[DAGCombiner] Eliminate dead stores to stack.
[llvm-complete.git] / lib / Target / SystemZ / SystemZISelDAGToDAG.cpp
bloba963638be9828b7c16eb619267106ac97cd702f0
1 //===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines an instruction selector for the SystemZ target.
11 //===----------------------------------------------------------------------===//
13 #include "SystemZTargetMachine.h"
14 #include "SystemZISelLowering.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/CodeGen/SelectionDAGISel.h"
17 #include "llvm/Support/Debug.h"
18 #include "llvm/Support/KnownBits.h"
19 #include "llvm/Support/raw_ostream.h"
21 using namespace llvm;
23 #define DEBUG_TYPE "systemz-isel"
25 namespace {
26 // Used to build addressing modes.
27 struct SystemZAddressingMode {
28 // The shape of the address.
29 enum AddrForm {
30 // base+displacement
31 FormBD,
33 // base+displacement+index for load and store operands
34 FormBDXNormal,
36 // base+displacement+index for load address operands
37 FormBDXLA,
39 // base+displacement+index+ADJDYNALLOC
40 FormBDXDynAlloc
42 AddrForm Form;
44 // The type of displacement. The enum names here correspond directly
45 // to the definitions in SystemZOperand.td. We could split them into
46 // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it.
47 enum DispRange {
48 Disp12Only,
49 Disp12Pair,
50 Disp20Only,
51 Disp20Only128,
52 Disp20Pair
54 DispRange DR;
56 // The parts of the address. The address is equivalent to:
58 // Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0)
59 SDValue Base;
60 int64_t Disp;
61 SDValue Index;
62 bool IncludesDynAlloc;
64 SystemZAddressingMode(AddrForm form, DispRange dr)
65 : Form(form), DR(dr), Base(), Disp(0), Index(),
66 IncludesDynAlloc(false) {}
68 // True if the address can have an index register.
69 bool hasIndexField() { return Form != FormBD; }
71 // True if the address can (and must) include ADJDYNALLOC.
72 bool isDynAlloc() { return Form == FormBDXDynAlloc; }
74 void dump(const llvm::SelectionDAG *DAG) {
75 errs() << "SystemZAddressingMode " << this << '\n';
77 errs() << " Base ";
78 if (Base.getNode())
79 Base.getNode()->dump(DAG);
80 else
81 errs() << "null\n";
83 if (hasIndexField()) {
84 errs() << " Index ";
85 if (Index.getNode())
86 Index.getNode()->dump(DAG);
87 else
88 errs() << "null\n";
91 errs() << " Disp " << Disp;
92 if (IncludesDynAlloc)
93 errs() << " + ADJDYNALLOC";
94 errs() << '\n';
98 // Return a mask with Count low bits set.
99 static uint64_t allOnes(unsigned int Count) {
100 assert(Count <= 64);
101 if (Count > 63)
102 return UINT64_MAX;
103 return (uint64_t(1) << Count) - 1;
106 // Represents operands 2 to 5 of the ROTATE AND ... SELECTED BITS operation
107 // given by Opcode. The operands are: Input (R2), Start (I3), End (I4) and
108 // Rotate (I5). The combined operand value is effectively:
110 // (or (rotl Input, Rotate), ~Mask)
112 // for RNSBG and:
114 // (and (rotl Input, Rotate), Mask)
116 // otherwise. The output value has BitSize bits, although Input may be
117 // narrower (in which case the upper bits are don't care), or wider (in which
118 // case the result will be truncated as part of the operation).
119 struct RxSBGOperands {
120 RxSBGOperands(unsigned Op, SDValue N)
121 : Opcode(Op), BitSize(N.getValueSizeInBits()),
122 Mask(allOnes(BitSize)), Input(N), Start(64 - BitSize), End(63),
123 Rotate(0) {}
125 unsigned Opcode;
126 unsigned BitSize;
127 uint64_t Mask;
128 SDValue Input;
129 unsigned Start;
130 unsigned End;
131 unsigned Rotate;
134 class SystemZDAGToDAGISel : public SelectionDAGISel {
135 const SystemZSubtarget *Subtarget;
137 // Used by SystemZOperands.td to create integer constants.
138 inline SDValue getImm(const SDNode *Node, uint64_t Imm) const {
139 return CurDAG->getTargetConstant(Imm, SDLoc(Node), Node->getValueType(0));
142 const SystemZTargetMachine &getTargetMachine() const {
143 return static_cast<const SystemZTargetMachine &>(TM);
146 const SystemZInstrInfo *getInstrInfo() const {
147 return Subtarget->getInstrInfo();
150 // Try to fold more of the base or index of AM into AM, where IsBase
151 // selects between the base and index.
152 bool expandAddress(SystemZAddressingMode &AM, bool IsBase) const;
154 // Try to describe N in AM, returning true on success.
155 bool selectAddress(SDValue N, SystemZAddressingMode &AM) const;
157 // Extract individual target operands from matched address AM.
158 void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
159 SDValue &Base, SDValue &Disp) const;
160 void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
161 SDValue &Base, SDValue &Disp, SDValue &Index) const;
163 // Try to match Addr as a FormBD address with displacement type DR.
164 // Return true on success, storing the base and displacement in
165 // Base and Disp respectively.
166 bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
167 SDValue &Base, SDValue &Disp) const;
169 // Try to match Addr as a FormBDX address with displacement type DR.
170 // Return true on success and if the result had no index. Store the
171 // base and displacement in Base and Disp respectively.
172 bool selectMVIAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
173 SDValue &Base, SDValue &Disp) const;
175 // Try to match Addr as a FormBDX* address of form Form with
176 // displacement type DR. Return true on success, storing the base,
177 // displacement and index in Base, Disp and Index respectively.
178 bool selectBDXAddr(SystemZAddressingMode::AddrForm Form,
179 SystemZAddressingMode::DispRange DR, SDValue Addr,
180 SDValue &Base, SDValue &Disp, SDValue &Index) const;
182 // PC-relative address matching routines used by SystemZOperands.td.
183 bool selectPCRelAddress(SDValue Addr, SDValue &Target) const {
184 if (SystemZISD::isPCREL(Addr.getOpcode())) {
185 Target = Addr.getOperand(0);
186 return true;
188 return false;
191 // BD matching routines used by SystemZOperands.td.
192 bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
193 return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp);
195 bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
196 return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
198 bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) const {
199 return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp);
201 bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
202 return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
205 // MVI matching routines used by SystemZOperands.td.
206 bool selectMVIAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
207 return selectMVIAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
209 bool selectMVIAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) const {
210 return selectMVIAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
213 // BDX matching routines used by SystemZOperands.td.
214 bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
215 SDValue &Index) const {
216 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
217 SystemZAddressingMode::Disp12Only,
218 Addr, Base, Disp, Index);
220 bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
221 SDValue &Index) const {
222 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
223 SystemZAddressingMode::Disp12Pair,
224 Addr, Base, Disp, Index);
226 bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
227 SDValue &Index) const {
228 return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc,
229 SystemZAddressingMode::Disp12Only,
230 Addr, Base, Disp, Index);
232 bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp,
233 SDValue &Index) const {
234 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
235 SystemZAddressingMode::Disp20Only,
236 Addr, Base, Disp, Index);
238 bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp,
239 SDValue &Index) const {
240 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
241 SystemZAddressingMode::Disp20Only128,
242 Addr, Base, Disp, Index);
244 bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
245 SDValue &Index) const {
246 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
247 SystemZAddressingMode::Disp20Pair,
248 Addr, Base, Disp, Index);
250 bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
251 SDValue &Index) const {
252 return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
253 SystemZAddressingMode::Disp12Pair,
254 Addr, Base, Disp, Index);
256 bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
257 SDValue &Index) const {
258 return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
259 SystemZAddressingMode::Disp20Pair,
260 Addr, Base, Disp, Index);
263 // Try to match Addr as an address with a base, 12-bit displacement
264 // and index, where the index is element Elem of a vector.
265 // Return true on success, storing the base, displacement and vector
266 // in Base, Disp and Index respectively.
267 bool selectBDVAddr12Only(SDValue Addr, SDValue Elem, SDValue &Base,
268 SDValue &Disp, SDValue &Index) const;
270 // Check whether (or Op (and X InsertMask)) is effectively an insertion
271 // of X into bits InsertMask of some Y != Op. Return true if so and
272 // set Op to that Y.
273 bool detectOrAndInsertion(SDValue &Op, uint64_t InsertMask) const;
275 // Try to update RxSBG so that only the bits of RxSBG.Input in Mask are used.
276 // Return true on success.
277 bool refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask) const;
279 // Try to fold some of RxSBG.Input into other fields of RxSBG.
280 // Return true on success.
281 bool expandRxSBG(RxSBGOperands &RxSBG) const;
283 // Return an undefined value of type VT.
284 SDValue getUNDEF(const SDLoc &DL, EVT VT) const;
286 // Convert N to VT, if it isn't already.
287 SDValue convertTo(const SDLoc &DL, EVT VT, SDValue N) const;
289 // Try to implement AND or shift node N using RISBG with the zero flag set.
290 // Return the selected node on success, otherwise return null.
291 bool tryRISBGZero(SDNode *N);
293 // Try to use RISBG or Opcode to implement OR or XOR node N.
294 // Return the selected node on success, otherwise return null.
295 bool tryRxSBG(SDNode *N, unsigned Opcode);
297 // If Op0 is null, then Node is a constant that can be loaded using:
299 // (Opcode UpperVal LowerVal)
301 // If Op0 is nonnull, then Node can be implemented using:
303 // (Opcode (Opcode Op0 UpperVal) LowerVal)
304 void splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0,
305 uint64_t UpperVal, uint64_t LowerVal);
307 // Try to use gather instruction Opcode to implement vector insertion N.
308 bool tryGather(SDNode *N, unsigned Opcode);
310 // Try to use scatter instruction Opcode to implement store Store.
311 bool tryScatter(StoreSDNode *Store, unsigned Opcode);
313 // Change a chain of {load; op; store} of the same value into a simple op
314 // through memory of that value, if the uses of the modified value and its
315 // address are suitable.
316 bool tryFoldLoadStoreIntoMemOperand(SDNode *Node);
318 // Return true if Load and Store are loads and stores of the same size
319 // and are guaranteed not to overlap. Such operations can be implemented
320 // using block (SS-format) instructions.
322 // Partial overlap would lead to incorrect code, since the block operations
323 // are logically bytewise, even though they have a fast path for the
324 // non-overlapping case. We also need to avoid full overlap (i.e. two
325 // addresses that might be equal at run time) because although that case
326 // would be handled correctly, it might be implemented by millicode.
327 bool canUseBlockOperation(StoreSDNode *Store, LoadSDNode *Load) const;
329 // N is a (store (load Y), X) pattern. Return true if it can use an MVC
330 // from Y to X.
331 bool storeLoadCanUseMVC(SDNode *N) const;
333 // N is a (store (op (load A[0]), (load A[1])), X) pattern. Return true
334 // if A[1 - I] == X and if N can use a block operation like NC from A[I]
335 // to X.
336 bool storeLoadCanUseBlockBinary(SDNode *N, unsigned I) const;
338 // Try to expand a boolean SELECT_CCMASK using an IPM sequence.
339 SDValue expandSelectBoolean(SDNode *Node);
341 public:
342 SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
343 : SelectionDAGISel(TM, OptLevel) {}
345 bool runOnMachineFunction(MachineFunction &MF) override {
346 Subtarget = &MF.getSubtarget<SystemZSubtarget>();
347 return SelectionDAGISel::runOnMachineFunction(MF);
350 // Override MachineFunctionPass.
351 StringRef getPassName() const override {
352 return "SystemZ DAG->DAG Pattern Instruction Selection";
355 // Override SelectionDAGISel.
356 void Select(SDNode *Node) override;
357 bool SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
358 std::vector<SDValue> &OutOps) override;
359 bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override;
360 void PreprocessISelDAG() override;
362 // Include the pieces autogenerated from the target description.
363 #include "SystemZGenDAGISel.inc"
365 } // end anonymous namespace
367 FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
368 CodeGenOpt::Level OptLevel) {
369 return new SystemZDAGToDAGISel(TM, OptLevel);
372 // Return true if Val should be selected as a displacement for an address
373 // with range DR. Here we're interested in the range of both the instruction
374 // described by DR and of any pairing instruction.
375 static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
376 switch (DR) {
377 case SystemZAddressingMode::Disp12Only:
378 return isUInt<12>(Val);
380 case SystemZAddressingMode::Disp12Pair:
381 case SystemZAddressingMode::Disp20Only:
382 case SystemZAddressingMode::Disp20Pair:
383 return isInt<20>(Val);
385 case SystemZAddressingMode::Disp20Only128:
386 return isInt<20>(Val) && isInt<20>(Val + 8);
388 llvm_unreachable("Unhandled displacement range");
391 // Change the base or index in AM to Value, where IsBase selects
392 // between the base and index.
393 static void changeComponent(SystemZAddressingMode &AM, bool IsBase,
394 SDValue Value) {
395 if (IsBase)
396 AM.Base = Value;
397 else
398 AM.Index = Value;
401 // The base or index of AM is equivalent to Value + ADJDYNALLOC,
402 // where IsBase selects between the base and index. Try to fold the
403 // ADJDYNALLOC into AM.
404 static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase,
405 SDValue Value) {
406 if (AM.isDynAlloc() && !AM.IncludesDynAlloc) {
407 changeComponent(AM, IsBase, Value);
408 AM.IncludesDynAlloc = true;
409 return true;
411 return false;
414 // The base of AM is equivalent to Base + Index. Try to use Index as
415 // the index register.
416 static bool expandIndex(SystemZAddressingMode &AM, SDValue Base,
417 SDValue Index) {
418 if (AM.hasIndexField() && !AM.Index.getNode()) {
419 AM.Base = Base;
420 AM.Index = Index;
421 return true;
423 return false;
426 // The base or index of AM is equivalent to Op0 + Op1, where IsBase selects
427 // between the base and index. Try to fold Op1 into AM's displacement.
428 static bool expandDisp(SystemZAddressingMode &AM, bool IsBase,
429 SDValue Op0, uint64_t Op1) {
430 // First try adjusting the displacement.
431 int64_t TestDisp = AM.Disp + Op1;
432 if (selectDisp(AM.DR, TestDisp)) {
433 changeComponent(AM, IsBase, Op0);
434 AM.Disp = TestDisp;
435 return true;
438 // We could consider forcing the displacement into a register and
439 // using it as an index, but it would need to be carefully tuned.
440 return false;
443 bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM,
444 bool IsBase) const {
445 SDValue N = IsBase ? AM.Base : AM.Index;
446 unsigned Opcode = N.getOpcode();
447 if (Opcode == ISD::TRUNCATE) {
448 N = N.getOperand(0);
449 Opcode = N.getOpcode();
451 if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) {
452 SDValue Op0 = N.getOperand(0);
453 SDValue Op1 = N.getOperand(1);
455 unsigned Op0Code = Op0->getOpcode();
456 unsigned Op1Code = Op1->getOpcode();
458 if (Op0Code == SystemZISD::ADJDYNALLOC)
459 return expandAdjDynAlloc(AM, IsBase, Op1);
460 if (Op1Code == SystemZISD::ADJDYNALLOC)
461 return expandAdjDynAlloc(AM, IsBase, Op0);
463 if (Op0Code == ISD::Constant)
464 return expandDisp(AM, IsBase, Op1,
465 cast<ConstantSDNode>(Op0)->getSExtValue());
466 if (Op1Code == ISD::Constant)
467 return expandDisp(AM, IsBase, Op0,
468 cast<ConstantSDNode>(Op1)->getSExtValue());
470 if (IsBase && expandIndex(AM, Op0, Op1))
471 return true;
473 if (Opcode == SystemZISD::PCREL_OFFSET) {
474 SDValue Full = N.getOperand(0);
475 SDValue Base = N.getOperand(1);
476 SDValue Anchor = Base.getOperand(0);
477 uint64_t Offset = (cast<GlobalAddressSDNode>(Full)->getOffset() -
478 cast<GlobalAddressSDNode>(Anchor)->getOffset());
479 return expandDisp(AM, IsBase, Base, Offset);
481 return false;
484 // Return true if an instruction with displacement range DR should be
485 // used for displacement value Val. selectDisp(DR, Val) must already hold.
486 static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
487 assert(selectDisp(DR, Val) && "Invalid displacement");
488 switch (DR) {
489 case SystemZAddressingMode::Disp12Only:
490 case SystemZAddressingMode::Disp20Only:
491 case SystemZAddressingMode::Disp20Only128:
492 return true;
494 case SystemZAddressingMode::Disp12Pair:
495 // Use the other instruction if the displacement is too large.
496 return isUInt<12>(Val);
498 case SystemZAddressingMode::Disp20Pair:
499 // Use the other instruction if the displacement is small enough.
500 return !isUInt<12>(Val);
502 llvm_unreachable("Unhandled displacement range");
505 // Return true if Base + Disp + Index should be performed by LA(Y).
506 static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) {
507 // Don't use LA(Y) for constants.
508 if (!Base)
509 return false;
511 // Always use LA(Y) for frame addresses, since we know that the destination
512 // register is almost always (perhaps always) going to be different from
513 // the frame register.
514 if (Base->getOpcode() == ISD::FrameIndex)
515 return true;
517 if (Disp) {
518 // Always use LA(Y) if there is a base, displacement and index.
519 if (Index)
520 return true;
522 // Always use LA if the displacement is small enough. It should always
523 // be no worse than AGHI (and better if it avoids a move).
524 if (isUInt<12>(Disp))
525 return true;
527 // For similar reasons, always use LAY if the constant is too big for AGHI.
528 // LAY should be no worse than AGFI.
529 if (!isInt<16>(Disp))
530 return true;
531 } else {
532 // Don't use LA for plain registers.
533 if (!Index)
534 return false;
536 // Don't use LA for plain addition if the index operand is only used
537 // once. It should be a natural two-operand addition in that case.
538 if (Index->hasOneUse())
539 return false;
541 // Prefer addition if the second operation is sign-extended, in the
542 // hope of using AGF.
543 unsigned IndexOpcode = Index->getOpcode();
544 if (IndexOpcode == ISD::SIGN_EXTEND ||
545 IndexOpcode == ISD::SIGN_EXTEND_INREG)
546 return false;
549 // Don't use LA for two-operand addition if either operand is only
550 // used once. The addition instructions are better in that case.
551 if (Base->hasOneUse())
552 return false;
554 return true;
557 // Return true if Addr is suitable for AM, updating AM if so.
558 bool SystemZDAGToDAGISel::selectAddress(SDValue Addr,
559 SystemZAddressingMode &AM) const {
560 // Start out assuming that the address will need to be loaded separately,
561 // then try to extend it as much as we can.
562 AM.Base = Addr;
564 // First try treating the address as a constant.
565 if (Addr.getOpcode() == ISD::Constant &&
566 expandDisp(AM, true, SDValue(),
567 cast<ConstantSDNode>(Addr)->getSExtValue()))
569 // Also see if it's a bare ADJDYNALLOC.
570 else if (Addr.getOpcode() == SystemZISD::ADJDYNALLOC &&
571 expandAdjDynAlloc(AM, true, SDValue()))
573 else
574 // Otherwise try expanding each component.
575 while (expandAddress(AM, true) ||
576 (AM.Index.getNode() && expandAddress(AM, false)))
577 continue;
579 // Reject cases where it isn't profitable to use LA(Y).
580 if (AM.Form == SystemZAddressingMode::FormBDXLA &&
581 !shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode()))
582 return false;
584 // Reject cases where the other instruction in a pair should be used.
585 if (!isValidDisp(AM.DR, AM.Disp))
586 return false;
588 // Make sure that ADJDYNALLOC is included where necessary.
589 if (AM.isDynAlloc() && !AM.IncludesDynAlloc)
590 return false;
592 LLVM_DEBUG(AM.dump(CurDAG));
593 return true;
596 // Insert a node into the DAG at least before Pos. This will reposition
597 // the node as needed, and will assign it a node ID that is <= Pos's ID.
598 // Note that this does *not* preserve the uniqueness of node IDs!
599 // The selection DAG must no longer depend on their uniqueness when this
600 // function is used.
601 static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) {
602 if (N->getNodeId() == -1 ||
603 (SelectionDAGISel::getUninvalidatedNodeId(N.getNode()) >
604 SelectionDAGISel::getUninvalidatedNodeId(Pos))) {
605 DAG->RepositionNode(Pos->getIterator(), N.getNode());
606 // Mark Node as invalid for pruning as after this it may be a successor to a
607 // selected node but otherwise be in the same position of Pos.
608 // Conservatively mark it with the same -abs(Id) to assure node id
609 // invariant is preserved.
610 N->setNodeId(Pos->getNodeId());
611 SelectionDAGISel::InvalidateNodeId(N.getNode());
615 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
616 EVT VT, SDValue &Base,
617 SDValue &Disp) const {
618 Base = AM.Base;
619 if (!Base.getNode())
620 // Register 0 means "no base". This is mostly useful for shifts.
621 Base = CurDAG->getRegister(0, VT);
622 else if (Base.getOpcode() == ISD::FrameIndex) {
623 // Lower a FrameIndex to a TargetFrameIndex.
624 int64_t FrameIndex = cast<FrameIndexSDNode>(Base)->getIndex();
625 Base = CurDAG->getTargetFrameIndex(FrameIndex, VT);
626 } else if (Base.getValueType() != VT) {
627 // Truncate values from i64 to i32, for shifts.
628 assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 &&
629 "Unexpected truncation");
630 SDLoc DL(Base);
631 SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base);
632 insertDAGNode(CurDAG, Base.getNode(), Trunc);
633 Base = Trunc;
636 // Lower the displacement to a TargetConstant.
637 Disp = CurDAG->getTargetConstant(AM.Disp, SDLoc(Base), VT);
640 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
641 EVT VT, SDValue &Base,
642 SDValue &Disp,
643 SDValue &Index) const {
644 getAddressOperands(AM, VT, Base, Disp);
646 Index = AM.Index;
647 if (!Index.getNode())
648 // Register 0 means "no index".
649 Index = CurDAG->getRegister(0, VT);
652 bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR,
653 SDValue Addr, SDValue &Base,
654 SDValue &Disp) const {
655 SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR);
656 if (!selectAddress(Addr, AM))
657 return false;
659 getAddressOperands(AM, Addr.getValueType(), Base, Disp);
660 return true;
663 bool SystemZDAGToDAGISel::selectMVIAddr(SystemZAddressingMode::DispRange DR,
664 SDValue Addr, SDValue &Base,
665 SDValue &Disp) const {
666 SystemZAddressingMode AM(SystemZAddressingMode::FormBDXNormal, DR);
667 if (!selectAddress(Addr, AM) || AM.Index.getNode())
668 return false;
670 getAddressOperands(AM, Addr.getValueType(), Base, Disp);
671 return true;
674 bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form,
675 SystemZAddressingMode::DispRange DR,
676 SDValue Addr, SDValue &Base,
677 SDValue &Disp, SDValue &Index) const {
678 SystemZAddressingMode AM(Form, DR);
679 if (!selectAddress(Addr, AM))
680 return false;
682 getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index);
683 return true;
686 bool SystemZDAGToDAGISel::selectBDVAddr12Only(SDValue Addr, SDValue Elem,
687 SDValue &Base,
688 SDValue &Disp,
689 SDValue &Index) const {
690 SDValue Regs[2];
691 if (selectBDXAddr12Only(Addr, Regs[0], Disp, Regs[1]) &&
692 Regs[0].getNode() && Regs[1].getNode()) {
693 for (unsigned int I = 0; I < 2; ++I) {
694 Base = Regs[I];
695 Index = Regs[1 - I];
696 // We can't tell here whether the index vector has the right type
697 // for the access; the caller needs to do that instead.
698 if (Index.getOpcode() == ISD::ZERO_EXTEND)
699 Index = Index.getOperand(0);
700 if (Index.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
701 Index.getOperand(1) == Elem) {
702 Index = Index.getOperand(0);
703 return true;
707 return false;
710 bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue &Op,
711 uint64_t InsertMask) const {
712 // We're only interested in cases where the insertion is into some operand
713 // of Op, rather than into Op itself. The only useful case is an AND.
714 if (Op.getOpcode() != ISD::AND)
715 return false;
717 // We need a constant mask.
718 auto *MaskNode = dyn_cast<ConstantSDNode>(Op.getOperand(1).getNode());
719 if (!MaskNode)
720 return false;
722 // It's not an insertion of Op.getOperand(0) if the two masks overlap.
723 uint64_t AndMask = MaskNode->getZExtValue();
724 if (InsertMask & AndMask)
725 return false;
727 // It's only an insertion if all bits are covered or are known to be zero.
728 // The inner check covers all cases but is more expensive.
729 uint64_t Used = allOnes(Op.getValueSizeInBits());
730 if (Used != (AndMask | InsertMask)) {
731 KnownBits Known = CurDAG->computeKnownBits(Op.getOperand(0));
732 if (Used != (AndMask | InsertMask | Known.Zero.getZExtValue()))
733 return false;
736 Op = Op.getOperand(0);
737 return true;
740 bool SystemZDAGToDAGISel::refineRxSBGMask(RxSBGOperands &RxSBG,
741 uint64_t Mask) const {
742 const SystemZInstrInfo *TII = getInstrInfo();
743 if (RxSBG.Rotate != 0)
744 Mask = (Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate));
745 Mask &= RxSBG.Mask;
746 if (TII->isRxSBGMask(Mask, RxSBG.BitSize, RxSBG.Start, RxSBG.End)) {
747 RxSBG.Mask = Mask;
748 return true;
750 return false;
753 // Return true if any bits of (RxSBG.Input & Mask) are significant.
754 static bool maskMatters(RxSBGOperands &RxSBG, uint64_t Mask) {
755 // Rotate the mask in the same way as RxSBG.Input is rotated.
756 if (RxSBG.Rotate != 0)
757 Mask = ((Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate)));
758 return (Mask & RxSBG.Mask) != 0;
761 bool SystemZDAGToDAGISel::expandRxSBG(RxSBGOperands &RxSBG) const {
762 SDValue N = RxSBG.Input;
763 unsigned Opcode = N.getOpcode();
764 switch (Opcode) {
765 case ISD::TRUNCATE: {
766 if (RxSBG.Opcode == SystemZ::RNSBG)
767 return false;
768 uint64_t BitSize = N.getValueSizeInBits();
769 uint64_t Mask = allOnes(BitSize);
770 if (!refineRxSBGMask(RxSBG, Mask))
771 return false;
772 RxSBG.Input = N.getOperand(0);
773 return true;
775 case ISD::AND: {
776 if (RxSBG.Opcode == SystemZ::RNSBG)
777 return false;
779 auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
780 if (!MaskNode)
781 return false;
783 SDValue Input = N.getOperand(0);
784 uint64_t Mask = MaskNode->getZExtValue();
785 if (!refineRxSBGMask(RxSBG, Mask)) {
786 // If some bits of Input are already known zeros, those bits will have
787 // been removed from the mask. See if adding them back in makes the
788 // mask suitable.
789 KnownBits Known = CurDAG->computeKnownBits(Input);
790 Mask |= Known.Zero.getZExtValue();
791 if (!refineRxSBGMask(RxSBG, Mask))
792 return false;
794 RxSBG.Input = Input;
795 return true;
798 case ISD::OR: {
799 if (RxSBG.Opcode != SystemZ::RNSBG)
800 return false;
802 auto *MaskNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
803 if (!MaskNode)
804 return false;
806 SDValue Input = N.getOperand(0);
807 uint64_t Mask = ~MaskNode->getZExtValue();
808 if (!refineRxSBGMask(RxSBG, Mask)) {
809 // If some bits of Input are already known ones, those bits will have
810 // been removed from the mask. See if adding them back in makes the
811 // mask suitable.
812 KnownBits Known = CurDAG->computeKnownBits(Input);
813 Mask &= ~Known.One.getZExtValue();
814 if (!refineRxSBGMask(RxSBG, Mask))
815 return false;
817 RxSBG.Input = Input;
818 return true;
821 case ISD::ROTL: {
822 // Any 64-bit rotate left can be merged into the RxSBG.
823 if (RxSBG.BitSize != 64 || N.getValueType() != MVT::i64)
824 return false;
825 auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
826 if (!CountNode)
827 return false;
829 RxSBG.Rotate = (RxSBG.Rotate + CountNode->getZExtValue()) & 63;
830 RxSBG.Input = N.getOperand(0);
831 return true;
834 case ISD::ANY_EXTEND:
835 // Bits above the extended operand are don't-care.
836 RxSBG.Input = N.getOperand(0);
837 return true;
839 case ISD::ZERO_EXTEND:
840 if (RxSBG.Opcode != SystemZ::RNSBG) {
841 // Restrict the mask to the extended operand.
842 unsigned InnerBitSize = N.getOperand(0).getValueSizeInBits();
843 if (!refineRxSBGMask(RxSBG, allOnes(InnerBitSize)))
844 return false;
846 RxSBG.Input = N.getOperand(0);
847 return true;
849 LLVM_FALLTHROUGH;
851 case ISD::SIGN_EXTEND: {
852 // Check that the extension bits are don't-care (i.e. are masked out
853 // by the final mask).
854 unsigned BitSize = N.getValueSizeInBits();
855 unsigned InnerBitSize = N.getOperand(0).getValueSizeInBits();
856 if (maskMatters(RxSBG, allOnes(BitSize) - allOnes(InnerBitSize))) {
857 // In the case where only the sign bit is active, increase Rotate with
858 // the extension width.
859 if (RxSBG.Mask == 1 && RxSBG.Rotate == 1)
860 RxSBG.Rotate += (BitSize - InnerBitSize);
861 else
862 return false;
865 RxSBG.Input = N.getOperand(0);
866 return true;
869 case ISD::SHL: {
870 auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
871 if (!CountNode)
872 return false;
874 uint64_t Count = CountNode->getZExtValue();
875 unsigned BitSize = N.getValueSizeInBits();
876 if (Count < 1 || Count >= BitSize)
877 return false;
879 if (RxSBG.Opcode == SystemZ::RNSBG) {
880 // Treat (shl X, count) as (rotl X, size-count) as long as the bottom
881 // count bits from RxSBG.Input are ignored.
882 if (maskMatters(RxSBG, allOnes(Count)))
883 return false;
884 } else {
885 // Treat (shl X, count) as (and (rotl X, count), ~0<<count).
886 if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count) << Count))
887 return false;
890 RxSBG.Rotate = (RxSBG.Rotate + Count) & 63;
891 RxSBG.Input = N.getOperand(0);
892 return true;
895 case ISD::SRL:
896 case ISD::SRA: {
897 auto *CountNode = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
898 if (!CountNode)
899 return false;
901 uint64_t Count = CountNode->getZExtValue();
902 unsigned BitSize = N.getValueSizeInBits();
903 if (Count < 1 || Count >= BitSize)
904 return false;
906 if (RxSBG.Opcode == SystemZ::RNSBG || Opcode == ISD::SRA) {
907 // Treat (srl|sra X, count) as (rotl X, size-count) as long as the top
908 // count bits from RxSBG.Input are ignored.
909 if (maskMatters(RxSBG, allOnes(Count) << (BitSize - Count)))
910 return false;
911 } else {
912 // Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count),
913 // which is similar to SLL above.
914 if (!refineRxSBGMask(RxSBG, allOnes(BitSize - Count)))
915 return false;
918 RxSBG.Rotate = (RxSBG.Rotate - Count) & 63;
919 RxSBG.Input = N.getOperand(0);
920 return true;
922 default:
923 return false;
927 SDValue SystemZDAGToDAGISel::getUNDEF(const SDLoc &DL, EVT VT) const {
928 SDNode *N = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, VT);
929 return SDValue(N, 0);
932 SDValue SystemZDAGToDAGISel::convertTo(const SDLoc &DL, EVT VT,
933 SDValue N) const {
934 if (N.getValueType() == MVT::i32 && VT == MVT::i64)
935 return CurDAG->getTargetInsertSubreg(SystemZ::subreg_l32,
936 DL, VT, getUNDEF(DL, MVT::i64), N);
937 if (N.getValueType() == MVT::i64 && VT == MVT::i32)
938 return CurDAG->getTargetExtractSubreg(SystemZ::subreg_l32, DL, VT, N);
939 assert(N.getValueType() == VT && "Unexpected value types");
940 return N;
943 bool SystemZDAGToDAGISel::tryRISBGZero(SDNode *N) {
944 SDLoc DL(N);
945 EVT VT = N->getValueType(0);
946 if (!VT.isInteger() || VT.getSizeInBits() > 64)
947 return false;
948 RxSBGOperands RISBG(SystemZ::RISBG, SDValue(N, 0));
949 unsigned Count = 0;
950 while (expandRxSBG(RISBG))
951 // The widening or narrowing is expected to be free.
952 // Counting widening or narrowing as a saved operation will result in
953 // preferring an R*SBG over a simple shift/logical instruction.
954 if (RISBG.Input.getOpcode() != ISD::ANY_EXTEND &&
955 RISBG.Input.getOpcode() != ISD::TRUNCATE)
956 Count += 1;
957 if (Count == 0)
958 return false;
960 // Prefer to use normal shift instructions over RISBG, since they can handle
961 // all cases and are sometimes shorter.
962 if (Count == 1 && N->getOpcode() != ISD::AND)
963 return false;
965 // Prefer register extensions like LLC over RISBG. Also prefer to start
966 // out with normal ANDs if one instruction would be enough. We can convert
967 // these ANDs into an RISBG later if a three-address instruction is useful.
968 if (RISBG.Rotate == 0) {
969 bool PreferAnd = false;
970 // Prefer AND for any 32-bit and-immediate operation.
971 if (VT == MVT::i32)
972 PreferAnd = true;
973 // As well as for any 64-bit operation that can be implemented via LLC(R),
974 // LLH(R), LLGT(R), or one of the and-immediate instructions.
975 else if (RISBG.Mask == 0xff ||
976 RISBG.Mask == 0xffff ||
977 RISBG.Mask == 0x7fffffff ||
978 SystemZ::isImmLF(~RISBG.Mask) ||
979 SystemZ::isImmHF(~RISBG.Mask))
980 PreferAnd = true;
981 // And likewise for the LLZRGF instruction, which doesn't have a register
982 // to register version.
983 else if (auto *Load = dyn_cast<LoadSDNode>(RISBG.Input)) {
984 if (Load->getMemoryVT() == MVT::i32 &&
985 (Load->getExtensionType() == ISD::EXTLOAD ||
986 Load->getExtensionType() == ISD::ZEXTLOAD) &&
987 RISBG.Mask == 0xffffff00 &&
988 Subtarget->hasLoadAndZeroRightmostByte())
989 PreferAnd = true;
991 if (PreferAnd) {
992 // Replace the current node with an AND. Note that the current node
993 // might already be that same AND, in which case it is already CSE'd
994 // with it, and we must not call ReplaceNode.
995 SDValue In = convertTo(DL, VT, RISBG.Input);
996 SDValue Mask = CurDAG->getConstant(RISBG.Mask, DL, VT);
997 SDValue New = CurDAG->getNode(ISD::AND, DL, VT, In, Mask);
998 if (N != New.getNode()) {
999 insertDAGNode(CurDAG, N, Mask);
1000 insertDAGNode(CurDAG, N, New);
1001 ReplaceNode(N, New.getNode());
1002 N = New.getNode();
1004 // Now, select the machine opcode to implement this operation.
1005 if (!N->isMachineOpcode())
1006 SelectCode(N);
1007 return true;
1011 unsigned Opcode = SystemZ::RISBG;
1012 // Prefer RISBGN if available, since it does not clobber CC.
1013 if (Subtarget->hasMiscellaneousExtensions())
1014 Opcode = SystemZ::RISBGN;
1015 EVT OpcodeVT = MVT::i64;
1016 if (VT == MVT::i32 && Subtarget->hasHighWord() &&
1017 // We can only use the 32-bit instructions if all source bits are
1018 // in the low 32 bits without wrapping, both after rotation (because
1019 // of the smaller range for Start and End) and before rotation
1020 // (because the input value is truncated).
1021 RISBG.Start >= 32 && RISBG.End >= RISBG.Start &&
1022 ((RISBG.Start + RISBG.Rotate) & 63) >= 32 &&
1023 ((RISBG.End + RISBG.Rotate) & 63) >=
1024 ((RISBG.Start + RISBG.Rotate) & 63)) {
1025 Opcode = SystemZ::RISBMux;
1026 OpcodeVT = MVT::i32;
1027 RISBG.Start &= 31;
1028 RISBG.End &= 31;
1030 SDValue Ops[5] = {
1031 getUNDEF(DL, OpcodeVT),
1032 convertTo(DL, OpcodeVT, RISBG.Input),
1033 CurDAG->getTargetConstant(RISBG.Start, DL, MVT::i32),
1034 CurDAG->getTargetConstant(RISBG.End | 128, DL, MVT::i32),
1035 CurDAG->getTargetConstant(RISBG.Rotate, DL, MVT::i32)
1037 SDValue New = convertTo(
1038 DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, OpcodeVT, Ops), 0));
1039 ReplaceNode(N, New.getNode());
1040 return true;
1043 bool SystemZDAGToDAGISel::tryRxSBG(SDNode *N, unsigned Opcode) {
1044 SDLoc DL(N);
1045 EVT VT = N->getValueType(0);
1046 if (!VT.isInteger() || VT.getSizeInBits() > 64)
1047 return false;
1048 // Try treating each operand of N as the second operand of the RxSBG
1049 // and see which goes deepest.
1050 RxSBGOperands RxSBG[] = {
1051 RxSBGOperands(Opcode, N->getOperand(0)),
1052 RxSBGOperands(Opcode, N->getOperand(1))
1054 unsigned Count[] = { 0, 0 };
1055 for (unsigned I = 0; I < 2; ++I)
1056 while (expandRxSBG(RxSBG[I]))
1057 // The widening or narrowing is expected to be free.
1058 // Counting widening or narrowing as a saved operation will result in
1059 // preferring an R*SBG over a simple shift/logical instruction.
1060 if (RxSBG[I].Input.getOpcode() != ISD::ANY_EXTEND &&
1061 RxSBG[I].Input.getOpcode() != ISD::TRUNCATE)
1062 Count[I] += 1;
1064 // Do nothing if neither operand is suitable.
1065 if (Count[0] == 0 && Count[1] == 0)
1066 return false;
1068 // Pick the deepest second operand.
1069 unsigned I = Count[0] > Count[1] ? 0 : 1;
1070 SDValue Op0 = N->getOperand(I ^ 1);
1072 // Prefer IC for character insertions from memory.
1073 if (Opcode == SystemZ::ROSBG && (RxSBG[I].Mask & 0xff) == 0)
1074 if (auto *Load = dyn_cast<LoadSDNode>(Op0.getNode()))
1075 if (Load->getMemoryVT() == MVT::i8)
1076 return false;
1078 // See whether we can avoid an AND in the first operand by converting
1079 // ROSBG to RISBG.
1080 if (Opcode == SystemZ::ROSBG && detectOrAndInsertion(Op0, RxSBG[I].Mask)) {
1081 Opcode = SystemZ::RISBG;
1082 // Prefer RISBGN if available, since it does not clobber CC.
1083 if (Subtarget->hasMiscellaneousExtensions())
1084 Opcode = SystemZ::RISBGN;
1087 SDValue Ops[5] = {
1088 convertTo(DL, MVT::i64, Op0),
1089 convertTo(DL, MVT::i64, RxSBG[I].Input),
1090 CurDAG->getTargetConstant(RxSBG[I].Start, DL, MVT::i32),
1091 CurDAG->getTargetConstant(RxSBG[I].End, DL, MVT::i32),
1092 CurDAG->getTargetConstant(RxSBG[I].Rotate, DL, MVT::i32)
1094 SDValue New = convertTo(
1095 DL, VT, SDValue(CurDAG->getMachineNode(Opcode, DL, MVT::i64, Ops), 0));
1096 ReplaceNode(N, New.getNode());
1097 return true;
1100 void SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node,
1101 SDValue Op0, uint64_t UpperVal,
1102 uint64_t LowerVal) {
1103 EVT VT = Node->getValueType(0);
1104 SDLoc DL(Node);
1105 SDValue Upper = CurDAG->getConstant(UpperVal, DL, VT);
1106 if (Op0.getNode())
1107 Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper);
1110 // When we haven't passed in Op0, Upper will be a constant. In order to
1111 // prevent folding back to the large immediate in `Or = getNode(...)` we run
1112 // SelectCode first and end up with an opaque machine node. This means that
1113 // we need to use a handle to keep track of Upper in case it gets CSE'd by
1114 // SelectCode.
1116 // Note that in the case where Op0 is passed in we could just call
1117 // SelectCode(Upper) later, along with the SelectCode(Or), and avoid needing
1118 // the handle at all, but it's fine to do it here.
1120 // TODO: This is a pretty hacky way to do this. Can we do something that
1121 // doesn't require a two paragraph explanation?
1122 HandleSDNode Handle(Upper);
1123 SelectCode(Upper.getNode());
1124 Upper = Handle.getValue();
1127 SDValue Lower = CurDAG->getConstant(LowerVal, DL, VT);
1128 SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower);
1130 ReplaceNode(Node, Or.getNode());
1132 SelectCode(Or.getNode());
1135 bool SystemZDAGToDAGISel::tryGather(SDNode *N, unsigned Opcode) {
1136 SDValue ElemV = N->getOperand(2);
1137 auto *ElemN = dyn_cast<ConstantSDNode>(ElemV);
1138 if (!ElemN)
1139 return false;
1141 unsigned Elem = ElemN->getZExtValue();
1142 EVT VT = N->getValueType(0);
1143 if (Elem >= VT.getVectorNumElements())
1144 return false;
1146 auto *Load = dyn_cast<LoadSDNode>(N->getOperand(1));
1147 if (!Load || !Load->hasNUsesOfValue(1, 0))
1148 return false;
1149 if (Load->getMemoryVT().getSizeInBits() !=
1150 Load->getValueType(0).getSizeInBits())
1151 return false;
1153 SDValue Base, Disp, Index;
1154 if (!selectBDVAddr12Only(Load->getBasePtr(), ElemV, Base, Disp, Index) ||
1155 Index.getValueType() != VT.changeVectorElementTypeToInteger())
1156 return false;
1158 SDLoc DL(Load);
1159 SDValue Ops[] = {
1160 N->getOperand(0), Base, Disp, Index,
1161 CurDAG->getTargetConstant(Elem, DL, MVT::i32), Load->getChain()
1163 SDNode *Res = CurDAG->getMachineNode(Opcode, DL, VT, MVT::Other, Ops);
1164 ReplaceUses(SDValue(Load, 1), SDValue(Res, 1));
1165 ReplaceNode(N, Res);
1166 return true;
1169 bool SystemZDAGToDAGISel::tryScatter(StoreSDNode *Store, unsigned Opcode) {
1170 SDValue Value = Store->getValue();
1171 if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
1172 return false;
1173 if (Store->getMemoryVT().getSizeInBits() != Value.getValueSizeInBits())
1174 return false;
1176 SDValue ElemV = Value.getOperand(1);
1177 auto *ElemN = dyn_cast<ConstantSDNode>(ElemV);
1178 if (!ElemN)
1179 return false;
1181 SDValue Vec = Value.getOperand(0);
1182 EVT VT = Vec.getValueType();
1183 unsigned Elem = ElemN->getZExtValue();
1184 if (Elem >= VT.getVectorNumElements())
1185 return false;
1187 SDValue Base, Disp, Index;
1188 if (!selectBDVAddr12Only(Store->getBasePtr(), ElemV, Base, Disp, Index) ||
1189 Index.getValueType() != VT.changeVectorElementTypeToInteger())
1190 return false;
1192 SDLoc DL(Store);
1193 SDValue Ops[] = {
1194 Vec, Base, Disp, Index, CurDAG->getTargetConstant(Elem, DL, MVT::i32),
1195 Store->getChain()
1197 ReplaceNode(Store, CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops));
1198 return true;
1201 // Check whether or not the chain ending in StoreNode is suitable for doing
1202 // the {load; op; store} to modify transformation.
1203 static bool isFusableLoadOpStorePattern(StoreSDNode *StoreNode,
1204 SDValue StoredVal, SelectionDAG *CurDAG,
1205 LoadSDNode *&LoadNode,
1206 SDValue &InputChain) {
1207 // Is the stored value result 0 of the operation?
1208 if (StoredVal.getResNo() != 0)
1209 return false;
1211 // Are there other uses of the loaded value than the operation?
1212 if (!StoredVal.getNode()->hasNUsesOfValue(1, 0))
1213 return false;
1215 // Is the store non-extending and non-indexed?
1216 if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
1217 return false;
1219 SDValue Load = StoredVal->getOperand(0);
1220 // Is the stored value a non-extending and non-indexed load?
1221 if (!ISD::isNormalLoad(Load.getNode()))
1222 return false;
1224 // Return LoadNode by reference.
1225 LoadNode = cast<LoadSDNode>(Load);
1227 // Is store the only read of the loaded value?
1228 if (!Load.hasOneUse())
1229 return false;
1231 // Is the address of the store the same as the load?
1232 if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
1233 LoadNode->getOffset() != StoreNode->getOffset())
1234 return false;
1236 // Check if the chain is produced by the load or is a TokenFactor with
1237 // the load output chain as an operand. Return InputChain by reference.
1238 SDValue Chain = StoreNode->getChain();
1240 bool ChainCheck = false;
1241 if (Chain == Load.getValue(1)) {
1242 ChainCheck = true;
1243 InputChain = LoadNode->getChain();
1244 } else if (Chain.getOpcode() == ISD::TokenFactor) {
1245 SmallVector<SDValue, 4> ChainOps;
1246 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
1247 SDValue Op = Chain.getOperand(i);
1248 if (Op == Load.getValue(1)) {
1249 ChainCheck = true;
1250 // Drop Load, but keep its chain. No cycle check necessary.
1251 ChainOps.push_back(Load.getOperand(0));
1252 continue;
1255 // Make sure using Op as part of the chain would not cause a cycle here.
1256 // In theory, we could check whether the chain node is a predecessor of
1257 // the load. But that can be very expensive. Instead visit the uses and
1258 // make sure they all have smaller node id than the load.
1259 int LoadId = LoadNode->getNodeId();
1260 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
1261 UE = UI->use_end(); UI != UE; ++UI) {
1262 if (UI.getUse().getResNo() != 0)
1263 continue;
1264 if (UI->getNodeId() > LoadId)
1265 return false;
1268 ChainOps.push_back(Op);
1271 if (ChainCheck)
1272 // Make a new TokenFactor with all the other input chains except
1273 // for the load.
1274 InputChain = CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain),
1275 MVT::Other, ChainOps);
1277 if (!ChainCheck)
1278 return false;
1280 return true;
1283 // Change a chain of {load; op; store} of the same value into a simple op
1284 // through memory of that value, if the uses of the modified value and its
1285 // address are suitable.
1287 // The tablegen pattern memory operand pattern is currently not able to match
1288 // the case where the CC on the original operation are used.
1290 // See the equivalent routine in X86ISelDAGToDAG for further comments.
1291 bool SystemZDAGToDAGISel::tryFoldLoadStoreIntoMemOperand(SDNode *Node) {
1292 StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
1293 SDValue StoredVal = StoreNode->getOperand(1);
1294 unsigned Opc = StoredVal->getOpcode();
1295 SDLoc DL(StoreNode);
1297 // Before we try to select anything, make sure this is memory operand size
1298 // and opcode we can handle. Note that this must match the code below that
1299 // actually lowers the opcodes.
1300 EVT MemVT = StoreNode->getMemoryVT();
1301 unsigned NewOpc = 0;
1302 bool NegateOperand = false;
1303 switch (Opc) {
1304 default:
1305 return false;
1306 case SystemZISD::SSUBO:
1307 NegateOperand = true;
1308 LLVM_FALLTHROUGH;
1309 case SystemZISD::SADDO:
1310 if (MemVT == MVT::i32)
1311 NewOpc = SystemZ::ASI;
1312 else if (MemVT == MVT::i64)
1313 NewOpc = SystemZ::AGSI;
1314 else
1315 return false;
1316 break;
1317 case SystemZISD::USUBO:
1318 NegateOperand = true;
1319 LLVM_FALLTHROUGH;
1320 case SystemZISD::UADDO:
1321 if (MemVT == MVT::i32)
1322 NewOpc = SystemZ::ALSI;
1323 else if (MemVT == MVT::i64)
1324 NewOpc = SystemZ::ALGSI;
1325 else
1326 return false;
1327 break;
1330 LoadSDNode *LoadNode = nullptr;
1331 SDValue InputChain;
1332 if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadNode,
1333 InputChain))
1334 return false;
1336 SDValue Operand = StoredVal.getOperand(1);
1337 auto *OperandC = dyn_cast<ConstantSDNode>(Operand);
1338 if (!OperandC)
1339 return false;
1340 auto OperandV = OperandC->getAPIntValue();
1341 if (NegateOperand)
1342 OperandV = -OperandV;
1343 if (OperandV.getMinSignedBits() > 8)
1344 return false;
1345 Operand = CurDAG->getTargetConstant(OperandV, DL, MemVT);
1347 SDValue Base, Disp;
1348 if (!selectBDAddr20Only(StoreNode->getBasePtr(), Base, Disp))
1349 return false;
1351 SDValue Ops[] = { Base, Disp, Operand, InputChain };
1352 MachineSDNode *Result =
1353 CurDAG->getMachineNode(NewOpc, DL, MVT::i32, MVT::Other, Ops);
1354 CurDAG->setNodeMemRefs(
1355 Result, {StoreNode->getMemOperand(), LoadNode->getMemOperand()});
1357 ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
1358 ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
1359 CurDAG->RemoveDeadNode(Node);
1360 return true;
1363 bool SystemZDAGToDAGISel::canUseBlockOperation(StoreSDNode *Store,
1364 LoadSDNode *Load) const {
1365 // Check that the two memory operands have the same size.
1366 if (Load->getMemoryVT() != Store->getMemoryVT())
1367 return false;
1369 // Volatility stops an access from being decomposed.
1370 if (Load->isVolatile() || Store->isVolatile())
1371 return false;
1373 // There's no chance of overlap if the load is invariant.
1374 if (Load->isInvariant() && Load->isDereferenceable())
1375 return true;
1377 // Otherwise we need to check whether there's an alias.
1378 const Value *V1 = Load->getMemOperand()->getValue();
1379 const Value *V2 = Store->getMemOperand()->getValue();
1380 if (!V1 || !V2)
1381 return false;
1383 // Reject equality.
1384 uint64_t Size = Load->getMemoryVT().getStoreSize();
1385 int64_t End1 = Load->getSrcValueOffset() + Size;
1386 int64_t End2 = Store->getSrcValueOffset() + Size;
1387 if (V1 == V2 && End1 == End2)
1388 return false;
1390 return !AA->alias(MemoryLocation(V1, End1, Load->getAAInfo()),
1391 MemoryLocation(V2, End2, Store->getAAInfo()));
1394 bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const {
1395 auto *Store = cast<StoreSDNode>(N);
1396 auto *Load = cast<LoadSDNode>(Store->getValue());
1398 // Prefer not to use MVC if either address can use ... RELATIVE LONG
1399 // instructions.
1400 uint64_t Size = Load->getMemoryVT().getStoreSize();
1401 if (Size > 1 && Size <= 8) {
1402 // Prefer LHRL, LRL and LGRL.
1403 if (SystemZISD::isPCREL(Load->getBasePtr().getOpcode()))
1404 return false;
1405 // Prefer STHRL, STRL and STGRL.
1406 if (SystemZISD::isPCREL(Store->getBasePtr().getOpcode()))
1407 return false;
1410 return canUseBlockOperation(Store, Load);
1413 bool SystemZDAGToDAGISel::storeLoadCanUseBlockBinary(SDNode *N,
1414 unsigned I) const {
1415 auto *StoreA = cast<StoreSDNode>(N);
1416 auto *LoadA = cast<LoadSDNode>(StoreA->getValue().getOperand(1 - I));
1417 auto *LoadB = cast<LoadSDNode>(StoreA->getValue().getOperand(I));
1418 return !LoadA->isVolatile() && canUseBlockOperation(StoreA, LoadB);
1421 void SystemZDAGToDAGISel::Select(SDNode *Node) {
1422 // If we have a custom node, we already have selected!
1423 if (Node->isMachineOpcode()) {
1424 LLVM_DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
1425 Node->setNodeId(-1);
1426 return;
1429 unsigned Opcode = Node->getOpcode();
1430 switch (Opcode) {
1431 case ISD::OR:
1432 if (Node->getOperand(1).getOpcode() != ISD::Constant)
1433 if (tryRxSBG(Node, SystemZ::ROSBG))
1434 return;
1435 goto or_xor;
1437 case ISD::XOR:
1438 if (Node->getOperand(1).getOpcode() != ISD::Constant)
1439 if (tryRxSBG(Node, SystemZ::RXSBG))
1440 return;
1441 // Fall through.
1442 or_xor:
1443 // If this is a 64-bit operation in which both 32-bit halves are nonzero,
1444 // split the operation into two. If both operands here happen to be
1445 // constant, leave this to common code to optimize.
1446 if (Node->getValueType(0) == MVT::i64 &&
1447 Node->getOperand(0).getOpcode() != ISD::Constant)
1448 if (auto *Op1 = dyn_cast<ConstantSDNode>(Node->getOperand(1))) {
1449 uint64_t Val = Op1->getZExtValue();
1450 if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val)) {
1451 splitLargeImmediate(Opcode, Node, Node->getOperand(0),
1452 Val - uint32_t(Val), uint32_t(Val));
1453 return;
1456 break;
1458 case ISD::AND:
1459 if (Node->getOperand(1).getOpcode() != ISD::Constant)
1460 if (tryRxSBG(Node, SystemZ::RNSBG))
1461 return;
1462 LLVM_FALLTHROUGH;
1463 case ISD::ROTL:
1464 case ISD::SHL:
1465 case ISD::SRL:
1466 case ISD::ZERO_EXTEND:
1467 if (tryRISBGZero(Node))
1468 return;
1469 break;
1471 case ISD::Constant:
1472 // If this is a 64-bit constant that is out of the range of LLILF,
1473 // LLIHF and LGFI, split it into two 32-bit pieces.
1474 if (Node->getValueType(0) == MVT::i64) {
1475 uint64_t Val = cast<ConstantSDNode>(Node)->getZExtValue();
1476 if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val)) {
1477 splitLargeImmediate(ISD::OR, Node, SDValue(), Val - uint32_t(Val),
1478 uint32_t(Val));
1479 return;
1482 break;
1484 case SystemZISD::SELECT_CCMASK: {
1485 SDValue Op0 = Node->getOperand(0);
1486 SDValue Op1 = Node->getOperand(1);
1487 // Prefer to put any load first, so that it can be matched as a
1488 // conditional load. Likewise for constants in range for LOCHI.
1489 if ((Op1.getOpcode() == ISD::LOAD && Op0.getOpcode() != ISD::LOAD) ||
1490 (Subtarget->hasLoadStoreOnCond2() &&
1491 Node->getValueType(0).isInteger() &&
1492 Op1.getOpcode() == ISD::Constant &&
1493 isInt<16>(cast<ConstantSDNode>(Op1)->getSExtValue()) &&
1494 !(Op0.getOpcode() == ISD::Constant &&
1495 isInt<16>(cast<ConstantSDNode>(Op0)->getSExtValue())))) {
1496 SDValue CCValid = Node->getOperand(2);
1497 SDValue CCMask = Node->getOperand(3);
1498 uint64_t ConstCCValid =
1499 cast<ConstantSDNode>(CCValid.getNode())->getZExtValue();
1500 uint64_t ConstCCMask =
1501 cast<ConstantSDNode>(CCMask.getNode())->getZExtValue();
1502 // Invert the condition.
1503 CCMask = CurDAG->getConstant(ConstCCValid ^ ConstCCMask, SDLoc(Node),
1504 CCMask.getValueType());
1505 SDValue Op4 = Node->getOperand(4);
1506 SDNode *UpdatedNode =
1507 CurDAG->UpdateNodeOperands(Node, Op1, Op0, CCValid, CCMask, Op4);
1508 if (UpdatedNode != Node) {
1509 // In case this node already exists then replace Node with it.
1510 ReplaceNode(Node, UpdatedNode);
1511 Node = UpdatedNode;
1514 break;
1517 case ISD::INSERT_VECTOR_ELT: {
1518 EVT VT = Node->getValueType(0);
1519 unsigned ElemBitSize = VT.getScalarSizeInBits();
1520 if (ElemBitSize == 32) {
1521 if (tryGather(Node, SystemZ::VGEF))
1522 return;
1523 } else if (ElemBitSize == 64) {
1524 if (tryGather(Node, SystemZ::VGEG))
1525 return;
1527 break;
1530 case ISD::BUILD_VECTOR: {
1531 auto *BVN = cast<BuildVectorSDNode>(Node);
1532 SDLoc DL(Node);
1533 EVT VT = Node->getValueType(0);
1534 uint64_t Mask = 0;
1535 if (SystemZTargetLowering::tryBuildVectorByteMask(BVN, Mask)) {
1536 SDNode *Res = CurDAG->getMachineNode(SystemZ::VGBM, DL, VT,
1537 CurDAG->getTargetConstant(Mask, DL, MVT::i32));
1538 ReplaceNode(Node, Res);
1539 return;
1541 break;
1544 case ISD::ConstantFP: {
1545 APFloat Imm = cast<ConstantFPSDNode>(Node)->getValueAPF();
1546 if (Imm.isZero() || Imm.isNegZero())
1547 break;
1548 const SystemZInstrInfo *TII = getInstrInfo();
1549 EVT VT = Node->getValueType(0);
1550 unsigned Start, End;
1551 unsigned BitWidth = VT.getSizeInBits();
1552 bool Success = SystemZTargetLowering::analyzeFPImm(Imm, BitWidth, Start,
1553 End, static_cast<const SystemZInstrInfo *>(TII)); (void)Success;
1554 assert(Success && "Expected legal FP immediate");
1555 SDLoc DL(Node);
1556 unsigned Opcode = (BitWidth == 32 ? SystemZ::VGMF : SystemZ::VGMG);
1557 SDNode *Res = CurDAG->getMachineNode(Opcode, DL, VT,
1558 CurDAG->getTargetConstant(Start, DL, MVT::i32),
1559 CurDAG->getTargetConstant(End, DL, MVT::i32));
1560 unsigned SubRegIdx = (BitWidth == 32 ? SystemZ::subreg_h32
1561 : SystemZ::subreg_h64);
1562 Res = CurDAG->getTargetExtractSubreg(SubRegIdx, DL, VT, SDValue(Res, 0))
1563 .getNode();
1564 ReplaceNode(Node, Res);
1565 return;
1568 case ISD::STORE: {
1569 if (tryFoldLoadStoreIntoMemOperand(Node))
1570 return;
1571 auto *Store = cast<StoreSDNode>(Node);
1572 unsigned ElemBitSize = Store->getValue().getValueSizeInBits();
1573 if (ElemBitSize == 32) {
1574 if (tryScatter(Store, SystemZ::VSCEF))
1575 return;
1576 } else if (ElemBitSize == 64) {
1577 if (tryScatter(Store, SystemZ::VSCEG))
1578 return;
1580 break;
1584 SelectCode(Node);
1587 bool SystemZDAGToDAGISel::
1588 SelectInlineAsmMemoryOperand(const SDValue &Op,
1589 unsigned ConstraintID,
1590 std::vector<SDValue> &OutOps) {
1591 SystemZAddressingMode::AddrForm Form;
1592 SystemZAddressingMode::DispRange DispRange;
1593 SDValue Base, Disp, Index;
1595 switch(ConstraintID) {
1596 default:
1597 llvm_unreachable("Unexpected asm memory constraint");
1598 case InlineAsm::Constraint_i:
1599 case InlineAsm::Constraint_Q:
1600 // Accept an address with a short displacement, but no index.
1601 Form = SystemZAddressingMode::FormBD;
1602 DispRange = SystemZAddressingMode::Disp12Only;
1603 break;
1604 case InlineAsm::Constraint_R:
1605 // Accept an address with a short displacement and an index.
1606 Form = SystemZAddressingMode::FormBDXNormal;
1607 DispRange = SystemZAddressingMode::Disp12Only;
1608 break;
1609 case InlineAsm::Constraint_S:
1610 // Accept an address with a long displacement, but no index.
1611 Form = SystemZAddressingMode::FormBD;
1612 DispRange = SystemZAddressingMode::Disp20Only;
1613 break;
1614 case InlineAsm::Constraint_T:
1615 case InlineAsm::Constraint_m:
1616 case InlineAsm::Constraint_o:
1617 // Accept an address with a long displacement and an index.
1618 // m works the same as T, as this is the most general case.
1619 // We don't really have any special handling of "offsettable"
1620 // memory addresses, so just treat o the same as m.
1621 Form = SystemZAddressingMode::FormBDXNormal;
1622 DispRange = SystemZAddressingMode::Disp20Only;
1623 break;
1626 if (selectBDXAddr(Form, DispRange, Op, Base, Disp, Index)) {
1627 const TargetRegisterClass *TRC =
1628 Subtarget->getRegisterInfo()->getPointerRegClass(*MF);
1629 SDLoc DL(Base);
1630 SDValue RC = CurDAG->getTargetConstant(TRC->getID(), DL, MVT::i32);
1632 // Make sure that the base address doesn't go into %r0.
1633 // If it's a TargetFrameIndex or a fixed register, we shouldn't do anything.
1634 if (Base.getOpcode() != ISD::TargetFrameIndex &&
1635 Base.getOpcode() != ISD::Register) {
1636 Base =
1637 SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
1638 DL, Base.getValueType(),
1639 Base, RC), 0);
1642 // Make sure that the index register isn't assigned to %r0 either.
1643 if (Index.getOpcode() != ISD::Register) {
1644 Index =
1645 SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
1646 DL, Index.getValueType(),
1647 Index, RC), 0);
1650 OutOps.push_back(Base);
1651 OutOps.push_back(Disp);
1652 OutOps.push_back(Index);
1653 return false;
1656 return true;
1659 // IsProfitableToFold - Returns true if is profitable to fold the specific
1660 // operand node N of U during instruction selection that starts at Root.
1661 bool
1662 SystemZDAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1663 SDNode *Root) const {
1664 // We want to avoid folding a LOAD into an ICMP node if as a result
1665 // we would be forced to spill the condition code into a GPR.
1666 if (N.getOpcode() == ISD::LOAD && U->getOpcode() == SystemZISD::ICMP) {
1667 if (!N.hasOneUse() || !U->hasOneUse())
1668 return false;
1670 // The user of the CC value will usually be a CopyToReg into the
1671 // physical CC register, which in turn is glued and chained to the
1672 // actual instruction that uses the CC value. Bail out if we have
1673 // anything else than that.
1674 SDNode *CCUser = *U->use_begin();
1675 SDNode *CCRegUser = nullptr;
1676 if (CCUser->getOpcode() == ISD::CopyToReg ||
1677 cast<RegisterSDNode>(CCUser->getOperand(1))->getReg() == SystemZ::CC) {
1678 for (auto *U : CCUser->uses()) {
1679 if (CCRegUser == nullptr)
1680 CCRegUser = U;
1681 else if (CCRegUser != U)
1682 return false;
1685 if (CCRegUser == nullptr)
1686 return false;
1688 // If the actual instruction is a branch, the only thing that remains to be
1689 // checked is whether the CCUser chain is a predecessor of the load.
1690 if (CCRegUser->isMachineOpcode() &&
1691 CCRegUser->getMachineOpcode() == SystemZ::BRC)
1692 return !N->isPredecessorOf(CCUser->getOperand(0).getNode());
1694 // Otherwise, the instruction may have multiple operands, and we need to
1695 // verify that none of them are a predecessor of the load. This is exactly
1696 // the same check that would be done by common code if the CC setter were
1697 // glued to the CC user, so simply invoke that check here.
1698 if (!IsLegalToFold(N, U, CCRegUser, OptLevel, false))
1699 return false;
1702 return true;
1705 namespace {
1706 // Represents a sequence for extracting a 0/1 value from an IPM result:
1707 // (((X ^ XORValue) + AddValue) >> Bit)
1708 struct IPMConversion {
1709 IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit)
1710 : XORValue(xorValue), AddValue(addValue), Bit(bit) {}
1712 int64_t XORValue;
1713 int64_t AddValue;
1714 unsigned Bit;
1716 } // end anonymous namespace
1718 // Return a sequence for getting a 1 from an IPM result when CC has a
1719 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
1720 // The handling of CC values outside CCValid doesn't matter.
1721 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) {
1722 // Deal with cases where the result can be taken directly from a bit
1723 // of the IPM result.
1724 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3)))
1725 return IPMConversion(0, 0, SystemZ::IPM_CC);
1726 if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3)))
1727 return IPMConversion(0, 0, SystemZ::IPM_CC + 1);
1729 // Deal with cases where we can add a value to force the sign bit
1730 // to contain the right value. Putting the bit in 31 means we can
1731 // use SRL rather than RISBG(L), and also makes it easier to get a
1732 // 0/-1 value, so it has priority over the other tests below.
1734 // These sequences rely on the fact that the upper two bits of the
1735 // IPM result are zero.
1736 uint64_t TopBit = uint64_t(1) << 31;
1737 if (CCMask == (CCValid & SystemZ::CCMASK_0))
1738 return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31);
1739 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1)))
1740 return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31);
1741 if (CCMask == (CCValid & (SystemZ::CCMASK_0
1742 | SystemZ::CCMASK_1
1743 | SystemZ::CCMASK_2)))
1744 return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31);
1745 if (CCMask == (CCValid & SystemZ::CCMASK_3))
1746 return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31);
1747 if (CCMask == (CCValid & (SystemZ::CCMASK_1
1748 | SystemZ::CCMASK_2
1749 | SystemZ::CCMASK_3)))
1750 return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31);
1752 // Next try inverting the value and testing a bit. 0/1 could be
1753 // handled this way too, but we dealt with that case above.
1754 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2)))
1755 return IPMConversion(-1, 0, SystemZ::IPM_CC);
1757 // Handle cases where adding a value forces a non-sign bit to contain
1758 // the right value.
1759 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2)))
1760 return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1);
1761 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3)))
1762 return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1);
1764 // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are
1765 // can be done by inverting the low CC bit and applying one of the
1766 // sign-based extractions above.
1767 if (CCMask == (CCValid & SystemZ::CCMASK_1))
1768 return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31);
1769 if (CCMask == (CCValid & SystemZ::CCMASK_2))
1770 return IPMConversion(1 << SystemZ::IPM_CC,
1771 TopBit - (3 << SystemZ::IPM_CC), 31);
1772 if (CCMask == (CCValid & (SystemZ::CCMASK_0
1773 | SystemZ::CCMASK_1
1774 | SystemZ::CCMASK_3)))
1775 return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31);
1776 if (CCMask == (CCValid & (SystemZ::CCMASK_0
1777 | SystemZ::CCMASK_2
1778 | SystemZ::CCMASK_3)))
1779 return IPMConversion(1 << SystemZ::IPM_CC,
1780 TopBit - (1 << SystemZ::IPM_CC), 31);
1782 llvm_unreachable("Unexpected CC combination");
1785 SDValue SystemZDAGToDAGISel::expandSelectBoolean(SDNode *Node) {
1786 auto *TrueOp = dyn_cast<ConstantSDNode>(Node->getOperand(0));
1787 auto *FalseOp = dyn_cast<ConstantSDNode>(Node->getOperand(1));
1788 if (!TrueOp || !FalseOp)
1789 return SDValue();
1790 if (FalseOp->getZExtValue() != 0)
1791 return SDValue();
1792 if (TrueOp->getSExtValue() != 1 && TrueOp->getSExtValue() != -1)
1793 return SDValue();
1795 auto *CCValidOp = dyn_cast<ConstantSDNode>(Node->getOperand(2));
1796 auto *CCMaskOp = dyn_cast<ConstantSDNode>(Node->getOperand(3));
1797 if (!CCValidOp || !CCMaskOp)
1798 return SDValue();
1799 int CCValid = CCValidOp->getZExtValue();
1800 int CCMask = CCMaskOp->getZExtValue();
1802 SDLoc DL(Node);
1803 SDValue CCReg = Node->getOperand(4);
1804 IPMConversion IPM = getIPMConversion(CCValid, CCMask);
1805 SDValue Result = CurDAG->getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
1807 if (IPM.XORValue)
1808 Result = CurDAG->getNode(ISD::XOR, DL, MVT::i32, Result,
1809 CurDAG->getConstant(IPM.XORValue, DL, MVT::i32));
1811 if (IPM.AddValue)
1812 Result = CurDAG->getNode(ISD::ADD, DL, MVT::i32, Result,
1813 CurDAG->getConstant(IPM.AddValue, DL, MVT::i32));
1815 EVT VT = Node->getValueType(0);
1816 if (VT == MVT::i32 && IPM.Bit == 31) {
1817 unsigned ShiftOp = TrueOp->getSExtValue() == 1 ? ISD::SRL : ISD::SRA;
1818 Result = CurDAG->getNode(ShiftOp, DL, MVT::i32, Result,
1819 CurDAG->getConstant(IPM.Bit, DL, MVT::i32));
1820 } else {
1821 if (VT != MVT::i32)
1822 Result = CurDAG->getNode(ISD::ANY_EXTEND, DL, VT, Result);
1824 if (TrueOp->getSExtValue() == 1) {
1825 // The SHR/AND sequence should get optimized to an RISBG.
1826 Result = CurDAG->getNode(ISD::SRL, DL, VT, Result,
1827 CurDAG->getConstant(IPM.Bit, DL, MVT::i32));
1828 Result = CurDAG->getNode(ISD::AND, DL, VT, Result,
1829 CurDAG->getConstant(1, DL, VT));
1830 } else {
1831 // Sign-extend from IPM.Bit using a pair of shifts.
1832 int ShlAmt = VT.getSizeInBits() - 1 - IPM.Bit;
1833 int SraAmt = VT.getSizeInBits() - 1;
1834 Result = CurDAG->getNode(ISD::SHL, DL, VT, Result,
1835 CurDAG->getConstant(ShlAmt, DL, MVT::i32));
1836 Result = CurDAG->getNode(ISD::SRA, DL, VT, Result,
1837 CurDAG->getConstant(SraAmt, DL, MVT::i32));
1841 return Result;
1844 void SystemZDAGToDAGISel::PreprocessISelDAG() {
1845 // If we have conditional immediate loads, we always prefer
1846 // using those over an IPM sequence.
1847 if (Subtarget->hasLoadStoreOnCond2())
1848 return;
1850 bool MadeChange = false;
1852 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
1853 E = CurDAG->allnodes_end();
1854 I != E;) {
1855 SDNode *N = &*I++;
1856 if (N->use_empty())
1857 continue;
1859 SDValue Res;
1860 switch (N->getOpcode()) {
1861 default: break;
1862 case SystemZISD::SELECT_CCMASK:
1863 Res = expandSelectBoolean(N);
1864 break;
1867 if (Res) {
1868 LLVM_DEBUG(dbgs() << "SystemZ DAG preprocessing replacing:\nOld: ");
1869 LLVM_DEBUG(N->dump(CurDAG));
1870 LLVM_DEBUG(dbgs() << "\nNew: ");
1871 LLVM_DEBUG(Res.getNode()->dump(CurDAG));
1872 LLVM_DEBUG(dbgs() << "\n");
1874 CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res);
1875 MadeChange = true;
1879 if (MadeChange)
1880 CurDAG->RemoveDeadNodes();