1 ; Test 128-bit addition in which the second operand is variable.
3 ; RUN: llc < %s -mtriple=s390x-linux-gnu -mcpu=z10 | FileCheck %s
4 ; RUN: llc < %s -mtriple=s390x-linux-gnu -mcpu=z196 | FileCheck %s
8 ; Test register addition.
9 define void @f1(i128 *%ptr) {
14 %value = load i128, i128 *%ptr
15 %add = add i128 %value, %value
16 store i128 %add, i128 *%ptr
20 ; Test memory addition with no offset. Making the load of %a volatile
21 ; should force the memory operand to be %b.
22 define void @f2(i128 *%aptr, i64 %addr) {
24 ; CHECK: alg {{%r[0-5]}}, 8(%r3)
25 ; CHECK: alcg {{%r[0-5]}}, 0(%r3)
27 %bptr = inttoptr i64 %addr to i128 *
28 %a = load volatile i128, i128 *%aptr
29 %b = load i128, i128 *%bptr
30 %add = add i128 %a, %b
31 store i128 %add, i128 *%aptr
35 ; Test the highest aligned offset that is in range of both ALG and ALCG.
36 define void @f3(i128 *%aptr, i64 %base) {
38 ; CHECK: alg {{%r[0-5]}}, 524280(%r3)
39 ; CHECK: alcg {{%r[0-5]}}, 524272(%r3)
41 %addr = add i64 %base, 524272
42 %bptr = inttoptr i64 %addr to i128 *
43 %a = load volatile i128, i128 *%aptr
44 %b = load i128, i128 *%bptr
45 %add = add i128 %a, %b
46 store i128 %add, i128 *%aptr
50 ; Test the next doubleword up, which requires separate address logic for ALG.
51 define void @f4(i128 *%aptr, i64 %base) {
53 ; CHECK: lgr [[BASE:%r[1-5]]], %r3
54 ; CHECK: agfi [[BASE]], 524288
55 ; CHECK: alg {{%r[0-5]}}, 0([[BASE]])
56 ; CHECK: alcg {{%r[0-5]}}, 524280(%r3)
58 %addr = add i64 %base, 524280
59 %bptr = inttoptr i64 %addr to i128 *
60 %a = load volatile i128, i128 *%aptr
61 %b = load i128, i128 *%bptr
62 %add = add i128 %a, %b
63 store i128 %add, i128 *%aptr
67 ; Test the next doubleword after that, which requires separate logic for
68 ; both instructions. It would be better to create an anchor at 524288
69 ; that both instructions can use, but that isn't implemented yet.
70 define void @f5(i128 *%aptr, i64 %base) {
72 ; CHECK: alg {{%r[0-5]}}, 0({{%r[1-5]}})
73 ; CHECK: alcg {{%r[0-5]}}, 0({{%r[1-5]}})
75 %addr = add i64 %base, 524288
76 %bptr = inttoptr i64 %addr to i128 *
77 %a = load volatile i128, i128 *%aptr
78 %b = load i128, i128 *%bptr
79 %add = add i128 %a, %b
80 store i128 %add, i128 *%aptr
84 ; Test the lowest displacement that is in range of both ALG and ALCG.
85 define void @f6(i128 *%aptr, i64 %base) {
87 ; CHECK: alg {{%r[0-5]}}, -524280(%r3)
88 ; CHECK: alcg {{%r[0-5]}}, -524288(%r3)
90 %addr = add i64 %base, -524288
91 %bptr = inttoptr i64 %addr to i128 *
92 %a = load volatile i128, i128 *%aptr
93 %b = load i128, i128 *%bptr
94 %add = add i128 %a, %b
95 store i128 %add, i128 *%aptr
99 ; Test the next doubleword down, which is out of range of the ALCG.
100 define void @f7(i128 *%aptr, i64 %base) {
102 ; CHECK: alg {{%r[0-5]}}, -524288(%r3)
103 ; CHECK: alcg {{%r[0-5]}}, 0({{%r[1-5]}})
105 %addr = add i64 %base, -524296
106 %bptr = inttoptr i64 %addr to i128 *
107 %a = load volatile i128, i128 *%aptr
108 %b = load i128, i128 *%bptr
109 %add = add i128 %a, %b
110 store i128 %add, i128 *%aptr
114 ; Check that additions of spilled values can use ALG and ALCG rather than
116 define void @f8(i128 *%ptr0) {
118 ; CHECK: brasl %r14, foo@PLT
119 ; CHECK: alg {{%r[0-9]+}}, {{[0-9]+}}(%r15)
120 ; CHECK: alcg {{%r[0-9]+}}, {{[0-9]+}}(%r15)
122 %ptr1 = getelementptr i128, i128 *%ptr0, i128 2
123 %ptr2 = getelementptr i128, i128 *%ptr0, i128 4
124 %ptr3 = getelementptr i128, i128 *%ptr0, i128 6
125 %ptr4 = getelementptr i128, i128 *%ptr0, i128 8
126 %ptr5 = getelementptr i128, i128 *%ptr0, i128 10
128 %val0 = load i128, i128 *%ptr0
129 %val1 = load i128, i128 *%ptr1
130 %val2 = load i128, i128 *%ptr2
131 %val3 = load i128, i128 *%ptr3
132 %val4 = load i128, i128 *%ptr4
133 %val5 = load i128, i128 *%ptr5
135 %retptr = call i128 *@foo()
137 %ret = load i128, i128 *%retptr
138 %add0 = add i128 %ret, %val0
139 %add1 = add i128 %add0, %val1
140 %add2 = add i128 %add1, %val2
141 %add3 = add i128 %add2, %val3
142 %add4 = add i128 %add3, %val4
143 %add5 = add i128 %add4, %val5
144 store i128 %add5, i128 *%retptr