[DAGCombiner] Eliminate dead stores to stack.
[llvm-complete.git] / lib / CodeGen / SelectionDAG / SelectionDAGBuilder.cpp
blob1b75dc7d2e5c95aaae8d9f5a2a50593551f2e79f
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //===----------------------------------------------------------------------===//
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BranchProbabilityInfo.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/Loads.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/CodeGen/Analysis.h"
39 #include "llvm/CodeGen/FunctionLoweringInfo.h"
40 #include "llvm/CodeGen/GCMetadata.h"
41 #include "llvm/CodeGen/ISDOpcodes.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBuilder.h"
47 #include "llvm/CodeGen/MachineJumpTableInfo.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineModuleInfo.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RuntimeLibcalls.h"
53 #include "llvm/CodeGen/SelectionDAG.h"
54 #include "llvm/CodeGen/SelectionDAGNodes.h"
55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
56 #include "llvm/CodeGen/StackMaps.h"
57 #include "llvm/CodeGen/TargetFrameLowering.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGen/ValueTypes.h"
64 #include "llvm/CodeGen/WinEHFuncInfo.h"
65 #include "llvm/IR/Argument.h"
66 #include "llvm/IR/Attributes.h"
67 #include "llvm/IR/BasicBlock.h"
68 #include "llvm/IR/CFG.h"
69 #include "llvm/IR/CallSite.h"
70 #include "llvm/IR/CallingConv.h"
71 #include "llvm/IR/Constant.h"
72 #include "llvm/IR/ConstantRange.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DataLayout.h"
75 #include "llvm/IR/DebugInfoMetadata.h"
76 #include "llvm/IR/DebugLoc.h"
77 #include "llvm/IR/DerivedTypes.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GetElementPtrTypeIterator.h"
80 #include "llvm/IR/InlineAsm.h"
81 #include "llvm/IR/InstrTypes.h"
82 #include "llvm/IR/Instruction.h"
83 #include "llvm/IR/Instructions.h"
84 #include "llvm/IR/IntrinsicInst.h"
85 #include "llvm/IR/Intrinsics.h"
86 #include "llvm/IR/LLVMContext.h"
87 #include "llvm/IR/Metadata.h"
88 #include "llvm/IR/Module.h"
89 #include "llvm/IR/Operator.h"
90 #include "llvm/IR/PatternMatch.h"
91 #include "llvm/IR/Statepoint.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/User.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/MC/MCContext.h"
96 #include "llvm/MC/MCSymbol.h"
97 #include "llvm/Support/AtomicOrdering.h"
98 #include "llvm/Support/BranchProbability.h"
99 #include "llvm/Support/Casting.h"
100 #include "llvm/Support/CodeGen.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Compiler.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/MachineValueType.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Target/TargetIntrinsicInfo.h"
109 #include "llvm/Target/TargetMachine.h"
110 #include "llvm/Target/TargetOptions.h"
111 #include "llvm/Transforms/Utils/Local.h"
112 #include <algorithm>
113 #include <cassert>
114 #include <cstddef>
115 #include <cstdint>
116 #include <cstring>
117 #include <iterator>
118 #include <limits>
119 #include <numeric>
120 #include <tuple>
121 #include <utility>
122 #include <vector>
124 using namespace llvm;
125 using namespace PatternMatch;
127 #define DEBUG_TYPE "isel"
129 /// LimitFloatPrecision - Generate low-precision inline sequences for
130 /// some float libcalls (6, 8 or 12 bits).
131 static unsigned LimitFloatPrecision;
133 static cl::opt<unsigned, true>
134 LimitFPPrecision("limit-float-precision",
135 cl::desc("Generate low-precision inline sequences "
136 "for some float libcalls"),
137 cl::location(LimitFloatPrecision), cl::Hidden,
138 cl::init(0));
140 static cl::opt<unsigned> SwitchPeelThreshold(
141 "switch-peel-threshold", cl::Hidden, cl::init(66),
142 cl::desc("Set the case probability threshold for peeling the case from a "
143 "switch statement. A value greater than 100 will void this "
144 "optimization"));
146 // Limit the width of DAG chains. This is important in general to prevent
147 // DAG-based analysis from blowing up. For example, alias analysis and
148 // load clustering may not complete in reasonable time. It is difficult to
149 // recognize and avoid this situation within each individual analysis, and
150 // future analyses are likely to have the same behavior. Limiting DAG width is
151 // the safe approach and will be especially important with global DAGs.
153 // MaxParallelChains default is arbitrarily high to avoid affecting
154 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
155 // sequence over this should have been converted to llvm.memcpy by the
156 // frontend. It is easy to induce this behavior with .ll code such as:
157 // %buffer = alloca [4096 x i8]
158 // %data = load [4096 x i8]* %argPtr
159 // store [4096 x i8] %data, [4096 x i8]* %buffer
160 static const unsigned MaxParallelChains = 64;
162 // Return the calling convention if the Value passed requires ABI mangling as it
163 // is a parameter to a function or a return value from a function which is not
164 // an intrinsic.
165 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
166 if (auto *R = dyn_cast<ReturnInst>(V))
167 return R->getParent()->getParent()->getCallingConv();
169 if (auto *CI = dyn_cast<CallInst>(V)) {
170 const bool IsInlineAsm = CI->isInlineAsm();
171 const bool IsIndirectFunctionCall =
172 !IsInlineAsm && !CI->getCalledFunction();
174 // It is possible that the call instruction is an inline asm statement or an
175 // indirect function call in which case the return value of
176 // getCalledFunction() would be nullptr.
177 const bool IsInstrinsicCall =
178 !IsInlineAsm && !IsIndirectFunctionCall &&
179 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
181 if (!IsInlineAsm && !IsInstrinsicCall)
182 return CI->getCallingConv();
185 return None;
188 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
189 const SDValue *Parts, unsigned NumParts,
190 MVT PartVT, EVT ValueVT, const Value *V,
191 Optional<CallingConv::ID> CC);
193 /// getCopyFromParts - Create a value that contains the specified legal parts
194 /// combined into the value they represent. If the parts combine to a type
195 /// larger than ValueVT then AssertOp can be used to specify whether the extra
196 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
197 /// (ISD::AssertSext).
198 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
199 const SDValue *Parts, unsigned NumParts,
200 MVT PartVT, EVT ValueVT, const Value *V,
201 Optional<CallingConv::ID> CC = None,
202 Optional<ISD::NodeType> AssertOp = None) {
203 if (ValueVT.isVector())
204 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
205 CC);
207 assert(NumParts > 0 && "No parts to assemble!");
208 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
209 SDValue Val = Parts[0];
211 if (NumParts > 1) {
212 // Assemble the value from multiple parts.
213 if (ValueVT.isInteger()) {
214 unsigned PartBits = PartVT.getSizeInBits();
215 unsigned ValueBits = ValueVT.getSizeInBits();
217 // Assemble the power of 2 part.
218 unsigned RoundParts = NumParts & (NumParts - 1) ?
219 1 << Log2_32(NumParts) : NumParts;
220 unsigned RoundBits = PartBits * RoundParts;
221 EVT RoundVT = RoundBits == ValueBits ?
222 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
223 SDValue Lo, Hi;
225 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
227 if (RoundParts > 2) {
228 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
229 PartVT, HalfVT, V);
230 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
231 RoundParts / 2, PartVT, HalfVT, V);
232 } else {
233 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
234 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
237 if (DAG.getDataLayout().isBigEndian())
238 std::swap(Lo, Hi);
240 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
242 if (RoundParts < NumParts) {
243 // Assemble the trailing non-power-of-2 part.
244 unsigned OddParts = NumParts - RoundParts;
245 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
246 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
247 OddVT, V, CC);
249 // Combine the round and odd parts.
250 Lo = Val;
251 if (DAG.getDataLayout().isBigEndian())
252 std::swap(Lo, Hi);
253 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
254 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
255 Hi =
256 DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
257 DAG.getConstant(Lo.getValueSizeInBits(), DL,
258 TLI.getPointerTy(DAG.getDataLayout())));
259 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
260 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
262 } else if (PartVT.isFloatingPoint()) {
263 // FP split into multiple FP parts (for ppcf128)
264 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
265 "Unexpected split");
266 SDValue Lo, Hi;
267 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
268 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
269 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
270 std::swap(Lo, Hi);
271 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
272 } else {
273 // FP split into integer parts (soft fp)
274 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
275 !PartVT.isVector() && "Unexpected split");
276 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
277 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
281 // There is now one part, held in Val. Correct it to match ValueVT.
282 // PartEVT is the type of the register class that holds the value.
283 // ValueVT is the type of the inline asm operation.
284 EVT PartEVT = Val.getValueType();
286 if (PartEVT == ValueVT)
287 return Val;
289 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
290 ValueVT.bitsLT(PartEVT)) {
291 // For an FP value in an integer part, we need to truncate to the right
292 // width first.
293 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
294 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
297 // Handle types that have the same size.
298 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
299 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
301 // Handle types with different sizes.
302 if (PartEVT.isInteger() && ValueVT.isInteger()) {
303 if (ValueVT.bitsLT(PartEVT)) {
304 // For a truncate, see if we have any information to
305 // indicate whether the truncated bits will always be
306 // zero or sign-extension.
307 if (AssertOp.hasValue())
308 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
309 DAG.getValueType(ValueVT));
310 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
312 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
315 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
316 // FP_ROUND's are always exact here.
317 if (ValueVT.bitsLT(Val.getValueType()))
318 return DAG.getNode(
319 ISD::FP_ROUND, DL, ValueVT, Val,
320 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
322 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
325 llvm_unreachable("Unknown mismatch!");
328 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
329 const Twine &ErrMsg) {
330 const Instruction *I = dyn_cast_or_null<Instruction>(V);
331 if (!V)
332 return Ctx.emitError(ErrMsg);
334 const char *AsmError = ", possible invalid constraint for vector type";
335 if (const CallInst *CI = dyn_cast<CallInst>(I))
336 if (isa<InlineAsm>(CI->getCalledValue()))
337 return Ctx.emitError(I, ErrMsg + AsmError);
339 return Ctx.emitError(I, ErrMsg);
342 /// getCopyFromPartsVector - Create a value that contains the specified legal
343 /// parts combined into the value they represent. If the parts combine to a
344 /// type larger than ValueVT then AssertOp can be used to specify whether the
345 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
346 /// ValueVT (ISD::AssertSext).
347 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
348 const SDValue *Parts, unsigned NumParts,
349 MVT PartVT, EVT ValueVT, const Value *V,
350 Optional<CallingConv::ID> CallConv) {
351 assert(ValueVT.isVector() && "Not a vector value");
352 assert(NumParts > 0 && "No parts to assemble!");
353 const bool IsABIRegCopy = CallConv.hasValue();
355 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
356 SDValue Val = Parts[0];
358 // Handle a multi-element vector.
359 if (NumParts > 1) {
360 EVT IntermediateVT;
361 MVT RegisterVT;
362 unsigned NumIntermediates;
363 unsigned NumRegs;
365 if (IsABIRegCopy) {
366 NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
367 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
368 NumIntermediates, RegisterVT);
369 } else {
370 NumRegs =
371 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
372 NumIntermediates, RegisterVT);
375 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
376 NumParts = NumRegs; // Silence a compiler warning.
377 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
378 assert(RegisterVT.getSizeInBits() ==
379 Parts[0].getSimpleValueType().getSizeInBits() &&
380 "Part type sizes don't match!");
382 // Assemble the parts into intermediate operands.
383 SmallVector<SDValue, 8> Ops(NumIntermediates);
384 if (NumIntermediates == NumParts) {
385 // If the register was not expanded, truncate or copy the value,
386 // as appropriate.
387 for (unsigned i = 0; i != NumParts; ++i)
388 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
389 PartVT, IntermediateVT, V);
390 } else if (NumParts > 0) {
391 // If the intermediate type was expanded, build the intermediate
392 // operands from the parts.
393 assert(NumParts % NumIntermediates == 0 &&
394 "Must expand into a divisible number of parts!");
395 unsigned Factor = NumParts / NumIntermediates;
396 for (unsigned i = 0; i != NumIntermediates; ++i)
397 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
398 PartVT, IntermediateVT, V);
401 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
402 // intermediate operands.
403 EVT BuiltVectorTy =
404 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
405 (IntermediateVT.isVector()
406 ? IntermediateVT.getVectorNumElements() * NumParts
407 : NumIntermediates));
408 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
409 : ISD::BUILD_VECTOR,
410 DL, BuiltVectorTy, Ops);
413 // There is now one part, held in Val. Correct it to match ValueVT.
414 EVT PartEVT = Val.getValueType();
416 if (PartEVT == ValueVT)
417 return Val;
419 if (PartEVT.isVector()) {
420 // If the element type of the source/dest vectors are the same, but the
421 // parts vector has more elements than the value vector, then we have a
422 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the
423 // elements we want.
424 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
425 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
426 "Cannot narrow, it would be a lossy transformation");
427 return DAG.getNode(
428 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
429 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
432 // Vector/Vector bitcast.
433 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
434 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
436 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
437 "Cannot handle this kind of promotion");
438 // Promoted vector extract
439 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
443 // Trivial bitcast if the types are the same size and the destination
444 // vector type is legal.
445 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
446 TLI.isTypeLegal(ValueVT))
447 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
449 if (ValueVT.getVectorNumElements() != 1) {
450 // Certain ABIs require that vectors are passed as integers. For vectors
451 // are the same size, this is an obvious bitcast.
452 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
453 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
454 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
455 // Bitcast Val back the original type and extract the corresponding
456 // vector we want.
457 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
458 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
459 ValueVT.getVectorElementType(), Elts);
460 Val = DAG.getBitcast(WiderVecType, Val);
461 return DAG.getNode(
462 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
463 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
466 diagnosePossiblyInvalidConstraint(
467 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
468 return DAG.getUNDEF(ValueVT);
471 // Handle cases such as i8 -> <1 x i1>
472 EVT ValueSVT = ValueVT.getVectorElementType();
473 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
474 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
475 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
477 return DAG.getBuildVector(ValueVT, DL, Val);
480 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
481 SDValue Val, SDValue *Parts, unsigned NumParts,
482 MVT PartVT, const Value *V,
483 Optional<CallingConv::ID> CallConv);
485 /// getCopyToParts - Create a series of nodes that contain the specified value
486 /// split into legal parts. If the parts contain more bits than Val, then, for
487 /// integers, ExtendKind can be used to specify how to generate the extra bits.
488 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
489 SDValue *Parts, unsigned NumParts, MVT PartVT,
490 const Value *V,
491 Optional<CallingConv::ID> CallConv = None,
492 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
493 EVT ValueVT = Val.getValueType();
495 // Handle the vector case separately.
496 if (ValueVT.isVector())
497 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
498 CallConv);
500 unsigned PartBits = PartVT.getSizeInBits();
501 unsigned OrigNumParts = NumParts;
502 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
503 "Copying to an illegal type!");
505 if (NumParts == 0)
506 return;
508 assert(!ValueVT.isVector() && "Vector case handled elsewhere");
509 EVT PartEVT = PartVT;
510 if (PartEVT == ValueVT) {
511 assert(NumParts == 1 && "No-op copy with multiple parts!");
512 Parts[0] = Val;
513 return;
516 if (NumParts * PartBits > ValueVT.getSizeInBits()) {
517 // If the parts cover more bits than the value has, promote the value.
518 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
519 assert(NumParts == 1 && "Do not know what to promote to!");
520 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
521 } else {
522 if (ValueVT.isFloatingPoint()) {
523 // FP values need to be bitcast, then extended if they are being put
524 // into a larger container.
525 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
526 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
528 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
529 ValueVT.isInteger() &&
530 "Unknown mismatch!");
531 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
532 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
533 if (PartVT == MVT::x86mmx)
534 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
536 } else if (PartBits == ValueVT.getSizeInBits()) {
537 // Different types of the same size.
538 assert(NumParts == 1 && PartEVT != ValueVT);
539 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
540 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
541 // If the parts cover less bits than value has, truncate the value.
542 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
543 ValueVT.isInteger() &&
544 "Unknown mismatch!");
545 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
546 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
547 if (PartVT == MVT::x86mmx)
548 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
551 // The value may have changed - recompute ValueVT.
552 ValueVT = Val.getValueType();
553 assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
554 "Failed to tile the value with PartVT!");
556 if (NumParts == 1) {
557 if (PartEVT != ValueVT) {
558 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
559 "scalar-to-vector conversion failed");
560 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
563 Parts[0] = Val;
564 return;
567 // Expand the value into multiple parts.
568 if (NumParts & (NumParts - 1)) {
569 // The number of parts is not a power of 2. Split off and copy the tail.
570 assert(PartVT.isInteger() && ValueVT.isInteger() &&
571 "Do not know what to expand to!");
572 unsigned RoundParts = 1 << Log2_32(NumParts);
573 unsigned RoundBits = RoundParts * PartBits;
574 unsigned OddParts = NumParts - RoundParts;
575 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
576 DAG.getIntPtrConstant(RoundBits, DL));
577 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
578 CallConv);
580 if (DAG.getDataLayout().isBigEndian())
581 // The odd parts were reversed by getCopyToParts - unreverse them.
582 std::reverse(Parts + RoundParts, Parts + NumParts);
584 NumParts = RoundParts;
585 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
586 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
589 // The number of parts is a power of 2. Repeatedly bisect the value using
590 // EXTRACT_ELEMENT.
591 Parts[0] = DAG.getNode(ISD::BITCAST, DL,
592 EVT::getIntegerVT(*DAG.getContext(),
593 ValueVT.getSizeInBits()),
594 Val);
596 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
597 for (unsigned i = 0; i < NumParts; i += StepSize) {
598 unsigned ThisBits = StepSize * PartBits / 2;
599 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
600 SDValue &Part0 = Parts[i];
601 SDValue &Part1 = Parts[i+StepSize/2];
603 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
604 ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
605 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
606 ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
608 if (ThisBits == PartBits && ThisVT != PartVT) {
609 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
610 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
615 if (DAG.getDataLayout().isBigEndian())
616 std::reverse(Parts, Parts + OrigNumParts);
619 static SDValue widenVectorToPartType(SelectionDAG &DAG,
620 SDValue Val, const SDLoc &DL, EVT PartVT) {
621 if (!PartVT.isVector())
622 return SDValue();
624 EVT ValueVT = Val.getValueType();
625 unsigned PartNumElts = PartVT.getVectorNumElements();
626 unsigned ValueNumElts = ValueVT.getVectorNumElements();
627 if (PartNumElts > ValueNumElts &&
628 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
629 EVT ElementVT = PartVT.getVectorElementType();
630 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in
631 // undef elements.
632 SmallVector<SDValue, 16> Ops;
633 DAG.ExtractVectorElements(Val, Ops);
634 SDValue EltUndef = DAG.getUNDEF(ElementVT);
635 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
636 Ops.push_back(EltUndef);
638 // FIXME: Use CONCAT for 2x -> 4x.
639 return DAG.getBuildVector(PartVT, DL, Ops);
642 return SDValue();
645 /// getCopyToPartsVector - Create a series of nodes that contain the specified
646 /// value split into legal parts.
647 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
648 SDValue Val, SDValue *Parts, unsigned NumParts,
649 MVT PartVT, const Value *V,
650 Optional<CallingConv::ID> CallConv) {
651 EVT ValueVT = Val.getValueType();
652 assert(ValueVT.isVector() && "Not a vector");
653 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
654 const bool IsABIRegCopy = CallConv.hasValue();
656 if (NumParts == 1) {
657 EVT PartEVT = PartVT;
658 if (PartEVT == ValueVT) {
659 // Nothing to do.
660 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
661 // Bitconvert vector->vector case.
662 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
663 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
664 Val = Widened;
665 } else if (PartVT.isVector() &&
666 PartEVT.getVectorElementType().bitsGE(
667 ValueVT.getVectorElementType()) &&
668 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
670 // Promoted vector extract
671 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
672 } else {
673 if (ValueVT.getVectorNumElements() == 1) {
674 Val = DAG.getNode(
675 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
676 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
677 } else {
678 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
679 "lossy conversion of vector to scalar type");
680 EVT IntermediateType =
681 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
682 Val = DAG.getBitcast(IntermediateType, Val);
683 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
687 assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
688 Parts[0] = Val;
689 return;
692 // Handle a multi-element vector.
693 EVT IntermediateVT;
694 MVT RegisterVT;
695 unsigned NumIntermediates;
696 unsigned NumRegs;
697 if (IsABIRegCopy) {
698 NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
699 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
700 NumIntermediates, RegisterVT);
701 } else {
702 NumRegs =
703 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
704 NumIntermediates, RegisterVT);
707 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
708 NumParts = NumRegs; // Silence a compiler warning.
709 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
711 unsigned IntermediateNumElts = IntermediateVT.isVector() ?
712 IntermediateVT.getVectorNumElements() : 1;
714 // Convert the vector to the appropiate type if necessary.
715 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts;
717 EVT BuiltVectorTy = EVT::getVectorVT(
718 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
719 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
720 if (ValueVT != BuiltVectorTy) {
721 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
722 Val = Widened;
724 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
727 // Split the vector into intermediate operands.
728 SmallVector<SDValue, 8> Ops(NumIntermediates);
729 for (unsigned i = 0; i != NumIntermediates; ++i) {
730 if (IntermediateVT.isVector()) {
731 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
732 DAG.getConstant(i * IntermediateNumElts, DL, IdxVT));
733 } else {
734 Ops[i] = DAG.getNode(
735 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
736 DAG.getConstant(i, DL, IdxVT));
740 // Split the intermediate operands into legal parts.
741 if (NumParts == NumIntermediates) {
742 // If the register was not expanded, promote or copy the value,
743 // as appropriate.
744 for (unsigned i = 0; i != NumParts; ++i)
745 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
746 } else if (NumParts > 0) {
747 // If the intermediate type was expanded, split each the value into
748 // legal parts.
749 assert(NumIntermediates != 0 && "division by zero");
750 assert(NumParts % NumIntermediates == 0 &&
751 "Must expand into a divisible number of parts!");
752 unsigned Factor = NumParts / NumIntermediates;
753 for (unsigned i = 0; i != NumIntermediates; ++i)
754 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
755 CallConv);
759 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
760 EVT valuevt, Optional<CallingConv::ID> CC)
761 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
762 RegCount(1, regs.size()), CallConv(CC) {}
764 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
765 const DataLayout &DL, unsigned Reg, Type *Ty,
766 Optional<CallingConv::ID> CC) {
767 ComputeValueVTs(TLI, DL, Ty, ValueVTs);
769 CallConv = CC;
771 for (EVT ValueVT : ValueVTs) {
772 unsigned NumRegs =
773 isABIMangled()
774 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
775 : TLI.getNumRegisters(Context, ValueVT);
776 MVT RegisterVT =
777 isABIMangled()
778 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
779 : TLI.getRegisterType(Context, ValueVT);
780 for (unsigned i = 0; i != NumRegs; ++i)
781 Regs.push_back(Reg + i);
782 RegVTs.push_back(RegisterVT);
783 RegCount.push_back(NumRegs);
784 Reg += NumRegs;
788 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
789 FunctionLoweringInfo &FuncInfo,
790 const SDLoc &dl, SDValue &Chain,
791 SDValue *Flag, const Value *V) const {
792 // A Value with type {} or [0 x %t] needs no registers.
793 if (ValueVTs.empty())
794 return SDValue();
796 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
798 // Assemble the legal parts into the final values.
799 SmallVector<SDValue, 4> Values(ValueVTs.size());
800 SmallVector<SDValue, 8> Parts;
801 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
802 // Copy the legal parts from the registers.
803 EVT ValueVT = ValueVTs[Value];
804 unsigned NumRegs = RegCount[Value];
805 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
806 *DAG.getContext(),
807 CallConv.getValue(), RegVTs[Value])
808 : RegVTs[Value];
810 Parts.resize(NumRegs);
811 for (unsigned i = 0; i != NumRegs; ++i) {
812 SDValue P;
813 if (!Flag) {
814 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
815 } else {
816 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
817 *Flag = P.getValue(2);
820 Chain = P.getValue(1);
821 Parts[i] = P;
823 // If the source register was virtual and if we know something about it,
824 // add an assert node.
825 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
826 !RegisterVT.isInteger())
827 continue;
829 const FunctionLoweringInfo::LiveOutInfo *LOI =
830 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
831 if (!LOI)
832 continue;
834 unsigned RegSize = RegisterVT.getScalarSizeInBits();
835 unsigned NumSignBits = LOI->NumSignBits;
836 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
838 if (NumZeroBits == RegSize) {
839 // The current value is a zero.
840 // Explicitly express that as it would be easier for
841 // optimizations to kick in.
842 Parts[i] = DAG.getConstant(0, dl, RegisterVT);
843 continue;
846 // FIXME: We capture more information than the dag can represent. For
847 // now, just use the tightest assertzext/assertsext possible.
848 bool isSExt;
849 EVT FromVT(MVT::Other);
850 if (NumZeroBits) {
851 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
852 isSExt = false;
853 } else if (NumSignBits > 1) {
854 FromVT =
855 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
856 isSExt = true;
857 } else {
858 continue;
860 // Add an assertion node.
861 assert(FromVT != MVT::Other);
862 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
863 RegisterVT, P, DAG.getValueType(FromVT));
866 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
867 RegisterVT, ValueVT, V, CallConv);
868 Part += NumRegs;
869 Parts.clear();
872 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
875 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
876 const SDLoc &dl, SDValue &Chain, SDValue *Flag,
877 const Value *V,
878 ISD::NodeType PreferredExtendType) const {
879 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
880 ISD::NodeType ExtendKind = PreferredExtendType;
882 // Get the list of the values's legal parts.
883 unsigned NumRegs = Regs.size();
884 SmallVector<SDValue, 8> Parts(NumRegs);
885 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
886 unsigned NumParts = RegCount[Value];
888 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
889 *DAG.getContext(),
890 CallConv.getValue(), RegVTs[Value])
891 : RegVTs[Value];
893 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
894 ExtendKind = ISD::ZERO_EXTEND;
896 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
897 NumParts, RegisterVT, V, CallConv, ExtendKind);
898 Part += NumParts;
901 // Copy the parts into the registers.
902 SmallVector<SDValue, 8> Chains(NumRegs);
903 for (unsigned i = 0; i != NumRegs; ++i) {
904 SDValue Part;
905 if (!Flag) {
906 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
907 } else {
908 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
909 *Flag = Part.getValue(1);
912 Chains[i] = Part.getValue(0);
915 if (NumRegs == 1 || Flag)
916 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
917 // flagged to it. That is the CopyToReg nodes and the user are considered
918 // a single scheduling unit. If we create a TokenFactor and return it as
919 // chain, then the TokenFactor is both a predecessor (operand) of the
920 // user as well as a successor (the TF operands are flagged to the user).
921 // c1, f1 = CopyToReg
922 // c2, f2 = CopyToReg
923 // c3 = TokenFactor c1, c2
924 // ...
925 // = op c3, ..., f2
926 Chain = Chains[NumRegs-1];
927 else
928 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
931 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
932 unsigned MatchingIdx, const SDLoc &dl,
933 SelectionDAG &DAG,
934 std::vector<SDValue> &Ops) const {
935 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
937 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
938 if (HasMatching)
939 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
940 else if (!Regs.empty() &&
941 TargetRegisterInfo::isVirtualRegister(Regs.front())) {
942 // Put the register class of the virtual registers in the flag word. That
943 // way, later passes can recompute register class constraints for inline
944 // assembly as well as normal instructions.
945 // Don't do this for tied operands that can use the regclass information
946 // from the def.
947 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
948 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
949 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
952 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
953 Ops.push_back(Res);
955 if (Code == InlineAsm::Kind_Clobber) {
956 // Clobbers should always have a 1:1 mapping with registers, and may
957 // reference registers that have illegal (e.g. vector) types. Hence, we
958 // shouldn't try to apply any sort of splitting logic to them.
959 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
960 "No 1:1 mapping from clobbers to regs?");
961 unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
962 (void)SP;
963 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
964 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
965 assert(
966 (Regs[I] != SP ||
967 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
968 "If we clobbered the stack pointer, MFI should know about it.");
970 return;
973 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
974 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
975 MVT RegisterVT = RegVTs[Value];
976 for (unsigned i = 0; i != NumRegs; ++i) {
977 assert(Reg < Regs.size() && "Mismatch in # registers expected");
978 unsigned TheReg = Regs[Reg++];
979 Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
984 SmallVector<std::pair<unsigned, unsigned>, 4>
985 RegsForValue::getRegsAndSizes() const {
986 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
987 unsigned I = 0;
988 for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
989 unsigned RegCount = std::get<0>(CountAndVT);
990 MVT RegisterVT = std::get<1>(CountAndVT);
991 unsigned RegisterSize = RegisterVT.getSizeInBits();
992 for (unsigned E = I + RegCount; I != E; ++I)
993 OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
995 return OutVec;
998 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
999 const TargetLibraryInfo *li) {
1000 AA = aa;
1001 GFI = gfi;
1002 LibInfo = li;
1003 DL = &DAG.getDataLayout();
1004 Context = DAG.getContext();
1005 LPadToCallSiteMap.clear();
1008 void SelectionDAGBuilder::clear() {
1009 NodeMap.clear();
1010 UnusedArgNodeMap.clear();
1011 PendingLoads.clear();
1012 PendingExports.clear();
1013 CurInst = nullptr;
1014 HasTailCall = false;
1015 SDNodeOrder = LowestSDNodeOrder;
1016 StatepointLowering.clear();
1019 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1020 DanglingDebugInfoMap.clear();
1023 SDValue SelectionDAGBuilder::getRoot() {
1024 if (PendingLoads.empty())
1025 return DAG.getRoot();
1027 if (PendingLoads.size() == 1) {
1028 SDValue Root = PendingLoads[0];
1029 DAG.setRoot(Root);
1030 PendingLoads.clear();
1031 return Root;
1034 // Otherwise, we have to make a token factor node.
1035 SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads);
1036 PendingLoads.clear();
1037 DAG.setRoot(Root);
1038 return Root;
1041 SDValue SelectionDAGBuilder::getControlRoot() {
1042 SDValue Root = DAG.getRoot();
1044 if (PendingExports.empty())
1045 return Root;
1047 // Turn all of the CopyToReg chains into one factored node.
1048 if (Root.getOpcode() != ISD::EntryToken) {
1049 unsigned i = 0, e = PendingExports.size();
1050 for (; i != e; ++i) {
1051 assert(PendingExports[i].getNode()->getNumOperands() > 1);
1052 if (PendingExports[i].getNode()->getOperand(0) == Root)
1053 break; // Don't add the root if we already indirectly depend on it.
1056 if (i == e)
1057 PendingExports.push_back(Root);
1060 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1061 PendingExports);
1062 PendingExports.clear();
1063 DAG.setRoot(Root);
1064 return Root;
1067 void SelectionDAGBuilder::visit(const Instruction &I) {
1068 // Set up outgoing PHI node register values before emitting the terminator.
1069 if (I.isTerminator()) {
1070 HandlePHINodesInSuccessorBlocks(I.getParent());
1073 // Increase the SDNodeOrder if dealing with a non-debug instruction.
1074 if (!isa<DbgInfoIntrinsic>(I))
1075 ++SDNodeOrder;
1077 CurInst = &I;
1079 visit(I.getOpcode(), I);
1081 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1082 // Propagate the fast-math-flags of this IR instruction to the DAG node that
1083 // maps to this instruction.
1084 // TODO: We could handle all flags (nsw, etc) here.
1085 // TODO: If an IR instruction maps to >1 node, only the final node will have
1086 // flags set.
1087 if (SDNode *Node = getNodeForIRValue(&I)) {
1088 SDNodeFlags IncomingFlags;
1089 IncomingFlags.copyFMF(*FPMO);
1090 if (!Node->getFlags().isDefined())
1091 Node->setFlags(IncomingFlags);
1092 else
1093 Node->intersectFlagsWith(IncomingFlags);
1097 if (!I.isTerminator() && !HasTailCall &&
1098 !isStatepoint(&I)) // statepoints handle their exports internally
1099 CopyToExportRegsIfNeeded(&I);
1101 CurInst = nullptr;
1104 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1105 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1108 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1109 // Note: this doesn't use InstVisitor, because it has to work with
1110 // ConstantExpr's in addition to instructions.
1111 switch (Opcode) {
1112 default: llvm_unreachable("Unknown instruction type encountered!");
1113 // Build the switch statement using the Instruction.def file.
1114 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1115 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1116 #include "llvm/IR/Instruction.def"
1120 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1121 const DIExpression *Expr) {
1122 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1123 const DbgValueInst *DI = DDI.getDI();
1124 DIVariable *DanglingVariable = DI->getVariable();
1125 DIExpression *DanglingExpr = DI->getExpression();
1126 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1127 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1128 return true;
1130 return false;
1133 for (auto &DDIMI : DanglingDebugInfoMap) {
1134 DanglingDebugInfoVector &DDIV = DDIMI.second;
1136 // If debug info is to be dropped, run it through final checks to see
1137 // whether it can be salvaged.
1138 for (auto &DDI : DDIV)
1139 if (isMatchingDbgValue(DDI))
1140 salvageUnresolvedDbgValue(DDI);
1142 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1146 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1147 // generate the debug data structures now that we've seen its definition.
1148 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1149 SDValue Val) {
1150 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1151 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1152 return;
1154 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1155 for (auto &DDI : DDIV) {
1156 const DbgValueInst *DI = DDI.getDI();
1157 assert(DI && "Ill-formed DanglingDebugInfo");
1158 DebugLoc dl = DDI.getdl();
1159 unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1160 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1161 DILocalVariable *Variable = DI->getVariable();
1162 DIExpression *Expr = DI->getExpression();
1163 assert(Variable->isValidLocationForIntrinsic(dl) &&
1164 "Expected inlined-at fields to agree");
1165 SDDbgValue *SDV;
1166 if (Val.getNode()) {
1167 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1168 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1169 // we couldn't resolve it directly when examining the DbgValue intrinsic
1170 // in the first place we should not be more successful here). Unless we
1171 // have some test case that prove this to be correct we should avoid
1172 // calling EmitFuncArgumentDbgValue here.
1173 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1174 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1175 << DbgSDNodeOrder << "] for:\n " << *DI << "\n");
1176 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump());
1177 // Increase the SDNodeOrder for the DbgValue here to make sure it is
1178 // inserted after the definition of Val when emitting the instructions
1179 // after ISel. An alternative could be to teach
1180 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1181 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1182 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1183 << ValSDNodeOrder << "\n");
1184 SDV = getDbgValue(Val, Variable, Expr, dl,
1185 std::max(DbgSDNodeOrder, ValSDNodeOrder));
1186 DAG.AddDbgValue(SDV, Val.getNode(), false);
1187 } else
1188 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1189 << "in EmitFuncArgumentDbgValue\n");
1190 } else {
1191 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1192 auto Undef =
1193 UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1194 auto SDV =
1195 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1196 DAG.AddDbgValue(SDV, nullptr, false);
1199 DDIV.clear();
1202 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1203 Value *V = DDI.getDI()->getValue();
1204 DILocalVariable *Var = DDI.getDI()->getVariable();
1205 DIExpression *Expr = DDI.getDI()->getExpression();
1206 DebugLoc DL = DDI.getdl();
1207 DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1208 unsigned SDOrder = DDI.getSDNodeOrder();
1210 // Currently we consider only dbg.value intrinsics -- we tell the salvager
1211 // that DW_OP_stack_value is desired.
1212 assert(isa<DbgValueInst>(DDI.getDI()));
1213 bool StackValue = true;
1215 // Can this Value can be encoded without any further work?
1216 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1217 return;
1219 // Attempt to salvage back through as many instructions as possible. Bail if
1220 // a non-instruction is seen, such as a constant expression or global
1221 // variable. FIXME: Further work could recover those too.
1222 while (isa<Instruction>(V)) {
1223 Instruction &VAsInst = *cast<Instruction>(V);
1224 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1226 // If we cannot salvage any further, and haven't yet found a suitable debug
1227 // expression, bail out.
1228 if (!NewExpr)
1229 break;
1231 // New value and expr now represent this debuginfo.
1232 V = VAsInst.getOperand(0);
1233 Expr = NewExpr;
1235 // Some kind of simplification occurred: check whether the operand of the
1236 // salvaged debug expression can be encoded in this DAG.
1237 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1238 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n "
1239 << DDI.getDI() << "\nBy stripping back to:\n " << V);
1240 return;
1244 // This was the final opportunity to salvage this debug information, and it
1245 // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1246 // any earlier variable location.
1247 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1248 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1249 DAG.AddDbgValue(SDV, nullptr, false);
1251 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI()
1252 << "\n");
1253 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0)
1254 << "\n");
1257 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1258 DIExpression *Expr, DebugLoc dl,
1259 DebugLoc InstDL, unsigned Order) {
1260 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1261 SDDbgValue *SDV;
1262 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1263 isa<ConstantPointerNull>(V)) {
1264 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1265 DAG.AddDbgValue(SDV, nullptr, false);
1266 return true;
1269 // If the Value is a frame index, we can create a FrameIndex debug value
1270 // without relying on the DAG at all.
1271 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1272 auto SI = FuncInfo.StaticAllocaMap.find(AI);
1273 if (SI != FuncInfo.StaticAllocaMap.end()) {
1274 auto SDV =
1275 DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1276 /*IsIndirect*/ false, dl, SDNodeOrder);
1277 // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1278 // is still available even if the SDNode gets optimized out.
1279 DAG.AddDbgValue(SDV, nullptr, false);
1280 return true;
1284 // Do not use getValue() in here; we don't want to generate code at
1285 // this point if it hasn't been done yet.
1286 SDValue N = NodeMap[V];
1287 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1288 N = UnusedArgNodeMap[V];
1289 if (N.getNode()) {
1290 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1291 return true;
1292 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1293 DAG.AddDbgValue(SDV, N.getNode(), false);
1294 return true;
1297 // Special rules apply for the first dbg.values of parameter variables in a
1298 // function. Identify them by the fact they reference Argument Values, that
1299 // they're parameters, and they are parameters of the current function. We
1300 // need to let them dangle until they get an SDNode.
1301 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1302 !InstDL.getInlinedAt();
1303 if (!IsParamOfFunc) {
1304 // The value is not used in this block yet (or it would have an SDNode).
1305 // We still want the value to appear for the user if possible -- if it has
1306 // an associated VReg, we can refer to that instead.
1307 auto VMI = FuncInfo.ValueMap.find(V);
1308 if (VMI != FuncInfo.ValueMap.end()) {
1309 unsigned Reg = VMI->second;
1310 // If this is a PHI node, it may be split up into several MI PHI nodes
1311 // (in FunctionLoweringInfo::set).
1312 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1313 V->getType(), None);
1314 if (RFV.occupiesMultipleRegs()) {
1315 unsigned Offset = 0;
1316 unsigned BitsToDescribe = 0;
1317 if (auto VarSize = Var->getSizeInBits())
1318 BitsToDescribe = *VarSize;
1319 if (auto Fragment = Expr->getFragmentInfo())
1320 BitsToDescribe = Fragment->SizeInBits;
1321 for (auto RegAndSize : RFV.getRegsAndSizes()) {
1322 unsigned RegisterSize = RegAndSize.second;
1323 // Bail out if all bits are described already.
1324 if (Offset >= BitsToDescribe)
1325 break;
1326 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1327 ? BitsToDescribe - Offset
1328 : RegisterSize;
1329 auto FragmentExpr = DIExpression::createFragmentExpression(
1330 Expr, Offset, FragmentSize);
1331 if (!FragmentExpr)
1332 continue;
1333 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1334 false, dl, SDNodeOrder);
1335 DAG.AddDbgValue(SDV, nullptr, false);
1336 Offset += RegisterSize;
1338 } else {
1339 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1340 DAG.AddDbgValue(SDV, nullptr, false);
1342 return true;
1346 return false;
1349 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1350 // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1351 for (auto &Pair : DanglingDebugInfoMap)
1352 for (auto &DDI : Pair.getSecond())
1353 salvageUnresolvedDbgValue(DDI);
1354 clearDanglingDebugInfo();
1357 /// getCopyFromRegs - If there was virtual register allocated for the value V
1358 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1359 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1360 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1361 SDValue Result;
1363 if (It != FuncInfo.ValueMap.end()) {
1364 unsigned InReg = It->second;
1366 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1367 DAG.getDataLayout(), InReg, Ty,
1368 None); // This is not an ABI copy.
1369 SDValue Chain = DAG.getEntryNode();
1370 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1372 resolveDanglingDebugInfo(V, Result);
1375 return Result;
1378 /// getValue - Return an SDValue for the given Value.
1379 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1380 // If we already have an SDValue for this value, use it. It's important
1381 // to do this first, so that we don't create a CopyFromReg if we already
1382 // have a regular SDValue.
1383 SDValue &N = NodeMap[V];
1384 if (N.getNode()) return N;
1386 // If there's a virtual register allocated and initialized for this
1387 // value, use it.
1388 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1389 return copyFromReg;
1391 // Otherwise create a new SDValue and remember it.
1392 SDValue Val = getValueImpl(V);
1393 NodeMap[V] = Val;
1394 resolveDanglingDebugInfo(V, Val);
1395 return Val;
1398 // Return true if SDValue exists for the given Value
1399 bool SelectionDAGBuilder::findValue(const Value *V) const {
1400 return (NodeMap.find(V) != NodeMap.end()) ||
1401 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1404 /// getNonRegisterValue - Return an SDValue for the given Value, but
1405 /// don't look in FuncInfo.ValueMap for a virtual register.
1406 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1407 // If we already have an SDValue for this value, use it.
1408 SDValue &N = NodeMap[V];
1409 if (N.getNode()) {
1410 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1411 // Remove the debug location from the node as the node is about to be used
1412 // in a location which may differ from the original debug location. This
1413 // is relevant to Constant and ConstantFP nodes because they can appear
1414 // as constant expressions inside PHI nodes.
1415 N->setDebugLoc(DebugLoc());
1417 return N;
1420 // Otherwise create a new SDValue and remember it.
1421 SDValue Val = getValueImpl(V);
1422 NodeMap[V] = Val;
1423 resolveDanglingDebugInfo(V, Val);
1424 return Val;
1427 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1428 /// Create an SDValue for the given value.
1429 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1430 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1432 if (const Constant *C = dyn_cast<Constant>(V)) {
1433 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1435 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1436 return DAG.getConstant(*CI, getCurSDLoc(), VT);
1438 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1439 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1441 if (isa<ConstantPointerNull>(C)) {
1442 unsigned AS = V->getType()->getPointerAddressSpace();
1443 return DAG.getConstant(0, getCurSDLoc(),
1444 TLI.getPointerTy(DAG.getDataLayout(), AS));
1447 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1448 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1450 if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1451 return DAG.getUNDEF(VT);
1453 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1454 visit(CE->getOpcode(), *CE);
1455 SDValue N1 = NodeMap[V];
1456 assert(N1.getNode() && "visit didn't populate the NodeMap!");
1457 return N1;
1460 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1461 SmallVector<SDValue, 4> Constants;
1462 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1463 OI != OE; ++OI) {
1464 SDNode *Val = getValue(*OI).getNode();
1465 // If the operand is an empty aggregate, there are no values.
1466 if (!Val) continue;
1467 // Add each leaf value from the operand to the Constants list
1468 // to form a flattened list of all the values.
1469 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1470 Constants.push_back(SDValue(Val, i));
1473 return DAG.getMergeValues(Constants, getCurSDLoc());
1476 if (const ConstantDataSequential *CDS =
1477 dyn_cast<ConstantDataSequential>(C)) {
1478 SmallVector<SDValue, 4> Ops;
1479 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1480 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1481 // Add each leaf value from the operand to the Constants list
1482 // to form a flattened list of all the values.
1483 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1484 Ops.push_back(SDValue(Val, i));
1487 if (isa<ArrayType>(CDS->getType()))
1488 return DAG.getMergeValues(Ops, getCurSDLoc());
1489 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1492 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1493 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1494 "Unknown struct or array constant!");
1496 SmallVector<EVT, 4> ValueVTs;
1497 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1498 unsigned NumElts = ValueVTs.size();
1499 if (NumElts == 0)
1500 return SDValue(); // empty struct
1501 SmallVector<SDValue, 4> Constants(NumElts);
1502 for (unsigned i = 0; i != NumElts; ++i) {
1503 EVT EltVT = ValueVTs[i];
1504 if (isa<UndefValue>(C))
1505 Constants[i] = DAG.getUNDEF(EltVT);
1506 else if (EltVT.isFloatingPoint())
1507 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1508 else
1509 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1512 return DAG.getMergeValues(Constants, getCurSDLoc());
1515 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1516 return DAG.getBlockAddress(BA, VT);
1518 VectorType *VecTy = cast<VectorType>(V->getType());
1519 unsigned NumElements = VecTy->getNumElements();
1521 // Now that we know the number and type of the elements, get that number of
1522 // elements into the Ops array based on what kind of constant it is.
1523 SmallVector<SDValue, 16> Ops;
1524 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1525 for (unsigned i = 0; i != NumElements; ++i)
1526 Ops.push_back(getValue(CV->getOperand(i)));
1527 } else {
1528 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1529 EVT EltVT =
1530 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1532 SDValue Op;
1533 if (EltVT.isFloatingPoint())
1534 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1535 else
1536 Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1537 Ops.assign(NumElements, Op);
1540 // Create a BUILD_VECTOR node.
1541 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1544 // If this is a static alloca, generate it as the frameindex instead of
1545 // computation.
1546 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1547 DenseMap<const AllocaInst*, int>::iterator SI =
1548 FuncInfo.StaticAllocaMap.find(AI);
1549 if (SI != FuncInfo.StaticAllocaMap.end())
1550 return DAG.getFrameIndex(SI->second,
1551 TLI.getFrameIndexTy(DAG.getDataLayout()));
1554 // If this is an instruction which fast-isel has deferred, select it now.
1555 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1556 unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1558 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1559 Inst->getType(), getABIRegCopyCC(V));
1560 SDValue Chain = DAG.getEntryNode();
1561 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1564 llvm_unreachable("Can't get register for value!");
1567 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1568 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1569 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1570 bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1571 bool IsSEH = isAsynchronousEHPersonality(Pers);
1572 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX;
1573 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1574 if (!IsSEH)
1575 CatchPadMBB->setIsEHScopeEntry();
1576 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1577 if (IsMSVCCXX || IsCoreCLR)
1578 CatchPadMBB->setIsEHFuncletEntry();
1579 // Wasm does not need catchpads anymore
1580 if (!IsWasmCXX)
1581 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other,
1582 getControlRoot()));
1585 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1586 // Update machine-CFG edge.
1587 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1588 FuncInfo.MBB->addSuccessor(TargetMBB);
1590 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1591 bool IsSEH = isAsynchronousEHPersonality(Pers);
1592 if (IsSEH) {
1593 // If this is not a fall-through branch or optimizations are switched off,
1594 // emit the branch.
1595 if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1596 TM.getOptLevel() == CodeGenOpt::None)
1597 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1598 getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1599 return;
1602 // Figure out the funclet membership for the catchret's successor.
1603 // This will be used by the FuncletLayout pass to determine how to order the
1604 // BB's.
1605 // A 'catchret' returns to the outer scope's color.
1606 Value *ParentPad = I.getCatchSwitchParentPad();
1607 const BasicBlock *SuccessorColor;
1608 if (isa<ConstantTokenNone>(ParentPad))
1609 SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1610 else
1611 SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1612 assert(SuccessorColor && "No parent funclet for catchret!");
1613 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1614 assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1616 // Create the terminator node.
1617 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1618 getControlRoot(), DAG.getBasicBlock(TargetMBB),
1619 DAG.getBasicBlock(SuccessorColorMBB));
1620 DAG.setRoot(Ret);
1623 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1624 // Don't emit any special code for the cleanuppad instruction. It just marks
1625 // the start of an EH scope/funclet.
1626 FuncInfo.MBB->setIsEHScopeEntry();
1627 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1628 if (Pers != EHPersonality::Wasm_CXX) {
1629 FuncInfo.MBB->setIsEHFuncletEntry();
1630 FuncInfo.MBB->setIsCleanupFuncletEntry();
1634 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1635 // the control flow always stops at the single catch pad, as it does for a
1636 // cleanup pad. In case the exception caught is not of the types the catch pad
1637 // catches, it will be rethrown by a rethrow.
1638 static void findWasmUnwindDestinations(
1639 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1640 BranchProbability Prob,
1641 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1642 &UnwindDests) {
1643 while (EHPadBB) {
1644 const Instruction *Pad = EHPadBB->getFirstNonPHI();
1645 if (isa<CleanupPadInst>(Pad)) {
1646 // Stop on cleanup pads.
1647 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1648 UnwindDests.back().first->setIsEHScopeEntry();
1649 break;
1650 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1651 // Add the catchpad handlers to the possible destinations. We don't
1652 // continue to the unwind destination of the catchswitch for wasm.
1653 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1654 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1655 UnwindDests.back().first->setIsEHScopeEntry();
1657 break;
1658 } else {
1659 continue;
1664 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1665 /// many places it could ultimately go. In the IR, we have a single unwind
1666 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1667 /// This function skips over imaginary basic blocks that hold catchswitch
1668 /// instructions, and finds all the "real" machine
1669 /// basic block destinations. As those destinations may not be successors of
1670 /// EHPadBB, here we also calculate the edge probability to those destinations.
1671 /// The passed-in Prob is the edge probability to EHPadBB.
1672 static void findUnwindDestinations(
1673 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1674 BranchProbability Prob,
1675 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1676 &UnwindDests) {
1677 EHPersonality Personality =
1678 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1679 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1680 bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1681 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1682 bool IsSEH = isAsynchronousEHPersonality(Personality);
1684 if (IsWasmCXX) {
1685 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1686 return;
1689 while (EHPadBB) {
1690 const Instruction *Pad = EHPadBB->getFirstNonPHI();
1691 BasicBlock *NewEHPadBB = nullptr;
1692 if (isa<LandingPadInst>(Pad)) {
1693 // Stop on landingpads. They are not funclets.
1694 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1695 break;
1696 } else if (isa<CleanupPadInst>(Pad)) {
1697 // Stop on cleanup pads. Cleanups are always funclet entries for all known
1698 // personalities.
1699 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1700 UnwindDests.back().first->setIsEHScopeEntry();
1701 UnwindDests.back().first->setIsEHFuncletEntry();
1702 break;
1703 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1704 // Add the catchpad handlers to the possible destinations.
1705 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1706 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1707 // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1708 if (IsMSVCCXX || IsCoreCLR)
1709 UnwindDests.back().first->setIsEHFuncletEntry();
1710 if (!IsSEH)
1711 UnwindDests.back().first->setIsEHScopeEntry();
1713 NewEHPadBB = CatchSwitch->getUnwindDest();
1714 } else {
1715 continue;
1718 BranchProbabilityInfo *BPI = FuncInfo.BPI;
1719 if (BPI && NewEHPadBB)
1720 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1721 EHPadBB = NewEHPadBB;
1725 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1726 // Update successor info.
1727 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1728 auto UnwindDest = I.getUnwindDest();
1729 BranchProbabilityInfo *BPI = FuncInfo.BPI;
1730 BranchProbability UnwindDestProb =
1731 (BPI && UnwindDest)
1732 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1733 : BranchProbability::getZero();
1734 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1735 for (auto &UnwindDest : UnwindDests) {
1736 UnwindDest.first->setIsEHPad();
1737 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1739 FuncInfo.MBB->normalizeSuccProbs();
1741 // Create the terminator node.
1742 SDValue Ret =
1743 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1744 DAG.setRoot(Ret);
1747 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1748 report_fatal_error("visitCatchSwitch not yet implemented!");
1751 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1752 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1753 auto &DL = DAG.getDataLayout();
1754 SDValue Chain = getControlRoot();
1755 SmallVector<ISD::OutputArg, 8> Outs;
1756 SmallVector<SDValue, 8> OutVals;
1758 // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1759 // lower
1761 // %val = call <ty> @llvm.experimental.deoptimize()
1762 // ret <ty> %val
1764 // differently.
1765 if (I.getParent()->getTerminatingDeoptimizeCall()) {
1766 LowerDeoptimizingReturn();
1767 return;
1770 if (!FuncInfo.CanLowerReturn) {
1771 unsigned DemoteReg = FuncInfo.DemoteRegister;
1772 const Function *F = I.getParent()->getParent();
1774 // Emit a store of the return value through the virtual register.
1775 // Leave Outs empty so that LowerReturn won't try to load return
1776 // registers the usual way.
1777 SmallVector<EVT, 1> PtrValueVTs;
1778 ComputeValueVTs(TLI, DL,
1779 F->getReturnType()->getPointerTo(
1780 DAG.getDataLayout().getAllocaAddrSpace()),
1781 PtrValueVTs);
1783 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1784 DemoteReg, PtrValueVTs[0]);
1785 SDValue RetOp = getValue(I.getOperand(0));
1787 SmallVector<EVT, 4> ValueVTs;
1788 SmallVector<uint64_t, 4> Offsets;
1789 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1790 unsigned NumValues = ValueVTs.size();
1792 SmallVector<SDValue, 4> Chains(NumValues);
1793 for (unsigned i = 0; i != NumValues; ++i) {
1794 // An aggregate return value cannot wrap around the address space, so
1795 // offsets to its parts don't wrap either.
1796 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1797 Chains[i] = DAG.getStore(
1798 Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1799 // FIXME: better loc info would be nice.
1800 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1803 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1804 MVT::Other, Chains);
1805 } else if (I.getNumOperands() != 0) {
1806 SmallVector<EVT, 4> ValueVTs;
1807 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1808 unsigned NumValues = ValueVTs.size();
1809 if (NumValues) {
1810 SDValue RetOp = getValue(I.getOperand(0));
1812 const Function *F = I.getParent()->getParent();
1814 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1815 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1816 Attribute::SExt))
1817 ExtendKind = ISD::SIGN_EXTEND;
1818 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1819 Attribute::ZExt))
1820 ExtendKind = ISD::ZERO_EXTEND;
1822 LLVMContext &Context = F->getContext();
1823 bool RetInReg = F->getAttributes().hasAttribute(
1824 AttributeList::ReturnIndex, Attribute::InReg);
1826 for (unsigned j = 0; j != NumValues; ++j) {
1827 EVT VT = ValueVTs[j];
1829 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1830 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1832 CallingConv::ID CC = F->getCallingConv();
1834 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1835 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1836 SmallVector<SDValue, 4> Parts(NumParts);
1837 getCopyToParts(DAG, getCurSDLoc(),
1838 SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1839 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1841 // 'inreg' on function refers to return value
1842 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1843 if (RetInReg)
1844 Flags.setInReg();
1846 // Propagate extension type if any
1847 if (ExtendKind == ISD::SIGN_EXTEND)
1848 Flags.setSExt();
1849 else if (ExtendKind == ISD::ZERO_EXTEND)
1850 Flags.setZExt();
1852 for (unsigned i = 0; i < NumParts; ++i) {
1853 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1854 VT, /*isfixed=*/true, 0, 0));
1855 OutVals.push_back(Parts[i]);
1861 // Push in swifterror virtual register as the last element of Outs. This makes
1862 // sure swifterror virtual register will be returned in the swifterror
1863 // physical register.
1864 const Function *F = I.getParent()->getParent();
1865 if (TLI.supportSwiftError() &&
1866 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1867 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1868 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1869 Flags.setSwiftError();
1870 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1871 EVT(TLI.getPointerTy(DL)) /*argvt*/,
1872 true /*isfixed*/, 1 /*origidx*/,
1873 0 /*partOffs*/));
1874 // Create SDNode for the swifterror virtual register.
1875 OutVals.push_back(
1876 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt(
1877 &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first,
1878 EVT(TLI.getPointerTy(DL))));
1881 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1882 CallingConv::ID CallConv =
1883 DAG.getMachineFunction().getFunction().getCallingConv();
1884 Chain = DAG.getTargetLoweringInfo().LowerReturn(
1885 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1887 // Verify that the target's LowerReturn behaved as expected.
1888 assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1889 "LowerReturn didn't return a valid chain!");
1891 // Update the DAG with the new chain value resulting from return lowering.
1892 DAG.setRoot(Chain);
1895 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1896 /// created for it, emit nodes to copy the value into the virtual
1897 /// registers.
1898 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1899 // Skip empty types
1900 if (V->getType()->isEmptyTy())
1901 return;
1903 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1904 if (VMI != FuncInfo.ValueMap.end()) {
1905 assert(!V->use_empty() && "Unused value assigned virtual registers!");
1906 CopyValueToVirtualRegister(V, VMI->second);
1910 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1911 /// the current basic block, add it to ValueMap now so that we'll get a
1912 /// CopyTo/FromReg.
1913 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1914 // No need to export constants.
1915 if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1917 // Already exported?
1918 if (FuncInfo.isExportedInst(V)) return;
1920 unsigned Reg = FuncInfo.InitializeRegForValue(V);
1921 CopyValueToVirtualRegister(V, Reg);
1924 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1925 const BasicBlock *FromBB) {
1926 // The operands of the setcc have to be in this block. We don't know
1927 // how to export them from some other block.
1928 if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1929 // Can export from current BB.
1930 if (VI->getParent() == FromBB)
1931 return true;
1933 // Is already exported, noop.
1934 return FuncInfo.isExportedInst(V);
1937 // If this is an argument, we can export it if the BB is the entry block or
1938 // if it is already exported.
1939 if (isa<Argument>(V)) {
1940 if (FromBB == &FromBB->getParent()->getEntryBlock())
1941 return true;
1943 // Otherwise, can only export this if it is already exported.
1944 return FuncInfo.isExportedInst(V);
1947 // Otherwise, constants can always be exported.
1948 return true;
1951 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1952 BranchProbability
1953 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1954 const MachineBasicBlock *Dst) const {
1955 BranchProbabilityInfo *BPI = FuncInfo.BPI;
1956 const BasicBlock *SrcBB = Src->getBasicBlock();
1957 const BasicBlock *DstBB = Dst->getBasicBlock();
1958 if (!BPI) {
1959 // If BPI is not available, set the default probability as 1 / N, where N is
1960 // the number of successors.
1961 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
1962 return BranchProbability(1, SuccSize);
1964 return BPI->getEdgeProbability(SrcBB, DstBB);
1967 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1968 MachineBasicBlock *Dst,
1969 BranchProbability Prob) {
1970 if (!FuncInfo.BPI)
1971 Src->addSuccessorWithoutProb(Dst);
1972 else {
1973 if (Prob.isUnknown())
1974 Prob = getEdgeProbability(Src, Dst);
1975 Src->addSuccessor(Dst, Prob);
1979 static bool InBlock(const Value *V, const BasicBlock *BB) {
1980 if (const Instruction *I = dyn_cast<Instruction>(V))
1981 return I->getParent() == BB;
1982 return true;
1985 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1986 /// This function emits a branch and is used at the leaves of an OR or an
1987 /// AND operator tree.
1988 void
1989 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1990 MachineBasicBlock *TBB,
1991 MachineBasicBlock *FBB,
1992 MachineBasicBlock *CurBB,
1993 MachineBasicBlock *SwitchBB,
1994 BranchProbability TProb,
1995 BranchProbability FProb,
1996 bool InvertCond) {
1997 const BasicBlock *BB = CurBB->getBasicBlock();
1999 // If the leaf of the tree is a comparison, merge the condition into
2000 // the caseblock.
2001 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2002 // The operands of the cmp have to be in this block. We don't know
2003 // how to export them from some other block. If this is the first block
2004 // of the sequence, no exporting is needed.
2005 if (CurBB == SwitchBB ||
2006 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2007 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2008 ISD::CondCode Condition;
2009 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2010 ICmpInst::Predicate Pred =
2011 InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2012 Condition = getICmpCondCode(Pred);
2013 } else {
2014 const FCmpInst *FC = cast<FCmpInst>(Cond);
2015 FCmpInst::Predicate Pred =
2016 InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2017 Condition = getFCmpCondCode(Pred);
2018 if (TM.Options.NoNaNsFPMath)
2019 Condition = getFCmpCodeWithoutNaN(Condition);
2022 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2023 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2024 SwitchCases.push_back(CB);
2025 return;
2029 // Create a CaseBlock record representing this branch.
2030 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2031 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2032 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2033 SwitchCases.push_back(CB);
2036 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2037 MachineBasicBlock *TBB,
2038 MachineBasicBlock *FBB,
2039 MachineBasicBlock *CurBB,
2040 MachineBasicBlock *SwitchBB,
2041 Instruction::BinaryOps Opc,
2042 BranchProbability TProb,
2043 BranchProbability FProb,
2044 bool InvertCond) {
2045 // Skip over not part of the tree and remember to invert op and operands at
2046 // next level.
2047 Value *NotCond;
2048 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2049 InBlock(NotCond, CurBB->getBasicBlock())) {
2050 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2051 !InvertCond);
2052 return;
2055 const Instruction *BOp = dyn_cast<Instruction>(Cond);
2056 // Compute the effective opcode for Cond, taking into account whether it needs
2057 // to be inverted, e.g.
2058 // and (not (or A, B)), C
2059 // gets lowered as
2060 // and (and (not A, not B), C)
2061 unsigned BOpc = 0;
2062 if (BOp) {
2063 BOpc = BOp->getOpcode();
2064 if (InvertCond) {
2065 if (BOpc == Instruction::And)
2066 BOpc = Instruction::Or;
2067 else if (BOpc == Instruction::Or)
2068 BOpc = Instruction::And;
2072 // If this node is not part of the or/and tree, emit it as a branch.
2073 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
2074 BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
2075 BOp->getParent() != CurBB->getBasicBlock() ||
2076 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
2077 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
2078 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2079 TProb, FProb, InvertCond);
2080 return;
2083 // Create TmpBB after CurBB.
2084 MachineFunction::iterator BBI(CurBB);
2085 MachineFunction &MF = DAG.getMachineFunction();
2086 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2087 CurBB->getParent()->insert(++BBI, TmpBB);
2089 if (Opc == Instruction::Or) {
2090 // Codegen X | Y as:
2091 // BB1:
2092 // jmp_if_X TBB
2093 // jmp TmpBB
2094 // TmpBB:
2095 // jmp_if_Y TBB
2096 // jmp FBB
2099 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2100 // The requirement is that
2101 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2102 // = TrueProb for original BB.
2103 // Assuming the original probabilities are A and B, one choice is to set
2104 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2105 // A/(1+B) and 2B/(1+B). This choice assumes that
2106 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2107 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2108 // TmpBB, but the math is more complicated.
2110 auto NewTrueProb = TProb / 2;
2111 auto NewFalseProb = TProb / 2 + FProb;
2112 // Emit the LHS condition.
2113 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
2114 NewTrueProb, NewFalseProb, InvertCond);
2116 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2117 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2118 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2119 // Emit the RHS condition into TmpBB.
2120 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2121 Probs[0], Probs[1], InvertCond);
2122 } else {
2123 assert(Opc == Instruction::And && "Unknown merge op!");
2124 // Codegen X & Y as:
2125 // BB1:
2126 // jmp_if_X TmpBB
2127 // jmp FBB
2128 // TmpBB:
2129 // jmp_if_Y TBB
2130 // jmp FBB
2132 // This requires creation of TmpBB after CurBB.
2134 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2135 // The requirement is that
2136 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2137 // = FalseProb for original BB.
2138 // Assuming the original probabilities are A and B, one choice is to set
2139 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2140 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2141 // TrueProb for BB1 * FalseProb for TmpBB.
2143 auto NewTrueProb = TProb + FProb / 2;
2144 auto NewFalseProb = FProb / 2;
2145 // Emit the LHS condition.
2146 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
2147 NewTrueProb, NewFalseProb, InvertCond);
2149 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2150 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2151 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2152 // Emit the RHS condition into TmpBB.
2153 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2154 Probs[0], Probs[1], InvertCond);
2158 /// If the set of cases should be emitted as a series of branches, return true.
2159 /// If we should emit this as a bunch of and/or'd together conditions, return
2160 /// false.
2161 bool
2162 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2163 if (Cases.size() != 2) return true;
2165 // If this is two comparisons of the same values or'd or and'd together, they
2166 // will get folded into a single comparison, so don't emit two blocks.
2167 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2168 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2169 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2170 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2171 return false;
2174 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2175 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2176 if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2177 Cases[0].CC == Cases[1].CC &&
2178 isa<Constant>(Cases[0].CmpRHS) &&
2179 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2180 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2181 return false;
2182 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2183 return false;
2186 return true;
2189 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2190 MachineBasicBlock *BrMBB = FuncInfo.MBB;
2192 // Update machine-CFG edges.
2193 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2195 if (I.isUnconditional()) {
2196 // Update machine-CFG edges.
2197 BrMBB->addSuccessor(Succ0MBB);
2199 // If this is not a fall-through branch or optimizations are switched off,
2200 // emit the branch.
2201 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2202 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2203 MVT::Other, getControlRoot(),
2204 DAG.getBasicBlock(Succ0MBB)));
2206 return;
2209 // If this condition is one of the special cases we handle, do special stuff
2210 // now.
2211 const Value *CondVal = I.getCondition();
2212 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2214 // If this is a series of conditions that are or'd or and'd together, emit
2215 // this as a sequence of branches instead of setcc's with and/or operations.
2216 // As long as jumps are not expensive, this should improve performance.
2217 // For example, instead of something like:
2218 // cmp A, B
2219 // C = seteq
2220 // cmp D, E
2221 // F = setle
2222 // or C, F
2223 // jnz foo
2224 // Emit:
2225 // cmp A, B
2226 // je foo
2227 // cmp D, E
2228 // jle foo
2229 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2230 Instruction::BinaryOps Opcode = BOp->getOpcode();
2231 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2232 !I.getMetadata(LLVMContext::MD_unpredictable) &&
2233 (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2234 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2235 Opcode,
2236 getEdgeProbability(BrMBB, Succ0MBB),
2237 getEdgeProbability(BrMBB, Succ1MBB),
2238 /*InvertCond=*/false);
2239 // If the compares in later blocks need to use values not currently
2240 // exported from this block, export them now. This block should always
2241 // be the first entry.
2242 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2244 // Allow some cases to be rejected.
2245 if (ShouldEmitAsBranches(SwitchCases)) {
2246 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
2247 ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
2248 ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
2251 // Emit the branch for this block.
2252 visitSwitchCase(SwitchCases[0], BrMBB);
2253 SwitchCases.erase(SwitchCases.begin());
2254 return;
2257 // Okay, we decided not to do this, remove any inserted MBB's and clear
2258 // SwitchCases.
2259 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
2260 FuncInfo.MF->erase(SwitchCases[i].ThisBB);
2262 SwitchCases.clear();
2266 // Create a CaseBlock record representing this branch.
2267 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2268 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2270 // Use visitSwitchCase to actually insert the fast branch sequence for this
2271 // cond branch.
2272 visitSwitchCase(CB, BrMBB);
2275 /// visitSwitchCase - Emits the necessary code to represent a single node in
2276 /// the binary search tree resulting from lowering a switch instruction.
2277 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2278 MachineBasicBlock *SwitchBB) {
2279 SDValue Cond;
2280 SDValue CondLHS = getValue(CB.CmpLHS);
2281 SDLoc dl = CB.DL;
2283 // Build the setcc now.
2284 if (!CB.CmpMHS) {
2285 // Fold "(X == true)" to X and "(X == false)" to !X to
2286 // handle common cases produced by branch lowering.
2287 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2288 CB.CC == ISD::SETEQ)
2289 Cond = CondLHS;
2290 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2291 CB.CC == ISD::SETEQ) {
2292 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2293 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2294 } else
2295 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
2296 } else {
2297 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2299 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2300 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2302 SDValue CmpOp = getValue(CB.CmpMHS);
2303 EVT VT = CmpOp.getValueType();
2305 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2306 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2307 ISD::SETLE);
2308 } else {
2309 SDValue SUB = DAG.getNode(ISD::SUB, dl,
2310 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2311 Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2312 DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2316 // Update successor info
2317 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2318 // TrueBB and FalseBB are always different unless the incoming IR is
2319 // degenerate. This only happens when running llc on weird IR.
2320 if (CB.TrueBB != CB.FalseBB)
2321 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2322 SwitchBB->normalizeSuccProbs();
2324 // If the lhs block is the next block, invert the condition so that we can
2325 // fall through to the lhs instead of the rhs block.
2326 if (CB.TrueBB == NextBlock(SwitchBB)) {
2327 std::swap(CB.TrueBB, CB.FalseBB);
2328 SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2329 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2332 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2333 MVT::Other, getControlRoot(), Cond,
2334 DAG.getBasicBlock(CB.TrueBB));
2336 // Insert the false branch. Do this even if it's a fall through branch,
2337 // this makes it easier to do DAG optimizations which require inverting
2338 // the branch condition.
2339 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2340 DAG.getBasicBlock(CB.FalseBB));
2342 DAG.setRoot(BrCond);
2345 /// visitJumpTable - Emit JumpTable node in the current MBB
2346 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
2347 // Emit the code for the jump table
2348 assert(JT.Reg != -1U && "Should lower JT Header first!");
2349 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2350 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2351 JT.Reg, PTy);
2352 SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2353 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2354 MVT::Other, Index.getValue(1),
2355 Table, Index);
2356 DAG.setRoot(BrJumpTable);
2359 /// visitJumpTableHeader - This function emits necessary code to produce index
2360 /// in the JumpTable from switch case.
2361 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
2362 JumpTableHeader &JTH,
2363 MachineBasicBlock *SwitchBB) {
2364 SDLoc dl = getCurSDLoc();
2366 // Subtract the lowest switch case value from the value being switched on and
2367 // conditional branch to default mbb if the result is greater than the
2368 // difference between smallest and largest cases.
2369 SDValue SwitchOp = getValue(JTH.SValue);
2370 EVT VT = SwitchOp.getValueType();
2371 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2372 DAG.getConstant(JTH.First, dl, VT));
2374 // The SDNode we just created, which holds the value being switched on minus
2375 // the smallest case value, needs to be copied to a virtual register so it
2376 // can be used as an index into the jump table in a subsequent basic block.
2377 // This value may be smaller or larger than the target's pointer type, and
2378 // therefore require extension or truncating.
2379 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2380 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2382 unsigned JumpTableReg =
2383 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2384 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2385 JumpTableReg, SwitchOp);
2386 JT.Reg = JumpTableReg;
2388 // Emit the range check for the jump table, and branch to the default block
2389 // for the switch statement if the value being switched on exceeds the largest
2390 // case in the switch.
2391 SDValue CMP = DAG.getSetCC(
2392 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2393 Sub.getValueType()),
2394 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2396 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2397 MVT::Other, CopyTo, CMP,
2398 DAG.getBasicBlock(JT.Default));
2400 // Avoid emitting unnecessary branches to the next block.
2401 if (JT.MBB != NextBlock(SwitchBB))
2402 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2403 DAG.getBasicBlock(JT.MBB));
2405 DAG.setRoot(BrCond);
2408 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2409 /// variable if there exists one.
2410 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2411 SDValue &Chain) {
2412 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2413 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2414 MachineFunction &MF = DAG.getMachineFunction();
2415 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2416 MachineSDNode *Node =
2417 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2418 if (Global) {
2419 MachinePointerInfo MPInfo(Global);
2420 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2421 MachineMemOperand::MODereferenceable;
2422 MachineMemOperand *MemRef = MF.getMachineMemOperand(
2423 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy));
2424 DAG.setNodeMemRefs(Node, {MemRef});
2426 return SDValue(Node, 0);
2429 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2430 /// tail spliced into a stack protector check success bb.
2432 /// For a high level explanation of how this fits into the stack protector
2433 /// generation see the comment on the declaration of class
2434 /// StackProtectorDescriptor.
2435 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2436 MachineBasicBlock *ParentBB) {
2438 // First create the loads to the guard/stack slot for the comparison.
2439 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2440 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2442 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2443 int FI = MFI.getStackProtectorIndex();
2445 SDValue Guard;
2446 SDLoc dl = getCurSDLoc();
2447 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2448 const Module &M = *ParentBB->getParent()->getFunction().getParent();
2449 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2451 // Generate code to load the content of the guard slot.
2452 SDValue GuardVal = DAG.getLoad(
2453 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2454 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2455 MachineMemOperand::MOVolatile);
2457 if (TLI.useStackGuardXorFP())
2458 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2460 // Retrieve guard check function, nullptr if instrumentation is inlined.
2461 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2462 // The target provides a guard check function to validate the guard value.
2463 // Generate a call to that function with the content of the guard slot as
2464 // argument.
2465 FunctionType *FnTy = GuardCheckFn->getFunctionType();
2466 assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2468 TargetLowering::ArgListTy Args;
2469 TargetLowering::ArgListEntry Entry;
2470 Entry.Node = GuardVal;
2471 Entry.Ty = FnTy->getParamType(0);
2472 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2473 Entry.IsInReg = true;
2474 Args.push_back(Entry);
2476 TargetLowering::CallLoweringInfo CLI(DAG);
2477 CLI.setDebugLoc(getCurSDLoc())
2478 .setChain(DAG.getEntryNode())
2479 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2480 getValue(GuardCheckFn), std::move(Args));
2482 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2483 DAG.setRoot(Result.second);
2484 return;
2487 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2488 // Otherwise, emit a volatile load to retrieve the stack guard value.
2489 SDValue Chain = DAG.getEntryNode();
2490 if (TLI.useLoadStackGuardNode()) {
2491 Guard = getLoadStackGuard(DAG, dl, Chain);
2492 } else {
2493 const Value *IRGuard = TLI.getSDagStackGuard(M);
2494 SDValue GuardPtr = getValue(IRGuard);
2496 Guard =
2497 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2498 Align, MachineMemOperand::MOVolatile);
2501 // Perform the comparison via a subtract/getsetcc.
2502 EVT VT = Guard.getValueType();
2503 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2505 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2506 *DAG.getContext(),
2507 Sub.getValueType()),
2508 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2510 // If the sub is not 0, then we know the guard/stackslot do not equal, so
2511 // branch to failure MBB.
2512 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2513 MVT::Other, GuardVal.getOperand(0),
2514 Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2515 // Otherwise branch to success MBB.
2516 SDValue Br = DAG.getNode(ISD::BR, dl,
2517 MVT::Other, BrCond,
2518 DAG.getBasicBlock(SPD.getSuccessMBB()));
2520 DAG.setRoot(Br);
2523 /// Codegen the failure basic block for a stack protector check.
2525 /// A failure stack protector machine basic block consists simply of a call to
2526 /// __stack_chk_fail().
2528 /// For a high level explanation of how this fits into the stack protector
2529 /// generation see the comment on the declaration of class
2530 /// StackProtectorDescriptor.
2531 void
2532 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2533 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2534 SDValue Chain =
2535 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2536 None, false, getCurSDLoc(), false, false).second;
2537 DAG.setRoot(Chain);
2540 /// visitBitTestHeader - This function emits necessary code to produce value
2541 /// suitable for "bit tests"
2542 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2543 MachineBasicBlock *SwitchBB) {
2544 SDLoc dl = getCurSDLoc();
2546 // Subtract the minimum value
2547 SDValue SwitchOp = getValue(B.SValue);
2548 EVT VT = SwitchOp.getValueType();
2549 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2550 DAG.getConstant(B.First, dl, VT));
2552 // Check range
2553 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2554 SDValue RangeCmp = DAG.getSetCC(
2555 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2556 Sub.getValueType()),
2557 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2559 // Determine the type of the test operands.
2560 bool UsePtrType = false;
2561 if (!TLI.isTypeLegal(VT))
2562 UsePtrType = true;
2563 else {
2564 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2565 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2566 // Switch table case range are encoded into series of masks.
2567 // Just use pointer type, it's guaranteed to fit.
2568 UsePtrType = true;
2569 break;
2572 if (UsePtrType) {
2573 VT = TLI.getPointerTy(DAG.getDataLayout());
2574 Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2577 B.RegVT = VT.getSimpleVT();
2578 B.Reg = FuncInfo.CreateReg(B.RegVT);
2579 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2581 MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2583 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2584 addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2585 SwitchBB->normalizeSuccProbs();
2587 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2588 MVT::Other, CopyTo, RangeCmp,
2589 DAG.getBasicBlock(B.Default));
2591 // Avoid emitting unnecessary branches to the next block.
2592 if (MBB != NextBlock(SwitchBB))
2593 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2594 DAG.getBasicBlock(MBB));
2596 DAG.setRoot(BrRange);
2599 /// visitBitTestCase - this function produces one "bit test"
2600 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2601 MachineBasicBlock* NextMBB,
2602 BranchProbability BranchProbToNext,
2603 unsigned Reg,
2604 BitTestCase &B,
2605 MachineBasicBlock *SwitchBB) {
2606 SDLoc dl = getCurSDLoc();
2607 MVT VT = BB.RegVT;
2608 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2609 SDValue Cmp;
2610 unsigned PopCount = countPopulation(B.Mask);
2611 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2612 if (PopCount == 1) {
2613 // Testing for a single bit; just compare the shift count with what it
2614 // would need to be to shift a 1 bit in that position.
2615 Cmp = DAG.getSetCC(
2616 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2617 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2618 ISD::SETEQ);
2619 } else if (PopCount == BB.Range) {
2620 // There is only one zero bit in the range, test for it directly.
2621 Cmp = DAG.getSetCC(
2622 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2623 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2624 ISD::SETNE);
2625 } else {
2626 // Make desired shift
2627 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2628 DAG.getConstant(1, dl, VT), ShiftOp);
2630 // Emit bit tests and jumps
2631 SDValue AndOp = DAG.getNode(ISD::AND, dl,
2632 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2633 Cmp = DAG.getSetCC(
2634 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2635 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2638 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2639 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2640 // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2641 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2642 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2643 // one as they are relative probabilities (and thus work more like weights),
2644 // and hence we need to normalize them to let the sum of them become one.
2645 SwitchBB->normalizeSuccProbs();
2647 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2648 MVT::Other, getControlRoot(),
2649 Cmp, DAG.getBasicBlock(B.TargetBB));
2651 // Avoid emitting unnecessary branches to the next block.
2652 if (NextMBB != NextBlock(SwitchBB))
2653 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2654 DAG.getBasicBlock(NextMBB));
2656 DAG.setRoot(BrAnd);
2659 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2660 MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2662 // Retrieve successors. Look through artificial IR level blocks like
2663 // catchswitch for successors.
2664 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2665 const BasicBlock *EHPadBB = I.getSuccessor(1);
2667 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2668 // have to do anything here to lower funclet bundles.
2669 assert(!I.hasOperandBundlesOtherThan(
2670 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2671 "Cannot lower invokes with arbitrary operand bundles yet!");
2673 const Value *Callee(I.getCalledValue());
2674 const Function *Fn = dyn_cast<Function>(Callee);
2675 if (isa<InlineAsm>(Callee))
2676 visitInlineAsm(&I);
2677 else if (Fn && Fn->isIntrinsic()) {
2678 switch (Fn->getIntrinsicID()) {
2679 default:
2680 llvm_unreachable("Cannot invoke this intrinsic");
2681 case Intrinsic::donothing:
2682 // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2683 break;
2684 case Intrinsic::experimental_patchpoint_void:
2685 case Intrinsic::experimental_patchpoint_i64:
2686 visitPatchpoint(&I, EHPadBB);
2687 break;
2688 case Intrinsic::experimental_gc_statepoint:
2689 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2690 break;
2692 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2693 // Currently we do not lower any intrinsic calls with deopt operand bundles.
2694 // Eventually we will support lowering the @llvm.experimental.deoptimize
2695 // intrinsic, and right now there are no plans to support other intrinsics
2696 // with deopt state.
2697 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2698 } else {
2699 LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2702 // If the value of the invoke is used outside of its defining block, make it
2703 // available as a virtual register.
2704 // We already took care of the exported value for the statepoint instruction
2705 // during call to the LowerStatepoint.
2706 if (!isStatepoint(I)) {
2707 CopyToExportRegsIfNeeded(&I);
2710 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2711 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2712 BranchProbability EHPadBBProb =
2713 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2714 : BranchProbability::getZero();
2715 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2717 // Update successor info.
2718 addSuccessorWithProb(InvokeMBB, Return);
2719 for (auto &UnwindDest : UnwindDests) {
2720 UnwindDest.first->setIsEHPad();
2721 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2723 InvokeMBB->normalizeSuccProbs();
2725 // Drop into normal successor.
2726 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2727 DAG.getBasicBlock(Return)));
2730 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2731 MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2733 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2734 // have to do anything here to lower funclet bundles.
2735 assert(!I.hasOperandBundlesOtherThan(
2736 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2737 "Cannot lower callbrs with arbitrary operand bundles yet!");
2739 assert(isa<InlineAsm>(I.getCalledValue()) &&
2740 "Only know how to handle inlineasm callbr");
2741 visitInlineAsm(&I);
2743 // Retrieve successors.
2744 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2746 // Update successor info.
2747 addSuccessorWithProb(CallBrMBB, Return);
2748 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2749 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2750 addSuccessorWithProb(CallBrMBB, Target);
2752 CallBrMBB->normalizeSuccProbs();
2754 // Drop into default successor.
2755 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2756 MVT::Other, getControlRoot(),
2757 DAG.getBasicBlock(Return)));
2760 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2761 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2764 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2765 assert(FuncInfo.MBB->isEHPad() &&
2766 "Call to landingpad not in landing pad!");
2768 // If there aren't registers to copy the values into (e.g., during SjLj
2769 // exceptions), then don't bother to create these DAG nodes.
2770 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2771 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2772 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2773 TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2774 return;
2776 // If landingpad's return type is token type, we don't create DAG nodes
2777 // for its exception pointer and selector value. The extraction of exception
2778 // pointer or selector value from token type landingpads is not currently
2779 // supported.
2780 if (LP.getType()->isTokenTy())
2781 return;
2783 SmallVector<EVT, 2> ValueVTs;
2784 SDLoc dl = getCurSDLoc();
2785 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2786 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2788 // Get the two live-in registers as SDValues. The physregs have already been
2789 // copied into virtual registers.
2790 SDValue Ops[2];
2791 if (FuncInfo.ExceptionPointerVirtReg) {
2792 Ops[0] = DAG.getZExtOrTrunc(
2793 DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2794 FuncInfo.ExceptionPointerVirtReg,
2795 TLI.getPointerTy(DAG.getDataLayout())),
2796 dl, ValueVTs[0]);
2797 } else {
2798 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2800 Ops[1] = DAG.getZExtOrTrunc(
2801 DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2802 FuncInfo.ExceptionSelectorVirtReg,
2803 TLI.getPointerTy(DAG.getDataLayout())),
2804 dl, ValueVTs[1]);
2806 // Merge into one.
2807 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2808 DAG.getVTList(ValueVTs), Ops);
2809 setValue(&LP, Res);
2812 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2813 #ifndef NDEBUG
2814 for (const CaseCluster &CC : Clusters)
2815 assert(CC.Low == CC.High && "Input clusters must be single-case");
2816 #endif
2818 llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) {
2819 return a.Low->getValue().slt(b.Low->getValue());
2822 // Merge adjacent clusters with the same destination.
2823 const unsigned N = Clusters.size();
2824 unsigned DstIndex = 0;
2825 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2826 CaseCluster &CC = Clusters[SrcIndex];
2827 const ConstantInt *CaseVal = CC.Low;
2828 MachineBasicBlock *Succ = CC.MBB;
2830 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2831 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2832 // If this case has the same successor and is a neighbour, merge it into
2833 // the previous cluster.
2834 Clusters[DstIndex - 1].High = CaseVal;
2835 Clusters[DstIndex - 1].Prob += CC.Prob;
2836 } else {
2837 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2838 sizeof(Clusters[SrcIndex]));
2841 Clusters.resize(DstIndex);
2844 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2845 MachineBasicBlock *Last) {
2846 // Update JTCases.
2847 for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2848 if (JTCases[i].first.HeaderBB == First)
2849 JTCases[i].first.HeaderBB = Last;
2851 // Update BitTestCases.
2852 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2853 if (BitTestCases[i].Parent == First)
2854 BitTestCases[i].Parent = Last;
2857 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2858 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2860 // Update machine-CFG edges with unique successors.
2861 SmallSet<BasicBlock*, 32> Done;
2862 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2863 BasicBlock *BB = I.getSuccessor(i);
2864 bool Inserted = Done.insert(BB).second;
2865 if (!Inserted)
2866 continue;
2868 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2869 addSuccessorWithProb(IndirectBrMBB, Succ);
2871 IndirectBrMBB->normalizeSuccProbs();
2873 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2874 MVT::Other, getControlRoot(),
2875 getValue(I.getAddress())));
2878 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2879 if (!DAG.getTarget().Options.TrapUnreachable)
2880 return;
2882 // We may be able to ignore unreachable behind a noreturn call.
2883 if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2884 const BasicBlock &BB = *I.getParent();
2885 if (&I != &BB.front()) {
2886 BasicBlock::const_iterator PredI =
2887 std::prev(BasicBlock::const_iterator(&I));
2888 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2889 if (Call->doesNotReturn())
2890 return;
2895 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2898 void SelectionDAGBuilder::visitFSub(const User &I) {
2899 // -0.0 - X --> fneg
2900 Type *Ty = I.getType();
2901 if (isa<Constant>(I.getOperand(0)) &&
2902 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2903 SDValue Op2 = getValue(I.getOperand(1));
2904 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2905 Op2.getValueType(), Op2));
2906 return;
2909 visitBinary(I, ISD::FSUB);
2912 /// Checks if the given instruction performs a vector reduction, in which case
2913 /// we have the freedom to alter the elements in the result as long as the
2914 /// reduction of them stays unchanged.
2915 static bool isVectorReductionOp(const User *I) {
2916 const Instruction *Inst = dyn_cast<Instruction>(I);
2917 if (!Inst || !Inst->getType()->isVectorTy())
2918 return false;
2920 auto OpCode = Inst->getOpcode();
2921 switch (OpCode) {
2922 case Instruction::Add:
2923 case Instruction::Mul:
2924 case Instruction::And:
2925 case Instruction::Or:
2926 case Instruction::Xor:
2927 break;
2928 case Instruction::FAdd:
2929 case Instruction::FMul:
2930 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2931 if (FPOp->getFastMathFlags().isFast())
2932 break;
2933 LLVM_FALLTHROUGH;
2934 default:
2935 return false;
2938 unsigned ElemNum = Inst->getType()->getVectorNumElements();
2939 // Ensure the reduction size is a power of 2.
2940 if (!isPowerOf2_32(ElemNum))
2941 return false;
2943 unsigned ElemNumToReduce = ElemNum;
2945 // Do DFS search on the def-use chain from the given instruction. We only
2946 // allow four kinds of operations during the search until we reach the
2947 // instruction that extracts the first element from the vector:
2949 // 1. The reduction operation of the same opcode as the given instruction.
2951 // 2. PHI node.
2953 // 3. ShuffleVector instruction together with a reduction operation that
2954 // does a partial reduction.
2956 // 4. ExtractElement that extracts the first element from the vector, and we
2957 // stop searching the def-use chain here.
2959 // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2960 // from 1-3 to the stack to continue the DFS. The given instruction is not
2961 // a reduction operation if we meet any other instructions other than those
2962 // listed above.
2964 SmallVector<const User *, 16> UsersToVisit{Inst};
2965 SmallPtrSet<const User *, 16> Visited;
2966 bool ReduxExtracted = false;
2968 while (!UsersToVisit.empty()) {
2969 auto User = UsersToVisit.back();
2970 UsersToVisit.pop_back();
2971 if (!Visited.insert(User).second)
2972 continue;
2974 for (const auto &U : User->users()) {
2975 auto Inst = dyn_cast<Instruction>(U);
2976 if (!Inst)
2977 return false;
2979 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2980 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2981 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
2982 return false;
2983 UsersToVisit.push_back(U);
2984 } else if (const ShuffleVectorInst *ShufInst =
2985 dyn_cast<ShuffleVectorInst>(U)) {
2986 // Detect the following pattern: A ShuffleVector instruction together
2987 // with a reduction that do partial reduction on the first and second
2988 // ElemNumToReduce / 2 elements, and store the result in
2989 // ElemNumToReduce / 2 elements in another vector.
2991 unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2992 if (ResultElements < ElemNum)
2993 return false;
2995 if (ElemNumToReduce == 1)
2996 return false;
2997 if (!isa<UndefValue>(U->getOperand(1)))
2998 return false;
2999 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
3000 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
3001 return false;
3002 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
3003 if (ShufInst->getMaskValue(i) != -1)
3004 return false;
3006 // There is only one user of this ShuffleVector instruction, which
3007 // must be a reduction operation.
3008 if (!U->hasOneUse())
3009 return false;
3011 auto U2 = dyn_cast<Instruction>(*U->user_begin());
3012 if (!U2 || U2->getOpcode() != OpCode)
3013 return false;
3015 // Check operands of the reduction operation.
3016 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
3017 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
3018 UsersToVisit.push_back(U2);
3019 ElemNumToReduce /= 2;
3020 } else
3021 return false;
3022 } else if (isa<ExtractElementInst>(U)) {
3023 // At this moment we should have reduced all elements in the vector.
3024 if (ElemNumToReduce != 1)
3025 return false;
3027 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
3028 if (!Val || !Val->isZero())
3029 return false;
3031 ReduxExtracted = true;
3032 } else
3033 return false;
3036 return ReduxExtracted;
3039 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3040 SDNodeFlags Flags;
3042 SDValue Op = getValue(I.getOperand(0));
3043 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3044 Op, Flags);
3045 setValue(&I, UnNodeValue);
3048 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3049 SDNodeFlags Flags;
3050 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3051 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3052 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3054 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
3055 Flags.setExact(ExactOp->isExact());
3057 if (isVectorReductionOp(&I)) {
3058 Flags.setVectorReduction(true);
3059 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
3062 SDValue Op1 = getValue(I.getOperand(0));
3063 SDValue Op2 = getValue(I.getOperand(1));
3064 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3065 Op1, Op2, Flags);
3066 setValue(&I, BinNodeValue);
3069 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3070 SDValue Op1 = getValue(I.getOperand(0));
3071 SDValue Op2 = getValue(I.getOperand(1));
3073 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3074 Op1.getValueType(), DAG.getDataLayout());
3076 // Coerce the shift amount to the right type if we can.
3077 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3078 unsigned ShiftSize = ShiftTy.getSizeInBits();
3079 unsigned Op2Size = Op2.getValueSizeInBits();
3080 SDLoc DL = getCurSDLoc();
3082 // If the operand is smaller than the shift count type, promote it.
3083 if (ShiftSize > Op2Size)
3084 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3086 // If the operand is larger than the shift count type but the shift
3087 // count type has enough bits to represent any shift value, truncate
3088 // it now. This is a common case and it exposes the truncate to
3089 // optimization early.
3090 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3091 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3092 // Otherwise we'll need to temporarily settle for some other convenient
3093 // type. Type legalization will make adjustments once the shiftee is split.
3094 else
3095 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3098 bool nuw = false;
3099 bool nsw = false;
3100 bool exact = false;
3102 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3104 if (const OverflowingBinaryOperator *OFBinOp =
3105 dyn_cast<const OverflowingBinaryOperator>(&I)) {
3106 nuw = OFBinOp->hasNoUnsignedWrap();
3107 nsw = OFBinOp->hasNoSignedWrap();
3109 if (const PossiblyExactOperator *ExactOp =
3110 dyn_cast<const PossiblyExactOperator>(&I))
3111 exact = ExactOp->isExact();
3113 SDNodeFlags Flags;
3114 Flags.setExact(exact);
3115 Flags.setNoSignedWrap(nsw);
3116 Flags.setNoUnsignedWrap(nuw);
3117 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3118 Flags);
3119 setValue(&I, Res);
3122 void SelectionDAGBuilder::visitSDiv(const User &I) {
3123 SDValue Op1 = getValue(I.getOperand(0));
3124 SDValue Op2 = getValue(I.getOperand(1));
3126 SDNodeFlags Flags;
3127 Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3128 cast<PossiblyExactOperator>(&I)->isExact());
3129 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3130 Op2, Flags));
3133 void SelectionDAGBuilder::visitICmp(const User &I) {
3134 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3135 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3136 predicate = IC->getPredicate();
3137 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3138 predicate = ICmpInst::Predicate(IC->getPredicate());
3139 SDValue Op1 = getValue(I.getOperand(0));
3140 SDValue Op2 = getValue(I.getOperand(1));
3141 ISD::CondCode Opcode = getICmpCondCode(predicate);
3143 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3144 I.getType());
3145 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3148 void SelectionDAGBuilder::visitFCmp(const User &I) {
3149 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3150 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3151 predicate = FC->getPredicate();
3152 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3153 predicate = FCmpInst::Predicate(FC->getPredicate());
3154 SDValue Op1 = getValue(I.getOperand(0));
3155 SDValue Op2 = getValue(I.getOperand(1));
3157 ISD::CondCode Condition = getFCmpCondCode(predicate);
3158 auto *FPMO = dyn_cast<FPMathOperator>(&I);
3159 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
3160 Condition = getFCmpCodeWithoutNaN(Condition);
3162 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3163 I.getType());
3164 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3167 // Check if the condition of the select has one use or two users that are both
3168 // selects with the same condition.
3169 static bool hasOnlySelectUsers(const Value *Cond) {
3170 return llvm::all_of(Cond->users(), [](const Value *V) {
3171 return isa<SelectInst>(V);
3175 void SelectionDAGBuilder::visitSelect(const User &I) {
3176 SmallVector<EVT, 4> ValueVTs;
3177 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3178 ValueVTs);
3179 unsigned NumValues = ValueVTs.size();
3180 if (NumValues == 0) return;
3182 SmallVector<SDValue, 4> Values(NumValues);
3183 SDValue Cond = getValue(I.getOperand(0));
3184 SDValue LHSVal = getValue(I.getOperand(1));
3185 SDValue RHSVal = getValue(I.getOperand(2));
3186 auto BaseOps = {Cond};
3187 ISD::NodeType OpCode = Cond.getValueType().isVector() ?
3188 ISD::VSELECT : ISD::SELECT;
3190 // Min/max matching is only viable if all output VTs are the same.
3191 if (is_splat(ValueVTs)) {
3192 EVT VT = ValueVTs[0];
3193 LLVMContext &Ctx = *DAG.getContext();
3194 auto &TLI = DAG.getTargetLoweringInfo();
3196 // We care about the legality of the operation after it has been type
3197 // legalized.
3198 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
3199 VT != TLI.getTypeToTransformTo(Ctx, VT))
3200 VT = TLI.getTypeToTransformTo(Ctx, VT);
3202 // If the vselect is legal, assume we want to leave this as a vector setcc +
3203 // vselect. Otherwise, if this is going to be scalarized, we want to see if
3204 // min/max is legal on the scalar type.
3205 bool UseScalarMinMax = VT.isVector() &&
3206 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3208 Value *LHS, *RHS;
3209 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3210 ISD::NodeType Opc = ISD::DELETED_NODE;
3211 switch (SPR.Flavor) {
3212 case SPF_UMAX: Opc = ISD::UMAX; break;
3213 case SPF_UMIN: Opc = ISD::UMIN; break;
3214 case SPF_SMAX: Opc = ISD::SMAX; break;
3215 case SPF_SMIN: Opc = ISD::SMIN; break;
3216 case SPF_FMINNUM:
3217 switch (SPR.NaNBehavior) {
3218 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3219 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break;
3220 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3221 case SPNB_RETURNS_ANY: {
3222 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3223 Opc = ISD::FMINNUM;
3224 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3225 Opc = ISD::FMINIMUM;
3226 else if (UseScalarMinMax)
3227 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3228 ISD::FMINNUM : ISD::FMINIMUM;
3229 break;
3232 break;
3233 case SPF_FMAXNUM:
3234 switch (SPR.NaNBehavior) {
3235 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3236 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break;
3237 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3238 case SPNB_RETURNS_ANY:
3240 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3241 Opc = ISD::FMAXNUM;
3242 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3243 Opc = ISD::FMAXIMUM;
3244 else if (UseScalarMinMax)
3245 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3246 ISD::FMAXNUM : ISD::FMAXIMUM;
3247 break;
3249 break;
3250 default: break;
3253 if (Opc != ISD::DELETED_NODE &&
3254 (TLI.isOperationLegalOrCustom(Opc, VT) ||
3255 (UseScalarMinMax &&
3256 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3257 // If the underlying comparison instruction is used by any other
3258 // instruction, the consumed instructions won't be destroyed, so it is
3259 // not profitable to convert to a min/max.
3260 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3261 OpCode = Opc;
3262 LHSVal = getValue(LHS);
3263 RHSVal = getValue(RHS);
3264 BaseOps = {};
3268 for (unsigned i = 0; i != NumValues; ++i) {
3269 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3270 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3271 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3272 Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
3273 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
3274 Ops);
3277 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3278 DAG.getVTList(ValueVTs), Values));
3281 void SelectionDAGBuilder::visitTrunc(const User &I) {
3282 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3283 SDValue N = getValue(I.getOperand(0));
3284 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3285 I.getType());
3286 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3289 void SelectionDAGBuilder::visitZExt(const User &I) {
3290 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3291 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3292 SDValue N = getValue(I.getOperand(0));
3293 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3294 I.getType());
3295 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3298 void SelectionDAGBuilder::visitSExt(const User &I) {
3299 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3300 // SExt also can't be a cast to bool for same reason. So, nothing much to do
3301 SDValue N = getValue(I.getOperand(0));
3302 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3303 I.getType());
3304 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3307 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3308 // FPTrunc is never a no-op cast, no need to check
3309 SDValue N = getValue(I.getOperand(0));
3310 SDLoc dl = getCurSDLoc();
3311 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3312 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3313 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3314 DAG.getTargetConstant(
3315 0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3318 void SelectionDAGBuilder::visitFPExt(const User &I) {
3319 // FPExt is never a no-op cast, no need to check
3320 SDValue N = getValue(I.getOperand(0));
3321 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3322 I.getType());
3323 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3326 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3327 // FPToUI is never a no-op cast, no need to check
3328 SDValue N = getValue(I.getOperand(0));
3329 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3330 I.getType());
3331 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3334 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3335 // FPToSI is never a no-op cast, no need to check
3336 SDValue N = getValue(I.getOperand(0));
3337 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3338 I.getType());
3339 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3342 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3343 // UIToFP is never a no-op cast, no need to check
3344 SDValue N = getValue(I.getOperand(0));
3345 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3346 I.getType());
3347 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3350 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3351 // SIToFP is never a no-op cast, no need to check
3352 SDValue N = getValue(I.getOperand(0));
3353 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3354 I.getType());
3355 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3358 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3359 // What to do depends on the size of the integer and the size of the pointer.
3360 // We can either truncate, zero extend, or no-op, accordingly.
3361 SDValue N = getValue(I.getOperand(0));
3362 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3363 I.getType());
3364 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3367 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3368 // What to do depends on the size of the integer and the size of the pointer.
3369 // We can either truncate, zero extend, or no-op, accordingly.
3370 SDValue N = getValue(I.getOperand(0));
3371 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3372 I.getType());
3373 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3376 void SelectionDAGBuilder::visitBitCast(const User &I) {
3377 SDValue N = getValue(I.getOperand(0));
3378 SDLoc dl = getCurSDLoc();
3379 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3380 I.getType());
3382 // BitCast assures us that source and destination are the same size so this is
3383 // either a BITCAST or a no-op.
3384 if (DestVT != N.getValueType())
3385 setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3386 DestVT, N)); // convert types.
3387 // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3388 // might fold any kind of constant expression to an integer constant and that
3389 // is not what we are looking for. Only recognize a bitcast of a genuine
3390 // constant integer as an opaque constant.
3391 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3392 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3393 /*isOpaque*/true));
3394 else
3395 setValue(&I, N); // noop cast.
3398 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3399 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3400 const Value *SV = I.getOperand(0);
3401 SDValue N = getValue(SV);
3402 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3404 unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3405 unsigned DestAS = I.getType()->getPointerAddressSpace();
3407 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3408 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3410 setValue(&I, N);
3413 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3414 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3415 SDValue InVec = getValue(I.getOperand(0));
3416 SDValue InVal = getValue(I.getOperand(1));
3417 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3418 TLI.getVectorIdxTy(DAG.getDataLayout()));
3419 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3420 TLI.getValueType(DAG.getDataLayout(), I.getType()),
3421 InVec, InVal, InIdx));
3424 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3425 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3426 SDValue InVec = getValue(I.getOperand(0));
3427 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3428 TLI.getVectorIdxTy(DAG.getDataLayout()));
3429 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3430 TLI.getValueType(DAG.getDataLayout(), I.getType()),
3431 InVec, InIdx));
3434 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3435 SDValue Src1 = getValue(I.getOperand(0));
3436 SDValue Src2 = getValue(I.getOperand(1));
3437 SDLoc DL = getCurSDLoc();
3439 SmallVector<int, 8> Mask;
3440 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3441 unsigned MaskNumElts = Mask.size();
3443 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3444 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3445 EVT SrcVT = Src1.getValueType();
3446 unsigned SrcNumElts = SrcVT.getVectorNumElements();
3448 if (SrcNumElts == MaskNumElts) {
3449 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3450 return;
3453 // Normalize the shuffle vector since mask and vector length don't match.
3454 if (SrcNumElts < MaskNumElts) {
3455 // Mask is longer than the source vectors. We can use concatenate vector to
3456 // make the mask and vectors lengths match.
3458 if (MaskNumElts % SrcNumElts == 0) {
3459 // Mask length is a multiple of the source vector length.
3460 // Check if the shuffle is some kind of concatenation of the input
3461 // vectors.
3462 unsigned NumConcat = MaskNumElts / SrcNumElts;
3463 bool IsConcat = true;
3464 SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3465 for (unsigned i = 0; i != MaskNumElts; ++i) {
3466 int Idx = Mask[i];
3467 if (Idx < 0)
3468 continue;
3469 // Ensure the indices in each SrcVT sized piece are sequential and that
3470 // the same source is used for the whole piece.
3471 if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3472 (ConcatSrcs[i / SrcNumElts] >= 0 &&
3473 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3474 IsConcat = false;
3475 break;
3477 // Remember which source this index came from.
3478 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3481 // The shuffle is concatenating multiple vectors together. Just emit
3482 // a CONCAT_VECTORS operation.
3483 if (IsConcat) {
3484 SmallVector<SDValue, 8> ConcatOps;
3485 for (auto Src : ConcatSrcs) {
3486 if (Src < 0)
3487 ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3488 else if (Src == 0)
3489 ConcatOps.push_back(Src1);
3490 else
3491 ConcatOps.push_back(Src2);
3493 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3494 return;
3498 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3499 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3500 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3501 PaddedMaskNumElts);
3503 // Pad both vectors with undefs to make them the same length as the mask.
3504 SDValue UndefVal = DAG.getUNDEF(SrcVT);
3506 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3507 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3508 MOps1[0] = Src1;
3509 MOps2[0] = Src2;
3511 Src1 = Src1.isUndef()
3512 ? DAG.getUNDEF(PaddedVT)
3513 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3514 Src2 = Src2.isUndef()
3515 ? DAG.getUNDEF(PaddedVT)
3516 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3518 // Readjust mask for new input vector length.
3519 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3520 for (unsigned i = 0; i != MaskNumElts; ++i) {
3521 int Idx = Mask[i];
3522 if (Idx >= (int)SrcNumElts)
3523 Idx -= SrcNumElts - PaddedMaskNumElts;
3524 MappedOps[i] = Idx;
3527 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3529 // If the concatenated vector was padded, extract a subvector with the
3530 // correct number of elements.
3531 if (MaskNumElts != PaddedMaskNumElts)
3532 Result = DAG.getNode(
3533 ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3534 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3536 setValue(&I, Result);
3537 return;
3540 if (SrcNumElts > MaskNumElts) {
3541 // Analyze the access pattern of the vector to see if we can extract
3542 // two subvectors and do the shuffle.
3543 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from
3544 bool CanExtract = true;
3545 for (int Idx : Mask) {
3546 unsigned Input = 0;
3547 if (Idx < 0)
3548 continue;
3550 if (Idx >= (int)SrcNumElts) {
3551 Input = 1;
3552 Idx -= SrcNumElts;
3555 // If all the indices come from the same MaskNumElts sized portion of
3556 // the sources we can use extract. Also make sure the extract wouldn't
3557 // extract past the end of the source.
3558 int NewStartIdx = alignDown(Idx, MaskNumElts);
3559 if (NewStartIdx + MaskNumElts > SrcNumElts ||
3560 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3561 CanExtract = false;
3562 // Make sure we always update StartIdx as we use it to track if all
3563 // elements are undef.
3564 StartIdx[Input] = NewStartIdx;
3567 if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3568 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3569 return;
3571 if (CanExtract) {
3572 // Extract appropriate subvector and generate a vector shuffle
3573 for (unsigned Input = 0; Input < 2; ++Input) {
3574 SDValue &Src = Input == 0 ? Src1 : Src2;
3575 if (StartIdx[Input] < 0)
3576 Src = DAG.getUNDEF(VT);
3577 else {
3578 Src = DAG.getNode(
3579 ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3580 DAG.getConstant(StartIdx[Input], DL,
3581 TLI.getVectorIdxTy(DAG.getDataLayout())));
3585 // Calculate new mask.
3586 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3587 for (int &Idx : MappedOps) {
3588 if (Idx >= (int)SrcNumElts)
3589 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3590 else if (Idx >= 0)
3591 Idx -= StartIdx[0];
3594 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3595 return;
3599 // We can't use either concat vectors or extract subvectors so fall back to
3600 // replacing the shuffle with extract and build vector.
3601 // to insert and build vector.
3602 EVT EltVT = VT.getVectorElementType();
3603 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3604 SmallVector<SDValue,8> Ops;
3605 for (int Idx : Mask) {
3606 SDValue Res;
3608 if (Idx < 0) {
3609 Res = DAG.getUNDEF(EltVT);
3610 } else {
3611 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3612 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3614 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3615 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3618 Ops.push_back(Res);
3621 setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3624 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3625 ArrayRef<unsigned> Indices;
3626 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3627 Indices = IV->getIndices();
3628 else
3629 Indices = cast<ConstantExpr>(&I)->getIndices();
3631 const Value *Op0 = I.getOperand(0);
3632 const Value *Op1 = I.getOperand(1);
3633 Type *AggTy = I.getType();
3634 Type *ValTy = Op1->getType();
3635 bool IntoUndef = isa<UndefValue>(Op0);
3636 bool FromUndef = isa<UndefValue>(Op1);
3638 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3640 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3641 SmallVector<EVT, 4> AggValueVTs;
3642 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3643 SmallVector<EVT, 4> ValValueVTs;
3644 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3646 unsigned NumAggValues = AggValueVTs.size();
3647 unsigned NumValValues = ValValueVTs.size();
3648 SmallVector<SDValue, 4> Values(NumAggValues);
3650 // Ignore an insertvalue that produces an empty object
3651 if (!NumAggValues) {
3652 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3653 return;
3656 SDValue Agg = getValue(Op0);
3657 unsigned i = 0;
3658 // Copy the beginning value(s) from the original aggregate.
3659 for (; i != LinearIndex; ++i)
3660 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3661 SDValue(Agg.getNode(), Agg.getResNo() + i);
3662 // Copy values from the inserted value(s).
3663 if (NumValValues) {
3664 SDValue Val = getValue(Op1);
3665 for (; i != LinearIndex + NumValValues; ++i)
3666 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3667 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3669 // Copy remaining value(s) from the original aggregate.
3670 for (; i != NumAggValues; ++i)
3671 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3672 SDValue(Agg.getNode(), Agg.getResNo() + i);
3674 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3675 DAG.getVTList(AggValueVTs), Values));
3678 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3679 ArrayRef<unsigned> Indices;
3680 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3681 Indices = EV->getIndices();
3682 else
3683 Indices = cast<ConstantExpr>(&I)->getIndices();
3685 const Value *Op0 = I.getOperand(0);
3686 Type *AggTy = Op0->getType();
3687 Type *ValTy = I.getType();
3688 bool OutOfUndef = isa<UndefValue>(Op0);
3690 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3692 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3693 SmallVector<EVT, 4> ValValueVTs;
3694 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3696 unsigned NumValValues = ValValueVTs.size();
3698 // Ignore a extractvalue that produces an empty object
3699 if (!NumValValues) {
3700 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3701 return;
3704 SmallVector<SDValue, 4> Values(NumValValues);
3706 SDValue Agg = getValue(Op0);
3707 // Copy out the selected value(s).
3708 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3709 Values[i - LinearIndex] =
3710 OutOfUndef ?
3711 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3712 SDValue(Agg.getNode(), Agg.getResNo() + i);
3714 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3715 DAG.getVTList(ValValueVTs), Values));
3718 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3719 Value *Op0 = I.getOperand(0);
3720 // Note that the pointer operand may be a vector of pointers. Take the scalar
3721 // element which holds a pointer.
3722 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3723 SDValue N = getValue(Op0);
3724 SDLoc dl = getCurSDLoc();
3726 // Normalize Vector GEP - all scalar operands should be converted to the
3727 // splat vector.
3728 unsigned VectorWidth = I.getType()->isVectorTy() ?
3729 cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3731 if (VectorWidth && !N.getValueType().isVector()) {
3732 LLVMContext &Context = *DAG.getContext();
3733 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3734 N = DAG.getSplatBuildVector(VT, dl, N);
3737 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3738 GTI != E; ++GTI) {
3739 const Value *Idx = GTI.getOperand();
3740 if (StructType *StTy = GTI.getStructTypeOrNull()) {
3741 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3742 if (Field) {
3743 // N = N + Offset
3744 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3746 // In an inbounds GEP with an offset that is nonnegative even when
3747 // interpreted as signed, assume there is no unsigned overflow.
3748 SDNodeFlags Flags;
3749 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3750 Flags.setNoUnsignedWrap(true);
3752 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3753 DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3755 } else {
3756 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3757 MVT IdxTy = MVT::getIntegerVT(IdxSize);
3758 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3760 // If this is a scalar constant or a splat vector of constants,
3761 // handle it quickly.
3762 const auto *CI = dyn_cast<ConstantInt>(Idx);
3763 if (!CI && isa<ConstantDataVector>(Idx) &&
3764 cast<ConstantDataVector>(Idx)->getSplatValue())
3765 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3767 if (CI) {
3768 if (CI->isZero())
3769 continue;
3770 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3771 LLVMContext &Context = *DAG.getContext();
3772 SDValue OffsVal = VectorWidth ?
3773 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3774 DAG.getConstant(Offs, dl, IdxTy);
3776 // In an inbouds GEP with an offset that is nonnegative even when
3777 // interpreted as signed, assume there is no unsigned overflow.
3778 SDNodeFlags Flags;
3779 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3780 Flags.setNoUnsignedWrap(true);
3782 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3783 continue;
3786 // N = N + Idx * ElementSize;
3787 SDValue IdxN = getValue(Idx);
3789 if (!IdxN.getValueType().isVector() && VectorWidth) {
3790 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3791 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3794 // If the index is smaller or larger than intptr_t, truncate or extend
3795 // it.
3796 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3798 // If this is a multiply by a power of two, turn it into a shl
3799 // immediately. This is a very common case.
3800 if (ElementSize != 1) {
3801 if (ElementSize.isPowerOf2()) {
3802 unsigned Amt = ElementSize.logBase2();
3803 IdxN = DAG.getNode(ISD::SHL, dl,
3804 N.getValueType(), IdxN,
3805 DAG.getConstant(Amt, dl, IdxN.getValueType()));
3806 } else {
3807 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3808 IdxN = DAG.getNode(ISD::MUL, dl,
3809 N.getValueType(), IdxN, Scale);
3813 N = DAG.getNode(ISD::ADD, dl,
3814 N.getValueType(), N, IdxN);
3818 setValue(&I, N);
3821 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3822 // If this is a fixed sized alloca in the entry block of the function,
3823 // allocate it statically on the stack.
3824 if (FuncInfo.StaticAllocaMap.count(&I))
3825 return; // getValue will auto-populate this.
3827 SDLoc dl = getCurSDLoc();
3828 Type *Ty = I.getAllocatedType();
3829 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3830 auto &DL = DAG.getDataLayout();
3831 uint64_t TySize = DL.getTypeAllocSize(Ty);
3832 unsigned Align =
3833 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3835 SDValue AllocSize = getValue(I.getArraySize());
3837 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3838 if (AllocSize.getValueType() != IntPtr)
3839 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3841 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3842 AllocSize,
3843 DAG.getConstant(TySize, dl, IntPtr));
3845 // Handle alignment. If the requested alignment is less than or equal to
3846 // the stack alignment, ignore it. If the size is greater than or equal to
3847 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3848 unsigned StackAlign =
3849 DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3850 if (Align <= StackAlign)
3851 Align = 0;
3853 // Round the size of the allocation up to the stack alignment size
3854 // by add SA-1 to the size. This doesn't overflow because we're computing
3855 // an address inside an alloca.
3856 SDNodeFlags Flags;
3857 Flags.setNoUnsignedWrap(true);
3858 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3859 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3861 // Mask out the low bits for alignment purposes.
3862 AllocSize =
3863 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3864 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
3866 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
3867 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3868 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3869 setValue(&I, DSA);
3870 DAG.setRoot(DSA.getValue(1));
3872 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3875 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3876 if (I.isAtomic())
3877 return visitAtomicLoad(I);
3879 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3880 const Value *SV = I.getOperand(0);
3881 if (TLI.supportSwiftError()) {
3882 // Swifterror values can come from either a function parameter with
3883 // swifterror attribute or an alloca with swifterror attribute.
3884 if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3885 if (Arg->hasSwiftErrorAttr())
3886 return visitLoadFromSwiftError(I);
3889 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3890 if (Alloca->isSwiftError())
3891 return visitLoadFromSwiftError(I);
3895 SDValue Ptr = getValue(SV);
3897 Type *Ty = I.getType();
3899 bool isVolatile = I.isVolatile();
3900 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3901 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3902 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
3903 unsigned Alignment = I.getAlignment();
3905 AAMDNodes AAInfo;
3906 I.getAAMetadata(AAInfo);
3907 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3909 SmallVector<EVT, 4> ValueVTs;
3910 SmallVector<uint64_t, 4> Offsets;
3911 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3912 unsigned NumValues = ValueVTs.size();
3913 if (NumValues == 0)
3914 return;
3916 SDValue Root;
3917 bool ConstantMemory = false;
3918 if (isVolatile || NumValues > MaxParallelChains)
3919 // Serialize volatile loads with other side effects.
3920 Root = getRoot();
3921 else if (AA &&
3922 AA->pointsToConstantMemory(MemoryLocation(
3924 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
3925 AAInfo))) {
3926 // Do not serialize (non-volatile) loads of constant memory with anything.
3927 Root = DAG.getEntryNode();
3928 ConstantMemory = true;
3929 } else {
3930 // Do not serialize non-volatile loads against each other.
3931 Root = DAG.getRoot();
3934 SDLoc dl = getCurSDLoc();
3936 if (isVolatile)
3937 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3939 // An aggregate load cannot wrap around the address space, so offsets to its
3940 // parts don't wrap either.
3941 SDNodeFlags Flags;
3942 Flags.setNoUnsignedWrap(true);
3944 SmallVector<SDValue, 4> Values(NumValues);
3945 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3946 EVT PtrVT = Ptr.getValueType();
3947 unsigned ChainI = 0;
3948 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3949 // Serializing loads here may result in excessive register pressure, and
3950 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3951 // could recover a bit by hoisting nodes upward in the chain by recognizing
3952 // they are side-effect free or do not alias. The optimizer should really
3953 // avoid this case by converting large object/array copies to llvm.memcpy
3954 // (MaxParallelChains should always remain as failsafe).
3955 if (ChainI == MaxParallelChains) {
3956 assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3957 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3958 makeArrayRef(Chains.data(), ChainI));
3959 Root = Chain;
3960 ChainI = 0;
3962 SDValue A = DAG.getNode(ISD::ADD, dl,
3963 PtrVT, Ptr,
3964 DAG.getConstant(Offsets[i], dl, PtrVT),
3965 Flags);
3966 auto MMOFlags = MachineMemOperand::MONone;
3967 if (isVolatile)
3968 MMOFlags |= MachineMemOperand::MOVolatile;
3969 if (isNonTemporal)
3970 MMOFlags |= MachineMemOperand::MONonTemporal;
3971 if (isInvariant)
3972 MMOFlags |= MachineMemOperand::MOInvariant;
3973 if (isDereferenceable)
3974 MMOFlags |= MachineMemOperand::MODereferenceable;
3975 MMOFlags |= TLI.getMMOFlags(I);
3977 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
3978 MachinePointerInfo(SV, Offsets[i]), Alignment,
3979 MMOFlags, AAInfo, Ranges);
3981 Values[i] = L;
3982 Chains[ChainI] = L.getValue(1);
3985 if (!ConstantMemory) {
3986 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3987 makeArrayRef(Chains.data(), ChainI));
3988 if (isVolatile)
3989 DAG.setRoot(Chain);
3990 else
3991 PendingLoads.push_back(Chain);
3994 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3995 DAG.getVTList(ValueVTs), Values));
3998 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3999 assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4000 "call visitStoreToSwiftError when backend supports swifterror");
4002 SmallVector<EVT, 4> ValueVTs;
4003 SmallVector<uint64_t, 4> Offsets;
4004 const Value *SrcV = I.getOperand(0);
4005 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4006 SrcV->getType(), ValueVTs, &Offsets);
4007 assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4008 "expect a single EVT for swifterror");
4010 SDValue Src = getValue(SrcV);
4011 // Create a virtual register, then update the virtual register.
4012 unsigned VReg; bool CreatedVReg;
4013 std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I);
4014 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4015 // Chain can be getRoot or getControlRoot.
4016 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4017 SDValue(Src.getNode(), Src.getResNo()));
4018 DAG.setRoot(CopyNode);
4019 if (CreatedVReg)
4020 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
4023 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4024 assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4025 "call visitLoadFromSwiftError when backend supports swifterror");
4027 assert(!I.isVolatile() &&
4028 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
4029 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
4030 "Support volatile, non temporal, invariant for load_from_swift_error");
4032 const Value *SV = I.getOperand(0);
4033 Type *Ty = I.getType();
4034 AAMDNodes AAInfo;
4035 I.getAAMetadata(AAInfo);
4036 assert(
4037 (!AA ||
4038 !AA->pointsToConstantMemory(MemoryLocation(
4039 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4040 AAInfo))) &&
4041 "load_from_swift_error should not be constant memory");
4043 SmallVector<EVT, 4> ValueVTs;
4044 SmallVector<uint64_t, 4> Offsets;
4045 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4046 ValueVTs, &Offsets);
4047 assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4048 "expect a single EVT for swifterror");
4050 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4051 SDValue L = DAG.getCopyFromReg(
4052 getRoot(), getCurSDLoc(),
4053 FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first,
4054 ValueVTs[0]);
4056 setValue(&I, L);
4059 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4060 if (I.isAtomic())
4061 return visitAtomicStore(I);
4063 const Value *SrcV = I.getOperand(0);
4064 const Value *PtrV = I.getOperand(1);
4066 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4067 if (TLI.supportSwiftError()) {
4068 // Swifterror values can come from either a function parameter with
4069 // swifterror attribute or an alloca with swifterror attribute.
4070 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4071 if (Arg->hasSwiftErrorAttr())
4072 return visitStoreToSwiftError(I);
4075 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4076 if (Alloca->isSwiftError())
4077 return visitStoreToSwiftError(I);
4081 SmallVector<EVT, 4> ValueVTs;
4082 SmallVector<uint64_t, 4> Offsets;
4083 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4084 SrcV->getType(), ValueVTs, &Offsets);
4085 unsigned NumValues = ValueVTs.size();
4086 if (NumValues == 0)
4087 return;
4089 // Get the lowered operands. Note that we do this after
4090 // checking if NumResults is zero, because with zero results
4091 // the operands won't have values in the map.
4092 SDValue Src = getValue(SrcV);
4093 SDValue Ptr = getValue(PtrV);
4095 SDValue Root = getRoot();
4096 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4097 SDLoc dl = getCurSDLoc();
4098 EVT PtrVT = Ptr.getValueType();
4099 unsigned Alignment = I.getAlignment();
4100 AAMDNodes AAInfo;
4101 I.getAAMetadata(AAInfo);
4103 auto MMOFlags = MachineMemOperand::MONone;
4104 if (I.isVolatile())
4105 MMOFlags |= MachineMemOperand::MOVolatile;
4106 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
4107 MMOFlags |= MachineMemOperand::MONonTemporal;
4108 MMOFlags |= TLI.getMMOFlags(I);
4110 // An aggregate load cannot wrap around the address space, so offsets to its
4111 // parts don't wrap either.
4112 SDNodeFlags Flags;
4113 Flags.setNoUnsignedWrap(true);
4115 unsigned ChainI = 0;
4116 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4117 // See visitLoad comments.
4118 if (ChainI == MaxParallelChains) {
4119 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4120 makeArrayRef(Chains.data(), ChainI));
4121 Root = Chain;
4122 ChainI = 0;
4124 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
4125 DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
4126 SDValue St = DAG.getStore(
4127 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
4128 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
4129 Chains[ChainI] = St;
4132 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4133 makeArrayRef(Chains.data(), ChainI));
4134 DAG.setRoot(StoreNode);
4137 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4138 bool IsCompressing) {
4139 SDLoc sdl = getCurSDLoc();
4141 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4142 unsigned& Alignment) {
4143 // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4144 Src0 = I.getArgOperand(0);
4145 Ptr = I.getArgOperand(1);
4146 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
4147 Mask = I.getArgOperand(3);
4149 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4150 unsigned& Alignment) {
4151 // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4152 Src0 = I.getArgOperand(0);
4153 Ptr = I.getArgOperand(1);
4154 Mask = I.getArgOperand(2);
4155 Alignment = 0;
4158 Value *PtrOperand, *MaskOperand, *Src0Operand;
4159 unsigned Alignment;
4160 if (IsCompressing)
4161 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4162 else
4163 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4165 SDValue Ptr = getValue(PtrOperand);
4166 SDValue Src0 = getValue(Src0Operand);
4167 SDValue Mask = getValue(MaskOperand);
4169 EVT VT = Src0.getValueType();
4170 if (!Alignment)
4171 Alignment = DAG.getEVTAlignment(VT);
4173 AAMDNodes AAInfo;
4174 I.getAAMetadata(AAInfo);
4176 MachineMemOperand *MMO =
4177 DAG.getMachineFunction().
4178 getMachineMemOperand(MachinePointerInfo(PtrOperand),
4179 MachineMemOperand::MOStore, VT.getStoreSize(),
4180 Alignment, AAInfo);
4181 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
4182 MMO, false /* Truncating */,
4183 IsCompressing);
4184 DAG.setRoot(StoreNode);
4185 setValue(&I, StoreNode);
4188 // Get a uniform base for the Gather/Scatter intrinsic.
4189 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4190 // We try to represent it as a base pointer + vector of indices.
4191 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4192 // The first operand of the GEP may be a single pointer or a vector of pointers
4193 // Example:
4194 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4195 // or
4196 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind
4197 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4199 // When the first GEP operand is a single pointer - it is the uniform base we
4200 // are looking for. If first operand of the GEP is a splat vector - we
4201 // extract the splat value and use it as a uniform base.
4202 // In all other cases the function returns 'false'.
4203 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
4204 SDValue &Scale, SelectionDAGBuilder* SDB) {
4205 SelectionDAG& DAG = SDB->DAG;
4206 LLVMContext &Context = *DAG.getContext();
4208 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4209 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4210 if (!GEP)
4211 return false;
4213 const Value *GEPPtr = GEP->getPointerOperand();
4214 if (!GEPPtr->getType()->isVectorTy())
4215 Ptr = GEPPtr;
4216 else if (!(Ptr = getSplatValue(GEPPtr)))
4217 return false;
4219 unsigned FinalIndex = GEP->getNumOperands() - 1;
4220 Value *IndexVal = GEP->getOperand(FinalIndex);
4222 // Ensure all the other indices are 0.
4223 for (unsigned i = 1; i < FinalIndex; ++i) {
4224 auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i));
4225 if (!C || !C->isZero())
4226 return false;
4229 // The operands of the GEP may be defined in another basic block.
4230 // In this case we'll not find nodes for the operands.
4231 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
4232 return false;
4234 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4235 const DataLayout &DL = DAG.getDataLayout();
4236 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()),
4237 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4238 Base = SDB->getValue(Ptr);
4239 Index = SDB->getValue(IndexVal);
4241 if (!Index.getValueType().isVector()) {
4242 unsigned GEPWidth = GEP->getType()->getVectorNumElements();
4243 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
4244 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
4246 return true;
4249 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4250 SDLoc sdl = getCurSDLoc();
4252 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
4253 const Value *Ptr = I.getArgOperand(1);
4254 SDValue Src0 = getValue(I.getArgOperand(0));
4255 SDValue Mask = getValue(I.getArgOperand(3));
4256 EVT VT = Src0.getValueType();
4257 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
4258 if (!Alignment)
4259 Alignment = DAG.getEVTAlignment(VT);
4260 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4262 AAMDNodes AAInfo;
4263 I.getAAMetadata(AAInfo);
4265 SDValue Base;
4266 SDValue Index;
4267 SDValue Scale;
4268 const Value *BasePtr = Ptr;
4269 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4271 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
4272 MachineMemOperand *MMO = DAG.getMachineFunction().
4273 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
4274 MachineMemOperand::MOStore, VT.getStoreSize(),
4275 Alignment, AAInfo);
4276 if (!UniformBase) {
4277 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4278 Index = getValue(Ptr);
4279 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4281 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale };
4282 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4283 Ops, MMO);
4284 DAG.setRoot(Scatter);
4285 setValue(&I, Scatter);
4288 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4289 SDLoc sdl = getCurSDLoc();
4291 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4292 unsigned& Alignment) {
4293 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4294 Ptr = I.getArgOperand(0);
4295 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4296 Mask = I.getArgOperand(2);
4297 Src0 = I.getArgOperand(3);
4299 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4300 unsigned& Alignment) {
4301 // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4302 Ptr = I.getArgOperand(0);
4303 Alignment = 0;
4304 Mask = I.getArgOperand(1);
4305 Src0 = I.getArgOperand(2);
4308 Value *PtrOperand, *MaskOperand, *Src0Operand;
4309 unsigned Alignment;
4310 if (IsExpanding)
4311 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4312 else
4313 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4315 SDValue Ptr = getValue(PtrOperand);
4316 SDValue Src0 = getValue(Src0Operand);
4317 SDValue Mask = getValue(MaskOperand);
4319 EVT VT = Src0.getValueType();
4320 if (!Alignment)
4321 Alignment = DAG.getEVTAlignment(VT);
4323 AAMDNodes AAInfo;
4324 I.getAAMetadata(AAInfo);
4325 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4327 // Do not serialize masked loads of constant memory with anything.
4328 bool AddToChain =
4329 !AA || !AA->pointsToConstantMemory(MemoryLocation(
4330 PtrOperand,
4331 LocationSize::precise(
4332 DAG.getDataLayout().getTypeStoreSize(I.getType())),
4333 AAInfo));
4334 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4336 MachineMemOperand *MMO =
4337 DAG.getMachineFunction().
4338 getMachineMemOperand(MachinePointerInfo(PtrOperand),
4339 MachineMemOperand::MOLoad, VT.getStoreSize(),
4340 Alignment, AAInfo, Ranges);
4342 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
4343 ISD::NON_EXTLOAD, IsExpanding);
4344 if (AddToChain)
4345 PendingLoads.push_back(Load.getValue(1));
4346 setValue(&I, Load);
4349 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4350 SDLoc sdl = getCurSDLoc();
4352 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4353 const Value *Ptr = I.getArgOperand(0);
4354 SDValue Src0 = getValue(I.getArgOperand(3));
4355 SDValue Mask = getValue(I.getArgOperand(2));
4357 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4358 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4359 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4360 if (!Alignment)
4361 Alignment = DAG.getEVTAlignment(VT);
4363 AAMDNodes AAInfo;
4364 I.getAAMetadata(AAInfo);
4365 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4367 SDValue Root = DAG.getRoot();
4368 SDValue Base;
4369 SDValue Index;
4370 SDValue Scale;
4371 const Value *BasePtr = Ptr;
4372 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4373 bool ConstantMemory = false;
4374 if (UniformBase && AA &&
4375 AA->pointsToConstantMemory(
4376 MemoryLocation(BasePtr,
4377 LocationSize::precise(
4378 DAG.getDataLayout().getTypeStoreSize(I.getType())),
4379 AAInfo))) {
4380 // Do not serialize (non-volatile) loads of constant memory with anything.
4381 Root = DAG.getEntryNode();
4382 ConstantMemory = true;
4385 MachineMemOperand *MMO =
4386 DAG.getMachineFunction().
4387 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4388 MachineMemOperand::MOLoad, VT.getStoreSize(),
4389 Alignment, AAInfo, Ranges);
4391 if (!UniformBase) {
4392 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4393 Index = getValue(Ptr);
4394 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4396 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4397 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4398 Ops, MMO);
4400 SDValue OutChain = Gather.getValue(1);
4401 if (!ConstantMemory)
4402 PendingLoads.push_back(OutChain);
4403 setValue(&I, Gather);
4406 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4407 SDLoc dl = getCurSDLoc();
4408 AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4409 AtomicOrdering FailureOrdering = I.getFailureOrdering();
4410 SyncScope::ID SSID = I.getSyncScopeID();
4412 SDValue InChain = getRoot();
4414 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4415 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4417 auto Alignment = DAG.getEVTAlignment(MemVT);
4419 // FIXME: Volatile isn't really correct; we should keep track of atomic
4420 // orderings in the memoperand.
4421 auto Flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad |
4422 MachineMemOperand::MOStore;
4424 MachineFunction &MF = DAG.getMachineFunction();
4425 MachineMemOperand *MMO =
4426 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4427 Flags, MemVT.getStoreSize(), Alignment,
4428 AAMDNodes(), nullptr, SSID, SuccessOrdering,
4429 FailureOrdering);
4431 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4432 dl, MemVT, VTs, InChain,
4433 getValue(I.getPointerOperand()),
4434 getValue(I.getCompareOperand()),
4435 getValue(I.getNewValOperand()), MMO);
4437 SDValue OutChain = L.getValue(2);
4439 setValue(&I, L);
4440 DAG.setRoot(OutChain);
4443 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4444 SDLoc dl = getCurSDLoc();
4445 ISD::NodeType NT;
4446 switch (I.getOperation()) {
4447 default: llvm_unreachable("Unknown atomicrmw operation");
4448 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4449 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break;
4450 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break;
4451 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break;
4452 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4453 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break;
4454 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break;
4455 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break;
4456 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break;
4457 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4458 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4459 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4460 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4462 AtomicOrdering Ordering = I.getOrdering();
4463 SyncScope::ID SSID = I.getSyncScopeID();
4465 SDValue InChain = getRoot();
4467 auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4468 auto Alignment = DAG.getEVTAlignment(MemVT);
4470 // For now, atomics are considered to be volatile always, and they are
4471 // chained as such.
4472 // FIXME: Volatile isn't really correct; we should keep track of atomic
4473 // orderings in the memoperand.
4474 auto Flags = MachineMemOperand::MOVolatile |
4475 MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4477 MachineFunction &MF = DAG.getMachineFunction();
4478 MachineMemOperand *MMO =
4479 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4480 MemVT.getStoreSize(), Alignment, AAMDNodes(),
4481 nullptr, SSID, Ordering);
4483 SDValue L =
4484 DAG.getAtomic(NT, dl, MemVT, InChain,
4485 getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4486 MMO);
4488 SDValue OutChain = L.getValue(1);
4490 setValue(&I, L);
4491 DAG.setRoot(OutChain);
4494 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4495 SDLoc dl = getCurSDLoc();
4496 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4497 SDValue Ops[3];
4498 Ops[0] = getRoot();
4499 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4500 TLI.getFenceOperandTy(DAG.getDataLayout()));
4501 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4502 TLI.getFenceOperandTy(DAG.getDataLayout()));
4503 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4506 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4507 SDLoc dl = getCurSDLoc();
4508 AtomicOrdering Order = I.getOrdering();
4509 SyncScope::ID SSID = I.getSyncScopeID();
4511 SDValue InChain = getRoot();
4513 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4514 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4516 if (!TLI.supportsUnalignedAtomics() &&
4517 I.getAlignment() < VT.getStoreSize())
4518 report_fatal_error("Cannot generate unaligned atomic load");
4520 MachineMemOperand *MMO =
4521 DAG.getMachineFunction().
4522 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4523 MachineMemOperand::MOVolatile |
4524 MachineMemOperand::MOLoad,
4525 VT.getStoreSize(),
4526 I.getAlignment() ? I.getAlignment() :
4527 DAG.getEVTAlignment(VT),
4528 AAMDNodes(), nullptr, SSID, Order);
4530 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4531 SDValue L =
4532 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4533 getValue(I.getPointerOperand()), MMO);
4535 SDValue OutChain = L.getValue(1);
4537 setValue(&I, L);
4538 DAG.setRoot(OutChain);
4541 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4542 SDLoc dl = getCurSDLoc();
4544 AtomicOrdering Ordering = I.getOrdering();
4545 SyncScope::ID SSID = I.getSyncScopeID();
4547 SDValue InChain = getRoot();
4549 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4550 EVT VT =
4551 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4553 if (I.getAlignment() < VT.getStoreSize())
4554 report_fatal_error("Cannot generate unaligned atomic store");
4556 // For now, atomics are considered to be volatile always, and they are
4557 // chained as such.
4558 // FIXME: Volatile isn't really correct; we should keep track of atomic
4559 // orderings in the memoperand.
4560 auto Flags = MachineMemOperand::MOVolatile | MachineMemOperand::MOStore;
4562 MachineFunction &MF = DAG.getMachineFunction();
4563 MachineMemOperand *MMO =
4564 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4565 VT.getStoreSize(), I.getAlignment(), AAMDNodes(),
4566 nullptr, SSID, Ordering);
4567 SDValue OutChain =
4568 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, InChain,
4569 getValue(I.getPointerOperand()), getValue(I.getValueOperand()),
4570 MMO);
4573 DAG.setRoot(OutChain);
4576 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4577 /// node.
4578 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4579 unsigned Intrinsic) {
4580 // Ignore the callsite's attributes. A specific call site may be marked with
4581 // readnone, but the lowering code will expect the chain based on the
4582 // definition.
4583 const Function *F = I.getCalledFunction();
4584 bool HasChain = !F->doesNotAccessMemory();
4585 bool OnlyLoad = HasChain && F->onlyReadsMemory();
4587 // Build the operand list.
4588 SmallVector<SDValue, 8> Ops;
4589 if (HasChain) { // If this intrinsic has side-effects, chainify it.
4590 if (OnlyLoad) {
4591 // We don't need to serialize loads against other loads.
4592 Ops.push_back(DAG.getRoot());
4593 } else {
4594 Ops.push_back(getRoot());
4598 // Info is set by getTgtMemInstrinsic
4599 TargetLowering::IntrinsicInfo Info;
4600 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4601 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4602 DAG.getMachineFunction(),
4603 Intrinsic);
4605 // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4606 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4607 Info.opc == ISD::INTRINSIC_W_CHAIN)
4608 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4609 TLI.getPointerTy(DAG.getDataLayout())));
4611 // Add all operands of the call to the operand list.
4612 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4613 SDValue Op = getValue(I.getArgOperand(i));
4614 Ops.push_back(Op);
4617 SmallVector<EVT, 4> ValueVTs;
4618 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4620 if (HasChain)
4621 ValueVTs.push_back(MVT::Other);
4623 SDVTList VTs = DAG.getVTList(ValueVTs);
4625 // Create the node.
4626 SDValue Result;
4627 if (IsTgtIntrinsic) {
4628 // This is target intrinsic that touches memory
4629 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs,
4630 Ops, Info.memVT,
4631 MachinePointerInfo(Info.ptrVal, Info.offset), Info.align,
4632 Info.flags, Info.size);
4633 } else if (!HasChain) {
4634 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4635 } else if (!I.getType()->isVoidTy()) {
4636 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4637 } else {
4638 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4641 if (HasChain) {
4642 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4643 if (OnlyLoad)
4644 PendingLoads.push_back(Chain);
4645 else
4646 DAG.setRoot(Chain);
4649 if (!I.getType()->isVoidTy()) {
4650 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4651 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4652 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4653 } else
4654 Result = lowerRangeToAssertZExt(DAG, I, Result);
4656 setValue(&I, Result);
4660 /// GetSignificand - Get the significand and build it into a floating-point
4661 /// number with exponent of 1:
4663 /// Op = (Op & 0x007fffff) | 0x3f800000;
4665 /// where Op is the hexadecimal representation of floating point value.
4666 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4667 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4668 DAG.getConstant(0x007fffff, dl, MVT::i32));
4669 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4670 DAG.getConstant(0x3f800000, dl, MVT::i32));
4671 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4674 /// GetExponent - Get the exponent:
4676 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4678 /// where Op is the hexadecimal representation of floating point value.
4679 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4680 const TargetLowering &TLI, const SDLoc &dl) {
4681 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4682 DAG.getConstant(0x7f800000, dl, MVT::i32));
4683 SDValue t1 = DAG.getNode(
4684 ISD::SRL, dl, MVT::i32, t0,
4685 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4686 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4687 DAG.getConstant(127, dl, MVT::i32));
4688 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4691 /// getF32Constant - Get 32-bit floating point constant.
4692 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4693 const SDLoc &dl) {
4694 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4695 MVT::f32);
4698 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4699 SelectionDAG &DAG) {
4700 // TODO: What fast-math-flags should be set on the floating-point nodes?
4702 // IntegerPartOfX = ((int32_t)(t0);
4703 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4705 // FractionalPartOfX = t0 - (float)IntegerPartOfX;
4706 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4707 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4709 // IntegerPartOfX <<= 23;
4710 IntegerPartOfX = DAG.getNode(
4711 ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4712 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4713 DAG.getDataLayout())));
4715 SDValue TwoToFractionalPartOfX;
4716 if (LimitFloatPrecision <= 6) {
4717 // For floating-point precision of 6:
4719 // TwoToFractionalPartOfX =
4720 // 0.997535578f +
4721 // (0.735607626f + 0.252464424f * x) * x;
4723 // error 0.0144103317, which is 6 bits
4724 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4725 getF32Constant(DAG, 0x3e814304, dl));
4726 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4727 getF32Constant(DAG, 0x3f3c50c8, dl));
4728 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4729 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4730 getF32Constant(DAG, 0x3f7f5e7e, dl));
4731 } else if (LimitFloatPrecision <= 12) {
4732 // For floating-point precision of 12:
4734 // TwoToFractionalPartOfX =
4735 // 0.999892986f +
4736 // (0.696457318f +
4737 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
4739 // error 0.000107046256, which is 13 to 14 bits
4740 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4741 getF32Constant(DAG, 0x3da235e3, dl));
4742 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4743 getF32Constant(DAG, 0x3e65b8f3, dl));
4744 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4745 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4746 getF32Constant(DAG, 0x3f324b07, dl));
4747 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4748 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4749 getF32Constant(DAG, 0x3f7ff8fd, dl));
4750 } else { // LimitFloatPrecision <= 18
4751 // For floating-point precision of 18:
4753 // TwoToFractionalPartOfX =
4754 // 0.999999982f +
4755 // (0.693148872f +
4756 // (0.240227044f +
4757 // (0.554906021e-1f +
4758 // (0.961591928e-2f +
4759 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4760 // error 2.47208000*10^(-7), which is better than 18 bits
4761 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4762 getF32Constant(DAG, 0x3924b03e, dl));
4763 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4764 getF32Constant(DAG, 0x3ab24b87, dl));
4765 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4766 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4767 getF32Constant(DAG, 0x3c1d8c17, dl));
4768 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4769 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4770 getF32Constant(DAG, 0x3d634a1d, dl));
4771 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4772 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4773 getF32Constant(DAG, 0x3e75fe14, dl));
4774 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4775 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4776 getF32Constant(DAG, 0x3f317234, dl));
4777 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4778 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4779 getF32Constant(DAG, 0x3f800000, dl));
4782 // Add the exponent into the result in integer domain.
4783 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4784 return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4785 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4788 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4789 /// limited-precision mode.
4790 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4791 const TargetLowering &TLI) {
4792 if (Op.getValueType() == MVT::f32 &&
4793 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4795 // Put the exponent in the right bit position for later addition to the
4796 // final result:
4798 // #define LOG2OFe 1.4426950f
4799 // t0 = Op * LOG2OFe
4801 // TODO: What fast-math-flags should be set here?
4802 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4803 getF32Constant(DAG, 0x3fb8aa3b, dl));
4804 return getLimitedPrecisionExp2(t0, dl, DAG);
4807 // No special expansion.
4808 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4811 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4812 /// limited-precision mode.
4813 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4814 const TargetLowering &TLI) {
4815 // TODO: What fast-math-flags should be set on the floating-point nodes?
4817 if (Op.getValueType() == MVT::f32 &&
4818 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4819 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4821 // Scale the exponent by log(2) [0.69314718f].
4822 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4823 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4824 getF32Constant(DAG, 0x3f317218, dl));
4826 // Get the significand and build it into a floating-point number with
4827 // exponent of 1.
4828 SDValue X = GetSignificand(DAG, Op1, dl);
4830 SDValue LogOfMantissa;
4831 if (LimitFloatPrecision <= 6) {
4832 // For floating-point precision of 6:
4834 // LogofMantissa =
4835 // -1.1609546f +
4836 // (1.4034025f - 0.23903021f * x) * x;
4838 // error 0.0034276066, which is better than 8 bits
4839 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4840 getF32Constant(DAG, 0xbe74c456, dl));
4841 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4842 getF32Constant(DAG, 0x3fb3a2b1, dl));
4843 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4844 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4845 getF32Constant(DAG, 0x3f949a29, dl));
4846 } else if (LimitFloatPrecision <= 12) {
4847 // For floating-point precision of 12:
4849 // LogOfMantissa =
4850 // -1.7417939f +
4851 // (2.8212026f +
4852 // (-1.4699568f +
4853 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4855 // error 0.000061011436, which is 14 bits
4856 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4857 getF32Constant(DAG, 0xbd67b6d6, dl));
4858 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4859 getF32Constant(DAG, 0x3ee4f4b8, dl));
4860 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4861 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4862 getF32Constant(DAG, 0x3fbc278b, dl));
4863 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4864 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4865 getF32Constant(DAG, 0x40348e95, dl));
4866 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4867 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4868 getF32Constant(DAG, 0x3fdef31a, dl));
4869 } else { // LimitFloatPrecision <= 18
4870 // For floating-point precision of 18:
4872 // LogOfMantissa =
4873 // -2.1072184f +
4874 // (4.2372794f +
4875 // (-3.7029485f +
4876 // (2.2781945f +
4877 // (-0.87823314f +
4878 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4880 // error 0.0000023660568, which is better than 18 bits
4881 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4882 getF32Constant(DAG, 0xbc91e5ac, dl));
4883 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4884 getF32Constant(DAG, 0x3e4350aa, dl));
4885 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4886 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4887 getF32Constant(DAG, 0x3f60d3e3, dl));
4888 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4889 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4890 getF32Constant(DAG, 0x4011cdf0, dl));
4891 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4892 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4893 getF32Constant(DAG, 0x406cfd1c, dl));
4894 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4895 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4896 getF32Constant(DAG, 0x408797cb, dl));
4897 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4898 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4899 getF32Constant(DAG, 0x4006dcab, dl));
4902 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4905 // No special expansion.
4906 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4909 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4910 /// limited-precision mode.
4911 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4912 const TargetLowering &TLI) {
4913 // TODO: What fast-math-flags should be set on the floating-point nodes?
4915 if (Op.getValueType() == MVT::f32 &&
4916 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4917 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4919 // Get the exponent.
4920 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4922 // Get the significand and build it into a floating-point number with
4923 // exponent of 1.
4924 SDValue X = GetSignificand(DAG, Op1, dl);
4926 // Different possible minimax approximations of significand in
4927 // floating-point for various degrees of accuracy over [1,2].
4928 SDValue Log2ofMantissa;
4929 if (LimitFloatPrecision <= 6) {
4930 // For floating-point precision of 6:
4932 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4934 // error 0.0049451742, which is more than 7 bits
4935 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4936 getF32Constant(DAG, 0xbeb08fe0, dl));
4937 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4938 getF32Constant(DAG, 0x40019463, dl));
4939 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4940 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4941 getF32Constant(DAG, 0x3fd6633d, dl));
4942 } else if (LimitFloatPrecision <= 12) {
4943 // For floating-point precision of 12:
4945 // Log2ofMantissa =
4946 // -2.51285454f +
4947 // (4.07009056f +
4948 // (-2.12067489f +
4949 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4951 // error 0.0000876136000, which is better than 13 bits
4952 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4953 getF32Constant(DAG, 0xbda7262e, dl));
4954 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4955 getF32Constant(DAG, 0x3f25280b, dl));
4956 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4957 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4958 getF32Constant(DAG, 0x4007b923, dl));
4959 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4960 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4961 getF32Constant(DAG, 0x40823e2f, dl));
4962 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4963 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4964 getF32Constant(DAG, 0x4020d29c, dl));
4965 } else { // LimitFloatPrecision <= 18
4966 // For floating-point precision of 18:
4968 // Log2ofMantissa =
4969 // -3.0400495f +
4970 // (6.1129976f +
4971 // (-5.3420409f +
4972 // (3.2865683f +
4973 // (-1.2669343f +
4974 // (0.27515199f -
4975 // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4977 // error 0.0000018516, which is better than 18 bits
4978 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4979 getF32Constant(DAG, 0xbcd2769e, dl));
4980 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4981 getF32Constant(DAG, 0x3e8ce0b9, dl));
4982 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4983 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4984 getF32Constant(DAG, 0x3fa22ae7, dl));
4985 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4986 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4987 getF32Constant(DAG, 0x40525723, dl));
4988 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4989 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4990 getF32Constant(DAG, 0x40aaf200, dl));
4991 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4992 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4993 getF32Constant(DAG, 0x40c39dad, dl));
4994 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4995 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4996 getF32Constant(DAG, 0x4042902c, dl));
4999 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5002 // No special expansion.
5003 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
5006 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5007 /// limited-precision mode.
5008 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5009 const TargetLowering &TLI) {
5010 // TODO: What fast-math-flags should be set on the floating-point nodes?
5012 if (Op.getValueType() == MVT::f32 &&
5013 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5014 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5016 // Scale the exponent by log10(2) [0.30102999f].
5017 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5018 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5019 getF32Constant(DAG, 0x3e9a209a, dl));
5021 // Get the significand and build it into a floating-point number with
5022 // exponent of 1.
5023 SDValue X = GetSignificand(DAG, Op1, dl);
5025 SDValue Log10ofMantissa;
5026 if (LimitFloatPrecision <= 6) {
5027 // For floating-point precision of 6:
5029 // Log10ofMantissa =
5030 // -0.50419619f +
5031 // (0.60948995f - 0.10380950f * x) * x;
5033 // error 0.0014886165, which is 6 bits
5034 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5035 getF32Constant(DAG, 0xbdd49a13, dl));
5036 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5037 getF32Constant(DAG, 0x3f1c0789, dl));
5038 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5039 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5040 getF32Constant(DAG, 0x3f011300, dl));
5041 } else if (LimitFloatPrecision <= 12) {
5042 // For floating-point precision of 12:
5044 // Log10ofMantissa =
5045 // -0.64831180f +
5046 // (0.91751397f +
5047 // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5049 // error 0.00019228036, which is better than 12 bits
5050 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5051 getF32Constant(DAG, 0x3d431f31, dl));
5052 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5053 getF32Constant(DAG, 0x3ea21fb2, dl));
5054 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5055 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5056 getF32Constant(DAG, 0x3f6ae232, dl));
5057 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5058 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5059 getF32Constant(DAG, 0x3f25f7c3, dl));
5060 } else { // LimitFloatPrecision <= 18
5061 // For floating-point precision of 18:
5063 // Log10ofMantissa =
5064 // -0.84299375f +
5065 // (1.5327582f +
5066 // (-1.0688956f +
5067 // (0.49102474f +
5068 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5070 // error 0.0000037995730, which is better than 18 bits
5071 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5072 getF32Constant(DAG, 0x3c5d51ce, dl));
5073 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5074 getF32Constant(DAG, 0x3e00685a, dl));
5075 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5076 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5077 getF32Constant(DAG, 0x3efb6798, dl));
5078 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5079 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5080 getF32Constant(DAG, 0x3f88d192, dl));
5081 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5082 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5083 getF32Constant(DAG, 0x3fc4316c, dl));
5084 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5085 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5086 getF32Constant(DAG, 0x3f57ce70, dl));
5089 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5092 // No special expansion.
5093 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
5096 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5097 /// limited-precision mode.
5098 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5099 const TargetLowering &TLI) {
5100 if (Op.getValueType() == MVT::f32 &&
5101 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5102 return getLimitedPrecisionExp2(Op, dl, DAG);
5104 // No special expansion.
5105 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
5108 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5109 /// limited-precision mode with x == 10.0f.
5110 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5111 SelectionDAG &DAG, const TargetLowering &TLI) {
5112 bool IsExp10 = false;
5113 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5114 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5115 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5116 APFloat Ten(10.0f);
5117 IsExp10 = LHSC->isExactlyValue(Ten);
5121 // TODO: What fast-math-flags should be set on the FMUL node?
5122 if (IsExp10) {
5123 // Put the exponent in the right bit position for later addition to the
5124 // final result:
5126 // #define LOG2OF10 3.3219281f
5127 // t0 = Op * LOG2OF10;
5128 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5129 getF32Constant(DAG, 0x40549a78, dl));
5130 return getLimitedPrecisionExp2(t0, dl, DAG);
5133 // No special expansion.
5134 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
5137 /// ExpandPowI - Expand a llvm.powi intrinsic.
5138 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5139 SelectionDAG &DAG) {
5140 // If RHS is a constant, we can expand this out to a multiplication tree,
5141 // otherwise we end up lowering to a call to __powidf2 (for example). When
5142 // optimizing for size, we only want to do this if the expansion would produce
5143 // a small number of multiplies, otherwise we do the full expansion.
5144 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5145 // Get the exponent as a positive value.
5146 unsigned Val = RHSC->getSExtValue();
5147 if ((int)Val < 0) Val = -Val;
5149 // powi(x, 0) -> 1.0
5150 if (Val == 0)
5151 return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5153 const Function &F = DAG.getMachineFunction().getFunction();
5154 if (!F.optForSize() ||
5155 // If optimizing for size, don't insert too many multiplies.
5156 // This inserts up to 5 multiplies.
5157 countPopulation(Val) + Log2_32(Val) < 7) {
5158 // We use the simple binary decomposition method to generate the multiply
5159 // sequence. There are more optimal ways to do this (for example,
5160 // powi(x,15) generates one more multiply than it should), but this has
5161 // the benefit of being both really simple and much better than a libcall.
5162 SDValue Res; // Logically starts equal to 1.0
5163 SDValue CurSquare = LHS;
5164 // TODO: Intrinsics should have fast-math-flags that propagate to these
5165 // nodes.
5166 while (Val) {
5167 if (Val & 1) {
5168 if (Res.getNode())
5169 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5170 else
5171 Res = CurSquare; // 1.0*CurSquare.
5174 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5175 CurSquare, CurSquare);
5176 Val >>= 1;
5179 // If the original was negative, invert the result, producing 1/(x*x*x).
5180 if (RHSC->getSExtValue() < 0)
5181 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5182 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5183 return Res;
5187 // Otherwise, expand to a libcall.
5188 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5191 // getUnderlyingArgReg - Find underlying register used for a truncated or
5192 // bitcasted argument.
5193 static unsigned getUnderlyingArgReg(const SDValue &N) {
5194 switch (N.getOpcode()) {
5195 case ISD::CopyFromReg:
5196 return cast<RegisterSDNode>(N.getOperand(1))->getReg();
5197 case ISD::BITCAST:
5198 case ISD::AssertZext:
5199 case ISD::AssertSext:
5200 case ISD::TRUNCATE:
5201 return getUnderlyingArgReg(N.getOperand(0));
5202 default:
5203 return 0;
5207 /// If the DbgValueInst is a dbg_value of a function argument, create the
5208 /// corresponding DBG_VALUE machine instruction for it now. At the end of
5209 /// instruction selection, they will be inserted to the entry BB.
5210 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5211 const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5212 DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5213 const Argument *Arg = dyn_cast<Argument>(V);
5214 if (!Arg)
5215 return false;
5217 if (!IsDbgDeclare) {
5218 // ArgDbgValues are hoisted to the beginning of the entry block. So we
5219 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5220 // the entry block.
5221 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5222 if (!IsInEntryBlock)
5223 return false;
5225 // ArgDbgValues are hoisted to the beginning of the entry block. So we
5226 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5227 // variable that also is a param.
5229 // Although, if we are at the top of the entry block already, we can still
5230 // emit using ArgDbgValue. This might catch some situations when the
5231 // dbg.value refers to an argument that isn't used in the entry block, so
5232 // any CopyToReg node would be optimized out and the only way to express
5233 // this DBG_VALUE is by using the physical reg (or FI) as done in this
5234 // method. ArgDbgValues are hoisted to the beginning of the entry block. So
5235 // we should only emit as ArgDbgValue if the Variable is an argument to the
5236 // current function, and the dbg.value intrinsic is found in the entry
5237 // block.
5238 bool VariableIsFunctionInputArg = Variable->isParameter() &&
5239 !DL->getInlinedAt();
5240 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5241 if (!IsInPrologue && !VariableIsFunctionInputArg)
5242 return false;
5244 // Here we assume that a function argument on IR level only can be used to
5245 // describe one input parameter on source level. If we for example have
5246 // source code like this
5248 // struct A { long x, y; };
5249 // void foo(struct A a, long b) {
5250 // ...
5251 // b = a.x;
5252 // ...
5253 // }
5255 // and IR like this
5257 // define void @foo(i32 %a1, i32 %a2, i32 %b) {
5258 // entry:
5259 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5260 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5261 // call void @llvm.dbg.value(metadata i32 %b, "b",
5262 // ...
5263 // call void @llvm.dbg.value(metadata i32 %a1, "b"
5264 // ...
5266 // then the last dbg.value is describing a parameter "b" using a value that
5267 // is an argument. But since we already has used %a1 to describe a parameter
5268 // we should not handle that last dbg.value here (that would result in an
5269 // incorrect hoisting of the DBG_VALUE to the function entry).
5270 // Notice that we allow one dbg.value per IR level argument, to accomodate
5271 // for the situation with fragments above.
5272 if (VariableIsFunctionInputArg) {
5273 unsigned ArgNo = Arg->getArgNo();
5274 if (ArgNo >= FuncInfo.DescribedArgs.size())
5275 FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5276 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5277 return false;
5278 FuncInfo.DescribedArgs.set(ArgNo);
5282 MachineFunction &MF = DAG.getMachineFunction();
5283 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5285 bool IsIndirect = false;
5286 Optional<MachineOperand> Op;
5287 // Some arguments' frame index is recorded during argument lowering.
5288 int FI = FuncInfo.getArgumentFrameIndex(Arg);
5289 if (FI != std::numeric_limits<int>::max())
5290 Op = MachineOperand::CreateFI(FI);
5292 if (!Op && N.getNode()) {
5293 unsigned Reg = getUnderlyingArgReg(N);
5294 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
5295 MachineRegisterInfo &RegInfo = MF.getRegInfo();
5296 unsigned PR = RegInfo.getLiveInPhysReg(Reg);
5297 if (PR)
5298 Reg = PR;
5300 if (Reg) {
5301 Op = MachineOperand::CreateReg(Reg, false);
5302 IsIndirect = IsDbgDeclare;
5306 if (!Op && N.getNode())
5307 // Check if frame index is available.
5308 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
5309 if (FrameIndexSDNode *FINode =
5310 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5311 Op = MachineOperand::CreateFI(FINode->getIndex());
5313 if (!Op) {
5314 // Check if ValueMap has reg number.
5315 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
5316 if (VMI != FuncInfo.ValueMap.end()) {
5317 const auto &TLI = DAG.getTargetLoweringInfo();
5318 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5319 V->getType(), getABIRegCopyCC(V));
5320 if (RFV.occupiesMultipleRegs()) {
5321 unsigned Offset = 0;
5322 for (auto RegAndSize : RFV.getRegsAndSizes()) {
5323 Op = MachineOperand::CreateReg(RegAndSize.first, false);
5324 auto FragmentExpr = DIExpression::createFragmentExpression(
5325 Expr, Offset, RegAndSize.second);
5326 if (!FragmentExpr)
5327 continue;
5328 FuncInfo.ArgDbgValues.push_back(
5329 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5330 Op->getReg(), Variable, *FragmentExpr));
5331 Offset += RegAndSize.second;
5333 return true;
5335 Op = MachineOperand::CreateReg(VMI->second, false);
5336 IsIndirect = IsDbgDeclare;
5340 if (!Op)
5341 return false;
5343 assert(Variable->isValidLocationForIntrinsic(DL) &&
5344 "Expected inlined-at fields to agree");
5345 IsIndirect = (Op->isReg()) ? IsIndirect : true;
5346 FuncInfo.ArgDbgValues.push_back(
5347 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5348 *Op, Variable, Expr));
5350 return true;
5353 /// Return the appropriate SDDbgValue based on N.
5354 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5355 DILocalVariable *Variable,
5356 DIExpression *Expr,
5357 const DebugLoc &dl,
5358 unsigned DbgSDNodeOrder) {
5359 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5360 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5361 // stack slot locations.
5363 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5364 // debug values here after optimization:
5366 // dbg.value(i32* %px, !"int *px", !DIExpression()), and
5367 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5369 // Both describe the direct values of their associated variables.
5370 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5371 /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5373 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5374 /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5377 // VisualStudio defines setjmp as _setjmp
5378 #if defined(_MSC_VER) && defined(setjmp) && \
5379 !defined(setjmp_undefined_for_msvc)
5380 # pragma push_macro("setjmp")
5381 # undef setjmp
5382 # define setjmp_undefined_for_msvc
5383 #endif
5385 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5386 switch (Intrinsic) {
5387 case Intrinsic::smul_fix:
5388 return ISD::SMULFIX;
5389 case Intrinsic::umul_fix:
5390 return ISD::UMULFIX;
5391 default:
5392 llvm_unreachable("Unhandled fixed point intrinsic");
5396 /// Lower the call to the specified intrinsic function. If we want to emit this
5397 /// as a call to a named external function, return the name. Otherwise, lower it
5398 /// and return null.
5399 const char *
5400 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
5401 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5402 SDLoc sdl = getCurSDLoc();
5403 DebugLoc dl = getCurDebugLoc();
5404 SDValue Res;
5406 switch (Intrinsic) {
5407 default:
5408 // By default, turn this into a target intrinsic node.
5409 visitTargetIntrinsic(I, Intrinsic);
5410 return nullptr;
5411 case Intrinsic::vastart: visitVAStart(I); return nullptr;
5412 case Intrinsic::vaend: visitVAEnd(I); return nullptr;
5413 case Intrinsic::vacopy: visitVACopy(I); return nullptr;
5414 case Intrinsic::returnaddress:
5415 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5416 TLI.getPointerTy(DAG.getDataLayout()),
5417 getValue(I.getArgOperand(0))));
5418 return nullptr;
5419 case Intrinsic::addressofreturnaddress:
5420 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5421 TLI.getPointerTy(DAG.getDataLayout())));
5422 return nullptr;
5423 case Intrinsic::sponentry:
5424 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5425 TLI.getPointerTy(DAG.getDataLayout())));
5426 return nullptr;
5427 case Intrinsic::frameaddress:
5428 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5429 TLI.getPointerTy(DAG.getDataLayout()),
5430 getValue(I.getArgOperand(0))));
5431 return nullptr;
5432 case Intrinsic::read_register: {
5433 Value *Reg = I.getArgOperand(0);
5434 SDValue Chain = getRoot();
5435 SDValue RegName =
5436 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5437 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5438 Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5439 DAG.getVTList(VT, MVT::Other), Chain, RegName);
5440 setValue(&I, Res);
5441 DAG.setRoot(Res.getValue(1));
5442 return nullptr;
5444 case Intrinsic::write_register: {
5445 Value *Reg = I.getArgOperand(0);
5446 Value *RegValue = I.getArgOperand(1);
5447 SDValue Chain = getRoot();
5448 SDValue RegName =
5449 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5450 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5451 RegName, getValue(RegValue)));
5452 return nullptr;
5454 case Intrinsic::setjmp:
5455 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
5456 case Intrinsic::longjmp:
5457 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
5458 case Intrinsic::memcpy: {
5459 const auto &MCI = cast<MemCpyInst>(I);
5460 SDValue Op1 = getValue(I.getArgOperand(0));
5461 SDValue Op2 = getValue(I.getArgOperand(1));
5462 SDValue Op3 = getValue(I.getArgOperand(2));
5463 // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5464 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5465 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5466 unsigned Align = MinAlign(DstAlign, SrcAlign);
5467 bool isVol = MCI.isVolatile();
5468 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5469 // FIXME: Support passing different dest/src alignments to the memcpy DAG
5470 // node.
5471 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5472 false, isTC,
5473 MachinePointerInfo(I.getArgOperand(0)),
5474 MachinePointerInfo(I.getArgOperand(1)));
5475 updateDAGForMaybeTailCall(MC);
5476 return nullptr;
5478 case Intrinsic::memset: {
5479 const auto &MSI = cast<MemSetInst>(I);
5480 SDValue Op1 = getValue(I.getArgOperand(0));
5481 SDValue Op2 = getValue(I.getArgOperand(1));
5482 SDValue Op3 = getValue(I.getArgOperand(2));
5483 // @llvm.memset defines 0 and 1 to both mean no alignment.
5484 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5485 bool isVol = MSI.isVolatile();
5486 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5487 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5488 isTC, MachinePointerInfo(I.getArgOperand(0)));
5489 updateDAGForMaybeTailCall(MS);
5490 return nullptr;
5492 case Intrinsic::memmove: {
5493 const auto &MMI = cast<MemMoveInst>(I);
5494 SDValue Op1 = getValue(I.getArgOperand(0));
5495 SDValue Op2 = getValue(I.getArgOperand(1));
5496 SDValue Op3 = getValue(I.getArgOperand(2));
5497 // @llvm.memmove defines 0 and 1 to both mean no alignment.
5498 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5499 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5500 unsigned Align = MinAlign(DstAlign, SrcAlign);
5501 bool isVol = MMI.isVolatile();
5502 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5503 // FIXME: Support passing different dest/src alignments to the memmove DAG
5504 // node.
5505 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5506 isTC, MachinePointerInfo(I.getArgOperand(0)),
5507 MachinePointerInfo(I.getArgOperand(1)));
5508 updateDAGForMaybeTailCall(MM);
5509 return nullptr;
5511 case Intrinsic::memcpy_element_unordered_atomic: {
5512 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5513 SDValue Dst = getValue(MI.getRawDest());
5514 SDValue Src = getValue(MI.getRawSource());
5515 SDValue Length = getValue(MI.getLength());
5517 unsigned DstAlign = MI.getDestAlignment();
5518 unsigned SrcAlign = MI.getSourceAlignment();
5519 Type *LengthTy = MI.getLength()->getType();
5520 unsigned ElemSz = MI.getElementSizeInBytes();
5521 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5522 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5523 SrcAlign, Length, LengthTy, ElemSz, isTC,
5524 MachinePointerInfo(MI.getRawDest()),
5525 MachinePointerInfo(MI.getRawSource()));
5526 updateDAGForMaybeTailCall(MC);
5527 return nullptr;
5529 case Intrinsic::memmove_element_unordered_atomic: {
5530 auto &MI = cast<AtomicMemMoveInst>(I);
5531 SDValue Dst = getValue(MI.getRawDest());
5532 SDValue Src = getValue(MI.getRawSource());
5533 SDValue Length = getValue(MI.getLength());
5535 unsigned DstAlign = MI.getDestAlignment();
5536 unsigned SrcAlign = MI.getSourceAlignment();
5537 Type *LengthTy = MI.getLength()->getType();
5538 unsigned ElemSz = MI.getElementSizeInBytes();
5539 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5540 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5541 SrcAlign, Length, LengthTy, ElemSz, isTC,
5542 MachinePointerInfo(MI.getRawDest()),
5543 MachinePointerInfo(MI.getRawSource()));
5544 updateDAGForMaybeTailCall(MC);
5545 return nullptr;
5547 case Intrinsic::memset_element_unordered_atomic: {
5548 auto &MI = cast<AtomicMemSetInst>(I);
5549 SDValue Dst = getValue(MI.getRawDest());
5550 SDValue Val = getValue(MI.getValue());
5551 SDValue Length = getValue(MI.getLength());
5553 unsigned DstAlign = MI.getDestAlignment();
5554 Type *LengthTy = MI.getLength()->getType();
5555 unsigned ElemSz = MI.getElementSizeInBytes();
5556 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5557 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5558 LengthTy, ElemSz, isTC,
5559 MachinePointerInfo(MI.getRawDest()));
5560 updateDAGForMaybeTailCall(MC);
5561 return nullptr;
5563 case Intrinsic::dbg_addr:
5564 case Intrinsic::dbg_declare: {
5565 const auto &DI = cast<DbgVariableIntrinsic>(I);
5566 DILocalVariable *Variable = DI.getVariable();
5567 DIExpression *Expression = DI.getExpression();
5568 dropDanglingDebugInfo(Variable, Expression);
5569 assert(Variable && "Missing variable");
5571 // Check if address has undef value.
5572 const Value *Address = DI.getVariableLocation();
5573 if (!Address || isa<UndefValue>(Address) ||
5574 (Address->use_empty() && !isa<Argument>(Address))) {
5575 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5576 return nullptr;
5579 bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5581 // Check if this variable can be described by a frame index, typically
5582 // either as a static alloca or a byval parameter.
5583 int FI = std::numeric_limits<int>::max();
5584 if (const auto *AI =
5585 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5586 if (AI->isStaticAlloca()) {
5587 auto I = FuncInfo.StaticAllocaMap.find(AI);
5588 if (I != FuncInfo.StaticAllocaMap.end())
5589 FI = I->second;
5591 } else if (const auto *Arg = dyn_cast<Argument>(
5592 Address->stripInBoundsConstantOffsets())) {
5593 FI = FuncInfo.getArgumentFrameIndex(Arg);
5596 // llvm.dbg.addr is control dependent and always generates indirect
5597 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5598 // the MachineFunction variable table.
5599 if (FI != std::numeric_limits<int>::max()) {
5600 if (Intrinsic == Intrinsic::dbg_addr) {
5601 SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5602 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5603 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5605 return nullptr;
5608 SDValue &N = NodeMap[Address];
5609 if (!N.getNode() && isa<Argument>(Address))
5610 // Check unused arguments map.
5611 N = UnusedArgNodeMap[Address];
5612 SDDbgValue *SDV;
5613 if (N.getNode()) {
5614 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5615 Address = BCI->getOperand(0);
5616 // Parameters are handled specially.
5617 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5618 if (isParameter && FINode) {
5619 // Byval parameter. We have a frame index at this point.
5620 SDV =
5621 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5622 /*IsIndirect*/ true, dl, SDNodeOrder);
5623 } else if (isa<Argument>(Address)) {
5624 // Address is an argument, so try to emit its dbg value using
5625 // virtual register info from the FuncInfo.ValueMap.
5626 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5627 return nullptr;
5628 } else {
5629 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5630 true, dl, SDNodeOrder);
5632 DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5633 } else {
5634 // If Address is an argument then try to emit its dbg value using
5635 // virtual register info from the FuncInfo.ValueMap.
5636 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5637 N)) {
5638 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5641 return nullptr;
5643 case Intrinsic::dbg_label: {
5644 const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5645 DILabel *Label = DI.getLabel();
5646 assert(Label && "Missing label");
5648 SDDbgLabel *SDV;
5649 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5650 DAG.AddDbgLabel(SDV);
5651 return nullptr;
5653 case Intrinsic::dbg_value: {
5654 const DbgValueInst &DI = cast<DbgValueInst>(I);
5655 assert(DI.getVariable() && "Missing variable");
5657 DILocalVariable *Variable = DI.getVariable();
5658 DIExpression *Expression = DI.getExpression();
5659 dropDanglingDebugInfo(Variable, Expression);
5660 const Value *V = DI.getValue();
5661 if (!V)
5662 return nullptr;
5664 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
5665 SDNodeOrder))
5666 return nullptr;
5668 // TODO: Dangling debug info will eventually either be resolved or produce
5669 // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5670 // between the original dbg.value location and its resolved DBG_VALUE, which
5671 // we should ideally fill with an extra Undef DBG_VALUE.
5673 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5674 return nullptr;
5677 case Intrinsic::eh_typeid_for: {
5678 // Find the type id for the given typeinfo.
5679 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5680 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5681 Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5682 setValue(&I, Res);
5683 return nullptr;
5686 case Intrinsic::eh_return_i32:
5687 case Intrinsic::eh_return_i64:
5688 DAG.getMachineFunction().setCallsEHReturn(true);
5689 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5690 MVT::Other,
5691 getControlRoot(),
5692 getValue(I.getArgOperand(0)),
5693 getValue(I.getArgOperand(1))));
5694 return nullptr;
5695 case Intrinsic::eh_unwind_init:
5696 DAG.getMachineFunction().setCallsUnwindInit(true);
5697 return nullptr;
5698 case Intrinsic::eh_dwarf_cfa:
5699 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5700 TLI.getPointerTy(DAG.getDataLayout()),
5701 getValue(I.getArgOperand(0))));
5702 return nullptr;
5703 case Intrinsic::eh_sjlj_callsite: {
5704 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5705 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5706 assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5707 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5709 MMI.setCurrentCallSite(CI->getZExtValue());
5710 return nullptr;
5712 case Intrinsic::eh_sjlj_functioncontext: {
5713 // Get and store the index of the function context.
5714 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5715 AllocaInst *FnCtx =
5716 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5717 int FI = FuncInfo.StaticAllocaMap[FnCtx];
5718 MFI.setFunctionContextIndex(FI);
5719 return nullptr;
5721 case Intrinsic::eh_sjlj_setjmp: {
5722 SDValue Ops[2];
5723 Ops[0] = getRoot();
5724 Ops[1] = getValue(I.getArgOperand(0));
5725 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5726 DAG.getVTList(MVT::i32, MVT::Other), Ops);
5727 setValue(&I, Op.getValue(0));
5728 DAG.setRoot(Op.getValue(1));
5729 return nullptr;
5731 case Intrinsic::eh_sjlj_longjmp:
5732 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5733 getRoot(), getValue(I.getArgOperand(0))));
5734 return nullptr;
5735 case Intrinsic::eh_sjlj_setup_dispatch:
5736 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5737 getRoot()));
5738 return nullptr;
5739 case Intrinsic::masked_gather:
5740 visitMaskedGather(I);
5741 return nullptr;
5742 case Intrinsic::masked_load:
5743 visitMaskedLoad(I);
5744 return nullptr;
5745 case Intrinsic::masked_scatter:
5746 visitMaskedScatter(I);
5747 return nullptr;
5748 case Intrinsic::masked_store:
5749 visitMaskedStore(I);
5750 return nullptr;
5751 case Intrinsic::masked_expandload:
5752 visitMaskedLoad(I, true /* IsExpanding */);
5753 return nullptr;
5754 case Intrinsic::masked_compressstore:
5755 visitMaskedStore(I, true /* IsCompressing */);
5756 return nullptr;
5757 case Intrinsic::x86_mmx_pslli_w:
5758 case Intrinsic::x86_mmx_pslli_d:
5759 case Intrinsic::x86_mmx_pslli_q:
5760 case Intrinsic::x86_mmx_psrli_w:
5761 case Intrinsic::x86_mmx_psrli_d:
5762 case Intrinsic::x86_mmx_psrli_q:
5763 case Intrinsic::x86_mmx_psrai_w:
5764 case Intrinsic::x86_mmx_psrai_d: {
5765 SDValue ShAmt = getValue(I.getArgOperand(1));
5766 if (isa<ConstantSDNode>(ShAmt)) {
5767 visitTargetIntrinsic(I, Intrinsic);
5768 return nullptr;
5770 unsigned NewIntrinsic = 0;
5771 EVT ShAmtVT = MVT::v2i32;
5772 switch (Intrinsic) {
5773 case Intrinsic::x86_mmx_pslli_w:
5774 NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5775 break;
5776 case Intrinsic::x86_mmx_pslli_d:
5777 NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5778 break;
5779 case Intrinsic::x86_mmx_pslli_q:
5780 NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5781 break;
5782 case Intrinsic::x86_mmx_psrli_w:
5783 NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5784 break;
5785 case Intrinsic::x86_mmx_psrli_d:
5786 NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5787 break;
5788 case Intrinsic::x86_mmx_psrli_q:
5789 NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5790 break;
5791 case Intrinsic::x86_mmx_psrai_w:
5792 NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5793 break;
5794 case Intrinsic::x86_mmx_psrai_d:
5795 NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5796 break;
5797 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
5800 // The vector shift intrinsics with scalars uses 32b shift amounts but
5801 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5802 // to be zero.
5803 // We must do this early because v2i32 is not a legal type.
5804 SDValue ShOps[2];
5805 ShOps[0] = ShAmt;
5806 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5807 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps);
5808 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5809 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5810 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5811 DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5812 getValue(I.getArgOperand(0)), ShAmt);
5813 setValue(&I, Res);
5814 return nullptr;
5816 case Intrinsic::powi:
5817 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5818 getValue(I.getArgOperand(1)), DAG));
5819 return nullptr;
5820 case Intrinsic::log:
5821 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5822 return nullptr;
5823 case Intrinsic::log2:
5824 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5825 return nullptr;
5826 case Intrinsic::log10:
5827 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5828 return nullptr;
5829 case Intrinsic::exp:
5830 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5831 return nullptr;
5832 case Intrinsic::exp2:
5833 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5834 return nullptr;
5835 case Intrinsic::pow:
5836 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5837 getValue(I.getArgOperand(1)), DAG, TLI));
5838 return nullptr;
5839 case Intrinsic::sqrt:
5840 case Intrinsic::fabs:
5841 case Intrinsic::sin:
5842 case Intrinsic::cos:
5843 case Intrinsic::floor:
5844 case Intrinsic::ceil:
5845 case Intrinsic::trunc:
5846 case Intrinsic::rint:
5847 case Intrinsic::nearbyint:
5848 case Intrinsic::round:
5849 case Intrinsic::canonicalize: {
5850 unsigned Opcode;
5851 switch (Intrinsic) {
5852 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
5853 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break;
5854 case Intrinsic::fabs: Opcode = ISD::FABS; break;
5855 case Intrinsic::sin: Opcode = ISD::FSIN; break;
5856 case Intrinsic::cos: Opcode = ISD::FCOS; break;
5857 case Intrinsic::floor: Opcode = ISD::FFLOOR; break;
5858 case Intrinsic::ceil: Opcode = ISD::FCEIL; break;
5859 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break;
5860 case Intrinsic::rint: Opcode = ISD::FRINT; break;
5861 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5862 case Intrinsic::round: Opcode = ISD::FROUND; break;
5863 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5866 setValue(&I, DAG.getNode(Opcode, sdl,
5867 getValue(I.getArgOperand(0)).getValueType(),
5868 getValue(I.getArgOperand(0))));
5869 return nullptr;
5871 case Intrinsic::minnum: {
5872 auto VT = getValue(I.getArgOperand(0)).getValueType();
5873 unsigned Opc =
5874 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)
5875 ? ISD::FMINIMUM
5876 : ISD::FMINNUM;
5877 setValue(&I, DAG.getNode(Opc, sdl, VT,
5878 getValue(I.getArgOperand(0)),
5879 getValue(I.getArgOperand(1))));
5880 return nullptr;
5882 case Intrinsic::maxnum: {
5883 auto VT = getValue(I.getArgOperand(0)).getValueType();
5884 unsigned Opc =
5885 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)
5886 ? ISD::FMAXIMUM
5887 : ISD::FMAXNUM;
5888 setValue(&I, DAG.getNode(Opc, sdl, VT,
5889 getValue(I.getArgOperand(0)),
5890 getValue(I.getArgOperand(1))));
5891 return nullptr;
5893 case Intrinsic::minimum:
5894 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
5895 getValue(I.getArgOperand(0)).getValueType(),
5896 getValue(I.getArgOperand(0)),
5897 getValue(I.getArgOperand(1))));
5898 return nullptr;
5899 case Intrinsic::maximum:
5900 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
5901 getValue(I.getArgOperand(0)).getValueType(),
5902 getValue(I.getArgOperand(0)),
5903 getValue(I.getArgOperand(1))));
5904 return nullptr;
5905 case Intrinsic::copysign:
5906 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5907 getValue(I.getArgOperand(0)).getValueType(),
5908 getValue(I.getArgOperand(0)),
5909 getValue(I.getArgOperand(1))));
5910 return nullptr;
5911 case Intrinsic::fma:
5912 setValue(&I, DAG.getNode(ISD::FMA, sdl,
5913 getValue(I.getArgOperand(0)).getValueType(),
5914 getValue(I.getArgOperand(0)),
5915 getValue(I.getArgOperand(1)),
5916 getValue(I.getArgOperand(2))));
5917 return nullptr;
5918 case Intrinsic::experimental_constrained_fadd:
5919 case Intrinsic::experimental_constrained_fsub:
5920 case Intrinsic::experimental_constrained_fmul:
5921 case Intrinsic::experimental_constrained_fdiv:
5922 case Intrinsic::experimental_constrained_frem:
5923 case Intrinsic::experimental_constrained_fma:
5924 case Intrinsic::experimental_constrained_sqrt:
5925 case Intrinsic::experimental_constrained_pow:
5926 case Intrinsic::experimental_constrained_powi:
5927 case Intrinsic::experimental_constrained_sin:
5928 case Intrinsic::experimental_constrained_cos:
5929 case Intrinsic::experimental_constrained_exp:
5930 case Intrinsic::experimental_constrained_exp2:
5931 case Intrinsic::experimental_constrained_log:
5932 case Intrinsic::experimental_constrained_log10:
5933 case Intrinsic::experimental_constrained_log2:
5934 case Intrinsic::experimental_constrained_rint:
5935 case Intrinsic::experimental_constrained_nearbyint:
5936 case Intrinsic::experimental_constrained_maxnum:
5937 case Intrinsic::experimental_constrained_minnum:
5938 case Intrinsic::experimental_constrained_ceil:
5939 case Intrinsic::experimental_constrained_floor:
5940 case Intrinsic::experimental_constrained_round:
5941 case Intrinsic::experimental_constrained_trunc:
5942 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
5943 return nullptr;
5944 case Intrinsic::fmuladd: {
5945 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5946 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5947 TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5948 setValue(&I, DAG.getNode(ISD::FMA, sdl,
5949 getValue(I.getArgOperand(0)).getValueType(),
5950 getValue(I.getArgOperand(0)),
5951 getValue(I.getArgOperand(1)),
5952 getValue(I.getArgOperand(2))));
5953 } else {
5954 // TODO: Intrinsic calls should have fast-math-flags.
5955 SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5956 getValue(I.getArgOperand(0)).getValueType(),
5957 getValue(I.getArgOperand(0)),
5958 getValue(I.getArgOperand(1)));
5959 SDValue Add = DAG.getNode(ISD::FADD, sdl,
5960 getValue(I.getArgOperand(0)).getValueType(),
5961 Mul,
5962 getValue(I.getArgOperand(2)));
5963 setValue(&I, Add);
5965 return nullptr;
5967 case Intrinsic::convert_to_fp16:
5968 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5969 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5970 getValue(I.getArgOperand(0)),
5971 DAG.getTargetConstant(0, sdl,
5972 MVT::i32))));
5973 return nullptr;
5974 case Intrinsic::convert_from_fp16:
5975 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5976 TLI.getValueType(DAG.getDataLayout(), I.getType()),
5977 DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5978 getValue(I.getArgOperand(0)))));
5979 return nullptr;
5980 case Intrinsic::pcmarker: {
5981 SDValue Tmp = getValue(I.getArgOperand(0));
5982 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5983 return nullptr;
5985 case Intrinsic::readcyclecounter: {
5986 SDValue Op = getRoot();
5987 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5988 DAG.getVTList(MVT::i64, MVT::Other), Op);
5989 setValue(&I, Res);
5990 DAG.setRoot(Res.getValue(1));
5991 return nullptr;
5993 case Intrinsic::bitreverse:
5994 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5995 getValue(I.getArgOperand(0)).getValueType(),
5996 getValue(I.getArgOperand(0))));
5997 return nullptr;
5998 case Intrinsic::bswap:
5999 setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6000 getValue(I.getArgOperand(0)).getValueType(),
6001 getValue(I.getArgOperand(0))));
6002 return nullptr;
6003 case Intrinsic::cttz: {
6004 SDValue Arg = getValue(I.getArgOperand(0));
6005 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6006 EVT Ty = Arg.getValueType();
6007 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6008 sdl, Ty, Arg));
6009 return nullptr;
6011 case Intrinsic::ctlz: {
6012 SDValue Arg = getValue(I.getArgOperand(0));
6013 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6014 EVT Ty = Arg.getValueType();
6015 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6016 sdl, Ty, Arg));
6017 return nullptr;
6019 case Intrinsic::ctpop: {
6020 SDValue Arg = getValue(I.getArgOperand(0));
6021 EVT Ty = Arg.getValueType();
6022 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6023 return nullptr;
6025 case Intrinsic::fshl:
6026 case Intrinsic::fshr: {
6027 bool IsFSHL = Intrinsic == Intrinsic::fshl;
6028 SDValue X = getValue(I.getArgOperand(0));
6029 SDValue Y = getValue(I.getArgOperand(1));
6030 SDValue Z = getValue(I.getArgOperand(2));
6031 EVT VT = X.getValueType();
6032 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
6033 SDValue Zero = DAG.getConstant(0, sdl, VT);
6034 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
6036 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6037 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) {
6038 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6039 return nullptr;
6042 // When X == Y, this is rotate. If the data type has a power-of-2 size, we
6043 // avoid the select that is necessary in the general case to filter out
6044 // the 0-shift possibility that leads to UB.
6045 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
6046 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6047 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6048 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6049 return nullptr;
6052 // Some targets only rotate one way. Try the opposite direction.
6053 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
6054 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6055 // Negate the shift amount because it is safe to ignore the high bits.
6056 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6057 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
6058 return nullptr;
6061 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
6062 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
6063 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6064 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
6065 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
6066 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
6067 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
6068 return nullptr;
6071 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6072 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6073 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
6074 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
6075 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6076 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
6078 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6079 // and that is undefined. We must compare and select to avoid UB.
6080 EVT CCVT = MVT::i1;
6081 if (VT.isVector())
6082 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
6084 // For fshl, 0-shift returns the 1st arg (X).
6085 // For fshr, 0-shift returns the 2nd arg (Y).
6086 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
6087 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
6088 return nullptr;
6090 case Intrinsic::sadd_sat: {
6091 SDValue Op1 = getValue(I.getArgOperand(0));
6092 SDValue Op2 = getValue(I.getArgOperand(1));
6093 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6094 return nullptr;
6096 case Intrinsic::uadd_sat: {
6097 SDValue Op1 = getValue(I.getArgOperand(0));
6098 SDValue Op2 = getValue(I.getArgOperand(1));
6099 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6100 return nullptr;
6102 case Intrinsic::ssub_sat: {
6103 SDValue Op1 = getValue(I.getArgOperand(0));
6104 SDValue Op2 = getValue(I.getArgOperand(1));
6105 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6106 return nullptr;
6108 case Intrinsic::usub_sat: {
6109 SDValue Op1 = getValue(I.getArgOperand(0));
6110 SDValue Op2 = getValue(I.getArgOperand(1));
6111 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6112 return nullptr;
6114 case Intrinsic::smul_fix:
6115 case Intrinsic::umul_fix: {
6116 SDValue Op1 = getValue(I.getArgOperand(0));
6117 SDValue Op2 = getValue(I.getArgOperand(1));
6118 SDValue Op3 = getValue(I.getArgOperand(2));
6119 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6120 Op1.getValueType(), Op1, Op2, Op3));
6121 return nullptr;
6123 case Intrinsic::stacksave: {
6124 SDValue Op = getRoot();
6125 Res = DAG.getNode(
6126 ISD::STACKSAVE, sdl,
6127 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
6128 setValue(&I, Res);
6129 DAG.setRoot(Res.getValue(1));
6130 return nullptr;
6132 case Intrinsic::stackrestore:
6133 Res = getValue(I.getArgOperand(0));
6134 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6135 return nullptr;
6136 case Intrinsic::get_dynamic_area_offset: {
6137 SDValue Op = getRoot();
6138 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6139 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6140 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6141 // target.
6142 if (PtrTy != ResTy)
6143 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6144 " intrinsic!");
6145 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6146 Op);
6147 DAG.setRoot(Op);
6148 setValue(&I, Res);
6149 return nullptr;
6151 case Intrinsic::stackguard: {
6152 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6153 MachineFunction &MF = DAG.getMachineFunction();
6154 const Module &M = *MF.getFunction().getParent();
6155 SDValue Chain = getRoot();
6156 if (TLI.useLoadStackGuardNode()) {
6157 Res = getLoadStackGuard(DAG, sdl, Chain);
6158 } else {
6159 const Value *Global = TLI.getSDagStackGuard(M);
6160 unsigned Align = DL->getPrefTypeAlignment(Global->getType());
6161 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6162 MachinePointerInfo(Global, 0), Align,
6163 MachineMemOperand::MOVolatile);
6165 if (TLI.useStackGuardXorFP())
6166 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6167 DAG.setRoot(Chain);
6168 setValue(&I, Res);
6169 return nullptr;
6171 case Intrinsic::stackprotector: {
6172 // Emit code into the DAG to store the stack guard onto the stack.
6173 MachineFunction &MF = DAG.getMachineFunction();
6174 MachineFrameInfo &MFI = MF.getFrameInfo();
6175 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6176 SDValue Src, Chain = getRoot();
6178 if (TLI.useLoadStackGuardNode())
6179 Src = getLoadStackGuard(DAG, sdl, Chain);
6180 else
6181 Src = getValue(I.getArgOperand(0)); // The guard's value.
6183 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6185 int FI = FuncInfo.StaticAllocaMap[Slot];
6186 MFI.setStackProtectorIndex(FI);
6188 SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6190 // Store the stack protector onto the stack.
6191 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
6192 DAG.getMachineFunction(), FI),
6193 /* Alignment = */ 0, MachineMemOperand::MOVolatile);
6194 setValue(&I, Res);
6195 DAG.setRoot(Res);
6196 return nullptr;
6198 case Intrinsic::objectsize: {
6199 // If we don't know by now, we're never going to know.
6200 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
6202 assert(CI && "Non-constant type in __builtin_object_size?");
6204 SDValue Arg = getValue(I.getCalledValue());
6205 EVT Ty = Arg.getValueType();
6207 if (CI->isZero())
6208 Res = DAG.getConstant(-1ULL, sdl, Ty);
6209 else
6210 Res = DAG.getConstant(0, sdl, Ty);
6212 setValue(&I, Res);
6213 return nullptr;
6216 case Intrinsic::is_constant:
6217 // If this wasn't constant-folded away by now, then it's not a
6218 // constant.
6219 setValue(&I, DAG.getConstant(0, sdl, MVT::i1));
6220 return nullptr;
6222 case Intrinsic::annotation:
6223 case Intrinsic::ptr_annotation:
6224 case Intrinsic::launder_invariant_group:
6225 case Intrinsic::strip_invariant_group:
6226 // Drop the intrinsic, but forward the value
6227 setValue(&I, getValue(I.getOperand(0)));
6228 return nullptr;
6229 case Intrinsic::assume:
6230 case Intrinsic::var_annotation:
6231 case Intrinsic::sideeffect:
6232 // Discard annotate attributes, assumptions, and artificial side-effects.
6233 return nullptr;
6235 case Intrinsic::codeview_annotation: {
6236 // Emit a label associated with this metadata.
6237 MachineFunction &MF = DAG.getMachineFunction();
6238 MCSymbol *Label =
6239 MF.getMMI().getContext().createTempSymbol("annotation", true);
6240 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6241 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6242 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6243 DAG.setRoot(Res);
6244 return nullptr;
6247 case Intrinsic::init_trampoline: {
6248 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6250 SDValue Ops[6];
6251 Ops[0] = getRoot();
6252 Ops[1] = getValue(I.getArgOperand(0));
6253 Ops[2] = getValue(I.getArgOperand(1));
6254 Ops[3] = getValue(I.getArgOperand(2));
6255 Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6256 Ops[5] = DAG.getSrcValue(F);
6258 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6260 DAG.setRoot(Res);
6261 return nullptr;
6263 case Intrinsic::adjust_trampoline:
6264 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6265 TLI.getPointerTy(DAG.getDataLayout()),
6266 getValue(I.getArgOperand(0))));
6267 return nullptr;
6268 case Intrinsic::gcroot: {
6269 assert(DAG.getMachineFunction().getFunction().hasGC() &&
6270 "only valid in functions with gc specified, enforced by Verifier");
6271 assert(GFI && "implied by previous");
6272 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6273 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6275 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6276 GFI->addStackRoot(FI->getIndex(), TypeMap);
6277 return nullptr;
6279 case Intrinsic::gcread:
6280 case Intrinsic::gcwrite:
6281 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6282 case Intrinsic::flt_rounds:
6283 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
6284 return nullptr;
6286 case Intrinsic::expect:
6287 // Just replace __builtin_expect(exp, c) with EXP.
6288 setValue(&I, getValue(I.getArgOperand(0)));
6289 return nullptr;
6291 case Intrinsic::debugtrap:
6292 case Intrinsic::trap: {
6293 StringRef TrapFuncName =
6294 I.getAttributes()
6295 .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6296 .getValueAsString();
6297 if (TrapFuncName.empty()) {
6298 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6299 ISD::TRAP : ISD::DEBUGTRAP;
6300 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6301 return nullptr;
6303 TargetLowering::ArgListTy Args;
6305 TargetLowering::CallLoweringInfo CLI(DAG);
6306 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6307 CallingConv::C, I.getType(),
6308 DAG.getExternalSymbol(TrapFuncName.data(),
6309 TLI.getPointerTy(DAG.getDataLayout())),
6310 std::move(Args));
6312 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6313 DAG.setRoot(Result.second);
6314 return nullptr;
6317 case Intrinsic::uadd_with_overflow:
6318 case Intrinsic::sadd_with_overflow:
6319 case Intrinsic::usub_with_overflow:
6320 case Intrinsic::ssub_with_overflow:
6321 case Intrinsic::umul_with_overflow:
6322 case Intrinsic::smul_with_overflow: {
6323 ISD::NodeType Op;
6324 switch (Intrinsic) {
6325 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6326 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6327 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6328 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6329 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6330 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6331 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6333 SDValue Op1 = getValue(I.getArgOperand(0));
6334 SDValue Op2 = getValue(I.getArgOperand(1));
6336 EVT ResultVT = Op1.getValueType();
6337 EVT OverflowVT = MVT::i1;
6338 if (ResultVT.isVector())
6339 OverflowVT = EVT::getVectorVT(
6340 *Context, OverflowVT, ResultVT.getVectorNumElements());
6342 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6343 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6344 return nullptr;
6346 case Intrinsic::prefetch: {
6347 SDValue Ops[5];
6348 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6349 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6350 Ops[0] = DAG.getRoot();
6351 Ops[1] = getValue(I.getArgOperand(0));
6352 Ops[2] = getValue(I.getArgOperand(1));
6353 Ops[3] = getValue(I.getArgOperand(2));
6354 Ops[4] = getValue(I.getArgOperand(3));
6355 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
6356 DAG.getVTList(MVT::Other), Ops,
6357 EVT::getIntegerVT(*Context, 8),
6358 MachinePointerInfo(I.getArgOperand(0)),
6359 0, /* align */
6360 Flags);
6362 // Chain the prefetch in parallell with any pending loads, to stay out of
6363 // the way of later optimizations.
6364 PendingLoads.push_back(Result);
6365 Result = getRoot();
6366 DAG.setRoot(Result);
6367 return nullptr;
6369 case Intrinsic::lifetime_start:
6370 case Intrinsic::lifetime_end: {
6371 bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6372 // Stack coloring is not enabled in O0, discard region information.
6373 if (TM.getOptLevel() == CodeGenOpt::None)
6374 return nullptr;
6376 const int64_t ObjectSize =
6377 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6378 Value *const ObjectPtr = I.getArgOperand(1);
6379 SmallVector<Value *, 4> Allocas;
6380 GetUnderlyingObjects(ObjectPtr, Allocas, *DL);
6382 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
6383 E = Allocas.end(); Object != E; ++Object) {
6384 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6386 // Could not find an Alloca.
6387 if (!LifetimeObject)
6388 continue;
6390 // First check that the Alloca is static, otherwise it won't have a
6391 // valid frame index.
6392 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6393 if (SI == FuncInfo.StaticAllocaMap.end())
6394 return nullptr;
6396 const int FrameIndex = SI->second;
6397 int64_t Offset;
6398 if (GetPointerBaseWithConstantOffset(
6399 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6400 Offset = -1; // Cannot determine offset from alloca to lifetime object.
6401 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6402 Offset);
6403 DAG.setRoot(Res);
6405 return nullptr;
6407 case Intrinsic::invariant_start:
6408 // Discard region information.
6409 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6410 return nullptr;
6411 case Intrinsic::invariant_end:
6412 // Discard region information.
6413 return nullptr;
6414 case Intrinsic::clear_cache:
6415 return TLI.getClearCacheBuiltinName();
6416 case Intrinsic::donothing:
6417 // ignore
6418 return nullptr;
6419 case Intrinsic::experimental_stackmap:
6420 visitStackmap(I);
6421 return nullptr;
6422 case Intrinsic::experimental_patchpoint_void:
6423 case Intrinsic::experimental_patchpoint_i64:
6424 visitPatchpoint(&I);
6425 return nullptr;
6426 case Intrinsic::experimental_gc_statepoint:
6427 LowerStatepoint(ImmutableStatepoint(&I));
6428 return nullptr;
6429 case Intrinsic::experimental_gc_result:
6430 visitGCResult(cast<GCResultInst>(I));
6431 return nullptr;
6432 case Intrinsic::experimental_gc_relocate:
6433 visitGCRelocate(cast<GCRelocateInst>(I));
6434 return nullptr;
6435 case Intrinsic::instrprof_increment:
6436 llvm_unreachable("instrprof failed to lower an increment");
6437 case Intrinsic::instrprof_value_profile:
6438 llvm_unreachable("instrprof failed to lower a value profiling call");
6439 case Intrinsic::localescape: {
6440 MachineFunction &MF = DAG.getMachineFunction();
6441 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6443 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6444 // is the same on all targets.
6445 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6446 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6447 if (isa<ConstantPointerNull>(Arg))
6448 continue; // Skip null pointers. They represent a hole in index space.
6449 AllocaInst *Slot = cast<AllocaInst>(Arg);
6450 assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6451 "can only escape static allocas");
6452 int FI = FuncInfo.StaticAllocaMap[Slot];
6453 MCSymbol *FrameAllocSym =
6454 MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6455 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6456 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6457 TII->get(TargetOpcode::LOCAL_ESCAPE))
6458 .addSym(FrameAllocSym)
6459 .addFrameIndex(FI);
6462 return nullptr;
6465 case Intrinsic::localrecover: {
6466 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6467 MachineFunction &MF = DAG.getMachineFunction();
6468 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6470 // Get the symbol that defines the frame offset.
6471 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6472 auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6473 unsigned IdxVal =
6474 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6475 MCSymbol *FrameAllocSym =
6476 MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6477 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6479 // Create a MCSymbol for the label to avoid any target lowering
6480 // that would make this PC relative.
6481 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6482 SDValue OffsetVal =
6483 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6485 // Add the offset to the FP.
6486 Value *FP = I.getArgOperand(1);
6487 SDValue FPVal = getValue(FP);
6488 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
6489 setValue(&I, Add);
6491 return nullptr;
6494 case Intrinsic::eh_exceptionpointer:
6495 case Intrinsic::eh_exceptioncode: {
6496 // Get the exception pointer vreg, copy from it, and resize it to fit.
6497 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6498 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6499 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6500 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6501 SDValue N =
6502 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6503 if (Intrinsic == Intrinsic::eh_exceptioncode)
6504 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6505 setValue(&I, N);
6506 return nullptr;
6508 case Intrinsic::xray_customevent: {
6509 // Here we want to make sure that the intrinsic behaves as if it has a
6510 // specific calling convention, and only for x86_64.
6511 // FIXME: Support other platforms later.
6512 const auto &Triple = DAG.getTarget().getTargetTriple();
6513 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6514 return nullptr;
6516 SDLoc DL = getCurSDLoc();
6517 SmallVector<SDValue, 8> Ops;
6519 // We want to say that we always want the arguments in registers.
6520 SDValue LogEntryVal = getValue(I.getArgOperand(0));
6521 SDValue StrSizeVal = getValue(I.getArgOperand(1));
6522 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6523 SDValue Chain = getRoot();
6524 Ops.push_back(LogEntryVal);
6525 Ops.push_back(StrSizeVal);
6526 Ops.push_back(Chain);
6528 // We need to enforce the calling convention for the callsite, so that
6529 // argument ordering is enforced correctly, and that register allocation can
6530 // see that some registers may be assumed clobbered and have to preserve
6531 // them across calls to the intrinsic.
6532 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6533 DL, NodeTys, Ops);
6534 SDValue patchableNode = SDValue(MN, 0);
6535 DAG.setRoot(patchableNode);
6536 setValue(&I, patchableNode);
6537 return nullptr;
6539 case Intrinsic::xray_typedevent: {
6540 // Here we want to make sure that the intrinsic behaves as if it has a
6541 // specific calling convention, and only for x86_64.
6542 // FIXME: Support other platforms later.
6543 const auto &Triple = DAG.getTarget().getTargetTriple();
6544 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6545 return nullptr;
6547 SDLoc DL = getCurSDLoc();
6548 SmallVector<SDValue, 8> Ops;
6550 // We want to say that we always want the arguments in registers.
6551 // It's unclear to me how manipulating the selection DAG here forces callers
6552 // to provide arguments in registers instead of on the stack.
6553 SDValue LogTypeId = getValue(I.getArgOperand(0));
6554 SDValue LogEntryVal = getValue(I.getArgOperand(1));
6555 SDValue StrSizeVal = getValue(I.getArgOperand(2));
6556 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6557 SDValue Chain = getRoot();
6558 Ops.push_back(LogTypeId);
6559 Ops.push_back(LogEntryVal);
6560 Ops.push_back(StrSizeVal);
6561 Ops.push_back(Chain);
6563 // We need to enforce the calling convention for the callsite, so that
6564 // argument ordering is enforced correctly, and that register allocation can
6565 // see that some registers may be assumed clobbered and have to preserve
6566 // them across calls to the intrinsic.
6567 MachineSDNode *MN = DAG.getMachineNode(
6568 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6569 SDValue patchableNode = SDValue(MN, 0);
6570 DAG.setRoot(patchableNode);
6571 setValue(&I, patchableNode);
6572 return nullptr;
6574 case Intrinsic::experimental_deoptimize:
6575 LowerDeoptimizeCall(&I);
6576 return nullptr;
6578 case Intrinsic::experimental_vector_reduce_fadd:
6579 case Intrinsic::experimental_vector_reduce_fmul:
6580 case Intrinsic::experimental_vector_reduce_add:
6581 case Intrinsic::experimental_vector_reduce_mul:
6582 case Intrinsic::experimental_vector_reduce_and:
6583 case Intrinsic::experimental_vector_reduce_or:
6584 case Intrinsic::experimental_vector_reduce_xor:
6585 case Intrinsic::experimental_vector_reduce_smax:
6586 case Intrinsic::experimental_vector_reduce_smin:
6587 case Intrinsic::experimental_vector_reduce_umax:
6588 case Intrinsic::experimental_vector_reduce_umin:
6589 case Intrinsic::experimental_vector_reduce_fmax:
6590 case Intrinsic::experimental_vector_reduce_fmin:
6591 visitVectorReduce(I, Intrinsic);
6592 return nullptr;
6594 case Intrinsic::icall_branch_funnel: {
6595 SmallVector<SDValue, 16> Ops;
6596 Ops.push_back(DAG.getRoot());
6597 Ops.push_back(getValue(I.getArgOperand(0)));
6599 int64_t Offset;
6600 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6601 I.getArgOperand(1), Offset, DAG.getDataLayout()));
6602 if (!Base)
6603 report_fatal_error(
6604 "llvm.icall.branch.funnel operand must be a GlobalValue");
6605 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6607 struct BranchFunnelTarget {
6608 int64_t Offset;
6609 SDValue Target;
6611 SmallVector<BranchFunnelTarget, 8> Targets;
6613 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6614 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6615 I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6616 if (ElemBase != Base)
6617 report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6618 "to the same GlobalValue");
6620 SDValue Val = getValue(I.getArgOperand(Op + 1));
6621 auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6622 if (!GA)
6623 report_fatal_error(
6624 "llvm.icall.branch.funnel operand must be a GlobalValue");
6625 Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6626 GA->getGlobal(), getCurSDLoc(),
6627 Val.getValueType(), GA->getOffset())});
6629 llvm::sort(Targets,
6630 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6631 return T1.Offset < T2.Offset;
6634 for (auto &T : Targets) {
6635 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6636 Ops.push_back(T.Target);
6639 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6640 getCurSDLoc(), MVT::Other, Ops),
6642 DAG.setRoot(N);
6643 setValue(&I, N);
6644 HasTailCall = true;
6645 return nullptr;
6648 case Intrinsic::wasm_landingpad_index:
6649 // Information this intrinsic contained has been transferred to
6650 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6651 // delete it now.
6652 return nullptr;
6656 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6657 const ConstrainedFPIntrinsic &FPI) {
6658 SDLoc sdl = getCurSDLoc();
6659 unsigned Opcode;
6660 switch (FPI.getIntrinsicID()) {
6661 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6662 case Intrinsic::experimental_constrained_fadd:
6663 Opcode = ISD::STRICT_FADD;
6664 break;
6665 case Intrinsic::experimental_constrained_fsub:
6666 Opcode = ISD::STRICT_FSUB;
6667 break;
6668 case Intrinsic::experimental_constrained_fmul:
6669 Opcode = ISD::STRICT_FMUL;
6670 break;
6671 case Intrinsic::experimental_constrained_fdiv:
6672 Opcode = ISD::STRICT_FDIV;
6673 break;
6674 case Intrinsic::experimental_constrained_frem:
6675 Opcode = ISD::STRICT_FREM;
6676 break;
6677 case Intrinsic::experimental_constrained_fma:
6678 Opcode = ISD::STRICT_FMA;
6679 break;
6680 case Intrinsic::experimental_constrained_sqrt:
6681 Opcode = ISD::STRICT_FSQRT;
6682 break;
6683 case Intrinsic::experimental_constrained_pow:
6684 Opcode = ISD::STRICT_FPOW;
6685 break;
6686 case Intrinsic::experimental_constrained_powi:
6687 Opcode = ISD::STRICT_FPOWI;
6688 break;
6689 case Intrinsic::experimental_constrained_sin:
6690 Opcode = ISD::STRICT_FSIN;
6691 break;
6692 case Intrinsic::experimental_constrained_cos:
6693 Opcode = ISD::STRICT_FCOS;
6694 break;
6695 case Intrinsic::experimental_constrained_exp:
6696 Opcode = ISD::STRICT_FEXP;
6697 break;
6698 case Intrinsic::experimental_constrained_exp2:
6699 Opcode = ISD::STRICT_FEXP2;
6700 break;
6701 case Intrinsic::experimental_constrained_log:
6702 Opcode = ISD::STRICT_FLOG;
6703 break;
6704 case Intrinsic::experimental_constrained_log10:
6705 Opcode = ISD::STRICT_FLOG10;
6706 break;
6707 case Intrinsic::experimental_constrained_log2:
6708 Opcode = ISD::STRICT_FLOG2;
6709 break;
6710 case Intrinsic::experimental_constrained_rint:
6711 Opcode = ISD::STRICT_FRINT;
6712 break;
6713 case Intrinsic::experimental_constrained_nearbyint:
6714 Opcode = ISD::STRICT_FNEARBYINT;
6715 break;
6716 case Intrinsic::experimental_constrained_maxnum:
6717 Opcode = ISD::STRICT_FMAXNUM;
6718 break;
6719 case Intrinsic::experimental_constrained_minnum:
6720 Opcode = ISD::STRICT_FMINNUM;
6721 break;
6722 case Intrinsic::experimental_constrained_ceil:
6723 Opcode = ISD::STRICT_FCEIL;
6724 break;
6725 case Intrinsic::experimental_constrained_floor:
6726 Opcode = ISD::STRICT_FFLOOR;
6727 break;
6728 case Intrinsic::experimental_constrained_round:
6729 Opcode = ISD::STRICT_FROUND;
6730 break;
6731 case Intrinsic::experimental_constrained_trunc:
6732 Opcode = ISD::STRICT_FTRUNC;
6733 break;
6735 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6736 SDValue Chain = getRoot();
6737 SmallVector<EVT, 4> ValueVTs;
6738 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6739 ValueVTs.push_back(MVT::Other); // Out chain
6741 SDVTList VTs = DAG.getVTList(ValueVTs);
6742 SDValue Result;
6743 if (FPI.isUnaryOp())
6744 Result = DAG.getNode(Opcode, sdl, VTs,
6745 { Chain, getValue(FPI.getArgOperand(0)) });
6746 else if (FPI.isTernaryOp())
6747 Result = DAG.getNode(Opcode, sdl, VTs,
6748 { Chain, getValue(FPI.getArgOperand(0)),
6749 getValue(FPI.getArgOperand(1)),
6750 getValue(FPI.getArgOperand(2)) });
6751 else
6752 Result = DAG.getNode(Opcode, sdl, VTs,
6753 { Chain, getValue(FPI.getArgOperand(0)),
6754 getValue(FPI.getArgOperand(1)) });
6756 assert(Result.getNode()->getNumValues() == 2);
6757 SDValue OutChain = Result.getValue(1);
6758 DAG.setRoot(OutChain);
6759 SDValue FPResult = Result.getValue(0);
6760 setValue(&FPI, FPResult);
6763 std::pair<SDValue, SDValue>
6764 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
6765 const BasicBlock *EHPadBB) {
6766 MachineFunction &MF = DAG.getMachineFunction();
6767 MachineModuleInfo &MMI = MF.getMMI();
6768 MCSymbol *BeginLabel = nullptr;
6770 if (EHPadBB) {
6771 // Insert a label before the invoke call to mark the try range. This can be
6772 // used to detect deletion of the invoke via the MachineModuleInfo.
6773 BeginLabel = MMI.getContext().createTempSymbol();
6775 // For SjLj, keep track of which landing pads go with which invokes
6776 // so as to maintain the ordering of pads in the LSDA.
6777 unsigned CallSiteIndex = MMI.getCurrentCallSite();
6778 if (CallSiteIndex) {
6779 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
6780 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
6782 // Now that the call site is handled, stop tracking it.
6783 MMI.setCurrentCallSite(0);
6786 // Both PendingLoads and PendingExports must be flushed here;
6787 // this call might not return.
6788 (void)getRoot();
6789 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
6791 CLI.setChain(getRoot());
6793 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6794 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6796 assert((CLI.IsTailCall || Result.second.getNode()) &&
6797 "Non-null chain expected with non-tail call!");
6798 assert((Result.second.getNode() || !Result.first.getNode()) &&
6799 "Null value expected with tail call!");
6801 if (!Result.second.getNode()) {
6802 // As a special case, a null chain means that a tail call has been emitted
6803 // and the DAG root is already updated.
6804 HasTailCall = true;
6806 // Since there's no actual continuation from this block, nothing can be
6807 // relying on us setting vregs for them.
6808 PendingExports.clear();
6809 } else {
6810 DAG.setRoot(Result.second);
6813 if (EHPadBB) {
6814 // Insert a label at the end of the invoke call to mark the try range. This
6815 // can be used to detect deletion of the invoke via the MachineModuleInfo.
6816 MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
6817 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
6819 // Inform MachineModuleInfo of range.
6820 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
6821 // There is a platform (e.g. wasm) that uses funclet style IR but does not
6822 // actually use outlined funclets and their LSDA info style.
6823 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
6824 assert(CLI.CS);
6825 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
6826 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
6827 BeginLabel, EndLabel);
6828 } else if (!isScopedEHPersonality(Pers)) {
6829 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
6833 return Result;
6836 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
6837 bool isTailCall,
6838 const BasicBlock *EHPadBB) {
6839 auto &DL = DAG.getDataLayout();
6840 FunctionType *FTy = CS.getFunctionType();
6841 Type *RetTy = CS.getType();
6843 TargetLowering::ArgListTy Args;
6844 Args.reserve(CS.arg_size());
6846 const Value *SwiftErrorVal = nullptr;
6847 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6849 // We can't tail call inside a function with a swifterror argument. Lowering
6850 // does not support this yet. It would have to move into the swifterror
6851 // register before the call.
6852 auto *Caller = CS.getInstruction()->getParent()->getParent();
6853 if (TLI.supportSwiftError() &&
6854 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
6855 isTailCall = false;
6857 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
6858 i != e; ++i) {
6859 TargetLowering::ArgListEntry Entry;
6860 const Value *V = *i;
6862 // Skip empty types
6863 if (V->getType()->isEmptyTy())
6864 continue;
6866 SDValue ArgNode = getValue(V);
6867 Entry.Node = ArgNode; Entry.Ty = V->getType();
6869 Entry.setAttributes(&CS, i - CS.arg_begin());
6871 // Use swifterror virtual register as input to the call.
6872 if (Entry.IsSwiftError && TLI.supportSwiftError()) {
6873 SwiftErrorVal = V;
6874 // We find the virtual register for the actual swifterror argument.
6875 // Instead of using the Value, we use the virtual register instead.
6876 Entry.Node = DAG.getRegister(FuncInfo
6877 .getOrCreateSwiftErrorVRegUseAt(
6878 CS.getInstruction(), FuncInfo.MBB, V)
6879 .first,
6880 EVT(TLI.getPointerTy(DL)));
6883 Args.push_back(Entry);
6885 // If we have an explicit sret argument that is an Instruction, (i.e., it
6886 // might point to function-local memory), we can't meaningfully tail-call.
6887 if (Entry.IsSRet && isa<Instruction>(V))
6888 isTailCall = false;
6891 // Check if target-independent constraints permit a tail call here.
6892 // Target-dependent constraints are checked within TLI->LowerCallTo.
6893 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
6894 isTailCall = false;
6896 // Disable tail calls if there is an swifterror argument. Targets have not
6897 // been updated to support tail calls.
6898 if (TLI.supportSwiftError() && SwiftErrorVal)
6899 isTailCall = false;
6901 TargetLowering::CallLoweringInfo CLI(DAG);
6902 CLI.setDebugLoc(getCurSDLoc())
6903 .setChain(getRoot())
6904 .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
6905 .setTailCall(isTailCall)
6906 .setConvergent(CS.isConvergent());
6907 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
6909 if (Result.first.getNode()) {
6910 const Instruction *Inst = CS.getInstruction();
6911 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
6912 setValue(Inst, Result.first);
6915 // The last element of CLI.InVals has the SDValue for swifterror return.
6916 // Here we copy it to a virtual register and update SwiftErrorMap for
6917 // book-keeping.
6918 if (SwiftErrorVal && TLI.supportSwiftError()) {
6919 // Get the last element of InVals.
6920 SDValue Src = CLI.InVals.back();
6921 unsigned VReg; bool CreatedVReg;
6922 std::tie(VReg, CreatedVReg) =
6923 FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction());
6924 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
6925 // We update the virtual register for the actual swifterror argument.
6926 if (CreatedVReg)
6927 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
6928 DAG.setRoot(CopyNode);
6932 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
6933 SelectionDAGBuilder &Builder) {
6934 // Check to see if this load can be trivially constant folded, e.g. if the
6935 // input is from a string literal.
6936 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
6937 // Cast pointer to the type we really want to load.
6938 Type *LoadTy =
6939 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
6940 if (LoadVT.isVector())
6941 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
6943 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
6944 PointerType::getUnqual(LoadTy));
6946 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
6947 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
6948 return Builder.getValue(LoadCst);
6951 // Otherwise, we have to emit the load. If the pointer is to unfoldable but
6952 // still constant memory, the input chain can be the entry node.
6953 SDValue Root;
6954 bool ConstantMemory = false;
6956 // Do not serialize (non-volatile) loads of constant memory with anything.
6957 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
6958 Root = Builder.DAG.getEntryNode();
6959 ConstantMemory = true;
6960 } else {
6961 // Do not serialize non-volatile loads against each other.
6962 Root = Builder.DAG.getRoot();
6965 SDValue Ptr = Builder.getValue(PtrVal);
6966 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
6967 Ptr, MachinePointerInfo(PtrVal),
6968 /* Alignment = */ 1);
6970 if (!ConstantMemory)
6971 Builder.PendingLoads.push_back(LoadVal.getValue(1));
6972 return LoadVal;
6975 /// Record the value for an instruction that produces an integer result,
6976 /// converting the type where necessary.
6977 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
6978 SDValue Value,
6979 bool IsSigned) {
6980 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6981 I.getType(), true);
6982 if (IsSigned)
6983 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
6984 else
6985 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
6986 setValue(&I, Value);
6989 /// See if we can lower a memcmp call into an optimized form. If so, return
6990 /// true and lower it. Otherwise return false, and it will be lowered like a
6991 /// normal call.
6992 /// The caller already checked that \p I calls the appropriate LibFunc with a
6993 /// correct prototype.
6994 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
6995 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
6996 const Value *Size = I.getArgOperand(2);
6997 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
6998 if (CSize && CSize->getZExtValue() == 0) {
6999 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7000 I.getType(), true);
7001 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7002 return true;
7005 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7006 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7007 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7008 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7009 if (Res.first.getNode()) {
7010 processIntegerCallValue(I, Res.first, true);
7011 PendingLoads.push_back(Res.second);
7012 return true;
7015 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0
7016 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0
7017 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7018 return false;
7020 // If the target has a fast compare for the given size, it will return a
7021 // preferred load type for that size. Require that the load VT is legal and
7022 // that the target supports unaligned loads of that type. Otherwise, return
7023 // INVALID.
7024 auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7025 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7026 MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7027 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7028 // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7029 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7030 // TODO: Check alignment of src and dest ptrs.
7031 unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7032 unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7033 if (!TLI.isTypeLegal(LVT) ||
7034 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7035 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7036 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7039 return LVT;
7042 // This turns into unaligned loads. We only do this if the target natively
7043 // supports the MVT we'll be loading or if it is small enough (<= 4) that
7044 // we'll only produce a small number of byte loads.
7045 MVT LoadVT;
7046 unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7047 switch (NumBitsToCompare) {
7048 default:
7049 return false;
7050 case 16:
7051 LoadVT = MVT::i16;
7052 break;
7053 case 32:
7054 LoadVT = MVT::i32;
7055 break;
7056 case 64:
7057 case 128:
7058 case 256:
7059 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7060 break;
7063 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7064 return false;
7066 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7067 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7069 // Bitcast to a wide integer type if the loads are vectors.
7070 if (LoadVT.isVector()) {
7071 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7072 LoadL = DAG.getBitcast(CmpVT, LoadL);
7073 LoadR = DAG.getBitcast(CmpVT, LoadR);
7076 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7077 processIntegerCallValue(I, Cmp, false);
7078 return true;
7081 /// See if we can lower a memchr call into an optimized form. If so, return
7082 /// true and lower it. Otherwise return false, and it will be lowered like a
7083 /// normal call.
7084 /// The caller already checked that \p I calls the appropriate LibFunc with a
7085 /// correct prototype.
7086 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7087 const Value *Src = I.getArgOperand(0);
7088 const Value *Char = I.getArgOperand(1);
7089 const Value *Length = I.getArgOperand(2);
7091 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7092 std::pair<SDValue, SDValue> Res =
7093 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7094 getValue(Src), getValue(Char), getValue(Length),
7095 MachinePointerInfo(Src));
7096 if (Res.first.getNode()) {
7097 setValue(&I, Res.first);
7098 PendingLoads.push_back(Res.second);
7099 return true;
7102 return false;
7105 /// See if we can lower a mempcpy call into an optimized form. If so, return
7106 /// true and lower it. Otherwise return false, and it will be lowered like a
7107 /// normal call.
7108 /// The caller already checked that \p I calls the appropriate LibFunc with a
7109 /// correct prototype.
7110 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7111 SDValue Dst = getValue(I.getArgOperand(0));
7112 SDValue Src = getValue(I.getArgOperand(1));
7113 SDValue Size = getValue(I.getArgOperand(2));
7115 unsigned DstAlign = DAG.InferPtrAlignment(Dst);
7116 unsigned SrcAlign = DAG.InferPtrAlignment(Src);
7117 unsigned Align = std::min(DstAlign, SrcAlign);
7118 if (Align == 0) // Alignment of one or both could not be inferred.
7119 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
7121 bool isVol = false;
7122 SDLoc sdl = getCurSDLoc();
7124 // In the mempcpy context we need to pass in a false value for isTailCall
7125 // because the return pointer needs to be adjusted by the size of
7126 // the copied memory.
7127 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
7128 false, /*isTailCall=*/false,
7129 MachinePointerInfo(I.getArgOperand(0)),
7130 MachinePointerInfo(I.getArgOperand(1)));
7131 assert(MC.getNode() != nullptr &&
7132 "** memcpy should not be lowered as TailCall in mempcpy context **");
7133 DAG.setRoot(MC);
7135 // Check if Size needs to be truncated or extended.
7136 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7138 // Adjust return pointer to point just past the last dst byte.
7139 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7140 Dst, Size);
7141 setValue(&I, DstPlusSize);
7142 return true;
7145 /// See if we can lower a strcpy call into an optimized form. If so, return
7146 /// true and lower it, otherwise return false and it will be lowered like a
7147 /// normal call.
7148 /// The caller already checked that \p I calls the appropriate LibFunc with a
7149 /// correct prototype.
7150 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7151 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7153 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7154 std::pair<SDValue, SDValue> Res =
7155 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7156 getValue(Arg0), getValue(Arg1),
7157 MachinePointerInfo(Arg0),
7158 MachinePointerInfo(Arg1), isStpcpy);
7159 if (Res.first.getNode()) {
7160 setValue(&I, Res.first);
7161 DAG.setRoot(Res.second);
7162 return true;
7165 return false;
7168 /// See if we can lower a strcmp call into an optimized form. If so, return
7169 /// true and lower it, otherwise return false and it will be lowered like a
7170 /// normal call.
7171 /// The caller already checked that \p I calls the appropriate LibFunc with a
7172 /// correct prototype.
7173 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7174 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7176 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7177 std::pair<SDValue, SDValue> Res =
7178 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7179 getValue(Arg0), getValue(Arg1),
7180 MachinePointerInfo(Arg0),
7181 MachinePointerInfo(Arg1));
7182 if (Res.first.getNode()) {
7183 processIntegerCallValue(I, Res.first, true);
7184 PendingLoads.push_back(Res.second);
7185 return true;
7188 return false;
7191 /// See if we can lower a strlen call into an optimized form. If so, return
7192 /// true and lower it, otherwise return false and it will be lowered like a
7193 /// normal call.
7194 /// The caller already checked that \p I calls the appropriate LibFunc with a
7195 /// correct prototype.
7196 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7197 const Value *Arg0 = I.getArgOperand(0);
7199 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7200 std::pair<SDValue, SDValue> Res =
7201 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7202 getValue(Arg0), MachinePointerInfo(Arg0));
7203 if (Res.first.getNode()) {
7204 processIntegerCallValue(I, Res.first, false);
7205 PendingLoads.push_back(Res.second);
7206 return true;
7209 return false;
7212 /// See if we can lower a strnlen call into an optimized form. If so, return
7213 /// true and lower it, otherwise return false and it will be lowered like a
7214 /// normal call.
7215 /// The caller already checked that \p I calls the appropriate LibFunc with a
7216 /// correct prototype.
7217 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7218 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7220 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7221 std::pair<SDValue, SDValue> Res =
7222 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7223 getValue(Arg0), getValue(Arg1),
7224 MachinePointerInfo(Arg0));
7225 if (Res.first.getNode()) {
7226 processIntegerCallValue(I, Res.first, false);
7227 PendingLoads.push_back(Res.second);
7228 return true;
7231 return false;
7234 /// See if we can lower a unary floating-point operation into an SDNode with
7235 /// the specified Opcode. If so, return true and lower it, otherwise return
7236 /// false and it will be lowered like a normal call.
7237 /// The caller already checked that \p I calls the appropriate LibFunc with a
7238 /// correct prototype.
7239 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7240 unsigned Opcode) {
7241 // We already checked this call's prototype; verify it doesn't modify errno.
7242 if (!I.onlyReadsMemory())
7243 return false;
7245 SDValue Tmp = getValue(I.getArgOperand(0));
7246 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
7247 return true;
7250 /// See if we can lower a binary floating-point operation into an SDNode with
7251 /// the specified Opcode. If so, return true and lower it. Otherwise return
7252 /// false, and it will be lowered like a normal call.
7253 /// The caller already checked that \p I calls the appropriate LibFunc with a
7254 /// correct prototype.
7255 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7256 unsigned Opcode) {
7257 // We already checked this call's prototype; verify it doesn't modify errno.
7258 if (!I.onlyReadsMemory())
7259 return false;
7261 SDValue Tmp0 = getValue(I.getArgOperand(0));
7262 SDValue Tmp1 = getValue(I.getArgOperand(1));
7263 EVT VT = Tmp0.getValueType();
7264 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
7265 return true;
7268 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7269 // Handle inline assembly differently.
7270 if (isa<InlineAsm>(I.getCalledValue())) {
7271 visitInlineAsm(&I);
7272 return;
7275 const char *RenameFn = nullptr;
7276 if (Function *F = I.getCalledFunction()) {
7277 if (F->isDeclaration()) {
7278 // Is this an LLVM intrinsic or a target-specific intrinsic?
7279 unsigned IID = F->getIntrinsicID();
7280 if (!IID)
7281 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7282 IID = II->getIntrinsicID(F);
7284 if (IID) {
7285 RenameFn = visitIntrinsicCall(I, IID);
7286 if (!RenameFn)
7287 return;
7291 // Check for well-known libc/libm calls. If the function is internal, it
7292 // can't be a library call. Don't do the check if marked as nobuiltin for
7293 // some reason or the call site requires strict floating point semantics.
7294 LibFunc Func;
7295 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7296 F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7297 LibInfo->hasOptimizedCodeGen(Func)) {
7298 switch (Func) {
7299 default: break;
7300 case LibFunc_copysign:
7301 case LibFunc_copysignf:
7302 case LibFunc_copysignl:
7303 // We already checked this call's prototype; verify it doesn't modify
7304 // errno.
7305 if (I.onlyReadsMemory()) {
7306 SDValue LHS = getValue(I.getArgOperand(0));
7307 SDValue RHS = getValue(I.getArgOperand(1));
7308 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7309 LHS.getValueType(), LHS, RHS));
7310 return;
7312 break;
7313 case LibFunc_fabs:
7314 case LibFunc_fabsf:
7315 case LibFunc_fabsl:
7316 if (visitUnaryFloatCall(I, ISD::FABS))
7317 return;
7318 break;
7319 case LibFunc_fmin:
7320 case LibFunc_fminf:
7321 case LibFunc_fminl:
7322 if (visitBinaryFloatCall(I, ISD::FMINNUM))
7323 return;
7324 break;
7325 case LibFunc_fmax:
7326 case LibFunc_fmaxf:
7327 case LibFunc_fmaxl:
7328 if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7329 return;
7330 break;
7331 case LibFunc_sin:
7332 case LibFunc_sinf:
7333 case LibFunc_sinl:
7334 if (visitUnaryFloatCall(I, ISD::FSIN))
7335 return;
7336 break;
7337 case LibFunc_cos:
7338 case LibFunc_cosf:
7339 case LibFunc_cosl:
7340 if (visitUnaryFloatCall(I, ISD::FCOS))
7341 return;
7342 break;
7343 case LibFunc_sqrt:
7344 case LibFunc_sqrtf:
7345 case LibFunc_sqrtl:
7346 case LibFunc_sqrt_finite:
7347 case LibFunc_sqrtf_finite:
7348 case LibFunc_sqrtl_finite:
7349 if (visitUnaryFloatCall(I, ISD::FSQRT))
7350 return;
7351 break;
7352 case LibFunc_floor:
7353 case LibFunc_floorf:
7354 case LibFunc_floorl:
7355 if (visitUnaryFloatCall(I, ISD::FFLOOR))
7356 return;
7357 break;
7358 case LibFunc_nearbyint:
7359 case LibFunc_nearbyintf:
7360 case LibFunc_nearbyintl:
7361 if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7362 return;
7363 break;
7364 case LibFunc_ceil:
7365 case LibFunc_ceilf:
7366 case LibFunc_ceill:
7367 if (visitUnaryFloatCall(I, ISD::FCEIL))
7368 return;
7369 break;
7370 case LibFunc_rint:
7371 case LibFunc_rintf:
7372 case LibFunc_rintl:
7373 if (visitUnaryFloatCall(I, ISD::FRINT))
7374 return;
7375 break;
7376 case LibFunc_round:
7377 case LibFunc_roundf:
7378 case LibFunc_roundl:
7379 if (visitUnaryFloatCall(I, ISD::FROUND))
7380 return;
7381 break;
7382 case LibFunc_trunc:
7383 case LibFunc_truncf:
7384 case LibFunc_truncl:
7385 if (visitUnaryFloatCall(I, ISD::FTRUNC))
7386 return;
7387 break;
7388 case LibFunc_log2:
7389 case LibFunc_log2f:
7390 case LibFunc_log2l:
7391 if (visitUnaryFloatCall(I, ISD::FLOG2))
7392 return;
7393 break;
7394 case LibFunc_exp2:
7395 case LibFunc_exp2f:
7396 case LibFunc_exp2l:
7397 if (visitUnaryFloatCall(I, ISD::FEXP2))
7398 return;
7399 break;
7400 case LibFunc_memcmp:
7401 if (visitMemCmpCall(I))
7402 return;
7403 break;
7404 case LibFunc_mempcpy:
7405 if (visitMemPCpyCall(I))
7406 return;
7407 break;
7408 case LibFunc_memchr:
7409 if (visitMemChrCall(I))
7410 return;
7411 break;
7412 case LibFunc_strcpy:
7413 if (visitStrCpyCall(I, false))
7414 return;
7415 break;
7416 case LibFunc_stpcpy:
7417 if (visitStrCpyCall(I, true))
7418 return;
7419 break;
7420 case LibFunc_strcmp:
7421 if (visitStrCmpCall(I))
7422 return;
7423 break;
7424 case LibFunc_strlen:
7425 if (visitStrLenCall(I))
7426 return;
7427 break;
7428 case LibFunc_strnlen:
7429 if (visitStrNLenCall(I))
7430 return;
7431 break;
7436 SDValue Callee;
7437 if (!RenameFn)
7438 Callee = getValue(I.getCalledValue());
7439 else
7440 Callee = DAG.getExternalSymbol(
7441 RenameFn,
7442 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
7444 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7445 // have to do anything here to lower funclet bundles.
7446 assert(!I.hasOperandBundlesOtherThan(
7447 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
7448 "Cannot lower calls with arbitrary operand bundles!");
7450 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7451 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7452 else
7453 // Check if we can potentially perform a tail call. More detailed checking
7454 // is be done within LowerCallTo, after more information about the call is
7455 // known.
7456 LowerCallTo(&I, Callee, I.isTailCall());
7459 namespace {
7461 /// AsmOperandInfo - This contains information for each constraint that we are
7462 /// lowering.
7463 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7464 public:
7465 /// CallOperand - If this is the result output operand or a clobber
7466 /// this is null, otherwise it is the incoming operand to the CallInst.
7467 /// This gets modified as the asm is processed.
7468 SDValue CallOperand;
7470 /// AssignedRegs - If this is a register or register class operand, this
7471 /// contains the set of register corresponding to the operand.
7472 RegsForValue AssignedRegs;
7474 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7475 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7478 /// Whether or not this operand accesses memory
7479 bool hasMemory(const TargetLowering &TLI) const {
7480 // Indirect operand accesses access memory.
7481 if (isIndirect)
7482 return true;
7484 for (const auto &Code : Codes)
7485 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7486 return true;
7488 return false;
7491 /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7492 /// corresponds to. If there is no Value* for this operand, it returns
7493 /// MVT::Other.
7494 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7495 const DataLayout &DL) const {
7496 if (!CallOperandVal) return MVT::Other;
7498 if (isa<BasicBlock>(CallOperandVal))
7499 return TLI.getPointerTy(DL);
7501 llvm::Type *OpTy = CallOperandVal->getType();
7503 // FIXME: code duplicated from TargetLowering::ParseConstraints().
7504 // If this is an indirect operand, the operand is a pointer to the
7505 // accessed type.
7506 if (isIndirect) {
7507 PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7508 if (!PtrTy)
7509 report_fatal_error("Indirect operand for inline asm not a pointer!");
7510 OpTy = PtrTy->getElementType();
7513 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7514 if (StructType *STy = dyn_cast<StructType>(OpTy))
7515 if (STy->getNumElements() == 1)
7516 OpTy = STy->getElementType(0);
7518 // If OpTy is not a single value, it may be a struct/union that we
7519 // can tile with integers.
7520 if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7521 unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7522 switch (BitSize) {
7523 default: break;
7524 case 1:
7525 case 8:
7526 case 16:
7527 case 32:
7528 case 64:
7529 case 128:
7530 OpTy = IntegerType::get(Context, BitSize);
7531 break;
7535 return TLI.getValueType(DL, OpTy, true);
7539 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7541 } // end anonymous namespace
7543 /// Make sure that the output operand \p OpInfo and its corresponding input
7544 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7545 /// out).
7546 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7547 SDISelAsmOperandInfo &MatchingOpInfo,
7548 SelectionDAG &DAG) {
7549 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7550 return;
7552 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7553 const auto &TLI = DAG.getTargetLoweringInfo();
7555 std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7556 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7557 OpInfo.ConstraintVT);
7558 std::pair<unsigned, const TargetRegisterClass *> InputRC =
7559 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7560 MatchingOpInfo.ConstraintVT);
7561 if ((OpInfo.ConstraintVT.isInteger() !=
7562 MatchingOpInfo.ConstraintVT.isInteger()) ||
7563 (MatchRC.second != InputRC.second)) {
7564 // FIXME: error out in a more elegant fashion
7565 report_fatal_error("Unsupported asm: input constraint"
7566 " with a matching output constraint of"
7567 " incompatible type!");
7569 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7572 /// Get a direct memory input to behave well as an indirect operand.
7573 /// This may introduce stores, hence the need for a \p Chain.
7574 /// \return The (possibly updated) chain.
7575 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7576 SDISelAsmOperandInfo &OpInfo,
7577 SelectionDAG &DAG) {
7578 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7580 // If we don't have an indirect input, put it in the constpool if we can,
7581 // otherwise spill it to a stack slot.
7582 // TODO: This isn't quite right. We need to handle these according to
7583 // the addressing mode that the constraint wants. Also, this may take
7584 // an additional register for the computation and we don't want that
7585 // either.
7587 // If the operand is a float, integer, or vector constant, spill to a
7588 // constant pool entry to get its address.
7589 const Value *OpVal = OpInfo.CallOperandVal;
7590 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7591 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7592 OpInfo.CallOperand = DAG.getConstantPool(
7593 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7594 return Chain;
7597 // Otherwise, create a stack slot and emit a store to it before the asm.
7598 Type *Ty = OpVal->getType();
7599 auto &DL = DAG.getDataLayout();
7600 uint64_t TySize = DL.getTypeAllocSize(Ty);
7601 unsigned Align = DL.getPrefTypeAlignment(Ty);
7602 MachineFunction &MF = DAG.getMachineFunction();
7603 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7604 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7605 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7606 MachinePointerInfo::getFixedStack(MF, SSFI));
7607 OpInfo.CallOperand = StackSlot;
7609 return Chain;
7612 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7613 /// specified operand. We prefer to assign virtual registers, to allow the
7614 /// register allocator to handle the assignment process. However, if the asm
7615 /// uses features that we can't model on machineinstrs, we have SDISel do the
7616 /// allocation. This produces generally horrible, but correct, code.
7618 /// OpInfo describes the operand
7619 /// RefOpInfo describes the matching operand if any, the operand otherwise
7620 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7621 SDISelAsmOperandInfo &OpInfo,
7622 SDISelAsmOperandInfo &RefOpInfo) {
7623 LLVMContext &Context = *DAG.getContext();
7624 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7626 MachineFunction &MF = DAG.getMachineFunction();
7627 SmallVector<unsigned, 4> Regs;
7628 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7630 // No work to do for memory operations.
7631 if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7632 return;
7634 // If this is a constraint for a single physreg, or a constraint for a
7635 // register class, find it.
7636 unsigned AssignedReg;
7637 const TargetRegisterClass *RC;
7638 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7639 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7640 // RC is unset only on failure. Return immediately.
7641 if (!RC)
7642 return;
7644 // Get the actual register value type. This is important, because the user
7645 // may have asked for (e.g.) the AX register in i32 type. We need to
7646 // remember that AX is actually i16 to get the right extension.
7647 const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7649 if (OpInfo.ConstraintVT != MVT::Other) {
7650 // If this is an FP operand in an integer register (or visa versa), or more
7651 // generally if the operand value disagrees with the register class we plan
7652 // to stick it in, fix the operand type.
7654 // If this is an input value, the bitcast to the new type is done now.
7655 // Bitcast for output value is done at the end of visitInlineAsm().
7656 if ((OpInfo.Type == InlineAsm::isOutput ||
7657 OpInfo.Type == InlineAsm::isInput) &&
7658 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7659 // Try to convert to the first EVT that the reg class contains. If the
7660 // types are identical size, use a bitcast to convert (e.g. two differing
7661 // vector types). Note: output bitcast is done at the end of
7662 // visitInlineAsm().
7663 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7664 // Exclude indirect inputs while they are unsupported because the code
7665 // to perform the load is missing and thus OpInfo.CallOperand still
7666 // refers to the input address rather than the pointed-to value.
7667 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7668 OpInfo.CallOperand =
7669 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7670 OpInfo.ConstraintVT = RegVT;
7671 // If the operand is an FP value and we want it in integer registers,
7672 // use the corresponding integer type. This turns an f64 value into
7673 // i64, which can be passed with two i32 values on a 32-bit machine.
7674 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7675 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7676 if (OpInfo.Type == InlineAsm::isInput)
7677 OpInfo.CallOperand =
7678 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
7679 OpInfo.ConstraintVT = VT;
7684 // No need to allocate a matching input constraint since the constraint it's
7685 // matching to has already been allocated.
7686 if (OpInfo.isMatchingInputConstraint())
7687 return;
7689 EVT ValueVT = OpInfo.ConstraintVT;
7690 if (OpInfo.ConstraintVT == MVT::Other)
7691 ValueVT = RegVT;
7693 // Initialize NumRegs.
7694 unsigned NumRegs = 1;
7695 if (OpInfo.ConstraintVT != MVT::Other)
7696 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7698 // If this is a constraint for a specific physical register, like {r17},
7699 // assign it now.
7701 // If this associated to a specific register, initialize iterator to correct
7702 // place. If virtual, make sure we have enough registers
7704 // Initialize iterator if necessary
7705 TargetRegisterClass::iterator I = RC->begin();
7706 MachineRegisterInfo &RegInfo = MF.getRegInfo();
7708 // Do not check for single registers.
7709 if (AssignedReg) {
7710 for (; *I != AssignedReg; ++I)
7711 assert(I != RC->end() && "AssignedReg should be member of RC");
7714 for (; NumRegs; --NumRegs, ++I) {
7715 assert(I != RC->end() && "Ran out of registers to allocate!");
7716 auto R = (AssignedReg) ? *I : RegInfo.createVirtualRegister(RC);
7717 Regs.push_back(R);
7720 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7723 static unsigned
7724 findMatchingInlineAsmOperand(unsigned OperandNo,
7725 const std::vector<SDValue> &AsmNodeOperands) {
7726 // Scan until we find the definition we already emitted of this operand.
7727 unsigned CurOp = InlineAsm::Op_FirstOperand;
7728 for (; OperandNo; --OperandNo) {
7729 // Advance to the next operand.
7730 unsigned OpFlag =
7731 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7732 assert((InlineAsm::isRegDefKind(OpFlag) ||
7733 InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7734 InlineAsm::isMemKind(OpFlag)) &&
7735 "Skipped past definitions?");
7736 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7738 return CurOp;
7741 namespace {
7743 class ExtraFlags {
7744 unsigned Flags = 0;
7746 public:
7747 explicit ExtraFlags(ImmutableCallSite CS) {
7748 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7749 if (IA->hasSideEffects())
7750 Flags |= InlineAsm::Extra_HasSideEffects;
7751 if (IA->isAlignStack())
7752 Flags |= InlineAsm::Extra_IsAlignStack;
7753 if (CS.isConvergent())
7754 Flags |= InlineAsm::Extra_IsConvergent;
7755 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7758 void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7759 // Ideally, we would only check against memory constraints. However, the
7760 // meaning of an Other constraint can be target-specific and we can't easily
7761 // reason about it. Therefore, be conservative and set MayLoad/MayStore
7762 // for Other constraints as well.
7763 if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7764 OpInfo.ConstraintType == TargetLowering::C_Other) {
7765 if (OpInfo.Type == InlineAsm::isInput)
7766 Flags |= InlineAsm::Extra_MayLoad;
7767 else if (OpInfo.Type == InlineAsm::isOutput)
7768 Flags |= InlineAsm::Extra_MayStore;
7769 else if (OpInfo.Type == InlineAsm::isClobber)
7770 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
7774 unsigned get() const { return Flags; }
7777 } // end anonymous namespace
7779 /// visitInlineAsm - Handle a call to an InlineAsm object.
7780 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
7781 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7783 /// ConstraintOperands - Information about all of the constraints.
7784 SDISelAsmOperandInfoVector ConstraintOperands;
7786 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7787 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
7788 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
7790 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
7791 // AsmDialect, MayLoad, MayStore).
7792 bool HasSideEffect = IA->hasSideEffects();
7793 ExtraFlags ExtraInfo(CS);
7795 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
7796 unsigned ResNo = 0; // ResNo - The result number of the next output.
7797 for (auto &T : TargetConstraints) {
7798 ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
7799 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
7801 // Compute the value type for each operand.
7802 if (OpInfo.Type == InlineAsm::isInput ||
7803 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
7804 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
7806 // Process the call argument. BasicBlocks are labels, currently appearing
7807 // only in asm's.
7808 const Instruction *I = CS.getInstruction();
7809 if (isa<CallBrInst>(I) &&
7810 (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() -
7811 cast<CallBrInst>(I)->getNumIndirectDests())) {
7812 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
7813 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
7814 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
7815 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
7816 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
7817 } else {
7818 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
7821 OpInfo.ConstraintVT =
7822 OpInfo
7823 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
7824 .getSimpleVT();
7825 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
7826 // The return value of the call is this value. As such, there is no
7827 // corresponding argument.
7828 assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7829 if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
7830 OpInfo.ConstraintVT = TLI.getSimpleValueType(
7831 DAG.getDataLayout(), STy->getElementType(ResNo));
7832 } else {
7833 assert(ResNo == 0 && "Asm only has one result!");
7834 OpInfo.ConstraintVT =
7835 TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
7837 ++ResNo;
7838 } else {
7839 OpInfo.ConstraintVT = MVT::Other;
7842 if (!HasSideEffect)
7843 HasSideEffect = OpInfo.hasMemory(TLI);
7845 // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
7846 // FIXME: Could we compute this on OpInfo rather than T?
7848 // Compute the constraint code and ConstraintType to use.
7849 TLI.ComputeConstraintToUse(T, SDValue());
7851 ExtraInfo.update(T);
7854 // We won't need to flush pending loads if this asm doesn't touch
7855 // memory and is nonvolatile.
7856 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
7858 // Second pass over the constraints: compute which constraint option to use.
7859 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
7860 // If this is an output operand with a matching input operand, look up the
7861 // matching input. If their types mismatch, e.g. one is an integer, the
7862 // other is floating point, or their sizes are different, flag it as an
7863 // error.
7864 if (OpInfo.hasMatchingInput()) {
7865 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
7866 patchMatchingInput(OpInfo, Input, DAG);
7869 // Compute the constraint code and ConstraintType to use.
7870 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
7872 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7873 OpInfo.Type == InlineAsm::isClobber)
7874 continue;
7876 // If this is a memory input, and if the operand is not indirect, do what we
7877 // need to provide an address for the memory input.
7878 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
7879 !OpInfo.isIndirect) {
7880 assert((OpInfo.isMultipleAlternative ||
7881 (OpInfo.Type == InlineAsm::isInput)) &&
7882 "Can only indirectify direct input operands!");
7884 // Memory operands really want the address of the value.
7885 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
7887 // There is no longer a Value* corresponding to this operand.
7888 OpInfo.CallOperandVal = nullptr;
7890 // It is now an indirect operand.
7891 OpInfo.isIndirect = true;
7896 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
7897 std::vector<SDValue> AsmNodeOperands;
7898 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain
7899 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
7900 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
7902 // If we have a !srcloc metadata node associated with it, we want to attach
7903 // this to the ultimately generated inline asm machineinstr. To do this, we
7904 // pass in the third operand as this (potentially null) inline asm MDNode.
7905 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
7906 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
7908 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7909 // bits as operand 3.
7910 AsmNodeOperands.push_back(DAG.getTargetConstant(
7911 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7913 // Third pass: Loop over operands to prepare DAG-level operands.. As part of
7914 // this, assign virtual and physical registers for inputs and otput.
7915 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
7916 // Assign Registers.
7917 SDISelAsmOperandInfo &RefOpInfo =
7918 OpInfo.isMatchingInputConstraint()
7919 ? ConstraintOperands[OpInfo.getMatchedOperand()]
7920 : OpInfo;
7921 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
7923 switch (OpInfo.Type) {
7924 case InlineAsm::isOutput:
7925 if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7926 (OpInfo.ConstraintType == TargetLowering::C_Other &&
7927 OpInfo.isIndirect)) {
7928 unsigned ConstraintID =
7929 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7930 assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7931 "Failed to convert memory constraint code to constraint id.");
7933 // Add information to the INLINEASM node to know about this output.
7934 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7935 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
7936 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
7937 MVT::i32));
7938 AsmNodeOperands.push_back(OpInfo.CallOperand);
7939 break;
7940 } else if ((OpInfo.ConstraintType == TargetLowering::C_Other &&
7941 !OpInfo.isIndirect) ||
7942 OpInfo.ConstraintType == TargetLowering::C_Register ||
7943 OpInfo.ConstraintType == TargetLowering::C_RegisterClass) {
7944 // Otherwise, this outputs to a register (directly for C_Register /
7945 // C_RegisterClass, and a target-defined fashion for C_Other). Find a
7946 // register that we can use.
7947 if (OpInfo.AssignedRegs.Regs.empty()) {
7948 emitInlineAsmError(
7949 CS, "couldn't allocate output register for constraint '" +
7950 Twine(OpInfo.ConstraintCode) + "'");
7951 return;
7954 // Add information to the INLINEASM node to know that this register is
7955 // set.
7956 OpInfo.AssignedRegs.AddInlineAsmOperands(
7957 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
7958 : InlineAsm::Kind_RegDef,
7959 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
7961 break;
7963 case InlineAsm::isInput: {
7964 SDValue InOperandVal = OpInfo.CallOperand;
7966 if (OpInfo.isMatchingInputConstraint()) {
7967 // If this is required to match an output register we have already set,
7968 // just use its register.
7969 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
7970 AsmNodeOperands);
7971 unsigned OpFlag =
7972 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7973 if (InlineAsm::isRegDefKind(OpFlag) ||
7974 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
7975 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
7976 if (OpInfo.isIndirect) {
7977 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
7978 emitInlineAsmError(CS, "inline asm not supported yet:"
7979 " don't know how to handle tied "
7980 "indirect register inputs");
7981 return;
7984 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
7985 SmallVector<unsigned, 4> Regs;
7987 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
7988 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
7989 MachineRegisterInfo &RegInfo =
7990 DAG.getMachineFunction().getRegInfo();
7991 for (unsigned i = 0; i != NumRegs; ++i)
7992 Regs.push_back(RegInfo.createVirtualRegister(RC));
7993 } else {
7994 emitInlineAsmError(CS, "inline asm error: This value type register "
7995 "class is not natively supported!");
7996 return;
7999 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8001 SDLoc dl = getCurSDLoc();
8002 // Use the produced MatchedRegs object to
8003 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8004 CS.getInstruction());
8005 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8006 true, OpInfo.getMatchedOperand(), dl,
8007 DAG, AsmNodeOperands);
8008 break;
8011 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8012 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8013 "Unexpected number of operands");
8014 // Add information to the INLINEASM node to know about this input.
8015 // See InlineAsm.h isUseOperandTiedToDef.
8016 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8017 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8018 OpInfo.getMatchedOperand());
8019 AsmNodeOperands.push_back(DAG.getTargetConstant(
8020 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8021 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8022 break;
8025 // Treat indirect 'X' constraint as memory.
8026 if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8027 OpInfo.isIndirect)
8028 OpInfo.ConstraintType = TargetLowering::C_Memory;
8030 if (OpInfo.ConstraintType == TargetLowering::C_Other) {
8031 std::vector<SDValue> Ops;
8032 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8033 Ops, DAG);
8034 if (Ops.empty()) {
8035 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
8036 Twine(OpInfo.ConstraintCode) + "'");
8037 return;
8040 // Add information to the INLINEASM node to know about this input.
8041 unsigned ResOpType =
8042 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8043 AsmNodeOperands.push_back(DAG.getTargetConstant(
8044 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8045 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
8046 break;
8049 if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8050 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8051 assert(InOperandVal.getValueType() ==
8052 TLI.getPointerTy(DAG.getDataLayout()) &&
8053 "Memory operands expect pointer values");
8055 unsigned ConstraintID =
8056 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8057 assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8058 "Failed to convert memory constraint code to constraint id.");
8060 // Add information to the INLINEASM node to know about this input.
8061 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8062 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8063 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8064 getCurSDLoc(),
8065 MVT::i32));
8066 AsmNodeOperands.push_back(InOperandVal);
8067 break;
8070 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8071 OpInfo.ConstraintType == TargetLowering::C_Register) &&
8072 "Unknown constraint type!");
8074 // TODO: Support this.
8075 if (OpInfo.isIndirect) {
8076 emitInlineAsmError(
8077 CS, "Don't know how to handle indirect register inputs yet "
8078 "for constraint '" +
8079 Twine(OpInfo.ConstraintCode) + "'");
8080 return;
8083 // Copy the input into the appropriate registers.
8084 if (OpInfo.AssignedRegs.Regs.empty()) {
8085 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
8086 Twine(OpInfo.ConstraintCode) + "'");
8087 return;
8090 SDLoc dl = getCurSDLoc();
8092 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
8093 Chain, &Flag, CS.getInstruction());
8095 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8096 dl, DAG, AsmNodeOperands);
8097 break;
8099 case InlineAsm::isClobber:
8100 // Add the clobbered value to the operand list, so that the register
8101 // allocator is aware that the physreg got clobbered.
8102 if (!OpInfo.AssignedRegs.Regs.empty())
8103 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8104 false, 0, getCurSDLoc(), DAG,
8105 AsmNodeOperands);
8106 break;
8110 // Finish up input operands. Set the input chain and add the flag last.
8111 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8112 if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8114 unsigned ISDOpc = isa<CallBrInst>(CS.getInstruction()) ? ISD::INLINEASM_BR : ISD::INLINEASM;
8115 Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8116 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8117 Flag = Chain.getValue(1);
8119 // Do additional work to generate outputs.
8121 SmallVector<EVT, 1> ResultVTs;
8122 SmallVector<SDValue, 1> ResultValues;
8123 SmallVector<SDValue, 8> OutChains;
8125 llvm::Type *CSResultType = CS.getType();
8126 ArrayRef<Type *> ResultTypes;
8127 if (StructType *StructResult = dyn_cast<StructType>(CSResultType))
8128 ResultTypes = StructResult->elements();
8129 else if (!CSResultType->isVoidTy())
8130 ResultTypes = makeArrayRef(CSResultType);
8132 auto CurResultType = ResultTypes.begin();
8133 auto handleRegAssign = [&](SDValue V) {
8134 assert(CurResultType != ResultTypes.end() && "Unexpected value");
8135 assert((*CurResultType)->isSized() && "Unexpected unsized type");
8136 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8137 ++CurResultType;
8138 // If the type of the inline asm call site return value is different but has
8139 // same size as the type of the asm output bitcast it. One example of this
8140 // is for vectors with different width / number of elements. This can
8141 // happen for register classes that can contain multiple different value
8142 // types. The preg or vreg allocated may not have the same VT as was
8143 // expected.
8145 // This can also happen for a return value that disagrees with the register
8146 // class it is put in, eg. a double in a general-purpose register on a
8147 // 32-bit machine.
8148 if (ResultVT != V.getValueType() &&
8149 ResultVT.getSizeInBits() == V.getValueSizeInBits())
8150 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8151 else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8152 V.getValueType().isInteger()) {
8153 // If a result value was tied to an input value, the computed result
8154 // may have a wider width than the expected result. Extract the
8155 // relevant portion.
8156 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8158 assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8159 ResultVTs.push_back(ResultVT);
8160 ResultValues.push_back(V);
8163 // Deal with output operands.
8164 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8165 if (OpInfo.Type == InlineAsm::isOutput) {
8166 SDValue Val;
8167 // Skip trivial output operands.
8168 if (OpInfo.AssignedRegs.Regs.empty())
8169 continue;
8171 switch (OpInfo.ConstraintType) {
8172 case TargetLowering::C_Register:
8173 case TargetLowering::C_RegisterClass:
8174 Val = OpInfo.AssignedRegs.getCopyFromRegs(
8175 DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction());
8176 break;
8177 case TargetLowering::C_Other:
8178 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8179 OpInfo, DAG);
8180 break;
8181 case TargetLowering::C_Memory:
8182 break; // Already handled.
8183 case TargetLowering::C_Unknown:
8184 assert(false && "Unexpected unknown constraint");
8187 // Indirect output manifest as stores. Record output chains.
8188 if (OpInfo.isIndirect) {
8189 const Value *Ptr = OpInfo.CallOperandVal;
8190 assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8191 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8192 MachinePointerInfo(Ptr));
8193 OutChains.push_back(Store);
8194 } else {
8195 // generate CopyFromRegs to associated registers.
8196 assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8197 if (Val.getOpcode() == ISD::MERGE_VALUES) {
8198 for (const SDValue &V : Val->op_values())
8199 handleRegAssign(V);
8200 } else
8201 handleRegAssign(Val);
8206 // Set results.
8207 if (!ResultValues.empty()) {
8208 assert(CurResultType == ResultTypes.end() &&
8209 "Mismatch in number of ResultTypes");
8210 assert(ResultValues.size() == ResultTypes.size() &&
8211 "Mismatch in number of output operands in asm result");
8213 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8214 DAG.getVTList(ResultVTs), ResultValues);
8215 setValue(CS.getInstruction(), V);
8218 // Collect store chains.
8219 if (!OutChains.empty())
8220 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8222 // Only Update Root if inline assembly has a memory effect.
8223 if (ResultValues.empty() || HasSideEffect || !OutChains.empty())
8224 DAG.setRoot(Chain);
8227 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
8228 const Twine &Message) {
8229 LLVMContext &Ctx = *DAG.getContext();
8230 Ctx.emitError(CS.getInstruction(), Message);
8232 // Make sure we leave the DAG in a valid state
8233 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8234 SmallVector<EVT, 1> ValueVTs;
8235 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8237 if (ValueVTs.empty())
8238 return;
8240 SmallVector<SDValue, 1> Ops;
8241 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8242 Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8244 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc()));
8247 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8248 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8249 MVT::Other, getRoot(),
8250 getValue(I.getArgOperand(0)),
8251 DAG.getSrcValue(I.getArgOperand(0))));
8254 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8255 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8256 const DataLayout &DL = DAG.getDataLayout();
8257 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
8258 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
8259 DAG.getSrcValue(I.getOperand(0)),
8260 DL.getABITypeAlignment(I.getType()));
8261 setValue(&I, V);
8262 DAG.setRoot(V.getValue(1));
8265 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8266 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8267 MVT::Other, getRoot(),
8268 getValue(I.getArgOperand(0)),
8269 DAG.getSrcValue(I.getArgOperand(0))));
8272 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8273 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8274 MVT::Other, getRoot(),
8275 getValue(I.getArgOperand(0)),
8276 getValue(I.getArgOperand(1)),
8277 DAG.getSrcValue(I.getArgOperand(0)),
8278 DAG.getSrcValue(I.getArgOperand(1))));
8281 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8282 const Instruction &I,
8283 SDValue Op) {
8284 const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8285 if (!Range)
8286 return Op;
8288 ConstantRange CR = getConstantRangeFromMetadata(*Range);
8289 if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet())
8290 return Op;
8292 APInt Lo = CR.getUnsignedMin();
8293 if (!Lo.isMinValue())
8294 return Op;
8296 APInt Hi = CR.getUnsignedMax();
8297 unsigned Bits = std::max(Hi.getActiveBits(),
8298 static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8300 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8302 SDLoc SL = getCurSDLoc();
8304 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8305 DAG.getValueType(SmallVT));
8306 unsigned NumVals = Op.getNode()->getNumValues();
8307 if (NumVals == 1)
8308 return ZExt;
8310 SmallVector<SDValue, 4> Ops;
8312 Ops.push_back(ZExt);
8313 for (unsigned I = 1; I != NumVals; ++I)
8314 Ops.push_back(Op.getValue(I));
8316 return DAG.getMergeValues(Ops, SL);
8319 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8320 /// the call being lowered.
8322 /// This is a helper for lowering intrinsics that follow a target calling
8323 /// convention or require stack pointer adjustment. Only a subset of the
8324 /// intrinsic's operands need to participate in the calling convention.
8325 void SelectionDAGBuilder::populateCallLoweringInfo(
8326 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8327 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8328 bool IsPatchPoint) {
8329 TargetLowering::ArgListTy Args;
8330 Args.reserve(NumArgs);
8332 // Populate the argument list.
8333 // Attributes for args start at offset 1, after the return attribute.
8334 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8335 ArgI != ArgE; ++ArgI) {
8336 const Value *V = Call->getOperand(ArgI);
8338 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8340 TargetLowering::ArgListEntry Entry;
8341 Entry.Node = getValue(V);
8342 Entry.Ty = V->getType();
8343 Entry.setAttributes(Call, ArgI);
8344 Args.push_back(Entry);
8347 CLI.setDebugLoc(getCurSDLoc())
8348 .setChain(getRoot())
8349 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8350 .setDiscardResult(Call->use_empty())
8351 .setIsPatchPoint(IsPatchPoint);
8354 /// Add a stack map intrinsic call's live variable operands to a stackmap
8355 /// or patchpoint target node's operand list.
8357 /// Constants are converted to TargetConstants purely as an optimization to
8358 /// avoid constant materialization and register allocation.
8360 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8361 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
8362 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8363 /// address materialization and register allocation, but may also be required
8364 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8365 /// alloca in the entry block, then the runtime may assume that the alloca's
8366 /// StackMap location can be read immediately after compilation and that the
8367 /// location is valid at any point during execution (this is similar to the
8368 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8369 /// only available in a register, then the runtime would need to trap when
8370 /// execution reaches the StackMap in order to read the alloca's location.
8371 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
8372 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8373 SelectionDAGBuilder &Builder) {
8374 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
8375 SDValue OpVal = Builder.getValue(CS.getArgument(i));
8376 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8377 Ops.push_back(
8378 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8379 Ops.push_back(
8380 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8381 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8382 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8383 Ops.push_back(Builder.DAG.getTargetFrameIndex(
8384 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8385 } else
8386 Ops.push_back(OpVal);
8390 /// Lower llvm.experimental.stackmap directly to its target opcode.
8391 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8392 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8393 // [live variables...])
8395 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8397 SDValue Chain, InFlag, Callee, NullPtr;
8398 SmallVector<SDValue, 32> Ops;
8400 SDLoc DL = getCurSDLoc();
8401 Callee = getValue(CI.getCalledValue());
8402 NullPtr = DAG.getIntPtrConstant(0, DL, true);
8404 // The stackmap intrinsic only records the live variables (the arguemnts
8405 // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8406 // intrinsic, this won't be lowered to a function call. This means we don't
8407 // have to worry about calling conventions and target specific lowering code.
8408 // Instead we perform the call lowering right here.
8410 // chain, flag = CALLSEQ_START(chain, 0, 0)
8411 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8412 // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8414 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8415 InFlag = Chain.getValue(1);
8417 // Add the <id> and <numBytes> constants.
8418 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8419 Ops.push_back(DAG.getTargetConstant(
8420 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8421 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8422 Ops.push_back(DAG.getTargetConstant(
8423 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8424 MVT::i32));
8426 // Push live variables for the stack map.
8427 addStackMapLiveVars(&CI, 2, DL, Ops, *this);
8429 // We are not pushing any register mask info here on the operands list,
8430 // because the stackmap doesn't clobber anything.
8432 // Push the chain and the glue flag.
8433 Ops.push_back(Chain);
8434 Ops.push_back(InFlag);
8436 // Create the STACKMAP node.
8437 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8438 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8439 Chain = SDValue(SM, 0);
8440 InFlag = Chain.getValue(1);
8442 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8444 // Stackmaps don't generate values, so nothing goes into the NodeMap.
8446 // Set the root to the target-lowered call chain.
8447 DAG.setRoot(Chain);
8449 // Inform the Frame Information that we have a stackmap in this function.
8450 FuncInfo.MF->getFrameInfo().setHasStackMap();
8453 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8454 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
8455 const BasicBlock *EHPadBB) {
8456 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8457 // i32 <numBytes>,
8458 // i8* <target>,
8459 // i32 <numArgs>,
8460 // [Args...],
8461 // [live variables...])
8463 CallingConv::ID CC = CS.getCallingConv();
8464 bool IsAnyRegCC = CC == CallingConv::AnyReg;
8465 bool HasDef = !CS->getType()->isVoidTy();
8466 SDLoc dl = getCurSDLoc();
8467 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
8469 // Handle immediate and symbolic callees.
8470 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8471 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8472 /*isTarget=*/true);
8473 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8474 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8475 SDLoc(SymbolicCallee),
8476 SymbolicCallee->getValueType(0));
8478 // Get the real number of arguments participating in the call <numArgs>
8479 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
8480 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8482 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8483 // Intrinsics include all meta-operands up to but not including CC.
8484 unsigned NumMetaOpers = PatchPointOpers::CCPos;
8485 assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
8486 "Not enough arguments provided to the patchpoint intrinsic");
8488 // For AnyRegCC the arguments are lowered later on manually.
8489 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8490 Type *ReturnTy =
8491 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
8493 TargetLowering::CallLoweringInfo CLI(DAG);
8494 populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()),
8495 NumMetaOpers, NumCallArgs, Callee, ReturnTy, true);
8496 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8498 SDNode *CallEnd = Result.second.getNode();
8499 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8500 CallEnd = CallEnd->getOperand(0).getNode();
8502 /// Get a call instruction from the call sequence chain.
8503 /// Tail calls are not allowed.
8504 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8505 "Expected a callseq node.");
8506 SDNode *Call = CallEnd->getOperand(0).getNode();
8507 bool HasGlue = Call->getGluedNode();
8509 // Replace the target specific call node with the patchable intrinsic.
8510 SmallVector<SDValue, 8> Ops;
8512 // Add the <id> and <numBytes> constants.
8513 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8514 Ops.push_back(DAG.getTargetConstant(
8515 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8516 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8517 Ops.push_back(DAG.getTargetConstant(
8518 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8519 MVT::i32));
8521 // Add the callee.
8522 Ops.push_back(Callee);
8524 // Adjust <numArgs> to account for any arguments that have been passed on the
8525 // stack instead.
8526 // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8527 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8528 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8529 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8531 // Add the calling convention
8532 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8534 // Add the arguments we omitted previously. The register allocator should
8535 // place these in any free register.
8536 if (IsAnyRegCC)
8537 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8538 Ops.push_back(getValue(CS.getArgument(i)));
8540 // Push the arguments from the call instruction up to the register mask.
8541 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8542 Ops.append(Call->op_begin() + 2, e);
8544 // Push live variables for the stack map.
8545 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8547 // Push the register mask info.
8548 if (HasGlue)
8549 Ops.push_back(*(Call->op_end()-2));
8550 else
8551 Ops.push_back(*(Call->op_end()-1));
8553 // Push the chain (this is originally the first operand of the call, but
8554 // becomes now the last or second to last operand).
8555 Ops.push_back(*(Call->op_begin()));
8557 // Push the glue flag (last operand).
8558 if (HasGlue)
8559 Ops.push_back(*(Call->op_end()-1));
8561 SDVTList NodeTys;
8562 if (IsAnyRegCC && HasDef) {
8563 // Create the return types based on the intrinsic definition
8564 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8565 SmallVector<EVT, 3> ValueVTs;
8566 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8567 assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8569 // There is always a chain and a glue type at the end
8570 ValueVTs.push_back(MVT::Other);
8571 ValueVTs.push_back(MVT::Glue);
8572 NodeTys = DAG.getVTList(ValueVTs);
8573 } else
8574 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8576 // Replace the target specific call node with a PATCHPOINT node.
8577 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8578 dl, NodeTys, Ops);
8580 // Update the NodeMap.
8581 if (HasDef) {
8582 if (IsAnyRegCC)
8583 setValue(CS.getInstruction(), SDValue(MN, 0));
8584 else
8585 setValue(CS.getInstruction(), Result.first);
8588 // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8589 // call sequence. Furthermore the location of the chain and glue can change
8590 // when the AnyReg calling convention is used and the intrinsic returns a
8591 // value.
8592 if (IsAnyRegCC && HasDef) {
8593 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8594 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8595 DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8596 } else
8597 DAG.ReplaceAllUsesWith(Call, MN);
8598 DAG.DeleteNode(Call);
8600 // Inform the Frame Information that we have a patchpoint in this function.
8601 FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8604 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8605 unsigned Intrinsic) {
8606 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8607 SDValue Op1 = getValue(I.getArgOperand(0));
8608 SDValue Op2;
8609 if (I.getNumArgOperands() > 1)
8610 Op2 = getValue(I.getArgOperand(1));
8611 SDLoc dl = getCurSDLoc();
8612 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8613 SDValue Res;
8614 FastMathFlags FMF;
8615 if (isa<FPMathOperator>(I))
8616 FMF = I.getFastMathFlags();
8618 switch (Intrinsic) {
8619 case Intrinsic::experimental_vector_reduce_fadd:
8620 if (FMF.isFast())
8621 Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2);
8622 else
8623 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8624 break;
8625 case Intrinsic::experimental_vector_reduce_fmul:
8626 if (FMF.isFast())
8627 Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2);
8628 else
8629 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8630 break;
8631 case Intrinsic::experimental_vector_reduce_add:
8632 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8633 break;
8634 case Intrinsic::experimental_vector_reduce_mul:
8635 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8636 break;
8637 case Intrinsic::experimental_vector_reduce_and:
8638 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8639 break;
8640 case Intrinsic::experimental_vector_reduce_or:
8641 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8642 break;
8643 case Intrinsic::experimental_vector_reduce_xor:
8644 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8645 break;
8646 case Intrinsic::experimental_vector_reduce_smax:
8647 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8648 break;
8649 case Intrinsic::experimental_vector_reduce_smin:
8650 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8651 break;
8652 case Intrinsic::experimental_vector_reduce_umax:
8653 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8654 break;
8655 case Intrinsic::experimental_vector_reduce_umin:
8656 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8657 break;
8658 case Intrinsic::experimental_vector_reduce_fmax:
8659 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
8660 break;
8661 case Intrinsic::experimental_vector_reduce_fmin:
8662 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
8663 break;
8664 default:
8665 llvm_unreachable("Unhandled vector reduce intrinsic");
8667 setValue(&I, Res);
8670 /// Returns an AttributeList representing the attributes applied to the return
8671 /// value of the given call.
8672 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8673 SmallVector<Attribute::AttrKind, 2> Attrs;
8674 if (CLI.RetSExt)
8675 Attrs.push_back(Attribute::SExt);
8676 if (CLI.RetZExt)
8677 Attrs.push_back(Attribute::ZExt);
8678 if (CLI.IsInReg)
8679 Attrs.push_back(Attribute::InReg);
8681 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8682 Attrs);
8685 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8686 /// implementation, which just calls LowerCall.
8687 /// FIXME: When all targets are
8688 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8689 std::pair<SDValue, SDValue>
8690 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8691 // Handle the incoming return values from the call.
8692 CLI.Ins.clear();
8693 Type *OrigRetTy = CLI.RetTy;
8694 SmallVector<EVT, 4> RetTys;
8695 SmallVector<uint64_t, 4> Offsets;
8696 auto &DL = CLI.DAG.getDataLayout();
8697 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8699 if (CLI.IsPostTypeLegalization) {
8700 // If we are lowering a libcall after legalization, split the return type.
8701 SmallVector<EVT, 4> OldRetTys = std::move(RetTys);
8702 SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets);
8703 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8704 EVT RetVT = OldRetTys[i];
8705 uint64_t Offset = OldOffsets[i];
8706 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8707 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8708 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8709 RetTys.append(NumRegs, RegisterVT);
8710 for (unsigned j = 0; j != NumRegs; ++j)
8711 Offsets.push_back(Offset + j * RegisterVTByteSZ);
8715 SmallVector<ISD::OutputArg, 4> Outs;
8716 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8718 bool CanLowerReturn =
8719 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8720 CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8722 SDValue DemoteStackSlot;
8723 int DemoteStackIdx = -100;
8724 if (!CanLowerReturn) {
8725 // FIXME: equivalent assert?
8726 // assert(!CS.hasInAllocaArgument() &&
8727 // "sret demotion is incompatible with inalloca");
8728 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
8729 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
8730 MachineFunction &MF = CLI.DAG.getMachineFunction();
8731 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
8732 Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
8733 DL.getAllocaAddrSpace());
8735 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
8736 ArgListEntry Entry;
8737 Entry.Node = DemoteStackSlot;
8738 Entry.Ty = StackSlotPtrType;
8739 Entry.IsSExt = false;
8740 Entry.IsZExt = false;
8741 Entry.IsInReg = false;
8742 Entry.IsSRet = true;
8743 Entry.IsNest = false;
8744 Entry.IsByVal = false;
8745 Entry.IsReturned = false;
8746 Entry.IsSwiftSelf = false;
8747 Entry.IsSwiftError = false;
8748 Entry.Alignment = Align;
8749 CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
8750 CLI.NumFixedArgs += 1;
8751 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
8753 // sret demotion isn't compatible with tail-calls, since the sret argument
8754 // points into the callers stack frame.
8755 CLI.IsTailCall = false;
8756 } else {
8757 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8758 EVT VT = RetTys[I];
8759 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8760 CLI.CallConv, VT);
8761 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8762 CLI.CallConv, VT);
8763 for (unsigned i = 0; i != NumRegs; ++i) {
8764 ISD::InputArg MyFlags;
8765 MyFlags.VT = RegisterVT;
8766 MyFlags.ArgVT = VT;
8767 MyFlags.Used = CLI.IsReturnValueUsed;
8768 if (CLI.RetSExt)
8769 MyFlags.Flags.setSExt();
8770 if (CLI.RetZExt)
8771 MyFlags.Flags.setZExt();
8772 if (CLI.IsInReg)
8773 MyFlags.Flags.setInReg();
8774 CLI.Ins.push_back(MyFlags);
8779 // We push in swifterror return as the last element of CLI.Ins.
8780 ArgListTy &Args = CLI.getArgs();
8781 if (supportSwiftError()) {
8782 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8783 if (Args[i].IsSwiftError) {
8784 ISD::InputArg MyFlags;
8785 MyFlags.VT = getPointerTy(DL);
8786 MyFlags.ArgVT = EVT(getPointerTy(DL));
8787 MyFlags.Flags.setSwiftError();
8788 CLI.Ins.push_back(MyFlags);
8793 // Handle all of the outgoing arguments.
8794 CLI.Outs.clear();
8795 CLI.OutVals.clear();
8796 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8797 SmallVector<EVT, 4> ValueVTs;
8798 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
8799 // FIXME: Split arguments if CLI.IsPostTypeLegalization
8800 Type *FinalType = Args[i].Ty;
8801 if (Args[i].IsByVal)
8802 FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
8803 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
8804 FinalType, CLI.CallConv, CLI.IsVarArg);
8805 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
8806 ++Value) {
8807 EVT VT = ValueVTs[Value];
8808 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
8809 SDValue Op = SDValue(Args[i].Node.getNode(),
8810 Args[i].Node.getResNo() + Value);
8811 ISD::ArgFlagsTy Flags;
8813 // Certain targets (such as MIPS), may have a different ABI alignment
8814 // for a type depending on the context. Give the target a chance to
8815 // specify the alignment it wants.
8816 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL);
8818 if (Args[i].IsZExt)
8819 Flags.setZExt();
8820 if (Args[i].IsSExt)
8821 Flags.setSExt();
8822 if (Args[i].IsInReg) {
8823 // If we are using vectorcall calling convention, a structure that is
8824 // passed InReg - is surely an HVA
8825 if (CLI.CallConv == CallingConv::X86_VectorCall &&
8826 isa<StructType>(FinalType)) {
8827 // The first value of a structure is marked
8828 if (0 == Value)
8829 Flags.setHvaStart();
8830 Flags.setHva();
8832 // Set InReg Flag
8833 Flags.setInReg();
8835 if (Args[i].IsSRet)
8836 Flags.setSRet();
8837 if (Args[i].IsSwiftSelf)
8838 Flags.setSwiftSelf();
8839 if (Args[i].IsSwiftError)
8840 Flags.setSwiftError();
8841 if (Args[i].IsByVal)
8842 Flags.setByVal();
8843 if (Args[i].IsInAlloca) {
8844 Flags.setInAlloca();
8845 // Set the byval flag for CCAssignFn callbacks that don't know about
8846 // inalloca. This way we can know how many bytes we should've allocated
8847 // and how many bytes a callee cleanup function will pop. If we port
8848 // inalloca to more targets, we'll have to add custom inalloca handling
8849 // in the various CC lowering callbacks.
8850 Flags.setByVal();
8852 if (Args[i].IsByVal || Args[i].IsInAlloca) {
8853 PointerType *Ty = cast<PointerType>(Args[i].Ty);
8854 Type *ElementTy = Ty->getElementType();
8855 Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8856 // For ByVal, alignment should come from FE. BE will guess if this
8857 // info is not there but there are cases it cannot get right.
8858 unsigned FrameAlign;
8859 if (Args[i].Alignment)
8860 FrameAlign = Args[i].Alignment;
8861 else
8862 FrameAlign = getByValTypeAlignment(ElementTy, DL);
8863 Flags.setByValAlign(FrameAlign);
8865 if (Args[i].IsNest)
8866 Flags.setNest();
8867 if (NeedsRegBlock)
8868 Flags.setInConsecutiveRegs();
8869 Flags.setOrigAlign(OriginalAlignment);
8871 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8872 CLI.CallConv, VT);
8873 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8874 CLI.CallConv, VT);
8875 SmallVector<SDValue, 4> Parts(NumParts);
8876 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
8878 if (Args[i].IsSExt)
8879 ExtendKind = ISD::SIGN_EXTEND;
8880 else if (Args[i].IsZExt)
8881 ExtendKind = ISD::ZERO_EXTEND;
8883 // Conservatively only handle 'returned' on non-vectors that can be lowered,
8884 // for now.
8885 if (Args[i].IsReturned && !Op.getValueType().isVector() &&
8886 CanLowerReturn) {
8887 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
8888 "unexpected use of 'returned'");
8889 // Before passing 'returned' to the target lowering code, ensure that
8890 // either the register MVT and the actual EVT are the same size or that
8891 // the return value and argument are extended in the same way; in these
8892 // cases it's safe to pass the argument register value unchanged as the
8893 // return register value (although it's at the target's option whether
8894 // to do so)
8895 // TODO: allow code generation to take advantage of partially preserved
8896 // registers rather than clobbering the entire register when the
8897 // parameter extension method is not compatible with the return
8898 // extension method
8899 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
8900 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
8901 CLI.RetZExt == Args[i].IsZExt))
8902 Flags.setReturned();
8905 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
8906 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind);
8908 for (unsigned j = 0; j != NumParts; ++j) {
8909 // if it isn't first piece, alignment must be 1
8910 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
8911 i < CLI.NumFixedArgs,
8912 i, j*Parts[j].getValueType().getStoreSize());
8913 if (NumParts > 1 && j == 0)
8914 MyFlags.Flags.setSplit();
8915 else if (j != 0) {
8916 MyFlags.Flags.setOrigAlign(1);
8917 if (j == NumParts - 1)
8918 MyFlags.Flags.setSplitEnd();
8921 CLI.Outs.push_back(MyFlags);
8922 CLI.OutVals.push_back(Parts[j]);
8925 if (NeedsRegBlock && Value == NumValues - 1)
8926 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
8930 SmallVector<SDValue, 4> InVals;
8931 CLI.Chain = LowerCall(CLI, InVals);
8933 // Update CLI.InVals to use outside of this function.
8934 CLI.InVals = InVals;
8936 // Verify that the target's LowerCall behaved as expected.
8937 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
8938 "LowerCall didn't return a valid chain!");
8939 assert((!CLI.IsTailCall || InVals.empty()) &&
8940 "LowerCall emitted a return value for a tail call!");
8941 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
8942 "LowerCall didn't emit the correct number of values!");
8944 // For a tail call, the return value is merely live-out and there aren't
8945 // any nodes in the DAG representing it. Return a special value to
8946 // indicate that a tail call has been emitted and no more Instructions
8947 // should be processed in the current block.
8948 if (CLI.IsTailCall) {
8949 CLI.DAG.setRoot(CLI.Chain);
8950 return std::make_pair(SDValue(), SDValue());
8953 #ifndef NDEBUG
8954 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
8955 assert(InVals[i].getNode() && "LowerCall emitted a null value!");
8956 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
8957 "LowerCall emitted a value with the wrong type!");
8959 #endif
8961 SmallVector<SDValue, 4> ReturnValues;
8962 if (!CanLowerReturn) {
8963 // The instruction result is the result of loading from the
8964 // hidden sret parameter.
8965 SmallVector<EVT, 1> PVTs;
8966 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
8968 ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
8969 assert(PVTs.size() == 1 && "Pointers should fit in one register");
8970 EVT PtrVT = PVTs[0];
8972 unsigned NumValues = RetTys.size();
8973 ReturnValues.resize(NumValues);
8974 SmallVector<SDValue, 4> Chains(NumValues);
8976 // An aggregate return value cannot wrap around the address space, so
8977 // offsets to its parts don't wrap either.
8978 SDNodeFlags Flags;
8979 Flags.setNoUnsignedWrap(true);
8981 for (unsigned i = 0; i < NumValues; ++i) {
8982 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
8983 CLI.DAG.getConstant(Offsets[i], CLI.DL,
8984 PtrVT), Flags);
8985 SDValue L = CLI.DAG.getLoad(
8986 RetTys[i], CLI.DL, CLI.Chain, Add,
8987 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
8988 DemoteStackIdx, Offsets[i]),
8989 /* Alignment = */ 1);
8990 ReturnValues[i] = L;
8991 Chains[i] = L.getValue(1);
8994 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
8995 } else {
8996 // Collect the legal value parts into potentially illegal values
8997 // that correspond to the original function's return values.
8998 Optional<ISD::NodeType> AssertOp;
8999 if (CLI.RetSExt)
9000 AssertOp = ISD::AssertSext;
9001 else if (CLI.RetZExt)
9002 AssertOp = ISD::AssertZext;
9003 unsigned CurReg = 0;
9004 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9005 EVT VT = RetTys[I];
9006 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9007 CLI.CallConv, VT);
9008 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9009 CLI.CallConv, VT);
9011 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9012 NumRegs, RegisterVT, VT, nullptr,
9013 CLI.CallConv, AssertOp));
9014 CurReg += NumRegs;
9017 // For a function returning void, there is no return value. We can't create
9018 // such a node, so we just return a null return value in that case. In
9019 // that case, nothing will actually look at the value.
9020 if (ReturnValues.empty())
9021 return std::make_pair(SDValue(), CLI.Chain);
9024 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9025 CLI.DAG.getVTList(RetTys), ReturnValues);
9026 return std::make_pair(Res, CLI.Chain);
9029 void TargetLowering::LowerOperationWrapper(SDNode *N,
9030 SmallVectorImpl<SDValue> &Results,
9031 SelectionDAG &DAG) const {
9032 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
9033 Results.push_back(Res);
9036 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9037 llvm_unreachable("LowerOperation not implemented for this target!");
9040 void
9041 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9042 SDValue Op = getNonRegisterValue(V);
9043 assert((Op.getOpcode() != ISD::CopyFromReg ||
9044 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9045 "Copy from a reg to the same reg!");
9046 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
9048 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9049 // If this is an InlineAsm we have to match the registers required, not the
9050 // notional registers required by the type.
9052 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9053 None); // This is not an ABI copy.
9054 SDValue Chain = DAG.getEntryNode();
9056 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9057 FuncInfo.PreferredExtendType.end())
9058 ? ISD::ANY_EXTEND
9059 : FuncInfo.PreferredExtendType[V];
9060 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9061 PendingExports.push_back(Chain);
9064 #include "llvm/CodeGen/SelectionDAGISel.h"
9066 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9067 /// entry block, return true. This includes arguments used by switches, since
9068 /// the switch may expand into multiple basic blocks.
9069 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9070 // With FastISel active, we may be splitting blocks, so force creation
9071 // of virtual registers for all non-dead arguments.
9072 if (FastISel)
9073 return A->use_empty();
9075 const BasicBlock &Entry = A->getParent()->front();
9076 for (const User *U : A->users())
9077 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9078 return false; // Use not in entry block.
9080 return true;
9083 using ArgCopyElisionMapTy =
9084 DenseMap<const Argument *,
9085 std::pair<const AllocaInst *, const StoreInst *>>;
9087 /// Scan the entry block of the function in FuncInfo for arguments that look
9088 /// like copies into a local alloca. Record any copied arguments in
9089 /// ArgCopyElisionCandidates.
9090 static void
9091 findArgumentCopyElisionCandidates(const DataLayout &DL,
9092 FunctionLoweringInfo *FuncInfo,
9093 ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9094 // Record the state of every static alloca used in the entry block. Argument
9095 // allocas are all used in the entry block, so we need approximately as many
9096 // entries as we have arguments.
9097 enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9098 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9099 unsigned NumArgs = FuncInfo->Fn->arg_size();
9100 StaticAllocas.reserve(NumArgs * 2);
9102 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9103 if (!V)
9104 return nullptr;
9105 V = V->stripPointerCasts();
9106 const auto *AI = dyn_cast<AllocaInst>(V);
9107 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9108 return nullptr;
9109 auto Iter = StaticAllocas.insert({AI, Unknown});
9110 return &Iter.first->second;
9113 // Look for stores of arguments to static allocas. Look through bitcasts and
9114 // GEPs to handle type coercions, as long as the alloca is fully initialized
9115 // by the store. Any non-store use of an alloca escapes it and any subsequent
9116 // unanalyzed store might write it.
9117 // FIXME: Handle structs initialized with multiple stores.
9118 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9119 // Look for stores, and handle non-store uses conservatively.
9120 const auto *SI = dyn_cast<StoreInst>(&I);
9121 if (!SI) {
9122 // We will look through cast uses, so ignore them completely.
9123 if (I.isCast())
9124 continue;
9125 // Ignore debug info intrinsics, they don't escape or store to allocas.
9126 if (isa<DbgInfoIntrinsic>(I))
9127 continue;
9128 // This is an unknown instruction. Assume it escapes or writes to all
9129 // static alloca operands.
9130 for (const Use &U : I.operands()) {
9131 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9132 *Info = StaticAllocaInfo::Clobbered;
9134 continue;
9137 // If the stored value is a static alloca, mark it as escaped.
9138 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9139 *Info = StaticAllocaInfo::Clobbered;
9141 // Check if the destination is a static alloca.
9142 const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9143 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9144 if (!Info)
9145 continue;
9146 const AllocaInst *AI = cast<AllocaInst>(Dst);
9148 // Skip allocas that have been initialized or clobbered.
9149 if (*Info != StaticAllocaInfo::Unknown)
9150 continue;
9152 // Check if the stored value is an argument, and that this store fully
9153 // initializes the alloca. Don't elide copies from the same argument twice.
9154 const Value *Val = SI->getValueOperand()->stripPointerCasts();
9155 const auto *Arg = dyn_cast<Argument>(Val);
9156 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
9157 Arg->getType()->isEmptyTy() ||
9158 DL.getTypeStoreSize(Arg->getType()) !=
9159 DL.getTypeAllocSize(AI->getAllocatedType()) ||
9160 ArgCopyElisionCandidates.count(Arg)) {
9161 *Info = StaticAllocaInfo::Clobbered;
9162 continue;
9165 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9166 << '\n');
9168 // Mark this alloca and store for argument copy elision.
9169 *Info = StaticAllocaInfo::Elidable;
9170 ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9172 // Stop scanning if we've seen all arguments. This will happen early in -O0
9173 // builds, which is useful, because -O0 builds have large entry blocks and
9174 // many allocas.
9175 if (ArgCopyElisionCandidates.size() == NumArgs)
9176 break;
9180 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9181 /// ArgVal is a load from a suitable fixed stack object.
9182 static void tryToElideArgumentCopy(
9183 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
9184 DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9185 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9186 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9187 SDValue ArgVal, bool &ArgHasUses) {
9188 // Check if this is a load from a fixed stack object.
9189 auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9190 if (!LNode)
9191 return;
9192 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9193 if (!FINode)
9194 return;
9196 // Check that the fixed stack object is the right size and alignment.
9197 // Look at the alignment that the user wrote on the alloca instead of looking
9198 // at the stack object.
9199 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9200 assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9201 const AllocaInst *AI = ArgCopyIter->second.first;
9202 int FixedIndex = FINode->getIndex();
9203 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
9204 int OldIndex = AllocaIndex;
9205 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
9206 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9207 LLVM_DEBUG(
9208 dbgs() << " argument copy elision failed due to bad fixed stack "
9209 "object size\n");
9210 return;
9212 unsigned RequiredAlignment = AI->getAlignment();
9213 if (!RequiredAlignment) {
9214 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
9215 AI->getAllocatedType());
9217 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
9218 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca "
9219 "greater than stack argument alignment ("
9220 << RequiredAlignment << " vs "
9221 << MFI.getObjectAlignment(FixedIndex) << ")\n");
9222 return;
9225 // Perform the elision. Delete the old stack object and replace its only use
9226 // in the variable info map. Mark the stack object as mutable.
9227 LLVM_DEBUG({
9228 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9229 << " Replacing frame index " << OldIndex << " with " << FixedIndex
9230 << '\n';
9232 MFI.RemoveStackObject(OldIndex);
9233 MFI.setIsImmutableObjectIndex(FixedIndex, false);
9234 AllocaIndex = FixedIndex;
9235 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9236 Chains.push_back(ArgVal.getValue(1));
9238 // Avoid emitting code for the store implementing the copy.
9239 const StoreInst *SI = ArgCopyIter->second.second;
9240 ElidedArgCopyInstrs.insert(SI);
9242 // Check for uses of the argument again so that we can avoid exporting ArgVal
9243 // if it is't used by anything other than the store.
9244 for (const Value *U : Arg.users()) {
9245 if (U != SI) {
9246 ArgHasUses = true;
9247 break;
9252 void SelectionDAGISel::LowerArguments(const Function &F) {
9253 SelectionDAG &DAG = SDB->DAG;
9254 SDLoc dl = SDB->getCurSDLoc();
9255 const DataLayout &DL = DAG.getDataLayout();
9256 SmallVector<ISD::InputArg, 16> Ins;
9258 if (!FuncInfo->CanLowerReturn) {
9259 // Put in an sret pointer parameter before all the other parameters.
9260 SmallVector<EVT, 1> ValueVTs;
9261 ComputeValueVTs(*TLI, DAG.getDataLayout(),
9262 F.getReturnType()->getPointerTo(
9263 DAG.getDataLayout().getAllocaAddrSpace()),
9264 ValueVTs);
9266 // NOTE: Assuming that a pointer will never break down to more than one VT
9267 // or one register.
9268 ISD::ArgFlagsTy Flags;
9269 Flags.setSRet();
9270 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9271 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9272 ISD::InputArg::NoArgIndex, 0);
9273 Ins.push_back(RetArg);
9276 // Look for stores of arguments to static allocas. Mark such arguments with a
9277 // flag to ask the target to give us the memory location of that argument if
9278 // available.
9279 ArgCopyElisionMapTy ArgCopyElisionCandidates;
9280 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
9282 // Set up the incoming argument description vector.
9283 for (const Argument &Arg : F.args()) {
9284 unsigned ArgNo = Arg.getArgNo();
9285 SmallVector<EVT, 4> ValueVTs;
9286 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9287 bool isArgValueUsed = !Arg.use_empty();
9288 unsigned PartBase = 0;
9289 Type *FinalType = Arg.getType();
9290 if (Arg.hasAttribute(Attribute::ByVal))
9291 FinalType = cast<PointerType>(FinalType)->getElementType();
9292 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9293 FinalType, F.getCallingConv(), F.isVarArg());
9294 for (unsigned Value = 0, NumValues = ValueVTs.size();
9295 Value != NumValues; ++Value) {
9296 EVT VT = ValueVTs[Value];
9297 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9298 ISD::ArgFlagsTy Flags;
9300 // Certain targets (such as MIPS), may have a different ABI alignment
9301 // for a type depending on the context. Give the target a chance to
9302 // specify the alignment it wants.
9303 unsigned OriginalAlignment =
9304 TLI->getABIAlignmentForCallingConv(ArgTy, DL);
9306 if (Arg.hasAttribute(Attribute::ZExt))
9307 Flags.setZExt();
9308 if (Arg.hasAttribute(Attribute::SExt))
9309 Flags.setSExt();
9310 if (Arg.hasAttribute(Attribute::InReg)) {
9311 // If we are using vectorcall calling convention, a structure that is
9312 // passed InReg - is surely an HVA
9313 if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9314 isa<StructType>(Arg.getType())) {
9315 // The first value of a structure is marked
9316 if (0 == Value)
9317 Flags.setHvaStart();
9318 Flags.setHva();
9320 // Set InReg Flag
9321 Flags.setInReg();
9323 if (Arg.hasAttribute(Attribute::StructRet))
9324 Flags.setSRet();
9325 if (Arg.hasAttribute(Attribute::SwiftSelf))
9326 Flags.setSwiftSelf();
9327 if (Arg.hasAttribute(Attribute::SwiftError))
9328 Flags.setSwiftError();
9329 if (Arg.hasAttribute(Attribute::ByVal))
9330 Flags.setByVal();
9331 if (Arg.hasAttribute(Attribute::InAlloca)) {
9332 Flags.setInAlloca();
9333 // Set the byval flag for CCAssignFn callbacks that don't know about
9334 // inalloca. This way we can know how many bytes we should've allocated
9335 // and how many bytes a callee cleanup function will pop. If we port
9336 // inalloca to more targets, we'll have to add custom inalloca handling
9337 // in the various CC lowering callbacks.
9338 Flags.setByVal();
9340 if (F.getCallingConv() == CallingConv::X86_INTR) {
9341 // IA Interrupt passes frame (1st parameter) by value in the stack.
9342 if (ArgNo == 0)
9343 Flags.setByVal();
9345 if (Flags.isByVal() || Flags.isInAlloca()) {
9346 PointerType *Ty = cast<PointerType>(Arg.getType());
9347 Type *ElementTy = Ty->getElementType();
9348 Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
9349 // For ByVal, alignment should be passed from FE. BE will guess if
9350 // this info is not there but there are cases it cannot get right.
9351 unsigned FrameAlign;
9352 if (Arg.getParamAlignment())
9353 FrameAlign = Arg.getParamAlignment();
9354 else
9355 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9356 Flags.setByValAlign(FrameAlign);
9358 if (Arg.hasAttribute(Attribute::Nest))
9359 Flags.setNest();
9360 if (NeedsRegBlock)
9361 Flags.setInConsecutiveRegs();
9362 Flags.setOrigAlign(OriginalAlignment);
9363 if (ArgCopyElisionCandidates.count(&Arg))
9364 Flags.setCopyElisionCandidate();
9366 MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9367 *CurDAG->getContext(), F.getCallingConv(), VT);
9368 unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9369 *CurDAG->getContext(), F.getCallingConv(), VT);
9370 for (unsigned i = 0; i != NumRegs; ++i) {
9371 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9372 ArgNo, PartBase+i*RegisterVT.getStoreSize());
9373 if (NumRegs > 1 && i == 0)
9374 MyFlags.Flags.setSplit();
9375 // if it isn't first piece, alignment must be 1
9376 else if (i > 0) {
9377 MyFlags.Flags.setOrigAlign(1);
9378 if (i == NumRegs - 1)
9379 MyFlags.Flags.setSplitEnd();
9381 Ins.push_back(MyFlags);
9383 if (NeedsRegBlock && Value == NumValues - 1)
9384 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9385 PartBase += VT.getStoreSize();
9389 // Call the target to set up the argument values.
9390 SmallVector<SDValue, 8> InVals;
9391 SDValue NewRoot = TLI->LowerFormalArguments(
9392 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9394 // Verify that the target's LowerFormalArguments behaved as expected.
9395 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9396 "LowerFormalArguments didn't return a valid chain!");
9397 assert(InVals.size() == Ins.size() &&
9398 "LowerFormalArguments didn't emit the correct number of values!");
9399 LLVM_DEBUG({
9400 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9401 assert(InVals[i].getNode() &&
9402 "LowerFormalArguments emitted a null value!");
9403 assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9404 "LowerFormalArguments emitted a value with the wrong type!");
9408 // Update the DAG with the new chain value resulting from argument lowering.
9409 DAG.setRoot(NewRoot);
9411 // Set up the argument values.
9412 unsigned i = 0;
9413 if (!FuncInfo->CanLowerReturn) {
9414 // Create a virtual register for the sret pointer, and put in a copy
9415 // from the sret argument into it.
9416 SmallVector<EVT, 1> ValueVTs;
9417 ComputeValueVTs(*TLI, DAG.getDataLayout(),
9418 F.getReturnType()->getPointerTo(
9419 DAG.getDataLayout().getAllocaAddrSpace()),
9420 ValueVTs);
9421 MVT VT = ValueVTs[0].getSimpleVT();
9422 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9423 Optional<ISD::NodeType> AssertOp = None;
9424 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9425 nullptr, F.getCallingConv(), AssertOp);
9427 MachineFunction& MF = SDB->DAG.getMachineFunction();
9428 MachineRegisterInfo& RegInfo = MF.getRegInfo();
9429 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9430 FuncInfo->DemoteRegister = SRetReg;
9431 NewRoot =
9432 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9433 DAG.setRoot(NewRoot);
9435 // i indexes lowered arguments. Bump it past the hidden sret argument.
9436 ++i;
9439 SmallVector<SDValue, 4> Chains;
9440 DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9441 for (const Argument &Arg : F.args()) {
9442 SmallVector<SDValue, 4> ArgValues;
9443 SmallVector<EVT, 4> ValueVTs;
9444 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9445 unsigned NumValues = ValueVTs.size();
9446 if (NumValues == 0)
9447 continue;
9449 bool ArgHasUses = !Arg.use_empty();
9451 // Elide the copying store if the target loaded this argument from a
9452 // suitable fixed stack object.
9453 if (Ins[i].Flags.isCopyElisionCandidate()) {
9454 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9455 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9456 InVals[i], ArgHasUses);
9459 // If this argument is unused then remember its value. It is used to generate
9460 // debugging information.
9461 bool isSwiftErrorArg =
9462 TLI->supportSwiftError() &&
9463 Arg.hasAttribute(Attribute::SwiftError);
9464 if (!ArgHasUses && !isSwiftErrorArg) {
9465 SDB->setUnusedArgValue(&Arg, InVals[i]);
9467 // Also remember any frame index for use in FastISel.
9468 if (FrameIndexSDNode *FI =
9469 dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9470 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9473 for (unsigned Val = 0; Val != NumValues; ++Val) {
9474 EVT VT = ValueVTs[Val];
9475 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9476 F.getCallingConv(), VT);
9477 unsigned NumParts = TLI->getNumRegistersForCallingConv(
9478 *CurDAG->getContext(), F.getCallingConv(), VT);
9480 // Even an apparant 'unused' swifterror argument needs to be returned. So
9481 // we do generate a copy for it that can be used on return from the
9482 // function.
9483 if (ArgHasUses || isSwiftErrorArg) {
9484 Optional<ISD::NodeType> AssertOp;
9485 if (Arg.hasAttribute(Attribute::SExt))
9486 AssertOp = ISD::AssertSext;
9487 else if (Arg.hasAttribute(Attribute::ZExt))
9488 AssertOp = ISD::AssertZext;
9490 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9491 PartVT, VT, nullptr,
9492 F.getCallingConv(), AssertOp));
9495 i += NumParts;
9498 // We don't need to do anything else for unused arguments.
9499 if (ArgValues.empty())
9500 continue;
9502 // Note down frame index.
9503 if (FrameIndexSDNode *FI =
9504 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9505 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9507 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9508 SDB->getCurSDLoc());
9510 SDB->setValue(&Arg, Res);
9511 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9512 // We want to associate the argument with the frame index, among
9513 // involved operands, that correspond to the lowest address. The
9514 // getCopyFromParts function, called earlier, is swapping the order of
9515 // the operands to BUILD_PAIR depending on endianness. The result of
9516 // that swapping is that the least significant bits of the argument will
9517 // be in the first operand of the BUILD_PAIR node, and the most
9518 // significant bits will be in the second operand.
9519 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9520 if (LoadSDNode *LNode =
9521 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9522 if (FrameIndexSDNode *FI =
9523 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9524 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9527 // Update the SwiftErrorVRegDefMap.
9528 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9529 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9530 if (TargetRegisterInfo::isVirtualRegister(Reg))
9531 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
9532 FuncInfo->SwiftErrorArg, Reg);
9535 // If this argument is live outside of the entry block, insert a copy from
9536 // wherever we got it to the vreg that other BB's will reference it as.
9537 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
9538 // If we can, though, try to skip creating an unnecessary vreg.
9539 // FIXME: This isn't very clean... it would be nice to make this more
9540 // general. It's also subtly incompatible with the hacks FastISel
9541 // uses with vregs.
9542 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9543 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
9544 FuncInfo->ValueMap[&Arg] = Reg;
9545 continue;
9548 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9549 FuncInfo->InitializeRegForValue(&Arg);
9550 SDB->CopyToExportRegsIfNeeded(&Arg);
9554 if (!Chains.empty()) {
9555 Chains.push_back(NewRoot);
9556 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9559 DAG.setRoot(NewRoot);
9561 assert(i == InVals.size() && "Argument register count mismatch!");
9563 // If any argument copy elisions occurred and we have debug info, update the
9564 // stale frame indices used in the dbg.declare variable info table.
9565 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9566 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9567 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9568 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9569 if (I != ArgCopyElisionFrameIndexMap.end())
9570 VI.Slot = I->second;
9574 // Finally, if the target has anything special to do, allow it to do so.
9575 EmitFunctionEntryCode();
9578 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
9579 /// ensure constants are generated when needed. Remember the virtual registers
9580 /// that need to be added to the Machine PHI nodes as input. We cannot just
9581 /// directly add them, because expansion might result in multiple MBB's for one
9582 /// BB. As such, the start of the BB might correspond to a different MBB than
9583 /// the end.
9584 void
9585 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9586 const Instruction *TI = LLVMBB->getTerminator();
9588 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9590 // Check PHI nodes in successors that expect a value to be available from this
9591 // block.
9592 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9593 const BasicBlock *SuccBB = TI->getSuccessor(succ);
9594 if (!isa<PHINode>(SuccBB->begin())) continue;
9595 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9597 // If this terminator has multiple identical successors (common for
9598 // switches), only handle each succ once.
9599 if (!SuccsHandled.insert(SuccMBB).second)
9600 continue;
9602 MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9604 // At this point we know that there is a 1-1 correspondence between LLVM PHI
9605 // nodes and Machine PHI nodes, but the incoming operands have not been
9606 // emitted yet.
9607 for (const PHINode &PN : SuccBB->phis()) {
9608 // Ignore dead phi's.
9609 if (PN.use_empty())
9610 continue;
9612 // Skip empty types
9613 if (PN.getType()->isEmptyTy())
9614 continue;
9616 unsigned Reg;
9617 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9619 if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9620 unsigned &RegOut = ConstantsOut[C];
9621 if (RegOut == 0) {
9622 RegOut = FuncInfo.CreateRegs(C->getType());
9623 CopyValueToVirtualRegister(C, RegOut);
9625 Reg = RegOut;
9626 } else {
9627 DenseMap<const Value *, unsigned>::iterator I =
9628 FuncInfo.ValueMap.find(PHIOp);
9629 if (I != FuncInfo.ValueMap.end())
9630 Reg = I->second;
9631 else {
9632 assert(isa<AllocaInst>(PHIOp) &&
9633 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9634 "Didn't codegen value into a register!??");
9635 Reg = FuncInfo.CreateRegs(PHIOp->getType());
9636 CopyValueToVirtualRegister(PHIOp, Reg);
9640 // Remember that this register needs to added to the machine PHI node as
9641 // the input for this MBB.
9642 SmallVector<EVT, 4> ValueVTs;
9643 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9644 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
9645 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
9646 EVT VT = ValueVTs[vti];
9647 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
9648 for (unsigned i = 0, e = NumRegisters; i != e; ++i)
9649 FuncInfo.PHINodesToUpdate.push_back(
9650 std::make_pair(&*MBBI++, Reg + i));
9651 Reg += NumRegisters;
9656 ConstantsOut.clear();
9659 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9660 /// is 0.
9661 MachineBasicBlock *
9662 SelectionDAGBuilder::StackProtectorDescriptor::
9663 AddSuccessorMBB(const BasicBlock *BB,
9664 MachineBasicBlock *ParentMBB,
9665 bool IsLikely,
9666 MachineBasicBlock *SuccMBB) {
9667 // If SuccBB has not been created yet, create it.
9668 if (!SuccMBB) {
9669 MachineFunction *MF = ParentMBB->getParent();
9670 MachineFunction::iterator BBI(ParentMBB);
9671 SuccMBB = MF->CreateMachineBasicBlock(BB);
9672 MF->insert(++BBI, SuccMBB);
9674 // Add it as a successor of ParentMBB.
9675 ParentMBB->addSuccessor(
9676 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9677 return SuccMBB;
9680 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
9681 MachineFunction::iterator I(MBB);
9682 if (++I == FuncInfo.MF->end())
9683 return nullptr;
9684 return &*I;
9687 /// During lowering new call nodes can be created (such as memset, etc.).
9688 /// Those will become new roots of the current DAG, but complications arise
9689 /// when they are tail calls. In such cases, the call lowering will update
9690 /// the root, but the builder still needs to know that a tail call has been
9691 /// lowered in order to avoid generating an additional return.
9692 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
9693 // If the node is null, we do have a tail call.
9694 if (MaybeTC.getNode() != nullptr)
9695 DAG.setRoot(MaybeTC);
9696 else
9697 HasTailCall = true;
9700 uint64_t
9701 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters,
9702 unsigned First, unsigned Last) const {
9703 assert(Last >= First);
9704 const APInt &LowCase = Clusters[First].Low->getValue();
9705 const APInt &HighCase = Clusters[Last].High->getValue();
9706 assert(LowCase.getBitWidth() == HighCase.getBitWidth());
9708 // FIXME: A range of consecutive cases has 100% density, but only requires one
9709 // comparison to lower. We should discriminate against such consecutive ranges
9710 // in jump tables.
9712 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
9715 uint64_t SelectionDAGBuilder::getJumpTableNumCases(
9716 const SmallVectorImpl<unsigned> &TotalCases, unsigned First,
9717 unsigned Last) const {
9718 assert(Last >= First);
9719 assert(TotalCases[Last] >= TotalCases[First]);
9720 uint64_t NumCases =
9721 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
9722 return NumCases;
9725 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
9726 unsigned First, unsigned Last,
9727 const SwitchInst *SI,
9728 MachineBasicBlock *DefaultMBB,
9729 CaseCluster &JTCluster) {
9730 assert(First <= Last);
9732 auto Prob = BranchProbability::getZero();
9733 unsigned NumCmps = 0;
9734 std::vector<MachineBasicBlock*> Table;
9735 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
9737 // Initialize probabilities in JTProbs.
9738 for (unsigned I = First; I <= Last; ++I)
9739 JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
9741 for (unsigned I = First; I <= Last; ++I) {
9742 assert(Clusters[I].Kind == CC_Range);
9743 Prob += Clusters[I].Prob;
9744 const APInt &Low = Clusters[I].Low->getValue();
9745 const APInt &High = Clusters[I].High->getValue();
9746 NumCmps += (Low == High) ? 1 : 2;
9747 if (I != First) {
9748 // Fill the gap between this and the previous cluster.
9749 const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
9750 assert(PreviousHigh.slt(Low));
9751 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
9752 for (uint64_t J = 0; J < Gap; J++)
9753 Table.push_back(DefaultMBB);
9755 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
9756 for (uint64_t J = 0; J < ClusterSize; ++J)
9757 Table.push_back(Clusters[I].MBB);
9758 JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
9761 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9762 unsigned NumDests = JTProbs.size();
9763 if (TLI.isSuitableForBitTests(
9764 NumDests, NumCmps, Clusters[First].Low->getValue(),
9765 Clusters[Last].High->getValue(), DAG.getDataLayout())) {
9766 // Clusters[First..Last] should be lowered as bit tests instead.
9767 return false;
9770 // Create the MBB that will load from and jump through the table.
9771 // Note: We create it here, but it's not inserted into the function yet.
9772 MachineFunction *CurMF = FuncInfo.MF;
9773 MachineBasicBlock *JumpTableMBB =
9774 CurMF->CreateMachineBasicBlock(SI->getParent());
9776 // Add successors. Note: use table order for determinism.
9777 SmallPtrSet<MachineBasicBlock *, 8> Done;
9778 for (MachineBasicBlock *Succ : Table) {
9779 if (Done.count(Succ))
9780 continue;
9781 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
9782 Done.insert(Succ);
9784 JumpTableMBB->normalizeSuccProbs();
9786 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
9787 ->createJumpTableIndex(Table);
9789 // Set up the jump table info.
9790 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
9791 JumpTableHeader JTH(Clusters[First].Low->getValue(),
9792 Clusters[Last].High->getValue(), SI->getCondition(),
9793 nullptr, false);
9794 JTCases.emplace_back(std::move(JTH), std::move(JT));
9796 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
9797 JTCases.size() - 1, Prob);
9798 return true;
9801 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
9802 const SwitchInst *SI,
9803 MachineBasicBlock *DefaultMBB) {
9804 #ifndef NDEBUG
9805 // Clusters must be non-empty, sorted, and only contain Range clusters.
9806 assert(!Clusters.empty());
9807 for (CaseCluster &C : Clusters)
9808 assert(C.Kind == CC_Range);
9809 for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
9810 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
9811 #endif
9813 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9814 if (!TLI.areJTsAllowed(SI->getParent()->getParent()))
9815 return;
9817 const int64_t N = Clusters.size();
9818 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
9819 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
9821 if (N < 2 || N < MinJumpTableEntries)
9822 return;
9824 // TotalCases[i]: Total nbr of cases in Clusters[0..i].
9825 SmallVector<unsigned, 8> TotalCases(N);
9826 for (unsigned i = 0; i < N; ++i) {
9827 const APInt &Hi = Clusters[i].High->getValue();
9828 const APInt &Lo = Clusters[i].Low->getValue();
9829 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
9830 if (i != 0)
9831 TotalCases[i] += TotalCases[i - 1];
9834 // Cheap case: the whole range may be suitable for jump table.
9835 uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
9836 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
9837 assert(NumCases < UINT64_MAX / 100);
9838 assert(Range >= NumCases);
9839 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9840 CaseCluster JTCluster;
9841 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
9842 Clusters[0] = JTCluster;
9843 Clusters.resize(1);
9844 return;
9848 // The algorithm below is not suitable for -O0.
9849 if (TM.getOptLevel() == CodeGenOpt::None)
9850 return;
9852 // Split Clusters into minimum number of dense partitions. The algorithm uses
9853 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
9854 // for the Case Statement'" (1994), but builds the MinPartitions array in
9855 // reverse order to make it easier to reconstruct the partitions in ascending
9856 // order. In the choice between two optimal partitionings, it picks the one
9857 // which yields more jump tables.
9859 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
9860 SmallVector<unsigned, 8> MinPartitions(N);
9861 // LastElement[i] is the last element of the partition starting at i.
9862 SmallVector<unsigned, 8> LastElement(N);
9863 // PartitionsScore[i] is used to break ties when choosing between two
9864 // partitionings resulting in the same number of partitions.
9865 SmallVector<unsigned, 8> PartitionsScore(N);
9866 // For PartitionsScore, a small number of comparisons is considered as good as
9867 // a jump table and a single comparison is considered better than a jump
9868 // table.
9869 enum PartitionScores : unsigned {
9870 NoTable = 0,
9871 Table = 1,
9872 FewCases = 1,
9873 SingleCase = 2
9876 // Base case: There is only one way to partition Clusters[N-1].
9877 MinPartitions[N - 1] = 1;
9878 LastElement[N - 1] = N - 1;
9879 PartitionsScore[N - 1] = PartitionScores::SingleCase;
9881 // Note: loop indexes are signed to avoid underflow.
9882 for (int64_t i = N - 2; i >= 0; i--) {
9883 // Find optimal partitioning of Clusters[i..N-1].
9884 // Baseline: Put Clusters[i] into a partition on its own.
9885 MinPartitions[i] = MinPartitions[i + 1] + 1;
9886 LastElement[i] = i;
9887 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
9889 // Search for a solution that results in fewer partitions.
9890 for (int64_t j = N - 1; j > i; j--) {
9891 // Try building a partition from Clusters[i..j].
9892 uint64_t Range = getJumpTableRange(Clusters, i, j);
9893 uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j);
9894 assert(NumCases < UINT64_MAX / 100);
9895 assert(Range >= NumCases);
9896 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
9897 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
9898 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
9899 int64_t NumEntries = j - i + 1;
9901 if (NumEntries == 1)
9902 Score += PartitionScores::SingleCase;
9903 else if (NumEntries <= SmallNumberOfEntries)
9904 Score += PartitionScores::FewCases;
9905 else if (NumEntries >= MinJumpTableEntries)
9906 Score += PartitionScores::Table;
9908 // If this leads to fewer partitions, or to the same number of
9909 // partitions with better score, it is a better partitioning.
9910 if (NumPartitions < MinPartitions[i] ||
9911 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
9912 MinPartitions[i] = NumPartitions;
9913 LastElement[i] = j;
9914 PartitionsScore[i] = Score;
9920 // Iterate over the partitions, replacing some with jump tables in-place.
9921 unsigned DstIndex = 0;
9922 for (unsigned First = 0, Last; First < N; First = Last + 1) {
9923 Last = LastElement[First];
9924 assert(Last >= First);
9925 assert(DstIndex <= First);
9926 unsigned NumClusters = Last - First + 1;
9928 CaseCluster JTCluster;
9929 if (NumClusters >= MinJumpTableEntries &&
9930 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
9931 Clusters[DstIndex++] = JTCluster;
9932 } else {
9933 for (unsigned I = First; I <= Last; ++I)
9934 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
9937 Clusters.resize(DstIndex);
9940 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
9941 unsigned First, unsigned Last,
9942 const SwitchInst *SI,
9943 CaseCluster &BTCluster) {
9944 assert(First <= Last);
9945 if (First == Last)
9946 return false;
9948 BitVector Dests(FuncInfo.MF->getNumBlockIDs());
9949 unsigned NumCmps = 0;
9950 for (int64_t I = First; I <= Last; ++I) {
9951 assert(Clusters[I].Kind == CC_Range);
9952 Dests.set(Clusters[I].MBB->getNumber());
9953 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
9955 unsigned NumDests = Dests.count();
9957 APInt Low = Clusters[First].Low->getValue();
9958 APInt High = Clusters[Last].High->getValue();
9959 assert(Low.slt(High));
9961 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9962 const DataLayout &DL = DAG.getDataLayout();
9963 if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL))
9964 return false;
9966 APInt LowBound;
9967 APInt CmpRange;
9969 const int BitWidth = TLI.getPointerTy(DL).getSizeInBits();
9970 assert(TLI.rangeFitsInWord(Low, High, DL) &&
9971 "Case range must fit in bit mask!");
9973 // Check if the clusters cover a contiguous range such that no value in the
9974 // range will jump to the default statement.
9975 bool ContiguousRange = true;
9976 for (int64_t I = First + 1; I <= Last; ++I) {
9977 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
9978 ContiguousRange = false;
9979 break;
9983 if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
9984 // Optimize the case where all the case values fit in a word without having
9985 // to subtract minValue. In this case, we can optimize away the subtraction.
9986 LowBound = APInt::getNullValue(Low.getBitWidth());
9987 CmpRange = High;
9988 ContiguousRange = false;
9989 } else {
9990 LowBound = Low;
9991 CmpRange = High - Low;
9994 CaseBitsVector CBV;
9995 auto TotalProb = BranchProbability::getZero();
9996 for (unsigned i = First; i <= Last; ++i) {
9997 // Find the CaseBits for this destination.
9998 unsigned j;
9999 for (j = 0; j < CBV.size(); ++j)
10000 if (CBV[j].BB == Clusters[i].MBB)
10001 break;
10002 if (j == CBV.size())
10003 CBV.push_back(
10004 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
10005 CaseBits *CB = &CBV[j];
10007 // Update Mask, Bits and ExtraProb.
10008 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
10009 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
10010 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
10011 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
10012 CB->Bits += Hi - Lo + 1;
10013 CB->ExtraProb += Clusters[i].Prob;
10014 TotalProb += Clusters[i].Prob;
10017 BitTestInfo BTI;
10018 llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) {
10019 // Sort by probability first, number of bits second, bit mask third.
10020 if (a.ExtraProb != b.ExtraProb)
10021 return a.ExtraProb > b.ExtraProb;
10022 if (a.Bits != b.Bits)
10023 return a.Bits > b.Bits;
10024 return a.Mask < b.Mask;
10027 for (auto &CB : CBV) {
10028 MachineBasicBlock *BitTestBB =
10029 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
10030 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
10032 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
10033 SI->getCondition(), -1U, MVT::Other, false,
10034 ContiguousRange, nullptr, nullptr, std::move(BTI),
10035 TotalProb);
10037 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
10038 BitTestCases.size() - 1, TotalProb);
10039 return true;
10042 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
10043 const SwitchInst *SI) {
10044 // Partition Clusters into as few subsets as possible, where each subset has a
10045 // range that fits in a machine word and has <= 3 unique destinations.
10047 #ifndef NDEBUG
10048 // Clusters must be sorted and contain Range or JumpTable clusters.
10049 assert(!Clusters.empty());
10050 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
10051 for (const CaseCluster &C : Clusters)
10052 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
10053 for (unsigned i = 1; i < Clusters.size(); ++i)
10054 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
10055 #endif
10057 // The algorithm below is not suitable for -O0.
10058 if (TM.getOptLevel() == CodeGenOpt::None)
10059 return;
10061 // If target does not have legal shift left, do not emit bit tests at all.
10062 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10063 const DataLayout &DL = DAG.getDataLayout();
10065 EVT PTy = TLI.getPointerTy(DL);
10066 if (!TLI.isOperationLegal(ISD::SHL, PTy))
10067 return;
10069 int BitWidth = PTy.getSizeInBits();
10070 const int64_t N = Clusters.size();
10072 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
10073 SmallVector<unsigned, 8> MinPartitions(N);
10074 // LastElement[i] is the last element of the partition starting at i.
10075 SmallVector<unsigned, 8> LastElement(N);
10077 // FIXME: This might not be the best algorithm for finding bit test clusters.
10079 // Base case: There is only one way to partition Clusters[N-1].
10080 MinPartitions[N - 1] = 1;
10081 LastElement[N - 1] = N - 1;
10083 // Note: loop indexes are signed to avoid underflow.
10084 for (int64_t i = N - 2; i >= 0; --i) {
10085 // Find optimal partitioning of Clusters[i..N-1].
10086 // Baseline: Put Clusters[i] into a partition on its own.
10087 MinPartitions[i] = MinPartitions[i + 1] + 1;
10088 LastElement[i] = i;
10090 // Search for a solution that results in fewer partitions.
10091 // Note: the search is limited by BitWidth, reducing time complexity.
10092 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
10093 // Try building a partition from Clusters[i..j].
10095 // Check the range.
10096 if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(),
10097 Clusters[j].High->getValue(), DL))
10098 continue;
10100 // Check nbr of destinations and cluster types.
10101 // FIXME: This works, but doesn't seem very efficient.
10102 bool RangesOnly = true;
10103 BitVector Dests(FuncInfo.MF->getNumBlockIDs());
10104 for (int64_t k = i; k <= j; k++) {
10105 if (Clusters[k].Kind != CC_Range) {
10106 RangesOnly = false;
10107 break;
10109 Dests.set(Clusters[k].MBB->getNumber());
10111 if (!RangesOnly || Dests.count() > 3)
10112 break;
10114 // Check if it's a better partition.
10115 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
10116 if (NumPartitions < MinPartitions[i]) {
10117 // Found a better partition.
10118 MinPartitions[i] = NumPartitions;
10119 LastElement[i] = j;
10124 // Iterate over the partitions, replacing with bit-test clusters in-place.
10125 unsigned DstIndex = 0;
10126 for (unsigned First = 0, Last; First < N; First = Last + 1) {
10127 Last = LastElement[First];
10128 assert(First <= Last);
10129 assert(DstIndex <= First);
10131 CaseCluster BitTestCluster;
10132 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
10133 Clusters[DstIndex++] = BitTestCluster;
10134 } else {
10135 size_t NumClusters = Last - First + 1;
10136 std::memmove(&Clusters[DstIndex], &Clusters[First],
10137 sizeof(Clusters[0]) * NumClusters);
10138 DstIndex += NumClusters;
10141 Clusters.resize(DstIndex);
10144 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10145 MachineBasicBlock *SwitchMBB,
10146 MachineBasicBlock *DefaultMBB) {
10147 MachineFunction *CurMF = FuncInfo.MF;
10148 MachineBasicBlock *NextMBB = nullptr;
10149 MachineFunction::iterator BBI(W.MBB);
10150 if (++BBI != FuncInfo.MF->end())
10151 NextMBB = &*BBI;
10153 unsigned Size = W.LastCluster - W.FirstCluster + 1;
10155 BranchProbabilityInfo *BPI = FuncInfo.BPI;
10157 if (Size == 2 && W.MBB == SwitchMBB) {
10158 // If any two of the cases has the same destination, and if one value
10159 // is the same as the other, but has one bit unset that the other has set,
10160 // use bit manipulation to do two compares at once. For example:
10161 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10162 // TODO: This could be extended to merge any 2 cases in switches with 3
10163 // cases.
10164 // TODO: Handle cases where W.CaseBB != SwitchBB.
10165 CaseCluster &Small = *W.FirstCluster;
10166 CaseCluster &Big = *W.LastCluster;
10168 if (Small.Low == Small.High && Big.Low == Big.High &&
10169 Small.MBB == Big.MBB) {
10170 const APInt &SmallValue = Small.Low->getValue();
10171 const APInt &BigValue = Big.Low->getValue();
10173 // Check that there is only one bit different.
10174 APInt CommonBit = BigValue ^ SmallValue;
10175 if (CommonBit.isPowerOf2()) {
10176 SDValue CondLHS = getValue(Cond);
10177 EVT VT = CondLHS.getValueType();
10178 SDLoc DL = getCurSDLoc();
10180 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10181 DAG.getConstant(CommonBit, DL, VT));
10182 SDValue Cond = DAG.getSetCC(
10183 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10184 ISD::SETEQ);
10186 // Update successor info.
10187 // Both Small and Big will jump to Small.BB, so we sum up the
10188 // probabilities.
10189 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10190 if (BPI)
10191 addSuccessorWithProb(
10192 SwitchMBB, DefaultMBB,
10193 // The default destination is the first successor in IR.
10194 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10195 else
10196 addSuccessorWithProb(SwitchMBB, DefaultMBB);
10198 // Insert the true branch.
10199 SDValue BrCond =
10200 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10201 DAG.getBasicBlock(Small.MBB));
10202 // Insert the false branch.
10203 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10204 DAG.getBasicBlock(DefaultMBB));
10206 DAG.setRoot(BrCond);
10207 return;
10212 if (TM.getOptLevel() != CodeGenOpt::None) {
10213 // Here, we order cases by probability so the most likely case will be
10214 // checked first. However, two clusters can have the same probability in
10215 // which case their relative ordering is non-deterministic. So we use Low
10216 // as a tie-breaker as clusters are guaranteed to never overlap.
10217 llvm::sort(W.FirstCluster, W.LastCluster + 1,
10218 [](const CaseCluster &a, const CaseCluster &b) {
10219 return a.Prob != b.Prob ?
10220 a.Prob > b.Prob :
10221 a.Low->getValue().slt(b.Low->getValue());
10224 // Rearrange the case blocks so that the last one falls through if possible
10225 // without changing the order of probabilities.
10226 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10227 --I;
10228 if (I->Prob > W.LastCluster->Prob)
10229 break;
10230 if (I->Kind == CC_Range && I->MBB == NextMBB) {
10231 std::swap(*I, *W.LastCluster);
10232 break;
10237 // Compute total probability.
10238 BranchProbability DefaultProb = W.DefaultProb;
10239 BranchProbability UnhandledProbs = DefaultProb;
10240 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10241 UnhandledProbs += I->Prob;
10243 MachineBasicBlock *CurMBB = W.MBB;
10244 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10245 MachineBasicBlock *Fallthrough;
10246 if (I == W.LastCluster) {
10247 // For the last cluster, fall through to the default destination.
10248 Fallthrough = DefaultMBB;
10249 } else {
10250 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10251 CurMF->insert(BBI, Fallthrough);
10252 // Put Cond in a virtual register to make it available from the new blocks.
10253 ExportFromCurrentBlock(Cond);
10255 UnhandledProbs -= I->Prob;
10257 switch (I->Kind) {
10258 case CC_JumpTable: {
10259 // FIXME: Optimize away range check based on pivot comparisons.
10260 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
10261 JumpTable *JT = &JTCases[I->JTCasesIndex].second;
10263 // The jump block hasn't been inserted yet; insert it here.
10264 MachineBasicBlock *JumpMBB = JT->MBB;
10265 CurMF->insert(BBI, JumpMBB);
10267 auto JumpProb = I->Prob;
10268 auto FallthroughProb = UnhandledProbs;
10270 // If the default statement is a target of the jump table, we evenly
10271 // distribute the default probability to successors of CurMBB. Also
10272 // update the probability on the edge from JumpMBB to Fallthrough.
10273 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10274 SE = JumpMBB->succ_end();
10275 SI != SE; ++SI) {
10276 if (*SI == DefaultMBB) {
10277 JumpProb += DefaultProb / 2;
10278 FallthroughProb -= DefaultProb / 2;
10279 JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10280 JumpMBB->normalizeSuccProbs();
10281 break;
10285 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10286 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10287 CurMBB->normalizeSuccProbs();
10289 // The jump table header will be inserted in our current block, do the
10290 // range check, and fall through to our fallthrough block.
10291 JTH->HeaderBB = CurMBB;
10292 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10294 // If we're in the right place, emit the jump table header right now.
10295 if (CurMBB == SwitchMBB) {
10296 visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10297 JTH->Emitted = true;
10299 break;
10301 case CC_BitTests: {
10302 // FIXME: Optimize away range check based on pivot comparisons.
10303 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
10305 // The bit test blocks haven't been inserted yet; insert them here.
10306 for (BitTestCase &BTC : BTB->Cases)
10307 CurMF->insert(BBI, BTC.ThisBB);
10309 // Fill in fields of the BitTestBlock.
10310 BTB->Parent = CurMBB;
10311 BTB->Default = Fallthrough;
10313 BTB->DefaultProb = UnhandledProbs;
10314 // If the cases in bit test don't form a contiguous range, we evenly
10315 // distribute the probability on the edge to Fallthrough to two
10316 // successors of CurMBB.
10317 if (!BTB->ContiguousRange) {
10318 BTB->Prob += DefaultProb / 2;
10319 BTB->DefaultProb -= DefaultProb / 2;
10322 // If we're in the right place, emit the bit test header right now.
10323 if (CurMBB == SwitchMBB) {
10324 visitBitTestHeader(*BTB, SwitchMBB);
10325 BTB->Emitted = true;
10327 break;
10329 case CC_Range: {
10330 const Value *RHS, *LHS, *MHS;
10331 ISD::CondCode CC;
10332 if (I->Low == I->High) {
10333 // Check Cond == I->Low.
10334 CC = ISD::SETEQ;
10335 LHS = Cond;
10336 RHS=I->Low;
10337 MHS = nullptr;
10338 } else {
10339 // Check I->Low <= Cond <= I->High.
10340 CC = ISD::SETLE;
10341 LHS = I->Low;
10342 MHS = Cond;
10343 RHS = I->High;
10346 // The false probability is the sum of all unhandled cases.
10347 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10348 getCurSDLoc(), I->Prob, UnhandledProbs);
10350 if (CurMBB == SwitchMBB)
10351 visitSwitchCase(CB, SwitchMBB);
10352 else
10353 SwitchCases.push_back(CB);
10355 break;
10358 CurMBB = Fallthrough;
10362 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10363 CaseClusterIt First,
10364 CaseClusterIt Last) {
10365 return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10366 if (X.Prob != CC.Prob)
10367 return X.Prob > CC.Prob;
10369 // Ties are broken by comparing the case value.
10370 return X.Low->getValue().slt(CC.Low->getValue());
10374 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10375 const SwitchWorkListItem &W,
10376 Value *Cond,
10377 MachineBasicBlock *SwitchMBB) {
10378 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10379 "Clusters not sorted?");
10381 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10383 // Balance the tree based on branch probabilities to create a near-optimal (in
10384 // terms of search time given key frequency) binary search tree. See e.g. Kurt
10385 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10386 CaseClusterIt LastLeft = W.FirstCluster;
10387 CaseClusterIt FirstRight = W.LastCluster;
10388 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10389 auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10391 // Move LastLeft and FirstRight towards each other from opposite directions to
10392 // find a partitioning of the clusters which balances the probability on both
10393 // sides. If LeftProb and RightProb are equal, alternate which side is
10394 // taken to ensure 0-probability nodes are distributed evenly.
10395 unsigned I = 0;
10396 while (LastLeft + 1 < FirstRight) {
10397 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10398 LeftProb += (++LastLeft)->Prob;
10399 else
10400 RightProb += (--FirstRight)->Prob;
10401 I++;
10404 while (true) {
10405 // Our binary search tree differs from a typical BST in that ours can have up
10406 // to three values in each leaf. The pivot selection above doesn't take that
10407 // into account, which means the tree might require more nodes and be less
10408 // efficient. We compensate for this here.
10410 unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10411 unsigned NumRight = W.LastCluster - FirstRight + 1;
10413 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10414 // If one side has less than 3 clusters, and the other has more than 3,
10415 // consider taking a cluster from the other side.
10417 if (NumLeft < NumRight) {
10418 // Consider moving the first cluster on the right to the left side.
10419 CaseCluster &CC = *FirstRight;
10420 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10421 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10422 if (LeftSideRank <= RightSideRank) {
10423 // Moving the cluster to the left does not demote it.
10424 ++LastLeft;
10425 ++FirstRight;
10426 continue;
10428 } else {
10429 assert(NumRight < NumLeft);
10430 // Consider moving the last element on the left to the right side.
10431 CaseCluster &CC = *LastLeft;
10432 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10433 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10434 if (RightSideRank <= LeftSideRank) {
10435 // Moving the cluster to the right does not demot it.
10436 --LastLeft;
10437 --FirstRight;
10438 continue;
10442 break;
10445 assert(LastLeft + 1 == FirstRight);
10446 assert(LastLeft >= W.FirstCluster);
10447 assert(FirstRight <= W.LastCluster);
10449 // Use the first element on the right as pivot since we will make less-than
10450 // comparisons against it.
10451 CaseClusterIt PivotCluster = FirstRight;
10452 assert(PivotCluster > W.FirstCluster);
10453 assert(PivotCluster <= W.LastCluster);
10455 CaseClusterIt FirstLeft = W.FirstCluster;
10456 CaseClusterIt LastRight = W.LastCluster;
10458 const ConstantInt *Pivot = PivotCluster->Low;
10460 // New blocks will be inserted immediately after the current one.
10461 MachineFunction::iterator BBI(W.MBB);
10462 ++BBI;
10464 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10465 // we can branch to its destination directly if it's squeezed exactly in
10466 // between the known lower bound and Pivot - 1.
10467 MachineBasicBlock *LeftMBB;
10468 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10469 FirstLeft->Low == W.GE &&
10470 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10471 LeftMBB = FirstLeft->MBB;
10472 } else {
10473 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10474 FuncInfo.MF->insert(BBI, LeftMBB);
10475 WorkList.push_back(
10476 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10477 // Put Cond in a virtual register to make it available from the new blocks.
10478 ExportFromCurrentBlock(Cond);
10481 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10482 // single cluster, RHS.Low == Pivot, and we can branch to its destination
10483 // directly if RHS.High equals the current upper bound.
10484 MachineBasicBlock *RightMBB;
10485 if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10486 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10487 RightMBB = FirstRight->MBB;
10488 } else {
10489 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10490 FuncInfo.MF->insert(BBI, RightMBB);
10491 WorkList.push_back(
10492 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10493 // Put Cond in a virtual register to make it available from the new blocks.
10494 ExportFromCurrentBlock(Cond);
10497 // Create the CaseBlock record that will be used to lower the branch.
10498 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10499 getCurSDLoc(), LeftProb, RightProb);
10501 if (W.MBB == SwitchMBB)
10502 visitSwitchCase(CB, SwitchMBB);
10503 else
10504 SwitchCases.push_back(CB);
10507 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10508 // from the swith statement.
10509 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10510 BranchProbability PeeledCaseProb) {
10511 if (PeeledCaseProb == BranchProbability::getOne())
10512 return BranchProbability::getZero();
10513 BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10515 uint32_t Numerator = CaseProb.getNumerator();
10516 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10517 return BranchProbability(Numerator, std::max(Numerator, Denominator));
10520 // Try to peel the top probability case if it exceeds the threshold.
10521 // Return current MachineBasicBlock for the switch statement if the peeling
10522 // does not occur.
10523 // If the peeling is performed, return the newly created MachineBasicBlock
10524 // for the peeled switch statement. Also update Clusters to remove the peeled
10525 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10526 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10527 const SwitchInst &SI, CaseClusterVector &Clusters,
10528 BranchProbability &PeeledCaseProb) {
10529 MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10530 // Don't perform if there is only one cluster or optimizing for size.
10531 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10532 TM.getOptLevel() == CodeGenOpt::None ||
10533 SwitchMBB->getParent()->getFunction().optForMinSize())
10534 return SwitchMBB;
10536 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10537 unsigned PeeledCaseIndex = 0;
10538 bool SwitchPeeled = false;
10539 for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10540 CaseCluster &CC = Clusters[Index];
10541 if (CC.Prob < TopCaseProb)
10542 continue;
10543 TopCaseProb = CC.Prob;
10544 PeeledCaseIndex = Index;
10545 SwitchPeeled = true;
10547 if (!SwitchPeeled)
10548 return SwitchMBB;
10550 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10551 << TopCaseProb << "\n");
10553 // Record the MBB for the peeled switch statement.
10554 MachineFunction::iterator BBI(SwitchMBB);
10555 ++BBI;
10556 MachineBasicBlock *PeeledSwitchMBB =
10557 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10558 FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10560 ExportFromCurrentBlock(SI.getCondition());
10561 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10562 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10563 nullptr, nullptr, TopCaseProb.getCompl()};
10564 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10566 Clusters.erase(PeeledCaseIt);
10567 for (CaseCluster &CC : Clusters) {
10568 LLVM_DEBUG(
10569 dbgs() << "Scale the probablity for one cluster, before scaling: "
10570 << CC.Prob << "\n");
10571 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10572 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10574 PeeledCaseProb = TopCaseProb;
10575 return PeeledSwitchMBB;
10578 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10579 // Extract cases from the switch.
10580 BranchProbabilityInfo *BPI = FuncInfo.BPI;
10581 CaseClusterVector Clusters;
10582 Clusters.reserve(SI.getNumCases());
10583 for (auto I : SI.cases()) {
10584 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10585 const ConstantInt *CaseVal = I.getCaseValue();
10586 BranchProbability Prob =
10587 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10588 : BranchProbability(1, SI.getNumCases() + 1);
10589 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10592 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10594 // Cluster adjacent cases with the same destination. We do this at all
10595 // optimization levels because it's cheap to do and will make codegen faster
10596 // if there are many clusters.
10597 sortAndRangeify(Clusters);
10599 if (TM.getOptLevel() != CodeGenOpt::None) {
10600 // Replace an unreachable default with the most popular destination.
10601 // FIXME: Exploit unreachable default more aggressively.
10602 bool UnreachableDefault =
10603 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
10604 if (UnreachableDefault && !Clusters.empty()) {
10605 DenseMap<const BasicBlock *, unsigned> Popularity;
10606 unsigned MaxPop = 0;
10607 const BasicBlock *MaxBB = nullptr;
10608 for (auto I : SI.cases()) {
10609 const BasicBlock *BB = I.getCaseSuccessor();
10610 if (++Popularity[BB] > MaxPop) {
10611 MaxPop = Popularity[BB];
10612 MaxBB = BB;
10615 // Set new default.
10616 assert(MaxPop > 0 && MaxBB);
10617 DefaultMBB = FuncInfo.MBBMap[MaxBB];
10619 // Remove cases that were pointing to the destination that is now the
10620 // default.
10621 CaseClusterVector New;
10622 New.reserve(Clusters.size());
10623 for (CaseCluster &CC : Clusters) {
10624 if (CC.MBB != DefaultMBB)
10625 New.push_back(CC);
10627 Clusters = std::move(New);
10631 // The branch probablity of the peeled case.
10632 BranchProbability PeeledCaseProb = BranchProbability::getZero();
10633 MachineBasicBlock *PeeledSwitchMBB =
10634 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10636 // If there is only the default destination, jump there directly.
10637 MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10638 if (Clusters.empty()) {
10639 assert(PeeledSwitchMBB == SwitchMBB);
10640 SwitchMBB->addSuccessor(DefaultMBB);
10641 if (DefaultMBB != NextBlock(SwitchMBB)) {
10642 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10643 getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10645 return;
10648 findJumpTables(Clusters, &SI, DefaultMBB);
10649 findBitTestClusters(Clusters, &SI);
10651 LLVM_DEBUG({
10652 dbgs() << "Case clusters: ";
10653 for (const CaseCluster &C : Clusters) {
10654 if (C.Kind == CC_JumpTable)
10655 dbgs() << "JT:";
10656 if (C.Kind == CC_BitTests)
10657 dbgs() << "BT:";
10659 C.Low->getValue().print(dbgs(), true);
10660 if (C.Low != C.High) {
10661 dbgs() << '-';
10662 C.High->getValue().print(dbgs(), true);
10664 dbgs() << ' ';
10666 dbgs() << '\n';
10669 assert(!Clusters.empty());
10670 SwitchWorkList WorkList;
10671 CaseClusterIt First = Clusters.begin();
10672 CaseClusterIt Last = Clusters.end() - 1;
10673 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10674 // Scale the branchprobability for DefaultMBB if the peel occurs and
10675 // DefaultMBB is not replaced.
10676 if (PeeledCaseProb != BranchProbability::getZero() &&
10677 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10678 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10679 WorkList.push_back(
10680 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10682 while (!WorkList.empty()) {
10683 SwitchWorkListItem W = WorkList.back();
10684 WorkList.pop_back();
10685 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10687 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10688 !DefaultMBB->getParent()->getFunction().optForMinSize()) {
10689 // For optimized builds, lower large range as a balanced binary tree.
10690 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10691 continue;
10694 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);