1 //===-- MipsSEISelDAGToDAG.cpp - A Dag to Dag Inst Selector for MipsSE ----===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Subclass of MipsDAGToDAGISel specialized for mips32/64.
11 //===----------------------------------------------------------------------===//
13 #include "MipsSEISelDAGToDAG.h"
14 #include "MCTargetDesc/MipsBaseInfo.h"
16 #include "MipsAnalyzeImmediate.h"
17 #include "MipsMachineFunction.h"
18 #include "MipsRegisterInfo.h"
19 #include "llvm/CodeGen/MachineConstantPool.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/SelectionDAGNodes.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/GlobalValue.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Type.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetMachine.h"
37 #define DEBUG_TYPE "mips-isel"
39 bool MipsSEDAGToDAGISel::runOnMachineFunction(MachineFunction
&MF
) {
40 Subtarget
= &static_cast<const MipsSubtarget
&>(MF
.getSubtarget());
41 if (Subtarget
->inMips16Mode())
43 return MipsDAGToDAGISel::runOnMachineFunction(MF
);
46 void MipsSEDAGToDAGISel::getAnalysisUsage(AnalysisUsage
&AU
) const {
47 AU
.addRequired
<DominatorTreeWrapperPass
>();
48 SelectionDAGISel::getAnalysisUsage(AU
);
51 void MipsSEDAGToDAGISel::addDSPCtrlRegOperands(bool IsDef
, MachineInstr
&MI
,
52 MachineFunction
&MF
) {
53 MachineInstrBuilder
MIB(MF
, &MI
);
54 unsigned Mask
= MI
.getOperand(1).getImm();
56 IsDef
? RegState::ImplicitDefine
: RegState::Implicit
| RegState::Undef
;
59 MIB
.addReg(Mips::DSPPos
, Flag
);
62 MIB
.addReg(Mips::DSPSCount
, Flag
);
65 MIB
.addReg(Mips::DSPCarry
, Flag
);
68 MIB
.addReg(Mips::DSPOutFlag
, Flag
);
71 MIB
.addReg(Mips::DSPCCond
, Flag
);
74 MIB
.addReg(Mips::DSPEFI
, Flag
);
77 unsigned MipsSEDAGToDAGISel::getMSACtrlReg(const SDValue RegIdx
) const {
78 uint64_t RegNum
= cast
<ConstantSDNode
>(RegIdx
)->getZExtValue();
79 return Mips::MSACtrlRegClass
.getRegister(RegNum
);
82 bool MipsSEDAGToDAGISel::replaceUsesWithZeroReg(MachineRegisterInfo
*MRI
,
83 const MachineInstr
& MI
) {
84 unsigned DstReg
= 0, ZeroReg
= 0;
86 // Check if MI is "addiu $dst, $zero, 0" or "daddiu $dst, $zero, 0".
87 if ((MI
.getOpcode() == Mips::ADDiu
) &&
88 (MI
.getOperand(1).getReg() == Mips::ZERO
) &&
89 (MI
.getOperand(2).isImm()) &&
90 (MI
.getOperand(2).getImm() == 0)) {
91 DstReg
= MI
.getOperand(0).getReg();
93 } else if ((MI
.getOpcode() == Mips::DADDiu
) &&
94 (MI
.getOperand(1).getReg() == Mips::ZERO_64
) &&
95 (MI
.getOperand(2).isImm()) &&
96 (MI
.getOperand(2).getImm() == 0)) {
97 DstReg
= MI
.getOperand(0).getReg();
98 ZeroReg
= Mips::ZERO_64
;
104 // Replace uses with ZeroReg.
105 for (MachineRegisterInfo::use_iterator U
= MRI
->use_begin(DstReg
),
106 E
= MRI
->use_end(); U
!= E
;) {
107 MachineOperand
&MO
= *U
;
108 unsigned OpNo
= U
.getOperandNo();
109 MachineInstr
*MI
= MO
.getParent();
112 // Do not replace if it is a phi's operand or is tied to def operand.
113 if (MI
->isPHI() || MI
->isRegTiedToDefOperand(OpNo
) || MI
->isPseudo())
116 // Also, we have to check that the register class of the operand
117 // contains the zero register.
118 if (!MRI
->getRegClass(MO
.getReg())->contains(ZeroReg
))
127 void MipsSEDAGToDAGISel::processFunctionAfterISel(MachineFunction
&MF
) {
128 MF
.getInfo
<MipsFunctionInfo
>()->initGlobalBaseReg();
130 MachineRegisterInfo
*MRI
= &MF
.getRegInfo();
132 for (auto &MBB
: MF
) {
133 for (auto &MI
: MBB
) {
134 switch (MI
.getOpcode()) {
136 addDSPCtrlRegOperands(false, MI
, MF
);
139 addDSPCtrlRegOperands(true, MI
, MF
);
141 case Mips::BuildPairF64_64
:
142 case Mips::ExtractElementF64_64
:
143 if (!Subtarget
->useOddSPReg()) {
144 MI
.addOperand(MachineOperand::CreateReg(Mips::SP
, false, true));
148 case Mips::BuildPairF64
:
149 case Mips::ExtractElementF64
:
150 if (Subtarget
->isABI_FPXX() && !Subtarget
->hasMTHC1())
151 MI
.addOperand(MachineOperand::CreateReg(Mips::SP
, false, true));
154 replaceUsesWithZeroReg(MRI
, MI
);
160 void MipsSEDAGToDAGISel::selectAddE(SDNode
*Node
, const SDLoc
&DL
) const {
161 SDValue InFlag
= Node
->getOperand(2);
162 unsigned Opc
= InFlag
.getOpcode();
163 SDValue LHS
= Node
->getOperand(0), RHS
= Node
->getOperand(1);
164 EVT VT
= LHS
.getValueType();
166 // In the base case, we can rely on the carry bit from the addsc
168 if (Opc
== ISD::ADDC
) {
169 SDValue Ops
[3] = {LHS
, RHS
, InFlag
};
170 CurDAG
->SelectNodeTo(Node
, Mips::ADDWC
, VT
, MVT::Glue
, Ops
);
174 assert(Opc
== ISD::ADDE
&& "ISD::ADDE not in a chain of ADDE nodes!");
176 // The more complex case is when there is a chain of ISD::ADDE nodes like:
177 // (adde (adde (adde (addc a b) c) d) e).
179 // The addwc instruction does not write to the carry bit, instead it writes
180 // to bit 20 of the dsp control register. To match this series of nodes, each
181 // intermediate adde node must be expanded to write the carry bit before the
184 // Start by reading the overflow field for addsc and moving the value to the
185 // carry field. The usage of 1 here with MipsISD::RDDSP / Mips::WRDSP
186 // corresponds to reading/writing the entire control register to/from a GPR.
188 SDValue CstOne
= CurDAG
->getTargetConstant(1, DL
, MVT::i32
);
190 SDValue OuFlag
= CurDAG
->getTargetConstant(20, DL
, MVT::i32
);
192 SDNode
*DSPCtrlField
=
193 CurDAG
->getMachineNode(Mips::RDDSP
, DL
, MVT::i32
, MVT::Glue
, CstOne
, InFlag
);
195 SDNode
*Carry
= CurDAG
->getMachineNode(
196 Mips::EXT
, DL
, MVT::i32
, SDValue(DSPCtrlField
, 0), OuFlag
, CstOne
);
198 SDValue Ops
[4] = {SDValue(DSPCtrlField
, 0),
199 CurDAG
->getTargetConstant(6, DL
, MVT::i32
), CstOne
,
201 SDNode
*DSPCFWithCarry
= CurDAG
->getMachineNode(Mips::INS
, DL
, MVT::i32
, Ops
);
203 // My reading of the MIPS DSP 3.01 specification isn't as clear as I
204 // would like about whether bit 20 always gets overwritten by addwc.
205 // Hence take an extremely conservative view and presume it's sticky. We
206 // therefore need to clear it.
208 SDValue Zero
= CurDAG
->getRegister(Mips::ZERO
, MVT::i32
);
210 SDValue InsOps
[4] = {Zero
, OuFlag
, CstOne
, SDValue(DSPCFWithCarry
, 0)};
211 SDNode
*DSPCtrlFinal
= CurDAG
->getMachineNode(Mips::INS
, DL
, MVT::i32
, InsOps
);
213 SDNode
*WrDSP
= CurDAG
->getMachineNode(Mips::WRDSP
, DL
, MVT::Glue
,
214 SDValue(DSPCtrlFinal
, 0), CstOne
);
216 SDValue Operands
[3] = {LHS
, RHS
, SDValue(WrDSP
, 0)};
217 CurDAG
->SelectNodeTo(Node
, Mips::ADDWC
, VT
, MVT::Glue
, Operands
);
221 bool MipsSEDAGToDAGISel::selectAddrFrameIndex(SDValue Addr
, SDValue
&Base
,
222 SDValue
&Offset
) const {
223 if (FrameIndexSDNode
*FIN
= dyn_cast
<FrameIndexSDNode
>(Addr
)) {
224 EVT ValTy
= Addr
.getValueType();
226 Base
= CurDAG
->getTargetFrameIndex(FIN
->getIndex(), ValTy
);
227 Offset
= CurDAG
->getTargetConstant(0, SDLoc(Addr
), ValTy
);
233 /// Match frameindex+offset and frameindex|offset
234 bool MipsSEDAGToDAGISel::selectAddrFrameIndexOffset(
235 SDValue Addr
, SDValue
&Base
, SDValue
&Offset
, unsigned OffsetBits
,
236 unsigned ShiftAmount
= 0) const {
237 if (CurDAG
->isBaseWithConstantOffset(Addr
)) {
238 ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(Addr
.getOperand(1));
239 if (isIntN(OffsetBits
+ ShiftAmount
, CN
->getSExtValue())) {
240 EVT ValTy
= Addr
.getValueType();
242 // If the first operand is a FI, get the TargetFI Node
243 if (FrameIndexSDNode
*FIN
=
244 dyn_cast
<FrameIndexSDNode
>(Addr
.getOperand(0)))
245 Base
= CurDAG
->getTargetFrameIndex(FIN
->getIndex(), ValTy
);
247 Base
= Addr
.getOperand(0);
248 // If base is a FI, additional offset calculation is done in
249 // eliminateFrameIndex, otherwise we need to check the alignment
250 const Align
Alignment(1ULL << ShiftAmount
);
251 if (!isAligned(Alignment
, CN
->getZExtValue()))
255 Offset
= CurDAG
->getTargetConstant(CN
->getZExtValue(), SDLoc(Addr
),
263 /// ComplexPattern used on MipsInstrInfo
264 /// Used on Mips Load/Store instructions
265 bool MipsSEDAGToDAGISel::selectAddrRegImm(SDValue Addr
, SDValue
&Base
,
266 SDValue
&Offset
) const {
267 // if Address is FI, get the TargetFrameIndex.
268 if (selectAddrFrameIndex(Addr
, Base
, Offset
))
271 // on PIC code Load GA
272 if (Addr
.getOpcode() == MipsISD::Wrapper
) {
273 Base
= Addr
.getOperand(0);
274 Offset
= Addr
.getOperand(1);
278 if (!TM
.isPositionIndependent()) {
279 if ((Addr
.getOpcode() == ISD::TargetExternalSymbol
||
280 Addr
.getOpcode() == ISD::TargetGlobalAddress
))
284 // Addresses of the form FI+const or FI|const
285 if (selectAddrFrameIndexOffset(Addr
, Base
, Offset
, 16))
288 // Operand is a result from an ADD.
289 if (Addr
.getOpcode() == ISD::ADD
) {
290 // When loading from constant pools, load the lower address part in
291 // the instruction itself. Example, instead of:
292 // lui $2, %hi($CPI1_0)
293 // addiu $2, $2, %lo($CPI1_0)
296 // lui $2, %hi($CPI1_0)
297 // lwc1 $f0, %lo($CPI1_0)($2)
298 if (Addr
.getOperand(1).getOpcode() == MipsISD::Lo
||
299 Addr
.getOperand(1).getOpcode() == MipsISD::GPRel
) {
300 SDValue Opnd0
= Addr
.getOperand(1).getOperand(0);
301 if (isa
<ConstantPoolSDNode
>(Opnd0
) || isa
<GlobalAddressSDNode
>(Opnd0
) ||
302 isa
<JumpTableSDNode
>(Opnd0
)) {
303 Base
= Addr
.getOperand(0);
313 /// ComplexPattern used on MipsInstrInfo
314 /// Used on Mips Load/Store instructions
315 bool MipsSEDAGToDAGISel::selectAddrDefault(SDValue Addr
, SDValue
&Base
,
316 SDValue
&Offset
) const {
318 Offset
= CurDAG
->getTargetConstant(0, SDLoc(Addr
), Addr
.getValueType());
322 bool MipsSEDAGToDAGISel::selectIntAddr(SDValue Addr
, SDValue
&Base
,
323 SDValue
&Offset
) const {
324 return selectAddrRegImm(Addr
, Base
, Offset
) ||
325 selectAddrDefault(Addr
, Base
, Offset
);
328 bool MipsSEDAGToDAGISel::selectAddrRegImm9(SDValue Addr
, SDValue
&Base
,
329 SDValue
&Offset
) const {
330 if (selectAddrFrameIndex(Addr
, Base
, Offset
))
333 if (selectAddrFrameIndexOffset(Addr
, Base
, Offset
, 9))
339 /// Used on microMIPS LWC2, LDC2, SWC2 and SDC2 instructions (11-bit offset)
340 bool MipsSEDAGToDAGISel::selectAddrRegImm11(SDValue Addr
, SDValue
&Base
,
341 SDValue
&Offset
) const {
342 if (selectAddrFrameIndex(Addr
, Base
, Offset
))
345 if (selectAddrFrameIndexOffset(Addr
, Base
, Offset
, 11))
351 /// Used on microMIPS Load/Store unaligned instructions (12-bit offset)
352 bool MipsSEDAGToDAGISel::selectAddrRegImm12(SDValue Addr
, SDValue
&Base
,
353 SDValue
&Offset
) const {
354 if (selectAddrFrameIndex(Addr
, Base
, Offset
))
357 if (selectAddrFrameIndexOffset(Addr
, Base
, Offset
, 12))
363 bool MipsSEDAGToDAGISel::selectAddrRegImm16(SDValue Addr
, SDValue
&Base
,
364 SDValue
&Offset
) const {
365 if (selectAddrFrameIndex(Addr
, Base
, Offset
))
368 if (selectAddrFrameIndexOffset(Addr
, Base
, Offset
, 16))
374 bool MipsSEDAGToDAGISel::selectIntAddr11MM(SDValue Addr
, SDValue
&Base
,
375 SDValue
&Offset
) const {
376 return selectAddrRegImm11(Addr
, Base
, Offset
) ||
377 selectAddrDefault(Addr
, Base
, Offset
);
380 bool MipsSEDAGToDAGISel::selectIntAddr12MM(SDValue Addr
, SDValue
&Base
,
381 SDValue
&Offset
) const {
382 return selectAddrRegImm12(Addr
, Base
, Offset
) ||
383 selectAddrDefault(Addr
, Base
, Offset
);
386 bool MipsSEDAGToDAGISel::selectIntAddr16MM(SDValue Addr
, SDValue
&Base
,
387 SDValue
&Offset
) const {
388 return selectAddrRegImm16(Addr
, Base
, Offset
) ||
389 selectAddrDefault(Addr
, Base
, Offset
);
392 bool MipsSEDAGToDAGISel::selectIntAddrLSL2MM(SDValue Addr
, SDValue
&Base
,
393 SDValue
&Offset
) const {
394 if (selectAddrFrameIndexOffset(Addr
, Base
, Offset
, 7)) {
395 if (isa
<FrameIndexSDNode
>(Base
))
398 if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(Offset
)) {
399 unsigned CnstOff
= CN
->getZExtValue();
400 return (CnstOff
== (CnstOff
& 0x3c));
406 // For all other cases where "lw" would be selected, don't select "lw16"
407 // because it would result in additional instructions to prepare operands.
408 if (selectAddrRegImm(Addr
, Base
, Offset
))
411 return selectAddrDefault(Addr
, Base
, Offset
);
414 bool MipsSEDAGToDAGISel::selectIntAddrSImm10(SDValue Addr
, SDValue
&Base
,
415 SDValue
&Offset
) const {
417 if (selectAddrFrameIndex(Addr
, Base
, Offset
))
420 if (selectAddrFrameIndexOffset(Addr
, Base
, Offset
, 10))
423 return selectAddrDefault(Addr
, Base
, Offset
);
426 bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl1(SDValue Addr
, SDValue
&Base
,
427 SDValue
&Offset
) const {
428 if (selectAddrFrameIndex(Addr
, Base
, Offset
))
431 if (selectAddrFrameIndexOffset(Addr
, Base
, Offset
, 10, 1))
434 return selectAddrDefault(Addr
, Base
, Offset
);
437 bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl2(SDValue Addr
, SDValue
&Base
,
438 SDValue
&Offset
) const {
439 if (selectAddrFrameIndex(Addr
, Base
, Offset
))
442 if (selectAddrFrameIndexOffset(Addr
, Base
, Offset
, 10, 2))
445 return selectAddrDefault(Addr
, Base
, Offset
);
448 bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl3(SDValue Addr
, SDValue
&Base
,
449 SDValue
&Offset
) const {
450 if (selectAddrFrameIndex(Addr
, Base
, Offset
))
453 if (selectAddrFrameIndexOffset(Addr
, Base
, Offset
, 10, 3))
456 return selectAddrDefault(Addr
, Base
, Offset
);
459 // Select constant vector splats.
461 // Returns true and sets Imm if:
463 // * N is a ISD::BUILD_VECTOR representing a constant splat
464 bool MipsSEDAGToDAGISel::selectVSplat(SDNode
*N
, APInt
&Imm
,
465 unsigned MinSizeInBits
) const {
466 if (!Subtarget
->hasMSA())
469 BuildVectorSDNode
*Node
= dyn_cast
<BuildVectorSDNode
>(N
);
474 APInt SplatValue
, SplatUndef
;
475 unsigned SplatBitSize
;
478 if (!Node
->isConstantSplat(SplatValue
, SplatUndef
, SplatBitSize
, HasAnyUndefs
,
479 MinSizeInBits
, !Subtarget
->isLittle()))
487 // Select constant vector splats.
489 // In addition to the requirements of selectVSplat(), this function returns
490 // true and sets Imm if:
491 // * The splat value is the same width as the elements of the vector
492 // * The splat value fits in an integer with the specified signed-ness and
495 // This function looks through ISD::BITCAST nodes.
496 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
497 // sometimes a shuffle in big-endian mode.
499 // It's worth noting that this function is not used as part of the selection
500 // of ldi.[bhwd] since it does not permit using the wrong-typed ldi.[bhwd]
501 // instruction to achieve the desired bit pattern. ldi.[bhwd] is selected in
502 // MipsSEDAGToDAGISel::selectNode.
503 bool MipsSEDAGToDAGISel::
504 selectVSplatCommon(SDValue N
, SDValue
&Imm
, bool Signed
,
505 unsigned ImmBitSize
) const {
507 EVT EltTy
= N
->getValueType(0).getVectorElementType();
509 if (N
->getOpcode() == ISD::BITCAST
)
510 N
= N
->getOperand(0);
512 if (selectVSplat(N
.getNode(), ImmValue
, EltTy
.getSizeInBits()) &&
513 ImmValue
.getBitWidth() == EltTy
.getSizeInBits()) {
515 if (( Signed
&& ImmValue
.isSignedIntN(ImmBitSize
)) ||
516 (!Signed
&& ImmValue
.isIntN(ImmBitSize
))) {
517 Imm
= CurDAG
->getTargetConstant(ImmValue
, SDLoc(N
), EltTy
);
525 // Select constant vector splats.
526 bool MipsSEDAGToDAGISel::
527 selectVSplatUimm1(SDValue N
, SDValue
&Imm
) const {
528 return selectVSplatCommon(N
, Imm
, false, 1);
531 bool MipsSEDAGToDAGISel::
532 selectVSplatUimm2(SDValue N
, SDValue
&Imm
) const {
533 return selectVSplatCommon(N
, Imm
, false, 2);
536 bool MipsSEDAGToDAGISel::
537 selectVSplatUimm3(SDValue N
, SDValue
&Imm
) const {
538 return selectVSplatCommon(N
, Imm
, false, 3);
541 // Select constant vector splats.
542 bool MipsSEDAGToDAGISel::
543 selectVSplatUimm4(SDValue N
, SDValue
&Imm
) const {
544 return selectVSplatCommon(N
, Imm
, false, 4);
547 // Select constant vector splats.
548 bool MipsSEDAGToDAGISel::
549 selectVSplatUimm5(SDValue N
, SDValue
&Imm
) const {
550 return selectVSplatCommon(N
, Imm
, false, 5);
553 // Select constant vector splats.
554 bool MipsSEDAGToDAGISel::
555 selectVSplatUimm6(SDValue N
, SDValue
&Imm
) const {
556 return selectVSplatCommon(N
, Imm
, false, 6);
559 // Select constant vector splats.
560 bool MipsSEDAGToDAGISel::
561 selectVSplatUimm8(SDValue N
, SDValue
&Imm
) const {
562 return selectVSplatCommon(N
, Imm
, false, 8);
565 // Select constant vector splats.
566 bool MipsSEDAGToDAGISel::
567 selectVSplatSimm5(SDValue N
, SDValue
&Imm
) const {
568 return selectVSplatCommon(N
, Imm
, true, 5);
571 // Select constant vector splats whose value is a power of 2.
573 // In addition to the requirements of selectVSplat(), this function returns
574 // true and sets Imm if:
575 // * The splat value is the same width as the elements of the vector
576 // * The splat value is a power of two.
578 // This function looks through ISD::BITCAST nodes.
579 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
580 // sometimes a shuffle in big-endian mode.
581 bool MipsSEDAGToDAGISel::selectVSplatUimmPow2(SDValue N
, SDValue
&Imm
) const {
583 EVT EltTy
= N
->getValueType(0).getVectorElementType();
585 if (N
->getOpcode() == ISD::BITCAST
)
586 N
= N
->getOperand(0);
588 if (selectVSplat(N
.getNode(), ImmValue
, EltTy
.getSizeInBits()) &&
589 ImmValue
.getBitWidth() == EltTy
.getSizeInBits()) {
590 int32_t Log2
= ImmValue
.exactLogBase2();
593 Imm
= CurDAG
->getTargetConstant(Log2
, SDLoc(N
), EltTy
);
601 // Select constant vector splats whose value only has a consecutive sequence
602 // of left-most bits set (e.g. 0b11...1100...00).
604 // In addition to the requirements of selectVSplat(), this function returns
605 // true and sets Imm if:
606 // * The splat value is the same width as the elements of the vector
607 // * The splat value is a consecutive sequence of left-most bits.
609 // This function looks through ISD::BITCAST nodes.
610 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
611 // sometimes a shuffle in big-endian mode.
612 bool MipsSEDAGToDAGISel::selectVSplatMaskL(SDValue N
, SDValue
&Imm
) const {
614 EVT EltTy
= N
->getValueType(0).getVectorElementType();
616 if (N
->getOpcode() == ISD::BITCAST
)
617 N
= N
->getOperand(0);
619 if (selectVSplat(N
.getNode(), ImmValue
, EltTy
.getSizeInBits()) &&
620 ImmValue
.getBitWidth() == EltTy
.getSizeInBits()) {
621 // Extract the run of set bits starting with bit zero from the bitwise
622 // inverse of ImmValue, and test that the inverse of this is the same
623 // as the original value.
624 if (ImmValue
== ~(~ImmValue
& ~(~ImmValue
+ 1))) {
626 Imm
= CurDAG
->getTargetConstant(ImmValue
.countPopulation() - 1, SDLoc(N
),
635 // Select constant vector splats whose value only has a consecutive sequence
636 // of right-most bits set (e.g. 0b00...0011...11).
638 // In addition to the requirements of selectVSplat(), this function returns
639 // true and sets Imm if:
640 // * The splat value is the same width as the elements of the vector
641 // * The splat value is a consecutive sequence of right-most bits.
643 // This function looks through ISD::BITCAST nodes.
644 // TODO: This might not be appropriate for big-endian MSA since BITCAST is
645 // sometimes a shuffle in big-endian mode.
646 bool MipsSEDAGToDAGISel::selectVSplatMaskR(SDValue N
, SDValue
&Imm
) const {
648 EVT EltTy
= N
->getValueType(0).getVectorElementType();
650 if (N
->getOpcode() == ISD::BITCAST
)
651 N
= N
->getOperand(0);
653 if (selectVSplat(N
.getNode(), ImmValue
, EltTy
.getSizeInBits()) &&
654 ImmValue
.getBitWidth() == EltTy
.getSizeInBits()) {
655 // Extract the run of set bits starting with bit zero, and test that the
656 // result is the same as the original value
657 if (ImmValue
== (ImmValue
& ~(ImmValue
+ 1))) {
658 Imm
= CurDAG
->getTargetConstant(ImmValue
.countPopulation() - 1, SDLoc(N
),
667 bool MipsSEDAGToDAGISel::selectVSplatUimmInvPow2(SDValue N
,
668 SDValue
&Imm
) const {
670 EVT EltTy
= N
->getValueType(0).getVectorElementType();
672 if (N
->getOpcode() == ISD::BITCAST
)
673 N
= N
->getOperand(0);
675 if (selectVSplat(N
.getNode(), ImmValue
, EltTy
.getSizeInBits()) &&
676 ImmValue
.getBitWidth() == EltTy
.getSizeInBits()) {
677 int32_t Log2
= (~ImmValue
).exactLogBase2();
680 Imm
= CurDAG
->getTargetConstant(Log2
, SDLoc(N
), EltTy
);
688 bool MipsSEDAGToDAGISel::trySelect(SDNode
*Node
) {
689 unsigned Opcode
= Node
->getOpcode();
693 // Instruction Selection not handled by the auto-generated
694 // tablegen selection should be handled here.
699 case Mips::PseudoD_SELECT_I
:
700 case Mips::PseudoD_SELECT_I64
: {
701 MVT VT
= Subtarget
->isGP64bit() ? MVT::i64
: MVT::i32
;
702 SDValue cond
= Node
->getOperand(0);
703 SDValue Hi1
= Node
->getOperand(1);
704 SDValue Lo1
= Node
->getOperand(2);
705 SDValue Hi2
= Node
->getOperand(3);
706 SDValue Lo2
= Node
->getOperand(4);
708 SDValue ops
[] = {cond
, Hi1
, Lo1
, Hi2
, Lo2
};
709 EVT NodeTys
[] = {VT
, VT
};
710 ReplaceNode(Node
, CurDAG
->getMachineNode(Subtarget
->isGP64bit()
711 ? Mips::PseudoD_SELECT_I64
712 : Mips::PseudoD_SELECT_I
,
718 selectAddE(Node
, DL
);
722 case ISD::ConstantFP
: {
723 auto *CN
= cast
<ConstantFPSDNode
>(Node
);
724 if (Node
->getValueType(0) == MVT::f64
&& CN
->isExactlyValue(+0.0)) {
725 if (Subtarget
->isGP64bit()) {
726 SDValue Zero
= CurDAG
->getCopyFromReg(CurDAG
->getEntryNode(), DL
,
727 Mips::ZERO_64
, MVT::i64
);
729 CurDAG
->getMachineNode(Mips::DMTC1
, DL
, MVT::f64
, Zero
));
730 } else if (Subtarget
->isFP64bit()) {
731 SDValue Zero
= CurDAG
->getCopyFromReg(CurDAG
->getEntryNode(), DL
,
732 Mips::ZERO
, MVT::i32
);
733 ReplaceNode(Node
, CurDAG
->getMachineNode(Mips::BuildPairF64_64
, DL
,
734 MVT::f64
, Zero
, Zero
));
736 SDValue Zero
= CurDAG
->getCopyFromReg(CurDAG
->getEntryNode(), DL
,
737 Mips::ZERO
, MVT::i32
);
738 ReplaceNode(Node
, CurDAG
->getMachineNode(Mips::BuildPairF64
, DL
,
739 MVT::f64
, Zero
, Zero
));
746 case ISD::Constant
: {
747 auto *CN
= cast
<ConstantSDNode
>(Node
);
748 int64_t Imm
= CN
->getSExtValue();
749 unsigned Size
= CN
->getValueSizeInBits(0);
754 MipsAnalyzeImmediate AnalyzeImm
;
756 const MipsAnalyzeImmediate::InstSeq
&Seq
=
757 AnalyzeImm
.Analyze(Imm
, Size
, false);
759 MipsAnalyzeImmediate::InstSeq::const_iterator Inst
= Seq
.begin();
762 SDValue ImmOpnd
= CurDAG
->getTargetConstant(SignExtend64
<16>(Inst
->ImmOpnd
),
765 // The first instruction can be a LUi which is different from other
766 // instructions (ADDiu, ORI and SLL) in that it does not have a register
768 if (Inst
->Opc
== Mips::LUi64
)
769 RegOpnd
= CurDAG
->getMachineNode(Inst
->Opc
, DL
, MVT::i64
, ImmOpnd
);
772 CurDAG
->getMachineNode(Inst
->Opc
, DL
, MVT::i64
,
773 CurDAG
->getRegister(Mips::ZERO_64
, MVT::i64
),
776 // The remaining instructions in the sequence are handled here.
777 for (++Inst
; Inst
!= Seq
.end(); ++Inst
) {
778 ImmOpnd
= CurDAG
->getTargetConstant(SignExtend64
<16>(Inst
->ImmOpnd
), DL
,
780 RegOpnd
= CurDAG
->getMachineNode(Inst
->Opc
, DL
, MVT::i64
,
781 SDValue(RegOpnd
, 0), ImmOpnd
);
784 ReplaceNode(Node
, RegOpnd
);
788 case ISD::INTRINSIC_W_CHAIN
: {
789 switch (cast
<ConstantSDNode
>(Node
->getOperand(1))->getZExtValue()) {
793 case Intrinsic::mips_cfcmsa
: {
794 SDValue ChainIn
= Node
->getOperand(0);
795 SDValue RegIdx
= Node
->getOperand(2);
796 SDValue Reg
= CurDAG
->getCopyFromReg(ChainIn
, DL
,
797 getMSACtrlReg(RegIdx
), MVT::i32
);
798 ReplaceNode(Node
, Reg
.getNode());
805 case ISD::INTRINSIC_WO_CHAIN
: {
806 switch (cast
<ConstantSDNode
>(Node
->getOperand(0))->getZExtValue()) {
810 case Intrinsic::mips_move_v
:
811 // Like an assignment but will always produce a move.v even if
813 ReplaceNode(Node
, CurDAG
->getMachineNode(Mips::MOVE_V
, DL
,
814 Node
->getValueType(0),
815 Node
->getOperand(1)));
821 case ISD::INTRINSIC_VOID
: {
822 switch (cast
<ConstantSDNode
>(Node
->getOperand(1))->getZExtValue()) {
826 case Intrinsic::mips_ctcmsa
: {
827 SDValue ChainIn
= Node
->getOperand(0);
828 SDValue RegIdx
= Node
->getOperand(2);
829 SDValue Value
= Node
->getOperand(3);
830 SDValue ChainOut
= CurDAG
->getCopyToReg(ChainIn
, DL
,
831 getMSACtrlReg(RegIdx
), Value
);
832 ReplaceNode(Node
, ChainOut
.getNode());
839 // Manually match MipsISD::Ins nodes to get the correct instruction. It has
840 // to be done in this fashion so that we respect the differences between
841 // dins and dinsm, as the difference is that the size operand has the range
842 // 0 < size <= 32 for dins while dinsm has the range 2 <= size <= 64 which
843 // means SelectionDAGISel would have to test all the operands at once to
844 // match the instruction.
847 // Sanity checking for the node operands.
848 if (Node
->getValueType(0) != MVT::i32
&& Node
->getValueType(0) != MVT::i64
)
851 if (Node
->getNumOperands() != 4)
854 if (Node
->getOperand(1)->getOpcode() != ISD::Constant
||
855 Node
->getOperand(2)->getOpcode() != ISD::Constant
)
858 MVT ResTy
= Node
->getSimpleValueType(0);
859 uint64_t Pos
= Node
->getConstantOperandVal(1);
860 uint64_t Size
= Node
->getConstantOperandVal(2);
862 // Size has to be >0 for 'ins', 'dins' and 'dinsu'.
869 if (ResTy
!= MVT::i32
&& ResTy
!= MVT::i64
)
873 if (ResTy
== MVT::i32
) {
874 if (Pos
+ Size
<= 32)
877 if (Pos
+ Size
<= 32)
879 else if (Pos
< 32 && 1 < Size
)
880 Opcode
= Mips::DINSM
;
882 Opcode
= Mips::DINSU
;
887 Node
->getOperand(0), CurDAG
->getTargetConstant(Pos
, DL
, MVT::i32
),
888 CurDAG
->getTargetConstant(Size
, DL
, MVT::i32
), Node
->getOperand(3)};
890 ReplaceNode(Node
, CurDAG
->getMachineNode(Opcode
, DL
, ResTy
, Ops
));
897 case MipsISD::ThreadPointer
: {
898 EVT PtrVT
= getTargetLowering()->getPointerTy(CurDAG
->getDataLayout());
899 unsigned RdhwrOpc
, DestReg
;
901 if (PtrVT
== MVT::i32
) {
902 RdhwrOpc
= Mips::RDHWR
;
905 RdhwrOpc
= Mips::RDHWR64
;
906 DestReg
= Mips::V1_64
;
910 CurDAG
->getMachineNode(RdhwrOpc
, DL
, Node
->getValueType(0),
911 CurDAG
->getRegister(Mips::HWR29
, MVT::i32
),
912 CurDAG
->getTargetConstant(0, DL
, MVT::i32
));
913 SDValue Chain
= CurDAG
->getCopyToReg(CurDAG
->getEntryNode(), DL
, DestReg
,
915 SDValue ResNode
= CurDAG
->getCopyFromReg(Chain
, DL
, DestReg
, PtrVT
);
916 ReplaceNode(Node
, ResNode
.getNode());
920 case ISD::BUILD_VECTOR
: {
921 // Select appropriate ldi.[bhwd] instructions for constant splats of
922 // 128-bit when MSA is enabled. Fixup any register class mismatches that
923 // occur as a result.
925 // This allows the compiler to use a wider range of immediates than would
926 // otherwise be allowed. If, for example, v4i32 could only use ldi.h then
927 // it would not be possible to load { 0x01010101, 0x01010101, 0x01010101,
928 // 0x01010101 } without using a constant pool. This would be sub-optimal
929 // when // 'ldi.b wd, 1' is capable of producing that bit-pattern in the
930 // same set/ of registers. Similarly, ldi.h isn't capable of producing {
931 // 0x00000000, 0x00000001, 0x00000000, 0x00000001 } but 'ldi.d wd, 1' can.
933 const MipsABIInfo
&ABI
=
934 static_cast<const MipsTargetMachine
&>(TM
).getABI();
936 BuildVectorSDNode
*BVN
= cast
<BuildVectorSDNode
>(Node
);
937 APInt SplatValue
, SplatUndef
;
938 unsigned SplatBitSize
;
941 EVT ResVecTy
= BVN
->getValueType(0);
944 if (!Subtarget
->hasMSA() || !BVN
->getValueType(0).is128BitVector())
947 if (!BVN
->isConstantSplat(SplatValue
, SplatUndef
, SplatBitSize
,
949 !Subtarget
->isLittle()))
952 switch (SplatBitSize
) {
957 ViaVecTy
= MVT::v16i8
;
961 ViaVecTy
= MVT::v8i16
;
965 ViaVecTy
= MVT::v4i32
;
969 ViaVecTy
= MVT::v2i64
;
973 SDNode
*Res
= nullptr;
975 // If we have a signed 10 bit integer, we can splat it directly.
977 // If we have something bigger we can synthesize the value into a GPR and
979 if (SplatValue
.isSignedIntN(10)) {
980 SDValue Imm
= CurDAG
->getTargetConstant(SplatValue
, DL
,
981 ViaVecTy
.getVectorElementType());
983 Res
= CurDAG
->getMachineNode(LdiOp
, DL
, ViaVecTy
, Imm
);
984 } else if (SplatValue
.isSignedIntN(16) &&
985 ((ABI
.IsO32() && SplatBitSize
< 64) ||
986 (ABI
.IsN32() || ABI
.IsN64()))) {
987 // Only handle signed 16 bit values when the element size is GPR width.
988 // MIPS64 can handle all the cases but MIPS32 would need to handle
989 // negative cases specifically here. Instead, handle those cases as
992 bool Is32BitSplat
= ABI
.IsO32() || SplatBitSize
< 64;
993 const unsigned ADDiuOp
= Is32BitSplat
? Mips::ADDiu
: Mips::DADDiu
;
994 const MVT SplatMVT
= Is32BitSplat
? MVT::i32
: MVT::i64
;
995 SDValue ZeroVal
= CurDAG
->getRegister(
996 Is32BitSplat
? Mips::ZERO
: Mips::ZERO_64
, SplatMVT
);
998 const unsigned FILLOp
=
1001 : (SplatBitSize
== 32 ? Mips::FILL_W
1002 : (SplatBitSize
== 64 ? Mips::FILL_D
: 0));
1004 assert(FILLOp
!= 0 && "Unknown FILL Op for splat synthesis!");
1005 assert((!ABI
.IsO32() || (FILLOp
!= Mips::FILL_D
)) &&
1006 "Attempting to use fill.d on MIPS32!");
1008 const unsigned Lo
= SplatValue
.getLoBits(16).getZExtValue();
1009 SDValue LoVal
= CurDAG
->getTargetConstant(Lo
, DL
, SplatMVT
);
1011 Res
= CurDAG
->getMachineNode(ADDiuOp
, DL
, SplatMVT
, ZeroVal
, LoVal
);
1012 Res
= CurDAG
->getMachineNode(FILLOp
, DL
, ViaVecTy
, SDValue(Res
, 0));
1014 } else if (SplatValue
.isSignedIntN(32) && SplatBitSize
== 32) {
1015 // Only handle the cases where the splat size agrees with the size
1016 // of the SplatValue here.
1017 const unsigned Lo
= SplatValue
.getLoBits(16).getZExtValue();
1018 const unsigned Hi
= SplatValue
.lshr(16).getLoBits(16).getZExtValue();
1019 SDValue ZeroVal
= CurDAG
->getRegister(Mips::ZERO
, MVT::i32
);
1021 SDValue LoVal
= CurDAG
->getTargetConstant(Lo
, DL
, MVT::i32
);
1022 SDValue HiVal
= CurDAG
->getTargetConstant(Hi
, DL
, MVT::i32
);
1025 Res
= CurDAG
->getMachineNode(Mips::LUi
, DL
, MVT::i32
, HiVal
);
1028 Res
= CurDAG
->getMachineNode(Mips::ORi
, DL
, MVT::i32
,
1029 Hi
? SDValue(Res
, 0) : ZeroVal
, LoVal
);
1031 assert((Hi
|| Lo
) && "Zero case reached 32 bit case splat synthesis!");
1032 Res
= CurDAG
->getMachineNode(Mips::FILL_W
, DL
, MVT::v4i32
, SDValue(Res
, 0));
1034 } else if (SplatValue
.isSignedIntN(32) && SplatBitSize
== 64 &&
1035 (ABI
.IsN32() || ABI
.IsN64())) {
1036 // N32 and N64 can perform some tricks that O32 can't for signed 32 bit
1037 // integers due to having 64bit registers. lui will cause the necessary
1038 // zero/sign extension.
1039 const unsigned Lo
= SplatValue
.getLoBits(16).getZExtValue();
1040 const unsigned Hi
= SplatValue
.lshr(16).getLoBits(16).getZExtValue();
1041 SDValue ZeroVal
= CurDAG
->getRegister(Mips::ZERO
, MVT::i32
);
1043 SDValue LoVal
= CurDAG
->getTargetConstant(Lo
, DL
, MVT::i32
);
1044 SDValue HiVal
= CurDAG
->getTargetConstant(Hi
, DL
, MVT::i32
);
1047 Res
= CurDAG
->getMachineNode(Mips::LUi
, DL
, MVT::i32
, HiVal
);
1050 Res
= CurDAG
->getMachineNode(Mips::ORi
, DL
, MVT::i32
,
1051 Hi
? SDValue(Res
, 0) : ZeroVal
, LoVal
);
1053 Res
= CurDAG
->getMachineNode(
1054 Mips::SUBREG_TO_REG
, DL
, MVT::i64
,
1055 CurDAG
->getTargetConstant(((Hi
>> 15) & 0x1), DL
, MVT::i64
),
1057 CurDAG
->getTargetConstant(Mips::sub_32
, DL
, MVT::i64
));
1060 CurDAG
->getMachineNode(Mips::FILL_D
, DL
, MVT::v2i64
, SDValue(Res
, 0));
1062 } else if (SplatValue
.isSignedIntN(64)) {
1063 // If we have a 64 bit Splat value, we perform a similar sequence to the
1067 // lui $res, %highest(val) lui $res, %highest(val)
1068 // ori $res, $res, %higher(val) ori $res, $res, %higher(val)
1069 // lui $res2, %hi(val) lui $res2, %hi(val)
1070 // ori $res2, %res2, %lo(val) ori $res2, %res2, %lo(val)
1071 // $res3 = fill $res2 dinsu $res, $res2, 0, 32
1072 // $res4 = insert.w $res3[1], $res fill.d $res
1075 // The ability to use dinsu is guaranteed as MSA requires MIPSR5. This saves
1076 // having to materialize the value by shifts and ors.
1078 // FIXME: Implement the preferred sequence for MIPS64R6:
1081 // ori $res, $zero, %lo(val)
1082 // daui $res, $res, %hi(val)
1083 // dahi $res, $res, %higher(val)
1084 // dati $res, $res, %highest(cal)
1088 const unsigned Lo
= SplatValue
.getLoBits(16).getZExtValue();
1089 const unsigned Hi
= SplatValue
.lshr(16).getLoBits(16).getZExtValue();
1090 const unsigned Higher
= SplatValue
.lshr(32).getLoBits(16).getZExtValue();
1091 const unsigned Highest
= SplatValue
.lshr(48).getLoBits(16).getZExtValue();
1093 SDValue LoVal
= CurDAG
->getTargetConstant(Lo
, DL
, MVT::i32
);
1094 SDValue HiVal
= CurDAG
->getTargetConstant(Hi
, DL
, MVT::i32
);
1095 SDValue HigherVal
= CurDAG
->getTargetConstant(Higher
, DL
, MVT::i32
);
1096 SDValue HighestVal
= CurDAG
->getTargetConstant(Highest
, DL
, MVT::i32
);
1097 SDValue ZeroVal
= CurDAG
->getRegister(Mips::ZERO
, MVT::i32
);
1099 // Independent of whether we're targeting MIPS64 or not, the basic
1100 // operations are the same. Also, directly use the $zero register if
1101 // the 16 bit chunk is zero.
1103 // For optimization purposes we always synthesize the splat value as
1104 // an i32 value, then if we're targetting MIPS64, use SUBREG_TO_REG
1105 // just before combining the values with dinsu to produce an i64. This
1106 // enables SelectionDAG to aggressively share components of splat values
1109 // FIXME: This is the general constant synthesis problem. This code
1110 // should be factored out into a class shared between all the
1111 // classes that need it. Specifically, for a splat size of 64
1112 // bits that's a negative number we can do better than LUi/ORi
1113 // for the upper 32bits.
1116 Res
= CurDAG
->getMachineNode(Mips::LUi
, DL
, MVT::i32
, HiVal
);
1119 Res
= CurDAG
->getMachineNode(Mips::ORi
, DL
, MVT::i32
,
1120 Hi
? SDValue(Res
, 0) : ZeroVal
, LoVal
);
1124 HiRes
= CurDAG
->getMachineNode(Mips::LUi
, DL
, MVT::i32
, HighestVal
);
1127 HiRes
= CurDAG
->getMachineNode(Mips::ORi
, DL
, MVT::i32
,
1128 Highest
? SDValue(HiRes
, 0) : ZeroVal
,
1133 Res
= CurDAG
->getMachineNode(Mips::FILL_W
, DL
, MVT::v4i32
,
1134 (Hi
|| Lo
) ? SDValue(Res
, 0) : ZeroVal
);
1136 Res
= CurDAG
->getMachineNode(
1137 Mips::INSERT_W
, DL
, MVT::v4i32
, SDValue(Res
, 0),
1138 (Highest
|| Higher
) ? SDValue(HiRes
, 0) : ZeroVal
,
1139 CurDAG
->getTargetConstant(1, DL
, MVT::i32
));
1141 const TargetLowering
*TLI
= getTargetLowering();
1142 const TargetRegisterClass
*RC
=
1143 TLI
->getRegClassFor(ViaVecTy
.getSimpleVT());
1145 Res
= CurDAG
->getMachineNode(
1146 Mips::COPY_TO_REGCLASS
, DL
, ViaVecTy
, SDValue(Res
, 0),
1147 CurDAG
->getTargetConstant(RC
->getID(), DL
, MVT::i32
));
1149 Res
= CurDAG
->getMachineNode(
1150 Mips::SPLATI_D
, DL
, MVT::v2i64
, SDValue(Res
, 0),
1151 CurDAG
->getTargetConstant(0, DL
, MVT::i32
));
1152 } else if (ABI
.IsN64() || ABI
.IsN32()) {
1154 SDValue Zero64Val
= CurDAG
->getRegister(Mips::ZERO_64
, MVT::i64
);
1155 const bool HiResNonZero
= Highest
|| Higher
;
1156 const bool ResNonZero
= Hi
|| Lo
;
1159 HiRes
= CurDAG
->getMachineNode(
1160 Mips::SUBREG_TO_REG
, DL
, MVT::i64
,
1161 CurDAG
->getTargetConstant(((Highest
>> 15) & 0x1), DL
, MVT::i64
),
1163 CurDAG
->getTargetConstant(Mips::sub_32
, DL
, MVT::i64
));
1166 Res
= CurDAG
->getMachineNode(
1167 Mips::SUBREG_TO_REG
, DL
, MVT::i64
,
1168 CurDAG
->getTargetConstant(((Hi
>> 15) & 0x1), DL
, MVT::i64
),
1170 CurDAG
->getTargetConstant(Mips::sub_32
, DL
, MVT::i64
));
1173 // The HiRes is nonzero but Res is $zero => dsll32 HiRes, 0
1174 // The Res is nonzero but HiRes is $zero => dinsu Res, $zero, 32, 32
1175 // Both are non zero => dinsu Res, HiRes, 32, 32
1177 // The obvious "missing" case is when both are zero, but that case is
1178 // handled by the ldi case.
1180 IntegerType
*Int32Ty
=
1181 IntegerType::get(MF
->getFunction().getContext(), 32);
1182 const ConstantInt
*Const32
= ConstantInt::get(Int32Ty
, 32);
1183 SDValue Ops
[4] = {HiResNonZero
? SDValue(HiRes
, 0) : Zero64Val
,
1184 CurDAG
->getConstant(*Const32
, DL
, MVT::i32
),
1185 CurDAG
->getConstant(*Const32
, DL
, MVT::i32
),
1188 Res
= CurDAG
->getMachineNode(Mips::DINSU
, DL
, MVT::i64
, Ops
);
1189 } else if (HiResNonZero
) {
1190 Res
= CurDAG
->getMachineNode(
1191 Mips::DSLL32
, DL
, MVT::i64
, SDValue(HiRes
, 0),
1192 CurDAG
->getTargetConstant(0, DL
, MVT::i32
));
1195 "Zero splat value handled by non-zero 64bit splat synthesis!");
1197 Res
= CurDAG
->getMachineNode(Mips::FILL_D
, DL
, MVT::v2i64
, SDValue(Res
, 0));
1199 llvm_unreachable("Unknown ABI in MipsISelDAGToDAG!");
1204 if (ResVecTy
!= ViaVecTy
) {
1205 // If LdiOp is writing to a different register class to ResVecTy, then
1206 // fix it up here. This COPY_TO_REGCLASS should never cause a move.v
1207 // since the source and destination register sets contain the same
1209 const TargetLowering
*TLI
= getTargetLowering();
1210 MVT ResVecTySimple
= ResVecTy
.getSimpleVT();
1211 const TargetRegisterClass
*RC
= TLI
->getRegClassFor(ResVecTySimple
);
1212 Res
= CurDAG
->getMachineNode(Mips::COPY_TO_REGCLASS
, DL
,
1213 ResVecTy
, SDValue(Res
, 0),
1214 CurDAG
->getTargetConstant(RC
->getID(), DL
,
1218 ReplaceNode(Node
, Res
);
1227 bool MipsSEDAGToDAGISel::
1228 SelectInlineAsmMemoryOperand(const SDValue
&Op
, unsigned ConstraintID
,
1229 std::vector
<SDValue
> &OutOps
) {
1230 SDValue Base
, Offset
;
1232 switch(ConstraintID
) {
1234 llvm_unreachable("Unexpected asm memory constraint");
1235 // All memory constraints can at least accept raw pointers.
1236 case InlineAsm::Constraint_i
:
1237 OutOps
.push_back(Op
);
1238 OutOps
.push_back(CurDAG
->getTargetConstant(0, SDLoc(Op
), MVT::i32
));
1240 case InlineAsm::Constraint_m
:
1241 case InlineAsm::Constraint_o
:
1242 if (selectAddrRegImm16(Op
, Base
, Offset
)) {
1243 OutOps
.push_back(Base
);
1244 OutOps
.push_back(Offset
);
1247 OutOps
.push_back(Op
);
1248 OutOps
.push_back(CurDAG
->getTargetConstant(0, SDLoc(Op
), MVT::i32
));
1250 case InlineAsm::Constraint_R
:
1251 // The 'R' constraint is supposed to be much more complicated than this.
1252 // However, it's becoming less useful due to architectural changes and
1253 // ought to be replaced by other constraints such as 'ZC'.
1254 // For now, support 9-bit signed offsets which is supportable by all
1255 // subtargets for all instructions.
1256 if (selectAddrRegImm9(Op
, Base
, Offset
)) {
1257 OutOps
.push_back(Base
);
1258 OutOps
.push_back(Offset
);
1261 OutOps
.push_back(Op
);
1262 OutOps
.push_back(CurDAG
->getTargetConstant(0, SDLoc(Op
), MVT::i32
));
1264 case InlineAsm::Constraint_ZC
:
1265 // ZC matches whatever the pref, ll, and sc instructions can handle for the
1267 if (Subtarget
->inMicroMipsMode()) {
1268 // On microMIPS, they can handle 12-bit offsets.
1269 if (selectAddrRegImm12(Op
, Base
, Offset
)) {
1270 OutOps
.push_back(Base
);
1271 OutOps
.push_back(Offset
);
1274 } else if (Subtarget
->hasMips32r6()) {
1275 // On MIPS32r6/MIPS64r6, they can only handle 9-bit offsets.
1276 if (selectAddrRegImm9(Op
, Base
, Offset
)) {
1277 OutOps
.push_back(Base
);
1278 OutOps
.push_back(Offset
);
1281 } else if (selectAddrRegImm16(Op
, Base
, Offset
)) {
1282 // Prior to MIPS32r6/MIPS64r6, they can handle 16-bit offsets.
1283 OutOps
.push_back(Base
);
1284 OutOps
.push_back(Offset
);
1287 // In all cases, 0-bit offsets are acceptable.
1288 OutOps
.push_back(Op
);
1289 OutOps
.push_back(CurDAG
->getTargetConstant(0, SDLoc(Op
), MVT::i32
));
1295 FunctionPass
*llvm::createMipsSEISelDag(MipsTargetMachine
&TM
,
1296 CodeGenOpt::Level OptLevel
) {
1297 return new MipsSEDAGToDAGISel(TM
, OptLevel
);