1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/TargetInstrInfo.h"
14 #include "llvm/CodeGen/MachineFrameInfo.h"
15 #include "llvm/CodeGen/MachineInstrBuilder.h"
16 #include "llvm/CodeGen/MachineMemOperand.h"
17 #include "llvm/CodeGen/MachineRegisterInfo.h"
18 #include "llvm/CodeGen/PseudoSourceValue.h"
19 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
20 #include "llvm/CodeGen/StackMaps.h"
21 #include "llvm/CodeGen/TargetFrameLowering.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetRegisterInfo.h"
24 #include "llvm/CodeGen/TargetSchedule.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/MC/MCAsmInfo.h"
27 #include "llvm/MC/MCInstrItineraries.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Target/TargetMachine.h"
36 static cl::opt
<bool> DisableHazardRecognizer(
37 "disable-sched-hazard", cl::Hidden
, cl::init(false),
38 cl::desc("Disable hazard detection during preRA scheduling"));
40 TargetInstrInfo::~TargetInstrInfo() {
43 const TargetRegisterClass
*
44 TargetInstrInfo::getRegClass(const MCInstrDesc
&MCID
, unsigned OpNum
,
45 const TargetRegisterInfo
*TRI
,
46 const MachineFunction
&MF
) const {
47 if (OpNum
>= MCID
.getNumOperands())
50 short RegClass
= MCID
.OpInfo
[OpNum
].RegClass
;
51 if (MCID
.OpInfo
[OpNum
].isLookupPtrRegClass())
52 return TRI
->getPointerRegClass(MF
, RegClass
);
54 // Instructions like INSERT_SUBREG do not have fixed register classes.
58 // Otherwise just look it up normally.
59 return TRI
->getRegClass(RegClass
);
62 /// insertNoop - Insert a noop into the instruction stream at the specified
64 void TargetInstrInfo::insertNoop(MachineBasicBlock
&MBB
,
65 MachineBasicBlock::iterator MI
) const {
66 llvm_unreachable("Target didn't implement insertNoop!");
69 static bool isAsmComment(const char *Str
, const MCAsmInfo
&MAI
) {
70 return strncmp(Str
, MAI
.getCommentString().data(),
71 MAI
.getCommentString().size()) == 0;
74 /// Measure the specified inline asm to determine an approximation of its
76 /// Comments (which run till the next SeparatorString or newline) do not
77 /// count as an instruction.
78 /// Any other non-whitespace text is considered an instruction, with
79 /// multiple instructions separated by SeparatorString or newlines.
80 /// Variable-length instructions are not handled here; this function
81 /// may be overloaded in the target code to do that.
82 /// We implement a special case of the .space directive which takes only a
83 /// single integer argument in base 10 that is the size in bytes. This is a
84 /// restricted form of the GAS directive in that we only interpret
85 /// simple--i.e. not a logical or arithmetic expression--size values without
86 /// the optional fill value. This is primarily used for creating arbitrary
87 /// sized inline asm blocks for testing purposes.
88 unsigned TargetInstrInfo::getInlineAsmLength(const char *Str
,
89 const MCAsmInfo
&MAI
) const {
90 // Count the number of instructions in the asm.
91 bool AtInsnStart
= true;
94 if (*Str
== '\n' || strncmp(Str
, MAI
.getSeparatorString(),
95 strlen(MAI
.getSeparatorString())) == 0) {
97 } else if (isAsmComment(Str
, MAI
)) {
98 // Stop counting as an instruction after a comment until the next
103 if (AtInsnStart
&& !std::isspace(static_cast<unsigned char>(*Str
))) {
104 unsigned AddLength
= MAI
.getMaxInstLength();
105 if (strncmp(Str
, ".space", 6) == 0) {
108 SpaceSize
= strtol(Str
+ 6, &EStr
, 10);
109 SpaceSize
= SpaceSize
< 0 ? 0 : SpaceSize
;
110 while (*EStr
!= '\n' && std::isspace(static_cast<unsigned char>(*EStr
)))
112 if (*EStr
== '\0' || *EStr
== '\n' ||
113 isAsmComment(EStr
, MAI
)) // Successfully parsed .space argument
114 AddLength
= SpaceSize
;
124 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
125 /// after it, replacing it with an unconditional branch to NewDest.
127 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail
,
128 MachineBasicBlock
*NewDest
) const {
129 MachineBasicBlock
*MBB
= Tail
->getParent();
131 // Remove all the old successors of MBB from the CFG.
132 while (!MBB
->succ_empty())
133 MBB
->removeSuccessor(MBB
->succ_begin());
135 // Save off the debug loc before erasing the instruction.
136 DebugLoc DL
= Tail
->getDebugLoc();
138 // Remove all the dead instructions from the end of MBB.
139 MBB
->erase(Tail
, MBB
->end());
141 // If MBB isn't immediately before MBB, insert a branch to it.
142 if (++MachineFunction::iterator(MBB
) != MachineFunction::iterator(NewDest
))
143 insertBranch(*MBB
, NewDest
, nullptr, SmallVector
<MachineOperand
, 0>(), DL
);
144 MBB
->addSuccessor(NewDest
);
147 MachineInstr
*TargetInstrInfo::commuteInstructionImpl(MachineInstr
&MI
,
148 bool NewMI
, unsigned Idx1
,
149 unsigned Idx2
) const {
150 const MCInstrDesc
&MCID
= MI
.getDesc();
151 bool HasDef
= MCID
.getNumDefs();
152 if (HasDef
&& !MI
.getOperand(0).isReg())
153 // No idea how to commute this instruction. Target should implement its own.
156 unsigned CommutableOpIdx1
= Idx1
; (void)CommutableOpIdx1
;
157 unsigned CommutableOpIdx2
= Idx2
; (void)CommutableOpIdx2
;
158 assert(findCommutedOpIndices(MI
, CommutableOpIdx1
, CommutableOpIdx2
) &&
159 CommutableOpIdx1
== Idx1
&& CommutableOpIdx2
== Idx2
&&
160 "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands.");
161 assert(MI
.getOperand(Idx1
).isReg() && MI
.getOperand(Idx2
).isReg() &&
162 "This only knows how to commute register operands so far");
164 unsigned Reg0
= HasDef
? MI
.getOperand(0).getReg() : 0;
165 unsigned Reg1
= MI
.getOperand(Idx1
).getReg();
166 unsigned Reg2
= MI
.getOperand(Idx2
).getReg();
167 unsigned SubReg0
= HasDef
? MI
.getOperand(0).getSubReg() : 0;
168 unsigned SubReg1
= MI
.getOperand(Idx1
).getSubReg();
169 unsigned SubReg2
= MI
.getOperand(Idx2
).getSubReg();
170 bool Reg1IsKill
= MI
.getOperand(Idx1
).isKill();
171 bool Reg2IsKill
= MI
.getOperand(Idx2
).isKill();
172 bool Reg1IsUndef
= MI
.getOperand(Idx1
).isUndef();
173 bool Reg2IsUndef
= MI
.getOperand(Idx2
).isUndef();
174 bool Reg1IsInternal
= MI
.getOperand(Idx1
).isInternalRead();
175 bool Reg2IsInternal
= MI
.getOperand(Idx2
).isInternalRead();
176 // Avoid calling isRenamable for virtual registers since we assert that
177 // renamable property is only queried/set for physical registers.
178 bool Reg1IsRenamable
= TargetRegisterInfo::isPhysicalRegister(Reg1
)
179 ? MI
.getOperand(Idx1
).isRenamable()
181 bool Reg2IsRenamable
= TargetRegisterInfo::isPhysicalRegister(Reg2
)
182 ? MI
.getOperand(Idx2
).isRenamable()
184 // If destination is tied to either of the commuted source register, then
185 // it must be updated.
186 if (HasDef
&& Reg0
== Reg1
&&
187 MI
.getDesc().getOperandConstraint(Idx1
, MCOI::TIED_TO
) == 0) {
191 } else if (HasDef
&& Reg0
== Reg2
&&
192 MI
.getDesc().getOperandConstraint(Idx2
, MCOI::TIED_TO
) == 0) {
198 MachineInstr
*CommutedMI
= nullptr;
200 // Create a new instruction.
201 MachineFunction
&MF
= *MI
.getMF();
202 CommutedMI
= MF
.CloneMachineInstr(&MI
);
208 CommutedMI
->getOperand(0).setReg(Reg0
);
209 CommutedMI
->getOperand(0).setSubReg(SubReg0
);
211 CommutedMI
->getOperand(Idx2
).setReg(Reg1
);
212 CommutedMI
->getOperand(Idx1
).setReg(Reg2
);
213 CommutedMI
->getOperand(Idx2
).setSubReg(SubReg1
);
214 CommutedMI
->getOperand(Idx1
).setSubReg(SubReg2
);
215 CommutedMI
->getOperand(Idx2
).setIsKill(Reg1IsKill
);
216 CommutedMI
->getOperand(Idx1
).setIsKill(Reg2IsKill
);
217 CommutedMI
->getOperand(Idx2
).setIsUndef(Reg1IsUndef
);
218 CommutedMI
->getOperand(Idx1
).setIsUndef(Reg2IsUndef
);
219 CommutedMI
->getOperand(Idx2
).setIsInternalRead(Reg1IsInternal
);
220 CommutedMI
->getOperand(Idx1
).setIsInternalRead(Reg2IsInternal
);
221 // Avoid calling setIsRenamable for virtual registers since we assert that
222 // renamable property is only queried/set for physical registers.
223 if (TargetRegisterInfo::isPhysicalRegister(Reg1
))
224 CommutedMI
->getOperand(Idx2
).setIsRenamable(Reg1IsRenamable
);
225 if (TargetRegisterInfo::isPhysicalRegister(Reg2
))
226 CommutedMI
->getOperand(Idx1
).setIsRenamable(Reg2IsRenamable
);
230 MachineInstr
*TargetInstrInfo::commuteInstruction(MachineInstr
&MI
, bool NewMI
,
232 unsigned OpIdx2
) const {
233 // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose
234 // any commutable operand, which is done in findCommutedOpIndices() method
236 if ((OpIdx1
== CommuteAnyOperandIndex
|| OpIdx2
== CommuteAnyOperandIndex
) &&
237 !findCommutedOpIndices(MI
, OpIdx1
, OpIdx2
)) {
238 assert(MI
.isCommutable() &&
239 "Precondition violation: MI must be commutable.");
242 return commuteInstructionImpl(MI
, NewMI
, OpIdx1
, OpIdx2
);
245 bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1
,
246 unsigned &ResultIdx2
,
247 unsigned CommutableOpIdx1
,
248 unsigned CommutableOpIdx2
) {
249 if (ResultIdx1
== CommuteAnyOperandIndex
&&
250 ResultIdx2
== CommuteAnyOperandIndex
) {
251 ResultIdx1
= CommutableOpIdx1
;
252 ResultIdx2
= CommutableOpIdx2
;
253 } else if (ResultIdx1
== CommuteAnyOperandIndex
) {
254 if (ResultIdx2
== CommutableOpIdx1
)
255 ResultIdx1
= CommutableOpIdx2
;
256 else if (ResultIdx2
== CommutableOpIdx2
)
257 ResultIdx1
= CommutableOpIdx1
;
260 } else if (ResultIdx2
== CommuteAnyOperandIndex
) {
261 if (ResultIdx1
== CommutableOpIdx1
)
262 ResultIdx2
= CommutableOpIdx2
;
263 else if (ResultIdx1
== CommutableOpIdx2
)
264 ResultIdx2
= CommutableOpIdx1
;
268 // Check that the result operand indices match the given commutable
270 return (ResultIdx1
== CommutableOpIdx1
&& ResultIdx2
== CommutableOpIdx2
) ||
271 (ResultIdx1
== CommutableOpIdx2
&& ResultIdx2
== CommutableOpIdx1
);
276 bool TargetInstrInfo::findCommutedOpIndices(MachineInstr
&MI
,
278 unsigned &SrcOpIdx2
) const {
279 assert(!MI
.isBundle() &&
280 "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
282 const MCInstrDesc
&MCID
= MI
.getDesc();
283 if (!MCID
.isCommutable())
286 // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
287 // is not true, then the target must implement this.
288 unsigned CommutableOpIdx1
= MCID
.getNumDefs();
289 unsigned CommutableOpIdx2
= CommutableOpIdx1
+ 1;
290 if (!fixCommutedOpIndices(SrcOpIdx1
, SrcOpIdx2
,
291 CommutableOpIdx1
, CommutableOpIdx2
))
294 if (!MI
.getOperand(SrcOpIdx1
).isReg() || !MI
.getOperand(SrcOpIdx2
).isReg())
300 bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr
&MI
) const {
301 if (!MI
.isTerminator()) return false;
303 // Conditional branch is a special case.
304 if (MI
.isBranch() && !MI
.isBarrier())
306 if (!MI
.isPredicable())
308 return !isPredicated(MI
);
311 bool TargetInstrInfo::PredicateInstruction(
312 MachineInstr
&MI
, ArrayRef
<MachineOperand
> Pred
) const {
313 bool MadeChange
= false;
315 assert(!MI
.isBundle() &&
316 "TargetInstrInfo::PredicateInstruction() can't handle bundles");
318 const MCInstrDesc
&MCID
= MI
.getDesc();
319 if (!MI
.isPredicable())
322 for (unsigned j
= 0, i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
323 if (MCID
.OpInfo
[i
].isPredicate()) {
324 MachineOperand
&MO
= MI
.getOperand(i
);
326 MO
.setReg(Pred
[j
].getReg());
328 } else if (MO
.isImm()) {
329 MO
.setImm(Pred
[j
].getImm());
331 } else if (MO
.isMBB()) {
332 MO
.setMBB(Pred
[j
].getMBB());
341 bool TargetInstrInfo::hasLoadFromStackSlot(
342 const MachineInstr
&MI
,
343 SmallVectorImpl
<const MachineMemOperand
*> &Accesses
) const {
344 size_t StartSize
= Accesses
.size();
345 for (MachineInstr::mmo_iterator o
= MI
.memoperands_begin(),
346 oe
= MI
.memoperands_end();
348 if ((*o
)->isLoad() &&
349 dyn_cast_or_null
<FixedStackPseudoSourceValue
>((*o
)->getPseudoValue()))
350 Accesses
.push_back(*o
);
352 return Accesses
.size() != StartSize
;
355 bool TargetInstrInfo::hasStoreToStackSlot(
356 const MachineInstr
&MI
,
357 SmallVectorImpl
<const MachineMemOperand
*> &Accesses
) const {
358 size_t StartSize
= Accesses
.size();
359 for (MachineInstr::mmo_iterator o
= MI
.memoperands_begin(),
360 oe
= MI
.memoperands_end();
362 if ((*o
)->isStore() &&
363 dyn_cast_or_null
<FixedStackPseudoSourceValue
>((*o
)->getPseudoValue()))
364 Accesses
.push_back(*o
);
366 return Accesses
.size() != StartSize
;
369 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass
*RC
,
370 unsigned SubIdx
, unsigned &Size
,
372 const MachineFunction
&MF
) const {
373 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
375 Size
= TRI
->getSpillSize(*RC
);
379 unsigned BitSize
= TRI
->getSubRegIdxSize(SubIdx
);
380 // Convert bit size to byte size.
384 int BitOffset
= TRI
->getSubRegIdxOffset(SubIdx
);
385 if (BitOffset
< 0 || BitOffset
% 8)
389 Offset
= (unsigned)BitOffset
/ 8;
391 assert(TRI
->getSpillSize(*RC
) >= (Offset
+ Size
) && "bad subregister range");
393 if (!MF
.getDataLayout().isLittleEndian()) {
394 Offset
= TRI
->getSpillSize(*RC
) - (Offset
+ Size
);
399 void TargetInstrInfo::reMaterialize(MachineBasicBlock
&MBB
,
400 MachineBasicBlock::iterator I
,
401 unsigned DestReg
, unsigned SubIdx
,
402 const MachineInstr
&Orig
,
403 const TargetRegisterInfo
&TRI
) const {
404 MachineInstr
*MI
= MBB
.getParent()->CloneMachineInstr(&Orig
);
405 MI
->substituteRegister(MI
->getOperand(0).getReg(), DestReg
, SubIdx
, TRI
);
409 bool TargetInstrInfo::produceSameValue(const MachineInstr
&MI0
,
410 const MachineInstr
&MI1
,
411 const MachineRegisterInfo
*MRI
) const {
412 return MI0
.isIdenticalTo(MI1
, MachineInstr::IgnoreVRegDefs
);
415 MachineInstr
&TargetInstrInfo::duplicate(MachineBasicBlock
&MBB
,
416 MachineBasicBlock::iterator InsertBefore
, const MachineInstr
&Orig
) const {
417 assert(!Orig
.isNotDuplicable() && "Instruction cannot be duplicated");
418 MachineFunction
&MF
= *MBB
.getParent();
419 return MF
.CloneMachineInstrBundle(MBB
, InsertBefore
, Orig
);
422 // If the COPY instruction in MI can be folded to a stack operation, return
423 // the register class to use.
424 static const TargetRegisterClass
*canFoldCopy(const MachineInstr
&MI
,
426 assert(MI
.isCopy() && "MI must be a COPY instruction");
427 if (MI
.getNumOperands() != 2)
429 assert(FoldIdx
<2 && "FoldIdx refers no nonexistent operand");
431 const MachineOperand
&FoldOp
= MI
.getOperand(FoldIdx
);
432 const MachineOperand
&LiveOp
= MI
.getOperand(1 - FoldIdx
);
434 if (FoldOp
.getSubReg() || LiveOp
.getSubReg())
437 unsigned FoldReg
= FoldOp
.getReg();
438 unsigned LiveReg
= LiveOp
.getReg();
440 assert(TargetRegisterInfo::isVirtualRegister(FoldReg
) &&
441 "Cannot fold physregs");
443 const MachineRegisterInfo
&MRI
= MI
.getMF()->getRegInfo();
444 const TargetRegisterClass
*RC
= MRI
.getRegClass(FoldReg
);
446 if (TargetRegisterInfo::isPhysicalRegister(LiveOp
.getReg()))
447 return RC
->contains(LiveOp
.getReg()) ? RC
: nullptr;
449 if (RC
->hasSubClassEq(MRI
.getRegClass(LiveReg
)))
452 // FIXME: Allow folding when register classes are memory compatible.
456 void TargetInstrInfo::getNoop(MCInst
&NopInst
) const {
457 llvm_unreachable("Not implemented");
460 static MachineInstr
*foldPatchpoint(MachineFunction
&MF
, MachineInstr
&MI
,
461 ArrayRef
<unsigned> Ops
, int FrameIndex
,
462 const TargetInstrInfo
&TII
) {
463 unsigned StartIdx
= 0;
464 switch (MI
.getOpcode()) {
465 case TargetOpcode::STACKMAP
: {
466 // StackMapLiveValues are foldable
467 StartIdx
= StackMapOpers(&MI
).getVarIdx();
470 case TargetOpcode::PATCHPOINT
: {
471 // For PatchPoint, the call args are not foldable (even if reported in the
472 // stackmap e.g. via anyregcc).
473 StartIdx
= PatchPointOpers(&MI
).getVarIdx();
476 case TargetOpcode::STATEPOINT
: {
477 // For statepoints, fold deopt and gc arguments, but not call arguments.
478 StartIdx
= StatepointOpers(&MI
).getVarIdx();
482 llvm_unreachable("unexpected stackmap opcode");
485 // Return false if any operands requested for folding are not foldable (not
486 // part of the stackmap's live values).
487 for (unsigned Op
: Ops
) {
492 MachineInstr
*NewMI
=
493 MF
.CreateMachineInstr(TII
.get(MI
.getOpcode()), MI
.getDebugLoc(), true);
494 MachineInstrBuilder
MIB(MF
, NewMI
);
496 // No need to fold return, the meta data, and function arguments
497 for (unsigned i
= 0; i
< StartIdx
; ++i
)
498 MIB
.add(MI
.getOperand(i
));
500 for (unsigned i
= StartIdx
; i
< MI
.getNumOperands(); ++i
) {
501 MachineOperand
&MO
= MI
.getOperand(i
);
502 if (is_contained(Ops
, i
)) {
504 unsigned SpillOffset
;
505 // Compute the spill slot size and offset.
506 const TargetRegisterClass
*RC
=
507 MF
.getRegInfo().getRegClass(MO
.getReg());
509 TII
.getStackSlotRange(RC
, MO
.getSubReg(), SpillSize
, SpillOffset
, MF
);
511 report_fatal_error("cannot spill patchpoint subregister operand");
512 MIB
.addImm(StackMaps::IndirectMemRefOp
);
513 MIB
.addImm(SpillSize
);
514 MIB
.addFrameIndex(FrameIndex
);
515 MIB
.addImm(SpillOffset
);
523 MachineInstr
*TargetInstrInfo::foldMemoryOperand(MachineInstr
&MI
,
524 ArrayRef
<unsigned> Ops
, int FI
,
525 LiveIntervals
*LIS
) const {
526 auto Flags
= MachineMemOperand::MONone
;
527 for (unsigned OpIdx
: Ops
)
528 Flags
|= MI
.getOperand(OpIdx
).isDef() ? MachineMemOperand::MOStore
529 : MachineMemOperand::MOLoad
;
531 MachineBasicBlock
*MBB
= MI
.getParent();
532 assert(MBB
&& "foldMemoryOperand needs an inserted instruction");
533 MachineFunction
&MF
= *MBB
->getParent();
535 // If we're not folding a load into a subreg, the size of the load is the
536 // size of the spill slot. But if we are, we need to figure out what the
537 // actual load size is.
539 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
540 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
542 if (Flags
& MachineMemOperand::MOStore
) {
543 MemSize
= MFI
.getObjectSize(FI
);
545 for (unsigned OpIdx
: Ops
) {
546 int64_t OpSize
= MFI
.getObjectSize(FI
);
548 if (auto SubReg
= MI
.getOperand(OpIdx
).getSubReg()) {
549 unsigned SubRegSize
= TRI
->getSubRegIdxSize(SubReg
);
550 if (SubRegSize
> 0 && !(SubRegSize
% 8))
551 OpSize
= SubRegSize
/ 8;
554 MemSize
= std::max(MemSize
, OpSize
);
558 assert(MemSize
&& "Did not expect a zero-sized stack slot");
560 MachineInstr
*NewMI
= nullptr;
562 if (MI
.getOpcode() == TargetOpcode::STACKMAP
||
563 MI
.getOpcode() == TargetOpcode::PATCHPOINT
||
564 MI
.getOpcode() == TargetOpcode::STATEPOINT
) {
565 // Fold stackmap/patchpoint.
566 NewMI
= foldPatchpoint(MF
, MI
, Ops
, FI
, *this);
568 MBB
->insert(MI
, NewMI
);
570 // Ask the target to do the actual folding.
571 NewMI
= foldMemoryOperandImpl(MF
, MI
, Ops
, MI
, FI
, LIS
);
575 NewMI
->setMemRefs(MF
, MI
.memoperands());
576 // Add a memory operand, foldMemoryOperandImpl doesn't do that.
577 assert((!(Flags
& MachineMemOperand::MOStore
) ||
578 NewMI
->mayStore()) &&
579 "Folded a def to a non-store!");
580 assert((!(Flags
& MachineMemOperand::MOLoad
) ||
582 "Folded a use to a non-load!");
583 assert(MFI
.getObjectOffset(FI
) != -1);
584 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
585 MachinePointerInfo::getFixedStack(MF
, FI
), Flags
, MemSize
,
586 MFI
.getObjectAlignment(FI
));
587 NewMI
->addMemOperand(MF
, MMO
);
592 // Straight COPY may fold as load/store.
593 if (!MI
.isCopy() || Ops
.size() != 1)
596 const TargetRegisterClass
*RC
= canFoldCopy(MI
, Ops
[0]);
600 const MachineOperand
&MO
= MI
.getOperand(1 - Ops
[0]);
601 MachineBasicBlock::iterator Pos
= MI
;
603 if (Flags
== MachineMemOperand::MOStore
)
604 storeRegToStackSlot(*MBB
, Pos
, MO
.getReg(), MO
.isKill(), FI
, RC
, TRI
);
606 loadRegFromStackSlot(*MBB
, Pos
, MO
.getReg(), FI
, RC
, TRI
);
610 MachineInstr
*TargetInstrInfo::foldMemoryOperand(MachineInstr
&MI
,
611 ArrayRef
<unsigned> Ops
,
612 MachineInstr
&LoadMI
,
613 LiveIntervals
*LIS
) const {
614 assert(LoadMI
.canFoldAsLoad() && "LoadMI isn't foldable!");
616 for (unsigned OpIdx
: Ops
)
617 assert(MI
.getOperand(OpIdx
).isUse() && "Folding load into def!");
620 MachineBasicBlock
&MBB
= *MI
.getParent();
621 MachineFunction
&MF
= *MBB
.getParent();
623 // Ask the target to do the actual folding.
624 MachineInstr
*NewMI
= nullptr;
627 if ((MI
.getOpcode() == TargetOpcode::STACKMAP
||
628 MI
.getOpcode() == TargetOpcode::PATCHPOINT
||
629 MI
.getOpcode() == TargetOpcode::STATEPOINT
) &&
630 isLoadFromStackSlot(LoadMI
, FrameIndex
)) {
631 // Fold stackmap/patchpoint.
632 NewMI
= foldPatchpoint(MF
, MI
, Ops
, FrameIndex
, *this);
634 NewMI
= &*MBB
.insert(MI
, NewMI
);
636 // Ask the target to do the actual folding.
637 NewMI
= foldMemoryOperandImpl(MF
, MI
, Ops
, MI
, LoadMI
, LIS
);
643 // Copy the memoperands from the load to the folded instruction.
644 if (MI
.memoperands_empty()) {
645 NewMI
->setMemRefs(MF
, LoadMI
.memoperands());
647 // Handle the rare case of folding multiple loads.
648 NewMI
->setMemRefs(MF
, MI
.memoperands());
649 for (MachineInstr::mmo_iterator I
= LoadMI
.memoperands_begin(),
650 E
= LoadMI
.memoperands_end();
652 NewMI
->addMemOperand(MF
, *I
);
658 bool TargetInstrInfo::hasReassociableOperands(
659 const MachineInstr
&Inst
, const MachineBasicBlock
*MBB
) const {
660 const MachineOperand
&Op1
= Inst
.getOperand(1);
661 const MachineOperand
&Op2
= Inst
.getOperand(2);
662 const MachineRegisterInfo
&MRI
= MBB
->getParent()->getRegInfo();
664 // We need virtual register definitions for the operands that we will
666 MachineInstr
*MI1
= nullptr;
667 MachineInstr
*MI2
= nullptr;
668 if (Op1
.isReg() && TargetRegisterInfo::isVirtualRegister(Op1
.getReg()))
669 MI1
= MRI
.getUniqueVRegDef(Op1
.getReg());
670 if (Op2
.isReg() && TargetRegisterInfo::isVirtualRegister(Op2
.getReg()))
671 MI2
= MRI
.getUniqueVRegDef(Op2
.getReg());
673 // And they need to be in the trace (otherwise, they won't have a depth).
674 return MI1
&& MI2
&& MI1
->getParent() == MBB
&& MI2
->getParent() == MBB
;
677 bool TargetInstrInfo::hasReassociableSibling(const MachineInstr
&Inst
,
678 bool &Commuted
) const {
679 const MachineBasicBlock
*MBB
= Inst
.getParent();
680 const MachineRegisterInfo
&MRI
= MBB
->getParent()->getRegInfo();
681 MachineInstr
*MI1
= MRI
.getUniqueVRegDef(Inst
.getOperand(1).getReg());
682 MachineInstr
*MI2
= MRI
.getUniqueVRegDef(Inst
.getOperand(2).getReg());
683 unsigned AssocOpcode
= Inst
.getOpcode();
685 // If only one operand has the same opcode and it's the second source operand,
686 // the operands must be commuted.
687 Commuted
= MI1
->getOpcode() != AssocOpcode
&& MI2
->getOpcode() == AssocOpcode
;
691 // 1. The previous instruction must be the same type as Inst.
692 // 2. The previous instruction must have virtual register definitions for its
693 // operands in the same basic block as Inst.
694 // 3. The previous instruction's result must only be used by Inst.
695 return MI1
->getOpcode() == AssocOpcode
&&
696 hasReassociableOperands(*MI1
, MBB
) &&
697 MRI
.hasOneNonDBGUse(MI1
->getOperand(0).getReg());
700 // 1. The operation must be associative and commutative.
701 // 2. The instruction must have virtual register definitions for its
702 // operands in the same basic block.
703 // 3. The instruction must have a reassociable sibling.
704 bool TargetInstrInfo::isReassociationCandidate(const MachineInstr
&Inst
,
705 bool &Commuted
) const {
706 return isAssociativeAndCommutative(Inst
) &&
707 hasReassociableOperands(Inst
, Inst
.getParent()) &&
708 hasReassociableSibling(Inst
, Commuted
);
711 // The concept of the reassociation pass is that these operations can benefit
712 // from this kind of transformation:
722 // breaking the dependency between A and B, allowing them to be executed in
723 // parallel (or back-to-back in a pipeline) instead of depending on each other.
725 // FIXME: This has the potential to be expensive (compile time) while not
726 // improving the code at all. Some ways to limit the overhead:
727 // 1. Track successful transforms; bail out if hit rate gets too low.
728 // 2. Only enable at -O3 or some other non-default optimization level.
729 // 3. Pre-screen pattern candidates here: if an operand of the previous
730 // instruction is known to not increase the critical path, then don't match
732 bool TargetInstrInfo::getMachineCombinerPatterns(
734 SmallVectorImpl
<MachineCombinerPattern
> &Patterns
) const {
736 if (isReassociationCandidate(Root
, Commute
)) {
737 // We found a sequence of instructions that may be suitable for a
738 // reassociation of operands to increase ILP. Specify each commutation
739 // possibility for the Prev instruction in the sequence and let the
740 // machine combiner decide if changing the operands is worthwhile.
742 Patterns
.push_back(MachineCombinerPattern::REASSOC_AX_YB
);
743 Patterns
.push_back(MachineCombinerPattern::REASSOC_XA_YB
);
745 Patterns
.push_back(MachineCombinerPattern::REASSOC_AX_BY
);
746 Patterns
.push_back(MachineCombinerPattern::REASSOC_XA_BY
);
754 /// Return true when a code sequence can improve loop throughput.
756 TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern
) const {
760 /// Attempt the reassociation transformation to reduce critical path length.
761 /// See the above comments before getMachineCombinerPatterns().
762 void TargetInstrInfo::reassociateOps(
763 MachineInstr
&Root
, MachineInstr
&Prev
,
764 MachineCombinerPattern Pattern
,
765 SmallVectorImpl
<MachineInstr
*> &InsInstrs
,
766 SmallVectorImpl
<MachineInstr
*> &DelInstrs
,
767 DenseMap
<unsigned, unsigned> &InstrIdxForVirtReg
) const {
768 MachineFunction
*MF
= Root
.getMF();
769 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
770 const TargetInstrInfo
*TII
= MF
->getSubtarget().getInstrInfo();
771 const TargetRegisterInfo
*TRI
= MF
->getSubtarget().getRegisterInfo();
772 const TargetRegisterClass
*RC
= Root
.getRegClassConstraint(0, TII
, TRI
);
774 // This array encodes the operand index for each parameter because the
775 // operands may be commuted. Each row corresponds to a pattern value,
776 // and each column specifies the index of A, B, X, Y.
777 unsigned OpIdx
[4][4] = {
786 case MachineCombinerPattern::REASSOC_AX_BY
: Row
= 0; break;
787 case MachineCombinerPattern::REASSOC_AX_YB
: Row
= 1; break;
788 case MachineCombinerPattern::REASSOC_XA_BY
: Row
= 2; break;
789 case MachineCombinerPattern::REASSOC_XA_YB
: Row
= 3; break;
790 default: llvm_unreachable("unexpected MachineCombinerPattern");
793 MachineOperand
&OpA
= Prev
.getOperand(OpIdx
[Row
][0]);
794 MachineOperand
&OpB
= Root
.getOperand(OpIdx
[Row
][1]);
795 MachineOperand
&OpX
= Prev
.getOperand(OpIdx
[Row
][2]);
796 MachineOperand
&OpY
= Root
.getOperand(OpIdx
[Row
][3]);
797 MachineOperand
&OpC
= Root
.getOperand(0);
799 unsigned RegA
= OpA
.getReg();
800 unsigned RegB
= OpB
.getReg();
801 unsigned RegX
= OpX
.getReg();
802 unsigned RegY
= OpY
.getReg();
803 unsigned RegC
= OpC
.getReg();
805 if (TargetRegisterInfo::isVirtualRegister(RegA
))
806 MRI
.constrainRegClass(RegA
, RC
);
807 if (TargetRegisterInfo::isVirtualRegister(RegB
))
808 MRI
.constrainRegClass(RegB
, RC
);
809 if (TargetRegisterInfo::isVirtualRegister(RegX
))
810 MRI
.constrainRegClass(RegX
, RC
);
811 if (TargetRegisterInfo::isVirtualRegister(RegY
))
812 MRI
.constrainRegClass(RegY
, RC
);
813 if (TargetRegisterInfo::isVirtualRegister(RegC
))
814 MRI
.constrainRegClass(RegC
, RC
);
816 // Create a new virtual register for the result of (X op Y) instead of
817 // recycling RegB because the MachineCombiner's computation of the critical
818 // path requires a new register definition rather than an existing one.
819 unsigned NewVR
= MRI
.createVirtualRegister(RC
);
820 InstrIdxForVirtReg
.insert(std::make_pair(NewVR
, 0));
822 unsigned Opcode
= Root
.getOpcode();
823 bool KillA
= OpA
.isKill();
824 bool KillX
= OpX
.isKill();
825 bool KillY
= OpY
.isKill();
827 // Create new instructions for insertion.
828 MachineInstrBuilder MIB1
=
829 BuildMI(*MF
, Prev
.getDebugLoc(), TII
->get(Opcode
), NewVR
)
830 .addReg(RegX
, getKillRegState(KillX
))
831 .addReg(RegY
, getKillRegState(KillY
));
832 MachineInstrBuilder MIB2
=
833 BuildMI(*MF
, Root
.getDebugLoc(), TII
->get(Opcode
), RegC
)
834 .addReg(RegA
, getKillRegState(KillA
))
835 .addReg(NewVR
, getKillRegState(true));
837 setSpecialOperandAttr(Root
, Prev
, *MIB1
, *MIB2
);
839 // Record new instructions for insertion and old instructions for deletion.
840 InsInstrs
.push_back(MIB1
);
841 InsInstrs
.push_back(MIB2
);
842 DelInstrs
.push_back(&Prev
);
843 DelInstrs
.push_back(&Root
);
846 void TargetInstrInfo::genAlternativeCodeSequence(
847 MachineInstr
&Root
, MachineCombinerPattern Pattern
,
848 SmallVectorImpl
<MachineInstr
*> &InsInstrs
,
849 SmallVectorImpl
<MachineInstr
*> &DelInstrs
,
850 DenseMap
<unsigned, unsigned> &InstIdxForVirtReg
) const {
851 MachineRegisterInfo
&MRI
= Root
.getMF()->getRegInfo();
853 // Select the previous instruction in the sequence based on the input pattern.
854 MachineInstr
*Prev
= nullptr;
856 case MachineCombinerPattern::REASSOC_AX_BY
:
857 case MachineCombinerPattern::REASSOC_XA_BY
:
858 Prev
= MRI
.getUniqueVRegDef(Root
.getOperand(1).getReg());
860 case MachineCombinerPattern::REASSOC_AX_YB
:
861 case MachineCombinerPattern::REASSOC_XA_YB
:
862 Prev
= MRI
.getUniqueVRegDef(Root
.getOperand(2).getReg());
868 assert(Prev
&& "Unknown pattern for machine combiner");
870 reassociateOps(Root
, *Prev
, Pattern
, InsInstrs
, DelInstrs
, InstIdxForVirtReg
);
873 bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric(
874 const MachineInstr
&MI
, AliasAnalysis
*AA
) const {
875 const MachineFunction
&MF
= *MI
.getMF();
876 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
878 // Remat clients assume operand 0 is the defined register.
879 if (!MI
.getNumOperands() || !MI
.getOperand(0).isReg())
881 unsigned DefReg
= MI
.getOperand(0).getReg();
883 // A sub-register definition can only be rematerialized if the instruction
884 // doesn't read the other parts of the register. Otherwise it is really a
885 // read-modify-write operation on the full virtual register which cannot be
887 if (TargetRegisterInfo::isVirtualRegister(DefReg
) &&
888 MI
.getOperand(0).getSubReg() && MI
.readsVirtualRegister(DefReg
))
891 // A load from a fixed stack slot can be rematerialized. This may be
892 // redundant with subsequent checks, but it's target-independent,
893 // simple, and a common case.
895 if (isLoadFromStackSlot(MI
, FrameIdx
) &&
896 MF
.getFrameInfo().isImmutableObjectIndex(FrameIdx
))
899 // Avoid instructions obviously unsafe for remat.
900 if (MI
.isNotDuplicable() || MI
.mayStore() || MI
.hasUnmodeledSideEffects())
903 // Don't remat inline asm. We have no idea how expensive it is
904 // even if it's side effect free.
905 if (MI
.isInlineAsm())
908 // Avoid instructions which load from potentially varying memory.
909 if (MI
.mayLoad() && !MI
.isDereferenceableInvariantLoad(AA
))
912 // If any of the registers accessed are non-constant, conservatively assume
913 // the instruction is not rematerializable.
914 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
915 const MachineOperand
&MO
= MI
.getOperand(i
);
916 if (!MO
.isReg()) continue;
917 unsigned Reg
= MO
.getReg();
921 // Check for a well-behaved physical register.
922 if (TargetRegisterInfo::isPhysicalRegister(Reg
)) {
924 // If the physreg has no defs anywhere, it's just an ambient register
925 // and we can freely move its uses. Alternatively, if it's allocatable,
926 // it could get allocated to something with a def during allocation.
927 if (!MRI
.isConstantPhysReg(Reg
))
930 // A physreg def. We can't remat it.
936 // Only allow one virtual-register def. There may be multiple defs of the
937 // same virtual register, though.
938 if (MO
.isDef() && Reg
!= DefReg
)
941 // Don't allow any virtual-register uses. Rematting an instruction with
942 // virtual register uses would length the live ranges of the uses, which
943 // is not necessarily a good idea, certainly not "trivial".
948 // Everything checked out.
952 int TargetInstrInfo::getSPAdjust(const MachineInstr
&MI
) const {
953 const MachineFunction
*MF
= MI
.getMF();
954 const TargetFrameLowering
*TFI
= MF
->getSubtarget().getFrameLowering();
955 bool StackGrowsDown
=
956 TFI
->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown
;
958 unsigned FrameSetupOpcode
= getCallFrameSetupOpcode();
959 unsigned FrameDestroyOpcode
= getCallFrameDestroyOpcode();
961 if (!isFrameInstr(MI
))
964 int SPAdj
= TFI
->alignSPAdjust(getFrameSize(MI
));
966 if ((!StackGrowsDown
&& MI
.getOpcode() == FrameSetupOpcode
) ||
967 (StackGrowsDown
&& MI
.getOpcode() == FrameDestroyOpcode
))
973 /// isSchedulingBoundary - Test if the given instruction should be
974 /// considered a scheduling boundary. This primarily includes labels
976 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr
&MI
,
977 const MachineBasicBlock
*MBB
,
978 const MachineFunction
&MF
) const {
979 // Terminators and labels can't be scheduled around.
980 if (MI
.isTerminator() || MI
.isPosition())
983 // Don't attempt to schedule around any instruction that defines
984 // a stack-oriented pointer, as it's unlikely to be profitable. This
985 // saves compile time, because it doesn't require every single
986 // stack slot reference to depend on the instruction that does the
988 const TargetLowering
&TLI
= *MF
.getSubtarget().getTargetLowering();
989 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
990 return MI
.modifiesRegister(TLI
.getStackPointerRegisterToSaveRestore(), TRI
);
993 // Provide a global flag for disabling the PreRA hazard recognizer that targets
994 // may choose to honor.
995 bool TargetInstrInfo::usePreRAHazardRecognizer() const {
996 return !DisableHazardRecognizer
;
999 // Default implementation of CreateTargetRAHazardRecognizer.
1000 ScheduleHazardRecognizer
*TargetInstrInfo::
1001 CreateTargetHazardRecognizer(const TargetSubtargetInfo
*STI
,
1002 const ScheduleDAG
*DAG
) const {
1003 // Dummy hazard recognizer allows all instructions to issue.
1004 return new ScheduleHazardRecognizer();
1007 // Default implementation of CreateTargetMIHazardRecognizer.
1008 ScheduleHazardRecognizer
*TargetInstrInfo::
1009 CreateTargetMIHazardRecognizer(const InstrItineraryData
*II
,
1010 const ScheduleDAG
*DAG
) const {
1011 return (ScheduleHazardRecognizer
*)
1012 new ScoreboardHazardRecognizer(II
, DAG
, "misched");
1015 // Default implementation of CreateTargetPostRAHazardRecognizer.
1016 ScheduleHazardRecognizer
*TargetInstrInfo::
1017 CreateTargetPostRAHazardRecognizer(const InstrItineraryData
*II
,
1018 const ScheduleDAG
*DAG
) const {
1019 return (ScheduleHazardRecognizer
*)
1020 new ScoreboardHazardRecognizer(II
, DAG
, "post-RA-sched");
1023 //===----------------------------------------------------------------------===//
1024 // SelectionDAG latency interface.
1025 //===----------------------------------------------------------------------===//
1028 TargetInstrInfo::getOperandLatency(const InstrItineraryData
*ItinData
,
1029 SDNode
*DefNode
, unsigned DefIdx
,
1030 SDNode
*UseNode
, unsigned UseIdx
) const {
1031 if (!ItinData
|| ItinData
->isEmpty())
1034 if (!DefNode
->isMachineOpcode())
1037 unsigned DefClass
= get(DefNode
->getMachineOpcode()).getSchedClass();
1038 if (!UseNode
->isMachineOpcode())
1039 return ItinData
->getOperandCycle(DefClass
, DefIdx
);
1040 unsigned UseClass
= get(UseNode
->getMachineOpcode()).getSchedClass();
1041 return ItinData
->getOperandLatency(DefClass
, DefIdx
, UseClass
, UseIdx
);
1044 int TargetInstrInfo::getInstrLatency(const InstrItineraryData
*ItinData
,
1046 if (!ItinData
|| ItinData
->isEmpty())
1049 if (!N
->isMachineOpcode())
1052 return ItinData
->getStageLatency(get(N
->getMachineOpcode()).getSchedClass());
1055 //===----------------------------------------------------------------------===//
1056 // MachineInstr latency interface.
1057 //===----------------------------------------------------------------------===//
1059 unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData
*ItinData
,
1060 const MachineInstr
&MI
) const {
1061 if (!ItinData
|| ItinData
->isEmpty())
1064 unsigned Class
= MI
.getDesc().getSchedClass();
1065 int UOps
= ItinData
->Itineraries
[Class
].NumMicroOps
;
1069 // The # of u-ops is dynamically determined. The specific target should
1070 // override this function to return the right number.
1074 /// Return the default expected latency for a def based on it's opcode.
1075 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel
&SchedModel
,
1076 const MachineInstr
&DefMI
) const {
1077 if (DefMI
.isTransient())
1079 if (DefMI
.mayLoad())
1080 return SchedModel
.LoadLatency
;
1081 if (isHighLatencyDef(DefMI
.getOpcode()))
1082 return SchedModel
.HighLatency
;
1086 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr
&) const {
1090 unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData
*ItinData
,
1091 const MachineInstr
&MI
,
1092 unsigned *PredCost
) const {
1093 // Default to one cycle for no itinerary. However, an "empty" itinerary may
1094 // still have a MinLatency property, which getStageLatency checks.
1096 return MI
.mayLoad() ? 2 : 1;
1098 return ItinData
->getStageLatency(MI
.getDesc().getSchedClass());
1101 bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel
&SchedModel
,
1102 const MachineInstr
&DefMI
,
1103 unsigned DefIdx
) const {
1104 const InstrItineraryData
*ItinData
= SchedModel
.getInstrItineraries();
1105 if (!ItinData
|| ItinData
->isEmpty())
1108 unsigned DefClass
= DefMI
.getDesc().getSchedClass();
1109 int DefCycle
= ItinData
->getOperandCycle(DefClass
, DefIdx
);
1110 return (DefCycle
!= -1 && DefCycle
<= 1);
1113 /// Both DefMI and UseMI must be valid. By default, call directly to the
1114 /// itinerary. This may be overriden by the target.
1115 int TargetInstrInfo::getOperandLatency(const InstrItineraryData
*ItinData
,
1116 const MachineInstr
&DefMI
,
1118 const MachineInstr
&UseMI
,
1119 unsigned UseIdx
) const {
1120 unsigned DefClass
= DefMI
.getDesc().getSchedClass();
1121 unsigned UseClass
= UseMI
.getDesc().getSchedClass();
1122 return ItinData
->getOperandLatency(DefClass
, DefIdx
, UseClass
, UseIdx
);
1125 /// If we can determine the operand latency from the def only, without itinerary
1126 /// lookup, do so. Otherwise return -1.
1127 int TargetInstrInfo::computeDefOperandLatency(
1128 const InstrItineraryData
*ItinData
, const MachineInstr
&DefMI
) const {
1130 // Let the target hook getInstrLatency handle missing itineraries.
1132 return getInstrLatency(ItinData
, DefMI
);
1134 if(ItinData
->isEmpty())
1135 return defaultDefLatency(ItinData
->SchedModel
, DefMI
);
1137 // ...operand lookup required
1141 bool TargetInstrInfo::getRegSequenceInputs(
1142 const MachineInstr
&MI
, unsigned DefIdx
,
1143 SmallVectorImpl
<RegSubRegPairAndIdx
> &InputRegs
) const {
1144 assert((MI
.isRegSequence() ||
1145 MI
.isRegSequenceLike()) && "Instruction do not have the proper type");
1147 if (!MI
.isRegSequence())
1148 return getRegSequenceLikeInputs(MI
, DefIdx
, InputRegs
);
1150 // We are looking at:
1151 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1152 assert(DefIdx
== 0 && "REG_SEQUENCE only has one def");
1153 for (unsigned OpIdx
= 1, EndOpIdx
= MI
.getNumOperands(); OpIdx
!= EndOpIdx
;
1155 const MachineOperand
&MOReg
= MI
.getOperand(OpIdx
);
1156 if (MOReg
.isUndef())
1158 const MachineOperand
&MOSubIdx
= MI
.getOperand(OpIdx
+ 1);
1159 assert(MOSubIdx
.isImm() &&
1160 "One of the subindex of the reg_sequence is not an immediate");
1161 // Record Reg:SubReg, SubIdx.
1162 InputRegs
.push_back(RegSubRegPairAndIdx(MOReg
.getReg(), MOReg
.getSubReg(),
1163 (unsigned)MOSubIdx
.getImm()));
1168 bool TargetInstrInfo::getExtractSubregInputs(
1169 const MachineInstr
&MI
, unsigned DefIdx
,
1170 RegSubRegPairAndIdx
&InputReg
) const {
1171 assert((MI
.isExtractSubreg() ||
1172 MI
.isExtractSubregLike()) && "Instruction do not have the proper type");
1174 if (!MI
.isExtractSubreg())
1175 return getExtractSubregLikeInputs(MI
, DefIdx
, InputReg
);
1177 // We are looking at:
1178 // Def = EXTRACT_SUBREG v0.sub1, sub0.
1179 assert(DefIdx
== 0 && "EXTRACT_SUBREG only has one def");
1180 const MachineOperand
&MOReg
= MI
.getOperand(1);
1181 if (MOReg
.isUndef())
1183 const MachineOperand
&MOSubIdx
= MI
.getOperand(2);
1184 assert(MOSubIdx
.isImm() &&
1185 "The subindex of the extract_subreg is not an immediate");
1187 InputReg
.Reg
= MOReg
.getReg();
1188 InputReg
.SubReg
= MOReg
.getSubReg();
1189 InputReg
.SubIdx
= (unsigned)MOSubIdx
.getImm();
1193 bool TargetInstrInfo::getInsertSubregInputs(
1194 const MachineInstr
&MI
, unsigned DefIdx
,
1195 RegSubRegPair
&BaseReg
, RegSubRegPairAndIdx
&InsertedReg
) const {
1196 assert((MI
.isInsertSubreg() ||
1197 MI
.isInsertSubregLike()) && "Instruction do not have the proper type");
1199 if (!MI
.isInsertSubreg())
1200 return getInsertSubregLikeInputs(MI
, DefIdx
, BaseReg
, InsertedReg
);
1202 // We are looking at:
1203 // Def = INSERT_SEQUENCE v0, v1, sub0.
1204 assert(DefIdx
== 0 && "INSERT_SUBREG only has one def");
1205 const MachineOperand
&MOBaseReg
= MI
.getOperand(1);
1206 const MachineOperand
&MOInsertedReg
= MI
.getOperand(2);
1207 if (MOInsertedReg
.isUndef())
1209 const MachineOperand
&MOSubIdx
= MI
.getOperand(3);
1210 assert(MOSubIdx
.isImm() &&
1211 "One of the subindex of the reg_sequence is not an immediate");
1212 BaseReg
.Reg
= MOBaseReg
.getReg();
1213 BaseReg
.SubReg
= MOBaseReg
.getSubReg();
1215 InsertedReg
.Reg
= MOInsertedReg
.getReg();
1216 InsertedReg
.SubReg
= MOInsertedReg
.getSubReg();
1217 InsertedReg
.SubIdx
= (unsigned)MOSubIdx
.getImm();