1 //===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines an instruction selector for the SystemZ target.
11 //===----------------------------------------------------------------------===//
13 #include "SystemZTargetMachine.h"
14 #include "SystemZISelLowering.h"
15 #include "llvm/Analysis/AliasAnalysis.h"
16 #include "llvm/CodeGen/SelectionDAGISel.h"
17 #include "llvm/Support/Debug.h"
18 #include "llvm/Support/KnownBits.h"
19 #include "llvm/Support/raw_ostream.h"
23 #define DEBUG_TYPE "systemz-isel"
26 // Used to build addressing modes.
27 struct SystemZAddressingMode
{
28 // The shape of the address.
33 // base+displacement+index for load and store operands
36 // base+displacement+index for load address operands
39 // base+displacement+index+ADJDYNALLOC
44 // The type of displacement. The enum names here correspond directly
45 // to the definitions in SystemZOperand.td. We could split them into
46 // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it.
56 // The parts of the address. The address is equivalent to:
58 // Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0)
62 bool IncludesDynAlloc
;
64 SystemZAddressingMode(AddrForm form
, DispRange dr
)
65 : Form(form
), DR(dr
), Base(), Disp(0), Index(),
66 IncludesDynAlloc(false) {}
68 // True if the address can have an index register.
69 bool hasIndexField() { return Form
!= FormBD
; }
71 // True if the address can (and must) include ADJDYNALLOC.
72 bool isDynAlloc() { return Form
== FormBDXDynAlloc
; }
74 void dump(const llvm::SelectionDAG
*DAG
) {
75 errs() << "SystemZAddressingMode " << this << '\n';
79 Base
.getNode()->dump(DAG
);
83 if (hasIndexField()) {
86 Index
.getNode()->dump(DAG
);
91 errs() << " Disp " << Disp
;
93 errs() << " + ADJDYNALLOC";
98 // Return a mask with Count low bits set.
99 static uint64_t allOnes(unsigned int Count
) {
103 return (uint64_t(1) << Count
) - 1;
106 // Represents operands 2 to 5 of the ROTATE AND ... SELECTED BITS operation
107 // given by Opcode. The operands are: Input (R2), Start (I3), End (I4) and
108 // Rotate (I5). The combined operand value is effectively:
110 // (or (rotl Input, Rotate), ~Mask)
114 // (and (rotl Input, Rotate), Mask)
116 // otherwise. The output value has BitSize bits, although Input may be
117 // narrower (in which case the upper bits are don't care), or wider (in which
118 // case the result will be truncated as part of the operation).
119 struct RxSBGOperands
{
120 RxSBGOperands(unsigned Op
, SDValue N
)
121 : Opcode(Op
), BitSize(N
.getValueSizeInBits()),
122 Mask(allOnes(BitSize
)), Input(N
), Start(64 - BitSize
), End(63),
134 class SystemZDAGToDAGISel
: public SelectionDAGISel
{
135 const SystemZSubtarget
*Subtarget
;
137 // Used by SystemZOperands.td to create integer constants.
138 inline SDValue
getImm(const SDNode
*Node
, uint64_t Imm
) const {
139 return CurDAG
->getTargetConstant(Imm
, SDLoc(Node
), Node
->getValueType(0));
142 const SystemZTargetMachine
&getTargetMachine() const {
143 return static_cast<const SystemZTargetMachine
&>(TM
);
146 const SystemZInstrInfo
*getInstrInfo() const {
147 return Subtarget
->getInstrInfo();
150 // Try to fold more of the base or index of AM into AM, where IsBase
151 // selects between the base and index.
152 bool expandAddress(SystemZAddressingMode
&AM
, bool IsBase
) const;
154 // Try to describe N in AM, returning true on success.
155 bool selectAddress(SDValue N
, SystemZAddressingMode
&AM
) const;
157 // Extract individual target operands from matched address AM.
158 void getAddressOperands(const SystemZAddressingMode
&AM
, EVT VT
,
159 SDValue
&Base
, SDValue
&Disp
) const;
160 void getAddressOperands(const SystemZAddressingMode
&AM
, EVT VT
,
161 SDValue
&Base
, SDValue
&Disp
, SDValue
&Index
) const;
163 // Try to match Addr as a FormBD address with displacement type DR.
164 // Return true on success, storing the base and displacement in
165 // Base and Disp respectively.
166 bool selectBDAddr(SystemZAddressingMode::DispRange DR
, SDValue Addr
,
167 SDValue
&Base
, SDValue
&Disp
) const;
169 // Try to match Addr as a FormBDX address with displacement type DR.
170 // Return true on success and if the result had no index. Store the
171 // base and displacement in Base and Disp respectively.
172 bool selectMVIAddr(SystemZAddressingMode::DispRange DR
, SDValue Addr
,
173 SDValue
&Base
, SDValue
&Disp
) const;
175 // Try to match Addr as a FormBDX* address of form Form with
176 // displacement type DR. Return true on success, storing the base,
177 // displacement and index in Base, Disp and Index respectively.
178 bool selectBDXAddr(SystemZAddressingMode::AddrForm Form
,
179 SystemZAddressingMode::DispRange DR
, SDValue Addr
,
180 SDValue
&Base
, SDValue
&Disp
, SDValue
&Index
) const;
182 // PC-relative address matching routines used by SystemZOperands.td.
183 bool selectPCRelAddress(SDValue Addr
, SDValue
&Target
) const {
184 if (SystemZISD::isPCREL(Addr
.getOpcode())) {
185 Target
= Addr
.getOperand(0);
191 // BD matching routines used by SystemZOperands.td.
192 bool selectBDAddr12Only(SDValue Addr
, SDValue
&Base
, SDValue
&Disp
) const {
193 return selectBDAddr(SystemZAddressingMode::Disp12Only
, Addr
, Base
, Disp
);
195 bool selectBDAddr12Pair(SDValue Addr
, SDValue
&Base
, SDValue
&Disp
) const {
196 return selectBDAddr(SystemZAddressingMode::Disp12Pair
, Addr
, Base
, Disp
);
198 bool selectBDAddr20Only(SDValue Addr
, SDValue
&Base
, SDValue
&Disp
) const {
199 return selectBDAddr(SystemZAddressingMode::Disp20Only
, Addr
, Base
, Disp
);
201 bool selectBDAddr20Pair(SDValue Addr
, SDValue
&Base
, SDValue
&Disp
) const {
202 return selectBDAddr(SystemZAddressingMode::Disp20Pair
, Addr
, Base
, Disp
);
205 // MVI matching routines used by SystemZOperands.td.
206 bool selectMVIAddr12Pair(SDValue Addr
, SDValue
&Base
, SDValue
&Disp
) const {
207 return selectMVIAddr(SystemZAddressingMode::Disp12Pair
, Addr
, Base
, Disp
);
209 bool selectMVIAddr20Pair(SDValue Addr
, SDValue
&Base
, SDValue
&Disp
) const {
210 return selectMVIAddr(SystemZAddressingMode::Disp20Pair
, Addr
, Base
, Disp
);
213 // BDX matching routines used by SystemZOperands.td.
214 bool selectBDXAddr12Only(SDValue Addr
, SDValue
&Base
, SDValue
&Disp
,
215 SDValue
&Index
) const {
216 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal
,
217 SystemZAddressingMode::Disp12Only
,
218 Addr
, Base
, Disp
, Index
);
220 bool selectBDXAddr12Pair(SDValue Addr
, SDValue
&Base
, SDValue
&Disp
,
221 SDValue
&Index
) const {
222 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal
,
223 SystemZAddressingMode::Disp12Pair
,
224 Addr
, Base
, Disp
, Index
);
226 bool selectDynAlloc12Only(SDValue Addr
, SDValue
&Base
, SDValue
&Disp
,
227 SDValue
&Index
) const {
228 return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc
,
229 SystemZAddressingMode::Disp12Only
,
230 Addr
, Base
, Disp
, Index
);
232 bool selectBDXAddr20Only(SDValue Addr
, SDValue
&Base
, SDValue
&Disp
,
233 SDValue
&Index
) const {
234 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal
,
235 SystemZAddressingMode::Disp20Only
,
236 Addr
, Base
, Disp
, Index
);
238 bool selectBDXAddr20Only128(SDValue Addr
, SDValue
&Base
, SDValue
&Disp
,
239 SDValue
&Index
) const {
240 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal
,
241 SystemZAddressingMode::Disp20Only128
,
242 Addr
, Base
, Disp
, Index
);
244 bool selectBDXAddr20Pair(SDValue Addr
, SDValue
&Base
, SDValue
&Disp
,
245 SDValue
&Index
) const {
246 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal
,
247 SystemZAddressingMode::Disp20Pair
,
248 Addr
, Base
, Disp
, Index
);
250 bool selectLAAddr12Pair(SDValue Addr
, SDValue
&Base
, SDValue
&Disp
,
251 SDValue
&Index
) const {
252 return selectBDXAddr(SystemZAddressingMode::FormBDXLA
,
253 SystemZAddressingMode::Disp12Pair
,
254 Addr
, Base
, Disp
, Index
);
256 bool selectLAAddr20Pair(SDValue Addr
, SDValue
&Base
, SDValue
&Disp
,
257 SDValue
&Index
) const {
258 return selectBDXAddr(SystemZAddressingMode::FormBDXLA
,
259 SystemZAddressingMode::Disp20Pair
,
260 Addr
, Base
, Disp
, Index
);
263 // Try to match Addr as an address with a base, 12-bit displacement
264 // and index, where the index is element Elem of a vector.
265 // Return true on success, storing the base, displacement and vector
266 // in Base, Disp and Index respectively.
267 bool selectBDVAddr12Only(SDValue Addr
, SDValue Elem
, SDValue
&Base
,
268 SDValue
&Disp
, SDValue
&Index
) const;
270 // Check whether (or Op (and X InsertMask)) is effectively an insertion
271 // of X into bits InsertMask of some Y != Op. Return true if so and
273 bool detectOrAndInsertion(SDValue
&Op
, uint64_t InsertMask
) const;
275 // Try to update RxSBG so that only the bits of RxSBG.Input in Mask are used.
276 // Return true on success.
277 bool refineRxSBGMask(RxSBGOperands
&RxSBG
, uint64_t Mask
) const;
279 // Try to fold some of RxSBG.Input into other fields of RxSBG.
280 // Return true on success.
281 bool expandRxSBG(RxSBGOperands
&RxSBG
) const;
283 // Return an undefined value of type VT.
284 SDValue
getUNDEF(const SDLoc
&DL
, EVT VT
) const;
286 // Convert N to VT, if it isn't already.
287 SDValue
convertTo(const SDLoc
&DL
, EVT VT
, SDValue N
) const;
289 // Try to implement AND or shift node N using RISBG with the zero flag set.
290 // Return the selected node on success, otherwise return null.
291 bool tryRISBGZero(SDNode
*N
);
293 // Try to use RISBG or Opcode to implement OR or XOR node N.
294 // Return the selected node on success, otherwise return null.
295 bool tryRxSBG(SDNode
*N
, unsigned Opcode
);
297 // If Op0 is null, then Node is a constant that can be loaded using:
299 // (Opcode UpperVal LowerVal)
301 // If Op0 is nonnull, then Node can be implemented using:
303 // (Opcode (Opcode Op0 UpperVal) LowerVal)
304 void splitLargeImmediate(unsigned Opcode
, SDNode
*Node
, SDValue Op0
,
305 uint64_t UpperVal
, uint64_t LowerVal
);
307 // Try to use gather instruction Opcode to implement vector insertion N.
308 bool tryGather(SDNode
*N
, unsigned Opcode
);
310 // Try to use scatter instruction Opcode to implement store Store.
311 bool tryScatter(StoreSDNode
*Store
, unsigned Opcode
);
313 // Change a chain of {load; op; store} of the same value into a simple op
314 // through memory of that value, if the uses of the modified value and its
315 // address are suitable.
316 bool tryFoldLoadStoreIntoMemOperand(SDNode
*Node
);
318 // Return true if Load and Store are loads and stores of the same size
319 // and are guaranteed not to overlap. Such operations can be implemented
320 // using block (SS-format) instructions.
322 // Partial overlap would lead to incorrect code, since the block operations
323 // are logically bytewise, even though they have a fast path for the
324 // non-overlapping case. We also need to avoid full overlap (i.e. two
325 // addresses that might be equal at run time) because although that case
326 // would be handled correctly, it might be implemented by millicode.
327 bool canUseBlockOperation(StoreSDNode
*Store
, LoadSDNode
*Load
) const;
329 // N is a (store (load Y), X) pattern. Return true if it can use an MVC
331 bool storeLoadCanUseMVC(SDNode
*N
) const;
333 // N is a (store (op (load A[0]), (load A[1])), X) pattern. Return true
334 // if A[1 - I] == X and if N can use a block operation like NC from A[I]
336 bool storeLoadCanUseBlockBinary(SDNode
*N
, unsigned I
) const;
338 // Try to expand a boolean SELECT_CCMASK using an IPM sequence.
339 SDValue
expandSelectBoolean(SDNode
*Node
);
342 SystemZDAGToDAGISel(SystemZTargetMachine
&TM
, CodeGenOpt::Level OptLevel
)
343 : SelectionDAGISel(TM
, OptLevel
) {}
345 bool runOnMachineFunction(MachineFunction
&MF
) override
{
346 Subtarget
= &MF
.getSubtarget
<SystemZSubtarget
>();
347 return SelectionDAGISel::runOnMachineFunction(MF
);
350 // Override MachineFunctionPass.
351 StringRef
getPassName() const override
{
352 return "SystemZ DAG->DAG Pattern Instruction Selection";
355 // Override SelectionDAGISel.
356 void Select(SDNode
*Node
) override
;
357 bool SelectInlineAsmMemoryOperand(const SDValue
&Op
, unsigned ConstraintID
,
358 std::vector
<SDValue
> &OutOps
) override
;
359 bool IsProfitableToFold(SDValue N
, SDNode
*U
, SDNode
*Root
) const override
;
360 void PreprocessISelDAG() override
;
362 // Include the pieces autogenerated from the target description.
363 #include "SystemZGenDAGISel.inc"
365 } // end anonymous namespace
367 FunctionPass
*llvm::createSystemZISelDag(SystemZTargetMachine
&TM
,
368 CodeGenOpt::Level OptLevel
) {
369 return new SystemZDAGToDAGISel(TM
, OptLevel
);
372 // Return true if Val should be selected as a displacement for an address
373 // with range DR. Here we're interested in the range of both the instruction
374 // described by DR and of any pairing instruction.
375 static bool selectDisp(SystemZAddressingMode::DispRange DR
, int64_t Val
) {
377 case SystemZAddressingMode::Disp12Only
:
378 return isUInt
<12>(Val
);
380 case SystemZAddressingMode::Disp12Pair
:
381 case SystemZAddressingMode::Disp20Only
:
382 case SystemZAddressingMode::Disp20Pair
:
383 return isInt
<20>(Val
);
385 case SystemZAddressingMode::Disp20Only128
:
386 return isInt
<20>(Val
) && isInt
<20>(Val
+ 8);
388 llvm_unreachable("Unhandled displacement range");
391 // Change the base or index in AM to Value, where IsBase selects
392 // between the base and index.
393 static void changeComponent(SystemZAddressingMode
&AM
, bool IsBase
,
401 // The base or index of AM is equivalent to Value + ADJDYNALLOC,
402 // where IsBase selects between the base and index. Try to fold the
403 // ADJDYNALLOC into AM.
404 static bool expandAdjDynAlloc(SystemZAddressingMode
&AM
, bool IsBase
,
406 if (AM
.isDynAlloc() && !AM
.IncludesDynAlloc
) {
407 changeComponent(AM
, IsBase
, Value
);
408 AM
.IncludesDynAlloc
= true;
414 // The base of AM is equivalent to Base + Index. Try to use Index as
415 // the index register.
416 static bool expandIndex(SystemZAddressingMode
&AM
, SDValue Base
,
418 if (AM
.hasIndexField() && !AM
.Index
.getNode()) {
426 // The base or index of AM is equivalent to Op0 + Op1, where IsBase selects
427 // between the base and index. Try to fold Op1 into AM's displacement.
428 static bool expandDisp(SystemZAddressingMode
&AM
, bool IsBase
,
429 SDValue Op0
, uint64_t Op1
) {
430 // First try adjusting the displacement.
431 int64_t TestDisp
= AM
.Disp
+ Op1
;
432 if (selectDisp(AM
.DR
, TestDisp
)) {
433 changeComponent(AM
, IsBase
, Op0
);
438 // We could consider forcing the displacement into a register and
439 // using it as an index, but it would need to be carefully tuned.
443 bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode
&AM
,
445 SDValue N
= IsBase
? AM
.Base
: AM
.Index
;
446 unsigned Opcode
= N
.getOpcode();
447 if (Opcode
== ISD::TRUNCATE
) {
449 Opcode
= N
.getOpcode();
451 if (Opcode
== ISD::ADD
|| CurDAG
->isBaseWithConstantOffset(N
)) {
452 SDValue Op0
= N
.getOperand(0);
453 SDValue Op1
= N
.getOperand(1);
455 unsigned Op0Code
= Op0
->getOpcode();
456 unsigned Op1Code
= Op1
->getOpcode();
458 if (Op0Code
== SystemZISD::ADJDYNALLOC
)
459 return expandAdjDynAlloc(AM
, IsBase
, Op1
);
460 if (Op1Code
== SystemZISD::ADJDYNALLOC
)
461 return expandAdjDynAlloc(AM
, IsBase
, Op0
);
463 if (Op0Code
== ISD::Constant
)
464 return expandDisp(AM
, IsBase
, Op1
,
465 cast
<ConstantSDNode
>(Op0
)->getSExtValue());
466 if (Op1Code
== ISD::Constant
)
467 return expandDisp(AM
, IsBase
, Op0
,
468 cast
<ConstantSDNode
>(Op1
)->getSExtValue());
470 if (IsBase
&& expandIndex(AM
, Op0
, Op1
))
473 if (Opcode
== SystemZISD::PCREL_OFFSET
) {
474 SDValue Full
= N
.getOperand(0);
475 SDValue Base
= N
.getOperand(1);
476 SDValue Anchor
= Base
.getOperand(0);
477 uint64_t Offset
= (cast
<GlobalAddressSDNode
>(Full
)->getOffset() -
478 cast
<GlobalAddressSDNode
>(Anchor
)->getOffset());
479 return expandDisp(AM
, IsBase
, Base
, Offset
);
484 // Return true if an instruction with displacement range DR should be
485 // used for displacement value Val. selectDisp(DR, Val) must already hold.
486 static bool isValidDisp(SystemZAddressingMode::DispRange DR
, int64_t Val
) {
487 assert(selectDisp(DR
, Val
) && "Invalid displacement");
489 case SystemZAddressingMode::Disp12Only
:
490 case SystemZAddressingMode::Disp20Only
:
491 case SystemZAddressingMode::Disp20Only128
:
494 case SystemZAddressingMode::Disp12Pair
:
495 // Use the other instruction if the displacement is too large.
496 return isUInt
<12>(Val
);
498 case SystemZAddressingMode::Disp20Pair
:
499 // Use the other instruction if the displacement is small enough.
500 return !isUInt
<12>(Val
);
502 llvm_unreachable("Unhandled displacement range");
505 // Return true if Base + Disp + Index should be performed by LA(Y).
506 static bool shouldUseLA(SDNode
*Base
, int64_t Disp
, SDNode
*Index
) {
507 // Don't use LA(Y) for constants.
511 // Always use LA(Y) for frame addresses, since we know that the destination
512 // register is almost always (perhaps always) going to be different from
513 // the frame register.
514 if (Base
->getOpcode() == ISD::FrameIndex
)
518 // Always use LA(Y) if there is a base, displacement and index.
522 // Always use LA if the displacement is small enough. It should always
523 // be no worse than AGHI (and better if it avoids a move).
524 if (isUInt
<12>(Disp
))
527 // For similar reasons, always use LAY if the constant is too big for AGHI.
528 // LAY should be no worse than AGFI.
529 if (!isInt
<16>(Disp
))
532 // Don't use LA for plain registers.
536 // Don't use LA for plain addition if the index operand is only used
537 // once. It should be a natural two-operand addition in that case.
538 if (Index
->hasOneUse())
541 // Prefer addition if the second operation is sign-extended, in the
542 // hope of using AGF.
543 unsigned IndexOpcode
= Index
->getOpcode();
544 if (IndexOpcode
== ISD::SIGN_EXTEND
||
545 IndexOpcode
== ISD::SIGN_EXTEND_INREG
)
549 // Don't use LA for two-operand addition if either operand is only
550 // used once. The addition instructions are better in that case.
551 if (Base
->hasOneUse())
557 // Return true if Addr is suitable for AM, updating AM if so.
558 bool SystemZDAGToDAGISel::selectAddress(SDValue Addr
,
559 SystemZAddressingMode
&AM
) const {
560 // Start out assuming that the address will need to be loaded separately,
561 // then try to extend it as much as we can.
564 // First try treating the address as a constant.
565 if (Addr
.getOpcode() == ISD::Constant
&&
566 expandDisp(AM
, true, SDValue(),
567 cast
<ConstantSDNode
>(Addr
)->getSExtValue()))
569 // Also see if it's a bare ADJDYNALLOC.
570 else if (Addr
.getOpcode() == SystemZISD::ADJDYNALLOC
&&
571 expandAdjDynAlloc(AM
, true, SDValue()))
574 // Otherwise try expanding each component.
575 while (expandAddress(AM
, true) ||
576 (AM
.Index
.getNode() && expandAddress(AM
, false)))
579 // Reject cases where it isn't profitable to use LA(Y).
580 if (AM
.Form
== SystemZAddressingMode::FormBDXLA
&&
581 !shouldUseLA(AM
.Base
.getNode(), AM
.Disp
, AM
.Index
.getNode()))
584 // Reject cases where the other instruction in a pair should be used.
585 if (!isValidDisp(AM
.DR
, AM
.Disp
))
588 // Make sure that ADJDYNALLOC is included where necessary.
589 if (AM
.isDynAlloc() && !AM
.IncludesDynAlloc
)
592 LLVM_DEBUG(AM
.dump(CurDAG
));
596 // Insert a node into the DAG at least before Pos. This will reposition
597 // the node as needed, and will assign it a node ID that is <= Pos's ID.
598 // Note that this does *not* preserve the uniqueness of node IDs!
599 // The selection DAG must no longer depend on their uniqueness when this
601 static void insertDAGNode(SelectionDAG
*DAG
, SDNode
*Pos
, SDValue N
) {
602 if (N
->getNodeId() == -1 ||
603 (SelectionDAGISel::getUninvalidatedNodeId(N
.getNode()) >
604 SelectionDAGISel::getUninvalidatedNodeId(Pos
))) {
605 DAG
->RepositionNode(Pos
->getIterator(), N
.getNode());
606 // Mark Node as invalid for pruning as after this it may be a successor to a
607 // selected node but otherwise be in the same position of Pos.
608 // Conservatively mark it with the same -abs(Id) to assure node id
609 // invariant is preserved.
610 N
->setNodeId(Pos
->getNodeId());
611 SelectionDAGISel::InvalidateNodeId(N
.getNode());
615 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode
&AM
,
616 EVT VT
, SDValue
&Base
,
617 SDValue
&Disp
) const {
620 // Register 0 means "no base". This is mostly useful for shifts.
621 Base
= CurDAG
->getRegister(0, VT
);
622 else if (Base
.getOpcode() == ISD::FrameIndex
) {
623 // Lower a FrameIndex to a TargetFrameIndex.
624 int64_t FrameIndex
= cast
<FrameIndexSDNode
>(Base
)->getIndex();
625 Base
= CurDAG
->getTargetFrameIndex(FrameIndex
, VT
);
626 } else if (Base
.getValueType() != VT
) {
627 // Truncate values from i64 to i32, for shifts.
628 assert(VT
== MVT::i32
&& Base
.getValueType() == MVT::i64
&&
629 "Unexpected truncation");
631 SDValue Trunc
= CurDAG
->getNode(ISD::TRUNCATE
, DL
, VT
, Base
);
632 insertDAGNode(CurDAG
, Base
.getNode(), Trunc
);
636 // Lower the displacement to a TargetConstant.
637 Disp
= CurDAG
->getTargetConstant(AM
.Disp
, SDLoc(Base
), VT
);
640 void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode
&AM
,
641 EVT VT
, SDValue
&Base
,
643 SDValue
&Index
) const {
644 getAddressOperands(AM
, VT
, Base
, Disp
);
647 if (!Index
.getNode())
648 // Register 0 means "no index".
649 Index
= CurDAG
->getRegister(0, VT
);
652 bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR
,
653 SDValue Addr
, SDValue
&Base
,
654 SDValue
&Disp
) const {
655 SystemZAddressingMode
AM(SystemZAddressingMode::FormBD
, DR
);
656 if (!selectAddress(Addr
, AM
))
659 getAddressOperands(AM
, Addr
.getValueType(), Base
, Disp
);
663 bool SystemZDAGToDAGISel::selectMVIAddr(SystemZAddressingMode::DispRange DR
,
664 SDValue Addr
, SDValue
&Base
,
665 SDValue
&Disp
) const {
666 SystemZAddressingMode
AM(SystemZAddressingMode::FormBDXNormal
, DR
);
667 if (!selectAddress(Addr
, AM
) || AM
.Index
.getNode())
670 getAddressOperands(AM
, Addr
.getValueType(), Base
, Disp
);
674 bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form
,
675 SystemZAddressingMode::DispRange DR
,
676 SDValue Addr
, SDValue
&Base
,
677 SDValue
&Disp
, SDValue
&Index
) const {
678 SystemZAddressingMode
AM(Form
, DR
);
679 if (!selectAddress(Addr
, AM
))
682 getAddressOperands(AM
, Addr
.getValueType(), Base
, Disp
, Index
);
686 bool SystemZDAGToDAGISel::selectBDVAddr12Only(SDValue Addr
, SDValue Elem
,
689 SDValue
&Index
) const {
691 if (selectBDXAddr12Only(Addr
, Regs
[0], Disp
, Regs
[1]) &&
692 Regs
[0].getNode() && Regs
[1].getNode()) {
693 for (unsigned int I
= 0; I
< 2; ++I
) {
696 // We can't tell here whether the index vector has the right type
697 // for the access; the caller needs to do that instead.
698 if (Index
.getOpcode() == ISD::ZERO_EXTEND
)
699 Index
= Index
.getOperand(0);
700 if (Index
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
701 Index
.getOperand(1) == Elem
) {
702 Index
= Index
.getOperand(0);
710 bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue
&Op
,
711 uint64_t InsertMask
) const {
712 // We're only interested in cases where the insertion is into some operand
713 // of Op, rather than into Op itself. The only useful case is an AND.
714 if (Op
.getOpcode() != ISD::AND
)
717 // We need a constant mask.
718 auto *MaskNode
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1).getNode());
722 // It's not an insertion of Op.getOperand(0) if the two masks overlap.
723 uint64_t AndMask
= MaskNode
->getZExtValue();
724 if (InsertMask
& AndMask
)
727 // It's only an insertion if all bits are covered or are known to be zero.
728 // The inner check covers all cases but is more expensive.
729 uint64_t Used
= allOnes(Op
.getValueSizeInBits());
730 if (Used
!= (AndMask
| InsertMask
)) {
731 KnownBits Known
= CurDAG
->computeKnownBits(Op
.getOperand(0));
732 if (Used
!= (AndMask
| InsertMask
| Known
.Zero
.getZExtValue()))
736 Op
= Op
.getOperand(0);
740 bool SystemZDAGToDAGISel::refineRxSBGMask(RxSBGOperands
&RxSBG
,
741 uint64_t Mask
) const {
742 const SystemZInstrInfo
*TII
= getInstrInfo();
743 if (RxSBG
.Rotate
!= 0)
744 Mask
= (Mask
<< RxSBG
.Rotate
) | (Mask
>> (64 - RxSBG
.Rotate
));
746 if (TII
->isRxSBGMask(Mask
, RxSBG
.BitSize
, RxSBG
.Start
, RxSBG
.End
)) {
753 // Return true if any bits of (RxSBG.Input & Mask) are significant.
754 static bool maskMatters(RxSBGOperands
&RxSBG
, uint64_t Mask
) {
755 // Rotate the mask in the same way as RxSBG.Input is rotated.
756 if (RxSBG
.Rotate
!= 0)
757 Mask
= ((Mask
<< RxSBG
.Rotate
) | (Mask
>> (64 - RxSBG
.Rotate
)));
758 return (Mask
& RxSBG
.Mask
) != 0;
761 bool SystemZDAGToDAGISel::expandRxSBG(RxSBGOperands
&RxSBG
) const {
762 SDValue N
= RxSBG
.Input
;
763 unsigned Opcode
= N
.getOpcode();
765 case ISD::TRUNCATE
: {
766 if (RxSBG
.Opcode
== SystemZ::RNSBG
)
768 uint64_t BitSize
= N
.getValueSizeInBits();
769 uint64_t Mask
= allOnes(BitSize
);
770 if (!refineRxSBGMask(RxSBG
, Mask
))
772 RxSBG
.Input
= N
.getOperand(0);
776 if (RxSBG
.Opcode
== SystemZ::RNSBG
)
779 auto *MaskNode
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1).getNode());
783 SDValue Input
= N
.getOperand(0);
784 uint64_t Mask
= MaskNode
->getZExtValue();
785 if (!refineRxSBGMask(RxSBG
, Mask
)) {
786 // If some bits of Input are already known zeros, those bits will have
787 // been removed from the mask. See if adding them back in makes the
789 KnownBits Known
= CurDAG
->computeKnownBits(Input
);
790 Mask
|= Known
.Zero
.getZExtValue();
791 if (!refineRxSBGMask(RxSBG
, Mask
))
799 if (RxSBG
.Opcode
!= SystemZ::RNSBG
)
802 auto *MaskNode
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1).getNode());
806 SDValue Input
= N
.getOperand(0);
807 uint64_t Mask
= ~MaskNode
->getZExtValue();
808 if (!refineRxSBGMask(RxSBG
, Mask
)) {
809 // If some bits of Input are already known ones, those bits will have
810 // been removed from the mask. See if adding them back in makes the
812 KnownBits Known
= CurDAG
->computeKnownBits(Input
);
813 Mask
&= ~Known
.One
.getZExtValue();
814 if (!refineRxSBGMask(RxSBG
, Mask
))
822 // Any 64-bit rotate left can be merged into the RxSBG.
823 if (RxSBG
.BitSize
!= 64 || N
.getValueType() != MVT::i64
)
825 auto *CountNode
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1).getNode());
829 RxSBG
.Rotate
= (RxSBG
.Rotate
+ CountNode
->getZExtValue()) & 63;
830 RxSBG
.Input
= N
.getOperand(0);
834 case ISD::ANY_EXTEND
:
835 // Bits above the extended operand are don't-care.
836 RxSBG
.Input
= N
.getOperand(0);
839 case ISD::ZERO_EXTEND
:
840 if (RxSBG
.Opcode
!= SystemZ::RNSBG
) {
841 // Restrict the mask to the extended operand.
842 unsigned InnerBitSize
= N
.getOperand(0).getValueSizeInBits();
843 if (!refineRxSBGMask(RxSBG
, allOnes(InnerBitSize
)))
846 RxSBG
.Input
= N
.getOperand(0);
851 case ISD::SIGN_EXTEND
: {
852 // Check that the extension bits are don't-care (i.e. are masked out
853 // by the final mask).
854 unsigned BitSize
= N
.getValueSizeInBits();
855 unsigned InnerBitSize
= N
.getOperand(0).getValueSizeInBits();
856 if (maskMatters(RxSBG
, allOnes(BitSize
) - allOnes(InnerBitSize
))) {
857 // In the case where only the sign bit is active, increase Rotate with
858 // the extension width.
859 if (RxSBG
.Mask
== 1 && RxSBG
.Rotate
== 1)
860 RxSBG
.Rotate
+= (BitSize
- InnerBitSize
);
865 RxSBG
.Input
= N
.getOperand(0);
870 auto *CountNode
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1).getNode());
874 uint64_t Count
= CountNode
->getZExtValue();
875 unsigned BitSize
= N
.getValueSizeInBits();
876 if (Count
< 1 || Count
>= BitSize
)
879 if (RxSBG
.Opcode
== SystemZ::RNSBG
) {
880 // Treat (shl X, count) as (rotl X, size-count) as long as the bottom
881 // count bits from RxSBG.Input are ignored.
882 if (maskMatters(RxSBG
, allOnes(Count
)))
885 // Treat (shl X, count) as (and (rotl X, count), ~0<<count).
886 if (!refineRxSBGMask(RxSBG
, allOnes(BitSize
- Count
) << Count
))
890 RxSBG
.Rotate
= (RxSBG
.Rotate
+ Count
) & 63;
891 RxSBG
.Input
= N
.getOperand(0);
897 auto *CountNode
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1).getNode());
901 uint64_t Count
= CountNode
->getZExtValue();
902 unsigned BitSize
= N
.getValueSizeInBits();
903 if (Count
< 1 || Count
>= BitSize
)
906 if (RxSBG
.Opcode
== SystemZ::RNSBG
|| Opcode
== ISD::SRA
) {
907 // Treat (srl|sra X, count) as (rotl X, size-count) as long as the top
908 // count bits from RxSBG.Input are ignored.
909 if (maskMatters(RxSBG
, allOnes(Count
) << (BitSize
- Count
)))
912 // Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count),
913 // which is similar to SLL above.
914 if (!refineRxSBGMask(RxSBG
, allOnes(BitSize
- Count
)))
918 RxSBG
.Rotate
= (RxSBG
.Rotate
- Count
) & 63;
919 RxSBG
.Input
= N
.getOperand(0);
927 SDValue
SystemZDAGToDAGISel::getUNDEF(const SDLoc
&DL
, EVT VT
) const {
928 SDNode
*N
= CurDAG
->getMachineNode(TargetOpcode::IMPLICIT_DEF
, DL
, VT
);
929 return SDValue(N
, 0);
932 SDValue
SystemZDAGToDAGISel::convertTo(const SDLoc
&DL
, EVT VT
,
934 if (N
.getValueType() == MVT::i32
&& VT
== MVT::i64
)
935 return CurDAG
->getTargetInsertSubreg(SystemZ::subreg_l32
,
936 DL
, VT
, getUNDEF(DL
, MVT::i64
), N
);
937 if (N
.getValueType() == MVT::i64
&& VT
== MVT::i32
)
938 return CurDAG
->getTargetExtractSubreg(SystemZ::subreg_l32
, DL
, VT
, N
);
939 assert(N
.getValueType() == VT
&& "Unexpected value types");
943 bool SystemZDAGToDAGISel::tryRISBGZero(SDNode
*N
) {
945 EVT VT
= N
->getValueType(0);
946 if (!VT
.isInteger() || VT
.getSizeInBits() > 64)
948 RxSBGOperands
RISBG(SystemZ::RISBG
, SDValue(N
, 0));
950 while (expandRxSBG(RISBG
))
951 // The widening or narrowing is expected to be free.
952 // Counting widening or narrowing as a saved operation will result in
953 // preferring an R*SBG over a simple shift/logical instruction.
954 if (RISBG
.Input
.getOpcode() != ISD::ANY_EXTEND
&&
955 RISBG
.Input
.getOpcode() != ISD::TRUNCATE
)
960 // Prefer to use normal shift instructions over RISBG, since they can handle
961 // all cases and are sometimes shorter.
962 if (Count
== 1 && N
->getOpcode() != ISD::AND
)
965 // Prefer register extensions like LLC over RISBG. Also prefer to start
966 // out with normal ANDs if one instruction would be enough. We can convert
967 // these ANDs into an RISBG later if a three-address instruction is useful.
968 if (RISBG
.Rotate
== 0) {
969 bool PreferAnd
= false;
970 // Prefer AND for any 32-bit and-immediate operation.
973 // As well as for any 64-bit operation that can be implemented via LLC(R),
974 // LLH(R), LLGT(R), or one of the and-immediate instructions.
975 else if (RISBG
.Mask
== 0xff ||
976 RISBG
.Mask
== 0xffff ||
977 RISBG
.Mask
== 0x7fffffff ||
978 SystemZ::isImmLF(~RISBG
.Mask
) ||
979 SystemZ::isImmHF(~RISBG
.Mask
))
981 // And likewise for the LLZRGF instruction, which doesn't have a register
982 // to register version.
983 else if (auto *Load
= dyn_cast
<LoadSDNode
>(RISBG
.Input
)) {
984 if (Load
->getMemoryVT() == MVT::i32
&&
985 (Load
->getExtensionType() == ISD::EXTLOAD
||
986 Load
->getExtensionType() == ISD::ZEXTLOAD
) &&
987 RISBG
.Mask
== 0xffffff00 &&
988 Subtarget
->hasLoadAndZeroRightmostByte())
992 // Replace the current node with an AND. Note that the current node
993 // might already be that same AND, in which case it is already CSE'd
994 // with it, and we must not call ReplaceNode.
995 SDValue In
= convertTo(DL
, VT
, RISBG
.Input
);
996 SDValue Mask
= CurDAG
->getConstant(RISBG
.Mask
, DL
, VT
);
997 SDValue New
= CurDAG
->getNode(ISD::AND
, DL
, VT
, In
, Mask
);
998 if (N
!= New
.getNode()) {
999 insertDAGNode(CurDAG
, N
, Mask
);
1000 insertDAGNode(CurDAG
, N
, New
);
1001 ReplaceNode(N
, New
.getNode());
1004 // Now, select the machine opcode to implement this operation.
1005 if (!N
->isMachineOpcode())
1011 unsigned Opcode
= SystemZ::RISBG
;
1012 // Prefer RISBGN if available, since it does not clobber CC.
1013 if (Subtarget
->hasMiscellaneousExtensions())
1014 Opcode
= SystemZ::RISBGN
;
1015 EVT OpcodeVT
= MVT::i64
;
1016 if (VT
== MVT::i32
&& Subtarget
->hasHighWord() &&
1017 // We can only use the 32-bit instructions if all source bits are
1018 // in the low 32 bits without wrapping, both after rotation (because
1019 // of the smaller range for Start and End) and before rotation
1020 // (because the input value is truncated).
1021 RISBG
.Start
>= 32 && RISBG
.End
>= RISBG
.Start
&&
1022 ((RISBG
.Start
+ RISBG
.Rotate
) & 63) >= 32 &&
1023 ((RISBG
.End
+ RISBG
.Rotate
) & 63) >=
1024 ((RISBG
.Start
+ RISBG
.Rotate
) & 63)) {
1025 Opcode
= SystemZ::RISBMux
;
1026 OpcodeVT
= MVT::i32
;
1031 getUNDEF(DL
, OpcodeVT
),
1032 convertTo(DL
, OpcodeVT
, RISBG
.Input
),
1033 CurDAG
->getTargetConstant(RISBG
.Start
, DL
, MVT::i32
),
1034 CurDAG
->getTargetConstant(RISBG
.End
| 128, DL
, MVT::i32
),
1035 CurDAG
->getTargetConstant(RISBG
.Rotate
, DL
, MVT::i32
)
1037 SDValue New
= convertTo(
1038 DL
, VT
, SDValue(CurDAG
->getMachineNode(Opcode
, DL
, OpcodeVT
, Ops
), 0));
1039 ReplaceNode(N
, New
.getNode());
1043 bool SystemZDAGToDAGISel::tryRxSBG(SDNode
*N
, unsigned Opcode
) {
1045 EVT VT
= N
->getValueType(0);
1046 if (!VT
.isInteger() || VT
.getSizeInBits() > 64)
1048 // Try treating each operand of N as the second operand of the RxSBG
1049 // and see which goes deepest.
1050 RxSBGOperands RxSBG
[] = {
1051 RxSBGOperands(Opcode
, N
->getOperand(0)),
1052 RxSBGOperands(Opcode
, N
->getOperand(1))
1054 unsigned Count
[] = { 0, 0 };
1055 for (unsigned I
= 0; I
< 2; ++I
)
1056 while (expandRxSBG(RxSBG
[I
]))
1057 // The widening or narrowing is expected to be free.
1058 // Counting widening or narrowing as a saved operation will result in
1059 // preferring an R*SBG over a simple shift/logical instruction.
1060 if (RxSBG
[I
].Input
.getOpcode() != ISD::ANY_EXTEND
&&
1061 RxSBG
[I
].Input
.getOpcode() != ISD::TRUNCATE
)
1064 // Do nothing if neither operand is suitable.
1065 if (Count
[0] == 0 && Count
[1] == 0)
1068 // Pick the deepest second operand.
1069 unsigned I
= Count
[0] > Count
[1] ? 0 : 1;
1070 SDValue Op0
= N
->getOperand(I
^ 1);
1072 // Prefer IC for character insertions from memory.
1073 if (Opcode
== SystemZ::ROSBG
&& (RxSBG
[I
].Mask
& 0xff) == 0)
1074 if (auto *Load
= dyn_cast
<LoadSDNode
>(Op0
.getNode()))
1075 if (Load
->getMemoryVT() == MVT::i8
)
1078 // See whether we can avoid an AND in the first operand by converting
1080 if (Opcode
== SystemZ::ROSBG
&& detectOrAndInsertion(Op0
, RxSBG
[I
].Mask
)) {
1081 Opcode
= SystemZ::RISBG
;
1082 // Prefer RISBGN if available, since it does not clobber CC.
1083 if (Subtarget
->hasMiscellaneousExtensions())
1084 Opcode
= SystemZ::RISBGN
;
1088 convertTo(DL
, MVT::i64
, Op0
),
1089 convertTo(DL
, MVT::i64
, RxSBG
[I
].Input
),
1090 CurDAG
->getTargetConstant(RxSBG
[I
].Start
, DL
, MVT::i32
),
1091 CurDAG
->getTargetConstant(RxSBG
[I
].End
, DL
, MVT::i32
),
1092 CurDAG
->getTargetConstant(RxSBG
[I
].Rotate
, DL
, MVT::i32
)
1094 SDValue New
= convertTo(
1095 DL
, VT
, SDValue(CurDAG
->getMachineNode(Opcode
, DL
, MVT::i64
, Ops
), 0));
1096 ReplaceNode(N
, New
.getNode());
1100 void SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode
, SDNode
*Node
,
1101 SDValue Op0
, uint64_t UpperVal
,
1102 uint64_t LowerVal
) {
1103 EVT VT
= Node
->getValueType(0);
1105 SDValue Upper
= CurDAG
->getConstant(UpperVal
, DL
, VT
);
1107 Upper
= CurDAG
->getNode(Opcode
, DL
, VT
, Op0
, Upper
);
1110 // When we haven't passed in Op0, Upper will be a constant. In order to
1111 // prevent folding back to the large immediate in `Or = getNode(...)` we run
1112 // SelectCode first and end up with an opaque machine node. This means that
1113 // we need to use a handle to keep track of Upper in case it gets CSE'd by
1116 // Note that in the case where Op0 is passed in we could just call
1117 // SelectCode(Upper) later, along with the SelectCode(Or), and avoid needing
1118 // the handle at all, but it's fine to do it here.
1120 // TODO: This is a pretty hacky way to do this. Can we do something that
1121 // doesn't require a two paragraph explanation?
1122 HandleSDNode
Handle(Upper
);
1123 SelectCode(Upper
.getNode());
1124 Upper
= Handle
.getValue();
1127 SDValue Lower
= CurDAG
->getConstant(LowerVal
, DL
, VT
);
1128 SDValue Or
= CurDAG
->getNode(Opcode
, DL
, VT
, Upper
, Lower
);
1130 ReplaceNode(Node
, Or
.getNode());
1132 SelectCode(Or
.getNode());
1135 bool SystemZDAGToDAGISel::tryGather(SDNode
*N
, unsigned Opcode
) {
1136 SDValue ElemV
= N
->getOperand(2);
1137 auto *ElemN
= dyn_cast
<ConstantSDNode
>(ElemV
);
1141 unsigned Elem
= ElemN
->getZExtValue();
1142 EVT VT
= N
->getValueType(0);
1143 if (Elem
>= VT
.getVectorNumElements())
1146 auto *Load
= dyn_cast
<LoadSDNode
>(N
->getOperand(1));
1147 if (!Load
|| !Load
->hasNUsesOfValue(1, 0))
1149 if (Load
->getMemoryVT().getSizeInBits() !=
1150 Load
->getValueType(0).getSizeInBits())
1153 SDValue Base
, Disp
, Index
;
1154 if (!selectBDVAddr12Only(Load
->getBasePtr(), ElemV
, Base
, Disp
, Index
) ||
1155 Index
.getValueType() != VT
.changeVectorElementTypeToInteger())
1160 N
->getOperand(0), Base
, Disp
, Index
,
1161 CurDAG
->getTargetConstant(Elem
, DL
, MVT::i32
), Load
->getChain()
1163 SDNode
*Res
= CurDAG
->getMachineNode(Opcode
, DL
, VT
, MVT::Other
, Ops
);
1164 ReplaceUses(SDValue(Load
, 1), SDValue(Res
, 1));
1165 ReplaceNode(N
, Res
);
1169 bool SystemZDAGToDAGISel::tryScatter(StoreSDNode
*Store
, unsigned Opcode
) {
1170 SDValue Value
= Store
->getValue();
1171 if (Value
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
)
1173 if (Store
->getMemoryVT().getSizeInBits() != Value
.getValueSizeInBits())
1176 SDValue ElemV
= Value
.getOperand(1);
1177 auto *ElemN
= dyn_cast
<ConstantSDNode
>(ElemV
);
1181 SDValue Vec
= Value
.getOperand(0);
1182 EVT VT
= Vec
.getValueType();
1183 unsigned Elem
= ElemN
->getZExtValue();
1184 if (Elem
>= VT
.getVectorNumElements())
1187 SDValue Base
, Disp
, Index
;
1188 if (!selectBDVAddr12Only(Store
->getBasePtr(), ElemV
, Base
, Disp
, Index
) ||
1189 Index
.getValueType() != VT
.changeVectorElementTypeToInteger())
1194 Vec
, Base
, Disp
, Index
, CurDAG
->getTargetConstant(Elem
, DL
, MVT::i32
),
1197 ReplaceNode(Store
, CurDAG
->getMachineNode(Opcode
, DL
, MVT::Other
, Ops
));
1201 // Check whether or not the chain ending in StoreNode is suitable for doing
1202 // the {load; op; store} to modify transformation.
1203 static bool isFusableLoadOpStorePattern(StoreSDNode
*StoreNode
,
1204 SDValue StoredVal
, SelectionDAG
*CurDAG
,
1205 LoadSDNode
*&LoadNode
,
1206 SDValue
&InputChain
) {
1207 // Is the stored value result 0 of the operation?
1208 if (StoredVal
.getResNo() != 0)
1211 // Are there other uses of the loaded value than the operation?
1212 if (!StoredVal
.getNode()->hasNUsesOfValue(1, 0))
1215 // Is the store non-extending and non-indexed?
1216 if (!ISD::isNormalStore(StoreNode
) || StoreNode
->isNonTemporal())
1219 SDValue Load
= StoredVal
->getOperand(0);
1220 // Is the stored value a non-extending and non-indexed load?
1221 if (!ISD::isNormalLoad(Load
.getNode()))
1224 // Return LoadNode by reference.
1225 LoadNode
= cast
<LoadSDNode
>(Load
);
1227 // Is store the only read of the loaded value?
1228 if (!Load
.hasOneUse())
1231 // Is the address of the store the same as the load?
1232 if (LoadNode
->getBasePtr() != StoreNode
->getBasePtr() ||
1233 LoadNode
->getOffset() != StoreNode
->getOffset())
1236 // Check if the chain is produced by the load or is a TokenFactor with
1237 // the load output chain as an operand. Return InputChain by reference.
1238 SDValue Chain
= StoreNode
->getChain();
1240 bool ChainCheck
= false;
1241 if (Chain
== Load
.getValue(1)) {
1243 InputChain
= LoadNode
->getChain();
1244 } else if (Chain
.getOpcode() == ISD::TokenFactor
) {
1245 SmallVector
<SDValue
, 4> ChainOps
;
1246 for (unsigned i
= 0, e
= Chain
.getNumOperands(); i
!= e
; ++i
) {
1247 SDValue Op
= Chain
.getOperand(i
);
1248 if (Op
== Load
.getValue(1)) {
1250 // Drop Load, but keep its chain. No cycle check necessary.
1251 ChainOps
.push_back(Load
.getOperand(0));
1255 // Make sure using Op as part of the chain would not cause a cycle here.
1256 // In theory, we could check whether the chain node is a predecessor of
1257 // the load. But that can be very expensive. Instead visit the uses and
1258 // make sure they all have smaller node id than the load.
1259 int LoadId
= LoadNode
->getNodeId();
1260 for (SDNode::use_iterator UI
= Op
.getNode()->use_begin(),
1261 UE
= UI
->use_end(); UI
!= UE
; ++UI
) {
1262 if (UI
.getUse().getResNo() != 0)
1264 if (UI
->getNodeId() > LoadId
)
1268 ChainOps
.push_back(Op
);
1272 // Make a new TokenFactor with all the other input chains except
1274 InputChain
= CurDAG
->getNode(ISD::TokenFactor
, SDLoc(Chain
),
1275 MVT::Other
, ChainOps
);
1283 // Change a chain of {load; op; store} of the same value into a simple op
1284 // through memory of that value, if the uses of the modified value and its
1285 // address are suitable.
1287 // The tablegen pattern memory operand pattern is currently not able to match
1288 // the case where the CC on the original operation are used.
1290 // See the equivalent routine in X86ISelDAGToDAG for further comments.
1291 bool SystemZDAGToDAGISel::tryFoldLoadStoreIntoMemOperand(SDNode
*Node
) {
1292 StoreSDNode
*StoreNode
= cast
<StoreSDNode
>(Node
);
1293 SDValue StoredVal
= StoreNode
->getOperand(1);
1294 unsigned Opc
= StoredVal
->getOpcode();
1295 SDLoc
DL(StoreNode
);
1297 // Before we try to select anything, make sure this is memory operand size
1298 // and opcode we can handle. Note that this must match the code below that
1299 // actually lowers the opcodes.
1300 EVT MemVT
= StoreNode
->getMemoryVT();
1301 unsigned NewOpc
= 0;
1302 bool NegateOperand
= false;
1306 case SystemZISD::SSUBO
:
1307 NegateOperand
= true;
1309 case SystemZISD::SADDO
:
1310 if (MemVT
== MVT::i32
)
1311 NewOpc
= SystemZ::ASI
;
1312 else if (MemVT
== MVT::i64
)
1313 NewOpc
= SystemZ::AGSI
;
1317 case SystemZISD::USUBO
:
1318 NegateOperand
= true;
1320 case SystemZISD::UADDO
:
1321 if (MemVT
== MVT::i32
)
1322 NewOpc
= SystemZ::ALSI
;
1323 else if (MemVT
== MVT::i64
)
1324 NewOpc
= SystemZ::ALGSI
;
1330 LoadSDNode
*LoadNode
= nullptr;
1332 if (!isFusableLoadOpStorePattern(StoreNode
, StoredVal
, CurDAG
, LoadNode
,
1336 SDValue Operand
= StoredVal
.getOperand(1);
1337 auto *OperandC
= dyn_cast
<ConstantSDNode
>(Operand
);
1340 auto OperandV
= OperandC
->getAPIntValue();
1342 OperandV
= -OperandV
;
1343 if (OperandV
.getMinSignedBits() > 8)
1345 Operand
= CurDAG
->getTargetConstant(OperandV
, DL
, MemVT
);
1348 if (!selectBDAddr20Only(StoreNode
->getBasePtr(), Base
, Disp
))
1351 SDValue Ops
[] = { Base
, Disp
, Operand
, InputChain
};
1352 MachineSDNode
*Result
=
1353 CurDAG
->getMachineNode(NewOpc
, DL
, MVT::i32
, MVT::Other
, Ops
);
1354 CurDAG
->setNodeMemRefs(
1355 Result
, {StoreNode
->getMemOperand(), LoadNode
->getMemOperand()});
1357 ReplaceUses(SDValue(StoreNode
, 0), SDValue(Result
, 1));
1358 ReplaceUses(SDValue(StoredVal
.getNode(), 1), SDValue(Result
, 0));
1359 CurDAG
->RemoveDeadNode(Node
);
1363 bool SystemZDAGToDAGISel::canUseBlockOperation(StoreSDNode
*Store
,
1364 LoadSDNode
*Load
) const {
1365 // Check that the two memory operands have the same size.
1366 if (Load
->getMemoryVT() != Store
->getMemoryVT())
1369 // Volatility stops an access from being decomposed.
1370 if (Load
->isVolatile() || Store
->isVolatile())
1373 // There's no chance of overlap if the load is invariant.
1374 if (Load
->isInvariant() && Load
->isDereferenceable())
1377 // Otherwise we need to check whether there's an alias.
1378 const Value
*V1
= Load
->getMemOperand()->getValue();
1379 const Value
*V2
= Store
->getMemOperand()->getValue();
1384 uint64_t Size
= Load
->getMemoryVT().getStoreSize();
1385 int64_t End1
= Load
->getSrcValueOffset() + Size
;
1386 int64_t End2
= Store
->getSrcValueOffset() + Size
;
1387 if (V1
== V2
&& End1
== End2
)
1390 return !AA
->alias(MemoryLocation(V1
, End1
, Load
->getAAInfo()),
1391 MemoryLocation(V2
, End2
, Store
->getAAInfo()));
1394 bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode
*N
) const {
1395 auto *Store
= cast
<StoreSDNode
>(N
);
1396 auto *Load
= cast
<LoadSDNode
>(Store
->getValue());
1398 // Prefer not to use MVC if either address can use ... RELATIVE LONG
1400 uint64_t Size
= Load
->getMemoryVT().getStoreSize();
1401 if (Size
> 1 && Size
<= 8) {
1402 // Prefer LHRL, LRL and LGRL.
1403 if (SystemZISD::isPCREL(Load
->getBasePtr().getOpcode()))
1405 // Prefer STHRL, STRL and STGRL.
1406 if (SystemZISD::isPCREL(Store
->getBasePtr().getOpcode()))
1410 return canUseBlockOperation(Store
, Load
);
1413 bool SystemZDAGToDAGISel::storeLoadCanUseBlockBinary(SDNode
*N
,
1415 auto *StoreA
= cast
<StoreSDNode
>(N
);
1416 auto *LoadA
= cast
<LoadSDNode
>(StoreA
->getValue().getOperand(1 - I
));
1417 auto *LoadB
= cast
<LoadSDNode
>(StoreA
->getValue().getOperand(I
));
1418 return !LoadA
->isVolatile() && canUseBlockOperation(StoreA
, LoadB
);
1421 void SystemZDAGToDAGISel::Select(SDNode
*Node
) {
1422 // If we have a custom node, we already have selected!
1423 if (Node
->isMachineOpcode()) {
1424 LLVM_DEBUG(errs() << "== "; Node
->dump(CurDAG
); errs() << "\n");
1425 Node
->setNodeId(-1);
1429 unsigned Opcode
= Node
->getOpcode();
1432 if (Node
->getOperand(1).getOpcode() != ISD::Constant
)
1433 if (tryRxSBG(Node
, SystemZ::ROSBG
))
1438 if (Node
->getOperand(1).getOpcode() != ISD::Constant
)
1439 if (tryRxSBG(Node
, SystemZ::RXSBG
))
1443 // If this is a 64-bit operation in which both 32-bit halves are nonzero,
1444 // split the operation into two. If both operands here happen to be
1445 // constant, leave this to common code to optimize.
1446 if (Node
->getValueType(0) == MVT::i64
&&
1447 Node
->getOperand(0).getOpcode() != ISD::Constant
)
1448 if (auto *Op1
= dyn_cast
<ConstantSDNode
>(Node
->getOperand(1))) {
1449 uint64_t Val
= Op1
->getZExtValue();
1450 if (!SystemZ::isImmLF(Val
) && !SystemZ::isImmHF(Val
)) {
1451 splitLargeImmediate(Opcode
, Node
, Node
->getOperand(0),
1452 Val
- uint32_t(Val
), uint32_t(Val
));
1459 if (Node
->getOperand(1).getOpcode() != ISD::Constant
)
1460 if (tryRxSBG(Node
, SystemZ::RNSBG
))
1466 case ISD::ZERO_EXTEND
:
1467 if (tryRISBGZero(Node
))
1472 // If this is a 64-bit constant that is out of the range of LLILF,
1473 // LLIHF and LGFI, split it into two 32-bit pieces.
1474 if (Node
->getValueType(0) == MVT::i64
) {
1475 uint64_t Val
= cast
<ConstantSDNode
>(Node
)->getZExtValue();
1476 if (!SystemZ::isImmLF(Val
) && !SystemZ::isImmHF(Val
) && !isInt
<32>(Val
)) {
1477 splitLargeImmediate(ISD::OR
, Node
, SDValue(), Val
- uint32_t(Val
),
1484 case SystemZISD::SELECT_CCMASK
: {
1485 SDValue Op0
= Node
->getOperand(0);
1486 SDValue Op1
= Node
->getOperand(1);
1487 // Prefer to put any load first, so that it can be matched as a
1488 // conditional load. Likewise for constants in range for LOCHI.
1489 if ((Op1
.getOpcode() == ISD::LOAD
&& Op0
.getOpcode() != ISD::LOAD
) ||
1490 (Subtarget
->hasLoadStoreOnCond2() &&
1491 Node
->getValueType(0).isInteger() &&
1492 Op1
.getOpcode() == ISD::Constant
&&
1493 isInt
<16>(cast
<ConstantSDNode
>(Op1
)->getSExtValue()) &&
1494 !(Op0
.getOpcode() == ISD::Constant
&&
1495 isInt
<16>(cast
<ConstantSDNode
>(Op0
)->getSExtValue())))) {
1496 SDValue CCValid
= Node
->getOperand(2);
1497 SDValue CCMask
= Node
->getOperand(3);
1498 uint64_t ConstCCValid
=
1499 cast
<ConstantSDNode
>(CCValid
.getNode())->getZExtValue();
1500 uint64_t ConstCCMask
=
1501 cast
<ConstantSDNode
>(CCMask
.getNode())->getZExtValue();
1502 // Invert the condition.
1503 CCMask
= CurDAG
->getConstant(ConstCCValid
^ ConstCCMask
, SDLoc(Node
),
1504 CCMask
.getValueType());
1505 SDValue Op4
= Node
->getOperand(4);
1506 SDNode
*UpdatedNode
=
1507 CurDAG
->UpdateNodeOperands(Node
, Op1
, Op0
, CCValid
, CCMask
, Op4
);
1508 if (UpdatedNode
!= Node
) {
1509 // In case this node already exists then replace Node with it.
1510 ReplaceNode(Node
, UpdatedNode
);
1517 case ISD::INSERT_VECTOR_ELT
: {
1518 EVT VT
= Node
->getValueType(0);
1519 unsigned ElemBitSize
= VT
.getScalarSizeInBits();
1520 if (ElemBitSize
== 32) {
1521 if (tryGather(Node
, SystemZ::VGEF
))
1523 } else if (ElemBitSize
== 64) {
1524 if (tryGather(Node
, SystemZ::VGEG
))
1530 case ISD::BUILD_VECTOR
: {
1531 auto *BVN
= cast
<BuildVectorSDNode
>(Node
);
1533 EVT VT
= Node
->getValueType(0);
1535 if (SystemZTargetLowering::tryBuildVectorByteMask(BVN
, Mask
)) {
1536 SDNode
*Res
= CurDAG
->getMachineNode(SystemZ::VGBM
, DL
, VT
,
1537 CurDAG
->getTargetConstant(Mask
, DL
, MVT::i32
));
1538 ReplaceNode(Node
, Res
);
1544 case ISD::ConstantFP
: {
1545 APFloat Imm
= cast
<ConstantFPSDNode
>(Node
)->getValueAPF();
1546 if (Imm
.isZero() || Imm
.isNegZero())
1548 const SystemZInstrInfo
*TII
= getInstrInfo();
1549 EVT VT
= Node
->getValueType(0);
1550 unsigned Start
, End
;
1551 unsigned BitWidth
= VT
.getSizeInBits();
1552 bool Success
= SystemZTargetLowering::analyzeFPImm(Imm
, BitWidth
, Start
,
1553 End
, static_cast<const SystemZInstrInfo
*>(TII
)); (void)Success
;
1554 assert(Success
&& "Expected legal FP immediate");
1556 unsigned Opcode
= (BitWidth
== 32 ? SystemZ::VGMF
: SystemZ::VGMG
);
1557 SDNode
*Res
= CurDAG
->getMachineNode(Opcode
, DL
, VT
,
1558 CurDAG
->getTargetConstant(Start
, DL
, MVT::i32
),
1559 CurDAG
->getTargetConstant(End
, DL
, MVT::i32
));
1560 unsigned SubRegIdx
= (BitWidth
== 32 ? SystemZ::subreg_h32
1561 : SystemZ::subreg_h64
);
1562 Res
= CurDAG
->getTargetExtractSubreg(SubRegIdx
, DL
, VT
, SDValue(Res
, 0))
1564 ReplaceNode(Node
, Res
);
1569 if (tryFoldLoadStoreIntoMemOperand(Node
))
1571 auto *Store
= cast
<StoreSDNode
>(Node
);
1572 unsigned ElemBitSize
= Store
->getValue().getValueSizeInBits();
1573 if (ElemBitSize
== 32) {
1574 if (tryScatter(Store
, SystemZ::VSCEF
))
1576 } else if (ElemBitSize
== 64) {
1577 if (tryScatter(Store
, SystemZ::VSCEG
))
1587 bool SystemZDAGToDAGISel::
1588 SelectInlineAsmMemoryOperand(const SDValue
&Op
,
1589 unsigned ConstraintID
,
1590 std::vector
<SDValue
> &OutOps
) {
1591 SystemZAddressingMode::AddrForm Form
;
1592 SystemZAddressingMode::DispRange DispRange
;
1593 SDValue Base
, Disp
, Index
;
1595 switch(ConstraintID
) {
1597 llvm_unreachable("Unexpected asm memory constraint");
1598 case InlineAsm::Constraint_i
:
1599 case InlineAsm::Constraint_Q
:
1600 // Accept an address with a short displacement, but no index.
1601 Form
= SystemZAddressingMode::FormBD
;
1602 DispRange
= SystemZAddressingMode::Disp12Only
;
1604 case InlineAsm::Constraint_R
:
1605 // Accept an address with a short displacement and an index.
1606 Form
= SystemZAddressingMode::FormBDXNormal
;
1607 DispRange
= SystemZAddressingMode::Disp12Only
;
1609 case InlineAsm::Constraint_S
:
1610 // Accept an address with a long displacement, but no index.
1611 Form
= SystemZAddressingMode::FormBD
;
1612 DispRange
= SystemZAddressingMode::Disp20Only
;
1614 case InlineAsm::Constraint_T
:
1615 case InlineAsm::Constraint_m
:
1616 case InlineAsm::Constraint_o
:
1617 // Accept an address with a long displacement and an index.
1618 // m works the same as T, as this is the most general case.
1619 // We don't really have any special handling of "offsettable"
1620 // memory addresses, so just treat o the same as m.
1621 Form
= SystemZAddressingMode::FormBDXNormal
;
1622 DispRange
= SystemZAddressingMode::Disp20Only
;
1626 if (selectBDXAddr(Form
, DispRange
, Op
, Base
, Disp
, Index
)) {
1627 const TargetRegisterClass
*TRC
=
1628 Subtarget
->getRegisterInfo()->getPointerRegClass(*MF
);
1630 SDValue RC
= CurDAG
->getTargetConstant(TRC
->getID(), DL
, MVT::i32
);
1632 // Make sure that the base address doesn't go into %r0.
1633 // If it's a TargetFrameIndex or a fixed register, we shouldn't do anything.
1634 if (Base
.getOpcode() != ISD::TargetFrameIndex
&&
1635 Base
.getOpcode() != ISD::Register
) {
1637 SDValue(CurDAG
->getMachineNode(TargetOpcode::COPY_TO_REGCLASS
,
1638 DL
, Base
.getValueType(),
1642 // Make sure that the index register isn't assigned to %r0 either.
1643 if (Index
.getOpcode() != ISD::Register
) {
1645 SDValue(CurDAG
->getMachineNode(TargetOpcode::COPY_TO_REGCLASS
,
1646 DL
, Index
.getValueType(),
1650 OutOps
.push_back(Base
);
1651 OutOps
.push_back(Disp
);
1652 OutOps
.push_back(Index
);
1659 // IsProfitableToFold - Returns true if is profitable to fold the specific
1660 // operand node N of U during instruction selection that starts at Root.
1662 SystemZDAGToDAGISel::IsProfitableToFold(SDValue N
, SDNode
*U
,
1663 SDNode
*Root
) const {
1664 // We want to avoid folding a LOAD into an ICMP node if as a result
1665 // we would be forced to spill the condition code into a GPR.
1666 if (N
.getOpcode() == ISD::LOAD
&& U
->getOpcode() == SystemZISD::ICMP
) {
1667 if (!N
.hasOneUse() || !U
->hasOneUse())
1670 // The user of the CC value will usually be a CopyToReg into the
1671 // physical CC register, which in turn is glued and chained to the
1672 // actual instruction that uses the CC value. Bail out if we have
1673 // anything else than that.
1674 SDNode
*CCUser
= *U
->use_begin();
1675 SDNode
*CCRegUser
= nullptr;
1676 if (CCUser
->getOpcode() == ISD::CopyToReg
||
1677 cast
<RegisterSDNode
>(CCUser
->getOperand(1))->getReg() == SystemZ::CC
) {
1678 for (auto *U
: CCUser
->uses()) {
1679 if (CCRegUser
== nullptr)
1681 else if (CCRegUser
!= U
)
1685 if (CCRegUser
== nullptr)
1688 // If the actual instruction is a branch, the only thing that remains to be
1689 // checked is whether the CCUser chain is a predecessor of the load.
1690 if (CCRegUser
->isMachineOpcode() &&
1691 CCRegUser
->getMachineOpcode() == SystemZ::BRC
)
1692 return !N
->isPredecessorOf(CCUser
->getOperand(0).getNode());
1694 // Otherwise, the instruction may have multiple operands, and we need to
1695 // verify that none of them are a predecessor of the load. This is exactly
1696 // the same check that would be done by common code if the CC setter were
1697 // glued to the CC user, so simply invoke that check here.
1698 if (!IsLegalToFold(N
, U
, CCRegUser
, OptLevel
, false))
1706 // Represents a sequence for extracting a 0/1 value from an IPM result:
1707 // (((X ^ XORValue) + AddValue) >> Bit)
1708 struct IPMConversion
{
1709 IPMConversion(unsigned xorValue
, int64_t addValue
, unsigned bit
)
1710 : XORValue(xorValue
), AddValue(addValue
), Bit(bit
) {}
1716 } // end anonymous namespace
1718 // Return a sequence for getting a 1 from an IPM result when CC has a
1719 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
1720 // The handling of CC values outside CCValid doesn't matter.
1721 static IPMConversion
getIPMConversion(unsigned CCValid
, unsigned CCMask
) {
1722 // Deal with cases where the result can be taken directly from a bit
1723 // of the IPM result.
1724 if (CCMask
== (CCValid
& (SystemZ::CCMASK_1
| SystemZ::CCMASK_3
)))
1725 return IPMConversion(0, 0, SystemZ::IPM_CC
);
1726 if (CCMask
== (CCValid
& (SystemZ::CCMASK_2
| SystemZ::CCMASK_3
)))
1727 return IPMConversion(0, 0, SystemZ::IPM_CC
+ 1);
1729 // Deal with cases where we can add a value to force the sign bit
1730 // to contain the right value. Putting the bit in 31 means we can
1731 // use SRL rather than RISBG(L), and also makes it easier to get a
1732 // 0/-1 value, so it has priority over the other tests below.
1734 // These sequences rely on the fact that the upper two bits of the
1735 // IPM result are zero.
1736 uint64_t TopBit
= uint64_t(1) << 31;
1737 if (CCMask
== (CCValid
& SystemZ::CCMASK_0
))
1738 return IPMConversion(0, -(1 << SystemZ::IPM_CC
), 31);
1739 if (CCMask
== (CCValid
& (SystemZ::CCMASK_0
| SystemZ::CCMASK_1
)))
1740 return IPMConversion(0, -(2 << SystemZ::IPM_CC
), 31);
1741 if (CCMask
== (CCValid
& (SystemZ::CCMASK_0
1743 | SystemZ::CCMASK_2
)))
1744 return IPMConversion(0, -(3 << SystemZ::IPM_CC
), 31);
1745 if (CCMask
== (CCValid
& SystemZ::CCMASK_3
))
1746 return IPMConversion(0, TopBit
- (3 << SystemZ::IPM_CC
), 31);
1747 if (CCMask
== (CCValid
& (SystemZ::CCMASK_1
1749 | SystemZ::CCMASK_3
)))
1750 return IPMConversion(0, TopBit
- (1 << SystemZ::IPM_CC
), 31);
1752 // Next try inverting the value and testing a bit. 0/1 could be
1753 // handled this way too, but we dealt with that case above.
1754 if (CCMask
== (CCValid
& (SystemZ::CCMASK_0
| SystemZ::CCMASK_2
)))
1755 return IPMConversion(-1, 0, SystemZ::IPM_CC
);
1757 // Handle cases where adding a value forces a non-sign bit to contain
1759 if (CCMask
== (CCValid
& (SystemZ::CCMASK_1
| SystemZ::CCMASK_2
)))
1760 return IPMConversion(0, 1 << SystemZ::IPM_CC
, SystemZ::IPM_CC
+ 1);
1761 if (CCMask
== (CCValid
& (SystemZ::CCMASK_0
| SystemZ::CCMASK_3
)))
1762 return IPMConversion(0, -(1 << SystemZ::IPM_CC
), SystemZ::IPM_CC
+ 1);
1764 // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are
1765 // can be done by inverting the low CC bit and applying one of the
1766 // sign-based extractions above.
1767 if (CCMask
== (CCValid
& SystemZ::CCMASK_1
))
1768 return IPMConversion(1 << SystemZ::IPM_CC
, -(1 << SystemZ::IPM_CC
), 31);
1769 if (CCMask
== (CCValid
& SystemZ::CCMASK_2
))
1770 return IPMConversion(1 << SystemZ::IPM_CC
,
1771 TopBit
- (3 << SystemZ::IPM_CC
), 31);
1772 if (CCMask
== (CCValid
& (SystemZ::CCMASK_0
1774 | SystemZ::CCMASK_3
)))
1775 return IPMConversion(1 << SystemZ::IPM_CC
, -(3 << SystemZ::IPM_CC
), 31);
1776 if (CCMask
== (CCValid
& (SystemZ::CCMASK_0
1778 | SystemZ::CCMASK_3
)))
1779 return IPMConversion(1 << SystemZ::IPM_CC
,
1780 TopBit
- (1 << SystemZ::IPM_CC
), 31);
1782 llvm_unreachable("Unexpected CC combination");
1785 SDValue
SystemZDAGToDAGISel::expandSelectBoolean(SDNode
*Node
) {
1786 auto *TrueOp
= dyn_cast
<ConstantSDNode
>(Node
->getOperand(0));
1787 auto *FalseOp
= dyn_cast
<ConstantSDNode
>(Node
->getOperand(1));
1788 if (!TrueOp
|| !FalseOp
)
1790 if (FalseOp
->getZExtValue() != 0)
1792 if (TrueOp
->getSExtValue() != 1 && TrueOp
->getSExtValue() != -1)
1795 auto *CCValidOp
= dyn_cast
<ConstantSDNode
>(Node
->getOperand(2));
1796 auto *CCMaskOp
= dyn_cast
<ConstantSDNode
>(Node
->getOperand(3));
1797 if (!CCValidOp
|| !CCMaskOp
)
1799 int CCValid
= CCValidOp
->getZExtValue();
1800 int CCMask
= CCMaskOp
->getZExtValue();
1803 SDValue CCReg
= Node
->getOperand(4);
1804 IPMConversion IPM
= getIPMConversion(CCValid
, CCMask
);
1805 SDValue Result
= CurDAG
->getNode(SystemZISD::IPM
, DL
, MVT::i32
, CCReg
);
1808 Result
= CurDAG
->getNode(ISD::XOR
, DL
, MVT::i32
, Result
,
1809 CurDAG
->getConstant(IPM
.XORValue
, DL
, MVT::i32
));
1812 Result
= CurDAG
->getNode(ISD::ADD
, DL
, MVT::i32
, Result
,
1813 CurDAG
->getConstant(IPM
.AddValue
, DL
, MVT::i32
));
1815 EVT VT
= Node
->getValueType(0);
1816 if (VT
== MVT::i32
&& IPM
.Bit
== 31) {
1817 unsigned ShiftOp
= TrueOp
->getSExtValue() == 1 ? ISD::SRL
: ISD::SRA
;
1818 Result
= CurDAG
->getNode(ShiftOp
, DL
, MVT::i32
, Result
,
1819 CurDAG
->getConstant(IPM
.Bit
, DL
, MVT::i32
));
1822 Result
= CurDAG
->getNode(ISD::ANY_EXTEND
, DL
, VT
, Result
);
1824 if (TrueOp
->getSExtValue() == 1) {
1825 // The SHR/AND sequence should get optimized to an RISBG.
1826 Result
= CurDAG
->getNode(ISD::SRL
, DL
, VT
, Result
,
1827 CurDAG
->getConstant(IPM
.Bit
, DL
, MVT::i32
));
1828 Result
= CurDAG
->getNode(ISD::AND
, DL
, VT
, Result
,
1829 CurDAG
->getConstant(1, DL
, VT
));
1831 // Sign-extend from IPM.Bit using a pair of shifts.
1832 int ShlAmt
= VT
.getSizeInBits() - 1 - IPM
.Bit
;
1833 int SraAmt
= VT
.getSizeInBits() - 1;
1834 Result
= CurDAG
->getNode(ISD::SHL
, DL
, VT
, Result
,
1835 CurDAG
->getConstant(ShlAmt
, DL
, MVT::i32
));
1836 Result
= CurDAG
->getNode(ISD::SRA
, DL
, VT
, Result
,
1837 CurDAG
->getConstant(SraAmt
, DL
, MVT::i32
));
1844 void SystemZDAGToDAGISel::PreprocessISelDAG() {
1845 // If we have conditional immediate loads, we always prefer
1846 // using those over an IPM sequence.
1847 if (Subtarget
->hasLoadStoreOnCond2())
1850 bool MadeChange
= false;
1852 for (SelectionDAG::allnodes_iterator I
= CurDAG
->allnodes_begin(),
1853 E
= CurDAG
->allnodes_end();
1860 switch (N
->getOpcode()) {
1862 case SystemZISD::SELECT_CCMASK
:
1863 Res
= expandSelectBoolean(N
);
1868 LLVM_DEBUG(dbgs() << "SystemZ DAG preprocessing replacing:\nOld: ");
1869 LLVM_DEBUG(N
->dump(CurDAG
));
1870 LLVM_DEBUG(dbgs() << "\nNew: ");
1871 LLVM_DEBUG(Res
.getNode()->dump(CurDAG
));
1872 LLVM_DEBUG(dbgs() << "\n");
1874 CurDAG
->ReplaceAllUsesOfValueWith(SDValue(N
, 0), Res
);
1880 CurDAG
->RemoveDeadNodes();