Return true if this operand (which must
8765 /// be a chain) reaches the specified operand without crossing any
8766 /// side-effecting instructions on any chain path. In practice, this looks
8767 /// through token factors and non-volatile loads. In order to remain efficient,
8768 /// this only looks a couple of nodes in, it does not do an exhaustive search.
8770 /// Note that we only need to examine chains when we're searching for
8771 /// side-effects; SelectionDAG requires that all side-effects are represented
8772 /// by chains, even if another operand would force a specific ordering. This
8773 /// constraint is necessary to allow transformations like splitting loads.
8774 bool SDValue::reachesChainWithoutSideEffects(SDValue Dest
,
8775 unsigned Depth
) const {
8776 if (*this == Dest
) return true;
8778 // Don't search too deeply, we just want to be able to see through
8779 // TokenFactor's etc.
8780 if (Depth
== 0) return false;
8782 // If this is a token factor, all inputs to the TF happen in parallel.
8783 if (getOpcode() == ISD::TokenFactor
) {
8784 // First, try a shallow search.
8785 if (is_contained((*this)->ops(), Dest
)) {
8786 // We found the chain we want as an operand of this TokenFactor.
8787 // Essentially, we reach the chain without side-effects if we could
8788 // serialize the TokenFactor into a simple chain of operations with
8789 // Dest as the last operation. This is automatically true if the
8790 // chain has one use: there are no other ordering constraints.
8791 // If the chain has more than one use, we give up: some other
8792 // use of Dest might force a side-effect between Dest and the current
8794 if (Dest
.hasOneUse())
8797 // Next, try a deep search: check whether every operand of the TokenFactor
8799 return llvm::all_of((*this)->ops(), [=](SDValue Op
) {
8800 return Op
.reachesChainWithoutSideEffects(Dest
, Depth
- 1);
8804 // Loads don't have side effects, look through them.
8805 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(*this)) {
8806 if (!Ld
->isVolatile())
8807 return Ld
->getChain().reachesChainWithoutSideEffects(Dest
, Depth
-1);
8812 bool SDNode::hasPredecessor(const SDNode
*N
) const {
8813 SmallPtrSet
<const SDNode
*, 32> Visited
;
8814 SmallVector
<const SDNode
*, 16> Worklist
;
8815 Worklist
.push_back(this);
8816 return hasPredecessorHelper(N
, Visited
, Worklist
);
8819 void SDNode::intersectFlagsWith(const SDNodeFlags Flags
) {
8820 this->Flags
.intersectWith(Flags
);
8824 SelectionDAG::matchBinOpReduction(SDNode
*Extract
, ISD::NodeType
&BinOp
,
8825 ArrayRef
<ISD::NodeType
> CandidateBinOps
) {
8826 // The pattern must end in an extract from index 0.
8827 if (Extract
->getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
8828 !isNullConstant(Extract
->getOperand(1)))
8831 SDValue Op
= Extract
->getOperand(0);
8832 unsigned Stages
= Log2_32(Op
.getValueType().getVectorNumElements());
8834 // Match against one of the candidate binary ops.
8835 if (llvm::none_of(CandidateBinOps
, [Op
](ISD::NodeType BinOp
) {
8836 return Op
.getOpcode() == unsigned(BinOp
);
8840 // At each stage, we're looking for something that looks like:
8841 // %s = shufflevector <8 x i32> %op, <8 x i32> undef,
8842 // <8 x i32> <i32 2, i32 3, i32 undef, i32 undef,
8843 // i32 undef, i32 undef, i32 undef, i32 undef>
8844 // %a = binop <8 x i32> %op, %s
8845 // Where the mask changes according to the stage. E.g. for a 3-stage pyramid,
8846 // we expect something like:
8847 // <4,5,6,7,u,u,u,u>
8848 // <2,3,u,u,u,u,u,u>
8849 // <1,u,u,u,u,u,u,u>
8850 unsigned CandidateBinOp
= Op
.getOpcode();
8851 for (unsigned i
= 0; i
< Stages
; ++i
) {
8852 if (Op
.getOpcode() != CandidateBinOp
)
8855 SDValue Op0
= Op
.getOperand(0);
8856 SDValue Op1
= Op
.getOperand(1);
8858 ShuffleVectorSDNode
*Shuffle
= dyn_cast
<ShuffleVectorSDNode
>(Op0
);
8862 Shuffle
= dyn_cast
<ShuffleVectorSDNode
>(Op1
);
8866 // The first operand of the shuffle should be the same as the other operand
8868 if (!Shuffle
|| Shuffle
->getOperand(0) != Op
)
8871 // Verify the shuffle has the expected (at this stage of the pyramid) mask.
8872 for (int Index
= 0, MaskEnd
= 1 << i
; Index
< MaskEnd
; ++Index
)
8873 if (Shuffle
->getMaskElt(Index
) != MaskEnd
+ Index
)
8877 BinOp
= (ISD::NodeType
)CandidateBinOp
;
8881 SDValue
SelectionDAG::UnrollVectorOp(SDNode
*N
, unsigned ResNE
) {
8882 assert(N
->getNumValues() == 1 &&
8883 "Can't unroll a vector with multiple results!");
8885 EVT VT
= N
->getValueType(0);
8886 unsigned NE
= VT
.getVectorNumElements();
8887 EVT EltVT
= VT
.getVectorElementType();
8890 SmallVector
<SDValue
, 8> Scalars
;
8891 SmallVector
<SDValue
, 4> Operands(N
->getNumOperands());
8893 // If ResNE is 0, fully unroll the vector op.
8896 else if (NE
> ResNE
)
8900 for (i
= 0; i
!= NE
; ++i
) {
8901 for (unsigned j
= 0, e
= N
->getNumOperands(); j
!= e
; ++j
) {
8902 SDValue Operand
= N
->getOperand(j
);
8903 EVT OperandVT
= Operand
.getValueType();
8904 if (OperandVT
.isVector()) {
8905 // A vector operand; extract a single element.
8906 EVT OperandEltVT
= OperandVT
.getVectorElementType();
8908 getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, OperandEltVT
, Operand
,
8909 getConstant(i
, dl
, TLI
->getVectorIdxTy(getDataLayout())));
8911 // A scalar operand; just use it as is.
8912 Operands
[j
] = Operand
;
8916 switch (N
->getOpcode()) {
8918 Scalars
.push_back(getNode(N
->getOpcode(), dl
, EltVT
, Operands
,
8923 Scalars
.push_back(getNode(ISD::SELECT
, dl
, EltVT
, Operands
));
8930 Scalars
.push_back(getNode(N
->getOpcode(), dl
, EltVT
, Operands
[0],
8931 getShiftAmountOperand(Operands
[0].getValueType(),
8934 case ISD::SIGN_EXTEND_INREG
:
8935 case ISD::FP_ROUND_INREG
: {
8936 EVT ExtVT
= cast
<VTSDNode
>(Operands
[1])->getVT().getVectorElementType();
8937 Scalars
.push_back(getNode(N
->getOpcode(), dl
, EltVT
,
8939 getValueType(ExtVT
)));
8944 for (; i
< ResNE
; ++i
)
8945 Scalars
.push_back(getUNDEF(EltVT
));
8947 EVT VecVT
= EVT::getVectorVT(*getContext(), EltVT
, ResNE
);
8948 return getBuildVector(VecVT
, dl
, Scalars
);
8951 bool SelectionDAG::areNonVolatileConsecutiveLoads(LoadSDNode
*LD
,
8955 if (LD
->isVolatile() || Base
->isVolatile())
8957 if (LD
->isIndexed() || Base
->isIndexed())
8959 if (LD
->getChain() != Base
->getChain())
8961 EVT VT
= LD
->getValueType(0);
8962 if (VT
.getSizeInBits() / 8 != Bytes
)
8965 auto BaseLocDecomp
= BaseIndexOffset::match(Base
, *this);
8966 auto LocDecomp
= BaseIndexOffset::match(LD
, *this);
8969 if (BaseLocDecomp
.equalBaseIndex(LocDecomp
, *this, Offset
))
8970 return (Dist
* Bytes
== Offset
);
8974 /// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
8975 /// it cannot be inferred.
8976 unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr
) const {
8977 // If this is a GlobalAddress + cst, return the alignment.
8978 const GlobalValue
*GV
;
8979 int64_t GVOffset
= 0;
8980 if (TLI
->isGAPlusOffset(Ptr
.getNode(), GV
, GVOffset
)) {
8981 unsigned IdxWidth
= getDataLayout().getIndexTypeSizeInBits(GV
->getType());
8982 KnownBits
Known(IdxWidth
);
8983 llvm::computeKnownBits(GV
, Known
, getDataLayout());
8984 unsigned AlignBits
= Known
.countMinTrailingZeros();
8985 unsigned Align
= AlignBits
? 1 << std::min(31U, AlignBits
) : 0;
8987 return MinAlign(Align
, GVOffset
);
8990 // If this is a direct reference to a stack slot, use information about the
8991 // stack slot's alignment.
8992 int FrameIdx
= 1 << 31;
8993 int64_t FrameOffset
= 0;
8994 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(Ptr
)) {
8995 FrameIdx
= FI
->getIndex();
8996 } else if (isBaseWithConstantOffset(Ptr
) &&
8997 isa
<FrameIndexSDNode
>(Ptr
.getOperand(0))) {
8999 FrameIdx
= cast
<FrameIndexSDNode
>(Ptr
.getOperand(0))->getIndex();
9000 FrameOffset
= Ptr
.getConstantOperandVal(1);
9003 if (FrameIdx
!= (1 << 31)) {
9004 const MachineFrameInfo
&MFI
= getMachineFunction().getFrameInfo();
9005 unsigned FIInfoAlign
= MinAlign(MFI
.getObjectAlignment(FrameIdx
),
9013 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
9014 /// which is split (or expanded) into two not necessarily identical pieces.
9015 std::pair
<EVT
, EVT
> SelectionDAG::GetSplitDestVTs(const EVT
&VT
) const {
9016 // Currently all types are split in half.
9019 LoVT
= HiVT
= TLI
->getTypeToTransformTo(*getContext(), VT
);
9021 LoVT
= HiVT
= VT
.getHalfNumVectorElementsVT(*getContext());
9023 return std::make_pair(LoVT
, HiVT
);
9026 /// SplitVector - Split the vector with EXTRACT_SUBVECTOR and return the
9028 std::pair
<SDValue
, SDValue
>
9029 SelectionDAG::SplitVector(const SDValue
&N
, const SDLoc
&DL
, const EVT
&LoVT
,
9031 assert(LoVT
.getVectorNumElements() + HiVT
.getVectorNumElements() <=
9032 N
.getValueType().getVectorNumElements() &&
9033 "More vector elements requested than available!");
9035 Lo
= getNode(ISD::EXTRACT_SUBVECTOR
, DL
, LoVT
, N
,
9036 getConstant(0, DL
, TLI
->getVectorIdxTy(getDataLayout())));
9037 Hi
= getNode(ISD::EXTRACT_SUBVECTOR
, DL
, HiVT
, N
,
9038 getConstant(LoVT
.getVectorNumElements(), DL
,
9039 TLI
->getVectorIdxTy(getDataLayout())));
9040 return std::make_pair(Lo
, Hi
);
9043 void SelectionDAG::ExtractVectorElements(SDValue Op
,
9044 SmallVectorImpl
<SDValue
> &Args
,
9045 unsigned Start
, unsigned Count
) {
9046 EVT VT
= Op
.getValueType();
9048 Count
= VT
.getVectorNumElements();
9050 EVT EltVT
= VT
.getVectorElementType();
9051 EVT IdxTy
= TLI
->getVectorIdxTy(getDataLayout());
9053 for (unsigned i
= Start
, e
= Start
+ Count
; i
!= e
; ++i
) {
9054 Args
.push_back(getNode(ISD::EXTRACT_VECTOR_ELT
, SL
, EltVT
,
9055 Op
, getConstant(i
, SL
, IdxTy
)));
9059 // getAddressSpace - Return the address space this GlobalAddress belongs to.
9060 unsigned GlobalAddressSDNode::getAddressSpace() const {
9061 return getGlobal()->getType()->getAddressSpace();
9064 Type
*ConstantPoolSDNode::getType() const {
9065 if (isMachineConstantPoolEntry())
9066 return Val
.MachineCPVal
->getType();
9067 return Val
.ConstVal
->getType();
9070 bool BuildVectorSDNode::isConstantSplat(APInt
&SplatValue
, APInt
&SplatUndef
,
9071 unsigned &SplatBitSize
,
9073 unsigned MinSplatBits
,
9074 bool IsBigEndian
) const {
9075 EVT VT
= getValueType(0);
9076 assert(VT
.isVector() && "Expected a vector type");
9077 unsigned VecWidth
= VT
.getSizeInBits();
9078 if (MinSplatBits
> VecWidth
)
9081 // FIXME: The widths are based on this node's type, but build vectors can
9082 // truncate their operands.
9083 SplatValue
= APInt(VecWidth
, 0);
9084 SplatUndef
= APInt(VecWidth
, 0);
9086 // Get the bits. Bits with undefined values (when the corresponding element
9087 // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
9088 // in SplatValue. If any of the values are not constant, give up and return
9090 unsigned int NumOps
= getNumOperands();
9091 assert(NumOps
> 0 && "isConstantSplat has 0-size build vector");
9092 unsigned EltWidth
= VT
.getScalarSizeInBits();
9094 for (unsigned j
= 0; j
< NumOps
; ++j
) {
9095 unsigned i
= IsBigEndian
? NumOps
- 1 - j
: j
;
9096 SDValue OpVal
= getOperand(i
);
9097 unsigned BitPos
= j
* EltWidth
;
9099 if (OpVal
.isUndef())
9100 SplatUndef
.setBits(BitPos
, BitPos
+ EltWidth
);
9101 else if (auto *CN
= dyn_cast
<ConstantSDNode
>(OpVal
))
9102 SplatValue
.insertBits(CN
->getAPIntValue().zextOrTrunc(EltWidth
), BitPos
);
9103 else if (auto *CN
= dyn_cast
<ConstantFPSDNode
>(OpVal
))
9104 SplatValue
.insertBits(CN
->getValueAPF().bitcastToAPInt(), BitPos
);
9109 // The build_vector is all constants or undefs. Find the smallest element
9110 // size that splats the vector.
9111 HasAnyUndefs
= (SplatUndef
!= 0);
9113 // FIXME: This does not work for vectors with elements less than 8 bits.
9114 while (VecWidth
> 8) {
9115 unsigned HalfSize
= VecWidth
/ 2;
9116 APInt HighValue
= SplatValue
.lshr(HalfSize
).trunc(HalfSize
);
9117 APInt LowValue
= SplatValue
.trunc(HalfSize
);
9118 APInt HighUndef
= SplatUndef
.lshr(HalfSize
).trunc(HalfSize
);
9119 APInt LowUndef
= SplatUndef
.trunc(HalfSize
);
9121 // If the two halves do not match (ignoring undef bits), stop here.
9122 if ((HighValue
& ~LowUndef
) != (LowValue
& ~HighUndef
) ||
9123 MinSplatBits
> HalfSize
)
9126 SplatValue
= HighValue
| LowValue
;
9127 SplatUndef
= HighUndef
& LowUndef
;
9129 VecWidth
= HalfSize
;
9132 SplatBitSize
= VecWidth
;
9136 SDValue
BuildVectorSDNode::getSplatValue(BitVector
*UndefElements
) const {
9137 if (UndefElements
) {
9138 UndefElements
->clear();
9139 UndefElements
->resize(getNumOperands());
9142 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
) {
9143 SDValue Op
= getOperand(i
);
9146 (*UndefElements
)[i
] = true;
9147 } else if (!Splatted
) {
9149 } else if (Splatted
!= Op
) {
9155 assert(getOperand(0).isUndef() &&
9156 "Can only have a splat without a constant for all undefs.");
9157 return getOperand(0);
9164 BuildVectorSDNode::getConstantSplatNode(BitVector
*UndefElements
) const {
9165 return dyn_cast_or_null
<ConstantSDNode
>(getSplatValue(UndefElements
));
9169 BuildVectorSDNode::getConstantFPSplatNode(BitVector
*UndefElements
) const {
9170 return dyn_cast_or_null
<ConstantFPSDNode
>(getSplatValue(UndefElements
));
9174 BuildVectorSDNode::getConstantFPSplatPow2ToLog2Int(BitVector
*UndefElements
,
9175 uint32_t BitWidth
) const {
9176 if (ConstantFPSDNode
*CN
=
9177 dyn_cast_or_null
<ConstantFPSDNode
>(getSplatValue(UndefElements
))) {
9179 APSInt
IntVal(BitWidth
);
9180 const APFloat
&APF
= CN
->getValueAPF();
9181 if (APF
.convertToInteger(IntVal
, APFloat::rmTowardZero
, &IsExact
) !=
9186 return IntVal
.exactLogBase2();
9191 bool BuildVectorSDNode::isConstant() const {
9192 for (const SDValue
&Op
: op_values()) {
9193 unsigned Opc
= Op
.getOpcode();
9194 if (Opc
!= ISD::UNDEF
&& Opc
!= ISD::Constant
&& Opc
!= ISD::ConstantFP
)
9200 bool ShuffleVectorSDNode::isSplatMask(const int *Mask
, EVT VT
) {
9201 // Find the first non-undef value in the shuffle mask.
9203 for (i
= 0, e
= VT
.getVectorNumElements(); i
!= e
&& Mask
[i
] < 0; ++i
)
9206 assert(i
!= e
&& "VECTOR_SHUFFLE node with all undef indices!");
9208 // Make sure all remaining elements are either undef or the same as the first
9210 for (int Idx
= Mask
[i
]; i
!= e
; ++i
)
9211 if (Mask
[i
] >= 0 && Mask
[i
] != Idx
)
9216 // Returns the SDNode if it is a constant integer BuildVector
9217 // or constant integer.
9218 SDNode
*SelectionDAG::isConstantIntBuildVectorOrConstantInt(SDValue N
) {
9219 if (isa
<ConstantSDNode
>(N
))
9221 if (ISD::isBuildVectorOfConstantSDNodes(N
.getNode()))
9223 // Treat a GlobalAddress supporting constant offset folding as a
9224 // constant integer.
9225 if (GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(N
))
9226 if (GA
->getOpcode() == ISD::GlobalAddress
&&
9227 TLI
->isOffsetFoldingLegal(GA
))
9232 SDNode
*SelectionDAG::isConstantFPBuildVectorOrConstantFP(SDValue N
) {
9233 if (isa
<ConstantFPSDNode
>(N
))
9236 if (ISD::isBuildVectorOfConstantFPSDNodes(N
.getNode()))
9242 void SelectionDAG::createOperands(SDNode
*Node
, ArrayRef
<SDValue
> Vals
) {
9243 assert(!Node
->OperandList
&& "Node already has operands");
9244 assert(SDNode::getMaxNumOperands() >= Vals
.size() &&
9245 "too many operands to fit into SDNode");
9246 SDUse
*Ops
= OperandRecycler
.allocate(
9247 ArrayRecycler
<SDUse
>::Capacity::get(Vals
.size()), OperandAllocator
);
9249 bool IsDivergent
= false;
9250 for (unsigned I
= 0; I
!= Vals
.size(); ++I
) {
9251 Ops
[I
].setUser(Node
);
9252 Ops
[I
].setInitial(Vals
[I
]);
9253 if (Ops
[I
].Val
.getValueType() != MVT::Other
) // Skip Chain. It does not carry divergence.
9254 IsDivergent
= IsDivergent
|| Ops
[I
].getNode()->isDivergent();
9256 Node
->NumOperands
= Vals
.size();
9257 Node
->OperandList
= Ops
;
9258 IsDivergent
|= TLI
->isSDNodeSourceOfDivergence(Node
, FLI
, DA
);
9259 if (!TLI
->isSDNodeAlwaysUniform(Node
))
9260 Node
->SDNodeBits
.IsDivergent
= IsDivergent
;
9261 checkForCycles(Node
);
9264 SDValue
SelectionDAG::getTokenFactor(const SDLoc
&DL
,
9265 SmallVectorImpl
<SDValue
> &Vals
) {
9266 size_t Limit
= SDNode::getMaxNumOperands();
9267 while (Vals
.size() > Limit
) {
9268 unsigned SliceIdx
= Vals
.size() - Limit
;
9269 auto ExtractedTFs
= ArrayRef
<SDValue
>(Vals
).slice(SliceIdx
, Limit
);
9270 SDValue NewTF
= getNode(ISD::TokenFactor
, DL
, MVT::Other
, ExtractedTFs
);
9271 Vals
.erase(Vals
.begin() + SliceIdx
, Vals
.end());
9272 Vals
.emplace_back(NewTF
);
9274 return getNode(ISD::TokenFactor
, DL
, MVT::Other
, Vals
);
9278 static void checkForCyclesHelper(const SDNode
*N
,
9279 SmallPtrSetImpl
<const SDNode
*> &Visited
,
9280 SmallPtrSetImpl
<const SDNode
*> &Checked
,
9281 const llvm::SelectionDAG
*DAG
) {
9282 // If this node has already been checked, don't check it again.
9283 if (Checked
.count(N
))
9286 // If a node has already been visited on this depth-first walk, reject it as
9288 if (!Visited
.insert(N
).second
) {
9289 errs() << "Detected cycle in SelectionDAG\n";
9290 dbgs() << "Offending node:\n";
9291 N
->dumprFull(DAG
); dbgs() << "\n";
9295 for (const SDValue
&Op
: N
->op_values())
9296 checkForCyclesHelper(Op
.getNode(), Visited
, Checked
, DAG
);
9303 void llvm::checkForCycles(const llvm::SDNode
*N
,
9304 const llvm::SelectionDAG
*DAG
,
9308 #ifdef EXPENSIVE_CHECKS
9310 #endif // EXPENSIVE_CHECKS
9312 assert(N
&& "Checking nonexistent SDNode");
9313 SmallPtrSet
<const SDNode
*, 32> visited
;
9314 SmallPtrSet
<const SDNode
*, 32> checked
;
9315 checkForCyclesHelper(N
, visited
, checked
, DAG
);
9320 void llvm::checkForCycles(const llvm::SelectionDAG
*DAG
, bool force
) {
9321 checkForCycles(DAG
->getRoot().getNode(), DAG
, force
);