[DAGCombiner] Eliminate dead stores to stack.
[llvm-complete.git] / lib / Target / SystemZ / SystemZTargetTransformInfo.cpp
blob304ee79d2b2eae0a2949e54f720d1bb1e4cdb186
1 //===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a TargetTransformInfo analysis pass specific to the
10 // SystemZ target machine. It uses the target's detailed information to provide
11 // more precise answers to certain TTI queries, while letting the target
12 // independent and default TTI implementations handle the rest.
14 //===----------------------------------------------------------------------===//
16 #include "SystemZTargetTransformInfo.h"
17 #include "llvm/Analysis/TargetTransformInfo.h"
18 #include "llvm/CodeGen/BasicTTIImpl.h"
19 #include "llvm/CodeGen/CostTable.h"
20 #include "llvm/CodeGen/TargetLowering.h"
21 #include "llvm/IR/IntrinsicInst.h"
22 #include "llvm/Support/Debug.h"
23 using namespace llvm;
25 #define DEBUG_TYPE "systemztti"
27 //===----------------------------------------------------------------------===//
29 // SystemZ cost model.
31 //===----------------------------------------------------------------------===//
33 int SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
34 assert(Ty->isIntegerTy());
36 unsigned BitSize = Ty->getPrimitiveSizeInBits();
37 // There is no cost model for constants with a bit size of 0. Return TCC_Free
38 // here, so that constant hoisting will ignore this constant.
39 if (BitSize == 0)
40 return TTI::TCC_Free;
41 // No cost model for operations on integers larger than 64 bit implemented yet.
42 if (BitSize > 64)
43 return TTI::TCC_Free;
45 if (Imm == 0)
46 return TTI::TCC_Free;
48 if (Imm.getBitWidth() <= 64) {
49 // Constants loaded via lgfi.
50 if (isInt<32>(Imm.getSExtValue()))
51 return TTI::TCC_Basic;
52 // Constants loaded via llilf.
53 if (isUInt<32>(Imm.getZExtValue()))
54 return TTI::TCC_Basic;
55 // Constants loaded via llihf:
56 if ((Imm.getZExtValue() & 0xffffffff) == 0)
57 return TTI::TCC_Basic;
59 return 2 * TTI::TCC_Basic;
62 return 4 * TTI::TCC_Basic;
65 int SystemZTTIImpl::getIntImmCost(unsigned Opcode, unsigned Idx,
66 const APInt &Imm, Type *Ty) {
67 assert(Ty->isIntegerTy());
69 unsigned BitSize = Ty->getPrimitiveSizeInBits();
70 // There is no cost model for constants with a bit size of 0. Return TCC_Free
71 // here, so that constant hoisting will ignore this constant.
72 if (BitSize == 0)
73 return TTI::TCC_Free;
74 // No cost model for operations on integers larger than 64 bit implemented yet.
75 if (BitSize > 64)
76 return TTI::TCC_Free;
78 switch (Opcode) {
79 default:
80 return TTI::TCC_Free;
81 case Instruction::GetElementPtr:
82 // Always hoist the base address of a GetElementPtr. This prevents the
83 // creation of new constants for every base constant that gets constant
84 // folded with the offset.
85 if (Idx == 0)
86 return 2 * TTI::TCC_Basic;
87 return TTI::TCC_Free;
88 case Instruction::Store:
89 if (Idx == 0 && Imm.getBitWidth() <= 64) {
90 // Any 8-bit immediate store can by implemented via mvi.
91 if (BitSize == 8)
92 return TTI::TCC_Free;
93 // 16-bit immediate values can be stored via mvhhi/mvhi/mvghi.
94 if (isInt<16>(Imm.getSExtValue()))
95 return TTI::TCC_Free;
97 break;
98 case Instruction::ICmp:
99 if (Idx == 1 && Imm.getBitWidth() <= 64) {
100 // Comparisons against signed 32-bit immediates implemented via cgfi.
101 if (isInt<32>(Imm.getSExtValue()))
102 return TTI::TCC_Free;
103 // Comparisons against unsigned 32-bit immediates implemented via clgfi.
104 if (isUInt<32>(Imm.getZExtValue()))
105 return TTI::TCC_Free;
107 break;
108 case Instruction::Add:
109 case Instruction::Sub:
110 if (Idx == 1 && Imm.getBitWidth() <= 64) {
111 // We use algfi/slgfi to add/subtract 32-bit unsigned immediates.
112 if (isUInt<32>(Imm.getZExtValue()))
113 return TTI::TCC_Free;
114 // Or their negation, by swapping addition vs. subtraction.
115 if (isUInt<32>(-Imm.getSExtValue()))
116 return TTI::TCC_Free;
118 break;
119 case Instruction::Mul:
120 if (Idx == 1 && Imm.getBitWidth() <= 64) {
121 // We use msgfi to multiply by 32-bit signed immediates.
122 if (isInt<32>(Imm.getSExtValue()))
123 return TTI::TCC_Free;
125 break;
126 case Instruction::Or:
127 case Instruction::Xor:
128 if (Idx == 1 && Imm.getBitWidth() <= 64) {
129 // Masks supported by oilf/xilf.
130 if (isUInt<32>(Imm.getZExtValue()))
131 return TTI::TCC_Free;
132 // Masks supported by oihf/xihf.
133 if ((Imm.getZExtValue() & 0xffffffff) == 0)
134 return TTI::TCC_Free;
136 break;
137 case Instruction::And:
138 if (Idx == 1 && Imm.getBitWidth() <= 64) {
139 // Any 32-bit AND operation can by implemented via nilf.
140 if (BitSize <= 32)
141 return TTI::TCC_Free;
142 // 64-bit masks supported by nilf.
143 if (isUInt<32>(~Imm.getZExtValue()))
144 return TTI::TCC_Free;
145 // 64-bit masks supported by nilh.
146 if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff)
147 return TTI::TCC_Free;
148 // Some 64-bit AND operations can be implemented via risbg.
149 const SystemZInstrInfo *TII = ST->getInstrInfo();
150 unsigned Start, End;
151 if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End))
152 return TTI::TCC_Free;
154 break;
155 case Instruction::Shl:
156 case Instruction::LShr:
157 case Instruction::AShr:
158 // Always return TCC_Free for the shift value of a shift instruction.
159 if (Idx == 1)
160 return TTI::TCC_Free;
161 break;
162 case Instruction::UDiv:
163 case Instruction::SDiv:
164 case Instruction::URem:
165 case Instruction::SRem:
166 case Instruction::Trunc:
167 case Instruction::ZExt:
168 case Instruction::SExt:
169 case Instruction::IntToPtr:
170 case Instruction::PtrToInt:
171 case Instruction::BitCast:
172 case Instruction::PHI:
173 case Instruction::Call:
174 case Instruction::Select:
175 case Instruction::Ret:
176 case Instruction::Load:
177 break;
180 return SystemZTTIImpl::getIntImmCost(Imm, Ty);
183 int SystemZTTIImpl::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
184 const APInt &Imm, Type *Ty) {
185 assert(Ty->isIntegerTy());
187 unsigned BitSize = Ty->getPrimitiveSizeInBits();
188 // There is no cost model for constants with a bit size of 0. Return TCC_Free
189 // here, so that constant hoisting will ignore this constant.
190 if (BitSize == 0)
191 return TTI::TCC_Free;
192 // No cost model for operations on integers larger than 64 bit implemented yet.
193 if (BitSize > 64)
194 return TTI::TCC_Free;
196 switch (IID) {
197 default:
198 return TTI::TCC_Free;
199 case Intrinsic::sadd_with_overflow:
200 case Intrinsic::uadd_with_overflow:
201 case Intrinsic::ssub_with_overflow:
202 case Intrinsic::usub_with_overflow:
203 // These get expanded to include a normal addition/subtraction.
204 if (Idx == 1 && Imm.getBitWidth() <= 64) {
205 if (isUInt<32>(Imm.getZExtValue()))
206 return TTI::TCC_Free;
207 if (isUInt<32>(-Imm.getSExtValue()))
208 return TTI::TCC_Free;
210 break;
211 case Intrinsic::smul_with_overflow:
212 case Intrinsic::umul_with_overflow:
213 // These get expanded to include a normal multiplication.
214 if (Idx == 1 && Imm.getBitWidth() <= 64) {
215 if (isInt<32>(Imm.getSExtValue()))
216 return TTI::TCC_Free;
218 break;
219 case Intrinsic::experimental_stackmap:
220 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
221 return TTI::TCC_Free;
222 break;
223 case Intrinsic::experimental_patchpoint_void:
224 case Intrinsic::experimental_patchpoint_i64:
225 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
226 return TTI::TCC_Free;
227 break;
229 return SystemZTTIImpl::getIntImmCost(Imm, Ty);
232 TargetTransformInfo::PopcntSupportKind
233 SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) {
234 assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2");
235 if (ST->hasPopulationCount() && TyWidth <= 64)
236 return TTI::PSK_FastHardware;
237 return TTI::PSK_Software;
240 void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
241 TTI::UnrollingPreferences &UP) {
242 // Find out if L contains a call, what the machine instruction count
243 // estimate is, and how many stores there are.
244 bool HasCall = false;
245 unsigned NumStores = 0;
246 for (auto &BB : L->blocks())
247 for (auto &I : *BB) {
248 if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) {
249 ImmutableCallSite CS(&I);
250 if (const Function *F = CS.getCalledFunction()) {
251 if (isLoweredToCall(F))
252 HasCall = true;
253 if (F->getIntrinsicID() == Intrinsic::memcpy ||
254 F->getIntrinsicID() == Intrinsic::memset)
255 NumStores++;
256 } else { // indirect call.
257 HasCall = true;
260 if (isa<StoreInst>(&I)) {
261 Type *MemAccessTy = I.getOperand(0)->getType();
262 NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy, 0, 0);
266 // The z13 processor will run out of store tags if too many stores
267 // are fed into it too quickly. Therefore make sure there are not
268 // too many stores in the resulting unrolled loop.
269 unsigned const Max = (NumStores ? (12 / NumStores) : UINT_MAX);
271 if (HasCall) {
272 // Only allow full unrolling if loop has any calls.
273 UP.FullUnrollMaxCount = Max;
274 UP.MaxCount = 1;
275 return;
278 UP.MaxCount = Max;
279 if (UP.MaxCount <= 1)
280 return;
282 // Allow partial and runtime trip count unrolling.
283 UP.Partial = UP.Runtime = true;
285 UP.PartialThreshold = 75;
286 UP.DefaultUnrollRuntimeCount = 4;
288 // Allow expensive instructions in the pre-header of the loop.
289 UP.AllowExpensiveTripCount = true;
291 UP.Force = true;
295 bool SystemZTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
296 TargetTransformInfo::LSRCost &C2) {
297 // SystemZ specific: check instruction count (first), and don't care about
298 // ImmCost, since offsets are checked explicitly.
299 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
300 C1.NumIVMuls, C1.NumBaseAdds,
301 C1.ScaleCost, C1.SetupCost) <
302 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
303 C2.NumIVMuls, C2.NumBaseAdds,
304 C2.ScaleCost, C2.SetupCost);
307 unsigned SystemZTTIImpl::getNumberOfRegisters(bool Vector) {
308 if (!Vector)
309 // Discount the stack pointer. Also leave out %r0, since it can't
310 // be used in an address.
311 return 14;
312 if (ST->hasVector())
313 return 32;
314 return 0;
317 unsigned SystemZTTIImpl::getRegisterBitWidth(bool Vector) const {
318 if (!Vector)
319 return 64;
320 if (ST->hasVector())
321 return 128;
322 return 0;
325 bool SystemZTTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
326 EVT VT = TLI->getValueType(DL, DataType);
327 return (VT.isScalarInteger() && TLI->isTypeLegal(VT));
330 // Return the bit size for the scalar type or vector element
331 // type. getScalarSizeInBits() returns 0 for a pointer type.
332 static unsigned getScalarSizeInBits(Type *Ty) {
333 unsigned Size =
334 (Ty->isPtrOrPtrVectorTy() ? 64U : Ty->getScalarSizeInBits());
335 assert(Size > 0 && "Element must have non-zero size.");
336 return Size;
339 // getNumberOfParts() calls getTypeLegalizationCost() which splits the vector
340 // type until it is legal. This would e.g. return 4 for <6 x i64>, instead of
341 // 3.
342 static unsigned getNumVectorRegs(Type *Ty) {
343 assert(Ty->isVectorTy() && "Expected vector type");
344 unsigned WideBits = getScalarSizeInBits(Ty) * Ty->getVectorNumElements();
345 assert(WideBits > 0 && "Could not compute size of vector");
346 return ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U));
349 int SystemZTTIImpl::getArithmeticInstrCost(
350 unsigned Opcode, Type *Ty,
351 TTI::OperandValueKind Op1Info, TTI::OperandValueKind Op2Info,
352 TTI::OperandValueProperties Opd1PropInfo,
353 TTI::OperandValueProperties Opd2PropInfo,
354 ArrayRef<const Value *> Args) {
356 // TODO: return a good value for BB-VECTORIZER that includes the
357 // immediate loads, which we do not want to count for the loop
358 // vectorizer, since they are hopefully hoisted out of the loop. This
359 // would require a new parameter 'InLoop', but not sure if constant
360 // args are common enough to motivate this.
362 unsigned ScalarBits = Ty->getScalarSizeInBits();
364 // There are thre cases of division and remainder: Dividing with a register
365 // needs a divide instruction. A divisor which is a power of two constant
366 // can be implemented with a sequence of shifts. Any other constant needs a
367 // multiply and shifts.
368 const unsigned DivInstrCost = 20;
369 const unsigned DivMulSeqCost = 10;
370 const unsigned SDivPow2Cost = 4;
372 bool SignedDivRem =
373 Opcode == Instruction::SDiv || Opcode == Instruction::SRem;
374 bool UnsignedDivRem =
375 Opcode == Instruction::UDiv || Opcode == Instruction::URem;
377 // Check for a constant divisor.
378 bool DivRemConst = false;
379 bool DivRemConstPow2 = false;
380 if ((SignedDivRem || UnsignedDivRem) && Args.size() == 2) {
381 if (const Constant *C = dyn_cast<Constant>(Args[1])) {
382 const ConstantInt *CVal =
383 (C->getType()->isVectorTy()
384 ? dyn_cast_or_null<const ConstantInt>(C->getSplatValue())
385 : dyn_cast<const ConstantInt>(C));
386 if (CVal != nullptr &&
387 (CVal->getValue().isPowerOf2() || (-CVal->getValue()).isPowerOf2()))
388 DivRemConstPow2 = true;
389 else
390 DivRemConst = true;
394 if (Ty->isVectorTy()) {
395 assert(ST->hasVector() &&
396 "getArithmeticInstrCost() called with vector type.");
397 unsigned VF = Ty->getVectorNumElements();
398 unsigned NumVectors = getNumVectorRegs(Ty);
400 // These vector operations are custom handled, but are still supported
401 // with one instruction per vector, regardless of element size.
402 if (Opcode == Instruction::Shl || Opcode == Instruction::LShr ||
403 Opcode == Instruction::AShr) {
404 return NumVectors;
407 if (DivRemConstPow2)
408 return (NumVectors * (SignedDivRem ? SDivPow2Cost : 1));
409 if (DivRemConst)
410 return VF * DivMulSeqCost + getScalarizationOverhead(Ty, Args);
411 if ((SignedDivRem || UnsignedDivRem) && VF > 4)
412 // Temporary hack: disable high vectorization factors with integer
413 // division/remainder, which will get scalarized and handled with
414 // GR128 registers. The mischeduler is not clever enough to avoid
415 // spilling yet.
416 return 1000;
418 // These FP operations are supported with a single vector instruction for
419 // double (base implementation assumes float generally costs 2). For
420 // FP128, the scalar cost is 1, and there is no overhead since the values
421 // are already in scalar registers.
422 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
423 Opcode == Instruction::FMul || Opcode == Instruction::FDiv) {
424 switch (ScalarBits) {
425 case 32: {
426 // The vector enhancements facility 1 provides v4f32 instructions.
427 if (ST->hasVectorEnhancements1())
428 return NumVectors;
429 // Return the cost of multiple scalar invocation plus the cost of
430 // inserting and extracting the values.
431 unsigned ScalarCost =
432 getArithmeticInstrCost(Opcode, Ty->getScalarType());
433 unsigned Cost = (VF * ScalarCost) + getScalarizationOverhead(Ty, Args);
434 // FIXME: VF 2 for these FP operations are currently just as
435 // expensive as for VF 4.
436 if (VF == 2)
437 Cost *= 2;
438 return Cost;
440 case 64:
441 case 128:
442 return NumVectors;
443 default:
444 break;
448 // There is no native support for FRem.
449 if (Opcode == Instruction::FRem) {
450 unsigned Cost = (VF * LIBCALL_COST) + getScalarizationOverhead(Ty, Args);
451 // FIXME: VF 2 for float is currently just as expensive as for VF 4.
452 if (VF == 2 && ScalarBits == 32)
453 Cost *= 2;
454 return Cost;
457 else { // Scalar:
458 // These FP operations are supported with a dedicated instruction for
459 // float, double and fp128 (base implementation assumes float generally
460 // costs 2).
461 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
462 Opcode == Instruction::FMul || Opcode == Instruction::FDiv)
463 return 1;
465 // There is no native support for FRem.
466 if (Opcode == Instruction::FRem)
467 return LIBCALL_COST;
469 // Or requires one instruction, although it has custom handling for i64.
470 if (Opcode == Instruction::Or)
471 return 1;
473 if (Opcode == Instruction::Xor && ScalarBits == 1) {
474 if (ST->hasLoadStoreOnCond2())
475 return 5; // 2 * (li 0; loc 1); xor
476 return 7; // 2 * ipm sequences ; xor ; shift ; compare
479 if (DivRemConstPow2)
480 return (SignedDivRem ? SDivPow2Cost : 1);
481 if (DivRemConst)
482 return DivMulSeqCost;
483 if (SignedDivRem || UnsignedDivRem)
484 return DivInstrCost;
487 // Fallback to the default implementation.
488 return BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
489 Opd1PropInfo, Opd2PropInfo, Args);
492 int SystemZTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
493 Type *SubTp) {
494 assert (Tp->isVectorTy());
495 assert (ST->hasVector() && "getShuffleCost() called.");
496 unsigned NumVectors = getNumVectorRegs(Tp);
498 // TODO: Since fp32 is expanded, the shuffle cost should always be 0.
500 // FP128 values are always in scalar registers, so there is no work
501 // involved with a shuffle, except for broadcast. In that case register
502 // moves are done with a single instruction per element.
503 if (Tp->getScalarType()->isFP128Ty())
504 return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0);
506 switch (Kind) {
507 case TargetTransformInfo::SK_ExtractSubvector:
508 // ExtractSubvector Index indicates start offset.
510 // Extracting a subvector from first index is a noop.
511 return (Index == 0 ? 0 : NumVectors);
513 case TargetTransformInfo::SK_Broadcast:
514 // Loop vectorizer calls here to figure out the extra cost of
515 // broadcasting a loaded value to all elements of a vector. Since vlrep
516 // loads and replicates with a single instruction, adjust the returned
517 // value.
518 return NumVectors - 1;
520 default:
522 // SystemZ supports single instruction permutation / replication.
523 return NumVectors;
526 return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
529 // Return the log2 difference of the element sizes of the two vector types.
530 static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) {
531 unsigned Bits0 = Ty0->getScalarSizeInBits();
532 unsigned Bits1 = Ty1->getScalarSizeInBits();
534 if (Bits1 > Bits0)
535 return (Log2_32(Bits1) - Log2_32(Bits0));
537 return (Log2_32(Bits0) - Log2_32(Bits1));
540 // Return the number of instructions needed to truncate SrcTy to DstTy.
541 unsigned SystemZTTIImpl::
542 getVectorTruncCost(Type *SrcTy, Type *DstTy) {
543 assert (SrcTy->isVectorTy() && DstTy->isVectorTy());
544 assert (SrcTy->getPrimitiveSizeInBits() > DstTy->getPrimitiveSizeInBits() &&
545 "Packing must reduce size of vector type.");
546 assert (SrcTy->getVectorNumElements() == DstTy->getVectorNumElements() &&
547 "Packing should not change number of elements.");
549 // TODO: Since fp32 is expanded, the extract cost should always be 0.
551 unsigned NumParts = getNumVectorRegs(SrcTy);
552 if (NumParts <= 2)
553 // Up to 2 vector registers can be truncated efficiently with pack or
554 // permute. The latter requires an immediate mask to be loaded, which
555 // typically gets hoisted out of a loop. TODO: return a good value for
556 // BB-VECTORIZER that includes the immediate loads, which we do not want
557 // to count for the loop vectorizer.
558 return 1;
560 unsigned Cost = 0;
561 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
562 unsigned VF = SrcTy->getVectorNumElements();
563 for (unsigned P = 0; P < Log2Diff; ++P) {
564 if (NumParts > 1)
565 NumParts /= 2;
566 Cost += NumParts;
569 // Currently, a general mix of permutes and pack instructions is output by
570 // isel, which follow the cost computation above except for this case which
571 // is one instruction less:
572 if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 &&
573 DstTy->getScalarSizeInBits() == 8)
574 Cost--;
576 return Cost;
579 // Return the cost of converting a vector bitmask produced by a compare
580 // (SrcTy), to the type of the select or extend instruction (DstTy).
581 unsigned SystemZTTIImpl::
582 getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) {
583 assert (SrcTy->isVectorTy() && DstTy->isVectorTy() &&
584 "Should only be called with vector types.");
586 unsigned PackCost = 0;
587 unsigned SrcScalarBits = SrcTy->getScalarSizeInBits();
588 unsigned DstScalarBits = DstTy->getScalarSizeInBits();
589 unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
590 if (SrcScalarBits > DstScalarBits)
591 // The bitmask will be truncated.
592 PackCost = getVectorTruncCost(SrcTy, DstTy);
593 else if (SrcScalarBits < DstScalarBits) {
594 unsigned DstNumParts = getNumVectorRegs(DstTy);
595 // Each vector select needs its part of the bitmask unpacked.
596 PackCost = Log2Diff * DstNumParts;
597 // Extra cost for moving part of mask before unpacking.
598 PackCost += DstNumParts - 1;
601 return PackCost;
604 // Return the type of the compared operands. This is needed to compute the
605 // cost for a Select / ZExt or SExt instruction.
606 static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) {
607 Type *OpTy = nullptr;
608 if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0)))
609 OpTy = CI->getOperand(0)->getType();
610 else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0)))
611 if (LogicI->getNumOperands() == 2)
612 if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0)))
613 if (isa<CmpInst>(LogicI->getOperand(1)))
614 OpTy = CI0->getOperand(0)->getType();
616 if (OpTy != nullptr) {
617 if (VF == 1) {
618 assert (!OpTy->isVectorTy() && "Expected scalar type");
619 return OpTy;
621 // Return the potentially vectorized type based on 'I' and 'VF'. 'I' may
622 // be either scalar or already vectorized with a same or lesser VF.
623 Type *ElTy = OpTy->getScalarType();
624 return VectorType::get(ElTy, VF);
627 return nullptr;
630 // Get the cost of converting a boolean vector to a vector with same width
631 // and element size as Dst, plus the cost of zero extending if needed.
632 unsigned SystemZTTIImpl::
633 getBoolVecToIntConversionCost(unsigned Opcode, Type *Dst,
634 const Instruction *I) {
635 assert (Dst->isVectorTy());
636 unsigned VF = Dst->getVectorNumElements();
637 unsigned Cost = 0;
638 // If we know what the widths of the compared operands, get any cost of
639 // converting it to match Dst. Otherwise assume same widths.
640 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
641 if (CmpOpTy != nullptr)
642 Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst);
643 if (Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP)
644 // One 'vn' per dst vector with an immediate mask.
645 Cost += getNumVectorRegs(Dst);
646 return Cost;
649 int SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
650 const Instruction *I) {
651 unsigned DstScalarBits = Dst->getScalarSizeInBits();
652 unsigned SrcScalarBits = Src->getScalarSizeInBits();
654 if (Src->isVectorTy()) {
655 assert (ST->hasVector() && "getCastInstrCost() called with vector type.");
656 assert (Dst->isVectorTy());
657 unsigned VF = Src->getVectorNumElements();
658 unsigned NumDstVectors = getNumVectorRegs(Dst);
659 unsigned NumSrcVectors = getNumVectorRegs(Src);
661 if (Opcode == Instruction::Trunc) {
662 if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits())
663 return 0; // Check for NOOP conversions.
664 return getVectorTruncCost(Src, Dst);
667 if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
668 if (SrcScalarBits >= 8) {
669 // ZExt/SExt will be handled with one unpack per doubling of width.
670 unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst);
672 // For types that spans multiple vector registers, some additional
673 // instructions are used to setup the unpacking.
674 unsigned NumSrcVectorOps =
675 (NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors)
676 : (NumDstVectors / 2));
678 return (NumUnpacks * NumDstVectors) + NumSrcVectorOps;
680 else if (SrcScalarBits == 1)
681 return getBoolVecToIntConversionCost(Opcode, Dst, I);
684 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP ||
685 Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) {
686 // TODO: Fix base implementation which could simplify things a bit here
687 // (seems to miss on differentiating on scalar/vector types).
689 // Only 64 bit vector conversions are natively supported.
690 if (DstScalarBits == 64) {
691 if (SrcScalarBits == 64)
692 return NumDstVectors;
694 if (SrcScalarBits == 1)
695 return getBoolVecToIntConversionCost(Opcode, Dst, I) + NumDstVectors;
698 // Return the cost of multiple scalar invocation plus the cost of
699 // inserting and extracting the values. Base implementation does not
700 // realize float->int gets scalarized.
701 unsigned ScalarCost = getCastInstrCost(Opcode, Dst->getScalarType(),
702 Src->getScalarType());
703 unsigned TotCost = VF * ScalarCost;
704 bool NeedsInserts = true, NeedsExtracts = true;
705 // FP128 registers do not get inserted or extracted.
706 if (DstScalarBits == 128 &&
707 (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP))
708 NeedsInserts = false;
709 if (SrcScalarBits == 128 &&
710 (Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI))
711 NeedsExtracts = false;
713 TotCost += getScalarizationOverhead(Src, false, NeedsExtracts);
714 TotCost += getScalarizationOverhead(Dst, NeedsInserts, false);
716 // FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4.
717 if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32)
718 TotCost *= 2;
720 return TotCost;
723 if (Opcode == Instruction::FPTrunc) {
724 if (SrcScalarBits == 128) // fp128 -> double/float + inserts of elements.
725 return VF /*ldxbr/lexbr*/ + getScalarizationOverhead(Dst, true, false);
726 else // double -> float
727 return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/);
730 if (Opcode == Instruction::FPExt) {
731 if (SrcScalarBits == 32 && DstScalarBits == 64) {
732 // float -> double is very rare and currently unoptimized. Instead of
733 // using vldeb, which can do two at a time, all conversions are
734 // scalarized.
735 return VF * 2;
737 // -> fp128. VF * lxdb/lxeb + extraction of elements.
738 return VF + getScalarizationOverhead(Src, false, true);
741 else { // Scalar
742 assert (!Dst->isVectorTy());
744 if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP) {
745 if (SrcScalarBits >= 32 ||
746 (I != nullptr && isa<LoadInst>(I->getOperand(0))))
747 return 1;
748 return SrcScalarBits > 1 ? 2 /*i8/i16 extend*/ : 5 /*branch seq.*/;
751 if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
752 Src->isIntegerTy(1)) {
753 if (ST->hasLoadStoreOnCond2())
754 return 2; // li 0; loc 1
756 // This should be extension of a compare i1 result, which is done with
757 // ipm and a varying sequence of instructions.
758 unsigned Cost = 0;
759 if (Opcode == Instruction::SExt)
760 Cost = (DstScalarBits < 64 ? 3 : 4);
761 if (Opcode == Instruction::ZExt)
762 Cost = 3;
763 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr);
764 if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy())
765 // If operands of an fp-type was compared, this costs +1.
766 Cost++;
767 return Cost;
771 return BaseT::getCastInstrCost(Opcode, Dst, Src, I);
774 // Scalar i8 / i16 operations will typically be made after first extending
775 // the operands to i32.
776 static unsigned getOperandsExtensionCost(const Instruction *I) {
777 unsigned ExtCost = 0;
778 for (Value *Op : I->operands())
779 // A load of i8 or i16 sign/zero extends to i32.
780 if (!isa<LoadInst>(Op) && !isa<ConstantInt>(Op))
781 ExtCost++;
783 return ExtCost;
786 int SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
787 Type *CondTy, const Instruction *I) {
788 if (ValTy->isVectorTy()) {
789 assert (ST->hasVector() && "getCmpSelInstrCost() called with vector type.");
790 unsigned VF = ValTy->getVectorNumElements();
792 // Called with a compare instruction.
793 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) {
794 unsigned PredicateExtraCost = 0;
795 if (I != nullptr) {
796 // Some predicates cost one or two extra instructions.
797 switch (cast<CmpInst>(I)->getPredicate()) {
798 case CmpInst::Predicate::ICMP_NE:
799 case CmpInst::Predicate::ICMP_UGE:
800 case CmpInst::Predicate::ICMP_ULE:
801 case CmpInst::Predicate::ICMP_SGE:
802 case CmpInst::Predicate::ICMP_SLE:
803 PredicateExtraCost = 1;
804 break;
805 case CmpInst::Predicate::FCMP_ONE:
806 case CmpInst::Predicate::FCMP_ORD:
807 case CmpInst::Predicate::FCMP_UEQ:
808 case CmpInst::Predicate::FCMP_UNO:
809 PredicateExtraCost = 2;
810 break;
811 default:
812 break;
816 // Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of
817 // floats. FIXME: <2 x float> generates same code as <4 x float>.
818 unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1);
819 unsigned NumVecs_cmp = getNumVectorRegs(ValTy);
821 unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost));
822 return Cost;
824 else { // Called with a select instruction.
825 assert (Opcode == Instruction::Select);
827 // We can figure out the extra cost of packing / unpacking if the
828 // instruction was passed and the compare instruction is found.
829 unsigned PackCost = 0;
830 Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
831 if (CmpOpTy != nullptr)
832 PackCost =
833 getVectorBitmaskConversionCost(CmpOpTy, ValTy);
835 return getNumVectorRegs(ValTy) /*vsel*/ + PackCost;
838 else { // Scalar
839 switch (Opcode) {
840 case Instruction::ICmp: {
841 // A loaded value compared with 0 with multiple users becomes Load and
842 // Test. The load is then not foldable, so return 0 cost for the ICmp.
843 unsigned ScalarBits = ValTy->getScalarSizeInBits();
844 if (I != nullptr && ScalarBits >= 32)
845 if (LoadInst *Ld = dyn_cast<LoadInst>(I->getOperand(0)))
846 if (const ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1)))
847 if (!Ld->hasOneUse() && Ld->getParent() == I->getParent() &&
848 C->getZExtValue() == 0)
849 return 0;
851 unsigned Cost = 1;
852 if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16)
853 Cost += (I != nullptr ? getOperandsExtensionCost(I) : 2);
854 return Cost;
856 case Instruction::Select:
857 if (ValTy->isFloatingPointTy())
858 return 4; // No load on condition for FP - costs a conditional jump.
859 return 1; // Load On Condition.
863 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, nullptr);
866 int SystemZTTIImpl::
867 getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
868 // vlvgp will insert two grs into a vector register, so only count half the
869 // number of instructions.
870 if (Opcode == Instruction::InsertElement && Val->isIntOrIntVectorTy(64))
871 return ((Index % 2 == 0) ? 1 : 0);
873 if (Opcode == Instruction::ExtractElement) {
874 int Cost = ((getScalarSizeInBits(Val) == 1) ? 2 /*+test-under-mask*/ : 1);
876 // Give a slight penalty for moving out of vector pipeline to FXU unit.
877 if (Index == 0 && Val->isIntOrIntVectorTy())
878 Cost += 1;
880 return Cost;
883 return BaseT::getVectorInstrCost(Opcode, Val, Index);
886 // Check if a load may be folded as a memory operand in its user.
887 bool SystemZTTIImpl::
888 isFoldableLoad(const LoadInst *Ld, const Instruction *&FoldedValue) {
889 if (!Ld->hasOneUse())
890 return false;
891 FoldedValue = Ld;
892 const Instruction *UserI = cast<Instruction>(*Ld->user_begin());
893 unsigned LoadedBits = getScalarSizeInBits(Ld->getType());
894 unsigned TruncBits = 0;
895 unsigned SExtBits = 0;
896 unsigned ZExtBits = 0;
897 if (UserI->hasOneUse()) {
898 unsigned UserBits = UserI->getType()->getScalarSizeInBits();
899 if (isa<TruncInst>(UserI))
900 TruncBits = UserBits;
901 else if (isa<SExtInst>(UserI))
902 SExtBits = UserBits;
903 else if (isa<ZExtInst>(UserI))
904 ZExtBits = UserBits;
906 if (TruncBits || SExtBits || ZExtBits) {
907 FoldedValue = UserI;
908 UserI = cast<Instruction>(*UserI->user_begin());
909 // Load (single use) -> trunc/extend (single use) -> UserI
911 if ((UserI->getOpcode() == Instruction::Sub ||
912 UserI->getOpcode() == Instruction::SDiv ||
913 UserI->getOpcode() == Instruction::UDiv) &&
914 UserI->getOperand(1) != FoldedValue)
915 return false; // Not commutative, only RHS foldable.
916 // LoadOrTruncBits holds the number of effectively loaded bits, but 0 if an
917 // extension was made of the load.
918 unsigned LoadOrTruncBits =
919 ((SExtBits || ZExtBits) ? 0 : (TruncBits ? TruncBits : LoadedBits));
920 switch (UserI->getOpcode()) {
921 case Instruction::Add: // SE: 16->32, 16/32->64, z14:16->64. ZE: 32->64
922 case Instruction::Sub:
923 case Instruction::ICmp:
924 if (LoadedBits == 32 && ZExtBits == 64)
925 return true;
926 LLVM_FALLTHROUGH;
927 case Instruction::Mul: // SE: 16->32, 32->64, z14:16->64
928 if (UserI->getOpcode() != Instruction::ICmp) {
929 if (LoadedBits == 16 &&
930 (SExtBits == 32 ||
931 (SExtBits == 64 && ST->hasMiscellaneousExtensions2())))
932 return true;
933 if (LoadOrTruncBits == 16)
934 return true;
936 LLVM_FALLTHROUGH;
937 case Instruction::SDiv:// SE: 32->64
938 if (LoadedBits == 32 && SExtBits == 64)
939 return true;
940 LLVM_FALLTHROUGH;
941 case Instruction::UDiv:
942 case Instruction::And:
943 case Instruction::Or:
944 case Instruction::Xor:
945 // This also makes sense for float operations, but disabled for now due
946 // to regressions.
947 // case Instruction::FCmp:
948 // case Instruction::FAdd:
949 // case Instruction::FSub:
950 // case Instruction::FMul:
951 // case Instruction::FDiv:
953 // All possible extensions of memory checked above.
955 // Comparison between memory and immediate.
956 if (UserI->getOpcode() == Instruction::ICmp)
957 if (ConstantInt *CI = dyn_cast<ConstantInt>(UserI->getOperand(1)))
958 if (isUInt<16>(CI->getZExtValue()))
959 return true;
960 return (LoadOrTruncBits == 32 || LoadOrTruncBits == 64);
961 break;
963 return false;
966 static bool isBswapIntrinsicCall(const Value *V) {
967 if (const Instruction *I = dyn_cast<Instruction>(V))
968 if (auto *CI = dyn_cast<CallInst>(I))
969 if (auto *F = CI->getCalledFunction())
970 if (F->getIntrinsicID() == Intrinsic::bswap)
971 return true;
972 return false;
975 int SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
976 unsigned Alignment, unsigned AddressSpace,
977 const Instruction *I) {
978 assert(!Src->isVoidTy() && "Invalid type");
980 if (!Src->isVectorTy() && Opcode == Instruction::Load && I != nullptr) {
981 // Store the load or its truncated or extended value in FoldedValue.
982 const Instruction *FoldedValue = nullptr;
983 if (isFoldableLoad(cast<LoadInst>(I), FoldedValue)) {
984 const Instruction *UserI = cast<Instruction>(*FoldedValue->user_begin());
985 assert (UserI->getNumOperands() == 2 && "Expected a binop.");
987 // UserI can't fold two loads, so in that case return 0 cost only
988 // half of the time.
989 for (unsigned i = 0; i < 2; ++i) {
990 if (UserI->getOperand(i) == FoldedValue)
991 continue;
993 if (Instruction *OtherOp = dyn_cast<Instruction>(UserI->getOperand(i))){
994 LoadInst *OtherLoad = dyn_cast<LoadInst>(OtherOp);
995 if (!OtherLoad &&
996 (isa<TruncInst>(OtherOp) || isa<SExtInst>(OtherOp) ||
997 isa<ZExtInst>(OtherOp)))
998 OtherLoad = dyn_cast<LoadInst>(OtherOp->getOperand(0));
999 if (OtherLoad && isFoldableLoad(OtherLoad, FoldedValue/*dummy*/))
1000 return i == 0; // Both operands foldable.
1004 return 0; // Only I is foldable in user.
1008 unsigned NumOps =
1009 (Src->isVectorTy() ? getNumVectorRegs(Src) : getNumberOfParts(Src));
1011 // Store/Load reversed saves one instruction.
1012 if (!Src->isVectorTy() && NumOps == 1 && I != nullptr) {
1013 if (Opcode == Instruction::Load && I->hasOneUse()) {
1014 const Instruction *LdUser = cast<Instruction>(*I->user_begin());
1015 // In case of load -> bswap -> store, return normal cost for the load.
1016 if (isBswapIntrinsicCall(LdUser) &&
1017 (!LdUser->hasOneUse() || !isa<StoreInst>(*LdUser->user_begin())))
1018 return 0;
1020 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) {
1021 const Value *StoredVal = SI->getValueOperand();
1022 if (StoredVal->hasOneUse() && isBswapIntrinsicCall(StoredVal))
1023 return 0;
1027 if (Src->getScalarSizeInBits() == 128)
1028 // 128 bit scalars are held in a pair of two 64 bit registers.
1029 NumOps *= 2;
1031 return NumOps;
1034 // The generic implementation of getInterleavedMemoryOpCost() is based on
1035 // adding costs of the memory operations plus all the extracts and inserts
1036 // needed for using / defining the vector operands. The SystemZ version does
1037 // roughly the same but bases the computations on vector permutations
1038 // instead.
1039 int SystemZTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
1040 unsigned Factor,
1041 ArrayRef<unsigned> Indices,
1042 unsigned Alignment,
1043 unsigned AddressSpace,
1044 bool UseMaskForCond,
1045 bool UseMaskForGaps) {
1046 if (UseMaskForCond || UseMaskForGaps)
1047 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
1048 Alignment, AddressSpace,
1049 UseMaskForCond, UseMaskForGaps);
1050 assert(isa<VectorType>(VecTy) &&
1051 "Expect a vector type for interleaved memory op");
1053 // Return the ceiling of dividing A by B.
1054 auto ceil = [](unsigned A, unsigned B) { return (A + B - 1) / B; };
1056 unsigned NumElts = VecTy->getVectorNumElements();
1057 assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor");
1058 unsigned VF = NumElts / Factor;
1059 unsigned NumEltsPerVecReg = (128U / getScalarSizeInBits(VecTy));
1060 unsigned NumVectorMemOps = getNumVectorRegs(VecTy);
1061 unsigned NumPermutes = 0;
1063 if (Opcode == Instruction::Load) {
1064 // Loading interleave groups may have gaps, which may mean fewer
1065 // loads. Find out how many vectors will be loaded in total, and in how
1066 // many of them each value will be in.
1067 BitVector UsedInsts(NumVectorMemOps, false);
1068 std::vector<BitVector> ValueVecs(Factor, BitVector(NumVectorMemOps, false));
1069 for (unsigned Index : Indices)
1070 for (unsigned Elt = 0; Elt < VF; ++Elt) {
1071 unsigned Vec = (Index + Elt * Factor) / NumEltsPerVecReg;
1072 UsedInsts.set(Vec);
1073 ValueVecs[Index].set(Vec);
1075 NumVectorMemOps = UsedInsts.count();
1077 for (unsigned Index : Indices) {
1078 // Estimate that each loaded source vector containing this Index
1079 // requires one operation, except that vperm can handle two input
1080 // registers first time for each dst vector.
1081 unsigned NumSrcVecs = ValueVecs[Index].count();
1082 unsigned NumDstVecs = ceil(VF * getScalarSizeInBits(VecTy), 128U);
1083 assert (NumSrcVecs >= NumDstVecs && "Expected at least as many sources");
1084 NumPermutes += std::max(1U, NumSrcVecs - NumDstVecs);
1086 } else {
1087 // Estimate the permutes for each stored vector as the smaller of the
1088 // number of elements and the number of source vectors. Subtract one per
1089 // dst vector for vperm (S.A.).
1090 unsigned NumSrcVecs = std::min(NumEltsPerVecReg, Factor);
1091 unsigned NumDstVecs = NumVectorMemOps;
1092 assert (NumSrcVecs > 1 && "Expected at least two source vectors.");
1093 NumPermutes += (NumDstVecs * NumSrcVecs) - NumDstVecs;
1096 // Cost of load/store operations and the permutations needed.
1097 return NumVectorMemOps + NumPermutes;
1100 static int getVectorIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy) {
1101 if (RetTy->isVectorTy() && ID == Intrinsic::bswap)
1102 return getNumVectorRegs(RetTy); // VPERM
1103 return -1;
1106 int SystemZTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
1107 ArrayRef<Value *> Args,
1108 FastMathFlags FMF, unsigned VF) {
1109 int Cost = getVectorIntrinsicInstrCost(ID, RetTy);
1110 if (Cost != -1)
1111 return Cost;
1112 return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
1115 int SystemZTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
1116 ArrayRef<Type *> Tys,
1117 FastMathFlags FMF,
1118 unsigned ScalarizationCostPassed) {
1119 int Cost = getVectorIntrinsicInstrCost(ID, RetTy);
1120 if (Cost != -1)
1121 return Cost;
1122 return BaseT::getIntrinsicInstrCost(ID, RetTy, Tys,
1123 FMF, ScalarizationCostPassed);