1 //===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the AArch64TargetLowering class.
11 //===----------------------------------------------------------------------===//
13 #include "AArch64ExpandImm.h"
14 #include "AArch64ISelLowering.h"
15 #include "AArch64CallingConvention.h"
16 #include "AArch64MachineFunctionInfo.h"
17 #include "AArch64PerfectShuffle.h"
18 #include "AArch64RegisterInfo.h"
19 #include "AArch64Subtarget.h"
20 #include "MCTargetDesc/AArch64AddressingModes.h"
21 #include "Utils/AArch64BaseInfo.h"
22 #include "llvm/ADT/APFloat.h"
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/StringSwitch.h"
31 #include "llvm/ADT/Triple.h"
32 #include "llvm/ADT/Twine.h"
33 #include "llvm/Analysis/VectorUtils.h"
34 #include "llvm/CodeGen/CallingConvLower.h"
35 #include "llvm/CodeGen/MachineBasicBlock.h"
36 #include "llvm/CodeGen/MachineFrameInfo.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineInstr.h"
39 #include "llvm/CodeGen/MachineInstrBuilder.h"
40 #include "llvm/CodeGen/MachineMemOperand.h"
41 #include "llvm/CodeGen/MachineRegisterInfo.h"
42 #include "llvm/CodeGen/RuntimeLibcalls.h"
43 #include "llvm/CodeGen/SelectionDAG.h"
44 #include "llvm/CodeGen/SelectionDAGNodes.h"
45 #include "llvm/CodeGen/TargetCallingConv.h"
46 #include "llvm/CodeGen/TargetInstrInfo.h"
47 #include "llvm/CodeGen/ValueTypes.h"
48 #include "llvm/IR/Attributes.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/GetElementPtrTypeIterator.h"
55 #include "llvm/IR/GlobalValue.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/Instruction.h"
58 #include "llvm/IR/Instructions.h"
59 #include "llvm/IR/IntrinsicInst.h"
60 #include "llvm/IR/Intrinsics.h"
61 #include "llvm/IR/Module.h"
62 #include "llvm/IR/OperandTraits.h"
63 #include "llvm/IR/PatternMatch.h"
64 #include "llvm/IR/Type.h"
65 #include "llvm/IR/Use.h"
66 #include "llvm/IR/Value.h"
67 #include "llvm/MC/MCRegisterInfo.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/CodeGen.h"
70 #include "llvm/Support/CommandLine.h"
71 #include "llvm/Support/Compiler.h"
72 #include "llvm/Support/Debug.h"
73 #include "llvm/Support/ErrorHandling.h"
74 #include "llvm/Support/KnownBits.h"
75 #include "llvm/Support/MachineValueType.h"
76 #include "llvm/Support/MathExtras.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Target/TargetMachine.h"
79 #include "llvm/Target/TargetOptions.h"
93 using namespace llvm::PatternMatch
;
95 #define DEBUG_TYPE "aarch64-lower"
97 STATISTIC(NumTailCalls
, "Number of tail calls");
98 STATISTIC(NumShiftInserts
, "Number of vector shift inserts");
99 STATISTIC(NumOptimizedImms
, "Number of times immediates were optimized");
102 EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden
,
103 cl::desc("Allow AArch64 SLI/SRI formation"),
106 // FIXME: The necessary dtprel relocations don't seem to be supported
107 // well in the GNU bfd and gold linkers at the moment. Therefore, by
108 // default, for now, fall back to GeneralDynamic code generation.
109 cl::opt
<bool> EnableAArch64ELFLocalDynamicTLSGeneration(
110 "aarch64-elf-ldtls-generation", cl::Hidden
,
111 cl::desc("Allow AArch64 Local Dynamic TLS code generation"),
115 EnableOptimizeLogicalImm("aarch64-enable-logical-imm", cl::Hidden
,
116 cl::desc("Enable AArch64 logical imm instruction "
120 /// Value type used for condition codes.
121 static const MVT MVT_CC
= MVT::i32
;
123 AArch64TargetLowering::AArch64TargetLowering(const TargetMachine
&TM
,
124 const AArch64Subtarget
&STI
)
125 : TargetLowering(TM
), Subtarget(&STI
) {
126 // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so
127 // we have to make something up. Arbitrarily, choose ZeroOrOne.
128 setBooleanContents(ZeroOrOneBooleanContent
);
129 // When comparing vectors the result sets the different elements in the
130 // vector to all-one or all-zero.
131 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent
);
133 // Set up the register classes.
134 addRegisterClass(MVT::i32
, &AArch64::GPR32allRegClass
);
135 addRegisterClass(MVT::i64
, &AArch64::GPR64allRegClass
);
137 if (Subtarget
->hasFPARMv8()) {
138 addRegisterClass(MVT::f16
, &AArch64::FPR16RegClass
);
139 addRegisterClass(MVT::f32
, &AArch64::FPR32RegClass
);
140 addRegisterClass(MVT::f64
, &AArch64::FPR64RegClass
);
141 addRegisterClass(MVT::f128
, &AArch64::FPR128RegClass
);
144 if (Subtarget
->hasNEON()) {
145 addRegisterClass(MVT::v16i8
, &AArch64::FPR8RegClass
);
146 addRegisterClass(MVT::v8i16
, &AArch64::FPR16RegClass
);
147 // Someone set us up the NEON.
148 addDRTypeForNEON(MVT::v2f32
);
149 addDRTypeForNEON(MVT::v8i8
);
150 addDRTypeForNEON(MVT::v4i16
);
151 addDRTypeForNEON(MVT::v2i32
);
152 addDRTypeForNEON(MVT::v1i64
);
153 addDRTypeForNEON(MVT::v1f64
);
154 addDRTypeForNEON(MVT::v4f16
);
156 addQRTypeForNEON(MVT::v4f32
);
157 addQRTypeForNEON(MVT::v2f64
);
158 addQRTypeForNEON(MVT::v16i8
);
159 addQRTypeForNEON(MVT::v8i16
);
160 addQRTypeForNEON(MVT::v4i32
);
161 addQRTypeForNEON(MVT::v2i64
);
162 addQRTypeForNEON(MVT::v8f16
);
165 if (Subtarget
->hasSVE()) {
166 // Add legal sve predicate types
167 addRegisterClass(MVT::nxv2i1
, &AArch64::PPRRegClass
);
168 addRegisterClass(MVT::nxv4i1
, &AArch64::PPRRegClass
);
169 addRegisterClass(MVT::nxv8i1
, &AArch64::PPRRegClass
);
170 addRegisterClass(MVT::nxv16i1
, &AArch64::PPRRegClass
);
172 // Add legal sve data types
173 addRegisterClass(MVT::nxv16i8
, &AArch64::ZPRRegClass
);
174 addRegisterClass(MVT::nxv8i16
, &AArch64::ZPRRegClass
);
175 addRegisterClass(MVT::nxv4i32
, &AArch64::ZPRRegClass
);
176 addRegisterClass(MVT::nxv2i64
, &AArch64::ZPRRegClass
);
178 addRegisterClass(MVT::nxv2f16
, &AArch64::ZPRRegClass
);
179 addRegisterClass(MVT::nxv4f16
, &AArch64::ZPRRegClass
);
180 addRegisterClass(MVT::nxv8f16
, &AArch64::ZPRRegClass
);
181 addRegisterClass(MVT::nxv1f32
, &AArch64::ZPRRegClass
);
182 addRegisterClass(MVT::nxv2f32
, &AArch64::ZPRRegClass
);
183 addRegisterClass(MVT::nxv4f32
, &AArch64::ZPRRegClass
);
184 addRegisterClass(MVT::nxv1f64
, &AArch64::ZPRRegClass
);
185 addRegisterClass(MVT::nxv2f64
, &AArch64::ZPRRegClass
);
188 // Compute derived properties from the register classes
189 computeRegisterProperties(Subtarget
->getRegisterInfo());
191 // Provide all sorts of operation actions
192 setOperationAction(ISD::GlobalAddress
, MVT::i64
, Custom
);
193 setOperationAction(ISD::GlobalTLSAddress
, MVT::i64
, Custom
);
194 setOperationAction(ISD::SETCC
, MVT::i32
, Custom
);
195 setOperationAction(ISD::SETCC
, MVT::i64
, Custom
);
196 setOperationAction(ISD::SETCC
, MVT::f16
, Custom
);
197 setOperationAction(ISD::SETCC
, MVT::f32
, Custom
);
198 setOperationAction(ISD::SETCC
, MVT::f64
, Custom
);
199 setOperationAction(ISD::BITREVERSE
, MVT::i32
, Legal
);
200 setOperationAction(ISD::BITREVERSE
, MVT::i64
, Legal
);
201 setOperationAction(ISD::BRCOND
, MVT::Other
, Expand
);
202 setOperationAction(ISD::BR_CC
, MVT::i32
, Custom
);
203 setOperationAction(ISD::BR_CC
, MVT::i64
, Custom
);
204 setOperationAction(ISD::BR_CC
, MVT::f16
, Custom
);
205 setOperationAction(ISD::BR_CC
, MVT::f32
, Custom
);
206 setOperationAction(ISD::BR_CC
, MVT::f64
, Custom
);
207 setOperationAction(ISD::SELECT
, MVT::i32
, Custom
);
208 setOperationAction(ISD::SELECT
, MVT::i64
, Custom
);
209 setOperationAction(ISD::SELECT
, MVT::f16
, Custom
);
210 setOperationAction(ISD::SELECT
, MVT::f32
, Custom
);
211 setOperationAction(ISD::SELECT
, MVT::f64
, Custom
);
212 setOperationAction(ISD::SELECT_CC
, MVT::i32
, Custom
);
213 setOperationAction(ISD::SELECT_CC
, MVT::i64
, Custom
);
214 setOperationAction(ISD::SELECT_CC
, MVT::f16
, Custom
);
215 setOperationAction(ISD::SELECT_CC
, MVT::f32
, Custom
);
216 setOperationAction(ISD::SELECT_CC
, MVT::f64
, Custom
);
217 setOperationAction(ISD::BR_JT
, MVT::Other
, Custom
);
218 setOperationAction(ISD::JumpTable
, MVT::i64
, Custom
);
220 setOperationAction(ISD::SHL_PARTS
, MVT::i64
, Custom
);
221 setOperationAction(ISD::SRA_PARTS
, MVT::i64
, Custom
);
222 setOperationAction(ISD::SRL_PARTS
, MVT::i64
, Custom
);
224 setOperationAction(ISD::FREM
, MVT::f32
, Expand
);
225 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
226 setOperationAction(ISD::FREM
, MVT::f80
, Expand
);
228 setOperationAction(ISD::BUILD_PAIR
, MVT::i64
, Expand
);
230 // Custom lowering hooks are needed for XOR
231 // to fold it into CSINC/CSINV.
232 setOperationAction(ISD::XOR
, MVT::i32
, Custom
);
233 setOperationAction(ISD::XOR
, MVT::i64
, Custom
);
235 // Virtually no operation on f128 is legal, but LLVM can't expand them when
236 // there's a valid register class, so we need custom operations in most cases.
237 setOperationAction(ISD::FABS
, MVT::f128
, Expand
);
238 setOperationAction(ISD::FADD
, MVT::f128
, Custom
);
239 setOperationAction(ISD::FCOPYSIGN
, MVT::f128
, Expand
);
240 setOperationAction(ISD::FCOS
, MVT::f128
, Expand
);
241 setOperationAction(ISD::FDIV
, MVT::f128
, Custom
);
242 setOperationAction(ISD::FMA
, MVT::f128
, Expand
);
243 setOperationAction(ISD::FMUL
, MVT::f128
, Custom
);
244 setOperationAction(ISD::FNEG
, MVT::f128
, Expand
);
245 setOperationAction(ISD::FPOW
, MVT::f128
, Expand
);
246 setOperationAction(ISD::FREM
, MVT::f128
, Expand
);
247 setOperationAction(ISD::FRINT
, MVT::f128
, Expand
);
248 setOperationAction(ISD::FSIN
, MVT::f128
, Expand
);
249 setOperationAction(ISD::FSINCOS
, MVT::f128
, Expand
);
250 setOperationAction(ISD::FSQRT
, MVT::f128
, Expand
);
251 setOperationAction(ISD::FSUB
, MVT::f128
, Custom
);
252 setOperationAction(ISD::FTRUNC
, MVT::f128
, Expand
);
253 setOperationAction(ISD::SETCC
, MVT::f128
, Custom
);
254 setOperationAction(ISD::BR_CC
, MVT::f128
, Custom
);
255 setOperationAction(ISD::SELECT
, MVT::f128
, Custom
);
256 setOperationAction(ISD::SELECT_CC
, MVT::f128
, Custom
);
257 setOperationAction(ISD::FP_EXTEND
, MVT::f128
, Custom
);
259 // Lowering for many of the conversions is actually specified by the non-f128
260 // type. The LowerXXX function will be trivial when f128 isn't involved.
261 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
262 setOperationAction(ISD::FP_TO_SINT
, MVT::i64
, Custom
);
263 setOperationAction(ISD::FP_TO_SINT
, MVT::i128
, Custom
);
264 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Custom
);
265 setOperationAction(ISD::FP_TO_UINT
, MVT::i64
, Custom
);
266 setOperationAction(ISD::FP_TO_UINT
, MVT::i128
, Custom
);
267 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Custom
);
268 setOperationAction(ISD::SINT_TO_FP
, MVT::i64
, Custom
);
269 setOperationAction(ISD::SINT_TO_FP
, MVT::i128
, Custom
);
270 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Custom
);
271 setOperationAction(ISD::UINT_TO_FP
, MVT::i64
, Custom
);
272 setOperationAction(ISD::UINT_TO_FP
, MVT::i128
, Custom
);
273 setOperationAction(ISD::FP_ROUND
, MVT::f32
, Custom
);
274 setOperationAction(ISD::FP_ROUND
, MVT::f64
, Custom
);
276 // Variable arguments.
277 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
278 setOperationAction(ISD::VAARG
, MVT::Other
, Custom
);
279 setOperationAction(ISD::VACOPY
, MVT::Other
, Custom
);
280 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
282 // Variable-sized objects.
283 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
284 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Expand
);
286 if (Subtarget
->isTargetWindows())
287 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i64
, Custom
);
289 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i64
, Expand
);
291 // Constant pool entries
292 setOperationAction(ISD::ConstantPool
, MVT::i64
, Custom
);
295 setOperationAction(ISD::BlockAddress
, MVT::i64
, Custom
);
297 // Add/Sub overflow ops with MVT::Glues are lowered to NZCV dependences.
298 setOperationAction(ISD::ADDC
, MVT::i32
, Custom
);
299 setOperationAction(ISD::ADDE
, MVT::i32
, Custom
);
300 setOperationAction(ISD::SUBC
, MVT::i32
, Custom
);
301 setOperationAction(ISD::SUBE
, MVT::i32
, Custom
);
302 setOperationAction(ISD::ADDC
, MVT::i64
, Custom
);
303 setOperationAction(ISD::ADDE
, MVT::i64
, Custom
);
304 setOperationAction(ISD::SUBC
, MVT::i64
, Custom
);
305 setOperationAction(ISD::SUBE
, MVT::i64
, Custom
);
307 // AArch64 lacks both left-rotate and popcount instructions.
308 setOperationAction(ISD::ROTL
, MVT::i32
, Expand
);
309 setOperationAction(ISD::ROTL
, MVT::i64
, Expand
);
310 for (MVT VT
: MVT::fixedlen_vector_valuetypes()) {
311 setOperationAction(ISD::ROTL
, VT
, Expand
);
312 setOperationAction(ISD::ROTR
, VT
, Expand
);
315 // AArch64 doesn't have {U|S}MUL_LOHI.
316 setOperationAction(ISD::UMUL_LOHI
, MVT::i64
, Expand
);
317 setOperationAction(ISD::SMUL_LOHI
, MVT::i64
, Expand
);
319 setOperationAction(ISD::CTPOP
, MVT::i32
, Custom
);
320 setOperationAction(ISD::CTPOP
, MVT::i64
, Custom
);
322 setOperationAction(ISD::SDIVREM
, MVT::i32
, Expand
);
323 setOperationAction(ISD::SDIVREM
, MVT::i64
, Expand
);
324 for (MVT VT
: MVT::fixedlen_vector_valuetypes()) {
325 setOperationAction(ISD::SDIVREM
, VT
, Expand
);
326 setOperationAction(ISD::UDIVREM
, VT
, Expand
);
328 setOperationAction(ISD::SREM
, MVT::i32
, Expand
);
329 setOperationAction(ISD::SREM
, MVT::i64
, Expand
);
330 setOperationAction(ISD::UDIVREM
, MVT::i32
, Expand
);
331 setOperationAction(ISD::UDIVREM
, MVT::i64
, Expand
);
332 setOperationAction(ISD::UREM
, MVT::i32
, Expand
);
333 setOperationAction(ISD::UREM
, MVT::i64
, Expand
);
335 // Custom lower Add/Sub/Mul with overflow.
336 setOperationAction(ISD::SADDO
, MVT::i32
, Custom
);
337 setOperationAction(ISD::SADDO
, MVT::i64
, Custom
);
338 setOperationAction(ISD::UADDO
, MVT::i32
, Custom
);
339 setOperationAction(ISD::UADDO
, MVT::i64
, Custom
);
340 setOperationAction(ISD::SSUBO
, MVT::i32
, Custom
);
341 setOperationAction(ISD::SSUBO
, MVT::i64
, Custom
);
342 setOperationAction(ISD::USUBO
, MVT::i32
, Custom
);
343 setOperationAction(ISD::USUBO
, MVT::i64
, Custom
);
344 setOperationAction(ISD::SMULO
, MVT::i32
, Custom
);
345 setOperationAction(ISD::SMULO
, MVT::i64
, Custom
);
346 setOperationAction(ISD::UMULO
, MVT::i32
, Custom
);
347 setOperationAction(ISD::UMULO
, MVT::i64
, Custom
);
349 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
350 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
351 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
352 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
353 setOperationAction(ISD::FPOW
, MVT::f32
, Expand
);
354 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
355 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Custom
);
356 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Custom
);
357 if (Subtarget
->hasFullFP16())
358 setOperationAction(ISD::FCOPYSIGN
, MVT::f16
, Custom
);
360 setOperationAction(ISD::FCOPYSIGN
, MVT::f16
, Promote
);
362 setOperationAction(ISD::FREM
, MVT::f16
, Promote
);
363 setOperationAction(ISD::FREM
, MVT::v4f16
, Expand
);
364 setOperationAction(ISD::FREM
, MVT::v8f16
, Expand
);
365 setOperationAction(ISD::FPOW
, MVT::f16
, Promote
);
366 setOperationAction(ISD::FPOW
, MVT::v4f16
, Expand
);
367 setOperationAction(ISD::FPOW
, MVT::v8f16
, Expand
);
368 setOperationAction(ISD::FPOWI
, MVT::f16
, Promote
);
369 setOperationAction(ISD::FPOWI
, MVT::v4f16
, Expand
);
370 setOperationAction(ISD::FPOWI
, MVT::v8f16
, Expand
);
371 setOperationAction(ISD::FCOS
, MVT::f16
, Promote
);
372 setOperationAction(ISD::FCOS
, MVT::v4f16
, Expand
);
373 setOperationAction(ISD::FCOS
, MVT::v8f16
, Expand
);
374 setOperationAction(ISD::FSIN
, MVT::f16
, Promote
);
375 setOperationAction(ISD::FSIN
, MVT::v4f16
, Expand
);
376 setOperationAction(ISD::FSIN
, MVT::v8f16
, Expand
);
377 setOperationAction(ISD::FSINCOS
, MVT::f16
, Promote
);
378 setOperationAction(ISD::FSINCOS
, MVT::v4f16
, Expand
);
379 setOperationAction(ISD::FSINCOS
, MVT::v8f16
, Expand
);
380 setOperationAction(ISD::FEXP
, MVT::f16
, Promote
);
381 setOperationAction(ISD::FEXP
, MVT::v4f16
, Expand
);
382 setOperationAction(ISD::FEXP
, MVT::v8f16
, Expand
);
383 setOperationAction(ISD::FEXP2
, MVT::f16
, Promote
);
384 setOperationAction(ISD::FEXP2
, MVT::v4f16
, Expand
);
385 setOperationAction(ISD::FEXP2
, MVT::v8f16
, Expand
);
386 setOperationAction(ISD::FLOG
, MVT::f16
, Promote
);
387 setOperationAction(ISD::FLOG
, MVT::v4f16
, Expand
);
388 setOperationAction(ISD::FLOG
, MVT::v8f16
, Expand
);
389 setOperationAction(ISD::FLOG2
, MVT::f16
, Promote
);
390 setOperationAction(ISD::FLOG2
, MVT::v4f16
, Expand
);
391 setOperationAction(ISD::FLOG2
, MVT::v8f16
, Expand
);
392 setOperationAction(ISD::FLOG10
, MVT::f16
, Promote
);
393 setOperationAction(ISD::FLOG10
, MVT::v4f16
, Expand
);
394 setOperationAction(ISD::FLOG10
, MVT::v8f16
, Expand
);
396 if (!Subtarget
->hasFullFP16()) {
397 setOperationAction(ISD::SELECT
, MVT::f16
, Promote
);
398 setOperationAction(ISD::SELECT_CC
, MVT::f16
, Promote
);
399 setOperationAction(ISD::SETCC
, MVT::f16
, Promote
);
400 setOperationAction(ISD::BR_CC
, MVT::f16
, Promote
);
401 setOperationAction(ISD::FADD
, MVT::f16
, Promote
);
402 setOperationAction(ISD::FSUB
, MVT::f16
, Promote
);
403 setOperationAction(ISD::FMUL
, MVT::f16
, Promote
);
404 setOperationAction(ISD::FDIV
, MVT::f16
, Promote
);
405 setOperationAction(ISD::FMA
, MVT::f16
, Promote
);
406 setOperationAction(ISD::FNEG
, MVT::f16
, Promote
);
407 setOperationAction(ISD::FABS
, MVT::f16
, Promote
);
408 setOperationAction(ISD::FCEIL
, MVT::f16
, Promote
);
409 setOperationAction(ISD::FSQRT
, MVT::f16
, Promote
);
410 setOperationAction(ISD::FFLOOR
, MVT::f16
, Promote
);
411 setOperationAction(ISD::FNEARBYINT
, MVT::f16
, Promote
);
412 setOperationAction(ISD::FRINT
, MVT::f16
, Promote
);
413 setOperationAction(ISD::FROUND
, MVT::f16
, Promote
);
414 setOperationAction(ISD::FTRUNC
, MVT::f16
, Promote
);
415 setOperationAction(ISD::FMINNUM
, MVT::f16
, Promote
);
416 setOperationAction(ISD::FMAXNUM
, MVT::f16
, Promote
);
417 setOperationAction(ISD::FMINIMUM
, MVT::f16
, Promote
);
418 setOperationAction(ISD::FMAXIMUM
, MVT::f16
, Promote
);
420 // promote v4f16 to v4f32 when that is known to be safe.
421 setOperationAction(ISD::FADD
, MVT::v4f16
, Promote
);
422 setOperationAction(ISD::FSUB
, MVT::v4f16
, Promote
);
423 setOperationAction(ISD::FMUL
, MVT::v4f16
, Promote
);
424 setOperationAction(ISD::FDIV
, MVT::v4f16
, Promote
);
425 setOperationAction(ISD::FP_EXTEND
, MVT::v4f16
, Promote
);
426 setOperationAction(ISD::FP_ROUND
, MVT::v4f16
, Promote
);
427 AddPromotedToType(ISD::FADD
, MVT::v4f16
, MVT::v4f32
);
428 AddPromotedToType(ISD::FSUB
, MVT::v4f16
, MVT::v4f32
);
429 AddPromotedToType(ISD::FMUL
, MVT::v4f16
, MVT::v4f32
);
430 AddPromotedToType(ISD::FDIV
, MVT::v4f16
, MVT::v4f32
);
431 AddPromotedToType(ISD::FP_EXTEND
, MVT::v4f16
, MVT::v4f32
);
432 AddPromotedToType(ISD::FP_ROUND
, MVT::v4f16
, MVT::v4f32
);
434 setOperationAction(ISD::FABS
, MVT::v4f16
, Expand
);
435 setOperationAction(ISD::FNEG
, MVT::v4f16
, Expand
);
436 setOperationAction(ISD::FROUND
, MVT::v4f16
, Expand
);
437 setOperationAction(ISD::FMA
, MVT::v4f16
, Expand
);
438 setOperationAction(ISD::SETCC
, MVT::v4f16
, Expand
);
439 setOperationAction(ISD::BR_CC
, MVT::v4f16
, Expand
);
440 setOperationAction(ISD::SELECT
, MVT::v4f16
, Expand
);
441 setOperationAction(ISD::SELECT_CC
, MVT::v4f16
, Expand
);
442 setOperationAction(ISD::FTRUNC
, MVT::v4f16
, Expand
);
443 setOperationAction(ISD::FCOPYSIGN
, MVT::v4f16
, Expand
);
444 setOperationAction(ISD::FFLOOR
, MVT::v4f16
, Expand
);
445 setOperationAction(ISD::FCEIL
, MVT::v4f16
, Expand
);
446 setOperationAction(ISD::FRINT
, MVT::v4f16
, Expand
);
447 setOperationAction(ISD::FNEARBYINT
, MVT::v4f16
, Expand
);
448 setOperationAction(ISD::FSQRT
, MVT::v4f16
, Expand
);
450 setOperationAction(ISD::FABS
, MVT::v8f16
, Expand
);
451 setOperationAction(ISD::FADD
, MVT::v8f16
, Expand
);
452 setOperationAction(ISD::FCEIL
, MVT::v8f16
, Expand
);
453 setOperationAction(ISD::FCOPYSIGN
, MVT::v8f16
, Expand
);
454 setOperationAction(ISD::FDIV
, MVT::v8f16
, Expand
);
455 setOperationAction(ISD::FFLOOR
, MVT::v8f16
, Expand
);
456 setOperationAction(ISD::FMA
, MVT::v8f16
, Expand
);
457 setOperationAction(ISD::FMUL
, MVT::v8f16
, Expand
);
458 setOperationAction(ISD::FNEARBYINT
, MVT::v8f16
, Expand
);
459 setOperationAction(ISD::FNEG
, MVT::v8f16
, Expand
);
460 setOperationAction(ISD::FROUND
, MVT::v8f16
, Expand
);
461 setOperationAction(ISD::FRINT
, MVT::v8f16
, Expand
);
462 setOperationAction(ISD::FSQRT
, MVT::v8f16
, Expand
);
463 setOperationAction(ISD::FSUB
, MVT::v8f16
, Expand
);
464 setOperationAction(ISD::FTRUNC
, MVT::v8f16
, Expand
);
465 setOperationAction(ISD::SETCC
, MVT::v8f16
, Expand
);
466 setOperationAction(ISD::BR_CC
, MVT::v8f16
, Expand
);
467 setOperationAction(ISD::SELECT
, MVT::v8f16
, Expand
);
468 setOperationAction(ISD::SELECT_CC
, MVT::v8f16
, Expand
);
469 setOperationAction(ISD::FP_EXTEND
, MVT::v8f16
, Expand
);
472 // AArch64 has implementations of a lot of rounding-like FP operations.
473 for (MVT Ty
: {MVT::f32
, MVT::f64
}) {
474 setOperationAction(ISD::FFLOOR
, Ty
, Legal
);
475 setOperationAction(ISD::FNEARBYINT
, Ty
, Legal
);
476 setOperationAction(ISD::FCEIL
, Ty
, Legal
);
477 setOperationAction(ISD::FRINT
, Ty
, Legal
);
478 setOperationAction(ISD::FTRUNC
, Ty
, Legal
);
479 setOperationAction(ISD::FROUND
, Ty
, Legal
);
480 setOperationAction(ISD::FMINNUM
, Ty
, Legal
);
481 setOperationAction(ISD::FMAXNUM
, Ty
, Legal
);
482 setOperationAction(ISD::FMINIMUM
, Ty
, Legal
);
483 setOperationAction(ISD::FMAXIMUM
, Ty
, Legal
);
484 setOperationAction(ISD::LROUND
, Ty
, Legal
);
485 setOperationAction(ISD::LLROUND
, Ty
, Legal
);
486 setOperationAction(ISD::LRINT
, Ty
, Legal
);
487 setOperationAction(ISD::LLRINT
, Ty
, Legal
);
490 if (Subtarget
->hasFullFP16()) {
491 setOperationAction(ISD::FNEARBYINT
, MVT::f16
, Legal
);
492 setOperationAction(ISD::FFLOOR
, MVT::f16
, Legal
);
493 setOperationAction(ISD::FCEIL
, MVT::f16
, Legal
);
494 setOperationAction(ISD::FRINT
, MVT::f16
, Legal
);
495 setOperationAction(ISD::FTRUNC
, MVT::f16
, Legal
);
496 setOperationAction(ISD::FROUND
, MVT::f16
, Legal
);
497 setOperationAction(ISD::FMINNUM
, MVT::f16
, Legal
);
498 setOperationAction(ISD::FMAXNUM
, MVT::f16
, Legal
);
499 setOperationAction(ISD::FMINIMUM
, MVT::f16
, Legal
);
500 setOperationAction(ISD::FMAXIMUM
, MVT::f16
, Legal
);
503 setOperationAction(ISD::PREFETCH
, MVT::Other
, Custom
);
505 setOperationAction(ISD::FLT_ROUNDS_
, MVT::i32
, Custom
);
507 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i128
, Custom
);
508 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i32
, Custom
);
509 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i64
, Custom
);
510 setOperationAction(ISD::ATOMIC_LOAD_AND
, MVT::i32
, Custom
);
511 setOperationAction(ISD::ATOMIC_LOAD_AND
, MVT::i64
, Custom
);
513 // Lower READCYCLECOUNTER using an mrs from PMCCNTR_EL0.
514 // This requires the Performance Monitors extension.
515 if (Subtarget
->hasPerfMon())
516 setOperationAction(ISD::READCYCLECOUNTER
, MVT::i64
, Legal
);
518 if (getLibcallName(RTLIB::SINCOS_STRET_F32
) != nullptr &&
519 getLibcallName(RTLIB::SINCOS_STRET_F64
) != nullptr) {
520 // Issue __sincos_stret if available.
521 setOperationAction(ISD::FSINCOS
, MVT::f64
, Custom
);
522 setOperationAction(ISD::FSINCOS
, MVT::f32
, Custom
);
524 setOperationAction(ISD::FSINCOS
, MVT::f64
, Expand
);
525 setOperationAction(ISD::FSINCOS
, MVT::f32
, Expand
);
528 // Make floating-point constants legal for the large code model, so they don't
529 // become loads from the constant pool.
530 if (Subtarget
->isTargetMachO() && TM
.getCodeModel() == CodeModel::Large
) {
531 setOperationAction(ISD::ConstantFP
, MVT::f32
, Legal
);
532 setOperationAction(ISD::ConstantFP
, MVT::f64
, Legal
);
535 // AArch64 does not have floating-point extending loads, i1 sign-extending
536 // load, floating-point truncating stores, or v2i32->v2i16 truncating store.
537 for (MVT VT
: MVT::fp_valuetypes()) {
538 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f16
, Expand
);
539 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f32
, Expand
);
540 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f64
, Expand
);
541 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f80
, Expand
);
543 for (MVT VT
: MVT::integer_valuetypes())
544 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i1
, Expand
);
546 setTruncStoreAction(MVT::f32
, MVT::f16
, Expand
);
547 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
548 setTruncStoreAction(MVT::f64
, MVT::f16
, Expand
);
549 setTruncStoreAction(MVT::f128
, MVT::f80
, Expand
);
550 setTruncStoreAction(MVT::f128
, MVT::f64
, Expand
);
551 setTruncStoreAction(MVT::f128
, MVT::f32
, Expand
);
552 setTruncStoreAction(MVT::f128
, MVT::f16
, Expand
);
554 setOperationAction(ISD::BITCAST
, MVT::i16
, Custom
);
555 setOperationAction(ISD::BITCAST
, MVT::f16
, Custom
);
557 // Indexed loads and stores are supported.
558 for (unsigned im
= (unsigned)ISD::PRE_INC
;
559 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
560 setIndexedLoadAction(im
, MVT::i8
, Legal
);
561 setIndexedLoadAction(im
, MVT::i16
, Legal
);
562 setIndexedLoadAction(im
, MVT::i32
, Legal
);
563 setIndexedLoadAction(im
, MVT::i64
, Legal
);
564 setIndexedLoadAction(im
, MVT::f64
, Legal
);
565 setIndexedLoadAction(im
, MVT::f32
, Legal
);
566 setIndexedLoadAction(im
, MVT::f16
, Legal
);
567 setIndexedStoreAction(im
, MVT::i8
, Legal
);
568 setIndexedStoreAction(im
, MVT::i16
, Legal
);
569 setIndexedStoreAction(im
, MVT::i32
, Legal
);
570 setIndexedStoreAction(im
, MVT::i64
, Legal
);
571 setIndexedStoreAction(im
, MVT::f64
, Legal
);
572 setIndexedStoreAction(im
, MVT::f32
, Legal
);
573 setIndexedStoreAction(im
, MVT::f16
, Legal
);
577 setOperationAction(ISD::TRAP
, MVT::Other
, Legal
);
578 if (Subtarget
->isTargetWindows())
579 setOperationAction(ISD::DEBUGTRAP
, MVT::Other
, Legal
);
581 // We combine OR nodes for bitfield operations.
582 setTargetDAGCombine(ISD::OR
);
583 // Try to create BICs for vector ANDs.
584 setTargetDAGCombine(ISD::AND
);
586 // Vector add and sub nodes may conceal a high-half opportunity.
587 // Also, try to fold ADD into CSINC/CSINV..
588 setTargetDAGCombine(ISD::ADD
);
589 setTargetDAGCombine(ISD::SUB
);
590 setTargetDAGCombine(ISD::SRL
);
591 setTargetDAGCombine(ISD::XOR
);
592 setTargetDAGCombine(ISD::SINT_TO_FP
);
593 setTargetDAGCombine(ISD::UINT_TO_FP
);
595 setTargetDAGCombine(ISD::FP_TO_SINT
);
596 setTargetDAGCombine(ISD::FP_TO_UINT
);
597 setTargetDAGCombine(ISD::FDIV
);
599 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN
);
601 setTargetDAGCombine(ISD::ANY_EXTEND
);
602 setTargetDAGCombine(ISD::ZERO_EXTEND
);
603 setTargetDAGCombine(ISD::SIGN_EXTEND
);
604 setTargetDAGCombine(ISD::BITCAST
);
605 setTargetDAGCombine(ISD::CONCAT_VECTORS
);
606 setTargetDAGCombine(ISD::STORE
);
607 if (Subtarget
->supportsAddressTopByteIgnored())
608 setTargetDAGCombine(ISD::LOAD
);
610 setTargetDAGCombine(ISD::MUL
);
612 setTargetDAGCombine(ISD::SELECT
);
613 setTargetDAGCombine(ISD::VSELECT
);
615 setTargetDAGCombine(ISD::INTRINSIC_VOID
);
616 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN
);
617 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT
);
619 setTargetDAGCombine(ISD::GlobalAddress
);
621 // In case of strict alignment, avoid an excessive number of byte wide stores.
622 MaxStoresPerMemsetOptSize
= 8;
623 MaxStoresPerMemset
= Subtarget
->requiresStrictAlign()
624 ? MaxStoresPerMemsetOptSize
: 32;
626 MaxGluedStoresPerMemcpy
= 4;
627 MaxStoresPerMemcpyOptSize
= 4;
628 MaxStoresPerMemcpy
= Subtarget
->requiresStrictAlign()
629 ? MaxStoresPerMemcpyOptSize
: 16;
631 MaxStoresPerMemmoveOptSize
= MaxStoresPerMemmove
= 4;
633 MaxLoadsPerMemcmpOptSize
= 4;
634 MaxLoadsPerMemcmp
= Subtarget
->requiresStrictAlign()
635 ? MaxLoadsPerMemcmpOptSize
: 8;
637 setStackPointerRegisterToSaveRestore(AArch64::SP
);
639 setSchedulingPreference(Sched::Hybrid
);
641 EnableExtLdPromotion
= true;
643 // Set required alignment.
644 setMinFunctionAlignment(Align(4));
645 // Set preferred alignments.
646 setPrefLoopAlignment(Align(1ULL << STI
.getPrefLoopLogAlignment()));
647 setPrefFunctionAlignment(Align(1ULL << STI
.getPrefFunctionLogAlignment()));
649 // Only change the limit for entries in a jump table if specified by
650 // the sub target, but not at the command line.
651 unsigned MaxJT
= STI
.getMaximumJumpTableSize();
652 if (MaxJT
&& getMaximumJumpTableSize() == UINT_MAX
)
653 setMaximumJumpTableSize(MaxJT
);
655 setHasExtractBitsInsn(true);
657 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::Other
, Custom
);
659 if (Subtarget
->hasNEON()) {
660 // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to
661 // silliness like this:
662 setOperationAction(ISD::FABS
, MVT::v1f64
, Expand
);
663 setOperationAction(ISD::FADD
, MVT::v1f64
, Expand
);
664 setOperationAction(ISD::FCEIL
, MVT::v1f64
, Expand
);
665 setOperationAction(ISD::FCOPYSIGN
, MVT::v1f64
, Expand
);
666 setOperationAction(ISD::FCOS
, MVT::v1f64
, Expand
);
667 setOperationAction(ISD::FDIV
, MVT::v1f64
, Expand
);
668 setOperationAction(ISD::FFLOOR
, MVT::v1f64
, Expand
);
669 setOperationAction(ISD::FMA
, MVT::v1f64
, Expand
);
670 setOperationAction(ISD::FMUL
, MVT::v1f64
, Expand
);
671 setOperationAction(ISD::FNEARBYINT
, MVT::v1f64
, Expand
);
672 setOperationAction(ISD::FNEG
, MVT::v1f64
, Expand
);
673 setOperationAction(ISD::FPOW
, MVT::v1f64
, Expand
);
674 setOperationAction(ISD::FREM
, MVT::v1f64
, Expand
);
675 setOperationAction(ISD::FROUND
, MVT::v1f64
, Expand
);
676 setOperationAction(ISD::FRINT
, MVT::v1f64
, Expand
);
677 setOperationAction(ISD::FSIN
, MVT::v1f64
, Expand
);
678 setOperationAction(ISD::FSINCOS
, MVT::v1f64
, Expand
);
679 setOperationAction(ISD::FSQRT
, MVT::v1f64
, Expand
);
680 setOperationAction(ISD::FSUB
, MVT::v1f64
, Expand
);
681 setOperationAction(ISD::FTRUNC
, MVT::v1f64
, Expand
);
682 setOperationAction(ISD::SETCC
, MVT::v1f64
, Expand
);
683 setOperationAction(ISD::BR_CC
, MVT::v1f64
, Expand
);
684 setOperationAction(ISD::SELECT
, MVT::v1f64
, Expand
);
685 setOperationAction(ISD::SELECT_CC
, MVT::v1f64
, Expand
);
686 setOperationAction(ISD::FP_EXTEND
, MVT::v1f64
, Expand
);
688 setOperationAction(ISD::FP_TO_SINT
, MVT::v1i64
, Expand
);
689 setOperationAction(ISD::FP_TO_UINT
, MVT::v1i64
, Expand
);
690 setOperationAction(ISD::SINT_TO_FP
, MVT::v1i64
, Expand
);
691 setOperationAction(ISD::UINT_TO_FP
, MVT::v1i64
, Expand
);
692 setOperationAction(ISD::FP_ROUND
, MVT::v1f64
, Expand
);
694 setOperationAction(ISD::MUL
, MVT::v1i64
, Expand
);
696 // AArch64 doesn't have a direct vector ->f32 conversion instructions for
697 // elements smaller than i32, so promote the input to i32 first.
698 setOperationPromotedToType(ISD::UINT_TO_FP
, MVT::v4i8
, MVT::v4i32
);
699 setOperationPromotedToType(ISD::SINT_TO_FP
, MVT::v4i8
, MVT::v4i32
);
700 // i8 vector elements also need promotion to i32 for v8i8
701 setOperationPromotedToType(ISD::SINT_TO_FP
, MVT::v8i8
, MVT::v8i32
);
702 setOperationPromotedToType(ISD::UINT_TO_FP
, MVT::v8i8
, MVT::v8i32
);
703 // Similarly, there is no direct i32 -> f64 vector conversion instruction.
704 setOperationAction(ISD::SINT_TO_FP
, MVT::v2i32
, Custom
);
705 setOperationAction(ISD::UINT_TO_FP
, MVT::v2i32
, Custom
);
706 setOperationAction(ISD::SINT_TO_FP
, MVT::v2i64
, Custom
);
707 setOperationAction(ISD::UINT_TO_FP
, MVT::v2i64
, Custom
);
708 // Or, direct i32 -> f16 vector conversion. Set it so custom, so the
709 // conversion happens in two steps: v4i32 -> v4f32 -> v4f16
710 setOperationAction(ISD::SINT_TO_FP
, MVT::v4i32
, Custom
);
711 setOperationAction(ISD::UINT_TO_FP
, MVT::v4i32
, Custom
);
713 if (Subtarget
->hasFullFP16()) {
714 setOperationAction(ISD::SINT_TO_FP
, MVT::v4i16
, Custom
);
715 setOperationAction(ISD::UINT_TO_FP
, MVT::v4i16
, Custom
);
716 setOperationAction(ISD::SINT_TO_FP
, MVT::v8i16
, Custom
);
717 setOperationAction(ISD::UINT_TO_FP
, MVT::v8i16
, Custom
);
719 // when AArch64 doesn't have fullfp16 support, promote the input
721 setOperationPromotedToType(ISD::UINT_TO_FP
, MVT::v4i16
, MVT::v4i32
);
722 setOperationPromotedToType(ISD::SINT_TO_FP
, MVT::v4i16
, MVT::v4i32
);
723 setOperationPromotedToType(ISD::SINT_TO_FP
, MVT::v8i16
, MVT::v8i32
);
724 setOperationPromotedToType(ISD::UINT_TO_FP
, MVT::v8i16
, MVT::v8i32
);
727 setOperationAction(ISD::CTLZ
, MVT::v1i64
, Expand
);
728 setOperationAction(ISD::CTLZ
, MVT::v2i64
, Expand
);
730 // AArch64 doesn't have MUL.2d:
731 setOperationAction(ISD::MUL
, MVT::v2i64
, Expand
);
732 // Custom handling for some quad-vector types to detect MULL.
733 setOperationAction(ISD::MUL
, MVT::v8i16
, Custom
);
734 setOperationAction(ISD::MUL
, MVT::v4i32
, Custom
);
735 setOperationAction(ISD::MUL
, MVT::v2i64
, Custom
);
738 for (MVT VT
: { MVT::v8i8
, MVT::v4i16
, MVT::v2i32
,
739 MVT::v16i8
, MVT::v8i16
, MVT::v4i32
, MVT::v2i64
}) {
740 setOperationAction(ISD::VECREDUCE_ADD
, VT
, Custom
);
741 setOperationAction(ISD::VECREDUCE_SMAX
, VT
, Custom
);
742 setOperationAction(ISD::VECREDUCE_SMIN
, VT
, Custom
);
743 setOperationAction(ISD::VECREDUCE_UMAX
, VT
, Custom
);
744 setOperationAction(ISD::VECREDUCE_UMIN
, VT
, Custom
);
746 for (MVT VT
: { MVT::v4f16
, MVT::v2f32
,
747 MVT::v8f16
, MVT::v4f32
, MVT::v2f64
}) {
748 setOperationAction(ISD::VECREDUCE_FMAX
, VT
, Custom
);
749 setOperationAction(ISD::VECREDUCE_FMIN
, VT
, Custom
);
752 setOperationAction(ISD::ANY_EXTEND
, MVT::v4i32
, Legal
);
753 setTruncStoreAction(MVT::v2i32
, MVT::v2i16
, Expand
);
754 // Likewise, narrowing and extending vector loads/stores aren't handled
756 for (MVT VT
: MVT::fixedlen_vector_valuetypes()) {
757 setOperationAction(ISD::SIGN_EXTEND_INREG
, VT
, Expand
);
759 if (VT
== MVT::v16i8
|| VT
== MVT::v8i16
|| VT
== MVT::v4i32
) {
760 setOperationAction(ISD::MULHS
, VT
, Legal
);
761 setOperationAction(ISD::MULHU
, VT
, Legal
);
763 setOperationAction(ISD::MULHS
, VT
, Expand
);
764 setOperationAction(ISD::MULHU
, VT
, Expand
);
766 setOperationAction(ISD::SMUL_LOHI
, VT
, Expand
);
767 setOperationAction(ISD::UMUL_LOHI
, VT
, Expand
);
769 setOperationAction(ISD::BSWAP
, VT
, Expand
);
770 setOperationAction(ISD::CTTZ
, VT
, Expand
);
772 for (MVT InnerVT
: MVT::fixedlen_vector_valuetypes()) {
773 setTruncStoreAction(VT
, InnerVT
, Expand
);
774 setLoadExtAction(ISD::SEXTLOAD
, VT
, InnerVT
, Expand
);
775 setLoadExtAction(ISD::ZEXTLOAD
, VT
, InnerVT
, Expand
);
776 setLoadExtAction(ISD::EXTLOAD
, VT
, InnerVT
, Expand
);
780 // AArch64 has implementations of a lot of rounding-like FP operations.
781 for (MVT Ty
: {MVT::v2f32
, MVT::v4f32
, MVT::v2f64
}) {
782 setOperationAction(ISD::FFLOOR
, Ty
, Legal
);
783 setOperationAction(ISD::FNEARBYINT
, Ty
, Legal
);
784 setOperationAction(ISD::FCEIL
, Ty
, Legal
);
785 setOperationAction(ISD::FRINT
, Ty
, Legal
);
786 setOperationAction(ISD::FTRUNC
, Ty
, Legal
);
787 setOperationAction(ISD::FROUND
, Ty
, Legal
);
790 if (Subtarget
->hasFullFP16()) {
791 for (MVT Ty
: {MVT::v4f16
, MVT::v8f16
}) {
792 setOperationAction(ISD::FFLOOR
, Ty
, Legal
);
793 setOperationAction(ISD::FNEARBYINT
, Ty
, Legal
);
794 setOperationAction(ISD::FCEIL
, Ty
, Legal
);
795 setOperationAction(ISD::FRINT
, Ty
, Legal
);
796 setOperationAction(ISD::FTRUNC
, Ty
, Legal
);
797 setOperationAction(ISD::FROUND
, Ty
, Legal
);
801 setTruncStoreAction(MVT::v4i16
, MVT::v4i8
, Custom
);
804 PredictableSelectIsExpensive
= Subtarget
->predictableSelectIsExpensive();
807 void AArch64TargetLowering::addTypeForNEON(MVT VT
, MVT PromotedBitwiseVT
) {
808 assert(VT
.isVector() && "VT should be a vector type");
810 if (VT
.isFloatingPoint()) {
811 MVT PromoteTo
= EVT(VT
).changeVectorElementTypeToInteger().getSimpleVT();
812 setOperationPromotedToType(ISD::LOAD
, VT
, PromoteTo
);
813 setOperationPromotedToType(ISD::STORE
, VT
, PromoteTo
);
816 // Mark vector float intrinsics as expand.
817 if (VT
== MVT::v2f32
|| VT
== MVT::v4f32
|| VT
== MVT::v2f64
) {
818 setOperationAction(ISD::FSIN
, VT
, Expand
);
819 setOperationAction(ISD::FCOS
, VT
, Expand
);
820 setOperationAction(ISD::FPOW
, VT
, Expand
);
821 setOperationAction(ISD::FLOG
, VT
, Expand
);
822 setOperationAction(ISD::FLOG2
, VT
, Expand
);
823 setOperationAction(ISD::FLOG10
, VT
, Expand
);
824 setOperationAction(ISD::FEXP
, VT
, Expand
);
825 setOperationAction(ISD::FEXP2
, VT
, Expand
);
827 // But we do support custom-lowering for FCOPYSIGN.
828 setOperationAction(ISD::FCOPYSIGN
, VT
, Custom
);
831 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
832 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
833 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
834 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
835 setOperationAction(ISD::EXTRACT_SUBVECTOR
, VT
, Custom
);
836 setOperationAction(ISD::SRA
, VT
, Custom
);
837 setOperationAction(ISD::SRL
, VT
, Custom
);
838 setOperationAction(ISD::SHL
, VT
, Custom
);
839 setOperationAction(ISD::OR
, VT
, Custom
);
840 setOperationAction(ISD::SETCC
, VT
, Custom
);
841 setOperationAction(ISD::CONCAT_VECTORS
, VT
, Legal
);
843 setOperationAction(ISD::SELECT
, VT
, Expand
);
844 setOperationAction(ISD::SELECT_CC
, VT
, Expand
);
845 setOperationAction(ISD::VSELECT
, VT
, Expand
);
846 for (MVT InnerVT
: MVT::all_valuetypes())
847 setLoadExtAction(ISD::EXTLOAD
, InnerVT
, VT
, Expand
);
849 // CNT supports only B element sizes, then use UADDLP to widen.
850 if (VT
!= MVT::v8i8
&& VT
!= MVT::v16i8
)
851 setOperationAction(ISD::CTPOP
, VT
, Custom
);
853 setOperationAction(ISD::UDIV
, VT
, Expand
);
854 setOperationAction(ISD::SDIV
, VT
, Expand
);
855 setOperationAction(ISD::UREM
, VT
, Expand
);
856 setOperationAction(ISD::SREM
, VT
, Expand
);
857 setOperationAction(ISD::FREM
, VT
, Expand
);
859 setOperationAction(ISD::FP_TO_SINT
, VT
, Custom
);
860 setOperationAction(ISD::FP_TO_UINT
, VT
, Custom
);
862 if (!VT
.isFloatingPoint())
863 setOperationAction(ISD::ABS
, VT
, Legal
);
865 // [SU][MIN|MAX] are available for all NEON types apart from i64.
866 if (!VT
.isFloatingPoint() && VT
!= MVT::v2i64
&& VT
!= MVT::v1i64
)
867 for (unsigned Opcode
: {ISD::SMIN
, ISD::SMAX
, ISD::UMIN
, ISD::UMAX
})
868 setOperationAction(Opcode
, VT
, Legal
);
870 // F[MIN|MAX][NUM|NAN] are available for all FP NEON types.
871 if (VT
.isFloatingPoint() &&
872 (VT
.getVectorElementType() != MVT::f16
|| Subtarget
->hasFullFP16()))
873 for (unsigned Opcode
:
874 {ISD::FMINIMUM
, ISD::FMAXIMUM
, ISD::FMINNUM
, ISD::FMAXNUM
})
875 setOperationAction(Opcode
, VT
, Legal
);
877 if (Subtarget
->isLittleEndian()) {
878 for (unsigned im
= (unsigned)ISD::PRE_INC
;
879 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
880 setIndexedLoadAction(im
, VT
, Legal
);
881 setIndexedStoreAction(im
, VT
, Legal
);
886 void AArch64TargetLowering::addDRTypeForNEON(MVT VT
) {
887 addRegisterClass(VT
, &AArch64::FPR64RegClass
);
888 addTypeForNEON(VT
, MVT::v2i32
);
891 void AArch64TargetLowering::addQRTypeForNEON(MVT VT
) {
892 addRegisterClass(VT
, &AArch64::FPR128RegClass
);
893 addTypeForNEON(VT
, MVT::v4i32
);
896 EVT
AArch64TargetLowering::getSetCCResultType(const DataLayout
&, LLVMContext
&,
900 return VT
.changeVectorElementTypeToInteger();
903 static bool optimizeLogicalImm(SDValue Op
, unsigned Size
, uint64_t Imm
,
904 const APInt
&Demanded
,
905 TargetLowering::TargetLoweringOpt
&TLO
,
907 uint64_t OldImm
= Imm
, NewImm
, Enc
;
908 uint64_t Mask
= ((uint64_t)(-1LL) >> (64 - Size
)), OrigMask
= Mask
;
910 // Return if the immediate is already all zeros, all ones, a bimm32 or a
912 if (Imm
== 0 || Imm
== Mask
||
913 AArch64_AM::isLogicalImmediate(Imm
& Mask
, Size
))
916 unsigned EltSize
= Size
;
917 uint64_t DemandedBits
= Demanded
.getZExtValue();
919 // Clear bits that are not demanded.
923 // The goal here is to set the non-demanded bits in a way that minimizes
924 // the number of switching between 0 and 1. In order to achieve this goal,
925 // we set the non-demanded bits to the value of the preceding demanded bits.
926 // For example, if we have an immediate 0bx10xx0x1 ('x' indicates a
927 // non-demanded bit), we copy bit0 (1) to the least significant 'x',
928 // bit2 (0) to 'xx', and bit6 (1) to the most significant 'x'.
929 // The final result is 0b11000011.
930 uint64_t NonDemandedBits
= ~DemandedBits
;
931 uint64_t InvertedImm
= ~Imm
& DemandedBits
;
932 uint64_t RotatedImm
=
933 ((InvertedImm
<< 1) | (InvertedImm
>> (EltSize
- 1) & 1)) &
935 uint64_t Sum
= RotatedImm
+ NonDemandedBits
;
936 bool Carry
= NonDemandedBits
& ~Sum
& (1ULL << (EltSize
- 1));
937 uint64_t Ones
= (Sum
+ Carry
) & NonDemandedBits
;
938 NewImm
= (Imm
| Ones
) & Mask
;
940 // If NewImm or its bitwise NOT is a shifted mask, it is a bitmask immediate
941 // or all-ones or all-zeros, in which case we can stop searching. Otherwise,
942 // we halve the element size and continue the search.
943 if (isShiftedMask_64(NewImm
) || isShiftedMask_64(~(NewImm
| ~Mask
)))
946 // We cannot shrink the element size any further if it is 2-bits.
952 uint64_t Hi
= Imm
>> EltSize
, DemandedBitsHi
= DemandedBits
>> EltSize
;
954 // Return if there is mismatch in any of the demanded bits of Imm and Hi.
955 if (((Imm
^ Hi
) & (DemandedBits
& DemandedBitsHi
) & Mask
) != 0)
958 // Merge the upper and lower halves of Imm and DemandedBits.
960 DemandedBits
|= DemandedBitsHi
;
965 // Replicate the element across the register width.
966 while (EltSize
< Size
) {
967 NewImm
|= NewImm
<< EltSize
;
972 assert(((OldImm
^ NewImm
) & Demanded
.getZExtValue()) == 0 &&
973 "demanded bits should never be altered");
974 assert(OldImm
!= NewImm
&& "the new imm shouldn't be equal to the old imm");
976 // Create the new constant immediate node.
977 EVT VT
= Op
.getValueType();
981 // If the new constant immediate is all-zeros or all-ones, let the target
982 // independent DAG combine optimize this node.
983 if (NewImm
== 0 || NewImm
== OrigMask
) {
984 New
= TLO
.DAG
.getNode(Op
.getOpcode(), DL
, VT
, Op
.getOperand(0),
985 TLO
.DAG
.getConstant(NewImm
, DL
, VT
));
986 // Otherwise, create a machine node so that target independent DAG combine
987 // doesn't undo this optimization.
989 Enc
= AArch64_AM::encodeLogicalImmediate(NewImm
, Size
);
990 SDValue EncConst
= TLO
.DAG
.getTargetConstant(Enc
, DL
, VT
);
992 TLO
.DAG
.getMachineNode(NewOpc
, DL
, VT
, Op
.getOperand(0), EncConst
), 0);
995 return TLO
.CombineTo(Op
, New
);
998 bool AArch64TargetLowering::targetShrinkDemandedConstant(
999 SDValue Op
, const APInt
&Demanded
, TargetLoweringOpt
&TLO
) const {
1000 // Delay this optimization to as late as possible.
1004 if (!EnableOptimizeLogicalImm
)
1007 EVT VT
= Op
.getValueType();
1011 unsigned Size
= VT
.getSizeInBits();
1012 assert((Size
== 32 || Size
== 64) &&
1013 "i32 or i64 is expected after legalization.");
1015 // Exit early if we demand all bits.
1016 if (Demanded
.countPopulation() == Size
)
1020 switch (Op
.getOpcode()) {
1024 NewOpc
= Size
== 32 ? AArch64::ANDWri
: AArch64::ANDXri
;
1027 NewOpc
= Size
== 32 ? AArch64::ORRWri
: AArch64::ORRXri
;
1030 NewOpc
= Size
== 32 ? AArch64::EORWri
: AArch64::EORXri
;
1033 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
1036 uint64_t Imm
= C
->getZExtValue();
1037 return optimizeLogicalImm(Op
, Size
, Imm
, Demanded
, TLO
, NewOpc
);
1040 /// computeKnownBitsForTargetNode - Determine which of the bits specified in
1041 /// Mask are known to be either zero or one and return them Known.
1042 void AArch64TargetLowering::computeKnownBitsForTargetNode(
1043 const SDValue Op
, KnownBits
&Known
,
1044 const APInt
&DemandedElts
, const SelectionDAG
&DAG
, unsigned Depth
) const {
1045 switch (Op
.getOpcode()) {
1048 case AArch64ISD::CSEL
: {
1050 Known
= DAG
.computeKnownBits(Op
->getOperand(0), Depth
+ 1);
1051 Known2
= DAG
.computeKnownBits(Op
->getOperand(1), Depth
+ 1);
1052 Known
.Zero
&= Known2
.Zero
;
1053 Known
.One
&= Known2
.One
;
1056 case AArch64ISD::LOADgot
:
1057 case AArch64ISD::ADDlow
: {
1058 if (!Subtarget
->isTargetILP32())
1060 // In ILP32 mode all valid pointers are in the low 4GB of the address-space.
1061 Known
.Zero
= APInt::getHighBitsSet(64, 32);
1064 case ISD::INTRINSIC_W_CHAIN
: {
1065 ConstantSDNode
*CN
= cast
<ConstantSDNode
>(Op
->getOperand(1));
1066 Intrinsic::ID IntID
= static_cast<Intrinsic::ID
>(CN
->getZExtValue());
1069 case Intrinsic::aarch64_ldaxr
:
1070 case Intrinsic::aarch64_ldxr
: {
1071 unsigned BitWidth
= Known
.getBitWidth();
1072 EVT VT
= cast
<MemIntrinsicSDNode
>(Op
)->getMemoryVT();
1073 unsigned MemBits
= VT
.getScalarSizeInBits();
1074 Known
.Zero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- MemBits
);
1080 case ISD::INTRINSIC_WO_CHAIN
:
1081 case ISD::INTRINSIC_VOID
: {
1082 unsigned IntNo
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
1086 case Intrinsic::aarch64_neon_umaxv
:
1087 case Intrinsic::aarch64_neon_uminv
: {
1088 // Figure out the datatype of the vector operand. The UMINV instruction
1089 // will zero extend the result, so we can mark as known zero all the
1090 // bits larger than the element datatype. 32-bit or larget doesn't need
1091 // this as those are legal types and will be handled by isel directly.
1092 MVT VT
= Op
.getOperand(1).getValueType().getSimpleVT();
1093 unsigned BitWidth
= Known
.getBitWidth();
1094 if (VT
== MVT::v8i8
|| VT
== MVT::v16i8
) {
1095 assert(BitWidth
>= 8 && "Unexpected width!");
1096 APInt Mask
= APInt::getHighBitsSet(BitWidth
, BitWidth
- 8);
1098 } else if (VT
== MVT::v4i16
|| VT
== MVT::v8i16
) {
1099 assert(BitWidth
>= 16 && "Unexpected width!");
1100 APInt Mask
= APInt::getHighBitsSet(BitWidth
, BitWidth
- 16);
1110 MVT
AArch64TargetLowering::getScalarShiftAmountTy(const DataLayout
&DL
,
1115 bool AArch64TargetLowering::allowsMisalignedMemoryAccesses(
1116 EVT VT
, unsigned AddrSpace
, unsigned Align
, MachineMemOperand::Flags Flags
,
1118 if (Subtarget
->requiresStrictAlign())
1122 // Some CPUs are fine with unaligned stores except for 128-bit ones.
1123 *Fast
= !Subtarget
->isMisaligned128StoreSlow() || VT
.getStoreSize() != 16 ||
1124 // See comments in performSTORECombine() for more details about
1125 // these conditions.
1127 // Code that uses clang vector extensions can mark that it
1128 // wants unaligned accesses to be treated as fast by
1129 // underspecifying alignment to be 1 or 2.
1132 // Disregard v2i64. Memcpy lowering produces those and splitting
1133 // them regresses performance on micro-benchmarks and olden/bh.
1139 // Same as above but handling LLTs instead.
1140 bool AArch64TargetLowering::allowsMisalignedMemoryAccesses(
1141 LLT Ty
, unsigned AddrSpace
, unsigned Align
, MachineMemOperand::Flags Flags
,
1143 if (Subtarget
->requiresStrictAlign())
1147 // Some CPUs are fine with unaligned stores except for 128-bit ones.
1148 *Fast
= !Subtarget
->isMisaligned128StoreSlow() ||
1149 Ty
.getSizeInBytes() != 16 ||
1150 // See comments in performSTORECombine() for more details about
1151 // these conditions.
1153 // Code that uses clang vector extensions can mark that it
1154 // wants unaligned accesses to be treated as fast by
1155 // underspecifying alignment to be 1 or 2.
1158 // Disregard v2i64. Memcpy lowering produces those and splitting
1159 // them regresses performance on micro-benchmarks and olden/bh.
1160 Ty
== LLT::vector(2, 64);
1166 AArch64TargetLowering::createFastISel(FunctionLoweringInfo
&funcInfo
,
1167 const TargetLibraryInfo
*libInfo
) const {
1168 return AArch64::createFastISel(funcInfo
, libInfo
);
1171 const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode
) const {
1172 switch ((AArch64ISD::NodeType
)Opcode
) {
1173 case AArch64ISD::FIRST_NUMBER
: break;
1174 case AArch64ISD::CALL
: return "AArch64ISD::CALL";
1175 case AArch64ISD::ADRP
: return "AArch64ISD::ADRP";
1176 case AArch64ISD::ADR
: return "AArch64ISD::ADR";
1177 case AArch64ISD::ADDlow
: return "AArch64ISD::ADDlow";
1178 case AArch64ISD::LOADgot
: return "AArch64ISD::LOADgot";
1179 case AArch64ISD::RET_FLAG
: return "AArch64ISD::RET_FLAG";
1180 case AArch64ISD::BRCOND
: return "AArch64ISD::BRCOND";
1181 case AArch64ISD::CSEL
: return "AArch64ISD::CSEL";
1182 case AArch64ISD::FCSEL
: return "AArch64ISD::FCSEL";
1183 case AArch64ISD::CSINV
: return "AArch64ISD::CSINV";
1184 case AArch64ISD::CSNEG
: return "AArch64ISD::CSNEG";
1185 case AArch64ISD::CSINC
: return "AArch64ISD::CSINC";
1186 case AArch64ISD::THREAD_POINTER
: return "AArch64ISD::THREAD_POINTER";
1187 case AArch64ISD::TLSDESC_CALLSEQ
: return "AArch64ISD::TLSDESC_CALLSEQ";
1188 case AArch64ISD::ADC
: return "AArch64ISD::ADC";
1189 case AArch64ISD::SBC
: return "AArch64ISD::SBC";
1190 case AArch64ISD::ADDS
: return "AArch64ISD::ADDS";
1191 case AArch64ISD::SUBS
: return "AArch64ISD::SUBS";
1192 case AArch64ISD::ADCS
: return "AArch64ISD::ADCS";
1193 case AArch64ISD::SBCS
: return "AArch64ISD::SBCS";
1194 case AArch64ISD::ANDS
: return "AArch64ISD::ANDS";
1195 case AArch64ISD::CCMP
: return "AArch64ISD::CCMP";
1196 case AArch64ISD::CCMN
: return "AArch64ISD::CCMN";
1197 case AArch64ISD::FCCMP
: return "AArch64ISD::FCCMP";
1198 case AArch64ISD::FCMP
: return "AArch64ISD::FCMP";
1199 case AArch64ISD::DUP
: return "AArch64ISD::DUP";
1200 case AArch64ISD::DUPLANE8
: return "AArch64ISD::DUPLANE8";
1201 case AArch64ISD::DUPLANE16
: return "AArch64ISD::DUPLANE16";
1202 case AArch64ISD::DUPLANE32
: return "AArch64ISD::DUPLANE32";
1203 case AArch64ISD::DUPLANE64
: return "AArch64ISD::DUPLANE64";
1204 case AArch64ISD::MOVI
: return "AArch64ISD::MOVI";
1205 case AArch64ISD::MOVIshift
: return "AArch64ISD::MOVIshift";
1206 case AArch64ISD::MOVIedit
: return "AArch64ISD::MOVIedit";
1207 case AArch64ISD::MOVImsl
: return "AArch64ISD::MOVImsl";
1208 case AArch64ISD::FMOV
: return "AArch64ISD::FMOV";
1209 case AArch64ISD::MVNIshift
: return "AArch64ISD::MVNIshift";
1210 case AArch64ISD::MVNImsl
: return "AArch64ISD::MVNImsl";
1211 case AArch64ISD::BICi
: return "AArch64ISD::BICi";
1212 case AArch64ISD::ORRi
: return "AArch64ISD::ORRi";
1213 case AArch64ISD::BSL
: return "AArch64ISD::BSL";
1214 case AArch64ISD::NEG
: return "AArch64ISD::NEG";
1215 case AArch64ISD::EXTR
: return "AArch64ISD::EXTR";
1216 case AArch64ISD::ZIP1
: return "AArch64ISD::ZIP1";
1217 case AArch64ISD::ZIP2
: return "AArch64ISD::ZIP2";
1218 case AArch64ISD::UZP1
: return "AArch64ISD::UZP1";
1219 case AArch64ISD::UZP2
: return "AArch64ISD::UZP2";
1220 case AArch64ISD::TRN1
: return "AArch64ISD::TRN1";
1221 case AArch64ISD::TRN2
: return "AArch64ISD::TRN2";
1222 case AArch64ISD::REV16
: return "AArch64ISD::REV16";
1223 case AArch64ISD::REV32
: return "AArch64ISD::REV32";
1224 case AArch64ISD::REV64
: return "AArch64ISD::REV64";
1225 case AArch64ISD::EXT
: return "AArch64ISD::EXT";
1226 case AArch64ISD::VSHL
: return "AArch64ISD::VSHL";
1227 case AArch64ISD::VLSHR
: return "AArch64ISD::VLSHR";
1228 case AArch64ISD::VASHR
: return "AArch64ISD::VASHR";
1229 case AArch64ISD::CMEQ
: return "AArch64ISD::CMEQ";
1230 case AArch64ISD::CMGE
: return "AArch64ISD::CMGE";
1231 case AArch64ISD::CMGT
: return "AArch64ISD::CMGT";
1232 case AArch64ISD::CMHI
: return "AArch64ISD::CMHI";
1233 case AArch64ISD::CMHS
: return "AArch64ISD::CMHS";
1234 case AArch64ISD::FCMEQ
: return "AArch64ISD::FCMEQ";
1235 case AArch64ISD::FCMGE
: return "AArch64ISD::FCMGE";
1236 case AArch64ISD::FCMGT
: return "AArch64ISD::FCMGT";
1237 case AArch64ISD::CMEQz
: return "AArch64ISD::CMEQz";
1238 case AArch64ISD::CMGEz
: return "AArch64ISD::CMGEz";
1239 case AArch64ISD::CMGTz
: return "AArch64ISD::CMGTz";
1240 case AArch64ISD::CMLEz
: return "AArch64ISD::CMLEz";
1241 case AArch64ISD::CMLTz
: return "AArch64ISD::CMLTz";
1242 case AArch64ISD::FCMEQz
: return "AArch64ISD::FCMEQz";
1243 case AArch64ISD::FCMGEz
: return "AArch64ISD::FCMGEz";
1244 case AArch64ISD::FCMGTz
: return "AArch64ISD::FCMGTz";
1245 case AArch64ISD::FCMLEz
: return "AArch64ISD::FCMLEz";
1246 case AArch64ISD::FCMLTz
: return "AArch64ISD::FCMLTz";
1247 case AArch64ISD::SADDV
: return "AArch64ISD::SADDV";
1248 case AArch64ISD::UADDV
: return "AArch64ISD::UADDV";
1249 case AArch64ISD::SMINV
: return "AArch64ISD::SMINV";
1250 case AArch64ISD::UMINV
: return "AArch64ISD::UMINV";
1251 case AArch64ISD::SMAXV
: return "AArch64ISD::SMAXV";
1252 case AArch64ISD::UMAXV
: return "AArch64ISD::UMAXV";
1253 case AArch64ISD::NOT
: return "AArch64ISD::NOT";
1254 case AArch64ISD::BIT
: return "AArch64ISD::BIT";
1255 case AArch64ISD::CBZ
: return "AArch64ISD::CBZ";
1256 case AArch64ISD::CBNZ
: return "AArch64ISD::CBNZ";
1257 case AArch64ISD::TBZ
: return "AArch64ISD::TBZ";
1258 case AArch64ISD::TBNZ
: return "AArch64ISD::TBNZ";
1259 case AArch64ISD::TC_RETURN
: return "AArch64ISD::TC_RETURN";
1260 case AArch64ISD::PREFETCH
: return "AArch64ISD::PREFETCH";
1261 case AArch64ISD::SITOF
: return "AArch64ISD::SITOF";
1262 case AArch64ISD::UITOF
: return "AArch64ISD::UITOF";
1263 case AArch64ISD::NVCAST
: return "AArch64ISD::NVCAST";
1264 case AArch64ISD::SQSHL_I
: return "AArch64ISD::SQSHL_I";
1265 case AArch64ISD::UQSHL_I
: return "AArch64ISD::UQSHL_I";
1266 case AArch64ISD::SRSHR_I
: return "AArch64ISD::SRSHR_I";
1267 case AArch64ISD::URSHR_I
: return "AArch64ISD::URSHR_I";
1268 case AArch64ISD::SQSHLU_I
: return "AArch64ISD::SQSHLU_I";
1269 case AArch64ISD::WrapperLarge
: return "AArch64ISD::WrapperLarge";
1270 case AArch64ISD::LD2post
: return "AArch64ISD::LD2post";
1271 case AArch64ISD::LD3post
: return "AArch64ISD::LD3post";
1272 case AArch64ISD::LD4post
: return "AArch64ISD::LD4post";
1273 case AArch64ISD::ST2post
: return "AArch64ISD::ST2post";
1274 case AArch64ISD::ST3post
: return "AArch64ISD::ST3post";
1275 case AArch64ISD::ST4post
: return "AArch64ISD::ST4post";
1276 case AArch64ISD::LD1x2post
: return "AArch64ISD::LD1x2post";
1277 case AArch64ISD::LD1x3post
: return "AArch64ISD::LD1x3post";
1278 case AArch64ISD::LD1x4post
: return "AArch64ISD::LD1x4post";
1279 case AArch64ISD::ST1x2post
: return "AArch64ISD::ST1x2post";
1280 case AArch64ISD::ST1x3post
: return "AArch64ISD::ST1x3post";
1281 case AArch64ISD::ST1x4post
: return "AArch64ISD::ST1x4post";
1282 case AArch64ISD::LD1DUPpost
: return "AArch64ISD::LD1DUPpost";
1283 case AArch64ISD::LD2DUPpost
: return "AArch64ISD::LD2DUPpost";
1284 case AArch64ISD::LD3DUPpost
: return "AArch64ISD::LD3DUPpost";
1285 case AArch64ISD::LD4DUPpost
: return "AArch64ISD::LD4DUPpost";
1286 case AArch64ISD::LD1LANEpost
: return "AArch64ISD::LD1LANEpost";
1287 case AArch64ISD::LD2LANEpost
: return "AArch64ISD::LD2LANEpost";
1288 case AArch64ISD::LD3LANEpost
: return "AArch64ISD::LD3LANEpost";
1289 case AArch64ISD::LD4LANEpost
: return "AArch64ISD::LD4LANEpost";
1290 case AArch64ISD::ST2LANEpost
: return "AArch64ISD::ST2LANEpost";
1291 case AArch64ISD::ST3LANEpost
: return "AArch64ISD::ST3LANEpost";
1292 case AArch64ISD::ST4LANEpost
: return "AArch64ISD::ST4LANEpost";
1293 case AArch64ISD::SMULL
: return "AArch64ISD::SMULL";
1294 case AArch64ISD::UMULL
: return "AArch64ISD::UMULL";
1295 case AArch64ISD::FRECPE
: return "AArch64ISD::FRECPE";
1296 case AArch64ISD::FRECPS
: return "AArch64ISD::FRECPS";
1297 case AArch64ISD::FRSQRTE
: return "AArch64ISD::FRSQRTE";
1298 case AArch64ISD::FRSQRTS
: return "AArch64ISD::FRSQRTS";
1299 case AArch64ISD::STG
: return "AArch64ISD::STG";
1300 case AArch64ISD::STZG
: return "AArch64ISD::STZG";
1301 case AArch64ISD::ST2G
: return "AArch64ISD::ST2G";
1302 case AArch64ISD::STZ2G
: return "AArch64ISD::STZ2G";
1308 AArch64TargetLowering::EmitF128CSEL(MachineInstr
&MI
,
1309 MachineBasicBlock
*MBB
) const {
1310 // We materialise the F128CSEL pseudo-instruction as some control flow and a
1314 // [... previous instrs leading to comparison ...]
1320 // Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB]
1322 MachineFunction
*MF
= MBB
->getParent();
1323 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
1324 const BasicBlock
*LLVM_BB
= MBB
->getBasicBlock();
1325 DebugLoc DL
= MI
.getDebugLoc();
1326 MachineFunction::iterator It
= ++MBB
->getIterator();
1328 Register DestReg
= MI
.getOperand(0).getReg();
1329 Register IfTrueReg
= MI
.getOperand(1).getReg();
1330 Register IfFalseReg
= MI
.getOperand(2).getReg();
1331 unsigned CondCode
= MI
.getOperand(3).getImm();
1332 bool NZCVKilled
= MI
.getOperand(4).isKill();
1334 MachineBasicBlock
*TrueBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
1335 MachineBasicBlock
*EndBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
1336 MF
->insert(It
, TrueBB
);
1337 MF
->insert(It
, EndBB
);
1339 // Transfer rest of current basic-block to EndBB
1340 EndBB
->splice(EndBB
->begin(), MBB
, std::next(MachineBasicBlock::iterator(MI
)),
1342 EndBB
->transferSuccessorsAndUpdatePHIs(MBB
);
1344 BuildMI(MBB
, DL
, TII
->get(AArch64::Bcc
)).addImm(CondCode
).addMBB(TrueBB
);
1345 BuildMI(MBB
, DL
, TII
->get(AArch64::B
)).addMBB(EndBB
);
1346 MBB
->addSuccessor(TrueBB
);
1347 MBB
->addSuccessor(EndBB
);
1349 // TrueBB falls through to the end.
1350 TrueBB
->addSuccessor(EndBB
);
1353 TrueBB
->addLiveIn(AArch64::NZCV
);
1354 EndBB
->addLiveIn(AArch64::NZCV
);
1357 BuildMI(*EndBB
, EndBB
->begin(), DL
, TII
->get(AArch64::PHI
), DestReg
)
1363 MI
.eraseFromParent();
1367 MachineBasicBlock
*AArch64TargetLowering::EmitLoweredCatchRet(
1368 MachineInstr
&MI
, MachineBasicBlock
*BB
) const {
1369 assert(!isAsynchronousEHPersonality(classifyEHPersonality(
1370 BB
->getParent()->getFunction().getPersonalityFn())) &&
1371 "SEH does not use catchret!");
1375 MachineBasicBlock
*AArch64TargetLowering::EmitLoweredCatchPad(
1376 MachineInstr
&MI
, MachineBasicBlock
*BB
) const {
1377 MI
.eraseFromParent();
1381 MachineBasicBlock
*AArch64TargetLowering::EmitInstrWithCustomInserter(
1382 MachineInstr
&MI
, MachineBasicBlock
*BB
) const {
1383 switch (MI
.getOpcode()) {
1388 llvm_unreachable("Unexpected instruction for custom inserter!");
1390 case AArch64::F128CSEL
:
1391 return EmitF128CSEL(MI
, BB
);
1393 case TargetOpcode::STACKMAP
:
1394 case TargetOpcode::PATCHPOINT
:
1395 return emitPatchPoint(MI
, BB
);
1397 case AArch64::CATCHRET
:
1398 return EmitLoweredCatchRet(MI
, BB
);
1399 case AArch64::CATCHPAD
:
1400 return EmitLoweredCatchPad(MI
, BB
);
1404 //===----------------------------------------------------------------------===//
1405 // AArch64 Lowering private implementation.
1406 //===----------------------------------------------------------------------===//
1408 //===----------------------------------------------------------------------===//
1410 //===----------------------------------------------------------------------===//
1412 /// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64
1414 static AArch64CC::CondCode
changeIntCCToAArch64CC(ISD::CondCode CC
) {
1417 llvm_unreachable("Unknown condition code!");
1419 return AArch64CC::NE
;
1421 return AArch64CC::EQ
;
1423 return AArch64CC::GT
;
1425 return AArch64CC::GE
;
1427 return AArch64CC::LT
;
1429 return AArch64CC::LE
;
1431 return AArch64CC::HI
;
1433 return AArch64CC::HS
;
1435 return AArch64CC::LO
;
1437 return AArch64CC::LS
;
1441 /// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC.
1442 static void changeFPCCToAArch64CC(ISD::CondCode CC
,
1443 AArch64CC::CondCode
&CondCode
,
1444 AArch64CC::CondCode
&CondCode2
) {
1445 CondCode2
= AArch64CC::AL
;
1448 llvm_unreachable("Unknown FP condition!");
1451 CondCode
= AArch64CC::EQ
;
1455 CondCode
= AArch64CC::GT
;
1459 CondCode
= AArch64CC::GE
;
1462 CondCode
= AArch64CC::MI
;
1465 CondCode
= AArch64CC::LS
;
1468 CondCode
= AArch64CC::MI
;
1469 CondCode2
= AArch64CC::GT
;
1472 CondCode
= AArch64CC::VC
;
1475 CondCode
= AArch64CC::VS
;
1478 CondCode
= AArch64CC::EQ
;
1479 CondCode2
= AArch64CC::VS
;
1482 CondCode
= AArch64CC::HI
;
1485 CondCode
= AArch64CC::PL
;
1489 CondCode
= AArch64CC::LT
;
1493 CondCode
= AArch64CC::LE
;
1497 CondCode
= AArch64CC::NE
;
1502 /// Convert a DAG fp condition code to an AArch64 CC.
1503 /// This differs from changeFPCCToAArch64CC in that it returns cond codes that
1504 /// should be AND'ed instead of OR'ed.
1505 static void changeFPCCToANDAArch64CC(ISD::CondCode CC
,
1506 AArch64CC::CondCode
&CondCode
,
1507 AArch64CC::CondCode
&CondCode2
) {
1508 CondCode2
= AArch64CC::AL
;
1511 changeFPCCToAArch64CC(CC
, CondCode
, CondCode2
);
1512 assert(CondCode2
== AArch64CC::AL
);
1516 // == ((a olt b) || (a ogt b))
1517 // == ((a ord b) && (a une b))
1518 CondCode
= AArch64CC::VC
;
1519 CondCode2
= AArch64CC::NE
;
1523 // == ((a uno b) || (a oeq b))
1524 // == ((a ule b) && (a uge b))
1525 CondCode
= AArch64CC::PL
;
1526 CondCode2
= AArch64CC::LE
;
1531 /// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64
1532 /// CC usable with the vector instructions. Fewer operations are available
1533 /// without a real NZCV register, so we have to use less efficient combinations
1534 /// to get the same effect.
1535 static void changeVectorFPCCToAArch64CC(ISD::CondCode CC
,
1536 AArch64CC::CondCode
&CondCode
,
1537 AArch64CC::CondCode
&CondCode2
,
1542 // Mostly the scalar mappings work fine.
1543 changeFPCCToAArch64CC(CC
, CondCode
, CondCode2
);
1549 CondCode
= AArch64CC::MI
;
1550 CondCode2
= AArch64CC::GE
;
1557 // All of the compare-mask comparisons are ordered, but we can switch
1558 // between the two by a double inversion. E.g. ULE == !OGT.
1560 changeFPCCToAArch64CC(getSetCCInverse(CC
, false), CondCode
, CondCode2
);
1565 static bool isLegalArithImmed(uint64_t C
) {
1566 // Matches AArch64DAGToDAGISel::SelectArithImmed().
1567 bool IsLegal
= (C
>> 12 == 0) || ((C
& 0xFFFULL
) == 0 && C
>> 24 == 0);
1568 LLVM_DEBUG(dbgs() << "Is imm " << C
1569 << " legal: " << (IsLegal
? "yes\n" : "no\n"));
1573 // Can a (CMP op1, (sub 0, op2) be turned into a CMN instruction on
1574 // the grounds that "op1 - (-op2) == op1 + op2" ? Not always, the C and V flags
1575 // can be set differently by this operation. It comes down to whether
1576 // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then
1577 // everything is fine. If not then the optimization is wrong. Thus general
1578 // comparisons are only valid if op2 != 0.
1580 // So, finally, the only LLVM-native comparisons that don't mention C and V
1581 // are SETEQ and SETNE. They're the only ones we can safely use CMN for in
1582 // the absence of information about op2.
1583 static bool isCMN(SDValue Op
, ISD::CondCode CC
) {
1584 return Op
.getOpcode() == ISD::SUB
&& isNullConstant(Op
.getOperand(0)) &&
1585 (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
);
1588 static SDValue
emitComparison(SDValue LHS
, SDValue RHS
, ISD::CondCode CC
,
1589 const SDLoc
&dl
, SelectionDAG
&DAG
) {
1590 EVT VT
= LHS
.getValueType();
1591 const bool FullFP16
=
1592 static_cast<const AArch64Subtarget
&>(DAG
.getSubtarget()).hasFullFP16();
1594 if (VT
.isFloatingPoint()) {
1595 assert(VT
!= MVT::f128
);
1596 if (VT
== MVT::f16
&& !FullFP16
) {
1597 LHS
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f32
, LHS
);
1598 RHS
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f32
, RHS
);
1601 return DAG
.getNode(AArch64ISD::FCMP
, dl
, VT
, LHS
, RHS
);
1604 // The CMP instruction is just an alias for SUBS, and representing it as
1605 // SUBS means that it's possible to get CSE with subtract operations.
1606 // A later phase can perform the optimization of setting the destination
1607 // register to WZR/XZR if it ends up being unused.
1608 unsigned Opcode
= AArch64ISD::SUBS
;
1610 if (isCMN(RHS
, CC
)) {
1611 // Can we combine a (CMP op1, (sub 0, op2) into a CMN instruction ?
1612 Opcode
= AArch64ISD::ADDS
;
1613 RHS
= RHS
.getOperand(1);
1614 } else if (isCMN(LHS
, CC
)) {
1615 // As we are looking for EQ/NE compares, the operands can be commuted ; can
1616 // we combine a (CMP (sub 0, op1), op2) into a CMN instruction ?
1617 Opcode
= AArch64ISD::ADDS
;
1618 LHS
= LHS
.getOperand(1);
1619 } else if (LHS
.getOpcode() == ISD::AND
&& isNullConstant(RHS
) &&
1620 !isUnsignedIntSetCC(CC
)) {
1621 // Similarly, (CMP (and X, Y), 0) can be implemented with a TST
1622 // (a.k.a. ANDS) except that the flags are only guaranteed to work for one
1623 // of the signed comparisons.
1624 Opcode
= AArch64ISD::ANDS
;
1625 RHS
= LHS
.getOperand(1);
1626 LHS
= LHS
.getOperand(0);
1629 return DAG
.getNode(Opcode
, dl
, DAG
.getVTList(VT
, MVT_CC
), LHS
, RHS
)
1633 /// \defgroup AArch64CCMP CMP;CCMP matching
1635 /// These functions deal with the formation of CMP;CCMP;... sequences.
1636 /// The CCMP/CCMN/FCCMP/FCCMPE instructions allow the conditional execution of
1637 /// a comparison. They set the NZCV flags to a predefined value if their
1638 /// predicate is false. This allows to express arbitrary conjunctions, for
1639 /// example "cmp 0 (and (setCA (cmp A)) (setCB (cmp B)))"
1642 /// ccmp B, inv(CB), CA
1643 /// check for CB flags
1645 /// This naturally lets us implement chains of AND operations with SETCC
1646 /// operands. And we can even implement some other situations by transforming
1648 /// - We can implement (NEG SETCC) i.e. negating a single comparison by
1649 /// negating the flags used in a CCMP/FCCMP operations.
1650 /// - We can negate the result of a whole chain of CMP/CCMP/FCCMP operations
1651 /// by negating the flags we test for afterwards. i.e.
1652 /// NEG (CMP CCMP CCCMP ...) can be implemented.
1653 /// - Note that we can only ever negate all previously processed results.
1654 /// What we can not implement by flipping the flags to test is a negation
1655 /// of two sub-trees (because the negation affects all sub-trees emitted so
1656 /// far, so the 2nd sub-tree we emit would also affect the first).
1657 /// With those tools we can implement some OR operations:
1658 /// - (OR (SETCC A) (SETCC B)) can be implemented via:
1659 /// NEG (AND (NEG (SETCC A)) (NEG (SETCC B)))
1660 /// - After transforming OR to NEG/AND combinations we may be able to use NEG
1661 /// elimination rules from earlier to implement the whole thing as a
1662 /// CCMP/FCCMP chain.
1664 /// As complete example:
1665 /// or (or (setCA (cmp A)) (setCB (cmp B)))
1666 /// (and (setCC (cmp C)) (setCD (cmp D)))"
1667 /// can be reassociated to:
1668 /// or (and (setCC (cmp C)) setCD (cmp D))
1669 // (or (setCA (cmp A)) (setCB (cmp B)))
1670 /// can be transformed to:
1671 /// not (and (not (and (setCC (cmp C)) (setCD (cmp D))))
1672 /// (and (not (setCA (cmp A)) (not (setCB (cmp B))))))"
1673 /// which can be implemented as:
1675 /// ccmp D, inv(CD), CC
1676 /// ccmp A, CA, inv(CD)
1677 /// ccmp B, CB, inv(CA)
1678 /// check for CB flags
1680 /// A counterexample is "or (and A B) (and C D)" which translates to
1681 /// not (and (not (and (not A) (not B))) (not (and (not C) (not D)))), we
1682 /// can only implement 1 of the inner (not) operations, but not both!
1685 /// Create a conditional comparison; Use CCMP, CCMN or FCCMP as appropriate.
1686 static SDValue
emitConditionalComparison(SDValue LHS
, SDValue RHS
,
1687 ISD::CondCode CC
, SDValue CCOp
,
1688 AArch64CC::CondCode Predicate
,
1689 AArch64CC::CondCode OutCC
,
1690 const SDLoc
&DL
, SelectionDAG
&DAG
) {
1691 unsigned Opcode
= 0;
1692 const bool FullFP16
=
1693 static_cast<const AArch64Subtarget
&>(DAG
.getSubtarget()).hasFullFP16();
1695 if (LHS
.getValueType().isFloatingPoint()) {
1696 assert(LHS
.getValueType() != MVT::f128
);
1697 if (LHS
.getValueType() == MVT::f16
&& !FullFP16
) {
1698 LHS
= DAG
.getNode(ISD::FP_EXTEND
, DL
, MVT::f32
, LHS
);
1699 RHS
= DAG
.getNode(ISD::FP_EXTEND
, DL
, MVT::f32
, RHS
);
1701 Opcode
= AArch64ISD::FCCMP
;
1702 } else if (RHS
.getOpcode() == ISD::SUB
) {
1703 SDValue SubOp0
= RHS
.getOperand(0);
1704 if (isNullConstant(SubOp0
) && (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
1705 // See emitComparison() on why we can only do this for SETEQ and SETNE.
1706 Opcode
= AArch64ISD::CCMN
;
1707 RHS
= RHS
.getOperand(1);
1711 Opcode
= AArch64ISD::CCMP
;
1713 SDValue Condition
= DAG
.getConstant(Predicate
, DL
, MVT_CC
);
1714 AArch64CC::CondCode InvOutCC
= AArch64CC::getInvertedCondCode(OutCC
);
1715 unsigned NZCV
= AArch64CC::getNZCVToSatisfyCondCode(InvOutCC
);
1716 SDValue NZCVOp
= DAG
.getConstant(NZCV
, DL
, MVT::i32
);
1717 return DAG
.getNode(Opcode
, DL
, MVT_CC
, LHS
, RHS
, NZCVOp
, Condition
, CCOp
);
1720 /// Returns true if @p Val is a tree of AND/OR/SETCC operations that can be
1721 /// expressed as a conjunction. See \ref AArch64CCMP.
1722 /// \param CanNegate Set to true if we can negate the whole sub-tree just by
1723 /// changing the conditions on the SETCC tests.
1724 /// (this means we can call emitConjunctionRec() with
1725 /// Negate==true on this sub-tree)
1726 /// \param MustBeFirst Set to true if this subtree needs to be negated and we
1727 /// cannot do the negation naturally. We are required to
1728 /// emit the subtree first in this case.
1729 /// \param WillNegate Is true if are called when the result of this
1730 /// subexpression must be negated. This happens when the
1731 /// outer expression is an OR. We can use this fact to know
1732 /// that we have a double negation (or (or ...) ...) that
1733 /// can be implemented for free.
1734 static bool canEmitConjunction(const SDValue Val
, bool &CanNegate
,
1735 bool &MustBeFirst
, bool WillNegate
,
1736 unsigned Depth
= 0) {
1737 if (!Val
.hasOneUse())
1739 unsigned Opcode
= Val
->getOpcode();
1740 if (Opcode
== ISD::SETCC
) {
1741 if (Val
->getOperand(0).getValueType() == MVT::f128
)
1744 MustBeFirst
= false;
1747 // Protect against exponential runtime and stack overflow.
1750 if (Opcode
== ISD::AND
|| Opcode
== ISD::OR
) {
1751 bool IsOR
= Opcode
== ISD::OR
;
1752 SDValue O0
= Val
->getOperand(0);
1753 SDValue O1
= Val
->getOperand(1);
1756 if (!canEmitConjunction(O0
, CanNegateL
, MustBeFirstL
, IsOR
, Depth
+1))
1760 if (!canEmitConjunction(O1
, CanNegateR
, MustBeFirstR
, IsOR
, Depth
+1))
1763 if (MustBeFirstL
&& MustBeFirstR
)
1767 // For an OR expression we need to be able to naturally negate at least
1768 // one side or we cannot do the transformation at all.
1769 if (!CanNegateL
&& !CanNegateR
)
1771 // If we the result of the OR will be negated and we can naturally negate
1772 // the leafs, then this sub-tree as a whole negates naturally.
1773 CanNegate
= WillNegate
&& CanNegateL
&& CanNegateR
;
1774 // If we cannot naturally negate the whole sub-tree, then this must be
1776 MustBeFirst
= !CanNegate
;
1778 assert(Opcode
== ISD::AND
&& "Must be OR or AND");
1779 // We cannot naturally negate an AND operation.
1781 MustBeFirst
= MustBeFirstL
|| MustBeFirstR
;
1788 /// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain
1789 /// of CCMP/CFCMP ops. See @ref AArch64CCMP.
1790 /// Tries to transform the given i1 producing node @p Val to a series compare
1791 /// and conditional compare operations. @returns an NZCV flags producing node
1792 /// and sets @p OutCC to the flags that should be tested or returns SDValue() if
1793 /// transformation was not possible.
1794 /// \p Negate is true if we want this sub-tree being negated just by changing
1795 /// SETCC conditions.
1796 static SDValue
emitConjunctionRec(SelectionDAG
&DAG
, SDValue Val
,
1797 AArch64CC::CondCode
&OutCC
, bool Negate
, SDValue CCOp
,
1798 AArch64CC::CondCode Predicate
) {
1799 // We're at a tree leaf, produce a conditional comparison operation.
1800 unsigned Opcode
= Val
->getOpcode();
1801 if (Opcode
== ISD::SETCC
) {
1802 SDValue LHS
= Val
->getOperand(0);
1803 SDValue RHS
= Val
->getOperand(1);
1804 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Val
->getOperand(2))->get();
1805 bool isInteger
= LHS
.getValueType().isInteger();
1807 CC
= getSetCCInverse(CC
, isInteger
);
1809 // Determine OutCC and handle FP special case.
1811 OutCC
= changeIntCCToAArch64CC(CC
);
1813 assert(LHS
.getValueType().isFloatingPoint());
1814 AArch64CC::CondCode ExtraCC
;
1815 changeFPCCToANDAArch64CC(CC
, OutCC
, ExtraCC
);
1816 // Some floating point conditions can't be tested with a single condition
1817 // code. Construct an additional comparison in this case.
1818 if (ExtraCC
!= AArch64CC::AL
) {
1820 if (!CCOp
.getNode())
1821 ExtraCmp
= emitComparison(LHS
, RHS
, CC
, DL
, DAG
);
1823 ExtraCmp
= emitConditionalComparison(LHS
, RHS
, CC
, CCOp
, Predicate
,
1826 Predicate
= ExtraCC
;
1830 // Produce a normal comparison if we are first in the chain
1832 return emitComparison(LHS
, RHS
, CC
, DL
, DAG
);
1833 // Otherwise produce a ccmp.
1834 return emitConditionalComparison(LHS
, RHS
, CC
, CCOp
, Predicate
, OutCC
, DL
,
1837 assert(Val
->hasOneUse() && "Valid conjunction/disjunction tree");
1839 bool IsOR
= Opcode
== ISD::OR
;
1841 SDValue LHS
= Val
->getOperand(0);
1844 bool ValidL
= canEmitConjunction(LHS
, CanNegateL
, MustBeFirstL
, IsOR
);
1845 assert(ValidL
&& "Valid conjunction/disjunction tree");
1848 SDValue RHS
= Val
->getOperand(1);
1851 bool ValidR
= canEmitConjunction(RHS
, CanNegateR
, MustBeFirstR
, IsOR
);
1852 assert(ValidR
&& "Valid conjunction/disjunction tree");
1855 // Swap sub-tree that must come first to the right side.
1857 assert(!MustBeFirstR
&& "Valid conjunction/disjunction tree");
1858 std::swap(LHS
, RHS
);
1859 std::swap(CanNegateL
, CanNegateR
);
1860 std::swap(MustBeFirstL
, MustBeFirstR
);
1866 bool NegateAfterAll
;
1867 if (Opcode
== ISD::OR
) {
1868 // Swap the sub-tree that we can negate naturally to the left.
1870 assert(CanNegateR
&& "at least one side must be negatable");
1871 assert(!MustBeFirstR
&& "invalid conjunction/disjunction tree");
1873 std::swap(LHS
, RHS
);
1875 NegateAfterR
= true;
1877 // Negate the left sub-tree if possible, otherwise negate the result.
1878 NegateR
= CanNegateR
;
1879 NegateAfterR
= !CanNegateR
;
1882 NegateAfterAll
= !Negate
;
1884 assert(Opcode
== ISD::AND
&& "Valid conjunction/disjunction tree");
1885 assert(!Negate
&& "Valid conjunction/disjunction tree");
1889 NegateAfterR
= false;
1890 NegateAfterAll
= false;
1894 AArch64CC::CondCode RHSCC
;
1895 SDValue CmpR
= emitConjunctionRec(DAG
, RHS
, RHSCC
, NegateR
, CCOp
, Predicate
);
1897 RHSCC
= AArch64CC::getInvertedCondCode(RHSCC
);
1898 SDValue CmpL
= emitConjunctionRec(DAG
, LHS
, OutCC
, NegateL
, CmpR
, RHSCC
);
1900 OutCC
= AArch64CC::getInvertedCondCode(OutCC
);
1904 /// Emit expression as a conjunction (a series of CCMP/CFCMP ops).
1905 /// In some cases this is even possible with OR operations in the expression.
1906 /// See \ref AArch64CCMP.
1907 /// \see emitConjunctionRec().
1908 static SDValue
emitConjunction(SelectionDAG
&DAG
, SDValue Val
,
1909 AArch64CC::CondCode
&OutCC
) {
1910 bool DummyCanNegate
;
1911 bool DummyMustBeFirst
;
1912 if (!canEmitConjunction(Val
, DummyCanNegate
, DummyMustBeFirst
, false))
1915 return emitConjunctionRec(DAG
, Val
, OutCC
, false, SDValue(), AArch64CC::AL
);
1920 /// Returns how profitable it is to fold a comparison's operand's shift and/or
1921 /// extension operations.
1922 static unsigned getCmpOperandFoldingProfit(SDValue Op
) {
1923 auto isSupportedExtend
= [&](SDValue V
) {
1924 if (V
.getOpcode() == ISD::SIGN_EXTEND_INREG
)
1927 if (V
.getOpcode() == ISD::AND
)
1928 if (ConstantSDNode
*MaskCst
= dyn_cast
<ConstantSDNode
>(V
.getOperand(1))) {
1929 uint64_t Mask
= MaskCst
->getZExtValue();
1930 return (Mask
== 0xFF || Mask
== 0xFFFF || Mask
== 0xFFFFFFFF);
1936 if (!Op
.hasOneUse())
1939 if (isSupportedExtend(Op
))
1942 unsigned Opc
= Op
.getOpcode();
1943 if (Opc
== ISD::SHL
|| Opc
== ISD::SRL
|| Opc
== ISD::SRA
)
1944 if (ConstantSDNode
*ShiftCst
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1945 uint64_t Shift
= ShiftCst
->getZExtValue();
1946 if (isSupportedExtend(Op
.getOperand(0)))
1947 return (Shift
<= 4) ? 2 : 1;
1948 EVT VT
= Op
.getValueType();
1949 if ((VT
== MVT::i32
&& Shift
<= 31) || (VT
== MVT::i64
&& Shift
<= 63))
1956 static SDValue
getAArch64Cmp(SDValue LHS
, SDValue RHS
, ISD::CondCode CC
,
1957 SDValue
&AArch64cc
, SelectionDAG
&DAG
,
1959 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(RHS
.getNode())) {
1960 EVT VT
= RHS
.getValueType();
1961 uint64_t C
= RHSC
->getZExtValue();
1962 if (!isLegalArithImmed(C
)) {
1963 // Constant does not fit, try adjusting it by one?
1969 if ((VT
== MVT::i32
&& C
!= 0x80000000 &&
1970 isLegalArithImmed((uint32_t)(C
- 1))) ||
1971 (VT
== MVT::i64
&& C
!= 0x80000000ULL
&&
1972 isLegalArithImmed(C
- 1ULL))) {
1973 CC
= (CC
== ISD::SETLT
) ? ISD::SETLE
: ISD::SETGT
;
1974 C
= (VT
== MVT::i32
) ? (uint32_t)(C
- 1) : C
- 1;
1975 RHS
= DAG
.getConstant(C
, dl
, VT
);
1980 if ((VT
== MVT::i32
&& C
!= 0 &&
1981 isLegalArithImmed((uint32_t)(C
- 1))) ||
1982 (VT
== MVT::i64
&& C
!= 0ULL && isLegalArithImmed(C
- 1ULL))) {
1983 CC
= (CC
== ISD::SETULT
) ? ISD::SETULE
: ISD::SETUGT
;
1984 C
= (VT
== MVT::i32
) ? (uint32_t)(C
- 1) : C
- 1;
1985 RHS
= DAG
.getConstant(C
, dl
, VT
);
1990 if ((VT
== MVT::i32
&& C
!= INT32_MAX
&&
1991 isLegalArithImmed((uint32_t)(C
+ 1))) ||
1992 (VT
== MVT::i64
&& C
!= INT64_MAX
&&
1993 isLegalArithImmed(C
+ 1ULL))) {
1994 CC
= (CC
== ISD::SETLE
) ? ISD::SETLT
: ISD::SETGE
;
1995 C
= (VT
== MVT::i32
) ? (uint32_t)(C
+ 1) : C
+ 1;
1996 RHS
= DAG
.getConstant(C
, dl
, VT
);
2001 if ((VT
== MVT::i32
&& C
!= UINT32_MAX
&&
2002 isLegalArithImmed((uint32_t)(C
+ 1))) ||
2003 (VT
== MVT::i64
&& C
!= UINT64_MAX
&&
2004 isLegalArithImmed(C
+ 1ULL))) {
2005 CC
= (CC
== ISD::SETULE
) ? ISD::SETULT
: ISD::SETUGE
;
2006 C
= (VT
== MVT::i32
) ? (uint32_t)(C
+ 1) : C
+ 1;
2007 RHS
= DAG
.getConstant(C
, dl
, VT
);
2014 // Comparisons are canonicalized so that the RHS operand is simpler than the
2015 // LHS one, the extreme case being when RHS is an immediate. However, AArch64
2016 // can fold some shift+extend operations on the RHS operand, so swap the
2017 // operands if that can be done.
2022 // can be turned into:
2023 // cmp w12, w11, lsl #1
2024 if (!isa
<ConstantSDNode
>(RHS
) ||
2025 !isLegalArithImmed(cast
<ConstantSDNode
>(RHS
)->getZExtValue())) {
2026 SDValue TheLHS
= isCMN(LHS
, CC
) ? LHS
.getOperand(1) : LHS
;
2028 if (getCmpOperandFoldingProfit(TheLHS
) > getCmpOperandFoldingProfit(RHS
)) {
2029 std::swap(LHS
, RHS
);
2030 CC
= ISD::getSetCCSwappedOperands(CC
);
2035 AArch64CC::CondCode AArch64CC
;
2036 if ((CC
== ISD::SETEQ
|| CC
== ISD::SETNE
) && isa
<ConstantSDNode
>(RHS
)) {
2037 const ConstantSDNode
*RHSC
= cast
<ConstantSDNode
>(RHS
);
2039 // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
2040 // For the i8 operand, the largest immediate is 255, so this can be easily
2041 // encoded in the compare instruction. For the i16 operand, however, the
2042 // largest immediate cannot be encoded in the compare.
2043 // Therefore, use a sign extending load and cmn to avoid materializing the
2044 // -1 constant. For example,
2046 // ldrh w0, [x0, #0]
2049 // ldrsh w0, [x0, #0]
2051 // Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
2052 // if and only if (sext LHS) == (sext RHS). The checks are in place to
2053 // ensure both the LHS and RHS are truly zero extended and to make sure the
2054 // transformation is profitable.
2055 if ((RHSC
->getZExtValue() >> 16 == 0) && isa
<LoadSDNode
>(LHS
) &&
2056 cast
<LoadSDNode
>(LHS
)->getExtensionType() == ISD::ZEXTLOAD
&&
2057 cast
<LoadSDNode
>(LHS
)->getMemoryVT() == MVT::i16
&&
2058 LHS
.getNode()->hasNUsesOfValue(1, 0)) {
2059 int16_t ValueofRHS
= cast
<ConstantSDNode
>(RHS
)->getZExtValue();
2060 if (ValueofRHS
< 0 && isLegalArithImmed(-ValueofRHS
)) {
2062 DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, LHS
.getValueType(), LHS
,
2063 DAG
.getValueType(MVT::i16
));
2064 Cmp
= emitComparison(SExt
, DAG
.getConstant(ValueofRHS
, dl
,
2065 RHS
.getValueType()),
2067 AArch64CC
= changeIntCCToAArch64CC(CC
);
2071 if (!Cmp
&& (RHSC
->isNullValue() || RHSC
->isOne())) {
2072 if ((Cmp
= emitConjunction(DAG
, LHS
, AArch64CC
))) {
2073 if ((CC
== ISD::SETNE
) ^ RHSC
->isNullValue())
2074 AArch64CC
= AArch64CC::getInvertedCondCode(AArch64CC
);
2080 Cmp
= emitComparison(LHS
, RHS
, CC
, dl
, DAG
);
2081 AArch64CC
= changeIntCCToAArch64CC(CC
);
2083 AArch64cc
= DAG
.getConstant(AArch64CC
, dl
, MVT_CC
);
2087 static std::pair
<SDValue
, SDValue
>
2088 getAArch64XALUOOp(AArch64CC::CondCode
&CC
, SDValue Op
, SelectionDAG
&DAG
) {
2089 assert((Op
.getValueType() == MVT::i32
|| Op
.getValueType() == MVT::i64
) &&
2090 "Unsupported value type");
2091 SDValue Value
, Overflow
;
2093 SDValue LHS
= Op
.getOperand(0);
2094 SDValue RHS
= Op
.getOperand(1);
2096 switch (Op
.getOpcode()) {
2098 llvm_unreachable("Unknown overflow instruction!");
2100 Opc
= AArch64ISD::ADDS
;
2104 Opc
= AArch64ISD::ADDS
;
2108 Opc
= AArch64ISD::SUBS
;
2112 Opc
= AArch64ISD::SUBS
;
2115 // Multiply needs a little bit extra work.
2119 bool IsSigned
= Op
.getOpcode() == ISD::SMULO
;
2120 if (Op
.getValueType() == MVT::i32
) {
2121 unsigned ExtendOpc
= IsSigned
? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
2122 // For a 32 bit multiply with overflow check we want the instruction
2123 // selector to generate a widening multiply (SMADDL/UMADDL). For that we
2124 // need to generate the following pattern:
2125 // (i64 add 0, (i64 mul (i64 sext|zext i32 %a), (i64 sext|zext i32 %b))
2126 LHS
= DAG
.getNode(ExtendOpc
, DL
, MVT::i64
, LHS
);
2127 RHS
= DAG
.getNode(ExtendOpc
, DL
, MVT::i64
, RHS
);
2128 SDValue Mul
= DAG
.getNode(ISD::MUL
, DL
, MVT::i64
, LHS
, RHS
);
2129 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, MVT::i64
, Mul
,
2130 DAG
.getConstant(0, DL
, MVT::i64
));
2131 // On AArch64 the upper 32 bits are always zero extended for a 32 bit
2132 // operation. We need to clear out the upper 32 bits, because we used a
2133 // widening multiply that wrote all 64 bits. In the end this should be a
2135 Value
= DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i32
, Add
);
2137 // The signed overflow check requires more than just a simple check for
2138 // any bit set in the upper 32 bits of the result. These bits could be
2139 // just the sign bits of a negative number. To perform the overflow
2140 // check we have to arithmetic shift right the 32nd bit of the result by
2141 // 31 bits. Then we compare the result to the upper 32 bits.
2142 SDValue UpperBits
= DAG
.getNode(ISD::SRL
, DL
, MVT::i64
, Add
,
2143 DAG
.getConstant(32, DL
, MVT::i64
));
2144 UpperBits
= DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i32
, UpperBits
);
2145 SDValue LowerBits
= DAG
.getNode(ISD::SRA
, DL
, MVT::i32
, Value
,
2146 DAG
.getConstant(31, DL
, MVT::i64
));
2147 // It is important that LowerBits is last, otherwise the arithmetic
2148 // shift will not be folded into the compare (SUBS).
2149 SDVTList VTs
= DAG
.getVTList(MVT::i32
, MVT::i32
);
2150 Overflow
= DAG
.getNode(AArch64ISD::SUBS
, DL
, VTs
, UpperBits
, LowerBits
)
2153 // The overflow check for unsigned multiply is easy. We only need to
2154 // check if any of the upper 32 bits are set. This can be done with a
2155 // CMP (shifted register). For that we need to generate the following
2157 // (i64 AArch64ISD::SUBS i64 0, (i64 srl i64 %Mul, i64 32)
2158 SDValue UpperBits
= DAG
.getNode(ISD::SRL
, DL
, MVT::i64
, Mul
,
2159 DAG
.getConstant(32, DL
, MVT::i64
));
2160 SDVTList VTs
= DAG
.getVTList(MVT::i64
, MVT::i32
);
2162 DAG
.getNode(AArch64ISD::SUBS
, DL
, VTs
,
2163 DAG
.getConstant(0, DL
, MVT::i64
),
2164 UpperBits
).getValue(1);
2168 assert(Op
.getValueType() == MVT::i64
&& "Expected an i64 value type");
2169 // For the 64 bit multiply
2170 Value
= DAG
.getNode(ISD::MUL
, DL
, MVT::i64
, LHS
, RHS
);
2172 SDValue UpperBits
= DAG
.getNode(ISD::MULHS
, DL
, MVT::i64
, LHS
, RHS
);
2173 SDValue LowerBits
= DAG
.getNode(ISD::SRA
, DL
, MVT::i64
, Value
,
2174 DAG
.getConstant(63, DL
, MVT::i64
));
2175 // It is important that LowerBits is last, otherwise the arithmetic
2176 // shift will not be folded into the compare (SUBS).
2177 SDVTList VTs
= DAG
.getVTList(MVT::i64
, MVT::i32
);
2178 Overflow
= DAG
.getNode(AArch64ISD::SUBS
, DL
, VTs
, UpperBits
, LowerBits
)
2181 SDValue UpperBits
= DAG
.getNode(ISD::MULHU
, DL
, MVT::i64
, LHS
, RHS
);
2182 SDVTList VTs
= DAG
.getVTList(MVT::i64
, MVT::i32
);
2184 DAG
.getNode(AArch64ISD::SUBS
, DL
, VTs
,
2185 DAG
.getConstant(0, DL
, MVT::i64
),
2186 UpperBits
).getValue(1);
2193 SDVTList VTs
= DAG
.getVTList(Op
->getValueType(0), MVT::i32
);
2195 // Emit the AArch64 operation with overflow check.
2196 Value
= DAG
.getNode(Opc
, DL
, VTs
, LHS
, RHS
);
2197 Overflow
= Value
.getValue(1);
2199 return std::make_pair(Value
, Overflow
);
2202 SDValue
AArch64TargetLowering::LowerF128Call(SDValue Op
, SelectionDAG
&DAG
,
2203 RTLIB::Libcall Call
) const {
2204 SmallVector
<SDValue
, 2> Ops(Op
->op_begin(), Op
->op_end());
2205 MakeLibCallOptions CallOptions
;
2206 return makeLibCall(DAG
, Call
, MVT::f128
, Ops
, CallOptions
, SDLoc(Op
)).first
;
2209 // Returns true if the given Op is the overflow flag result of an overflow
2210 // intrinsic operation.
2211 static bool isOverflowIntrOpRes(SDValue Op
) {
2212 unsigned Opc
= Op
.getOpcode();
2213 return (Op
.getResNo() == 1 &&
2214 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
2215 Opc
== ISD::USUBO
|| Opc
== ISD::SMULO
|| Opc
== ISD::UMULO
));
2218 static SDValue
LowerXOR(SDValue Op
, SelectionDAG
&DAG
) {
2219 SDValue Sel
= Op
.getOperand(0);
2220 SDValue Other
= Op
.getOperand(1);
2223 // If the operand is an overflow checking operation, invert the condition
2224 // code and kill the Not operation. I.e., transform:
2225 // (xor (overflow_op_bool, 1))
2227 // (csel 1, 0, invert(cc), overflow_op_bool)
2228 // ... which later gets transformed to just a cset instruction with an
2229 // inverted condition code, rather than a cset + eor sequence.
2230 if (isOneConstant(Other
) && isOverflowIntrOpRes(Sel
)) {
2231 // Only lower legal XALUO ops.
2232 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Sel
->getValueType(0)))
2235 SDValue TVal
= DAG
.getConstant(1, dl
, MVT::i32
);
2236 SDValue FVal
= DAG
.getConstant(0, dl
, MVT::i32
);
2237 AArch64CC::CondCode CC
;
2238 SDValue Value
, Overflow
;
2239 std::tie(Value
, Overflow
) = getAArch64XALUOOp(CC
, Sel
.getValue(0), DAG
);
2240 SDValue CCVal
= DAG
.getConstant(getInvertedCondCode(CC
), dl
, MVT::i32
);
2241 return DAG
.getNode(AArch64ISD::CSEL
, dl
, Op
.getValueType(), TVal
, FVal
,
2244 // If neither operand is a SELECT_CC, give up.
2245 if (Sel
.getOpcode() != ISD::SELECT_CC
)
2246 std::swap(Sel
, Other
);
2247 if (Sel
.getOpcode() != ISD::SELECT_CC
)
2250 // The folding we want to perform is:
2251 // (xor x, (select_cc a, b, cc, 0, -1) )
2253 // (csel x, (xor x, -1), cc ...)
2255 // The latter will get matched to a CSINV instruction.
2257 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Sel
.getOperand(4))->get();
2258 SDValue LHS
= Sel
.getOperand(0);
2259 SDValue RHS
= Sel
.getOperand(1);
2260 SDValue TVal
= Sel
.getOperand(2);
2261 SDValue FVal
= Sel
.getOperand(3);
2263 // FIXME: This could be generalized to non-integer comparisons.
2264 if (LHS
.getValueType() != MVT::i32
&& LHS
.getValueType() != MVT::i64
)
2267 ConstantSDNode
*CFVal
= dyn_cast
<ConstantSDNode
>(FVal
);
2268 ConstantSDNode
*CTVal
= dyn_cast
<ConstantSDNode
>(TVal
);
2270 // The values aren't constants, this isn't the pattern we're looking for.
2271 if (!CFVal
|| !CTVal
)
2274 // We can commute the SELECT_CC by inverting the condition. This
2275 // might be needed to make this fit into a CSINV pattern.
2276 if (CTVal
->isAllOnesValue() && CFVal
->isNullValue()) {
2277 std::swap(TVal
, FVal
);
2278 std::swap(CTVal
, CFVal
);
2279 CC
= ISD::getSetCCInverse(CC
, true);
2282 // If the constants line up, perform the transform!
2283 if (CTVal
->isNullValue() && CFVal
->isAllOnesValue()) {
2285 SDValue Cmp
= getAArch64Cmp(LHS
, RHS
, CC
, CCVal
, DAG
, dl
);
2288 TVal
= DAG
.getNode(ISD::XOR
, dl
, Other
.getValueType(), Other
,
2289 DAG
.getConstant(-1ULL, dl
, Other
.getValueType()));
2291 return DAG
.getNode(AArch64ISD::CSEL
, dl
, Sel
.getValueType(), FVal
, TVal
,
2298 static SDValue
LowerADDC_ADDE_SUBC_SUBE(SDValue Op
, SelectionDAG
&DAG
) {
2299 EVT VT
= Op
.getValueType();
2301 // Let legalize expand this if it isn't a legal type yet.
2302 if (!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
2305 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
2308 bool ExtraOp
= false;
2309 switch (Op
.getOpcode()) {
2311 llvm_unreachable("Invalid code");
2313 Opc
= AArch64ISD::ADDS
;
2316 Opc
= AArch64ISD::SUBS
;
2319 Opc
= AArch64ISD::ADCS
;
2323 Opc
= AArch64ISD::SBCS
;
2329 return DAG
.getNode(Opc
, SDLoc(Op
), VTs
, Op
.getOperand(0), Op
.getOperand(1));
2330 return DAG
.getNode(Opc
, SDLoc(Op
), VTs
, Op
.getOperand(0), Op
.getOperand(1),
2334 static SDValue
LowerXALUO(SDValue Op
, SelectionDAG
&DAG
) {
2335 // Let legalize expand this if it isn't a legal type yet.
2336 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Op
.getValueType()))
2340 AArch64CC::CondCode CC
;
2341 // The actual operation that sets the overflow or carry flag.
2342 SDValue Value
, Overflow
;
2343 std::tie(Value
, Overflow
) = getAArch64XALUOOp(CC
, Op
, DAG
);
2345 // We use 0 and 1 as false and true values.
2346 SDValue TVal
= DAG
.getConstant(1, dl
, MVT::i32
);
2347 SDValue FVal
= DAG
.getConstant(0, dl
, MVT::i32
);
2349 // We use an inverted condition, because the conditional select is inverted
2350 // too. This will allow it to be selected to a single instruction:
2351 // CSINC Wd, WZR, WZR, invert(cond).
2352 SDValue CCVal
= DAG
.getConstant(getInvertedCondCode(CC
), dl
, MVT::i32
);
2353 Overflow
= DAG
.getNode(AArch64ISD::CSEL
, dl
, MVT::i32
, FVal
, TVal
,
2356 SDVTList VTs
= DAG
.getVTList(Op
.getValueType(), MVT::i32
);
2357 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, VTs
, Value
, Overflow
);
2360 // Prefetch operands are:
2361 // 1: Address to prefetch
2363 // 3: int locality (0 = no locality ... 3 = extreme locality)
2364 // 4: bool isDataCache
2365 static SDValue
LowerPREFETCH(SDValue Op
, SelectionDAG
&DAG
) {
2367 unsigned IsWrite
= cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue();
2368 unsigned Locality
= cast
<ConstantSDNode
>(Op
.getOperand(3))->getZExtValue();
2369 unsigned IsData
= cast
<ConstantSDNode
>(Op
.getOperand(4))->getZExtValue();
2371 bool IsStream
= !Locality
;
2372 // When the locality number is set
2374 // The front-end should have filtered out the out-of-range values
2375 assert(Locality
<= 3 && "Prefetch locality out-of-range");
2376 // The locality degree is the opposite of the cache speed.
2377 // Put the number the other way around.
2378 // The encoding starts at 0 for level 1
2379 Locality
= 3 - Locality
;
2382 // built the mask value encoding the expected behavior.
2383 unsigned PrfOp
= (IsWrite
<< 4) | // Load/Store bit
2384 (!IsData
<< 3) | // IsDataCache bit
2385 (Locality
<< 1) | // Cache level bits
2386 (unsigned)IsStream
; // Stream bit
2387 return DAG
.getNode(AArch64ISD::PREFETCH
, DL
, MVT::Other
, Op
.getOperand(0),
2388 DAG
.getConstant(PrfOp
, DL
, MVT::i32
), Op
.getOperand(1));
2391 SDValue
AArch64TargetLowering::LowerFP_EXTEND(SDValue Op
,
2392 SelectionDAG
&DAG
) const {
2393 assert(Op
.getValueType() == MVT::f128
&& "Unexpected lowering");
2396 LC
= RTLIB::getFPEXT(Op
.getOperand(0).getValueType(), Op
.getValueType());
2398 return LowerF128Call(Op
, DAG
, LC
);
2401 SDValue
AArch64TargetLowering::LowerFP_ROUND(SDValue Op
,
2402 SelectionDAG
&DAG
) const {
2403 if (Op
.getOperand(0).getValueType() != MVT::f128
) {
2404 // It's legal except when f128 is involved
2409 LC
= RTLIB::getFPROUND(Op
.getOperand(0).getValueType(), Op
.getValueType());
2411 // FP_ROUND node has a second operand indicating whether it is known to be
2412 // precise. That doesn't take part in the LibCall so we can't directly use
2414 SDValue SrcVal
= Op
.getOperand(0);
2415 MakeLibCallOptions CallOptions
;
2416 return makeLibCall(DAG
, LC
, Op
.getValueType(), SrcVal
, CallOptions
,
2420 SDValue
AArch64TargetLowering::LowerVectorFP_TO_INT(SDValue Op
,
2421 SelectionDAG
&DAG
) const {
2422 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
2423 // Any additional optimization in this function should be recorded
2424 // in the cost tables.
2425 EVT InVT
= Op
.getOperand(0).getValueType();
2426 EVT VT
= Op
.getValueType();
2427 unsigned NumElts
= InVT
.getVectorNumElements();
2429 // f16 conversions are promoted to f32 when full fp16 is not supported.
2430 if (InVT
.getVectorElementType() == MVT::f16
&&
2431 !Subtarget
->hasFullFP16()) {
2432 MVT NewVT
= MVT::getVectorVT(MVT::f32
, NumElts
);
2435 Op
.getOpcode(), dl
, Op
.getValueType(),
2436 DAG
.getNode(ISD::FP_EXTEND
, dl
, NewVT
, Op
.getOperand(0)));
2439 if (VT
.getSizeInBits() < InVT
.getSizeInBits()) {
2442 DAG
.getNode(Op
.getOpcode(), dl
, InVT
.changeVectorElementTypeToInteger(),
2444 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Cv
);
2447 if (VT
.getSizeInBits() > InVT
.getSizeInBits()) {
2450 MVT::getVectorVT(MVT::getFloatingPointVT(VT
.getScalarSizeInBits()),
2451 VT
.getVectorNumElements());
2452 SDValue Ext
= DAG
.getNode(ISD::FP_EXTEND
, dl
, ExtVT
, Op
.getOperand(0));
2453 return DAG
.getNode(Op
.getOpcode(), dl
, VT
, Ext
);
2456 // Type changing conversions are illegal.
2460 SDValue
AArch64TargetLowering::LowerFP_TO_INT(SDValue Op
,
2461 SelectionDAG
&DAG
) const {
2462 if (Op
.getOperand(0).getValueType().isVector())
2463 return LowerVectorFP_TO_INT(Op
, DAG
);
2465 // f16 conversions are promoted to f32 when full fp16 is not supported.
2466 if (Op
.getOperand(0).getValueType() == MVT::f16
&&
2467 !Subtarget
->hasFullFP16()) {
2470 Op
.getOpcode(), dl
, Op
.getValueType(),
2471 DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f32
, Op
.getOperand(0)));
2474 if (Op
.getOperand(0).getValueType() != MVT::f128
) {
2475 // It's legal except when f128 is involved
2480 if (Op
.getOpcode() == ISD::FP_TO_SINT
)
2481 LC
= RTLIB::getFPTOSINT(Op
.getOperand(0).getValueType(), Op
.getValueType());
2483 LC
= RTLIB::getFPTOUINT(Op
.getOperand(0).getValueType(), Op
.getValueType());
2485 SmallVector
<SDValue
, 2> Ops(Op
->op_begin(), Op
->op_end());
2486 MakeLibCallOptions CallOptions
;
2487 return makeLibCall(DAG
, LC
, Op
.getValueType(), Ops
, CallOptions
, SDLoc(Op
)).first
;
2490 static SDValue
LowerVectorINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) {
2491 // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp.
2492 // Any additional optimization in this function should be recorded
2493 // in the cost tables.
2494 EVT VT
= Op
.getValueType();
2496 SDValue In
= Op
.getOperand(0);
2497 EVT InVT
= In
.getValueType();
2499 if (VT
.getSizeInBits() < InVT
.getSizeInBits()) {
2501 MVT::getVectorVT(MVT::getFloatingPointVT(InVT
.getScalarSizeInBits()),
2502 InVT
.getVectorNumElements());
2503 In
= DAG
.getNode(Op
.getOpcode(), dl
, CastVT
, In
);
2504 return DAG
.getNode(ISD::FP_ROUND
, dl
, VT
, In
, DAG
.getIntPtrConstant(0, dl
));
2507 if (VT
.getSizeInBits() > InVT
.getSizeInBits()) {
2509 Op
.getOpcode() == ISD::SINT_TO_FP
? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
2510 EVT CastVT
= VT
.changeVectorElementTypeToInteger();
2511 In
= DAG
.getNode(CastOpc
, dl
, CastVT
, In
);
2512 return DAG
.getNode(Op
.getOpcode(), dl
, VT
, In
);
2518 SDValue
AArch64TargetLowering::LowerINT_TO_FP(SDValue Op
,
2519 SelectionDAG
&DAG
) const {
2520 if (Op
.getValueType().isVector())
2521 return LowerVectorINT_TO_FP(Op
, DAG
);
2523 // f16 conversions are promoted to f32 when full fp16 is not supported.
2524 if (Op
.getValueType() == MVT::f16
&&
2525 !Subtarget
->hasFullFP16()) {
2528 ISD::FP_ROUND
, dl
, MVT::f16
,
2529 DAG
.getNode(Op
.getOpcode(), dl
, MVT::f32
, Op
.getOperand(0)),
2530 DAG
.getIntPtrConstant(0, dl
));
2533 // i128 conversions are libcalls.
2534 if (Op
.getOperand(0).getValueType() == MVT::i128
)
2537 // Other conversions are legal, unless it's to the completely software-based
2539 if (Op
.getValueType() != MVT::f128
)
2543 if (Op
.getOpcode() == ISD::SINT_TO_FP
)
2544 LC
= RTLIB::getSINTTOFP(Op
.getOperand(0).getValueType(), Op
.getValueType());
2546 LC
= RTLIB::getUINTTOFP(Op
.getOperand(0).getValueType(), Op
.getValueType());
2548 return LowerF128Call(Op
, DAG
, LC
);
2551 SDValue
AArch64TargetLowering::LowerFSINCOS(SDValue Op
,
2552 SelectionDAG
&DAG
) const {
2553 // For iOS, we want to call an alternative entry point: __sincos_stret,
2554 // which returns the values in two S / D registers.
2556 SDValue Arg
= Op
.getOperand(0);
2557 EVT ArgVT
= Arg
.getValueType();
2558 Type
*ArgTy
= ArgVT
.getTypeForEVT(*DAG
.getContext());
2565 Entry
.IsSExt
= false;
2566 Entry
.IsZExt
= false;
2567 Args
.push_back(Entry
);
2569 RTLIB::Libcall LC
= ArgVT
== MVT::f64
? RTLIB::SINCOS_STRET_F64
2570 : RTLIB::SINCOS_STRET_F32
;
2571 const char *LibcallName
= getLibcallName(LC
);
2573 DAG
.getExternalSymbol(LibcallName
, getPointerTy(DAG
.getDataLayout()));
2575 StructType
*RetTy
= StructType::get(ArgTy
, ArgTy
);
2576 TargetLowering::CallLoweringInfo
CLI(DAG
);
2578 .setChain(DAG
.getEntryNode())
2579 .setLibCallee(CallingConv::Fast
, RetTy
, Callee
, std::move(Args
));
2581 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
2582 return CallResult
.first
;
2585 static SDValue
LowerBITCAST(SDValue Op
, SelectionDAG
&DAG
) {
2586 if (Op
.getValueType() != MVT::f16
)
2589 assert(Op
.getOperand(0).getValueType() == MVT::i16
);
2592 Op
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, MVT::i32
, Op
.getOperand(0));
2593 Op
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::f32
, Op
);
2595 DAG
.getMachineNode(TargetOpcode::EXTRACT_SUBREG
, DL
, MVT::f16
, Op
,
2596 DAG
.getTargetConstant(AArch64::hsub
, DL
, MVT::i32
)),
2600 static EVT
getExtensionTo64Bits(const EVT
&OrigVT
) {
2601 if (OrigVT
.getSizeInBits() >= 64)
2604 assert(OrigVT
.isSimple() && "Expecting a simple value type");
2606 MVT::SimpleValueType OrigSimpleTy
= OrigVT
.getSimpleVT().SimpleTy
;
2607 switch (OrigSimpleTy
) {
2608 default: llvm_unreachable("Unexpected Vector Type");
2617 static SDValue
addRequiredExtensionForVectorMULL(SDValue N
, SelectionDAG
&DAG
,
2620 unsigned ExtOpcode
) {
2621 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
2622 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
2623 // 64-bits we need to insert a new extension so that it will be 64-bits.
2624 assert(ExtTy
.is128BitVector() && "Unexpected extension size");
2625 if (OrigTy
.getSizeInBits() >= 64)
2628 // Must extend size to at least 64 bits to be used as an operand for VMULL.
2629 EVT NewVT
= getExtensionTo64Bits(OrigTy
);
2631 return DAG
.getNode(ExtOpcode
, SDLoc(N
), NewVT
, N
);
2634 static bool isExtendedBUILD_VECTOR(SDNode
*N
, SelectionDAG
&DAG
,
2636 EVT VT
= N
->getValueType(0);
2638 if (N
->getOpcode() != ISD::BUILD_VECTOR
)
2641 for (const SDValue
&Elt
: N
->op_values()) {
2642 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Elt
)) {
2643 unsigned EltSize
= VT
.getScalarSizeInBits();
2644 unsigned HalfSize
= EltSize
/ 2;
2646 if (!isIntN(HalfSize
, C
->getSExtValue()))
2649 if (!isUIntN(HalfSize
, C
->getZExtValue()))
2660 static SDValue
skipExtensionForVectorMULL(SDNode
*N
, SelectionDAG
&DAG
) {
2661 if (N
->getOpcode() == ISD::SIGN_EXTEND
|| N
->getOpcode() == ISD::ZERO_EXTEND
)
2662 return addRequiredExtensionForVectorMULL(N
->getOperand(0), DAG
,
2663 N
->getOperand(0)->getValueType(0),
2667 assert(N
->getOpcode() == ISD::BUILD_VECTOR
&& "expected BUILD_VECTOR");
2668 EVT VT
= N
->getValueType(0);
2670 unsigned EltSize
= VT
.getScalarSizeInBits() / 2;
2671 unsigned NumElts
= VT
.getVectorNumElements();
2672 MVT TruncVT
= MVT::getIntegerVT(EltSize
);
2673 SmallVector
<SDValue
, 8> Ops
;
2674 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2675 ConstantSDNode
*C
= cast
<ConstantSDNode
>(N
->getOperand(i
));
2676 const APInt
&CInt
= C
->getAPIntValue();
2677 // Element types smaller than 32 bits are not legal, so use i32 elements.
2678 // The values are implicitly truncated so sext vs. zext doesn't matter.
2679 Ops
.push_back(DAG
.getConstant(CInt
.zextOrTrunc(32), dl
, MVT::i32
));
2681 return DAG
.getBuildVector(MVT::getVectorVT(TruncVT
, NumElts
), dl
, Ops
);
2684 static bool isSignExtended(SDNode
*N
, SelectionDAG
&DAG
) {
2685 return N
->getOpcode() == ISD::SIGN_EXTEND
||
2686 isExtendedBUILD_VECTOR(N
, DAG
, true);
2689 static bool isZeroExtended(SDNode
*N
, SelectionDAG
&DAG
) {
2690 return N
->getOpcode() == ISD::ZERO_EXTEND
||
2691 isExtendedBUILD_VECTOR(N
, DAG
, false);
2694 static bool isAddSubSExt(SDNode
*N
, SelectionDAG
&DAG
) {
2695 unsigned Opcode
= N
->getOpcode();
2696 if (Opcode
== ISD::ADD
|| Opcode
== ISD::SUB
) {
2697 SDNode
*N0
= N
->getOperand(0).getNode();
2698 SDNode
*N1
= N
->getOperand(1).getNode();
2699 return N0
->hasOneUse() && N1
->hasOneUse() &&
2700 isSignExtended(N0
, DAG
) && isSignExtended(N1
, DAG
);
2705 static bool isAddSubZExt(SDNode
*N
, SelectionDAG
&DAG
) {
2706 unsigned Opcode
= N
->getOpcode();
2707 if (Opcode
== ISD::ADD
|| Opcode
== ISD::SUB
) {
2708 SDNode
*N0
= N
->getOperand(0).getNode();
2709 SDNode
*N1
= N
->getOperand(1).getNode();
2710 return N0
->hasOneUse() && N1
->hasOneUse() &&
2711 isZeroExtended(N0
, DAG
) && isZeroExtended(N1
, DAG
);
2716 SDValue
AArch64TargetLowering::LowerFLT_ROUNDS_(SDValue Op
,
2717 SelectionDAG
&DAG
) const {
2718 // The rounding mode is in bits 23:22 of the FPSCR.
2719 // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
2720 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
2721 // so that the shift + and get folded into a bitfield extract.
2724 SDValue FPCR_64
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::i64
,
2725 DAG
.getConstant(Intrinsic::aarch64_get_fpcr
, dl
,
2727 SDValue FPCR_32
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, FPCR_64
);
2728 SDValue FltRounds
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, FPCR_32
,
2729 DAG
.getConstant(1U << 22, dl
, MVT::i32
));
2730 SDValue RMODE
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, FltRounds
,
2731 DAG
.getConstant(22, dl
, MVT::i32
));
2732 return DAG
.getNode(ISD::AND
, dl
, MVT::i32
, RMODE
,
2733 DAG
.getConstant(3, dl
, MVT::i32
));
2736 static SDValue
LowerMUL(SDValue Op
, SelectionDAG
&DAG
) {
2737 // Multiplications are only custom-lowered for 128-bit vectors so that
2738 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
2739 EVT VT
= Op
.getValueType();
2740 assert(VT
.is128BitVector() && VT
.isInteger() &&
2741 "unexpected type for custom-lowering ISD::MUL");
2742 SDNode
*N0
= Op
.getOperand(0).getNode();
2743 SDNode
*N1
= Op
.getOperand(1).getNode();
2744 unsigned NewOpc
= 0;
2746 bool isN0SExt
= isSignExtended(N0
, DAG
);
2747 bool isN1SExt
= isSignExtended(N1
, DAG
);
2748 if (isN0SExt
&& isN1SExt
)
2749 NewOpc
= AArch64ISD::SMULL
;
2751 bool isN0ZExt
= isZeroExtended(N0
, DAG
);
2752 bool isN1ZExt
= isZeroExtended(N1
, DAG
);
2753 if (isN0ZExt
&& isN1ZExt
)
2754 NewOpc
= AArch64ISD::UMULL
;
2755 else if (isN1SExt
|| isN1ZExt
) {
2756 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
2757 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
2758 if (isN1SExt
&& isAddSubSExt(N0
, DAG
)) {
2759 NewOpc
= AArch64ISD::SMULL
;
2761 } else if (isN1ZExt
&& isAddSubZExt(N0
, DAG
)) {
2762 NewOpc
= AArch64ISD::UMULL
;
2764 } else if (isN0ZExt
&& isAddSubZExt(N1
, DAG
)) {
2766 NewOpc
= AArch64ISD::UMULL
;
2772 if (VT
== MVT::v2i64
)
2773 // Fall through to expand this. It is not legal.
2776 // Other vector multiplications are legal.
2781 // Legalize to a S/UMULL instruction
2784 SDValue Op1
= skipExtensionForVectorMULL(N1
, DAG
);
2786 Op0
= skipExtensionForVectorMULL(N0
, DAG
);
2787 assert(Op0
.getValueType().is64BitVector() &&
2788 Op1
.getValueType().is64BitVector() &&
2789 "unexpected types for extended operands to VMULL");
2790 return DAG
.getNode(NewOpc
, DL
, VT
, Op0
, Op1
);
2792 // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during
2793 // isel lowering to take advantage of no-stall back to back s/umul + s/umla.
2794 // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57
2795 SDValue N00
= skipExtensionForVectorMULL(N0
->getOperand(0).getNode(), DAG
);
2796 SDValue N01
= skipExtensionForVectorMULL(N0
->getOperand(1).getNode(), DAG
);
2797 EVT Op1VT
= Op1
.getValueType();
2798 return DAG
.getNode(N0
->getOpcode(), DL
, VT
,
2799 DAG
.getNode(NewOpc
, DL
, VT
,
2800 DAG
.getNode(ISD::BITCAST
, DL
, Op1VT
, N00
), Op1
),
2801 DAG
.getNode(NewOpc
, DL
, VT
,
2802 DAG
.getNode(ISD::BITCAST
, DL
, Op1VT
, N01
), Op1
));
2805 SDValue
AArch64TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op
,
2806 SelectionDAG
&DAG
) const {
2807 unsigned IntNo
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
2810 default: return SDValue(); // Don't custom lower most intrinsics.
2811 case Intrinsic::thread_pointer
: {
2812 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
2813 return DAG
.getNode(AArch64ISD::THREAD_POINTER
, dl
, PtrVT
);
2815 case Intrinsic::aarch64_neon_abs
: {
2816 EVT Ty
= Op
.getValueType();
2817 if (Ty
== MVT::i64
) {
2818 SDValue Result
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v1i64
,
2820 Result
= DAG
.getNode(ISD::ABS
, dl
, MVT::v1i64
, Result
);
2821 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::i64
, Result
);
2822 } else if (Ty
.isVector() && Ty
.isInteger() && isTypeLegal(Ty
)) {
2823 return DAG
.getNode(ISD::ABS
, dl
, Ty
, Op
.getOperand(1));
2825 report_fatal_error("Unexpected type for AArch64 NEON intrinic");
2828 case Intrinsic::aarch64_neon_smax
:
2829 return DAG
.getNode(ISD::SMAX
, dl
, Op
.getValueType(),
2830 Op
.getOperand(1), Op
.getOperand(2));
2831 case Intrinsic::aarch64_neon_umax
:
2832 return DAG
.getNode(ISD::UMAX
, dl
, Op
.getValueType(),
2833 Op
.getOperand(1), Op
.getOperand(2));
2834 case Intrinsic::aarch64_neon_smin
:
2835 return DAG
.getNode(ISD::SMIN
, dl
, Op
.getValueType(),
2836 Op
.getOperand(1), Op
.getOperand(2));
2837 case Intrinsic::aarch64_neon_umin
:
2838 return DAG
.getNode(ISD::UMIN
, dl
, Op
.getValueType(),
2839 Op
.getOperand(1), Op
.getOperand(2));
2841 case Intrinsic::localaddress
: {
2842 const auto &MF
= DAG
.getMachineFunction();
2843 const auto *RegInfo
= Subtarget
->getRegisterInfo();
2844 unsigned Reg
= RegInfo
->getLocalAddressRegister(MF
);
2845 return DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, Reg
,
2846 Op
.getSimpleValueType());
2849 case Intrinsic::eh_recoverfp
: {
2850 // FIXME: This needs to be implemented to correctly handle highly aligned
2851 // stack objects. For now we simply return the incoming FP. Refer D53541
2852 // for more details.
2853 SDValue FnOp
= Op
.getOperand(1);
2854 SDValue IncomingFPOp
= Op
.getOperand(2);
2855 GlobalAddressSDNode
*GSD
= dyn_cast
<GlobalAddressSDNode
>(FnOp
);
2856 auto *Fn
= dyn_cast_or_null
<Function
>(GSD
? GSD
->getGlobal() : nullptr);
2859 "llvm.eh.recoverfp must take a function as the first argument");
2860 return IncomingFPOp
;
2865 // Custom lower trunc store for v4i8 vectors, since it is promoted to v4i16.
2866 static SDValue
LowerTruncateVectorStore(SDLoc DL
, StoreSDNode
*ST
,
2868 SelectionDAG
&DAG
) {
2869 assert(VT
.isVector() && "VT should be a vector type");
2870 assert(MemVT
== MVT::v4i8
&& VT
== MVT::v4i16
);
2872 SDValue Value
= ST
->getValue();
2874 // It first extend the promoted v4i16 to v8i16, truncate to v8i8, and extract
2875 // the word lane which represent the v4i8 subvector. It optimizes the store
2881 SDValue Undef
= DAG
.getUNDEF(MVT::i16
);
2882 SDValue UndefVec
= DAG
.getBuildVector(MVT::v4i16
, DL
,
2883 {Undef
, Undef
, Undef
, Undef
});
2885 SDValue TruncExt
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, MVT::v8i16
,
2887 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::v8i8
, TruncExt
);
2889 Trunc
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::v2i32
, Trunc
);
2890 SDValue ExtractTrunc
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::i32
,
2891 Trunc
, DAG
.getConstant(0, DL
, MVT::i64
));
2893 return DAG
.getStore(ST
->getChain(), DL
, ExtractTrunc
,
2894 ST
->getBasePtr(), ST
->getMemOperand());
2897 // Custom lowering for any store, vector or scalar and/or default or with
2898 // a truncate operations. Currently only custom lower truncate operation
2899 // from vector v4i16 to v4i8.
2900 SDValue
AArch64TargetLowering::LowerSTORE(SDValue Op
,
2901 SelectionDAG
&DAG
) const {
2903 StoreSDNode
*StoreNode
= cast
<StoreSDNode
>(Op
);
2904 assert (StoreNode
&& "Can only custom lower store nodes");
2906 SDValue Value
= StoreNode
->getValue();
2908 EVT VT
= Value
.getValueType();
2909 EVT MemVT
= StoreNode
->getMemoryVT();
2911 assert (VT
.isVector() && "Can only custom lower vector store types");
2913 unsigned AS
= StoreNode
->getAddressSpace();
2914 unsigned Align
= StoreNode
->getAlignment();
2915 if (Align
< MemVT
.getStoreSize() &&
2916 !allowsMisalignedMemoryAccesses(
2917 MemVT
, AS
, Align
, StoreNode
->getMemOperand()->getFlags(), nullptr)) {
2918 return scalarizeVectorStore(StoreNode
, DAG
);
2921 if (StoreNode
->isTruncatingStore()) {
2922 return LowerTruncateVectorStore(Dl
, StoreNode
, VT
, MemVT
, DAG
);
2928 SDValue
AArch64TargetLowering::LowerOperation(SDValue Op
,
2929 SelectionDAG
&DAG
) const {
2930 LLVM_DEBUG(dbgs() << "Custom lowering: ");
2931 LLVM_DEBUG(Op
.dump());
2933 switch (Op
.getOpcode()) {
2935 llvm_unreachable("unimplemented operand");
2938 return LowerBITCAST(Op
, DAG
);
2939 case ISD::GlobalAddress
:
2940 return LowerGlobalAddress(Op
, DAG
);
2941 case ISD::GlobalTLSAddress
:
2942 return LowerGlobalTLSAddress(Op
, DAG
);
2944 return LowerSETCC(Op
, DAG
);
2946 return LowerBR_CC(Op
, DAG
);
2948 return LowerSELECT(Op
, DAG
);
2949 case ISD::SELECT_CC
:
2950 return LowerSELECT_CC(Op
, DAG
);
2951 case ISD::JumpTable
:
2952 return LowerJumpTable(Op
, DAG
);
2954 return LowerBR_JT(Op
, DAG
);
2955 case ISD::ConstantPool
:
2956 return LowerConstantPool(Op
, DAG
);
2957 case ISD::BlockAddress
:
2958 return LowerBlockAddress(Op
, DAG
);
2960 return LowerVASTART(Op
, DAG
);
2962 return LowerVACOPY(Op
, DAG
);
2964 return LowerVAARG(Op
, DAG
);
2969 return LowerADDC_ADDE_SUBC_SUBE(Op
, DAG
);
2976 return LowerXALUO(Op
, DAG
);
2978 return LowerF128Call(Op
, DAG
, RTLIB::ADD_F128
);
2980 return LowerF128Call(Op
, DAG
, RTLIB::SUB_F128
);
2982 return LowerF128Call(Op
, DAG
, RTLIB::MUL_F128
);
2984 return LowerF128Call(Op
, DAG
, RTLIB::DIV_F128
);
2986 return LowerFP_ROUND(Op
, DAG
);
2987 case ISD::FP_EXTEND
:
2988 return LowerFP_EXTEND(Op
, DAG
);
2989 case ISD::FRAMEADDR
:
2990 return LowerFRAMEADDR(Op
, DAG
);
2991 case ISD::SPONENTRY
:
2992 return LowerSPONENTRY(Op
, DAG
);
2993 case ISD::RETURNADDR
:
2994 return LowerRETURNADDR(Op
, DAG
);
2995 case ISD::ADDROFRETURNADDR
:
2996 return LowerADDROFRETURNADDR(Op
, DAG
);
2997 case ISD::INSERT_VECTOR_ELT
:
2998 return LowerINSERT_VECTOR_ELT(Op
, DAG
);
2999 case ISD::EXTRACT_VECTOR_ELT
:
3000 return LowerEXTRACT_VECTOR_ELT(Op
, DAG
);
3001 case ISD::BUILD_VECTOR
:
3002 return LowerBUILD_VECTOR(Op
, DAG
);
3003 case ISD::VECTOR_SHUFFLE
:
3004 return LowerVECTOR_SHUFFLE(Op
, DAG
);
3005 case ISD::EXTRACT_SUBVECTOR
:
3006 return LowerEXTRACT_SUBVECTOR(Op
, DAG
);
3010 return LowerVectorSRA_SRL_SHL(Op
, DAG
);
3011 case ISD::SHL_PARTS
:
3012 return LowerShiftLeftParts(Op
, DAG
);
3013 case ISD::SRL_PARTS
:
3014 case ISD::SRA_PARTS
:
3015 return LowerShiftRightParts(Op
, DAG
);
3017 return LowerCTPOP(Op
, DAG
);
3018 case ISD::FCOPYSIGN
:
3019 return LowerFCOPYSIGN(Op
, DAG
);
3021 return LowerVectorOR(Op
, DAG
);
3023 return LowerXOR(Op
, DAG
);
3025 return LowerPREFETCH(Op
, DAG
);
3026 case ISD::SINT_TO_FP
:
3027 case ISD::UINT_TO_FP
:
3028 return LowerINT_TO_FP(Op
, DAG
);
3029 case ISD::FP_TO_SINT
:
3030 case ISD::FP_TO_UINT
:
3031 return LowerFP_TO_INT(Op
, DAG
);
3033 return LowerFSINCOS(Op
, DAG
);
3034 case ISD::FLT_ROUNDS_
:
3035 return LowerFLT_ROUNDS_(Op
, DAG
);
3037 return LowerMUL(Op
, DAG
);
3038 case ISD::INTRINSIC_WO_CHAIN
:
3039 return LowerINTRINSIC_WO_CHAIN(Op
, DAG
);
3041 return LowerSTORE(Op
, DAG
);
3042 case ISD::VECREDUCE_ADD
:
3043 case ISD::VECREDUCE_SMAX
:
3044 case ISD::VECREDUCE_SMIN
:
3045 case ISD::VECREDUCE_UMAX
:
3046 case ISD::VECREDUCE_UMIN
:
3047 case ISD::VECREDUCE_FMAX
:
3048 case ISD::VECREDUCE_FMIN
:
3049 return LowerVECREDUCE(Op
, DAG
);
3050 case ISD::ATOMIC_LOAD_SUB
:
3051 return LowerATOMIC_LOAD_SUB(Op
, DAG
);
3052 case ISD::ATOMIC_LOAD_AND
:
3053 return LowerATOMIC_LOAD_AND(Op
, DAG
);
3054 case ISD::DYNAMIC_STACKALLOC
:
3055 return LowerDYNAMIC_STACKALLOC(Op
, DAG
);
3059 //===----------------------------------------------------------------------===//
3060 // Calling Convention Implementation
3061 //===----------------------------------------------------------------------===//
3063 /// Selects the correct CCAssignFn for a given CallingConvention value.
3064 CCAssignFn
*AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC
,
3065 bool IsVarArg
) const {
3068 report_fatal_error("Unsupported calling convention.");
3069 case CallingConv::WebKit_JS
:
3070 return CC_AArch64_WebKit_JS
;
3071 case CallingConv::GHC
:
3072 return CC_AArch64_GHC
;
3073 case CallingConv::C
:
3074 case CallingConv::Fast
:
3075 case CallingConv::PreserveMost
:
3076 case CallingConv::CXX_FAST_TLS
:
3077 case CallingConv::Swift
:
3078 if (Subtarget
->isTargetWindows() && IsVarArg
)
3079 return CC_AArch64_Win64_VarArg
;
3080 if (!Subtarget
->isTargetDarwin())
3081 return CC_AArch64_AAPCS
;
3083 return CC_AArch64_DarwinPCS
;
3084 return Subtarget
->isTargetILP32() ? CC_AArch64_DarwinPCS_ILP32_VarArg
3085 : CC_AArch64_DarwinPCS_VarArg
;
3086 case CallingConv::Win64
:
3087 return IsVarArg
? CC_AArch64_Win64_VarArg
: CC_AArch64_AAPCS
;
3088 case CallingConv::AArch64_VectorCall
:
3089 return CC_AArch64_AAPCS
;
3094 AArch64TargetLowering::CCAssignFnForReturn(CallingConv::ID CC
) const {
3095 return CC
== CallingConv::WebKit_JS
? RetCC_AArch64_WebKit_JS
3096 : RetCC_AArch64_AAPCS
;
3099 SDValue
AArch64TargetLowering::LowerFormalArguments(
3100 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
3101 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&DL
,
3102 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
3103 MachineFunction
&MF
= DAG
.getMachineFunction();
3104 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3105 bool IsWin64
= Subtarget
->isCallingConvWin64(MF
.getFunction().getCallingConv());
3107 // Assign locations to all of the incoming arguments.
3108 SmallVector
<CCValAssign
, 16> ArgLocs
;
3109 DenseMap
<unsigned, SDValue
> CopiedRegs
;
3110 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), ArgLocs
,
3113 // At this point, Ins[].VT may already be promoted to i32. To correctly
3114 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
3115 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
3116 // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here
3117 // we use a special version of AnalyzeFormalArguments to pass in ValVT and
3119 unsigned NumArgs
= Ins
.size();
3120 Function::const_arg_iterator CurOrigArg
= MF
.getFunction().arg_begin();
3121 unsigned CurArgIdx
= 0;
3122 for (unsigned i
= 0; i
!= NumArgs
; ++i
) {
3123 MVT ValVT
= Ins
[i
].VT
;
3124 if (Ins
[i
].isOrigArg()) {
3125 std::advance(CurOrigArg
, Ins
[i
].getOrigArgIndex() - CurArgIdx
);
3126 CurArgIdx
= Ins
[i
].getOrigArgIndex();
3128 // Get type of the original argument.
3129 EVT ActualVT
= getValueType(DAG
.getDataLayout(), CurOrigArg
->getType(),
3130 /*AllowUnknown*/ true);
3131 MVT ActualMVT
= ActualVT
.isSimple() ? ActualVT
.getSimpleVT() : MVT::Other
;
3132 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
3133 if (ActualMVT
== MVT::i1
|| ActualMVT
== MVT::i8
)
3135 else if (ActualMVT
== MVT::i16
)
3138 CCAssignFn
*AssignFn
= CCAssignFnForCall(CallConv
, /*IsVarArg=*/false);
3140 AssignFn(i
, ValVT
, ValVT
, CCValAssign::Full
, Ins
[i
].Flags
, CCInfo
);
3141 assert(!Res
&& "Call operand has unhandled type");
3144 assert(ArgLocs
.size() == Ins
.size());
3145 SmallVector
<SDValue
, 16> ArgValues
;
3146 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
3147 CCValAssign
&VA
= ArgLocs
[i
];
3149 if (Ins
[i
].Flags
.isByVal()) {
3150 // Byval is used for HFAs in the PCS, but the system should work in a
3151 // non-compliant manner for larger structs.
3152 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3153 int Size
= Ins
[i
].Flags
.getByValSize();
3154 unsigned NumRegs
= (Size
+ 7) / 8;
3156 // FIXME: This works on big-endian for composite byvals, which are the common
3157 // case. It should also work for fundamental types too.
3159 MFI
.CreateFixedObject(8 * NumRegs
, VA
.getLocMemOffset(), false);
3160 SDValue FrameIdxN
= DAG
.getFrameIndex(FrameIdx
, PtrVT
);
3161 InVals
.push_back(FrameIdxN
);
3167 if (VA
.isRegLoc()) {
3168 // Arguments stored in registers.
3169 EVT RegVT
= VA
.getLocVT();
3170 const TargetRegisterClass
*RC
;
3172 if (RegVT
== MVT::i32
)
3173 RC
= &AArch64::GPR32RegClass
;
3174 else if (RegVT
== MVT::i64
)
3175 RC
= &AArch64::GPR64RegClass
;
3176 else if (RegVT
== MVT::f16
)
3177 RC
= &AArch64::FPR16RegClass
;
3178 else if (RegVT
== MVT::f32
)
3179 RC
= &AArch64::FPR32RegClass
;
3180 else if (RegVT
== MVT::f64
|| RegVT
.is64BitVector())
3181 RC
= &AArch64::FPR64RegClass
;
3182 else if (RegVT
== MVT::f128
|| RegVT
.is128BitVector())
3183 RC
= &AArch64::FPR128RegClass
;
3184 else if (RegVT
.isScalableVector() &&
3185 RegVT
.getVectorElementType() == MVT::i1
)
3186 RC
= &AArch64::PPRRegClass
;
3187 else if (RegVT
.isScalableVector())
3188 RC
= &AArch64::ZPRRegClass
;
3190 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
3192 // Transform the arguments in physical registers into virtual ones.
3193 unsigned Reg
= MF
.addLiveIn(VA
.getLocReg(), RC
);
3194 ArgValue
= DAG
.getCopyFromReg(Chain
, DL
, Reg
, RegVT
);
3196 // If this is an 8, 16 or 32-bit value, it is really passed promoted
3197 // to 64 bits. Insert an assert[sz]ext to capture this, then
3198 // truncate to the right size.
3199 switch (VA
.getLocInfo()) {
3201 llvm_unreachable("Unknown loc info!");
3202 case CCValAssign::Full
:
3204 case CCValAssign::Indirect
:
3205 assert(VA
.getValVT().isScalableVector() &&
3206 "Only scalable vectors can be passed indirectly");
3207 llvm_unreachable("Spilling of SVE vectors not yet implemented");
3208 case CCValAssign::BCvt
:
3209 ArgValue
= DAG
.getNode(ISD::BITCAST
, DL
, VA
.getValVT(), ArgValue
);
3211 case CCValAssign::AExt
:
3212 case CCValAssign::SExt
:
3213 case CCValAssign::ZExt
:
3215 case CCValAssign::AExtUpper
:
3216 ArgValue
= DAG
.getNode(ISD::SRL
, DL
, RegVT
, ArgValue
,
3217 DAG
.getConstant(32, DL
, RegVT
));
3218 ArgValue
= DAG
.getZExtOrTrunc(ArgValue
, DL
, VA
.getValVT());
3221 } else { // VA.isRegLoc()
3222 assert(VA
.isMemLoc() && "CCValAssign is neither reg nor mem");
3223 unsigned ArgOffset
= VA
.getLocMemOffset();
3224 unsigned ArgSize
= VA
.getValVT().getSizeInBits() / 8;
3226 uint32_t BEAlign
= 0;
3227 if (!Subtarget
->isLittleEndian() && ArgSize
< 8 &&
3228 !Ins
[i
].Flags
.isInConsecutiveRegs())
3229 BEAlign
= 8 - ArgSize
;
3231 int FI
= MFI
.CreateFixedObject(ArgSize
, ArgOffset
+ BEAlign
, true);
3233 // Create load nodes to retrieve arguments from the stack.
3234 SDValue FIN
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
3236 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
3237 ISD::LoadExtType ExtType
= ISD::NON_EXTLOAD
;
3238 MVT MemVT
= VA
.getValVT();
3240 switch (VA
.getLocInfo()) {
3243 case CCValAssign::Trunc
:
3244 case CCValAssign::BCvt
:
3245 MemVT
= VA
.getLocVT();
3247 case CCValAssign::Indirect
:
3248 assert(VA
.getValVT().isScalableVector() &&
3249 "Only scalable vectors can be passed indirectly");
3250 llvm_unreachable("Spilling of SVE vectors not yet implemented");
3251 case CCValAssign::SExt
:
3252 ExtType
= ISD::SEXTLOAD
;
3254 case CCValAssign::ZExt
:
3255 ExtType
= ISD::ZEXTLOAD
;
3257 case CCValAssign::AExt
:
3258 ExtType
= ISD::EXTLOAD
;
3262 ArgValue
= DAG
.getExtLoad(
3263 ExtType
, DL
, VA
.getLocVT(), Chain
, FIN
,
3264 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
),
3268 if (Subtarget
->isTargetILP32() && Ins
[i
].Flags
.isPointer())
3269 ArgValue
= DAG
.getNode(ISD::AssertZext
, DL
, ArgValue
.getValueType(),
3270 ArgValue
, DAG
.getValueType(MVT::i32
));
3271 InVals
.push_back(ArgValue
);
3275 AArch64FunctionInfo
*FuncInfo
= MF
.getInfo
<AArch64FunctionInfo
>();
3277 if (!Subtarget
->isTargetDarwin() || IsWin64
) {
3278 // The AAPCS variadic function ABI is identical to the non-variadic
3279 // one. As a result there may be more arguments in registers and we should
3280 // save them for future reference.
3281 // Win64 variadic functions also pass arguments in registers, but all float
3282 // arguments are passed in integer registers.
3283 saveVarArgRegisters(CCInfo
, DAG
, DL
, Chain
);
3286 // This will point to the next argument passed via stack.
3287 unsigned StackOffset
= CCInfo
.getNextStackOffset();
3288 // We currently pass all varargs at 8-byte alignment, or 4 for ILP32
3289 StackOffset
= alignTo(StackOffset
, Subtarget
->isTargetILP32() ? 4 : 8);
3290 FuncInfo
->setVarArgsStackIndex(MFI
.CreateFixedObject(4, StackOffset
, true));
3292 if (MFI
.hasMustTailInVarArgFunc()) {
3293 SmallVector
<MVT
, 2> RegParmTypes
;
3294 RegParmTypes
.push_back(MVT::i64
);
3295 RegParmTypes
.push_back(MVT::f128
);
3296 // Compute the set of forwarded registers. The rest are scratch.
3297 SmallVectorImpl
<ForwardedRegister
> &Forwards
=
3298 FuncInfo
->getForwardedMustTailRegParms();
3299 CCInfo
.analyzeMustTailForwardedRegisters(Forwards
, RegParmTypes
,
3302 // Conservatively forward X8, since it might be used for aggregate return.
3303 if (!CCInfo
.isAllocated(AArch64::X8
)) {
3304 unsigned X8VReg
= MF
.addLiveIn(AArch64::X8
, &AArch64::GPR64RegClass
);
3305 Forwards
.push_back(ForwardedRegister(X8VReg
, AArch64::X8
, MVT::i64
));
3310 // On Windows, InReg pointers must be returned, so record the pointer in a
3311 // virtual register at the start of the function so it can be returned in the
3314 for (unsigned I
= 0, E
= Ins
.size(); I
!= E
; ++I
) {
3315 if (Ins
[I
].Flags
.isInReg()) {
3316 assert(!FuncInfo
->getSRetReturnReg());
3318 MVT PtrTy
= getPointerTy(DAG
.getDataLayout());
3320 MF
.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy
));
3321 FuncInfo
->setSRetReturnReg(Reg
);
3323 SDValue Copy
= DAG
.getCopyToReg(DAG
.getEntryNode(), DL
, Reg
, InVals
[I
]);
3324 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Copy
, Chain
);
3330 unsigned StackArgSize
= CCInfo
.getNextStackOffset();
3331 bool TailCallOpt
= MF
.getTarget().Options
.GuaranteedTailCallOpt
;
3332 if (DoesCalleeRestoreStack(CallConv
, TailCallOpt
)) {
3333 // This is a non-standard ABI so by fiat I say we're allowed to make full
3334 // use of the stack area to be popped, which must be aligned to 16 bytes in
3336 StackArgSize
= alignTo(StackArgSize
, 16);
3338 // If we're expected to restore the stack (e.g. fastcc) then we'll be adding
3339 // a multiple of 16.
3340 FuncInfo
->setArgumentStackToRestore(StackArgSize
);
3342 // This realignment carries over to the available bytes below. Our own
3343 // callers will guarantee the space is free by giving an aligned value to
3346 // Even if we're not expected to free up the space, it's useful to know how
3347 // much is there while considering tail calls (because we can reuse it).
3348 FuncInfo
->setBytesInStackArgArea(StackArgSize
);
3350 if (Subtarget
->hasCustomCallingConv())
3351 Subtarget
->getRegisterInfo()->UpdateCustomCalleeSavedRegs(MF
);
3356 void AArch64TargetLowering::saveVarArgRegisters(CCState
&CCInfo
,
3359 SDValue
&Chain
) const {
3360 MachineFunction
&MF
= DAG
.getMachineFunction();
3361 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3362 AArch64FunctionInfo
*FuncInfo
= MF
.getInfo
<AArch64FunctionInfo
>();
3363 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
3364 bool IsWin64
= Subtarget
->isCallingConvWin64(MF
.getFunction().getCallingConv());
3366 SmallVector
<SDValue
, 8> MemOps
;
3368 static const MCPhysReg GPRArgRegs
[] = { AArch64::X0
, AArch64::X1
, AArch64::X2
,
3369 AArch64::X3
, AArch64::X4
, AArch64::X5
,
3370 AArch64::X6
, AArch64::X7
};
3371 static const unsigned NumGPRArgRegs
= array_lengthof(GPRArgRegs
);
3372 unsigned FirstVariadicGPR
= CCInfo
.getFirstUnallocated(GPRArgRegs
);
3374 unsigned GPRSaveSize
= 8 * (NumGPRArgRegs
- FirstVariadicGPR
);
3376 if (GPRSaveSize
!= 0) {
3378 GPRIdx
= MFI
.CreateFixedObject(GPRSaveSize
, -(int)GPRSaveSize
, false);
3379 if (GPRSaveSize
& 15)
3380 // The extra size here, if triggered, will always be 8.
3381 MFI
.CreateFixedObject(16 - (GPRSaveSize
& 15), -(int)alignTo(GPRSaveSize
, 16), false);
3383 GPRIdx
= MFI
.CreateStackObject(GPRSaveSize
, 8, false);
3385 SDValue FIN
= DAG
.getFrameIndex(GPRIdx
, PtrVT
);
3387 for (unsigned i
= FirstVariadicGPR
; i
< NumGPRArgRegs
; ++i
) {
3388 unsigned VReg
= MF
.addLiveIn(GPRArgRegs
[i
], &AArch64::GPR64RegClass
);
3389 SDValue Val
= DAG
.getCopyFromReg(Chain
, DL
, VReg
, MVT::i64
);
3390 SDValue Store
= DAG
.getStore(
3391 Val
.getValue(1), DL
, Val
, FIN
,
3393 ? MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(),
3395 (i
- FirstVariadicGPR
) * 8)
3396 : MachinePointerInfo::getStack(DAG
.getMachineFunction(), i
* 8));
3397 MemOps
.push_back(Store
);
3399 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, FIN
, DAG
.getConstant(8, DL
, PtrVT
));
3402 FuncInfo
->setVarArgsGPRIndex(GPRIdx
);
3403 FuncInfo
->setVarArgsGPRSize(GPRSaveSize
);
3405 if (Subtarget
->hasFPARMv8() && !IsWin64
) {
3406 static const MCPhysReg FPRArgRegs
[] = {
3407 AArch64::Q0
, AArch64::Q1
, AArch64::Q2
, AArch64::Q3
,
3408 AArch64::Q4
, AArch64::Q5
, AArch64::Q6
, AArch64::Q7
};
3409 static const unsigned NumFPRArgRegs
= array_lengthof(FPRArgRegs
);
3410 unsigned FirstVariadicFPR
= CCInfo
.getFirstUnallocated(FPRArgRegs
);
3412 unsigned FPRSaveSize
= 16 * (NumFPRArgRegs
- FirstVariadicFPR
);
3414 if (FPRSaveSize
!= 0) {
3415 FPRIdx
= MFI
.CreateStackObject(FPRSaveSize
, 16, false);
3417 SDValue FIN
= DAG
.getFrameIndex(FPRIdx
, PtrVT
);
3419 for (unsigned i
= FirstVariadicFPR
; i
< NumFPRArgRegs
; ++i
) {
3420 unsigned VReg
= MF
.addLiveIn(FPRArgRegs
[i
], &AArch64::FPR128RegClass
);
3421 SDValue Val
= DAG
.getCopyFromReg(Chain
, DL
, VReg
, MVT::f128
);
3423 SDValue Store
= DAG
.getStore(
3424 Val
.getValue(1), DL
, Val
, FIN
,
3425 MachinePointerInfo::getStack(DAG
.getMachineFunction(), i
* 16));
3426 MemOps
.push_back(Store
);
3427 FIN
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, FIN
,
3428 DAG
.getConstant(16, DL
, PtrVT
));
3431 FuncInfo
->setVarArgsFPRIndex(FPRIdx
);
3432 FuncInfo
->setVarArgsFPRSize(FPRSaveSize
);
3435 if (!MemOps
.empty()) {
3436 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, MemOps
);
3440 /// LowerCallResult - Lower the result values of a call into the
3441 /// appropriate copies out of appropriate physical registers.
3442 SDValue
AArch64TargetLowering::LowerCallResult(
3443 SDValue Chain
, SDValue InFlag
, CallingConv::ID CallConv
, bool isVarArg
,
3444 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&DL
,
3445 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
, bool isThisReturn
,
3446 SDValue ThisVal
) const {
3447 CCAssignFn
*RetCC
= CallConv
== CallingConv::WebKit_JS
3448 ? RetCC_AArch64_WebKit_JS
3449 : RetCC_AArch64_AAPCS
;
3450 // Assign locations to each value returned by this call.
3451 SmallVector
<CCValAssign
, 16> RVLocs
;
3452 DenseMap
<unsigned, SDValue
> CopiedRegs
;
3453 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
3455 CCInfo
.AnalyzeCallResult(Ins
, RetCC
);
3457 // Copy all of the result registers out of their specified physreg.
3458 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
3459 CCValAssign VA
= RVLocs
[i
];
3461 // Pass 'this' value directly from the argument to return value, to avoid
3462 // reg unit interference
3463 if (i
== 0 && isThisReturn
) {
3464 assert(!VA
.needsCustom() && VA
.getLocVT() == MVT::i64
&&
3465 "unexpected return calling convention register assignment");
3466 InVals
.push_back(ThisVal
);
3470 // Avoid copying a physreg twice since RegAllocFast is incompetent and only
3471 // allows one use of a physreg per block.
3472 SDValue Val
= CopiedRegs
.lookup(VA
.getLocReg());
3475 DAG
.getCopyFromReg(Chain
, DL
, VA
.getLocReg(), VA
.getLocVT(), InFlag
);
3476 Chain
= Val
.getValue(1);
3477 InFlag
= Val
.getValue(2);
3478 CopiedRegs
[VA
.getLocReg()] = Val
;
3481 switch (VA
.getLocInfo()) {
3483 llvm_unreachable("Unknown loc info!");
3484 case CCValAssign::Full
:
3486 case CCValAssign::BCvt
:
3487 Val
= DAG
.getNode(ISD::BITCAST
, DL
, VA
.getValVT(), Val
);
3489 case CCValAssign::AExtUpper
:
3490 Val
= DAG
.getNode(ISD::SRL
, DL
, VA
.getLocVT(), Val
,
3491 DAG
.getConstant(32, DL
, VA
.getLocVT()));
3493 case CCValAssign::AExt
:
3495 case CCValAssign::ZExt
:
3496 Val
= DAG
.getZExtOrTrunc(Val
, DL
, VA
.getValVT());
3500 InVals
.push_back(Val
);
3506 /// Return true if the calling convention is one that we can guarantee TCO for.
3507 static bool canGuaranteeTCO(CallingConv::ID CC
) {
3508 return CC
== CallingConv::Fast
;
3511 /// Return true if we might ever do TCO for calls with this calling convention.
3512 static bool mayTailCallThisCC(CallingConv::ID CC
) {
3514 case CallingConv::C
:
3515 case CallingConv::PreserveMost
:
3516 case CallingConv::Swift
:
3519 return canGuaranteeTCO(CC
);
3523 bool AArch64TargetLowering::isEligibleForTailCallOptimization(
3524 SDValue Callee
, CallingConv::ID CalleeCC
, bool isVarArg
,
3525 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
3526 const SmallVectorImpl
<SDValue
> &OutVals
,
3527 const SmallVectorImpl
<ISD::InputArg
> &Ins
, SelectionDAG
&DAG
) const {
3528 if (!mayTailCallThisCC(CalleeCC
))
3531 MachineFunction
&MF
= DAG
.getMachineFunction();
3532 const Function
&CallerF
= MF
.getFunction();
3533 CallingConv::ID CallerCC
= CallerF
.getCallingConv();
3534 bool CCMatch
= CallerCC
== CalleeCC
;
3536 // Byval parameters hand the function a pointer directly into the stack area
3537 // we want to reuse during a tail call. Working around this *is* possible (see
3538 // X86) but less efficient and uglier in LowerCall.
3539 for (Function::const_arg_iterator i
= CallerF
.arg_begin(),
3540 e
= CallerF
.arg_end();
3542 if (i
->hasByValAttr())
3545 // On Windows, "inreg" attributes signify non-aggregate indirect returns.
3546 // In this case, it is necessary to save/restore X0 in the callee. Tail
3547 // call opt interferes with this. So we disable tail call opt when the
3548 // caller has an argument with "inreg" attribute.
3550 // FIXME: Check whether the callee also has an "inreg" argument.
3551 if (i
->hasInRegAttr())
3555 if (getTargetMachine().Options
.GuaranteedTailCallOpt
)
3556 return canGuaranteeTCO(CalleeCC
) && CCMatch
;
3558 // Externally-defined functions with weak linkage should not be
3559 // tail-called on AArch64 when the OS does not support dynamic
3560 // pre-emption of symbols, as the AAELF spec requires normal calls
3561 // to undefined weak functions to be replaced with a NOP or jump to the
3562 // next instruction. The behaviour of branch instructions in this
3563 // situation (as used for tail calls) is implementation-defined, so we
3564 // cannot rely on the linker replacing the tail call with a return.
3565 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
3566 const GlobalValue
*GV
= G
->getGlobal();
3567 const Triple
&TT
= getTargetMachine().getTargetTriple();
3568 if (GV
->hasExternalWeakLinkage() &&
3569 (!TT
.isOSWindows() || TT
.isOSBinFormatELF() || TT
.isOSBinFormatMachO()))
3573 // Now we search for cases where we can use a tail call without changing the
3574 // ABI. Sibcall is used in some places (particularly gcc) to refer to this
3577 // I want anyone implementing a new calling convention to think long and hard
3578 // about this assert.
3579 assert((!isVarArg
|| CalleeCC
== CallingConv::C
) &&
3580 "Unexpected variadic calling convention");
3582 LLVMContext
&C
= *DAG
.getContext();
3583 if (isVarArg
&& !Outs
.empty()) {
3584 // At least two cases here: if caller is fastcc then we can't have any
3585 // memory arguments (we'd be expected to clean up the stack afterwards). If
3586 // caller is C then we could potentially use its argument area.
3588 // FIXME: for now we take the most conservative of these in both cases:
3589 // disallow all variadic memory operands.
3590 SmallVector
<CCValAssign
, 16> ArgLocs
;
3591 CCState
CCInfo(CalleeCC
, isVarArg
, MF
, ArgLocs
, C
);
3593 CCInfo
.AnalyzeCallOperands(Outs
, CCAssignFnForCall(CalleeCC
, true));
3594 for (const CCValAssign
&ArgLoc
: ArgLocs
)
3595 if (!ArgLoc
.isRegLoc())
3599 // Check that the call results are passed in the same way.
3600 if (!CCState::resultsCompatible(CalleeCC
, CallerCC
, MF
, C
, Ins
,
3601 CCAssignFnForCall(CalleeCC
, isVarArg
),
3602 CCAssignFnForCall(CallerCC
, isVarArg
)))
3604 // The callee has to preserve all registers the caller needs to preserve.
3605 const AArch64RegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
3606 const uint32_t *CallerPreserved
= TRI
->getCallPreservedMask(MF
, CallerCC
);
3608 const uint32_t *CalleePreserved
= TRI
->getCallPreservedMask(MF
, CalleeCC
);
3609 if (Subtarget
->hasCustomCallingConv()) {
3610 TRI
->UpdateCustomCallPreservedMask(MF
, &CallerPreserved
);
3611 TRI
->UpdateCustomCallPreservedMask(MF
, &CalleePreserved
);
3613 if (!TRI
->regmaskSubsetEqual(CallerPreserved
, CalleePreserved
))
3617 // Nothing more to check if the callee is taking no arguments
3621 SmallVector
<CCValAssign
, 16> ArgLocs
;
3622 CCState
CCInfo(CalleeCC
, isVarArg
, MF
, ArgLocs
, C
);
3624 CCInfo
.AnalyzeCallOperands(Outs
, CCAssignFnForCall(CalleeCC
, isVarArg
));
3626 const AArch64FunctionInfo
*FuncInfo
= MF
.getInfo
<AArch64FunctionInfo
>();
3628 // If the stack arguments for this call do not fit into our own save area then
3629 // the call cannot be made tail.
3630 if (CCInfo
.getNextStackOffset() > FuncInfo
->getBytesInStackArgArea())
3633 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
3634 if (!parametersInCSRMatch(MRI
, CallerPreserved
, ArgLocs
, OutVals
))
3640 SDValue
AArch64TargetLowering::addTokenForArgument(SDValue Chain
,
3642 MachineFrameInfo
&MFI
,
3643 int ClobberedFI
) const {
3644 SmallVector
<SDValue
, 8> ArgChains
;
3645 int64_t FirstByte
= MFI
.getObjectOffset(ClobberedFI
);
3646 int64_t LastByte
= FirstByte
+ MFI
.getObjectSize(ClobberedFI
) - 1;
3648 // Include the original chain at the beginning of the list. When this is
3649 // used by target LowerCall hooks, this helps legalize find the
3650 // CALLSEQ_BEGIN node.
3651 ArgChains
.push_back(Chain
);
3653 // Add a chain value for each stack argument corresponding
3654 for (SDNode::use_iterator U
= DAG
.getEntryNode().getNode()->use_begin(),
3655 UE
= DAG
.getEntryNode().getNode()->use_end();
3657 if (LoadSDNode
*L
= dyn_cast
<LoadSDNode
>(*U
))
3658 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(L
->getBasePtr()))
3659 if (FI
->getIndex() < 0) {
3660 int64_t InFirstByte
= MFI
.getObjectOffset(FI
->getIndex());
3661 int64_t InLastByte
= InFirstByte
;
3662 InLastByte
+= MFI
.getObjectSize(FI
->getIndex()) - 1;
3664 if ((InFirstByte
<= FirstByte
&& FirstByte
<= InLastByte
) ||
3665 (FirstByte
<= InFirstByte
&& InFirstByte
<= LastByte
))
3666 ArgChains
.push_back(SDValue(L
, 1));
3669 // Build a tokenfactor for all the chains.
3670 return DAG
.getNode(ISD::TokenFactor
, SDLoc(Chain
), MVT::Other
, ArgChains
);
3673 bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC
,
3674 bool TailCallOpt
) const {
3675 return CallCC
== CallingConv::Fast
&& TailCallOpt
;
3678 /// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain,
3679 /// and add input and output parameter nodes.
3681 AArch64TargetLowering::LowerCall(CallLoweringInfo
&CLI
,
3682 SmallVectorImpl
<SDValue
> &InVals
) const {
3683 SelectionDAG
&DAG
= CLI
.DAG
;
3685 SmallVector
<ISD::OutputArg
, 32> &Outs
= CLI
.Outs
;
3686 SmallVector
<SDValue
, 32> &OutVals
= CLI
.OutVals
;
3687 SmallVector
<ISD::InputArg
, 32> &Ins
= CLI
.Ins
;
3688 SDValue Chain
= CLI
.Chain
;
3689 SDValue Callee
= CLI
.Callee
;
3690 bool &IsTailCall
= CLI
.IsTailCall
;
3691 CallingConv::ID CallConv
= CLI
.CallConv
;
3692 bool IsVarArg
= CLI
.IsVarArg
;
3694 MachineFunction
&MF
= DAG
.getMachineFunction();
3695 MachineFunction::CallSiteInfo CSInfo
;
3696 bool IsThisReturn
= false;
3698 AArch64FunctionInfo
*FuncInfo
= MF
.getInfo
<AArch64FunctionInfo
>();
3699 bool TailCallOpt
= MF
.getTarget().Options
.GuaranteedTailCallOpt
;
3700 bool IsSibCall
= false;
3703 // Check if it's really possible to do a tail call.
3704 IsTailCall
= isEligibleForTailCallOptimization(
3705 Callee
, CallConv
, IsVarArg
, Outs
, OutVals
, Ins
, DAG
);
3706 if (!IsTailCall
&& CLI
.CS
&& CLI
.CS
.isMustTailCall())
3707 report_fatal_error("failed to perform tail call elimination on a call "
3708 "site marked musttail");
3710 // A sibling call is one where we're under the usual C ABI and not planning
3711 // to change that but can still do a tail call:
3712 if (!TailCallOpt
&& IsTailCall
)
3719 // Analyze operands of the call, assigning locations to each operand.
3720 SmallVector
<CCValAssign
, 16> ArgLocs
;
3721 CCState
CCInfo(CallConv
, IsVarArg
, DAG
.getMachineFunction(), ArgLocs
,
3725 // Handle fixed and variable vector arguments differently.
3726 // Variable vector arguments always go into memory.
3727 unsigned NumArgs
= Outs
.size();
3729 for (unsigned i
= 0; i
!= NumArgs
; ++i
) {
3730 MVT ArgVT
= Outs
[i
].VT
;
3731 ISD::ArgFlagsTy ArgFlags
= Outs
[i
].Flags
;
3732 CCAssignFn
*AssignFn
= CCAssignFnForCall(CallConv
,
3733 /*IsVarArg=*/ !Outs
[i
].IsFixed
);
3734 bool Res
= AssignFn(i
, ArgVT
, ArgVT
, CCValAssign::Full
, ArgFlags
, CCInfo
);
3735 assert(!Res
&& "Call operand has unhandled type");
3739 // At this point, Outs[].VT may already be promoted to i32. To correctly
3740 // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and
3741 // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT.
3742 // Since AnalyzeCallOperands uses Ins[].VT for both ValVT and LocVT, here
3743 // we use a special version of AnalyzeCallOperands to pass in ValVT and
3745 unsigned NumArgs
= Outs
.size();
3746 for (unsigned i
= 0; i
!= NumArgs
; ++i
) {
3747 MVT ValVT
= Outs
[i
].VT
;
3748 // Get type of the original argument.
3749 EVT ActualVT
= getValueType(DAG
.getDataLayout(),
3750 CLI
.getArgs()[Outs
[i
].OrigArgIndex
].Ty
,
3751 /*AllowUnknown*/ true);
3752 MVT ActualMVT
= ActualVT
.isSimple() ? ActualVT
.getSimpleVT() : ValVT
;
3753 ISD::ArgFlagsTy ArgFlags
= Outs
[i
].Flags
;
3754 // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16.
3755 if (ActualMVT
== MVT::i1
|| ActualMVT
== MVT::i8
)
3757 else if (ActualMVT
== MVT::i16
)
3760 CCAssignFn
*AssignFn
= CCAssignFnForCall(CallConv
, /*IsVarArg=*/false);
3761 bool Res
= AssignFn(i
, ValVT
, ValVT
, CCValAssign::Full
, ArgFlags
, CCInfo
);
3762 assert(!Res
&& "Call operand has unhandled type");
3767 // Get a count of how many bytes are to be pushed on the stack.
3768 unsigned NumBytes
= CCInfo
.getNextStackOffset();
3771 // Since we're not changing the ABI to make this a tail call, the memory
3772 // operands are already available in the caller's incoming argument space.
3776 // FPDiff is the byte offset of the call's argument area from the callee's.
3777 // Stores to callee stack arguments will be placed in FixedStackSlots offset
3778 // by this amount for a tail call. In a sibling call it must be 0 because the
3779 // caller will deallocate the entire stack and the callee still expects its
3780 // arguments to begin at SP+0. Completely unused for non-tail calls.
3783 if (IsTailCall
&& !IsSibCall
) {
3784 unsigned NumReusableBytes
= FuncInfo
->getBytesInStackArgArea();
3786 // Since callee will pop argument stack as a tail call, we must keep the
3787 // popped size 16-byte aligned.
3788 NumBytes
= alignTo(NumBytes
, 16);
3790 // FPDiff will be negative if this tail call requires more space than we
3791 // would automatically have in our incoming argument space. Positive if we
3792 // can actually shrink the stack.
3793 FPDiff
= NumReusableBytes
- NumBytes
;
3795 // The stack pointer must be 16-byte aligned at all times it's used for a
3796 // memory operation, which in practice means at *all* times and in
3797 // particular across call boundaries. Therefore our own arguments started at
3798 // a 16-byte aligned SP and the delta applied for the tail call should
3799 // satisfy the same constraint.
3800 assert(FPDiff
% 16 == 0 && "unaligned stack on tail call");
3803 // Adjust the stack pointer for the new arguments...
3804 // These operations are automatically eliminated by the prolog/epilog pass
3806 Chain
= DAG
.getCALLSEQ_START(Chain
, NumBytes
, 0, DL
);
3808 SDValue StackPtr
= DAG
.getCopyFromReg(Chain
, DL
, AArch64::SP
,
3809 getPointerTy(DAG
.getDataLayout()));
3811 SmallVector
<std::pair
<unsigned, SDValue
>, 8> RegsToPass
;
3812 SmallSet
<unsigned, 8> RegsUsed
;
3813 SmallVector
<SDValue
, 8> MemOpChains
;
3814 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
3816 if (IsVarArg
&& CLI
.CS
&& CLI
.CS
.isMustTailCall()) {
3817 const auto &Forwards
= FuncInfo
->getForwardedMustTailRegParms();
3818 for (const auto &F
: Forwards
) {
3819 SDValue Val
= DAG
.getCopyFromReg(Chain
, DL
, F
.VReg
, F
.VT
);
3820 RegsToPass
.emplace_back(F
.PReg
, Val
);
3824 // Walk the register/memloc assignments, inserting copies/loads.
3825 for (unsigned i
= 0, realArgIdx
= 0, e
= ArgLocs
.size(); i
!= e
;
3826 ++i
, ++realArgIdx
) {
3827 CCValAssign
&VA
= ArgLocs
[i
];
3828 SDValue Arg
= OutVals
[realArgIdx
];
3829 ISD::ArgFlagsTy Flags
= Outs
[realArgIdx
].Flags
;
3831 // Promote the value if needed.
3832 switch (VA
.getLocInfo()) {
3834 llvm_unreachable("Unknown loc info!");
3835 case CCValAssign::Full
:
3837 case CCValAssign::SExt
:
3838 Arg
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VA
.getLocVT(), Arg
);
3840 case CCValAssign::ZExt
:
3841 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VA
.getLocVT(), Arg
);
3843 case CCValAssign::AExt
:
3844 if (Outs
[realArgIdx
].ArgVT
== MVT::i1
) {
3845 // AAPCS requires i1 to be zero-extended to 8-bits by the caller.
3846 Arg
= DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i1
, Arg
);
3847 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, MVT::i8
, Arg
);
3849 Arg
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, VA
.getLocVT(), Arg
);
3851 case CCValAssign::AExtUpper
:
3852 assert(VA
.getValVT() == MVT::i32
&& "only expect 32 -> 64 upper bits");
3853 Arg
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, VA
.getLocVT(), Arg
);
3854 Arg
= DAG
.getNode(ISD::SHL
, DL
, VA
.getLocVT(), Arg
,
3855 DAG
.getConstant(32, DL
, VA
.getLocVT()));
3857 case CCValAssign::BCvt
:
3858 Arg
= DAG
.getBitcast(VA
.getLocVT(), Arg
);
3860 case CCValAssign::Trunc
:
3861 Arg
= DAG
.getZExtOrTrunc(Arg
, DL
, VA
.getLocVT());
3863 case CCValAssign::FPExt
:
3864 Arg
= DAG
.getNode(ISD::FP_EXTEND
, DL
, VA
.getLocVT(), Arg
);
3866 case CCValAssign::Indirect
:
3867 assert(VA
.getValVT().isScalableVector() &&
3868 "Only scalable vectors can be passed indirectly");
3869 llvm_unreachable("Spilling of SVE vectors not yet implemented");
3872 if (VA
.isRegLoc()) {
3873 if (realArgIdx
== 0 && Flags
.isReturned() && !Flags
.isSwiftSelf() &&
3874 Outs
[0].VT
== MVT::i64
) {
3875 assert(VA
.getLocVT() == MVT::i64
&&
3876 "unexpected calling convention register assignment");
3877 assert(!Ins
.empty() && Ins
[0].VT
== MVT::i64
&&
3878 "unexpected use of 'returned'");
3879 IsThisReturn
= true;
3881 if (RegsUsed
.count(VA
.getLocReg())) {
3882 // If this register has already been used then we're trying to pack
3883 // parts of an [N x i32] into an X-register. The extension type will
3884 // take care of putting the two halves in the right place but we have to
3887 std::find_if(RegsToPass
.begin(), RegsToPass
.end(),
3888 [=](const std::pair
<unsigned, SDValue
> &Elt
) {
3889 return Elt
.first
== VA
.getLocReg();
3892 Bits
= DAG
.getNode(ISD::OR
, DL
, Bits
.getValueType(), Bits
, Arg
);
3893 // Call site info is used for function's parameter entry value
3894 // tracking. For now we track only simple cases when parameter
3895 // is transferred through whole register.
3896 CSInfo
.erase(std::remove_if(CSInfo
.begin(), CSInfo
.end(),
3897 [&VA
](MachineFunction::ArgRegPair ArgReg
) {
3898 return ArgReg
.Reg
== VA
.getLocReg();
3902 RegsToPass
.emplace_back(VA
.getLocReg(), Arg
);
3903 RegsUsed
.insert(VA
.getLocReg());
3904 const TargetOptions
&Options
= DAG
.getTarget().Options
;
3905 if (Options
.EnableDebugEntryValues
)
3906 CSInfo
.emplace_back(VA
.getLocReg(), i
);
3909 assert(VA
.isMemLoc());
3912 MachinePointerInfo DstInfo
;
3914 // FIXME: This works on big-endian for composite byvals, which are the
3915 // common case. It should also work for fundamental types too.
3916 uint32_t BEAlign
= 0;
3917 unsigned OpSize
= Flags
.isByVal() ? Flags
.getByValSize() * 8
3918 : VA
.getValVT().getSizeInBits();
3919 OpSize
= (OpSize
+ 7) / 8;
3920 if (!Subtarget
->isLittleEndian() && !Flags
.isByVal() &&
3921 !Flags
.isInConsecutiveRegs()) {
3923 BEAlign
= 8 - OpSize
;
3925 unsigned LocMemOffset
= VA
.getLocMemOffset();
3926 int32_t Offset
= LocMemOffset
+ BEAlign
;
3927 SDValue PtrOff
= DAG
.getIntPtrConstant(Offset
, DL
);
3928 PtrOff
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, StackPtr
, PtrOff
);
3931 Offset
= Offset
+ FPDiff
;
3932 int FI
= MF
.getFrameInfo().CreateFixedObject(OpSize
, Offset
, true);
3934 DstAddr
= DAG
.getFrameIndex(FI
, PtrVT
);
3936 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
);
3938 // Make sure any stack arguments overlapping with where we're storing
3939 // are loaded before this eventual operation. Otherwise they'll be
3941 Chain
= addTokenForArgument(Chain
, DAG
, MF
.getFrameInfo(), FI
);
3943 SDValue PtrOff
= DAG
.getIntPtrConstant(Offset
, DL
);
3945 DstAddr
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, StackPtr
, PtrOff
);
3946 DstInfo
= MachinePointerInfo::getStack(DAG
.getMachineFunction(),
3950 if (Outs
[i
].Flags
.isByVal()) {
3952 DAG
.getConstant(Outs
[i
].Flags
.getByValSize(), DL
, MVT::i64
);
3953 SDValue Cpy
= DAG
.getMemcpy(
3954 Chain
, DL
, DstAddr
, Arg
, SizeNode
, Outs
[i
].Flags
.getByValAlign(),
3955 /*isVol = */ false, /*AlwaysInline = */ false,
3956 /*isTailCall = */ false,
3957 DstInfo
, MachinePointerInfo());
3959 MemOpChains
.push_back(Cpy
);
3961 // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already
3962 // promoted to a legal register type i32, we should truncate Arg back to
3964 if (VA
.getValVT() == MVT::i1
|| VA
.getValVT() == MVT::i8
||
3965 VA
.getValVT() == MVT::i16
)
3966 Arg
= DAG
.getNode(ISD::TRUNCATE
, DL
, VA
.getValVT(), Arg
);
3968 SDValue Store
= DAG
.getStore(Chain
, DL
, Arg
, DstAddr
, DstInfo
);
3969 MemOpChains
.push_back(Store
);
3974 if (!MemOpChains
.empty())
3975 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, MemOpChains
);
3977 // Build a sequence of copy-to-reg nodes chained together with token chain
3978 // and flag operands which copy the outgoing args into the appropriate regs.
3980 for (auto &RegToPass
: RegsToPass
) {
3981 Chain
= DAG
.getCopyToReg(Chain
, DL
, RegToPass
.first
,
3982 RegToPass
.second
, InFlag
);
3983 InFlag
= Chain
.getValue(1);
3986 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
3987 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
3988 // node so that legalize doesn't hack it.
3989 if (auto *G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
3990 auto GV
= G
->getGlobal();
3991 if (Subtarget
->classifyGlobalFunctionReference(GV
, getTargetMachine()) ==
3992 AArch64II::MO_GOT
) {
3993 Callee
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0, AArch64II::MO_GOT
);
3994 Callee
= DAG
.getNode(AArch64ISD::LOADgot
, DL
, PtrVT
, Callee
);
3995 } else if (Subtarget
->isTargetCOFF() && GV
->hasDLLImportStorageClass()) {
3996 assert(Subtarget
->isTargetWindows() &&
3997 "Windows is the only supported COFF target");
3998 Callee
= getGOT(G
, DAG
, AArch64II::MO_DLLIMPORT
);
4000 const GlobalValue
*GV
= G
->getGlobal();
4001 Callee
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0, 0);
4003 } else if (auto *S
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
4004 if (getTargetMachine().getCodeModel() == CodeModel::Large
&&
4005 Subtarget
->isTargetMachO()) {
4006 const char *Sym
= S
->getSymbol();
4007 Callee
= DAG
.getTargetExternalSymbol(Sym
, PtrVT
, AArch64II::MO_GOT
);
4008 Callee
= DAG
.getNode(AArch64ISD::LOADgot
, DL
, PtrVT
, Callee
);
4010 const char *Sym
= S
->getSymbol();
4011 Callee
= DAG
.getTargetExternalSymbol(Sym
, PtrVT
, 0);
4015 // We don't usually want to end the call-sequence here because we would tidy
4016 // the frame up *after* the call, however in the ABI-changing tail-call case
4017 // we've carefully laid out the parameters so that when sp is reset they'll be
4018 // in the correct location.
4019 if (IsTailCall
&& !IsSibCall
) {
4020 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(NumBytes
, DL
, true),
4021 DAG
.getIntPtrConstant(0, DL
, true), InFlag
, DL
);
4022 InFlag
= Chain
.getValue(1);
4025 std::vector
<SDValue
> Ops
;
4026 Ops
.push_back(Chain
);
4027 Ops
.push_back(Callee
);
4030 // Each tail call may have to adjust the stack by a different amount, so
4031 // this information must travel along with the operation for eventual
4032 // consumption by emitEpilogue.
4033 Ops
.push_back(DAG
.getTargetConstant(FPDiff
, DL
, MVT::i32
));
4036 // Add argument registers to the end of the list so that they are known live
4038 for (auto &RegToPass
: RegsToPass
)
4039 Ops
.push_back(DAG
.getRegister(RegToPass
.first
,
4040 RegToPass
.second
.getValueType()));
4042 // Check callee args/returns for SVE registers and set calling convention
4044 if (CallConv
== CallingConv::C
) {
4045 bool CalleeOutSVE
= any_of(Outs
, [](ISD::OutputArg
&Out
){
4046 return Out
.VT
.isScalableVector();
4048 bool CalleeInSVE
= any_of(Ins
, [](ISD::InputArg
&In
){
4049 return In
.VT
.isScalableVector();
4052 if (CalleeInSVE
|| CalleeOutSVE
)
4053 CallConv
= CallingConv::AArch64_SVE_VectorCall
;
4056 // Add a register mask operand representing the call-preserved registers.
4057 const uint32_t *Mask
;
4058 const AArch64RegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
4060 // For 'this' returns, use the X0-preserving mask if applicable
4061 Mask
= TRI
->getThisReturnPreservedMask(MF
, CallConv
);
4063 IsThisReturn
= false;
4064 Mask
= TRI
->getCallPreservedMask(MF
, CallConv
);
4067 Mask
= TRI
->getCallPreservedMask(MF
, CallConv
);
4069 if (Subtarget
->hasCustomCallingConv())
4070 TRI
->UpdateCustomCallPreservedMask(MF
, &Mask
);
4072 if (TRI
->isAnyArgRegReserved(MF
))
4073 TRI
->emitReservedArgRegCallError(MF
);
4075 assert(Mask
&& "Missing call preserved mask for calling convention");
4076 Ops
.push_back(DAG
.getRegisterMask(Mask
));
4078 if (InFlag
.getNode())
4079 Ops
.push_back(InFlag
);
4081 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
4083 // If we're doing a tall call, use a TC_RETURN here rather than an
4084 // actual call instruction.
4086 MF
.getFrameInfo().setHasTailCall();
4087 SDValue Ret
= DAG
.getNode(AArch64ISD::TC_RETURN
, DL
, NodeTys
, Ops
);
4088 DAG
.addCallSiteInfo(Ret
.getNode(), std::move(CSInfo
));
4092 // Returns a chain and a flag for retval copy to use.
4093 Chain
= DAG
.getNode(AArch64ISD::CALL
, DL
, NodeTys
, Ops
);
4094 InFlag
= Chain
.getValue(1);
4095 DAG
.addCallSiteInfo(Chain
.getNode(), std::move(CSInfo
));
4097 uint64_t CalleePopBytes
=
4098 DoesCalleeRestoreStack(CallConv
, TailCallOpt
) ? alignTo(NumBytes
, 16) : 0;
4100 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(NumBytes
, DL
, true),
4101 DAG
.getIntPtrConstant(CalleePopBytes
, DL
, true),
4104 InFlag
= Chain
.getValue(1);
4106 // Handle result values, copying them out of physregs into vregs that we
4108 return LowerCallResult(Chain
, InFlag
, CallConv
, IsVarArg
, Ins
, DL
, DAG
,
4109 InVals
, IsThisReturn
,
4110 IsThisReturn
? OutVals
[0] : SDValue());
4113 bool AArch64TargetLowering::CanLowerReturn(
4114 CallingConv::ID CallConv
, MachineFunction
&MF
, bool isVarArg
,
4115 const SmallVectorImpl
<ISD::OutputArg
> &Outs
, LLVMContext
&Context
) const {
4116 CCAssignFn
*RetCC
= CallConv
== CallingConv::WebKit_JS
4117 ? RetCC_AArch64_WebKit_JS
4118 : RetCC_AArch64_AAPCS
;
4119 SmallVector
<CCValAssign
, 16> RVLocs
;
4120 CCState
CCInfo(CallConv
, isVarArg
, MF
, RVLocs
, Context
);
4121 return CCInfo
.CheckReturn(Outs
, RetCC
);
4125 AArch64TargetLowering::LowerReturn(SDValue Chain
, CallingConv::ID CallConv
,
4127 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
4128 const SmallVectorImpl
<SDValue
> &OutVals
,
4129 const SDLoc
&DL
, SelectionDAG
&DAG
) const {
4130 auto &MF
= DAG
.getMachineFunction();
4131 auto *FuncInfo
= MF
.getInfo
<AArch64FunctionInfo
>();
4133 CCAssignFn
*RetCC
= CallConv
== CallingConv::WebKit_JS
4134 ? RetCC_AArch64_WebKit_JS
4135 : RetCC_AArch64_AAPCS
;
4136 SmallVector
<CCValAssign
, 16> RVLocs
;
4137 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
4139 CCInfo
.AnalyzeReturn(Outs
, RetCC
);
4141 // Copy the result values into the output registers.
4143 SmallVector
<std::pair
<unsigned, SDValue
>, 4> RetVals
;
4144 SmallSet
<unsigned, 4> RegsUsed
;
4145 for (unsigned i
= 0, realRVLocIdx
= 0; i
!= RVLocs
.size();
4146 ++i
, ++realRVLocIdx
) {
4147 CCValAssign
&VA
= RVLocs
[i
];
4148 assert(VA
.isRegLoc() && "Can only return in registers!");
4149 SDValue Arg
= OutVals
[realRVLocIdx
];
4151 switch (VA
.getLocInfo()) {
4153 llvm_unreachable("Unknown loc info!");
4154 case CCValAssign::Full
:
4155 if (Outs
[i
].ArgVT
== MVT::i1
) {
4156 // AAPCS requires i1 to be zero-extended to i8 by the producer of the
4157 // value. This is strictly redundant on Darwin (which uses "zeroext
4158 // i1"), but will be optimised out before ISel.
4159 Arg
= DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i1
, Arg
);
4160 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VA
.getLocVT(), Arg
);
4163 case CCValAssign::BCvt
:
4164 Arg
= DAG
.getNode(ISD::BITCAST
, DL
, VA
.getLocVT(), Arg
);
4166 case CCValAssign::AExt
:
4167 case CCValAssign::ZExt
:
4168 Arg
= DAG
.getZExtOrTrunc(Arg
, DL
, VA
.getLocVT());
4170 case CCValAssign::AExtUpper
:
4171 assert(VA
.getValVT() == MVT::i32
&& "only expect 32 -> 64 upper bits");
4172 Arg
= DAG
.getZExtOrTrunc(Arg
, DL
, VA
.getLocVT());
4173 Arg
= DAG
.getNode(ISD::SHL
, DL
, VA
.getLocVT(), Arg
,
4174 DAG
.getConstant(32, DL
, VA
.getLocVT()));
4178 if (RegsUsed
.count(VA
.getLocReg())) {
4180 std::find_if(RetVals
.begin(), RetVals
.end(),
4181 [=](const std::pair
<unsigned, SDValue
> &Elt
) {
4182 return Elt
.first
== VA
.getLocReg();
4185 Bits
= DAG
.getNode(ISD::OR
, DL
, Bits
.getValueType(), Bits
, Arg
);
4187 RetVals
.emplace_back(VA
.getLocReg(), Arg
);
4188 RegsUsed
.insert(VA
.getLocReg());
4192 SmallVector
<SDValue
, 4> RetOps(1, Chain
);
4193 for (auto &RetVal
: RetVals
) {
4194 Chain
= DAG
.getCopyToReg(Chain
, DL
, RetVal
.first
, RetVal
.second
, Flag
);
4195 Flag
= Chain
.getValue(1);
4197 DAG
.getRegister(RetVal
.first
, RetVal
.second
.getValueType()));
4200 // Windows AArch64 ABIs require that for returning structs by value we copy
4201 // the sret argument into X0 for the return.
4202 // We saved the argument into a virtual register in the entry block,
4203 // so now we copy the value out and into X0.
4204 if (unsigned SRetReg
= FuncInfo
->getSRetReturnReg()) {
4205 SDValue Val
= DAG
.getCopyFromReg(RetOps
[0], DL
, SRetReg
,
4206 getPointerTy(MF
.getDataLayout()));
4208 unsigned RetValReg
= AArch64::X0
;
4209 Chain
= DAG
.getCopyToReg(Chain
, DL
, RetValReg
, Val
, Flag
);
4210 Flag
= Chain
.getValue(1);
4213 DAG
.getRegister(RetValReg
, getPointerTy(DAG
.getDataLayout())));
4216 const AArch64RegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
4217 const MCPhysReg
*I
=
4218 TRI
->getCalleeSavedRegsViaCopy(&DAG
.getMachineFunction());
4221 if (AArch64::GPR64RegClass
.contains(*I
))
4222 RetOps
.push_back(DAG
.getRegister(*I
, MVT::i64
));
4223 else if (AArch64::FPR64RegClass
.contains(*I
))
4224 RetOps
.push_back(DAG
.getRegister(*I
, MVT::getFloatingPointVT(64)));
4226 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
4230 RetOps
[0] = Chain
; // Update chain.
4232 // Add the flag if we have it.
4234 RetOps
.push_back(Flag
);
4236 return DAG
.getNode(AArch64ISD::RET_FLAG
, DL
, MVT::Other
, RetOps
);
4239 //===----------------------------------------------------------------------===//
4240 // Other Lowering Code
4241 //===----------------------------------------------------------------------===//
4243 SDValue
AArch64TargetLowering::getTargetNode(GlobalAddressSDNode
*N
, EVT Ty
,
4245 unsigned Flag
) const {
4246 return DAG
.getTargetGlobalAddress(N
->getGlobal(), SDLoc(N
), Ty
,
4247 N
->getOffset(), Flag
);
4250 SDValue
AArch64TargetLowering::getTargetNode(JumpTableSDNode
*N
, EVT Ty
,
4252 unsigned Flag
) const {
4253 return DAG
.getTargetJumpTable(N
->getIndex(), Ty
, Flag
);
4256 SDValue
AArch64TargetLowering::getTargetNode(ConstantPoolSDNode
*N
, EVT Ty
,
4258 unsigned Flag
) const {
4259 return DAG
.getTargetConstantPool(N
->getConstVal(), Ty
, N
->getAlignment(),
4260 N
->getOffset(), Flag
);
4263 SDValue
AArch64TargetLowering::getTargetNode(BlockAddressSDNode
* N
, EVT Ty
,
4265 unsigned Flag
) const {
4266 return DAG
.getTargetBlockAddress(N
->getBlockAddress(), Ty
, 0, Flag
);
4270 template <class NodeTy
>
4271 SDValue
AArch64TargetLowering::getGOT(NodeTy
*N
, SelectionDAG
&DAG
,
4272 unsigned Flags
) const {
4273 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getGOT\n");
4275 EVT Ty
= getPointerTy(DAG
.getDataLayout());
4276 SDValue GotAddr
= getTargetNode(N
, Ty
, DAG
, AArch64II::MO_GOT
| Flags
);
4277 // FIXME: Once remat is capable of dealing with instructions with register
4278 // operands, expand this into two nodes instead of using a wrapper node.
4279 return DAG
.getNode(AArch64ISD::LOADgot
, DL
, Ty
, GotAddr
);
4282 // (wrapper %highest(sym), %higher(sym), %hi(sym), %lo(sym))
4283 template <class NodeTy
>
4284 SDValue
AArch64TargetLowering::getAddrLarge(NodeTy
*N
, SelectionDAG
&DAG
,
4285 unsigned Flags
) const {
4286 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrLarge\n");
4288 EVT Ty
= getPointerTy(DAG
.getDataLayout());
4289 const unsigned char MO_NC
= AArch64II::MO_NC
;
4291 AArch64ISD::WrapperLarge
, DL
, Ty
,
4292 getTargetNode(N
, Ty
, DAG
, AArch64II::MO_G3
| Flags
),
4293 getTargetNode(N
, Ty
, DAG
, AArch64II::MO_G2
| MO_NC
| Flags
),
4294 getTargetNode(N
, Ty
, DAG
, AArch64II::MO_G1
| MO_NC
| Flags
),
4295 getTargetNode(N
, Ty
, DAG
, AArch64II::MO_G0
| MO_NC
| Flags
));
4298 // (addlow (adrp %hi(sym)) %lo(sym))
4299 template <class NodeTy
>
4300 SDValue
AArch64TargetLowering::getAddr(NodeTy
*N
, SelectionDAG
&DAG
,
4301 unsigned Flags
) const {
4302 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddr\n");
4304 EVT Ty
= getPointerTy(DAG
.getDataLayout());
4305 SDValue Hi
= getTargetNode(N
, Ty
, DAG
, AArch64II::MO_PAGE
| Flags
);
4306 SDValue Lo
= getTargetNode(N
, Ty
, DAG
,
4307 AArch64II::MO_PAGEOFF
| AArch64II::MO_NC
| Flags
);
4308 SDValue ADRP
= DAG
.getNode(AArch64ISD::ADRP
, DL
, Ty
, Hi
);
4309 return DAG
.getNode(AArch64ISD::ADDlow
, DL
, Ty
, ADRP
, Lo
);
4313 template <class NodeTy
>
4314 SDValue
AArch64TargetLowering::getAddrTiny(NodeTy
*N
, SelectionDAG
&DAG
,
4315 unsigned Flags
) const {
4316 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrTiny\n");
4318 EVT Ty
= getPointerTy(DAG
.getDataLayout());
4319 SDValue Sym
= getTargetNode(N
, Ty
, DAG
, Flags
);
4320 return DAG
.getNode(AArch64ISD::ADR
, DL
, Ty
, Sym
);
4323 SDValue
AArch64TargetLowering::LowerGlobalAddress(SDValue Op
,
4324 SelectionDAG
&DAG
) const {
4325 GlobalAddressSDNode
*GN
= cast
<GlobalAddressSDNode
>(Op
);
4326 const GlobalValue
*GV
= GN
->getGlobal();
4327 unsigned OpFlags
= Subtarget
->ClassifyGlobalReference(GV
, getTargetMachine());
4329 if (OpFlags
!= AArch64II::MO_NO_FLAG
)
4330 assert(cast
<GlobalAddressSDNode
>(Op
)->getOffset() == 0 &&
4331 "unexpected offset in global node");
4333 // This also catches the large code model case for Darwin, and tiny code
4334 // model with got relocations.
4335 if ((OpFlags
& AArch64II::MO_GOT
) != 0) {
4336 return getGOT(GN
, DAG
, OpFlags
);
4340 if (getTargetMachine().getCodeModel() == CodeModel::Large
) {
4341 Result
= getAddrLarge(GN
, DAG
, OpFlags
);
4342 } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny
) {
4343 Result
= getAddrTiny(GN
, DAG
, OpFlags
);
4345 Result
= getAddr(GN
, DAG
, OpFlags
);
4347 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
4349 if (OpFlags
& (AArch64II::MO_DLLIMPORT
| AArch64II::MO_COFFSTUB
))
4350 Result
= DAG
.getLoad(PtrVT
, DL
, DAG
.getEntryNode(), Result
,
4351 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
4355 /// Convert a TLS address reference into the correct sequence of loads
4356 /// and calls to compute the variable's address (for Darwin, currently) and
4357 /// return an SDValue containing the final node.
4359 /// Darwin only has one TLS scheme which must be capable of dealing with the
4360 /// fully general situation, in the worst case. This means:
4361 /// + "extern __thread" declaration.
4362 /// + Defined in a possibly unknown dynamic library.
4364 /// The general system is that each __thread variable has a [3 x i64] descriptor
4365 /// which contains information used by the runtime to calculate the address. The
4366 /// only part of this the compiler needs to know about is the first xword, which
4367 /// contains a function pointer that must be called with the address of the
4368 /// entire descriptor in "x0".
4370 /// Since this descriptor may be in a different unit, in general even the
4371 /// descriptor must be accessed via an indirect load. The "ideal" code sequence
4373 /// adrp x0, _var@TLVPPAGE
4374 /// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor
4375 /// ldr x1, [x0] ; x1 contains 1st entry of descriptor,
4376 /// ; the function pointer
4377 /// blr x1 ; Uses descriptor address in x0
4378 /// ; Address of _var is now in x0.
4380 /// If the address of _var's descriptor *is* known to the linker, then it can
4381 /// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for
4382 /// a slight efficiency gain.
4384 AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op
,
4385 SelectionDAG
&DAG
) const {
4386 assert(Subtarget
->isTargetDarwin() &&
4387 "This function expects a Darwin target");
4390 MVT PtrVT
= getPointerTy(DAG
.getDataLayout());
4391 MVT PtrMemVT
= getPointerMemTy(DAG
.getDataLayout());
4392 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
4395 DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0, AArch64II::MO_TLS
);
4396 SDValue DescAddr
= DAG
.getNode(AArch64ISD::LOADgot
, DL
, PtrVT
, TLVPAddr
);
4398 // The first entry in the descriptor is a function pointer that we must call
4399 // to obtain the address of the variable.
4400 SDValue Chain
= DAG
.getEntryNode();
4401 SDValue FuncTLVGet
= DAG
.getLoad(
4402 PtrMemVT
, DL
, Chain
, DescAddr
,
4403 MachinePointerInfo::getGOT(DAG
.getMachineFunction()),
4404 /* Alignment = */ PtrMemVT
.getSizeInBits() / 8,
4405 MachineMemOperand::MOInvariant
| MachineMemOperand::MODereferenceable
);
4406 Chain
= FuncTLVGet
.getValue(1);
4408 // Extend loaded pointer if necessary (i.e. if ILP32) to DAG pointer.
4409 FuncTLVGet
= DAG
.getZExtOrTrunc(FuncTLVGet
, DL
, PtrVT
);
4411 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
4412 MFI
.setAdjustsStack(true);
4414 // TLS calls preserve all registers except those that absolutely must be
4415 // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be
4417 const AArch64RegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
4418 const uint32_t *Mask
= TRI
->getTLSCallPreservedMask();
4419 if (Subtarget
->hasCustomCallingConv())
4420 TRI
->UpdateCustomCallPreservedMask(DAG
.getMachineFunction(), &Mask
);
4422 // Finally, we can make the call. This is just a degenerate version of a
4423 // normal AArch64 call node: x0 takes the address of the descriptor, and
4424 // returns the address of the variable in this thread.
4425 Chain
= DAG
.getCopyToReg(Chain
, DL
, AArch64::X0
, DescAddr
, SDValue());
4427 DAG
.getNode(AArch64ISD::CALL
, DL
, DAG
.getVTList(MVT::Other
, MVT::Glue
),
4428 Chain
, FuncTLVGet
, DAG
.getRegister(AArch64::X0
, MVT::i64
),
4429 DAG
.getRegisterMask(Mask
), Chain
.getValue(1));
4430 return DAG
.getCopyFromReg(Chain
, DL
, AArch64::X0
, PtrVT
, Chain
.getValue(1));
4433 /// When accessing thread-local variables under either the general-dynamic or
4434 /// local-dynamic system, we make a "TLS-descriptor" call. The variable will
4435 /// have a descriptor, accessible via a PC-relative ADRP, and whose first entry
4436 /// is a function pointer to carry out the resolution.
4438 /// The sequence is:
4439 /// adrp x0, :tlsdesc:var
4440 /// ldr x1, [x0, #:tlsdesc_lo12:var]
4441 /// add x0, x0, #:tlsdesc_lo12:var
4442 /// .tlsdesccall var
4444 /// (TPIDR_EL0 offset now in x0)
4446 /// The above sequence must be produced unscheduled, to enable the linker to
4447 /// optimize/relax this sequence.
4448 /// Therefore, a pseudo-instruction (TLSDESC_CALLSEQ) is used to represent the
4449 /// above sequence, and expanded really late in the compilation flow, to ensure
4450 /// the sequence is produced as per above.
4451 SDValue
AArch64TargetLowering::LowerELFTLSDescCallSeq(SDValue SymAddr
,
4453 SelectionDAG
&DAG
) const {
4454 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
4456 SDValue Chain
= DAG
.getEntryNode();
4457 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
4460 DAG
.getNode(AArch64ISD::TLSDESC_CALLSEQ
, DL
, NodeTys
, {Chain
, SymAddr
});
4461 SDValue Glue
= Chain
.getValue(1);
4463 return DAG
.getCopyFromReg(Chain
, DL
, AArch64::X0
, PtrVT
, Glue
);
4467 AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op
,
4468 SelectionDAG
&DAG
) const {
4469 assert(Subtarget
->isTargetELF() && "This function expects an ELF target");
4470 if (getTargetMachine().getCodeModel() == CodeModel::Large
)
4471 report_fatal_error("ELF TLS only supported in small memory model");
4472 // Different choices can be made for the maximum size of the TLS area for a
4473 // module. For the small address model, the default TLS size is 16MiB and the
4474 // maximum TLS size is 4GiB.
4475 // FIXME: add -mtls-size command line option and make it control the 16MiB
4476 // vs. 4GiB code sequence generation.
4477 // FIXME: add tiny codemodel support. We currently generate the same code as
4478 // small, which may be larger than needed.
4479 const GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(Op
);
4481 TLSModel::Model Model
= getTargetMachine().getTLSModel(GA
->getGlobal());
4483 if (!EnableAArch64ELFLocalDynamicTLSGeneration
) {
4484 if (Model
== TLSModel::LocalDynamic
)
4485 Model
= TLSModel::GeneralDynamic
;
4489 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
4491 const GlobalValue
*GV
= GA
->getGlobal();
4493 SDValue ThreadBase
= DAG
.getNode(AArch64ISD::THREAD_POINTER
, DL
, PtrVT
);
4495 if (Model
== TLSModel::LocalExec
) {
4496 SDValue HiVar
= DAG
.getTargetGlobalAddress(
4497 GV
, DL
, PtrVT
, 0, AArch64II::MO_TLS
| AArch64II::MO_HI12
);
4498 SDValue LoVar
= DAG
.getTargetGlobalAddress(
4500 AArch64II::MO_TLS
| AArch64II::MO_PAGEOFF
| AArch64II::MO_NC
);
4502 SDValue TPWithOff_lo
=
4503 SDValue(DAG
.getMachineNode(AArch64::ADDXri
, DL
, PtrVT
, ThreadBase
,
4505 DAG
.getTargetConstant(0, DL
, MVT::i32
)),
4508 SDValue(DAG
.getMachineNode(AArch64::ADDXri
, DL
, PtrVT
, TPWithOff_lo
,
4510 DAG
.getTargetConstant(0, DL
, MVT::i32
)),
4513 } else if (Model
== TLSModel::InitialExec
) {
4514 TPOff
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0, AArch64II::MO_TLS
);
4515 TPOff
= DAG
.getNode(AArch64ISD::LOADgot
, DL
, PtrVT
, TPOff
);
4516 } else if (Model
== TLSModel::LocalDynamic
) {
4517 // Local-dynamic accesses proceed in two phases. A general-dynamic TLS
4518 // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate
4519 // the beginning of the module's TLS region, followed by a DTPREL offset
4522 // These accesses will need deduplicating if there's more than one.
4523 AArch64FunctionInfo
*MFI
=
4524 DAG
.getMachineFunction().getInfo
<AArch64FunctionInfo
>();
4525 MFI
->incNumLocalDynamicTLSAccesses();
4527 // The call needs a relocation too for linker relaxation. It doesn't make
4528 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
4530 SDValue SymAddr
= DAG
.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT
,
4533 // Now we can calculate the offset from TPIDR_EL0 to this module's
4534 // thread-local area.
4535 TPOff
= LowerELFTLSDescCallSeq(SymAddr
, DL
, DAG
);
4537 // Now use :dtprel_whatever: operations to calculate this variable's offset
4538 // in its thread-storage area.
4539 SDValue HiVar
= DAG
.getTargetGlobalAddress(
4540 GV
, DL
, MVT::i64
, 0, AArch64II::MO_TLS
| AArch64II::MO_HI12
);
4541 SDValue LoVar
= DAG
.getTargetGlobalAddress(
4542 GV
, DL
, MVT::i64
, 0,
4543 AArch64II::MO_TLS
| AArch64II::MO_PAGEOFF
| AArch64II::MO_NC
);
4545 TPOff
= SDValue(DAG
.getMachineNode(AArch64::ADDXri
, DL
, PtrVT
, TPOff
, HiVar
,
4546 DAG
.getTargetConstant(0, DL
, MVT::i32
)),
4548 TPOff
= SDValue(DAG
.getMachineNode(AArch64::ADDXri
, DL
, PtrVT
, TPOff
, LoVar
,
4549 DAG
.getTargetConstant(0, DL
, MVT::i32
)),
4551 } else if (Model
== TLSModel::GeneralDynamic
) {
4552 // The call needs a relocation too for linker relaxation. It doesn't make
4553 // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of
4556 DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0, AArch64II::MO_TLS
);
4558 // Finally we can make a call to calculate the offset from tpidr_el0.
4559 TPOff
= LowerELFTLSDescCallSeq(SymAddr
, DL
, DAG
);
4561 llvm_unreachable("Unsupported ELF TLS access model");
4563 return DAG
.getNode(ISD::ADD
, DL
, PtrVT
, ThreadBase
, TPOff
);
4567 AArch64TargetLowering::LowerWindowsGlobalTLSAddress(SDValue Op
,
4568 SelectionDAG
&DAG
) const {
4569 assert(Subtarget
->isTargetWindows() && "Windows specific TLS lowering");
4571 SDValue Chain
= DAG
.getEntryNode();
4572 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
4575 SDValue TEB
= DAG
.getRegister(AArch64::X18
, MVT::i64
);
4577 // Load the ThreadLocalStoragePointer from the TEB
4578 // A pointer to the TLS array is located at offset 0x58 from the TEB.
4580 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TEB
, DAG
.getIntPtrConstant(0x58, DL
));
4581 TLSArray
= DAG
.getLoad(PtrVT
, DL
, Chain
, TLSArray
, MachinePointerInfo());
4582 Chain
= TLSArray
.getValue(1);
4584 // Load the TLS index from the C runtime;
4585 // This does the same as getAddr(), but without having a GlobalAddressSDNode.
4586 // This also does the same as LOADgot, but using a generic i32 load,
4587 // while LOADgot only loads i64.
4588 SDValue TLSIndexHi
=
4589 DAG
.getTargetExternalSymbol("_tls_index", PtrVT
, AArch64II::MO_PAGE
);
4590 SDValue TLSIndexLo
= DAG
.getTargetExternalSymbol(
4591 "_tls_index", PtrVT
, AArch64II::MO_PAGEOFF
| AArch64II::MO_NC
);
4592 SDValue ADRP
= DAG
.getNode(AArch64ISD::ADRP
, DL
, PtrVT
, TLSIndexHi
);
4594 DAG
.getNode(AArch64ISD::ADDlow
, DL
, PtrVT
, ADRP
, TLSIndexLo
);
4595 TLSIndex
= DAG
.getLoad(MVT::i32
, DL
, Chain
, TLSIndex
, MachinePointerInfo());
4596 Chain
= TLSIndex
.getValue(1);
4598 // The pointer to the thread's TLS data area is at the TLS Index scaled by 8
4599 // offset into the TLSArray.
4600 TLSIndex
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, PtrVT
, TLSIndex
);
4601 SDValue Slot
= DAG
.getNode(ISD::SHL
, DL
, PtrVT
, TLSIndex
,
4602 DAG
.getConstant(3, DL
, PtrVT
));
4603 SDValue TLS
= DAG
.getLoad(PtrVT
, DL
, Chain
,
4604 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TLSArray
, Slot
),
4605 MachinePointerInfo());
4606 Chain
= TLS
.getValue(1);
4608 const GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(Op
);
4609 const GlobalValue
*GV
= GA
->getGlobal();
4610 SDValue TGAHi
= DAG
.getTargetGlobalAddress(
4611 GV
, DL
, PtrVT
, 0, AArch64II::MO_TLS
| AArch64II::MO_HI12
);
4612 SDValue TGALo
= DAG
.getTargetGlobalAddress(
4614 AArch64II::MO_TLS
| AArch64II::MO_PAGEOFF
| AArch64II::MO_NC
);
4616 // Add the offset from the start of the .tls section (section base).
4618 SDValue(DAG
.getMachineNode(AArch64::ADDXri
, DL
, PtrVT
, TLS
, TGAHi
,
4619 DAG
.getTargetConstant(0, DL
, MVT::i32
)),
4621 Addr
= DAG
.getNode(AArch64ISD::ADDlow
, DL
, PtrVT
, Addr
, TGALo
);
4625 SDValue
AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op
,
4626 SelectionDAG
&DAG
) const {
4627 const GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(Op
);
4628 if (DAG
.getTarget().useEmulatedTLS())
4629 return LowerToTLSEmulatedModel(GA
, DAG
);
4631 if (Subtarget
->isTargetDarwin())
4632 return LowerDarwinGlobalTLSAddress(Op
, DAG
);
4633 if (Subtarget
->isTargetELF())
4634 return LowerELFGlobalTLSAddress(Op
, DAG
);
4635 if (Subtarget
->isTargetWindows())
4636 return LowerWindowsGlobalTLSAddress(Op
, DAG
);
4638 llvm_unreachable("Unexpected platform trying to use TLS");
4641 SDValue
AArch64TargetLowering::LowerBR_CC(SDValue Op
, SelectionDAG
&DAG
) const {
4642 SDValue Chain
= Op
.getOperand(0);
4643 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(1))->get();
4644 SDValue LHS
= Op
.getOperand(2);
4645 SDValue RHS
= Op
.getOperand(3);
4646 SDValue Dest
= Op
.getOperand(4);
4649 MachineFunction
&MF
= DAG
.getMachineFunction();
4650 // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions
4651 // will not be produced, as they are conditional branch instructions that do
4653 bool ProduceNonFlagSettingCondBr
=
4654 !MF
.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening
);
4656 // Handle f128 first, since lowering it will result in comparing the return
4657 // value of a libcall against zero, which is just what the rest of LowerBR_CC
4658 // is expecting to deal with.
4659 if (LHS
.getValueType() == MVT::f128
) {
4660 softenSetCCOperands(DAG
, MVT::f128
, LHS
, RHS
, CC
, dl
, LHS
, RHS
);
4662 // If softenSetCCOperands returned a scalar, we need to compare the result
4663 // against zero to select between true and false values.
4664 if (!RHS
.getNode()) {
4665 RHS
= DAG
.getConstant(0, dl
, LHS
.getValueType());
4670 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
4672 if (isOverflowIntrOpRes(LHS
) && isOneConstant(RHS
) &&
4673 (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
4674 // Only lower legal XALUO ops.
4675 if (!DAG
.getTargetLoweringInfo().isTypeLegal(LHS
->getValueType(0)))
4678 // The actual operation with overflow check.
4679 AArch64CC::CondCode OFCC
;
4680 SDValue Value
, Overflow
;
4681 std::tie(Value
, Overflow
) = getAArch64XALUOOp(OFCC
, LHS
.getValue(0), DAG
);
4683 if (CC
== ISD::SETNE
)
4684 OFCC
= getInvertedCondCode(OFCC
);
4685 SDValue CCVal
= DAG
.getConstant(OFCC
, dl
, MVT::i32
);
4687 return DAG
.getNode(AArch64ISD::BRCOND
, dl
, MVT::Other
, Chain
, Dest
, CCVal
,
4691 if (LHS
.getValueType().isInteger()) {
4692 assert((LHS
.getValueType() == RHS
.getValueType()) &&
4693 (LHS
.getValueType() == MVT::i32
|| LHS
.getValueType() == MVT::i64
));
4695 // If the RHS of the comparison is zero, we can potentially fold this
4696 // to a specialized branch.
4697 const ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(RHS
);
4698 if (RHSC
&& RHSC
->getZExtValue() == 0 && ProduceNonFlagSettingCondBr
) {
4699 if (CC
== ISD::SETEQ
) {
4700 // See if we can use a TBZ to fold in an AND as well.
4701 // TBZ has a smaller branch displacement than CBZ. If the offset is
4702 // out of bounds, a late MI-layer pass rewrites branches.
4703 // 403.gcc is an example that hits this case.
4704 if (LHS
.getOpcode() == ISD::AND
&&
4705 isa
<ConstantSDNode
>(LHS
.getOperand(1)) &&
4706 isPowerOf2_64(LHS
.getConstantOperandVal(1))) {
4707 SDValue Test
= LHS
.getOperand(0);
4708 uint64_t Mask
= LHS
.getConstantOperandVal(1);
4709 return DAG
.getNode(AArch64ISD::TBZ
, dl
, MVT::Other
, Chain
, Test
,
4710 DAG
.getConstant(Log2_64(Mask
), dl
, MVT::i64
),
4714 return DAG
.getNode(AArch64ISD::CBZ
, dl
, MVT::Other
, Chain
, LHS
, Dest
);
4715 } else if (CC
== ISD::SETNE
) {
4716 // See if we can use a TBZ to fold in an AND as well.
4717 // TBZ has a smaller branch displacement than CBZ. If the offset is
4718 // out of bounds, a late MI-layer pass rewrites branches.
4719 // 403.gcc is an example that hits this case.
4720 if (LHS
.getOpcode() == ISD::AND
&&
4721 isa
<ConstantSDNode
>(LHS
.getOperand(1)) &&
4722 isPowerOf2_64(LHS
.getConstantOperandVal(1))) {
4723 SDValue Test
= LHS
.getOperand(0);
4724 uint64_t Mask
= LHS
.getConstantOperandVal(1);
4725 return DAG
.getNode(AArch64ISD::TBNZ
, dl
, MVT::Other
, Chain
, Test
,
4726 DAG
.getConstant(Log2_64(Mask
), dl
, MVT::i64
),
4730 return DAG
.getNode(AArch64ISD::CBNZ
, dl
, MVT::Other
, Chain
, LHS
, Dest
);
4731 } else if (CC
== ISD::SETLT
&& LHS
.getOpcode() != ISD::AND
) {
4732 // Don't combine AND since emitComparison converts the AND to an ANDS
4733 // (a.k.a. TST) and the test in the test bit and branch instruction
4734 // becomes redundant. This would also increase register pressure.
4735 uint64_t Mask
= LHS
.getValueSizeInBits() - 1;
4736 return DAG
.getNode(AArch64ISD::TBNZ
, dl
, MVT::Other
, Chain
, LHS
,
4737 DAG
.getConstant(Mask
, dl
, MVT::i64
), Dest
);
4740 if (RHSC
&& RHSC
->getSExtValue() == -1 && CC
== ISD::SETGT
&&
4741 LHS
.getOpcode() != ISD::AND
&& ProduceNonFlagSettingCondBr
) {
4742 // Don't combine AND since emitComparison converts the AND to an ANDS
4743 // (a.k.a. TST) and the test in the test bit and branch instruction
4744 // becomes redundant. This would also increase register pressure.
4745 uint64_t Mask
= LHS
.getValueSizeInBits() - 1;
4746 return DAG
.getNode(AArch64ISD::TBZ
, dl
, MVT::Other
, Chain
, LHS
,
4747 DAG
.getConstant(Mask
, dl
, MVT::i64
), Dest
);
4751 SDValue Cmp
= getAArch64Cmp(LHS
, RHS
, CC
, CCVal
, DAG
, dl
);
4752 return DAG
.getNode(AArch64ISD::BRCOND
, dl
, MVT::Other
, Chain
, Dest
, CCVal
,
4756 assert(LHS
.getValueType() == MVT::f16
|| LHS
.getValueType() == MVT::f32
||
4757 LHS
.getValueType() == MVT::f64
);
4759 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
4760 // clean. Some of them require two branches to implement.
4761 SDValue Cmp
= emitComparison(LHS
, RHS
, CC
, dl
, DAG
);
4762 AArch64CC::CondCode CC1
, CC2
;
4763 changeFPCCToAArch64CC(CC
, CC1
, CC2
);
4764 SDValue CC1Val
= DAG
.getConstant(CC1
, dl
, MVT::i32
);
4766 DAG
.getNode(AArch64ISD::BRCOND
, dl
, MVT::Other
, Chain
, Dest
, CC1Val
, Cmp
);
4767 if (CC2
!= AArch64CC::AL
) {
4768 SDValue CC2Val
= DAG
.getConstant(CC2
, dl
, MVT::i32
);
4769 return DAG
.getNode(AArch64ISD::BRCOND
, dl
, MVT::Other
, BR1
, Dest
, CC2Val
,
4776 SDValue
AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op
,
4777 SelectionDAG
&DAG
) const {
4778 EVT VT
= Op
.getValueType();
4781 SDValue In1
= Op
.getOperand(0);
4782 SDValue In2
= Op
.getOperand(1);
4783 EVT SrcVT
= In2
.getValueType();
4785 if (SrcVT
.bitsLT(VT
))
4786 In2
= DAG
.getNode(ISD::FP_EXTEND
, DL
, VT
, In2
);
4787 else if (SrcVT
.bitsGT(VT
))
4788 In2
= DAG
.getNode(ISD::FP_ROUND
, DL
, VT
, In2
, DAG
.getIntPtrConstant(0, DL
));
4792 SDValue VecVal1
, VecVal2
;
4794 auto setVecVal
= [&] (int Idx
) {
4795 if (!VT
.isVector()) {
4796 VecVal1
= DAG
.getTargetInsertSubreg(Idx
, DL
, VecVT
,
4797 DAG
.getUNDEF(VecVT
), In1
);
4798 VecVal2
= DAG
.getTargetInsertSubreg(Idx
, DL
, VecVT
,
4799 DAG
.getUNDEF(VecVT
), In2
);
4801 VecVal1
= DAG
.getNode(ISD::BITCAST
, DL
, VecVT
, In1
);
4802 VecVal2
= DAG
.getNode(ISD::BITCAST
, DL
, VecVT
, In2
);
4806 if (VT
== MVT::f32
|| VT
== MVT::v2f32
|| VT
== MVT::v4f32
) {
4807 VecVT
= (VT
== MVT::v2f32
? MVT::v2i32
: MVT::v4i32
);
4808 EltMask
= 0x80000000ULL
;
4809 setVecVal(AArch64::ssub
);
4810 } else if (VT
== MVT::f64
|| VT
== MVT::v2f64
) {
4813 // We want to materialize a mask with the high bit set, but the AdvSIMD
4814 // immediate moves cannot materialize that in a single instruction for
4815 // 64-bit elements. Instead, materialize zero and then negate it.
4818 setVecVal(AArch64::dsub
);
4819 } else if (VT
== MVT::f16
|| VT
== MVT::v4f16
|| VT
== MVT::v8f16
) {
4820 VecVT
= (VT
== MVT::v4f16
? MVT::v4i16
: MVT::v8i16
);
4821 EltMask
= 0x8000ULL
;
4822 setVecVal(AArch64::hsub
);
4824 llvm_unreachable("Invalid type for copysign!");
4827 SDValue BuildVec
= DAG
.getConstant(EltMask
, DL
, VecVT
);
4829 // If we couldn't materialize the mask above, then the mask vector will be
4830 // the zero vector, and we need to negate it here.
4831 if (VT
== MVT::f64
|| VT
== MVT::v2f64
) {
4832 BuildVec
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::v2f64
, BuildVec
);
4833 BuildVec
= DAG
.getNode(ISD::FNEG
, DL
, MVT::v2f64
, BuildVec
);
4834 BuildVec
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::v2i64
, BuildVec
);
4838 DAG
.getNode(AArch64ISD::BIT
, DL
, VecVT
, VecVal1
, VecVal2
, BuildVec
);
4841 return DAG
.getTargetExtractSubreg(AArch64::hsub
, DL
, VT
, Sel
);
4843 return DAG
.getTargetExtractSubreg(AArch64::ssub
, DL
, VT
, Sel
);
4844 else if (VT
== MVT::f64
)
4845 return DAG
.getTargetExtractSubreg(AArch64::dsub
, DL
, VT
, Sel
);
4847 return DAG
.getNode(ISD::BITCAST
, DL
, VT
, Sel
);
4850 SDValue
AArch64TargetLowering::LowerCTPOP(SDValue Op
, SelectionDAG
&DAG
) const {
4851 if (DAG
.getMachineFunction().getFunction().hasFnAttribute(
4852 Attribute::NoImplicitFloat
))
4855 if (!Subtarget
->hasNEON())
4858 // While there is no integer popcount instruction, it can
4859 // be more efficiently lowered to the following sequence that uses
4860 // AdvSIMD registers/instructions as long as the copies to/from
4861 // the AdvSIMD registers are cheap.
4862 // FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd
4863 // CNT V0.8B, V0.8B // 8xbyte pop-counts
4864 // ADDV B0, V0.8B // sum 8xbyte pop-counts
4865 // UMOV X0, V0.B[0] // copy byte result back to integer reg
4866 SDValue Val
= Op
.getOperand(0);
4868 EVT VT
= Op
.getValueType();
4870 if (VT
== MVT::i32
|| VT
== MVT::i64
) {
4872 Val
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, MVT::i64
, Val
);
4873 Val
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::v8i8
, Val
);
4875 SDValue CtPop
= DAG
.getNode(ISD::CTPOP
, DL
, MVT::v8i8
, Val
);
4876 SDValue UaddLV
= DAG
.getNode(
4877 ISD::INTRINSIC_WO_CHAIN
, DL
, MVT::i32
,
4878 DAG
.getConstant(Intrinsic::aarch64_neon_uaddlv
, DL
, MVT::i32
), CtPop
);
4881 UaddLV
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, MVT::i64
, UaddLV
);
4885 assert((VT
== MVT::v1i64
|| VT
== MVT::v2i64
|| VT
== MVT::v2i32
||
4886 VT
== MVT::v4i32
|| VT
== MVT::v4i16
|| VT
== MVT::v8i16
) &&
4887 "Unexpected type for custom ctpop lowering");
4889 EVT VT8Bit
= VT
.is64BitVector() ? MVT::v8i8
: MVT::v16i8
;
4890 Val
= DAG
.getBitcast(VT8Bit
, Val
);
4891 Val
= DAG
.getNode(ISD::CTPOP
, DL
, VT8Bit
, Val
);
4893 // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
4894 unsigned EltSize
= 8;
4895 unsigned NumElts
= VT
.is64BitVector() ? 8 : 16;
4896 while (EltSize
!= VT
.getScalarSizeInBits()) {
4899 MVT WidenVT
= MVT::getVectorVT(MVT::getIntegerVT(EltSize
), NumElts
);
4901 ISD::INTRINSIC_WO_CHAIN
, DL
, WidenVT
,
4902 DAG
.getConstant(Intrinsic::aarch64_neon_uaddlp
, DL
, MVT::i32
), Val
);
4908 SDValue
AArch64TargetLowering::LowerSETCC(SDValue Op
, SelectionDAG
&DAG
) const {
4910 if (Op
.getValueType().isVector())
4911 return LowerVSETCC(Op
, DAG
);
4913 SDValue LHS
= Op
.getOperand(0);
4914 SDValue RHS
= Op
.getOperand(1);
4915 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(2))->get();
4918 // We chose ZeroOrOneBooleanContents, so use zero and one.
4919 EVT VT
= Op
.getValueType();
4920 SDValue TVal
= DAG
.getConstant(1, dl
, VT
);
4921 SDValue FVal
= DAG
.getConstant(0, dl
, VT
);
4923 // Handle f128 first, since one possible outcome is a normal integer
4924 // comparison which gets picked up by the next if statement.
4925 if (LHS
.getValueType() == MVT::f128
) {
4926 softenSetCCOperands(DAG
, MVT::f128
, LHS
, RHS
, CC
, dl
, LHS
, RHS
);
4928 // If softenSetCCOperands returned a scalar, use it.
4929 if (!RHS
.getNode()) {
4930 assert(LHS
.getValueType() == Op
.getValueType() &&
4931 "Unexpected setcc expansion!");
4936 if (LHS
.getValueType().isInteger()) {
4939 getAArch64Cmp(LHS
, RHS
, ISD::getSetCCInverse(CC
, true), CCVal
, DAG
, dl
);
4941 // Note that we inverted the condition above, so we reverse the order of
4942 // the true and false operands here. This will allow the setcc to be
4943 // matched to a single CSINC instruction.
4944 return DAG
.getNode(AArch64ISD::CSEL
, dl
, VT
, FVal
, TVal
, CCVal
, Cmp
);
4947 // Now we know we're dealing with FP values.
4948 assert(LHS
.getValueType() == MVT::f16
|| LHS
.getValueType() == MVT::f32
||
4949 LHS
.getValueType() == MVT::f64
);
4951 // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead
4952 // and do the comparison.
4953 SDValue Cmp
= emitComparison(LHS
, RHS
, CC
, dl
, DAG
);
4955 AArch64CC::CondCode CC1
, CC2
;
4956 changeFPCCToAArch64CC(CC
, CC1
, CC2
);
4957 if (CC2
== AArch64CC::AL
) {
4958 changeFPCCToAArch64CC(ISD::getSetCCInverse(CC
, false), CC1
, CC2
);
4959 SDValue CC1Val
= DAG
.getConstant(CC1
, dl
, MVT::i32
);
4961 // Note that we inverted the condition above, so we reverse the order of
4962 // the true and false operands here. This will allow the setcc to be
4963 // matched to a single CSINC instruction.
4964 return DAG
.getNode(AArch64ISD::CSEL
, dl
, VT
, FVal
, TVal
, CC1Val
, Cmp
);
4966 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't
4967 // totally clean. Some of them require two CSELs to implement. As is in
4968 // this case, we emit the first CSEL and then emit a second using the output
4969 // of the first as the RHS. We're effectively OR'ing the two CC's together.
4971 // FIXME: It would be nice if we could match the two CSELs to two CSINCs.
4972 SDValue CC1Val
= DAG
.getConstant(CC1
, dl
, MVT::i32
);
4974 DAG
.getNode(AArch64ISD::CSEL
, dl
, VT
, TVal
, FVal
, CC1Val
, Cmp
);
4976 SDValue CC2Val
= DAG
.getConstant(CC2
, dl
, MVT::i32
);
4977 return DAG
.getNode(AArch64ISD::CSEL
, dl
, VT
, TVal
, CS1
, CC2Val
, Cmp
);
4981 SDValue
AArch64TargetLowering::LowerSELECT_CC(ISD::CondCode CC
, SDValue LHS
,
4982 SDValue RHS
, SDValue TVal
,
4983 SDValue FVal
, const SDLoc
&dl
,
4984 SelectionDAG
&DAG
) const {
4985 // Handle f128 first, because it will result in a comparison of some RTLIB
4986 // call result against zero.
4987 if (LHS
.getValueType() == MVT::f128
) {
4988 softenSetCCOperands(DAG
, MVT::f128
, LHS
, RHS
, CC
, dl
, LHS
, RHS
);
4990 // If softenSetCCOperands returned a scalar, we need to compare the result
4991 // against zero to select between true and false values.
4992 if (!RHS
.getNode()) {
4993 RHS
= DAG
.getConstant(0, dl
, LHS
.getValueType());
4998 // Also handle f16, for which we need to do a f32 comparison.
4999 if (LHS
.getValueType() == MVT::f16
&& !Subtarget
->hasFullFP16()) {
5000 LHS
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f32
, LHS
);
5001 RHS
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::f32
, RHS
);
5004 // Next, handle integers.
5005 if (LHS
.getValueType().isInteger()) {
5006 assert((LHS
.getValueType() == RHS
.getValueType()) &&
5007 (LHS
.getValueType() == MVT::i32
|| LHS
.getValueType() == MVT::i64
));
5009 unsigned Opcode
= AArch64ISD::CSEL
;
5011 // If both the TVal and the FVal are constants, see if we can swap them in
5012 // order to for a CSINV or CSINC out of them.
5013 ConstantSDNode
*CFVal
= dyn_cast
<ConstantSDNode
>(FVal
);
5014 ConstantSDNode
*CTVal
= dyn_cast
<ConstantSDNode
>(TVal
);
5016 if (CTVal
&& CFVal
&& CTVal
->isAllOnesValue() && CFVal
->isNullValue()) {
5017 std::swap(TVal
, FVal
);
5018 std::swap(CTVal
, CFVal
);
5019 CC
= ISD::getSetCCInverse(CC
, true);
5020 } else if (CTVal
&& CFVal
&& CTVal
->isOne() && CFVal
->isNullValue()) {
5021 std::swap(TVal
, FVal
);
5022 std::swap(CTVal
, CFVal
);
5023 CC
= ISD::getSetCCInverse(CC
, true);
5024 } else if (TVal
.getOpcode() == ISD::XOR
) {
5025 // If TVal is a NOT we want to swap TVal and FVal so that we can match
5026 // with a CSINV rather than a CSEL.
5027 if (isAllOnesConstant(TVal
.getOperand(1))) {
5028 std::swap(TVal
, FVal
);
5029 std::swap(CTVal
, CFVal
);
5030 CC
= ISD::getSetCCInverse(CC
, true);
5032 } else if (TVal
.getOpcode() == ISD::SUB
) {
5033 // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so
5034 // that we can match with a CSNEG rather than a CSEL.
5035 if (isNullConstant(TVal
.getOperand(0))) {
5036 std::swap(TVal
, FVal
);
5037 std::swap(CTVal
, CFVal
);
5038 CC
= ISD::getSetCCInverse(CC
, true);
5040 } else if (CTVal
&& CFVal
) {
5041 const int64_t TrueVal
= CTVal
->getSExtValue();
5042 const int64_t FalseVal
= CFVal
->getSExtValue();
5045 // If both TVal and FVal are constants, see if FVal is the
5046 // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC
5047 // instead of a CSEL in that case.
5048 if (TrueVal
== ~FalseVal
) {
5049 Opcode
= AArch64ISD::CSINV
;
5050 } else if (TrueVal
== -FalseVal
) {
5051 Opcode
= AArch64ISD::CSNEG
;
5052 } else if (TVal
.getValueType() == MVT::i32
) {
5053 // If our operands are only 32-bit wide, make sure we use 32-bit
5054 // arithmetic for the check whether we can use CSINC. This ensures that
5055 // the addition in the check will wrap around properly in case there is
5056 // an overflow (which would not be the case if we do the check with
5057 // 64-bit arithmetic).
5058 const uint32_t TrueVal32
= CTVal
->getZExtValue();
5059 const uint32_t FalseVal32
= CFVal
->getZExtValue();
5061 if ((TrueVal32
== FalseVal32
+ 1) || (TrueVal32
+ 1 == FalseVal32
)) {
5062 Opcode
= AArch64ISD::CSINC
;
5064 if (TrueVal32
> FalseVal32
) {
5068 // 64-bit check whether we can use CSINC.
5069 } else if ((TrueVal
== FalseVal
+ 1) || (TrueVal
+ 1 == FalseVal
)) {
5070 Opcode
= AArch64ISD::CSINC
;
5072 if (TrueVal
> FalseVal
) {
5077 // Swap TVal and FVal if necessary.
5079 std::swap(TVal
, FVal
);
5080 std::swap(CTVal
, CFVal
);
5081 CC
= ISD::getSetCCInverse(CC
, true);
5084 if (Opcode
!= AArch64ISD::CSEL
) {
5085 // Drop FVal since we can get its value by simply inverting/negating
5091 // Avoid materializing a constant when possible by reusing a known value in
5092 // a register. However, don't perform this optimization if the known value
5093 // is one, zero or negative one in the case of a CSEL. We can always
5094 // materialize these values using CSINC, CSEL and CSINV with wzr/xzr as the
5095 // FVal, respectively.
5096 ConstantSDNode
*RHSVal
= dyn_cast
<ConstantSDNode
>(RHS
);
5097 if (Opcode
== AArch64ISD::CSEL
&& RHSVal
&& !RHSVal
->isOne() &&
5098 !RHSVal
->isNullValue() && !RHSVal
->isAllOnesValue()) {
5099 AArch64CC::CondCode AArch64CC
= changeIntCCToAArch64CC(CC
);
5100 // Transform "a == C ? C : x" to "a == C ? a : x" and "a != C ? x : C" to
5101 // "a != C ? x : a" to avoid materializing C.
5102 if (CTVal
&& CTVal
== RHSVal
&& AArch64CC
== AArch64CC::EQ
)
5104 else if (CFVal
&& CFVal
== RHSVal
&& AArch64CC
== AArch64CC::NE
)
5106 } else if (Opcode
== AArch64ISD::CSNEG
&& RHSVal
&& RHSVal
->isOne()) {
5107 assert (CTVal
&& CFVal
&& "Expected constant operands for CSNEG.");
5108 // Use a CSINV to transform "a == C ? 1 : -1" to "a == C ? a : -1" to
5109 // avoid materializing C.
5110 AArch64CC::CondCode AArch64CC
= changeIntCCToAArch64CC(CC
);
5111 if (CTVal
== RHSVal
&& AArch64CC
== AArch64CC::EQ
) {
5112 Opcode
= AArch64ISD::CSINV
;
5114 FVal
= DAG
.getConstant(0, dl
, FVal
.getValueType());
5119 SDValue Cmp
= getAArch64Cmp(LHS
, RHS
, CC
, CCVal
, DAG
, dl
);
5120 EVT VT
= TVal
.getValueType();
5121 return DAG
.getNode(Opcode
, dl
, VT
, TVal
, FVal
, CCVal
, Cmp
);
5124 // Now we know we're dealing with FP values.
5125 assert(LHS
.getValueType() == MVT::f16
|| LHS
.getValueType() == MVT::f32
||
5126 LHS
.getValueType() == MVT::f64
);
5127 assert(LHS
.getValueType() == RHS
.getValueType());
5128 EVT VT
= TVal
.getValueType();
5129 SDValue Cmp
= emitComparison(LHS
, RHS
, CC
, dl
, DAG
);
5131 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
5132 // clean. Some of them require two CSELs to implement.
5133 AArch64CC::CondCode CC1
, CC2
;
5134 changeFPCCToAArch64CC(CC
, CC1
, CC2
);
5136 if (DAG
.getTarget().Options
.UnsafeFPMath
) {
5137 // Transform "a == 0.0 ? 0.0 : x" to "a == 0.0 ? a : x" and
5138 // "a != 0.0 ? x : 0.0" to "a != 0.0 ? x : a" to avoid materializing 0.0.
5139 ConstantFPSDNode
*RHSVal
= dyn_cast
<ConstantFPSDNode
>(RHS
);
5140 if (RHSVal
&& RHSVal
->isZero()) {
5141 ConstantFPSDNode
*CFVal
= dyn_cast
<ConstantFPSDNode
>(FVal
);
5142 ConstantFPSDNode
*CTVal
= dyn_cast
<ConstantFPSDNode
>(TVal
);
5144 if ((CC
== ISD::SETEQ
|| CC
== ISD::SETOEQ
|| CC
== ISD::SETUEQ
) &&
5145 CTVal
&& CTVal
->isZero() && TVal
.getValueType() == LHS
.getValueType())
5147 else if ((CC
== ISD::SETNE
|| CC
== ISD::SETONE
|| CC
== ISD::SETUNE
) &&
5148 CFVal
&& CFVal
->isZero() &&
5149 FVal
.getValueType() == LHS
.getValueType())
5154 // Emit first, and possibly only, CSEL.
5155 SDValue CC1Val
= DAG
.getConstant(CC1
, dl
, MVT::i32
);
5156 SDValue CS1
= DAG
.getNode(AArch64ISD::CSEL
, dl
, VT
, TVal
, FVal
, CC1Val
, Cmp
);
5158 // If we need a second CSEL, emit it, using the output of the first as the
5159 // RHS. We're effectively OR'ing the two CC's together.
5160 if (CC2
!= AArch64CC::AL
) {
5161 SDValue CC2Val
= DAG
.getConstant(CC2
, dl
, MVT::i32
);
5162 return DAG
.getNode(AArch64ISD::CSEL
, dl
, VT
, TVal
, CS1
, CC2Val
, Cmp
);
5165 // Otherwise, return the output of the first CSEL.
5169 SDValue
AArch64TargetLowering::LowerSELECT_CC(SDValue Op
,
5170 SelectionDAG
&DAG
) const {
5171 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
5172 SDValue LHS
= Op
.getOperand(0);
5173 SDValue RHS
= Op
.getOperand(1);
5174 SDValue TVal
= Op
.getOperand(2);
5175 SDValue FVal
= Op
.getOperand(3);
5177 return LowerSELECT_CC(CC
, LHS
, RHS
, TVal
, FVal
, DL
, DAG
);
5180 SDValue
AArch64TargetLowering::LowerSELECT(SDValue Op
,
5181 SelectionDAG
&DAG
) const {
5182 SDValue CCVal
= Op
->getOperand(0);
5183 SDValue TVal
= Op
->getOperand(1);
5184 SDValue FVal
= Op
->getOperand(2);
5187 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select
5189 if (isOverflowIntrOpRes(CCVal
)) {
5190 // Only lower legal XALUO ops.
5191 if (!DAG
.getTargetLoweringInfo().isTypeLegal(CCVal
->getValueType(0)))
5194 AArch64CC::CondCode OFCC
;
5195 SDValue Value
, Overflow
;
5196 std::tie(Value
, Overflow
) = getAArch64XALUOOp(OFCC
, CCVal
.getValue(0), DAG
);
5197 SDValue CCVal
= DAG
.getConstant(OFCC
, DL
, MVT::i32
);
5199 return DAG
.getNode(AArch64ISD::CSEL
, DL
, Op
.getValueType(), TVal
, FVal
,
5203 // Lower it the same way as we would lower a SELECT_CC node.
5206 if (CCVal
.getOpcode() == ISD::SETCC
) {
5207 LHS
= CCVal
.getOperand(0);
5208 RHS
= CCVal
.getOperand(1);
5209 CC
= cast
<CondCodeSDNode
>(CCVal
->getOperand(2))->get();
5212 RHS
= DAG
.getConstant(0, DL
, CCVal
.getValueType());
5215 return LowerSELECT_CC(CC
, LHS
, RHS
, TVal
, FVal
, DL
, DAG
);
5218 SDValue
AArch64TargetLowering::LowerJumpTable(SDValue Op
,
5219 SelectionDAG
&DAG
) const {
5220 // Jump table entries as PC relative offsets. No additional tweaking
5221 // is necessary here. Just get the address of the jump table.
5222 JumpTableSDNode
*JT
= cast
<JumpTableSDNode
>(Op
);
5224 if (getTargetMachine().getCodeModel() == CodeModel::Large
&&
5225 !Subtarget
->isTargetMachO()) {
5226 return getAddrLarge(JT
, DAG
);
5227 } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny
) {
5228 return getAddrTiny(JT
, DAG
);
5230 return getAddr(JT
, DAG
);
5233 SDValue
AArch64TargetLowering::LowerBR_JT(SDValue Op
,
5234 SelectionDAG
&DAG
) const {
5235 // Jump table entries as PC relative offsets. No additional tweaking
5236 // is necessary here. Just get the address of the jump table.
5238 SDValue JT
= Op
.getOperand(1);
5239 SDValue Entry
= Op
.getOperand(2);
5240 int JTI
= cast
<JumpTableSDNode
>(JT
.getNode())->getIndex();
5243 DAG
.getMachineNode(AArch64::JumpTableDest32
, DL
, MVT::i64
, MVT::i64
, JT
,
5244 Entry
, DAG
.getTargetJumpTable(JTI
, MVT::i32
));
5245 return DAG
.getNode(ISD::BRIND
, DL
, MVT::Other
, Op
.getOperand(0),
5249 SDValue
AArch64TargetLowering::LowerConstantPool(SDValue Op
,
5250 SelectionDAG
&DAG
) const {
5251 ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(Op
);
5253 if (getTargetMachine().getCodeModel() == CodeModel::Large
) {
5254 // Use the GOT for the large code model on iOS.
5255 if (Subtarget
->isTargetMachO()) {
5256 return getGOT(CP
, DAG
);
5258 return getAddrLarge(CP
, DAG
);
5259 } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny
) {
5260 return getAddrTiny(CP
, DAG
);
5262 return getAddr(CP
, DAG
);
5266 SDValue
AArch64TargetLowering::LowerBlockAddress(SDValue Op
,
5267 SelectionDAG
&DAG
) const {
5268 BlockAddressSDNode
*BA
= cast
<BlockAddressSDNode
>(Op
);
5269 if (getTargetMachine().getCodeModel() == CodeModel::Large
&&
5270 !Subtarget
->isTargetMachO()) {
5271 return getAddrLarge(BA
, DAG
);
5272 } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny
) {
5273 return getAddrTiny(BA
, DAG
);
5275 return getAddr(BA
, DAG
);
5278 SDValue
AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op
,
5279 SelectionDAG
&DAG
) const {
5280 AArch64FunctionInfo
*FuncInfo
=
5281 DAG
.getMachineFunction().getInfo
<AArch64FunctionInfo
>();
5284 SDValue FR
= DAG
.getFrameIndex(FuncInfo
->getVarArgsStackIndex(),
5285 getPointerTy(DAG
.getDataLayout()));
5286 FR
= DAG
.getZExtOrTrunc(FR
, DL
, getPointerMemTy(DAG
.getDataLayout()));
5287 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
5288 return DAG
.getStore(Op
.getOperand(0), DL
, FR
, Op
.getOperand(1),
5289 MachinePointerInfo(SV
));
5292 SDValue
AArch64TargetLowering::LowerWin64_VASTART(SDValue Op
,
5293 SelectionDAG
&DAG
) const {
5294 AArch64FunctionInfo
*FuncInfo
=
5295 DAG
.getMachineFunction().getInfo
<AArch64FunctionInfo
>();
5298 SDValue FR
= DAG
.getFrameIndex(FuncInfo
->getVarArgsGPRSize() > 0
5299 ? FuncInfo
->getVarArgsGPRIndex()
5300 : FuncInfo
->getVarArgsStackIndex(),
5301 getPointerTy(DAG
.getDataLayout()));
5302 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
5303 return DAG
.getStore(Op
.getOperand(0), DL
, FR
, Op
.getOperand(1),
5304 MachinePointerInfo(SV
));
5307 SDValue
AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op
,
5308 SelectionDAG
&DAG
) const {
5309 // The layout of the va_list struct is specified in the AArch64 Procedure Call
5310 // Standard, section B.3.
5311 MachineFunction
&MF
= DAG
.getMachineFunction();
5312 AArch64FunctionInfo
*FuncInfo
= MF
.getInfo
<AArch64FunctionInfo
>();
5313 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
5316 SDValue Chain
= Op
.getOperand(0);
5317 SDValue VAList
= Op
.getOperand(1);
5318 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
5319 SmallVector
<SDValue
, 4> MemOps
;
5321 // void *__stack at offset 0
5322 SDValue Stack
= DAG
.getFrameIndex(FuncInfo
->getVarArgsStackIndex(), PtrVT
);
5323 MemOps
.push_back(DAG
.getStore(Chain
, DL
, Stack
, VAList
,
5324 MachinePointerInfo(SV
), /* Alignment = */ 8));
5326 // void *__gr_top at offset 8
5327 int GPRSize
= FuncInfo
->getVarArgsGPRSize();
5329 SDValue GRTop
, GRTopAddr
;
5332 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, VAList
, DAG
.getConstant(8, DL
, PtrVT
));
5334 GRTop
= DAG
.getFrameIndex(FuncInfo
->getVarArgsGPRIndex(), PtrVT
);
5335 GRTop
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, GRTop
,
5336 DAG
.getConstant(GPRSize
, DL
, PtrVT
));
5338 MemOps
.push_back(DAG
.getStore(Chain
, DL
, GRTop
, GRTopAddr
,
5339 MachinePointerInfo(SV
, 8),
5340 /* Alignment = */ 8));
5343 // void *__vr_top at offset 16
5344 int FPRSize
= FuncInfo
->getVarArgsFPRSize();
5346 SDValue VRTop
, VRTopAddr
;
5347 VRTopAddr
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, VAList
,
5348 DAG
.getConstant(16, DL
, PtrVT
));
5350 VRTop
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFPRIndex(), PtrVT
);
5351 VRTop
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, VRTop
,
5352 DAG
.getConstant(FPRSize
, DL
, PtrVT
));
5354 MemOps
.push_back(DAG
.getStore(Chain
, DL
, VRTop
, VRTopAddr
,
5355 MachinePointerInfo(SV
, 16),
5356 /* Alignment = */ 8));
5359 // int __gr_offs at offset 24
5360 SDValue GROffsAddr
=
5361 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, VAList
, DAG
.getConstant(24, DL
, PtrVT
));
5362 MemOps
.push_back(DAG
.getStore(
5363 Chain
, DL
, DAG
.getConstant(-GPRSize
, DL
, MVT::i32
), GROffsAddr
,
5364 MachinePointerInfo(SV
, 24), /* Alignment = */ 4));
5366 // int __vr_offs at offset 28
5367 SDValue VROffsAddr
=
5368 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, VAList
, DAG
.getConstant(28, DL
, PtrVT
));
5369 MemOps
.push_back(DAG
.getStore(
5370 Chain
, DL
, DAG
.getConstant(-FPRSize
, DL
, MVT::i32
), VROffsAddr
,
5371 MachinePointerInfo(SV
, 28), /* Alignment = */ 4));
5373 return DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, MemOps
);
5376 SDValue
AArch64TargetLowering::LowerVASTART(SDValue Op
,
5377 SelectionDAG
&DAG
) const {
5378 MachineFunction
&MF
= DAG
.getMachineFunction();
5380 if (Subtarget
->isCallingConvWin64(MF
.getFunction().getCallingConv()))
5381 return LowerWin64_VASTART(Op
, DAG
);
5382 else if (Subtarget
->isTargetDarwin())
5383 return LowerDarwin_VASTART(Op
, DAG
);
5385 return LowerAAPCS_VASTART(Op
, DAG
);
5388 SDValue
AArch64TargetLowering::LowerVACOPY(SDValue Op
,
5389 SelectionDAG
&DAG
) const {
5390 // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single
5393 unsigned PtrSize
= Subtarget
->isTargetILP32() ? 4 : 8;
5394 unsigned VaListSize
= (Subtarget
->isTargetDarwin() ||
5395 Subtarget
->isTargetWindows()) ? PtrSize
: 32;
5396 const Value
*DestSV
= cast
<SrcValueSDNode
>(Op
.getOperand(3))->getValue();
5397 const Value
*SrcSV
= cast
<SrcValueSDNode
>(Op
.getOperand(4))->getValue();
5399 return DAG
.getMemcpy(Op
.getOperand(0), DL
, Op
.getOperand(1), Op
.getOperand(2),
5400 DAG
.getConstant(VaListSize
, DL
, MVT::i32
), PtrSize
,
5401 false, false, false, MachinePointerInfo(DestSV
),
5402 MachinePointerInfo(SrcSV
));
5405 SDValue
AArch64TargetLowering::LowerVAARG(SDValue Op
, SelectionDAG
&DAG
) const {
5406 assert(Subtarget
->isTargetDarwin() &&
5407 "automatic va_arg instruction only works on Darwin");
5409 const Value
*V
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
5410 EVT VT
= Op
.getValueType();
5412 SDValue Chain
= Op
.getOperand(0);
5413 SDValue Addr
= Op
.getOperand(1);
5414 unsigned Align
= Op
.getConstantOperandVal(3);
5415 unsigned MinSlotSize
= Subtarget
->isTargetILP32() ? 4 : 8;
5416 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
5417 auto PtrMemVT
= getPointerMemTy(DAG
.getDataLayout());
5419 DAG
.getLoad(PtrMemVT
, DL
, Chain
, Addr
, MachinePointerInfo(V
));
5420 Chain
= VAList
.getValue(1);
5421 VAList
= DAG
.getZExtOrTrunc(VAList
, DL
, PtrVT
);
5423 if (Align
> MinSlotSize
) {
5424 assert(((Align
& (Align
- 1)) == 0) && "Expected Align to be a power of 2");
5425 VAList
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, VAList
,
5426 DAG
.getConstant(Align
- 1, DL
, PtrVT
));
5427 VAList
= DAG
.getNode(ISD::AND
, DL
, PtrVT
, VAList
,
5428 DAG
.getConstant(-(int64_t)Align
, DL
, PtrVT
));
5431 Type
*ArgTy
= VT
.getTypeForEVT(*DAG
.getContext());
5432 unsigned ArgSize
= DAG
.getDataLayout().getTypeAllocSize(ArgTy
);
5434 // Scalar integer and FP values smaller than 64 bits are implicitly extended
5435 // up to 64 bits. At the very least, we have to increase the striding of the
5436 // vaargs list to match this, and for FP values we need to introduce
5437 // FP_ROUND nodes as well.
5438 if (VT
.isInteger() && !VT
.isVector())
5439 ArgSize
= std::max(ArgSize
, MinSlotSize
);
5440 bool NeedFPTrunc
= false;
5441 if (VT
.isFloatingPoint() && !VT
.isVector() && VT
!= MVT::f64
) {
5446 // Increment the pointer, VAList, to the next vaarg
5447 SDValue VANext
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, VAList
,
5448 DAG
.getConstant(ArgSize
, DL
, PtrVT
));
5449 VANext
= DAG
.getZExtOrTrunc(VANext
, DL
, PtrMemVT
);
5451 // Store the incremented VAList to the legalized pointer
5453 DAG
.getStore(Chain
, DL
, VANext
, Addr
, MachinePointerInfo(V
));
5455 // Load the actual argument out of the pointer VAList
5457 // Load the value as an f64.
5459 DAG
.getLoad(MVT::f64
, DL
, APStore
, VAList
, MachinePointerInfo());
5460 // Round the value down to an f32.
5461 SDValue NarrowFP
= DAG
.getNode(ISD::FP_ROUND
, DL
, VT
, WideFP
.getValue(0),
5462 DAG
.getIntPtrConstant(1, DL
));
5463 SDValue Ops
[] = { NarrowFP
, WideFP
.getValue(1) };
5464 // Merge the rounded value with the chain output of the load.
5465 return DAG
.getMergeValues(Ops
, DL
);
5468 return DAG
.getLoad(VT
, DL
, APStore
, VAList
, MachinePointerInfo());
5471 SDValue
AArch64TargetLowering::LowerFRAMEADDR(SDValue Op
,
5472 SelectionDAG
&DAG
) const {
5473 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
5474 MFI
.setFrameAddressIsTaken(true);
5476 EVT VT
= Op
.getValueType();
5478 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
5480 DAG
.getCopyFromReg(DAG
.getEntryNode(), DL
, AArch64::FP
, MVT::i64
);
5482 FrameAddr
= DAG
.getLoad(VT
, DL
, DAG
.getEntryNode(), FrameAddr
,
5483 MachinePointerInfo());
5485 if (Subtarget
->isTargetILP32())
5486 FrameAddr
= DAG
.getNode(ISD::AssertZext
, DL
, MVT::i64
, FrameAddr
,
5487 DAG
.getValueType(VT
));
5492 SDValue
AArch64TargetLowering::LowerSPONENTRY(SDValue Op
,
5493 SelectionDAG
&DAG
) const {
5494 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
5496 EVT VT
= getPointerTy(DAG
.getDataLayout());
5498 int FI
= MFI
.CreateFixedObject(4, 0, false);
5499 return DAG
.getFrameIndex(FI
, VT
);
5502 #define GET_REGISTER_MATCHER
5503 #include "AArch64GenAsmMatcher.inc"
5505 // FIXME? Maybe this could be a TableGen attribute on some registers and
5506 // this table could be generated automatically from RegInfo.
5507 Register
AArch64TargetLowering::
5508 getRegisterByName(const char* RegName
, EVT VT
, const MachineFunction
&MF
) const {
5509 Register Reg
= MatchRegisterName(RegName
);
5510 if (AArch64::X1
<= Reg
&& Reg
<= AArch64::X28
) {
5511 const MCRegisterInfo
*MRI
= Subtarget
->getRegisterInfo();
5512 unsigned DwarfRegNum
= MRI
->getDwarfRegNum(Reg
, false);
5513 if (!Subtarget
->isXRegisterReserved(DwarfRegNum
))
5518 report_fatal_error(Twine("Invalid register name \""
5519 + StringRef(RegName
) + "\"."));
5522 SDValue
AArch64TargetLowering::LowerADDROFRETURNADDR(SDValue Op
,
5523 SelectionDAG
&DAG
) const {
5524 DAG
.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true);
5526 EVT VT
= Op
.getValueType();
5530 DAG
.getCopyFromReg(DAG
.getEntryNode(), DL
, AArch64::FP
, VT
);
5531 SDValue Offset
= DAG
.getConstant(8, DL
, getPointerTy(DAG
.getDataLayout()));
5533 return DAG
.getNode(ISD::ADD
, DL
, VT
, FrameAddr
, Offset
);
5536 SDValue
AArch64TargetLowering::LowerRETURNADDR(SDValue Op
,
5537 SelectionDAG
&DAG
) const {
5538 MachineFunction
&MF
= DAG
.getMachineFunction();
5539 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
5540 MFI
.setReturnAddressIsTaken(true);
5542 EVT VT
= Op
.getValueType();
5544 unsigned Depth
= cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
5546 SDValue FrameAddr
= LowerFRAMEADDR(Op
, DAG
);
5547 SDValue Offset
= DAG
.getConstant(8, DL
, getPointerTy(DAG
.getDataLayout()));
5548 return DAG
.getLoad(VT
, DL
, DAG
.getEntryNode(),
5549 DAG
.getNode(ISD::ADD
, DL
, VT
, FrameAddr
, Offset
),
5550 MachinePointerInfo());
5553 // Return LR, which contains the return address. Mark it an implicit live-in.
5554 unsigned Reg
= MF
.addLiveIn(AArch64::LR
, &AArch64::GPR64RegClass
);
5555 return DAG
.getCopyFromReg(DAG
.getEntryNode(), DL
, Reg
, VT
);
5558 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
5559 /// i64 values and take a 2 x i64 value to shift plus a shift amount.
5560 SDValue
AArch64TargetLowering::LowerShiftRightParts(SDValue Op
,
5561 SelectionDAG
&DAG
) const {
5562 assert(Op
.getNumOperands() == 3 && "Not a double-shift!");
5563 EVT VT
= Op
.getValueType();
5564 unsigned VTBits
= VT
.getSizeInBits();
5566 SDValue ShOpLo
= Op
.getOperand(0);
5567 SDValue ShOpHi
= Op
.getOperand(1);
5568 SDValue ShAmt
= Op
.getOperand(2);
5569 unsigned Opc
= (Op
.getOpcode() == ISD::SRA_PARTS
) ? ISD::SRA
: ISD::SRL
;
5571 assert(Op
.getOpcode() == ISD::SRA_PARTS
|| Op
.getOpcode() == ISD::SRL_PARTS
);
5573 SDValue RevShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i64
,
5574 DAG
.getConstant(VTBits
, dl
, MVT::i64
), ShAmt
);
5575 SDValue HiBitsForLo
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpHi
, RevShAmt
);
5577 // Unfortunately, if ShAmt == 0, we just calculated "(SHL ShOpHi, 64)" which
5578 // is "undef". We wanted 0, so CSEL it directly.
5579 SDValue Cmp
= emitComparison(ShAmt
, DAG
.getConstant(0, dl
, MVT::i64
),
5580 ISD::SETEQ
, dl
, DAG
);
5581 SDValue CCVal
= DAG
.getConstant(AArch64CC::EQ
, dl
, MVT::i32
);
5583 DAG
.getNode(AArch64ISD::CSEL
, dl
, VT
, DAG
.getConstant(0, dl
, MVT::i64
),
5584 HiBitsForLo
, CCVal
, Cmp
);
5586 SDValue ExtraShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i64
, ShAmt
,
5587 DAG
.getConstant(VTBits
, dl
, MVT::i64
));
5589 SDValue LoBitsForLo
= DAG
.getNode(ISD::SRL
, dl
, VT
, ShOpLo
, ShAmt
);
5590 SDValue LoForNormalShift
=
5591 DAG
.getNode(ISD::OR
, dl
, VT
, LoBitsForLo
, HiBitsForLo
);
5593 Cmp
= emitComparison(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i64
), ISD::SETGE
,
5595 CCVal
= DAG
.getConstant(AArch64CC::GE
, dl
, MVT::i32
);
5596 SDValue LoForBigShift
= DAG
.getNode(Opc
, dl
, VT
, ShOpHi
, ExtraShAmt
);
5597 SDValue Lo
= DAG
.getNode(AArch64ISD::CSEL
, dl
, VT
, LoForBigShift
,
5598 LoForNormalShift
, CCVal
, Cmp
);
5600 // AArch64 shifts larger than the register width are wrapped rather than
5601 // clamped, so we can't just emit "hi >> x".
5602 SDValue HiForNormalShift
= DAG
.getNode(Opc
, dl
, VT
, ShOpHi
, ShAmt
);
5603 SDValue HiForBigShift
=
5605 ? DAG
.getNode(Opc
, dl
, VT
, ShOpHi
,
5606 DAG
.getConstant(VTBits
- 1, dl
, MVT::i64
))
5607 : DAG
.getConstant(0, dl
, VT
);
5608 SDValue Hi
= DAG
.getNode(AArch64ISD::CSEL
, dl
, VT
, HiForBigShift
,
5609 HiForNormalShift
, CCVal
, Cmp
);
5611 SDValue Ops
[2] = { Lo
, Hi
};
5612 return DAG
.getMergeValues(Ops
, dl
);
5615 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
5616 /// i64 values and take a 2 x i64 value to shift plus a shift amount.
5617 SDValue
AArch64TargetLowering::LowerShiftLeftParts(SDValue Op
,
5618 SelectionDAG
&DAG
) const {
5619 assert(Op
.getNumOperands() == 3 && "Not a double-shift!");
5620 EVT VT
= Op
.getValueType();
5621 unsigned VTBits
= VT
.getSizeInBits();
5623 SDValue ShOpLo
= Op
.getOperand(0);
5624 SDValue ShOpHi
= Op
.getOperand(1);
5625 SDValue ShAmt
= Op
.getOperand(2);
5627 assert(Op
.getOpcode() == ISD::SHL_PARTS
);
5628 SDValue RevShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i64
,
5629 DAG
.getConstant(VTBits
, dl
, MVT::i64
), ShAmt
);
5630 SDValue LoBitsForHi
= DAG
.getNode(ISD::SRL
, dl
, VT
, ShOpLo
, RevShAmt
);
5632 // Unfortunately, if ShAmt == 0, we just calculated "(SRL ShOpLo, 64)" which
5633 // is "undef". We wanted 0, so CSEL it directly.
5634 SDValue Cmp
= emitComparison(ShAmt
, DAG
.getConstant(0, dl
, MVT::i64
),
5635 ISD::SETEQ
, dl
, DAG
);
5636 SDValue CCVal
= DAG
.getConstant(AArch64CC::EQ
, dl
, MVT::i32
);
5638 DAG
.getNode(AArch64ISD::CSEL
, dl
, VT
, DAG
.getConstant(0, dl
, MVT::i64
),
5639 LoBitsForHi
, CCVal
, Cmp
);
5641 SDValue ExtraShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i64
, ShAmt
,
5642 DAG
.getConstant(VTBits
, dl
, MVT::i64
));
5643 SDValue HiBitsForHi
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpHi
, ShAmt
);
5644 SDValue HiForNormalShift
=
5645 DAG
.getNode(ISD::OR
, dl
, VT
, LoBitsForHi
, HiBitsForHi
);
5647 SDValue HiForBigShift
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpLo
, ExtraShAmt
);
5649 Cmp
= emitComparison(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i64
), ISD::SETGE
,
5651 CCVal
= DAG
.getConstant(AArch64CC::GE
, dl
, MVT::i32
);
5652 SDValue Hi
= DAG
.getNode(AArch64ISD::CSEL
, dl
, VT
, HiForBigShift
,
5653 HiForNormalShift
, CCVal
, Cmp
);
5655 // AArch64 shifts of larger than register sizes are wrapped rather than
5656 // clamped, so we can't just emit "lo << a" if a is too big.
5657 SDValue LoForBigShift
= DAG
.getConstant(0, dl
, VT
);
5658 SDValue LoForNormalShift
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpLo
, ShAmt
);
5659 SDValue Lo
= DAG
.getNode(AArch64ISD::CSEL
, dl
, VT
, LoForBigShift
,
5660 LoForNormalShift
, CCVal
, Cmp
);
5662 SDValue Ops
[2] = { Lo
, Hi
};
5663 return DAG
.getMergeValues(Ops
, dl
);
5666 bool AArch64TargetLowering::isOffsetFoldingLegal(
5667 const GlobalAddressSDNode
*GA
) const {
5668 // Offsets are folded in the DAG combine rather than here so that we can
5669 // intelligently choose an offset based on the uses.
5673 bool AArch64TargetLowering::isFPImmLegal(const APFloat
&Imm
, EVT VT
,
5674 bool OptForSize
) const {
5675 bool IsLegal
= false;
5676 // We can materialize #0.0 as fmov $Rd, XZR for 64-bit, 32-bit cases, and
5677 // 16-bit case when target has full fp16 support.
5678 // FIXME: We should be able to handle f128 as well with a clever lowering.
5679 const APInt ImmInt
= Imm
.bitcastToAPInt();
5681 IsLegal
= AArch64_AM::getFP64Imm(ImmInt
) != -1 || Imm
.isPosZero();
5682 else if (VT
== MVT::f32
)
5683 IsLegal
= AArch64_AM::getFP32Imm(ImmInt
) != -1 || Imm
.isPosZero();
5684 else if (VT
== MVT::f16
&& Subtarget
->hasFullFP16())
5685 IsLegal
= AArch64_AM::getFP16Imm(ImmInt
) != -1 || Imm
.isPosZero();
5686 // TODO: fmov h0, w0 is also legal, however on't have an isel pattern to
5687 // generate that fmov.
5689 // If we can not materialize in immediate field for fmov, check if the
5690 // value can be encoded as the immediate operand of a logical instruction.
5691 // The immediate value will be created with either MOVZ, MOVN, or ORR.
5692 if (!IsLegal
&& (VT
== MVT::f64
|| VT
== MVT::f32
)) {
5693 // The cost is actually exactly the same for mov+fmov vs. adrp+ldr;
5694 // however the mov+fmov sequence is always better because of the reduced
5695 // cache pressure. The timings are still the same if you consider
5696 // movw+movk+fmov vs. adrp+ldr (it's one instruction longer, but the
5697 // movw+movk is fused). So we limit up to 2 instrdduction at most.
5698 SmallVector
<AArch64_IMM::ImmInsnModel
, 4> Insn
;
5699 AArch64_IMM::expandMOVImm(ImmInt
.getZExtValue(), VT
.getSizeInBits(),
5701 unsigned Limit
= (OptForSize
? 1 : (Subtarget
->hasFuseLiterals() ? 5 : 2));
5702 IsLegal
= Insn
.size() <= Limit
;
5705 LLVM_DEBUG(dbgs() << (IsLegal
? "Legal " : "Illegal ") << VT
.getEVTString()
5706 << " imm value: "; Imm
.dump(););
5710 //===----------------------------------------------------------------------===//
5711 // AArch64 Optimization Hooks
5712 //===----------------------------------------------------------------------===//
5714 static SDValue
getEstimate(const AArch64Subtarget
*ST
, unsigned Opcode
,
5715 SDValue Operand
, SelectionDAG
&DAG
,
5717 EVT VT
= Operand
.getValueType();
5718 if (ST
->hasNEON() &&
5719 (VT
== MVT::f64
|| VT
== MVT::v1f64
|| VT
== MVT::v2f64
||
5720 VT
== MVT::f32
|| VT
== MVT::v1f32
||
5721 VT
== MVT::v2f32
|| VT
== MVT::v4f32
)) {
5722 if (ExtraSteps
== TargetLoweringBase::ReciprocalEstimate::Unspecified
)
5723 // For the reciprocal estimates, convergence is quadratic, so the number
5724 // of digits is doubled after each iteration. In ARMv8, the accuracy of
5725 // the initial estimate is 2^-8. Thus the number of extra steps to refine
5726 // the result for float (23 mantissa bits) is 2 and for double (52
5727 // mantissa bits) is 3.
5728 ExtraSteps
= VT
.getScalarType() == MVT::f64
? 3 : 2;
5730 return DAG
.getNode(Opcode
, SDLoc(Operand
), VT
, Operand
);
5736 SDValue
AArch64TargetLowering::getSqrtEstimate(SDValue Operand
,
5737 SelectionDAG
&DAG
, int Enabled
,
5740 bool Reciprocal
) const {
5741 if (Enabled
== ReciprocalEstimate::Enabled
||
5742 (Enabled
== ReciprocalEstimate::Unspecified
&& Subtarget
->useRSqrt()))
5743 if (SDValue Estimate
= getEstimate(Subtarget
, AArch64ISD::FRSQRTE
, Operand
,
5746 EVT VT
= Operand
.getValueType();
5749 Flags
.setAllowReassociation(true);
5751 // Newton reciprocal square root iteration: E * 0.5 * (3 - X * E^2)
5752 // AArch64 reciprocal square root iteration instruction: 0.5 * (3 - M * N)
5753 for (int i
= ExtraSteps
; i
> 0; --i
) {
5754 SDValue Step
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Estimate
, Estimate
,
5756 Step
= DAG
.getNode(AArch64ISD::FRSQRTS
, DL
, VT
, Operand
, Step
, Flags
);
5757 Estimate
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Estimate
, Step
, Flags
);
5760 EVT CCVT
= getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(),
5762 SDValue FPZero
= DAG
.getConstantFP(0.0, DL
, VT
);
5763 SDValue Eq
= DAG
.getSetCC(DL
, CCVT
, Operand
, FPZero
, ISD::SETEQ
);
5765 Estimate
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Operand
, Estimate
, Flags
);
5766 // Correct the result if the operand is 0.0.
5767 Estimate
= DAG
.getNode(VT
.isVector() ? ISD::VSELECT
: ISD::SELECT
, DL
,
5768 VT
, Eq
, Operand
, Estimate
);
5778 SDValue
AArch64TargetLowering::getRecipEstimate(SDValue Operand
,
5779 SelectionDAG
&DAG
, int Enabled
,
5780 int &ExtraSteps
) const {
5781 if (Enabled
== ReciprocalEstimate::Enabled
)
5782 if (SDValue Estimate
= getEstimate(Subtarget
, AArch64ISD::FRECPE
, Operand
,
5785 EVT VT
= Operand
.getValueType();
5788 Flags
.setAllowReassociation(true);
5790 // Newton reciprocal iteration: E * (2 - X * E)
5791 // AArch64 reciprocal iteration instruction: (2 - M * N)
5792 for (int i
= ExtraSteps
; i
> 0; --i
) {
5793 SDValue Step
= DAG
.getNode(AArch64ISD::FRECPS
, DL
, VT
, Operand
,
5795 Estimate
= DAG
.getNode(ISD::FMUL
, DL
, VT
, Estimate
, Step
, Flags
);
5805 //===----------------------------------------------------------------------===//
5806 // AArch64 Inline Assembly Support
5807 //===----------------------------------------------------------------------===//
5809 // Table of Constraints
5810 // TODO: This is the current set of constraints supported by ARM for the
5811 // compiler, not all of them may make sense.
5813 // r - A general register
5814 // w - An FP/SIMD register of some size in the range v0-v31
5815 // x - An FP/SIMD register of some size in the range v0-v15
5816 // I - Constant that can be used with an ADD instruction
5817 // J - Constant that can be used with a SUB instruction
5818 // K - Constant that can be used with a 32-bit logical instruction
5819 // L - Constant that can be used with a 64-bit logical instruction
5820 // M - Constant that can be used as a 32-bit MOV immediate
5821 // N - Constant that can be used as a 64-bit MOV immediate
5822 // Q - A memory reference with base register and no offset
5823 // S - A symbolic address
5824 // Y - Floating point constant zero
5825 // Z - Integer constant zero
5827 // Note that general register operands will be output using their 64-bit x
5828 // register name, whatever the size of the variable, unless the asm operand
5829 // is prefixed by the %w modifier. Floating-point and SIMD register operands
5830 // will be output with the v prefix unless prefixed by the %b, %h, %s, %d or
5832 const char *AArch64TargetLowering::LowerXConstraint(EVT ConstraintVT
) const {
5833 // At this point, we have to lower this constraint to something else, so we
5834 // lower it to an "r" or "w". However, by doing this we will force the result
5835 // to be in register, while the X constraint is much more permissive.
5837 // Although we are correct (we are free to emit anything, without
5838 // constraints), we might break use cases that would expect us to be more
5839 // efficient and emit something else.
5840 if (!Subtarget
->hasFPARMv8())
5843 if (ConstraintVT
.isFloatingPoint())
5846 if (ConstraintVT
.isVector() &&
5847 (ConstraintVT
.getSizeInBits() == 64 ||
5848 ConstraintVT
.getSizeInBits() == 128))
5854 enum PredicateConstraint
{
5860 static PredicateConstraint
parsePredicateConstraint(StringRef Constraint
) {
5861 PredicateConstraint P
= PredicateConstraint::Invalid
;
5862 if (Constraint
== "Upa")
5863 P
= PredicateConstraint::Upa
;
5864 if (Constraint
== "Upl")
5865 P
= PredicateConstraint::Upl
;
5869 /// getConstraintType - Given a constraint letter, return the type of
5870 /// constraint it is for this target.
5871 AArch64TargetLowering::ConstraintType
5872 AArch64TargetLowering::getConstraintType(StringRef Constraint
) const {
5873 if (Constraint
.size() == 1) {
5874 switch (Constraint
[0]) {
5880 return C_RegisterClass
;
5881 // An address with a single base register. Due to the way we
5882 // currently handle addresses it is the same as 'r'.
5895 case 'S': // A symbolic address
5898 } else if (parsePredicateConstraint(Constraint
) !=
5899 PredicateConstraint::Invalid
)
5900 return C_RegisterClass
;
5901 return TargetLowering::getConstraintType(Constraint
);
5904 /// Examine constraint type and operand type and determine a weight value.
5905 /// This object must already have been set up with the operand type
5906 /// and the current alternative constraint selected.
5907 TargetLowering::ConstraintWeight
5908 AArch64TargetLowering::getSingleConstraintMatchWeight(
5909 AsmOperandInfo
&info
, const char *constraint
) const {
5910 ConstraintWeight weight
= CW_Invalid
;
5911 Value
*CallOperandVal
= info
.CallOperandVal
;
5912 // If we don't have a value, we can't do a match,
5913 // but allow it at the lowest weight.
5914 if (!CallOperandVal
)
5916 Type
*type
= CallOperandVal
->getType();
5917 // Look at the constraint type.
5918 switch (*constraint
) {
5920 weight
= TargetLowering::getSingleConstraintMatchWeight(info
, constraint
);
5925 if (type
->isFloatingPointTy() || type
->isVectorTy())
5926 weight
= CW_Register
;
5929 weight
= CW_Constant
;
5932 if (parsePredicateConstraint(constraint
) != PredicateConstraint::Invalid
)
5933 weight
= CW_Register
;
5939 std::pair
<unsigned, const TargetRegisterClass
*>
5940 AArch64TargetLowering::getRegForInlineAsmConstraint(
5941 const TargetRegisterInfo
*TRI
, StringRef Constraint
, MVT VT
) const {
5942 if (Constraint
.size() == 1) {
5943 switch (Constraint
[0]) {
5945 if (VT
.getSizeInBits() == 64)
5946 return std::make_pair(0U, &AArch64::GPR64commonRegClass
);
5947 return std::make_pair(0U, &AArch64::GPR32commonRegClass
);
5949 if (!Subtarget
->hasFPARMv8())
5951 if (VT
.isScalableVector())
5952 return std::make_pair(0U, &AArch64::ZPRRegClass
);
5953 if (VT
.getSizeInBits() == 16)
5954 return std::make_pair(0U, &AArch64::FPR16RegClass
);
5955 if (VT
.getSizeInBits() == 32)
5956 return std::make_pair(0U, &AArch64::FPR32RegClass
);
5957 if (VT
.getSizeInBits() == 64)
5958 return std::make_pair(0U, &AArch64::FPR64RegClass
);
5959 if (VT
.getSizeInBits() == 128)
5960 return std::make_pair(0U, &AArch64::FPR128RegClass
);
5962 // The instructions that this constraint is designed for can
5963 // only take 128-bit registers so just use that regclass.
5965 if (!Subtarget
->hasFPARMv8())
5967 if (VT
.isScalableVector())
5968 return std::make_pair(0U, &AArch64::ZPR_4bRegClass
);
5969 if (VT
.getSizeInBits() == 128)
5970 return std::make_pair(0U, &AArch64::FPR128_loRegClass
);
5973 if (!Subtarget
->hasFPARMv8())
5975 if (VT
.isScalableVector())
5976 return std::make_pair(0U, &AArch64::ZPR_3bRegClass
);
5980 PredicateConstraint PC
= parsePredicateConstraint(Constraint
);
5981 if (PC
!= PredicateConstraint::Invalid
) {
5982 assert(VT
.isScalableVector());
5983 bool restricted
= (PC
== PredicateConstraint::Upl
);
5984 return restricted
? std::make_pair(0U, &AArch64::PPR_3bRegClass
)
5985 : std::make_pair(0U, &AArch64::PPRRegClass
);
5988 if (StringRef("{cc}").equals_lower(Constraint
))
5989 return std::make_pair(unsigned(AArch64::NZCV
), &AArch64::CCRRegClass
);
5991 // Use the default implementation in TargetLowering to convert the register
5992 // constraint into a member of a register class.
5993 std::pair
<unsigned, const TargetRegisterClass
*> Res
;
5994 Res
= TargetLowering::getRegForInlineAsmConstraint(TRI
, Constraint
, VT
);
5996 // Not found as a standard register?
5998 unsigned Size
= Constraint
.size();
5999 if ((Size
== 4 || Size
== 5) && Constraint
[0] == '{' &&
6000 tolower(Constraint
[1]) == 'v' && Constraint
[Size
- 1] == '}') {
6002 bool Failed
= Constraint
.slice(2, Size
- 1).getAsInteger(10, RegNo
);
6003 if (!Failed
&& RegNo
>= 0 && RegNo
<= 31) {
6004 // v0 - v31 are aliases of q0 - q31 or d0 - d31 depending on size.
6005 // By default we'll emit v0-v31 for this unless there's a modifier where
6006 // we'll emit the correct register as well.
6007 if (VT
!= MVT::Other
&& VT
.getSizeInBits() == 64) {
6008 Res
.first
= AArch64::FPR64RegClass
.getRegister(RegNo
);
6009 Res
.second
= &AArch64::FPR64RegClass
;
6011 Res
.first
= AArch64::FPR128RegClass
.getRegister(RegNo
);
6012 Res
.second
= &AArch64::FPR128RegClass
;
6018 if (Res
.second
&& !Subtarget
->hasFPARMv8() &&
6019 !AArch64::GPR32allRegClass
.hasSubClassEq(Res
.second
) &&
6020 !AArch64::GPR64allRegClass
.hasSubClassEq(Res
.second
))
6021 return std::make_pair(0U, nullptr);
6026 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
6027 /// vector. If it is invalid, don't add anything to Ops.
6028 void AArch64TargetLowering::LowerAsmOperandForConstraint(
6029 SDValue Op
, std::string
&Constraint
, std::vector
<SDValue
> &Ops
,
6030 SelectionDAG
&DAG
) const {
6033 // Currently only support length 1 constraints.
6034 if (Constraint
.length() != 1)
6037 char ConstraintLetter
= Constraint
[0];
6038 switch (ConstraintLetter
) {
6042 // This set of constraints deal with valid constants for various instructions.
6043 // Validate and return a target constant for them if we can.
6045 // 'z' maps to xzr or wzr so it needs an input of 0.
6046 if (!isNullConstant(Op
))
6049 if (Op
.getValueType() == MVT::i64
)
6050 Result
= DAG
.getRegister(AArch64::XZR
, MVT::i64
);
6052 Result
= DAG
.getRegister(AArch64::WZR
, MVT::i32
);
6056 // An absolute symbolic address or label reference.
6057 if (const GlobalAddressSDNode
*GA
= dyn_cast
<GlobalAddressSDNode
>(Op
)) {
6058 Result
= DAG
.getTargetGlobalAddress(GA
->getGlobal(), SDLoc(Op
),
6059 GA
->getValueType(0));
6060 } else if (const BlockAddressSDNode
*BA
=
6061 dyn_cast
<BlockAddressSDNode
>(Op
)) {
6063 DAG
.getTargetBlockAddress(BA
->getBlockAddress(), BA
->getValueType(0));
6064 } else if (const ExternalSymbolSDNode
*ES
=
6065 dyn_cast
<ExternalSymbolSDNode
>(Op
)) {
6067 DAG
.getTargetExternalSymbol(ES
->getSymbol(), ES
->getValueType(0));
6079 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
);
6083 // Grab the value and do some validation.
6084 uint64_t CVal
= C
->getZExtValue();
6085 switch (ConstraintLetter
) {
6086 // The I constraint applies only to simple ADD or SUB immediate operands:
6087 // i.e. 0 to 4095 with optional shift by 12
6088 // The J constraint applies only to ADD or SUB immediates that would be
6089 // valid when negated, i.e. if [an add pattern] were to be output as a SUB
6090 // instruction [or vice versa], in other words -1 to -4095 with optional
6091 // left shift by 12.
6093 if (isUInt
<12>(CVal
) || isShiftedUInt
<12, 12>(CVal
))
6097 uint64_t NVal
= -C
->getSExtValue();
6098 if (isUInt
<12>(NVal
) || isShiftedUInt
<12, 12>(NVal
)) {
6099 CVal
= C
->getSExtValue();
6104 // The K and L constraints apply *only* to logical immediates, including
6105 // what used to be the MOVI alias for ORR (though the MOVI alias has now
6106 // been removed and MOV should be used). So these constraints have to
6107 // distinguish between bit patterns that are valid 32-bit or 64-bit
6108 // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but
6109 // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice
6112 if (AArch64_AM::isLogicalImmediate(CVal
, 32))
6116 if (AArch64_AM::isLogicalImmediate(CVal
, 64))
6119 // The M and N constraints are a superset of K and L respectively, for use
6120 // with the MOV (immediate) alias. As well as the logical immediates they
6121 // also match 32 or 64-bit immediates that can be loaded either using a
6122 // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca
6123 // (M) or 64-bit 0x1234000000000000 (N) etc.
6124 // As a note some of this code is liberally stolen from the asm parser.
6126 if (!isUInt
<32>(CVal
))
6128 if (AArch64_AM::isLogicalImmediate(CVal
, 32))
6130 if ((CVal
& 0xFFFF) == CVal
)
6132 if ((CVal
& 0xFFFF0000ULL
) == CVal
)
6134 uint64_t NCVal
= ~(uint32_t)CVal
;
6135 if ((NCVal
& 0xFFFFULL
) == NCVal
)
6137 if ((NCVal
& 0xFFFF0000ULL
) == NCVal
)
6142 if (AArch64_AM::isLogicalImmediate(CVal
, 64))
6144 if ((CVal
& 0xFFFFULL
) == CVal
)
6146 if ((CVal
& 0xFFFF0000ULL
) == CVal
)
6148 if ((CVal
& 0xFFFF00000000ULL
) == CVal
)
6150 if ((CVal
& 0xFFFF000000000000ULL
) == CVal
)
6152 uint64_t NCVal
= ~CVal
;
6153 if ((NCVal
& 0xFFFFULL
) == NCVal
)
6155 if ((NCVal
& 0xFFFF0000ULL
) == NCVal
)
6157 if ((NCVal
& 0xFFFF00000000ULL
) == NCVal
)
6159 if ((NCVal
& 0xFFFF000000000000ULL
) == NCVal
)
6167 // All assembler immediates are 64-bit integers.
6168 Result
= DAG
.getTargetConstant(CVal
, SDLoc(Op
), MVT::i64
);
6172 if (Result
.getNode()) {
6173 Ops
.push_back(Result
);
6177 return TargetLowering::LowerAsmOperandForConstraint(Op
, Constraint
, Ops
, DAG
);
6180 //===----------------------------------------------------------------------===//
6181 // AArch64 Advanced SIMD Support
6182 //===----------------------------------------------------------------------===//
6184 /// WidenVector - Given a value in the V64 register class, produce the
6185 /// equivalent value in the V128 register class.
6186 static SDValue
WidenVector(SDValue V64Reg
, SelectionDAG
&DAG
) {
6187 EVT VT
= V64Reg
.getValueType();
6188 unsigned NarrowSize
= VT
.getVectorNumElements();
6189 MVT EltTy
= VT
.getVectorElementType().getSimpleVT();
6190 MVT WideTy
= MVT::getVectorVT(EltTy
, 2 * NarrowSize
);
6193 return DAG
.getNode(ISD::INSERT_SUBVECTOR
, DL
, WideTy
, DAG
.getUNDEF(WideTy
),
6194 V64Reg
, DAG
.getConstant(0, DL
, MVT::i32
));
6197 /// getExtFactor - Determine the adjustment factor for the position when
6198 /// generating an "extract from vector registers" instruction.
6199 static unsigned getExtFactor(SDValue
&V
) {
6200 EVT EltType
= V
.getValueType().getVectorElementType();
6201 return EltType
.getSizeInBits() / 8;
6204 /// NarrowVector - Given a value in the V128 register class, produce the
6205 /// equivalent value in the V64 register class.
6206 static SDValue
NarrowVector(SDValue V128Reg
, SelectionDAG
&DAG
) {
6207 EVT VT
= V128Reg
.getValueType();
6208 unsigned WideSize
= VT
.getVectorNumElements();
6209 MVT EltTy
= VT
.getVectorElementType().getSimpleVT();
6210 MVT NarrowTy
= MVT::getVectorVT(EltTy
, WideSize
/ 2);
6213 return DAG
.getTargetExtractSubreg(AArch64::dsub
, DL
, NarrowTy
, V128Reg
);
6216 // Gather data to see if the operation can be modelled as a
6217 // shuffle in combination with VEXTs.
6218 SDValue
AArch64TargetLowering::ReconstructShuffle(SDValue Op
,
6219 SelectionDAG
&DAG
) const {
6220 assert(Op
.getOpcode() == ISD::BUILD_VECTOR
&& "Unknown opcode!");
6221 LLVM_DEBUG(dbgs() << "AArch64TargetLowering::ReconstructShuffle\n");
6223 EVT VT
= Op
.getValueType();
6224 unsigned NumElts
= VT
.getVectorNumElements();
6226 struct ShuffleSourceInfo
{
6231 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
6232 // be compatible with the shuffle we intend to construct. As a result
6233 // ShuffleVec will be some sliding window into the original Vec.
6236 // Code should guarantee that element i in Vec starts at element "WindowBase
6237 // + i * WindowScale in ShuffleVec".
6241 ShuffleSourceInfo(SDValue Vec
)
6242 : Vec(Vec
), MinElt(std::numeric_limits
<unsigned>::max()), MaxElt(0),
6243 ShuffleVec(Vec
), WindowBase(0), WindowScale(1) {}
6245 bool operator ==(SDValue OtherVec
) { return Vec
== OtherVec
; }
6248 // First gather all vectors used as an immediate source for this BUILD_VECTOR
6250 SmallVector
<ShuffleSourceInfo
, 2> Sources
;
6251 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6252 SDValue V
= Op
.getOperand(i
);
6255 else if (V
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
6256 !isa
<ConstantSDNode
>(V
.getOperand(1))) {
6258 dbgs() << "Reshuffle failed: "
6259 "a shuffle can only come from building a vector from "
6260 "various elements of other vectors, provided their "
6261 "indices are constant\n");
6265 // Add this element source to the list if it's not already there.
6266 SDValue SourceVec
= V
.getOperand(0);
6267 auto Source
= find(Sources
, SourceVec
);
6268 if (Source
== Sources
.end())
6269 Source
= Sources
.insert(Sources
.end(), ShuffleSourceInfo(SourceVec
));
6271 // Update the minimum and maximum lane number seen.
6272 unsigned EltNo
= cast
<ConstantSDNode
>(V
.getOperand(1))->getZExtValue();
6273 Source
->MinElt
= std::min(Source
->MinElt
, EltNo
);
6274 Source
->MaxElt
= std::max(Source
->MaxElt
, EltNo
);
6277 if (Sources
.size() > 2) {
6279 dbgs() << "Reshuffle failed: currently only do something sane when at "
6280 "most two source vectors are involved\n");
6284 // Find out the smallest element size among result and two sources, and use
6285 // it as element size to build the shuffle_vector.
6286 EVT SmallestEltTy
= VT
.getVectorElementType();
6287 for (auto &Source
: Sources
) {
6288 EVT SrcEltTy
= Source
.Vec
.getValueType().getVectorElementType();
6289 if (SrcEltTy
.bitsLT(SmallestEltTy
)) {
6290 SmallestEltTy
= SrcEltTy
;
6293 unsigned ResMultiplier
=
6294 VT
.getScalarSizeInBits() / SmallestEltTy
.getSizeInBits();
6295 NumElts
= VT
.getSizeInBits() / SmallestEltTy
.getSizeInBits();
6296 EVT ShuffleVT
= EVT::getVectorVT(*DAG
.getContext(), SmallestEltTy
, NumElts
);
6298 // If the source vector is too wide or too narrow, we may nevertheless be able
6299 // to construct a compatible shuffle either by concatenating it with UNDEF or
6300 // extracting a suitable range of elements.
6301 for (auto &Src
: Sources
) {
6302 EVT SrcVT
= Src
.ShuffleVec
.getValueType();
6304 if (SrcVT
.getSizeInBits() == VT
.getSizeInBits())
6307 // This stage of the search produces a source with the same element type as
6308 // the original, but with a total width matching the BUILD_VECTOR output.
6309 EVT EltVT
= SrcVT
.getVectorElementType();
6310 unsigned NumSrcElts
= VT
.getSizeInBits() / EltVT
.getSizeInBits();
6311 EVT DestVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumSrcElts
);
6313 if (SrcVT
.getSizeInBits() < VT
.getSizeInBits()) {
6314 assert(2 * SrcVT
.getSizeInBits() == VT
.getSizeInBits());
6315 // We can pad out the smaller vector for free, so if it's part of a
6318 DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, DestVT
, Src
.ShuffleVec
,
6319 DAG
.getUNDEF(Src
.ShuffleVec
.getValueType()));
6323 assert(SrcVT
.getSizeInBits() == 2 * VT
.getSizeInBits());
6325 if (Src
.MaxElt
- Src
.MinElt
>= NumSrcElts
) {
6327 dbgs() << "Reshuffle failed: span too large for a VEXT to cope\n");
6331 if (Src
.MinElt
>= NumSrcElts
) {
6332 // The extraction can just take the second half
6334 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
6335 DAG
.getConstant(NumSrcElts
, dl
, MVT::i64
));
6336 Src
.WindowBase
= -NumSrcElts
;
6337 } else if (Src
.MaxElt
< NumSrcElts
) {
6338 // The extraction can just take the first half
6340 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
6341 DAG
.getConstant(0, dl
, MVT::i64
));
6343 // An actual VEXT is needed
6345 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
6346 DAG
.getConstant(0, dl
, MVT::i64
));
6348 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
6349 DAG
.getConstant(NumSrcElts
, dl
, MVT::i64
));
6350 unsigned Imm
= Src
.MinElt
* getExtFactor(VEXTSrc1
);
6352 Src
.ShuffleVec
= DAG
.getNode(AArch64ISD::EXT
, dl
, DestVT
, VEXTSrc1
,
6354 DAG
.getConstant(Imm
, dl
, MVT::i32
));
6355 Src
.WindowBase
= -Src
.MinElt
;
6359 // Another possible incompatibility occurs from the vector element types. We
6360 // can fix this by bitcasting the source vectors to the same type we intend
6362 for (auto &Src
: Sources
) {
6363 EVT SrcEltTy
= Src
.ShuffleVec
.getValueType().getVectorElementType();
6364 if (SrcEltTy
== SmallestEltTy
)
6366 assert(ShuffleVT
.getVectorElementType() == SmallestEltTy
);
6367 Src
.ShuffleVec
= DAG
.getNode(ISD::BITCAST
, dl
, ShuffleVT
, Src
.ShuffleVec
);
6368 Src
.WindowScale
= SrcEltTy
.getSizeInBits() / SmallestEltTy
.getSizeInBits();
6369 Src
.WindowBase
*= Src
.WindowScale
;
6372 // Final sanity check before we try to actually produce a shuffle.
6373 LLVM_DEBUG(for (auto Src
6375 assert(Src
.ShuffleVec
.getValueType() == ShuffleVT
););
6377 // The stars all align, our next step is to produce the mask for the shuffle.
6378 SmallVector
<int, 8> Mask(ShuffleVT
.getVectorNumElements(), -1);
6379 int BitsPerShuffleLane
= ShuffleVT
.getScalarSizeInBits();
6380 for (unsigned i
= 0; i
< VT
.getVectorNumElements(); ++i
) {
6381 SDValue Entry
= Op
.getOperand(i
);
6382 if (Entry
.isUndef())
6385 auto Src
= find(Sources
, Entry
.getOperand(0));
6386 int EltNo
= cast
<ConstantSDNode
>(Entry
.getOperand(1))->getSExtValue();
6388 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
6389 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
6391 EVT OrigEltTy
= Entry
.getOperand(0).getValueType().getVectorElementType();
6393 std::min(OrigEltTy
.getSizeInBits(), VT
.getScalarSizeInBits());
6394 int LanesDefined
= BitsDefined
/ BitsPerShuffleLane
;
6396 // This source is expected to fill ResMultiplier lanes of the final shuffle,
6397 // starting at the appropriate offset.
6398 int *LaneMask
= &Mask
[i
* ResMultiplier
];
6400 int ExtractBase
= EltNo
* Src
->WindowScale
+ Src
->WindowBase
;
6401 ExtractBase
+= NumElts
* (Src
- Sources
.begin());
6402 for (int j
= 0; j
< LanesDefined
; ++j
)
6403 LaneMask
[j
] = ExtractBase
+ j
;
6406 // Final check before we try to produce nonsense...
6407 if (!isShuffleMaskLegal(Mask
, ShuffleVT
)) {
6408 LLVM_DEBUG(dbgs() << "Reshuffle failed: illegal shuffle mask\n");
6412 SDValue ShuffleOps
[] = { DAG
.getUNDEF(ShuffleVT
), DAG
.getUNDEF(ShuffleVT
) };
6413 for (unsigned i
= 0; i
< Sources
.size(); ++i
)
6414 ShuffleOps
[i
] = Sources
[i
].ShuffleVec
;
6416 SDValue Shuffle
= DAG
.getVectorShuffle(ShuffleVT
, dl
, ShuffleOps
[0],
6417 ShuffleOps
[1], Mask
);
6418 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, VT
, Shuffle
);
6420 LLVM_DEBUG(dbgs() << "Reshuffle, creating node: "; Shuffle
.dump();
6421 dbgs() << "Reshuffle, creating node: "; V
.dump(););
6426 // check if an EXT instruction can handle the shuffle mask when the
6427 // vector sources of the shuffle are the same.
6428 static bool isSingletonEXTMask(ArrayRef
<int> M
, EVT VT
, unsigned &Imm
) {
6429 unsigned NumElts
= VT
.getVectorNumElements();
6431 // Assume that the first shuffle index is not UNDEF. Fail if it is.
6437 // If this is a VEXT shuffle, the immediate value is the index of the first
6438 // element. The other shuffle indices must be the successive elements after
6440 unsigned ExpectedElt
= Imm
;
6441 for (unsigned i
= 1; i
< NumElts
; ++i
) {
6442 // Increment the expected index. If it wraps around, just follow it
6443 // back to index zero and keep going.
6445 if (ExpectedElt
== NumElts
)
6449 continue; // ignore UNDEF indices
6450 if (ExpectedElt
!= static_cast<unsigned>(M
[i
]))
6457 // check if an EXT instruction can handle the shuffle mask when the
6458 // vector sources of the shuffle are different.
6459 static bool isEXTMask(ArrayRef
<int> M
, EVT VT
, bool &ReverseEXT
,
6461 // Look for the first non-undef element.
6462 const int *FirstRealElt
= find_if(M
, [](int Elt
) { return Elt
>= 0; });
6464 // Benefit form APInt to handle overflow when calculating expected element.
6465 unsigned NumElts
= VT
.getVectorNumElements();
6466 unsigned MaskBits
= APInt(32, NumElts
* 2).logBase2();
6467 APInt ExpectedElt
= APInt(MaskBits
, *FirstRealElt
+ 1);
6468 // The following shuffle indices must be the successive elements after the
6469 // first real element.
6470 const int *FirstWrongElt
= std::find_if(FirstRealElt
+ 1, M
.end(),
6471 [&](int Elt
) {return Elt
!= ExpectedElt
++ && Elt
!= -1;});
6472 if (FirstWrongElt
!= M
.end())
6475 // The index of an EXT is the first element if it is not UNDEF.
6476 // Watch out for the beginning UNDEFs. The EXT index should be the expected
6477 // value of the first element. E.g.
6478 // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
6479 // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
6480 // ExpectedElt is the last mask index plus 1.
6481 Imm
= ExpectedElt
.getZExtValue();
6483 // There are two difference cases requiring to reverse input vectors.
6484 // For example, for vector <4 x i32> we have the following cases,
6485 // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
6486 // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
6487 // For both cases, we finally use mask <5, 6, 7, 0>, which requires
6488 // to reverse two input vectors.
6497 /// isREVMask - Check if a vector shuffle corresponds to a REV
6498 /// instruction with the specified blocksize. (The order of the elements
6499 /// within each block of the vector is reversed.)
6500 static bool isREVMask(ArrayRef
<int> M
, EVT VT
, unsigned BlockSize
) {
6501 assert((BlockSize
== 16 || BlockSize
== 32 || BlockSize
== 64) &&
6502 "Only possible block sizes for REV are: 16, 32, 64");
6504 unsigned EltSz
= VT
.getScalarSizeInBits();
6508 unsigned NumElts
= VT
.getVectorNumElements();
6509 unsigned BlockElts
= M
[0] + 1;
6510 // If the first shuffle index is UNDEF, be optimistic.
6512 BlockElts
= BlockSize
/ EltSz
;
6514 if (BlockSize
<= EltSz
|| BlockSize
!= BlockElts
* EltSz
)
6517 for (unsigned i
= 0; i
< NumElts
; ++i
) {
6519 continue; // ignore UNDEF indices
6520 if ((unsigned)M
[i
] != (i
- i
% BlockElts
) + (BlockElts
- 1 - i
% BlockElts
))
6527 static bool isZIPMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6528 unsigned NumElts
= VT
.getVectorNumElements();
6529 if (NumElts
% 2 != 0)
6531 WhichResult
= (M
[0] == 0 ? 0 : 1);
6532 unsigned Idx
= WhichResult
* NumElts
/ 2;
6533 for (unsigned i
= 0; i
!= NumElts
; i
+= 2) {
6534 if ((M
[i
] >= 0 && (unsigned)M
[i
] != Idx
) ||
6535 (M
[i
+ 1] >= 0 && (unsigned)M
[i
+ 1] != Idx
+ NumElts
))
6543 static bool isUZPMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6544 unsigned NumElts
= VT
.getVectorNumElements();
6545 WhichResult
= (M
[0] == 0 ? 0 : 1);
6546 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
6548 continue; // ignore UNDEF indices
6549 if ((unsigned)M
[i
] != 2 * i
+ WhichResult
)
6556 static bool isTRNMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6557 unsigned NumElts
= VT
.getVectorNumElements();
6558 if (NumElts
% 2 != 0)
6560 WhichResult
= (M
[0] == 0 ? 0 : 1);
6561 for (unsigned i
= 0; i
< NumElts
; i
+= 2) {
6562 if ((M
[i
] >= 0 && (unsigned)M
[i
] != i
+ WhichResult
) ||
6563 (M
[i
+ 1] >= 0 && (unsigned)M
[i
+ 1] != i
+ NumElts
+ WhichResult
))
6569 /// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of
6570 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6571 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
6572 static bool isZIP_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6573 unsigned NumElts
= VT
.getVectorNumElements();
6574 if (NumElts
% 2 != 0)
6576 WhichResult
= (M
[0] == 0 ? 0 : 1);
6577 unsigned Idx
= WhichResult
* NumElts
/ 2;
6578 for (unsigned i
= 0; i
!= NumElts
; i
+= 2) {
6579 if ((M
[i
] >= 0 && (unsigned)M
[i
] != Idx
) ||
6580 (M
[i
+ 1] >= 0 && (unsigned)M
[i
+ 1] != Idx
))
6588 /// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of
6589 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6590 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
6591 static bool isUZP_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6592 unsigned Half
= VT
.getVectorNumElements() / 2;
6593 WhichResult
= (M
[0] == 0 ? 0 : 1);
6594 for (unsigned j
= 0; j
!= 2; ++j
) {
6595 unsigned Idx
= WhichResult
;
6596 for (unsigned i
= 0; i
!= Half
; ++i
) {
6597 int MIdx
= M
[i
+ j
* Half
];
6598 if (MIdx
>= 0 && (unsigned)MIdx
!= Idx
)
6607 /// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of
6608 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6609 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
6610 static bool isTRN_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
6611 unsigned NumElts
= VT
.getVectorNumElements();
6612 if (NumElts
% 2 != 0)
6614 WhichResult
= (M
[0] == 0 ? 0 : 1);
6615 for (unsigned i
= 0; i
< NumElts
; i
+= 2) {
6616 if ((M
[i
] >= 0 && (unsigned)M
[i
] != i
+ WhichResult
) ||
6617 (M
[i
+ 1] >= 0 && (unsigned)M
[i
+ 1] != i
+ WhichResult
))
6623 static bool isINSMask(ArrayRef
<int> M
, int NumInputElements
,
6624 bool &DstIsLeft
, int &Anomaly
) {
6625 if (M
.size() != static_cast<size_t>(NumInputElements
))
6628 int NumLHSMatch
= 0, NumRHSMatch
= 0;
6629 int LastLHSMismatch
= -1, LastRHSMismatch
= -1;
6631 for (int i
= 0; i
< NumInputElements
; ++i
) {
6641 LastLHSMismatch
= i
;
6643 if (M
[i
] == i
+ NumInputElements
)
6646 LastRHSMismatch
= i
;
6649 if (NumLHSMatch
== NumInputElements
- 1) {
6651 Anomaly
= LastLHSMismatch
;
6653 } else if (NumRHSMatch
== NumInputElements
- 1) {
6655 Anomaly
= LastRHSMismatch
;
6662 static bool isConcatMask(ArrayRef
<int> Mask
, EVT VT
, bool SplitLHS
) {
6663 if (VT
.getSizeInBits() != 128)
6666 unsigned NumElts
= VT
.getVectorNumElements();
6668 for (int I
= 0, E
= NumElts
/ 2; I
!= E
; I
++) {
6673 int Offset
= NumElts
/ 2;
6674 for (int I
= NumElts
/ 2, E
= NumElts
; I
!= E
; I
++) {
6675 if (Mask
[I
] != I
+ SplitLHS
* Offset
)
6682 static SDValue
tryFormConcatFromShuffle(SDValue Op
, SelectionDAG
&DAG
) {
6684 EVT VT
= Op
.getValueType();
6685 SDValue V0
= Op
.getOperand(0);
6686 SDValue V1
= Op
.getOperand(1);
6687 ArrayRef
<int> Mask
= cast
<ShuffleVectorSDNode
>(Op
)->getMask();
6689 if (VT
.getVectorElementType() != V0
.getValueType().getVectorElementType() ||
6690 VT
.getVectorElementType() != V1
.getValueType().getVectorElementType())
6693 bool SplitV0
= V0
.getValueSizeInBits() == 128;
6695 if (!isConcatMask(Mask
, VT
, SplitV0
))
6698 EVT CastVT
= VT
.getHalfNumVectorElementsVT(*DAG
.getContext());
6700 V0
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, CastVT
, V0
,
6701 DAG
.getConstant(0, DL
, MVT::i64
));
6703 if (V1
.getValueSizeInBits() == 128) {
6704 V1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, CastVT
, V1
,
6705 DAG
.getConstant(0, DL
, MVT::i64
));
6707 return DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, VT
, V0
, V1
);
6710 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
6711 /// the specified operations to build the shuffle.
6712 static SDValue
GeneratePerfectShuffle(unsigned PFEntry
, SDValue LHS
,
6713 SDValue RHS
, SelectionDAG
&DAG
,
6715 unsigned OpNum
= (PFEntry
>> 26) & 0x0F;
6716 unsigned LHSID
= (PFEntry
>> 13) & ((1 << 13) - 1);
6717 unsigned RHSID
= (PFEntry
>> 0) & ((1 << 13) - 1);
6720 OP_COPY
= 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
6729 OP_VUZPL
, // VUZP, left result
6730 OP_VUZPR
, // VUZP, right result
6731 OP_VZIPL
, // VZIP, left result
6732 OP_VZIPR
, // VZIP, right result
6733 OP_VTRNL
, // VTRN, left result
6734 OP_VTRNR
// VTRN, right result
6737 if (OpNum
== OP_COPY
) {
6738 if (LHSID
== (1 * 9 + 2) * 9 + 3)
6740 assert(LHSID
== ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!");
6744 SDValue OpLHS
, OpRHS
;
6745 OpLHS
= GeneratePerfectShuffle(PerfectShuffleTable
[LHSID
], LHS
, RHS
, DAG
, dl
);
6746 OpRHS
= GeneratePerfectShuffle(PerfectShuffleTable
[RHSID
], LHS
, RHS
, DAG
, dl
);
6747 EVT VT
= OpLHS
.getValueType();
6751 llvm_unreachable("Unknown shuffle opcode!");
6753 // VREV divides the vector in half and swaps within the half.
6754 if (VT
.getVectorElementType() == MVT::i32
||
6755 VT
.getVectorElementType() == MVT::f32
)
6756 return DAG
.getNode(AArch64ISD::REV64
, dl
, VT
, OpLHS
);
6757 // vrev <4 x i16> -> REV32
6758 if (VT
.getVectorElementType() == MVT::i16
||
6759 VT
.getVectorElementType() == MVT::f16
)
6760 return DAG
.getNode(AArch64ISD::REV32
, dl
, VT
, OpLHS
);
6761 // vrev <4 x i8> -> REV16
6762 assert(VT
.getVectorElementType() == MVT::i8
);
6763 return DAG
.getNode(AArch64ISD::REV16
, dl
, VT
, OpLHS
);
6768 EVT EltTy
= VT
.getVectorElementType();
6770 if (EltTy
== MVT::i8
)
6771 Opcode
= AArch64ISD::DUPLANE8
;
6772 else if (EltTy
== MVT::i16
|| EltTy
== MVT::f16
)
6773 Opcode
= AArch64ISD::DUPLANE16
;
6774 else if (EltTy
== MVT::i32
|| EltTy
== MVT::f32
)
6775 Opcode
= AArch64ISD::DUPLANE32
;
6776 else if (EltTy
== MVT::i64
|| EltTy
== MVT::f64
)
6777 Opcode
= AArch64ISD::DUPLANE64
;
6779 llvm_unreachable("Invalid vector element type?");
6781 if (VT
.getSizeInBits() == 64)
6782 OpLHS
= WidenVector(OpLHS
, DAG
);
6783 SDValue Lane
= DAG
.getConstant(OpNum
- OP_VDUP0
, dl
, MVT::i64
);
6784 return DAG
.getNode(Opcode
, dl
, VT
, OpLHS
, Lane
);
6789 unsigned Imm
= (OpNum
- OP_VEXT1
+ 1) * getExtFactor(OpLHS
);
6790 return DAG
.getNode(AArch64ISD::EXT
, dl
, VT
, OpLHS
, OpRHS
,
6791 DAG
.getConstant(Imm
, dl
, MVT::i32
));
6794 return DAG
.getNode(AArch64ISD::UZP1
, dl
, DAG
.getVTList(VT
, VT
), OpLHS
,
6797 return DAG
.getNode(AArch64ISD::UZP2
, dl
, DAG
.getVTList(VT
, VT
), OpLHS
,
6800 return DAG
.getNode(AArch64ISD::ZIP1
, dl
, DAG
.getVTList(VT
, VT
), OpLHS
,
6803 return DAG
.getNode(AArch64ISD::ZIP2
, dl
, DAG
.getVTList(VT
, VT
), OpLHS
,
6806 return DAG
.getNode(AArch64ISD::TRN1
, dl
, DAG
.getVTList(VT
, VT
), OpLHS
,
6809 return DAG
.getNode(AArch64ISD::TRN2
, dl
, DAG
.getVTList(VT
, VT
), OpLHS
,
6814 static SDValue
GenerateTBL(SDValue Op
, ArrayRef
<int> ShuffleMask
,
6815 SelectionDAG
&DAG
) {
6816 // Check to see if we can use the TBL instruction.
6817 SDValue V1
= Op
.getOperand(0);
6818 SDValue V2
= Op
.getOperand(1);
6821 EVT EltVT
= Op
.getValueType().getVectorElementType();
6822 unsigned BytesPerElt
= EltVT
.getSizeInBits() / 8;
6824 SmallVector
<SDValue
, 8> TBLMask
;
6825 for (int Val
: ShuffleMask
) {
6826 for (unsigned Byte
= 0; Byte
< BytesPerElt
; ++Byte
) {
6827 unsigned Offset
= Byte
+ Val
* BytesPerElt
;
6828 TBLMask
.push_back(DAG
.getConstant(Offset
, DL
, MVT::i32
));
6832 MVT IndexVT
= MVT::v8i8
;
6833 unsigned IndexLen
= 8;
6834 if (Op
.getValueSizeInBits() == 128) {
6835 IndexVT
= MVT::v16i8
;
6839 SDValue V1Cst
= DAG
.getNode(ISD::BITCAST
, DL
, IndexVT
, V1
);
6840 SDValue V2Cst
= DAG
.getNode(ISD::BITCAST
, DL
, IndexVT
, V2
);
6843 if (V2
.getNode()->isUndef()) {
6845 V1Cst
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, MVT::v16i8
, V1Cst
, V1Cst
);
6846 Shuffle
= DAG
.getNode(
6847 ISD::INTRINSIC_WO_CHAIN
, DL
, IndexVT
,
6848 DAG
.getConstant(Intrinsic::aarch64_neon_tbl1
, DL
, MVT::i32
), V1Cst
,
6849 DAG
.getBuildVector(IndexVT
, DL
,
6850 makeArrayRef(TBLMask
.data(), IndexLen
)));
6852 if (IndexLen
== 8) {
6853 V1Cst
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, MVT::v16i8
, V1Cst
, V2Cst
);
6854 Shuffle
= DAG
.getNode(
6855 ISD::INTRINSIC_WO_CHAIN
, DL
, IndexVT
,
6856 DAG
.getConstant(Intrinsic::aarch64_neon_tbl1
, DL
, MVT::i32
), V1Cst
,
6857 DAG
.getBuildVector(IndexVT
, DL
,
6858 makeArrayRef(TBLMask
.data(), IndexLen
)));
6860 // FIXME: We cannot, for the moment, emit a TBL2 instruction because we
6861 // cannot currently represent the register constraints on the input
6863 // Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst,
6864 // DAG.getBuildVector(IndexVT, DL, &TBLMask[0],
6866 Shuffle
= DAG
.getNode(
6867 ISD::INTRINSIC_WO_CHAIN
, DL
, IndexVT
,
6868 DAG
.getConstant(Intrinsic::aarch64_neon_tbl2
, DL
, MVT::i32
), V1Cst
,
6869 V2Cst
, DAG
.getBuildVector(IndexVT
, DL
,
6870 makeArrayRef(TBLMask
.data(), IndexLen
)));
6873 return DAG
.getNode(ISD::BITCAST
, DL
, Op
.getValueType(), Shuffle
);
6876 static unsigned getDUPLANEOp(EVT EltType
) {
6877 if (EltType
== MVT::i8
)
6878 return AArch64ISD::DUPLANE8
;
6879 if (EltType
== MVT::i16
|| EltType
== MVT::f16
)
6880 return AArch64ISD::DUPLANE16
;
6881 if (EltType
== MVT::i32
|| EltType
== MVT::f32
)
6882 return AArch64ISD::DUPLANE32
;
6883 if (EltType
== MVT::i64
|| EltType
== MVT::f64
)
6884 return AArch64ISD::DUPLANE64
;
6886 llvm_unreachable("Invalid vector element type?");
6889 SDValue
AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op
,
6890 SelectionDAG
&DAG
) const {
6892 EVT VT
= Op
.getValueType();
6894 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(Op
.getNode());
6896 // Convert shuffles that are directly supported on NEON to target-specific
6897 // DAG nodes, instead of keeping them as shuffles and matching them again
6898 // during code selection. This is more efficient and avoids the possibility
6899 // of inconsistencies between legalization and selection.
6900 ArrayRef
<int> ShuffleMask
= SVN
->getMask();
6902 SDValue V1
= Op
.getOperand(0);
6903 SDValue V2
= Op
.getOperand(1);
6905 if (SVN
->isSplat()) {
6906 int Lane
= SVN
->getSplatIndex();
6907 // If this is undef splat, generate it via "just" vdup, if possible.
6911 if (Lane
== 0 && V1
.getOpcode() == ISD::SCALAR_TO_VECTOR
)
6912 return DAG
.getNode(AArch64ISD::DUP
, dl
, V1
.getValueType(),
6914 // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non-
6915 // constant. If so, we can just reference the lane's definition directly.
6916 if (V1
.getOpcode() == ISD::BUILD_VECTOR
&&
6917 !isa
<ConstantSDNode
>(V1
.getOperand(Lane
)))
6918 return DAG
.getNode(AArch64ISD::DUP
, dl
, VT
, V1
.getOperand(Lane
));
6920 // Otherwise, duplicate from the lane of the input vector.
6921 unsigned Opcode
= getDUPLANEOp(V1
.getValueType().getVectorElementType());
6923 // SelectionDAGBuilder may have "helpfully" already extracted or conatenated
6924 // to make a vector of the same size as this SHUFFLE. We can ignore the
6925 // extract entirely, and canonicalise the concat using WidenVector.
6926 if (V1
.getOpcode() == ISD::EXTRACT_SUBVECTOR
) {
6927 Lane
+= cast
<ConstantSDNode
>(V1
.getOperand(1))->getZExtValue();
6928 V1
= V1
.getOperand(0);
6929 } else if (V1
.getOpcode() == ISD::CONCAT_VECTORS
) {
6930 unsigned Idx
= Lane
>= (int)VT
.getVectorNumElements() / 2;
6931 Lane
-= Idx
* VT
.getVectorNumElements() / 2;
6932 V1
= WidenVector(V1
.getOperand(Idx
), DAG
);
6933 } else if (VT
.getSizeInBits() == 64)
6934 V1
= WidenVector(V1
, DAG
);
6936 return DAG
.getNode(Opcode
, dl
, VT
, V1
, DAG
.getConstant(Lane
, dl
, MVT::i64
));
6939 if (isREVMask(ShuffleMask
, VT
, 64))
6940 return DAG
.getNode(AArch64ISD::REV64
, dl
, V1
.getValueType(), V1
, V2
);
6941 if (isREVMask(ShuffleMask
, VT
, 32))
6942 return DAG
.getNode(AArch64ISD::REV32
, dl
, V1
.getValueType(), V1
, V2
);
6943 if (isREVMask(ShuffleMask
, VT
, 16))
6944 return DAG
.getNode(AArch64ISD::REV16
, dl
, V1
.getValueType(), V1
, V2
);
6946 bool ReverseEXT
= false;
6948 if (isEXTMask(ShuffleMask
, VT
, ReverseEXT
, Imm
)) {
6951 Imm
*= getExtFactor(V1
);
6952 return DAG
.getNode(AArch64ISD::EXT
, dl
, V1
.getValueType(), V1
, V2
,
6953 DAG
.getConstant(Imm
, dl
, MVT::i32
));
6954 } else if (V2
->isUndef() && isSingletonEXTMask(ShuffleMask
, VT
, Imm
)) {
6955 Imm
*= getExtFactor(V1
);
6956 return DAG
.getNode(AArch64ISD::EXT
, dl
, V1
.getValueType(), V1
, V1
,
6957 DAG
.getConstant(Imm
, dl
, MVT::i32
));
6960 unsigned WhichResult
;
6961 if (isZIPMask(ShuffleMask
, VT
, WhichResult
)) {
6962 unsigned Opc
= (WhichResult
== 0) ? AArch64ISD::ZIP1
: AArch64ISD::ZIP2
;
6963 return DAG
.getNode(Opc
, dl
, V1
.getValueType(), V1
, V2
);
6965 if (isUZPMask(ShuffleMask
, VT
, WhichResult
)) {
6966 unsigned Opc
= (WhichResult
== 0) ? AArch64ISD::UZP1
: AArch64ISD::UZP2
;
6967 return DAG
.getNode(Opc
, dl
, V1
.getValueType(), V1
, V2
);
6969 if (isTRNMask(ShuffleMask
, VT
, WhichResult
)) {
6970 unsigned Opc
= (WhichResult
== 0) ? AArch64ISD::TRN1
: AArch64ISD::TRN2
;
6971 return DAG
.getNode(Opc
, dl
, V1
.getValueType(), V1
, V2
);
6974 if (isZIP_v_undef_Mask(ShuffleMask
, VT
, WhichResult
)) {
6975 unsigned Opc
= (WhichResult
== 0) ? AArch64ISD::ZIP1
: AArch64ISD::ZIP2
;
6976 return DAG
.getNode(Opc
, dl
, V1
.getValueType(), V1
, V1
);
6978 if (isUZP_v_undef_Mask(ShuffleMask
, VT
, WhichResult
)) {
6979 unsigned Opc
= (WhichResult
== 0) ? AArch64ISD::UZP1
: AArch64ISD::UZP2
;
6980 return DAG
.getNode(Opc
, dl
, V1
.getValueType(), V1
, V1
);
6982 if (isTRN_v_undef_Mask(ShuffleMask
, VT
, WhichResult
)) {
6983 unsigned Opc
= (WhichResult
== 0) ? AArch64ISD::TRN1
: AArch64ISD::TRN2
;
6984 return DAG
.getNode(Opc
, dl
, V1
.getValueType(), V1
, V1
);
6987 if (SDValue Concat
= tryFormConcatFromShuffle(Op
, DAG
))
6992 int NumInputElements
= V1
.getValueType().getVectorNumElements();
6993 if (isINSMask(ShuffleMask
, NumInputElements
, DstIsLeft
, Anomaly
)) {
6994 SDValue DstVec
= DstIsLeft
? V1
: V2
;
6995 SDValue DstLaneV
= DAG
.getConstant(Anomaly
, dl
, MVT::i64
);
6997 SDValue SrcVec
= V1
;
6998 int SrcLane
= ShuffleMask
[Anomaly
];
6999 if (SrcLane
>= NumInputElements
) {
7001 SrcLane
-= VT
.getVectorNumElements();
7003 SDValue SrcLaneV
= DAG
.getConstant(SrcLane
, dl
, MVT::i64
);
7005 EVT ScalarVT
= VT
.getVectorElementType();
7007 if (ScalarVT
.getSizeInBits() < 32 && ScalarVT
.isInteger())
7008 ScalarVT
= MVT::i32
;
7011 ISD::INSERT_VECTOR_ELT
, dl
, VT
, DstVec
,
7012 DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, ScalarVT
, SrcVec
, SrcLaneV
),
7016 // If the shuffle is not directly supported and it has 4 elements, use
7017 // the PerfectShuffle-generated table to synthesize it from other shuffles.
7018 unsigned NumElts
= VT
.getVectorNumElements();
7020 unsigned PFIndexes
[4];
7021 for (unsigned i
= 0; i
!= 4; ++i
) {
7022 if (ShuffleMask
[i
] < 0)
7025 PFIndexes
[i
] = ShuffleMask
[i
];
7028 // Compute the index in the perfect shuffle table.
7029 unsigned PFTableIndex
= PFIndexes
[0] * 9 * 9 * 9 + PFIndexes
[1] * 9 * 9 +
7030 PFIndexes
[2] * 9 + PFIndexes
[3];
7031 unsigned PFEntry
= PerfectShuffleTable
[PFTableIndex
];
7032 unsigned Cost
= (PFEntry
>> 30);
7035 return GeneratePerfectShuffle(PFEntry
, V1
, V2
, DAG
, dl
);
7038 return GenerateTBL(Op
, ShuffleMask
, DAG
);
7041 static bool resolveBuildVector(BuildVectorSDNode
*BVN
, APInt
&CnstBits
,
7043 EVT VT
= BVN
->getValueType(0);
7044 APInt SplatBits
, SplatUndef
;
7045 unsigned SplatBitSize
;
7047 if (BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
7048 unsigned NumSplats
= VT
.getSizeInBits() / SplatBitSize
;
7050 for (unsigned i
= 0; i
< NumSplats
; ++i
) {
7051 CnstBits
<<= SplatBitSize
;
7052 UndefBits
<<= SplatBitSize
;
7053 CnstBits
|= SplatBits
.zextOrTrunc(VT
.getSizeInBits());
7054 UndefBits
|= (SplatBits
^ SplatUndef
).zextOrTrunc(VT
.getSizeInBits());
7063 // Try 64-bit splatted SIMD immediate.
7064 static SDValue
tryAdvSIMDModImm64(unsigned NewOp
, SDValue Op
, SelectionDAG
&DAG
,
7065 const APInt
&Bits
) {
7066 if (Bits
.getHiBits(64) == Bits
.getLoBits(64)) {
7067 uint64_t Value
= Bits
.zextOrTrunc(64).getZExtValue();
7068 EVT VT
= Op
.getValueType();
7069 MVT MovTy
= (VT
.getSizeInBits() == 128) ? MVT::v2i64
: MVT::f64
;
7071 if (AArch64_AM::isAdvSIMDModImmType10(Value
)) {
7072 Value
= AArch64_AM::encodeAdvSIMDModImmType10(Value
);
7075 SDValue Mov
= DAG
.getNode(NewOp
, dl
, MovTy
,
7076 DAG
.getConstant(Value
, dl
, MVT::i32
));
7077 return DAG
.getNode(AArch64ISD::NVCAST
, dl
, VT
, Mov
);
7084 // Try 32-bit splatted SIMD immediate.
7085 static SDValue
tryAdvSIMDModImm32(unsigned NewOp
, SDValue Op
, SelectionDAG
&DAG
,
7087 const SDValue
*LHS
= nullptr) {
7088 if (Bits
.getHiBits(64) == Bits
.getLoBits(64)) {
7089 uint64_t Value
= Bits
.zextOrTrunc(64).getZExtValue();
7090 EVT VT
= Op
.getValueType();
7091 MVT MovTy
= (VT
.getSizeInBits() == 128) ? MVT::v4i32
: MVT::v2i32
;
7092 bool isAdvSIMDModImm
= false;
7095 if ((isAdvSIMDModImm
= AArch64_AM::isAdvSIMDModImmType1(Value
))) {
7096 Value
= AArch64_AM::encodeAdvSIMDModImmType1(Value
);
7099 else if ((isAdvSIMDModImm
= AArch64_AM::isAdvSIMDModImmType2(Value
))) {
7100 Value
= AArch64_AM::encodeAdvSIMDModImmType2(Value
);
7103 else if ((isAdvSIMDModImm
= AArch64_AM::isAdvSIMDModImmType3(Value
))) {
7104 Value
= AArch64_AM::encodeAdvSIMDModImmType3(Value
);
7107 else if ((isAdvSIMDModImm
= AArch64_AM::isAdvSIMDModImmType4(Value
))) {
7108 Value
= AArch64_AM::encodeAdvSIMDModImmType4(Value
);
7112 if (isAdvSIMDModImm
) {
7117 Mov
= DAG
.getNode(NewOp
, dl
, MovTy
, *LHS
,
7118 DAG
.getConstant(Value
, dl
, MVT::i32
),
7119 DAG
.getConstant(Shift
, dl
, MVT::i32
));
7121 Mov
= DAG
.getNode(NewOp
, dl
, MovTy
,
7122 DAG
.getConstant(Value
, dl
, MVT::i32
),
7123 DAG
.getConstant(Shift
, dl
, MVT::i32
));
7125 return DAG
.getNode(AArch64ISD::NVCAST
, dl
, VT
, Mov
);
7132 // Try 16-bit splatted SIMD immediate.
7133 static SDValue
tryAdvSIMDModImm16(unsigned NewOp
, SDValue Op
, SelectionDAG
&DAG
,
7135 const SDValue
*LHS
= nullptr) {
7136 if (Bits
.getHiBits(64) == Bits
.getLoBits(64)) {
7137 uint64_t Value
= Bits
.zextOrTrunc(64).getZExtValue();
7138 EVT VT
= Op
.getValueType();
7139 MVT MovTy
= (VT
.getSizeInBits() == 128) ? MVT::v8i16
: MVT::v4i16
;
7140 bool isAdvSIMDModImm
= false;
7143 if ((isAdvSIMDModImm
= AArch64_AM::isAdvSIMDModImmType5(Value
))) {
7144 Value
= AArch64_AM::encodeAdvSIMDModImmType5(Value
);
7147 else if ((isAdvSIMDModImm
= AArch64_AM::isAdvSIMDModImmType6(Value
))) {
7148 Value
= AArch64_AM::encodeAdvSIMDModImmType6(Value
);
7152 if (isAdvSIMDModImm
) {
7157 Mov
= DAG
.getNode(NewOp
, dl
, MovTy
, *LHS
,
7158 DAG
.getConstant(Value
, dl
, MVT::i32
),
7159 DAG
.getConstant(Shift
, dl
, MVT::i32
));
7161 Mov
= DAG
.getNode(NewOp
, dl
, MovTy
,
7162 DAG
.getConstant(Value
, dl
, MVT::i32
),
7163 DAG
.getConstant(Shift
, dl
, MVT::i32
));
7165 return DAG
.getNode(AArch64ISD::NVCAST
, dl
, VT
, Mov
);
7172 // Try 32-bit splatted SIMD immediate with shifted ones.
7173 static SDValue
tryAdvSIMDModImm321s(unsigned NewOp
, SDValue Op
,
7174 SelectionDAG
&DAG
, const APInt
&Bits
) {
7175 if (Bits
.getHiBits(64) == Bits
.getLoBits(64)) {
7176 uint64_t Value
= Bits
.zextOrTrunc(64).getZExtValue();
7177 EVT VT
= Op
.getValueType();
7178 MVT MovTy
= (VT
.getSizeInBits() == 128) ? MVT::v4i32
: MVT::v2i32
;
7179 bool isAdvSIMDModImm
= false;
7182 if ((isAdvSIMDModImm
= AArch64_AM::isAdvSIMDModImmType7(Value
))) {
7183 Value
= AArch64_AM::encodeAdvSIMDModImmType7(Value
);
7186 else if ((isAdvSIMDModImm
= AArch64_AM::isAdvSIMDModImmType8(Value
))) {
7187 Value
= AArch64_AM::encodeAdvSIMDModImmType8(Value
);
7191 if (isAdvSIMDModImm
) {
7193 SDValue Mov
= DAG
.getNode(NewOp
, dl
, MovTy
,
7194 DAG
.getConstant(Value
, dl
, MVT::i32
),
7195 DAG
.getConstant(Shift
, dl
, MVT::i32
));
7196 return DAG
.getNode(AArch64ISD::NVCAST
, dl
, VT
, Mov
);
7203 // Try 8-bit splatted SIMD immediate.
7204 static SDValue
tryAdvSIMDModImm8(unsigned NewOp
, SDValue Op
, SelectionDAG
&DAG
,
7205 const APInt
&Bits
) {
7206 if (Bits
.getHiBits(64) == Bits
.getLoBits(64)) {
7207 uint64_t Value
= Bits
.zextOrTrunc(64).getZExtValue();
7208 EVT VT
= Op
.getValueType();
7209 MVT MovTy
= (VT
.getSizeInBits() == 128) ? MVT::v16i8
: MVT::v8i8
;
7211 if (AArch64_AM::isAdvSIMDModImmType9(Value
)) {
7212 Value
= AArch64_AM::encodeAdvSIMDModImmType9(Value
);
7215 SDValue Mov
= DAG
.getNode(NewOp
, dl
, MovTy
,
7216 DAG
.getConstant(Value
, dl
, MVT::i32
));
7217 return DAG
.getNode(AArch64ISD::NVCAST
, dl
, VT
, Mov
);
7224 // Try FP splatted SIMD immediate.
7225 static SDValue
tryAdvSIMDModImmFP(unsigned NewOp
, SDValue Op
, SelectionDAG
&DAG
,
7226 const APInt
&Bits
) {
7227 if (Bits
.getHiBits(64) == Bits
.getLoBits(64)) {
7228 uint64_t Value
= Bits
.zextOrTrunc(64).getZExtValue();
7229 EVT VT
= Op
.getValueType();
7230 bool isWide
= (VT
.getSizeInBits() == 128);
7232 bool isAdvSIMDModImm
= false;
7234 if ((isAdvSIMDModImm
= AArch64_AM::isAdvSIMDModImmType11(Value
))) {
7235 Value
= AArch64_AM::encodeAdvSIMDModImmType11(Value
);
7236 MovTy
= isWide
? MVT::v4f32
: MVT::v2f32
;
7239 (isAdvSIMDModImm
= AArch64_AM::isAdvSIMDModImmType12(Value
))) {
7240 Value
= AArch64_AM::encodeAdvSIMDModImmType12(Value
);
7244 if (isAdvSIMDModImm
) {
7246 SDValue Mov
= DAG
.getNode(NewOp
, dl
, MovTy
,
7247 DAG
.getConstant(Value
, dl
, MVT::i32
));
7248 return DAG
.getNode(AArch64ISD::NVCAST
, dl
, VT
, Mov
);
7255 // Specialized code to quickly find if PotentialBVec is a BuildVector that
7256 // consists of only the same constant int value, returned in reference arg
7258 static bool isAllConstantBuildVector(const SDValue
&PotentialBVec
,
7259 uint64_t &ConstVal
) {
7260 BuildVectorSDNode
*Bvec
= dyn_cast
<BuildVectorSDNode
>(PotentialBVec
);
7263 ConstantSDNode
*FirstElt
= dyn_cast
<ConstantSDNode
>(Bvec
->getOperand(0));
7266 EVT VT
= Bvec
->getValueType(0);
7267 unsigned NumElts
= VT
.getVectorNumElements();
7268 for (unsigned i
= 1; i
< NumElts
; ++i
)
7269 if (dyn_cast
<ConstantSDNode
>(Bvec
->getOperand(i
)) != FirstElt
)
7271 ConstVal
= FirstElt
->getZExtValue();
7275 static unsigned getIntrinsicID(const SDNode
*N
) {
7276 unsigned Opcode
= N
->getOpcode();
7279 return Intrinsic::not_intrinsic
;
7280 case ISD::INTRINSIC_WO_CHAIN
: {
7281 unsigned IID
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
7282 if (IID
< Intrinsic::num_intrinsics
)
7284 return Intrinsic::not_intrinsic
;
7289 // Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)),
7290 // to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a
7291 // BUILD_VECTORs with constant element C1, C2 is a constant, and C1 == ~C2.
7292 // Also, logical shift right -> sri, with the same structure.
7293 static SDValue
tryLowerToSLI(SDNode
*N
, SelectionDAG
&DAG
) {
7294 EVT VT
= N
->getValueType(0);
7301 // Is the first op an AND?
7302 const SDValue And
= N
->getOperand(0);
7303 if (And
.getOpcode() != ISD::AND
)
7306 // Is the second op an shl or lshr?
7307 SDValue Shift
= N
->getOperand(1);
7308 // This will have been turned into: AArch64ISD::VSHL vector, #shift
7309 // or AArch64ISD::VLSHR vector, #shift
7310 unsigned ShiftOpc
= Shift
.getOpcode();
7311 if ((ShiftOpc
!= AArch64ISD::VSHL
&& ShiftOpc
!= AArch64ISD::VLSHR
))
7313 bool IsShiftRight
= ShiftOpc
== AArch64ISD::VLSHR
;
7315 // Is the shift amount constant?
7316 ConstantSDNode
*C2node
= dyn_cast
<ConstantSDNode
>(Shift
.getOperand(1));
7320 // Is the and mask vector all constant?
7322 if (!isAllConstantBuildVector(And
.getOperand(1), C1
))
7325 // Is C1 == ~C2, taking into account how much one can shift elements of a
7327 uint64_t C2
= C2node
->getZExtValue();
7328 unsigned ElemSizeInBits
= VT
.getScalarSizeInBits();
7329 if (C2
> ElemSizeInBits
)
7331 unsigned ElemMask
= (1 << ElemSizeInBits
) - 1;
7332 if ((C1
& ElemMask
) != (~C2
& ElemMask
))
7335 SDValue X
= And
.getOperand(0);
7336 SDValue Y
= Shift
.getOperand(0);
7339 IsShiftRight
? Intrinsic::aarch64_neon_vsri
: Intrinsic::aarch64_neon_vsli
;
7341 DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
7342 DAG
.getConstant(Intrin
, DL
, MVT::i32
), X
, Y
,
7343 Shift
.getOperand(1));
7345 LLVM_DEBUG(dbgs() << "aarch64-lower: transformed: \n");
7346 LLVM_DEBUG(N
->dump(&DAG
));
7347 LLVM_DEBUG(dbgs() << "into: \n");
7348 LLVM_DEBUG(ResultSLI
->dump(&DAG
));
7354 SDValue
AArch64TargetLowering::LowerVectorOR(SDValue Op
,
7355 SelectionDAG
&DAG
) const {
7356 // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2))
7357 if (EnableAArch64SlrGeneration
) {
7358 if (SDValue Res
= tryLowerToSLI(Op
.getNode(), DAG
))
7362 EVT VT
= Op
.getValueType();
7364 SDValue LHS
= Op
.getOperand(0);
7365 BuildVectorSDNode
*BVN
=
7366 dyn_cast
<BuildVectorSDNode
>(Op
.getOperand(1).getNode());
7368 // OR commutes, so try swapping the operands.
7369 LHS
= Op
.getOperand(1);
7370 BVN
= dyn_cast
<BuildVectorSDNode
>(Op
.getOperand(0).getNode());
7375 APInt
DefBits(VT
.getSizeInBits(), 0);
7376 APInt
UndefBits(VT
.getSizeInBits(), 0);
7377 if (resolveBuildVector(BVN
, DefBits
, UndefBits
)) {
7380 if ((NewOp
= tryAdvSIMDModImm32(AArch64ISD::ORRi
, Op
, DAG
,
7382 (NewOp
= tryAdvSIMDModImm16(AArch64ISD::ORRi
, Op
, DAG
,
7386 if ((NewOp
= tryAdvSIMDModImm32(AArch64ISD::ORRi
, Op
, DAG
,
7387 UndefBits
, &LHS
)) ||
7388 (NewOp
= tryAdvSIMDModImm16(AArch64ISD::ORRi
, Op
, DAG
,
7393 // We can always fall back to a non-immediate OR.
7397 // Normalize the operands of BUILD_VECTOR. The value of constant operands will
7398 // be truncated to fit element width.
7399 static SDValue
NormalizeBuildVector(SDValue Op
,
7400 SelectionDAG
&DAG
) {
7401 assert(Op
.getOpcode() == ISD::BUILD_VECTOR
&& "Unknown opcode!");
7403 EVT VT
= Op
.getValueType();
7404 EVT EltTy
= VT
.getVectorElementType();
7406 if (EltTy
.isFloatingPoint() || EltTy
.getSizeInBits() > 16)
7409 SmallVector
<SDValue
, 16> Ops
;
7410 for (SDValue Lane
: Op
->ops()) {
7411 // For integer vectors, type legalization would have promoted the
7412 // operands already. Otherwise, if Op is a floating-point splat
7413 // (with operands cast to integers), then the only possibilities
7414 // are constants and UNDEFs.
7415 if (auto *CstLane
= dyn_cast
<ConstantSDNode
>(Lane
)) {
7416 APInt
LowBits(EltTy
.getSizeInBits(),
7417 CstLane
->getZExtValue());
7418 Lane
= DAG
.getConstant(LowBits
.getZExtValue(), dl
, MVT::i32
);
7419 } else if (Lane
.getNode()->isUndef()) {
7420 Lane
= DAG
.getUNDEF(MVT::i32
);
7422 assert(Lane
.getValueType() == MVT::i32
&&
7423 "Unexpected BUILD_VECTOR operand type");
7425 Ops
.push_back(Lane
);
7427 return DAG
.getBuildVector(VT
, dl
, Ops
);
7430 static SDValue
ConstantBuildVector(SDValue Op
, SelectionDAG
&DAG
) {
7431 EVT VT
= Op
.getValueType();
7433 APInt
DefBits(VT
.getSizeInBits(), 0);
7434 APInt
UndefBits(VT
.getSizeInBits(), 0);
7435 BuildVectorSDNode
*BVN
= cast
<BuildVectorSDNode
>(Op
.getNode());
7436 if (resolveBuildVector(BVN
, DefBits
, UndefBits
)) {
7438 if ((NewOp
= tryAdvSIMDModImm64(AArch64ISD::MOVIedit
, Op
, DAG
, DefBits
)) ||
7439 (NewOp
= tryAdvSIMDModImm32(AArch64ISD::MOVIshift
, Op
, DAG
, DefBits
)) ||
7440 (NewOp
= tryAdvSIMDModImm321s(AArch64ISD::MOVImsl
, Op
, DAG
, DefBits
)) ||
7441 (NewOp
= tryAdvSIMDModImm16(AArch64ISD::MOVIshift
, Op
, DAG
, DefBits
)) ||
7442 (NewOp
= tryAdvSIMDModImm8(AArch64ISD::MOVI
, Op
, DAG
, DefBits
)) ||
7443 (NewOp
= tryAdvSIMDModImmFP(AArch64ISD::FMOV
, Op
, DAG
, DefBits
)))
7447 if ((NewOp
= tryAdvSIMDModImm32(AArch64ISD::MVNIshift
, Op
, DAG
, DefBits
)) ||
7448 (NewOp
= tryAdvSIMDModImm321s(AArch64ISD::MVNImsl
, Op
, DAG
, DefBits
)) ||
7449 (NewOp
= tryAdvSIMDModImm16(AArch64ISD::MVNIshift
, Op
, DAG
, DefBits
)))
7452 DefBits
= UndefBits
;
7453 if ((NewOp
= tryAdvSIMDModImm64(AArch64ISD::MOVIedit
, Op
, DAG
, DefBits
)) ||
7454 (NewOp
= tryAdvSIMDModImm32(AArch64ISD::MOVIshift
, Op
, DAG
, DefBits
)) ||
7455 (NewOp
= tryAdvSIMDModImm321s(AArch64ISD::MOVImsl
, Op
, DAG
, DefBits
)) ||
7456 (NewOp
= tryAdvSIMDModImm16(AArch64ISD::MOVIshift
, Op
, DAG
, DefBits
)) ||
7457 (NewOp
= tryAdvSIMDModImm8(AArch64ISD::MOVI
, Op
, DAG
, DefBits
)) ||
7458 (NewOp
= tryAdvSIMDModImmFP(AArch64ISD::FMOV
, Op
, DAG
, DefBits
)))
7461 DefBits
= ~UndefBits
;
7462 if ((NewOp
= tryAdvSIMDModImm32(AArch64ISD::MVNIshift
, Op
, DAG
, DefBits
)) ||
7463 (NewOp
= tryAdvSIMDModImm321s(AArch64ISD::MVNImsl
, Op
, DAG
, DefBits
)) ||
7464 (NewOp
= tryAdvSIMDModImm16(AArch64ISD::MVNIshift
, Op
, DAG
, DefBits
)))
7471 SDValue
AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op
,
7472 SelectionDAG
&DAG
) const {
7473 EVT VT
= Op
.getValueType();
7475 // Try to build a simple constant vector.
7476 Op
= NormalizeBuildVector(Op
, DAG
);
7477 if (VT
.isInteger()) {
7478 // Certain vector constants, used to express things like logical NOT and
7479 // arithmetic NEG, are passed through unmodified. This allows special
7480 // patterns for these operations to match, which will lower these constants
7481 // to whatever is proven necessary.
7482 BuildVectorSDNode
*BVN
= cast
<BuildVectorSDNode
>(Op
.getNode());
7483 if (BVN
->isConstant())
7484 if (ConstantSDNode
*Const
= BVN
->getConstantSplatNode()) {
7485 unsigned BitSize
= VT
.getVectorElementType().getSizeInBits();
7487 Const
->getAPIntValue().zextOrTrunc(BitSize
).getZExtValue());
7488 if (Val
.isNullValue() || Val
.isAllOnesValue())
7493 if (SDValue V
= ConstantBuildVector(Op
, DAG
))
7496 // Scan through the operands to find some interesting properties we can
7498 // 1) If only one value is used, we can use a DUP, or
7499 // 2) if only the low element is not undef, we can just insert that, or
7500 // 3) if only one constant value is used (w/ some non-constant lanes),
7501 // we can splat the constant value into the whole vector then fill
7502 // in the non-constant lanes.
7503 // 4) FIXME: If different constant values are used, but we can intelligently
7504 // select the values we'll be overwriting for the non-constant
7505 // lanes such that we can directly materialize the vector
7506 // some other way (MOVI, e.g.), we can be sneaky.
7507 // 5) if all operands are EXTRACT_VECTOR_ELT, check for VUZP.
7509 unsigned NumElts
= VT
.getVectorNumElements();
7510 bool isOnlyLowElement
= true;
7511 bool usesOnlyOneValue
= true;
7512 bool usesOnlyOneConstantValue
= true;
7513 bool isConstant
= true;
7514 bool AllLanesExtractElt
= true;
7515 unsigned NumConstantLanes
= 0;
7517 SDValue ConstantValue
;
7518 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7519 SDValue V
= Op
.getOperand(i
);
7520 if (V
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
)
7521 AllLanesExtractElt
= false;
7525 isOnlyLowElement
= false;
7526 if (!isa
<ConstantFPSDNode
>(V
) && !isa
<ConstantSDNode
>(V
))
7529 if (isa
<ConstantSDNode
>(V
) || isa
<ConstantFPSDNode
>(V
)) {
7531 if (!ConstantValue
.getNode())
7533 else if (ConstantValue
!= V
)
7534 usesOnlyOneConstantValue
= false;
7537 if (!Value
.getNode())
7539 else if (V
!= Value
)
7540 usesOnlyOneValue
= false;
7543 if (!Value
.getNode()) {
7545 dbgs() << "LowerBUILD_VECTOR: value undefined, creating undef node\n");
7546 return DAG
.getUNDEF(VT
);
7549 // Convert BUILD_VECTOR where all elements but the lowest are undef into
7550 // SCALAR_TO_VECTOR, except for when we have a single-element constant vector
7551 // as SimplifyDemandedBits will just turn that back into BUILD_VECTOR.
7552 if (isOnlyLowElement
&& !(NumElts
== 1 && isa
<ConstantSDNode
>(Value
))) {
7553 LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: only low element used, creating 1 "
7554 "SCALAR_TO_VECTOR node\n");
7555 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Value
);
7558 if (AllLanesExtractElt
) {
7559 SDNode
*Vector
= nullptr;
7562 // Check whether the extract elements match the Even pattern <0,2,4,...> or
7563 // the Odd pattern <1,3,5,...>.
7564 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7565 SDValue V
= Op
.getOperand(i
);
7566 const SDNode
*N
= V
.getNode();
7567 if (!isa
<ConstantSDNode
>(N
->getOperand(1)))
7569 SDValue N0
= N
->getOperand(0);
7571 // All elements are extracted from the same vector.
7573 Vector
= N0
.getNode();
7574 // Check that the type of EXTRACT_VECTOR_ELT matches the type of
7576 if (VT
.getVectorElementType() !=
7577 N0
.getValueType().getVectorElementType())
7579 } else if (Vector
!= N0
.getNode()) {
7585 // Extracted values are either at Even indices <0,2,4,...> or at Odd
7586 // indices <1,3,5,...>.
7587 uint64_t Val
= N
->getConstantOperandVal(1);
7592 if (Val
- 1 == 2 * i
) {
7597 // Something does not match: abort.
7604 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, VT
, SDValue(Vector
, 0),
7605 DAG
.getConstant(0, dl
, MVT::i64
));
7607 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, VT
, SDValue(Vector
, 0),
7608 DAG
.getConstant(NumElts
, dl
, MVT::i64
));
7611 return DAG
.getNode(AArch64ISD::UZP1
, dl
, DAG
.getVTList(VT
, VT
), LHS
,
7614 return DAG
.getNode(AArch64ISD::UZP2
, dl
, DAG
.getVTList(VT
, VT
), LHS
,
7619 // Use DUP for non-constant splats. For f32 constant splats, reduce to
7620 // i32 and try again.
7621 if (usesOnlyOneValue
) {
7623 if (Value
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
7624 Value
.getValueType() != VT
) {
7626 dbgs() << "LowerBUILD_VECTOR: use DUP for non-constant splats\n");
7627 return DAG
.getNode(AArch64ISD::DUP
, dl
, VT
, Value
);
7630 // This is actually a DUPLANExx operation, which keeps everything vectory.
7632 SDValue Lane
= Value
.getOperand(1);
7633 Value
= Value
.getOperand(0);
7634 if (Value
.getValueSizeInBits() == 64) {
7636 dbgs() << "LowerBUILD_VECTOR: DUPLANE works on 128-bit vectors, "
7638 Value
= WidenVector(Value
, DAG
);
7641 unsigned Opcode
= getDUPLANEOp(VT
.getVectorElementType());
7642 return DAG
.getNode(Opcode
, dl
, VT
, Value
, Lane
);
7645 if (VT
.getVectorElementType().isFloatingPoint()) {
7646 SmallVector
<SDValue
, 8> Ops
;
7647 EVT EltTy
= VT
.getVectorElementType();
7648 assert ((EltTy
== MVT::f16
|| EltTy
== MVT::f32
|| EltTy
== MVT::f64
) &&
7649 "Unsupported floating-point vector type");
7651 dbgs() << "LowerBUILD_VECTOR: float constant splats, creating int "
7652 "BITCASTS, and try again\n");
7653 MVT NewType
= MVT::getIntegerVT(EltTy
.getSizeInBits());
7654 for (unsigned i
= 0; i
< NumElts
; ++i
)
7655 Ops
.push_back(DAG
.getNode(ISD::BITCAST
, dl
, NewType
, Op
.getOperand(i
)));
7656 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), NewType
, NumElts
);
7657 SDValue Val
= DAG
.getBuildVector(VecVT
, dl
, Ops
);
7658 LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: trying to lower new vector: ";
7660 Val
= LowerBUILD_VECTOR(Val
, DAG
);
7662 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
7666 // If there was only one constant value used and for more than one lane,
7667 // start by splatting that value, then replace the non-constant lanes. This
7668 // is better than the default, which will perform a separate initialization
7670 if (NumConstantLanes
> 0 && usesOnlyOneConstantValue
) {
7671 // Firstly, try to materialize the splat constant.
7672 SDValue Vec
= DAG
.getSplatBuildVector(VT
, dl
, ConstantValue
),
7673 Val
= ConstantBuildVector(Vec
, DAG
);
7675 // Otherwise, materialize the constant and splat it.
7676 Val
= DAG
.getNode(AArch64ISD::DUP
, dl
, VT
, ConstantValue
);
7677 DAG
.ReplaceAllUsesWith(Vec
.getNode(), &Val
);
7680 // Now insert the non-constant lanes.
7681 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7682 SDValue V
= Op
.getOperand(i
);
7683 SDValue LaneIdx
= DAG
.getConstant(i
, dl
, MVT::i64
);
7684 if (!isa
<ConstantSDNode
>(V
) && !isa
<ConstantFPSDNode
>(V
))
7685 // Note that type legalization likely mucked about with the VT of the
7686 // source operand, so we may have to convert it here before inserting.
7687 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Val
, V
, LaneIdx
);
7692 // This will generate a load from the constant pool.
7695 dbgs() << "LowerBUILD_VECTOR: all elements are constant, use default "
7700 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
7702 if (SDValue shuffle
= ReconstructShuffle(Op
, DAG
))
7706 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
7707 // know the default expansion would otherwise fall back on something even
7708 // worse. For a vector with one or two non-undef values, that's
7709 // scalar_to_vector for the elements followed by a shuffle (provided the
7710 // shuffle is valid for the target) and materialization element by element
7711 // on the stack followed by a load for everything else.
7712 if (!isConstant
&& !usesOnlyOneValue
) {
7714 dbgs() << "LowerBUILD_VECTOR: alternatives failed, creating sequence "
7715 "of INSERT_VECTOR_ELT\n");
7717 SDValue Vec
= DAG
.getUNDEF(VT
);
7718 SDValue Op0
= Op
.getOperand(0);
7721 // Use SCALAR_TO_VECTOR for lane zero to
7722 // a) Avoid a RMW dependency on the full vector register, and
7723 // b) Allow the register coalescer to fold away the copy if the
7724 // value is already in an S or D register, and we're forced to emit an
7725 // INSERT_SUBREG that we can't fold anywhere.
7727 // We also allow types like i8 and i16 which are illegal scalar but legal
7728 // vector element types. After type-legalization the inserted value is
7729 // extended (i32) and it is safe to cast them to the vector type by ignoring
7730 // the upper bits of the lowest lane (e.g. v8i8, v4i16).
7731 if (!Op0
.isUndef()) {
7732 LLVM_DEBUG(dbgs() << "Creating node for op0, it is not undefined:\n");
7733 Vec
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Op0
);
7736 LLVM_DEBUG(if (i
< NumElts
) dbgs()
7737 << "Creating nodes for the other vector elements:\n";);
7738 for (; i
< NumElts
; ++i
) {
7739 SDValue V
= Op
.getOperand(i
);
7742 SDValue LaneIdx
= DAG
.getConstant(i
, dl
, MVT::i64
);
7743 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Vec
, V
, LaneIdx
);
7749 dbgs() << "LowerBUILD_VECTOR: use default expansion, failed to find "
7750 "better alternative\n");
7754 SDValue
AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op
,
7755 SelectionDAG
&DAG
) const {
7756 assert(Op
.getOpcode() == ISD::INSERT_VECTOR_ELT
&& "Unknown opcode!");
7758 // Check for non-constant or out of range lane.
7759 EVT VT
= Op
.getOperand(0).getValueType();
7760 ConstantSDNode
*CI
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(2));
7761 if (!CI
|| CI
->getZExtValue() >= VT
.getVectorNumElements())
7765 // Insertion/extraction are legal for V128 types.
7766 if (VT
== MVT::v16i8
|| VT
== MVT::v8i16
|| VT
== MVT::v4i32
||
7767 VT
== MVT::v2i64
|| VT
== MVT::v4f32
|| VT
== MVT::v2f64
||
7771 if (VT
!= MVT::v8i8
&& VT
!= MVT::v4i16
&& VT
!= MVT::v2i32
&&
7772 VT
!= MVT::v1i64
&& VT
!= MVT::v2f32
&& VT
!= MVT::v4f16
)
7775 // For V64 types, we perform insertion by expanding the value
7776 // to a V128 type and perform the insertion on that.
7778 SDValue WideVec
= WidenVector(Op
.getOperand(0), DAG
);
7779 EVT WideTy
= WideVec
.getValueType();
7781 SDValue Node
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, DL
, WideTy
, WideVec
,
7782 Op
.getOperand(1), Op
.getOperand(2));
7783 // Re-narrow the resultant vector.
7784 return NarrowVector(Node
, DAG
);
7788 AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op
,
7789 SelectionDAG
&DAG
) const {
7790 assert(Op
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
&& "Unknown opcode!");
7792 // Check for non-constant or out of range lane.
7793 EVT VT
= Op
.getOperand(0).getValueType();
7794 ConstantSDNode
*CI
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
7795 if (!CI
|| CI
->getZExtValue() >= VT
.getVectorNumElements())
7799 // Insertion/extraction are legal for V128 types.
7800 if (VT
== MVT::v16i8
|| VT
== MVT::v8i16
|| VT
== MVT::v4i32
||
7801 VT
== MVT::v2i64
|| VT
== MVT::v4f32
|| VT
== MVT::v2f64
||
7805 if (VT
!= MVT::v8i8
&& VT
!= MVT::v4i16
&& VT
!= MVT::v2i32
&&
7806 VT
!= MVT::v1i64
&& VT
!= MVT::v2f32
&& VT
!= MVT::v4f16
)
7809 // For V64 types, we perform extraction by expanding the value
7810 // to a V128 type and perform the extraction on that.
7812 SDValue WideVec
= WidenVector(Op
.getOperand(0), DAG
);
7813 EVT WideTy
= WideVec
.getValueType();
7815 EVT ExtrTy
= WideTy
.getVectorElementType();
7816 if (ExtrTy
== MVT::i16
|| ExtrTy
== MVT::i8
)
7819 // For extractions, we just return the result directly.
7820 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, ExtrTy
, WideVec
,
7824 SDValue
AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op
,
7825 SelectionDAG
&DAG
) const {
7826 EVT VT
= Op
.getOperand(0).getValueType();
7832 ConstantSDNode
*Cst
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
7835 unsigned Val
= Cst
->getZExtValue();
7837 unsigned Size
= Op
.getValueSizeInBits();
7839 // This will get lowered to an appropriate EXTRACT_SUBREG in ISel.
7843 // If this is extracting the upper 64-bits of a 128-bit vector, we match
7845 if (Size
== 64 && Val
* VT
.getScalarSizeInBits() == 64)
7851 bool AArch64TargetLowering::isShuffleMaskLegal(ArrayRef
<int> M
, EVT VT
) const {
7852 if (VT
.getVectorNumElements() == 4 &&
7853 (VT
.is128BitVector() || VT
.is64BitVector())) {
7854 unsigned PFIndexes
[4];
7855 for (unsigned i
= 0; i
!= 4; ++i
) {
7859 PFIndexes
[i
] = M
[i
];
7862 // Compute the index in the perfect shuffle table.
7863 unsigned PFTableIndex
= PFIndexes
[0] * 9 * 9 * 9 + PFIndexes
[1] * 9 * 9 +
7864 PFIndexes
[2] * 9 + PFIndexes
[3];
7865 unsigned PFEntry
= PerfectShuffleTable
[PFTableIndex
];
7866 unsigned Cost
= (PFEntry
>> 30);
7874 unsigned DummyUnsigned
;
7876 return (ShuffleVectorSDNode::isSplatMask(&M
[0], VT
) || isREVMask(M
, VT
, 64) ||
7877 isREVMask(M
, VT
, 32) || isREVMask(M
, VT
, 16) ||
7878 isEXTMask(M
, VT
, DummyBool
, DummyUnsigned
) ||
7879 // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM.
7880 isTRNMask(M
, VT
, DummyUnsigned
) || isUZPMask(M
, VT
, DummyUnsigned
) ||
7881 isZIPMask(M
, VT
, DummyUnsigned
) ||
7882 isTRN_v_undef_Mask(M
, VT
, DummyUnsigned
) ||
7883 isUZP_v_undef_Mask(M
, VT
, DummyUnsigned
) ||
7884 isZIP_v_undef_Mask(M
, VT
, DummyUnsigned
) ||
7885 isINSMask(M
, VT
.getVectorNumElements(), DummyBool
, DummyInt
) ||
7886 isConcatMask(M
, VT
, VT
.getSizeInBits() == 128));
7889 /// getVShiftImm - Check if this is a valid build_vector for the immediate
7890 /// operand of a vector shift operation, where all the elements of the
7891 /// build_vector must have the same constant integer value.
7892 static bool getVShiftImm(SDValue Op
, unsigned ElementBits
, int64_t &Cnt
) {
7893 // Ignore bit_converts.
7894 while (Op
.getOpcode() == ISD::BITCAST
)
7895 Op
= Op
.getOperand(0);
7896 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(Op
.getNode());
7897 APInt SplatBits
, SplatUndef
;
7898 unsigned SplatBitSize
;
7900 if (!BVN
|| !BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
,
7901 HasAnyUndefs
, ElementBits
) ||
7902 SplatBitSize
> ElementBits
)
7904 Cnt
= SplatBits
.getSExtValue();
7908 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
7909 /// operand of a vector shift left operation. That value must be in the range:
7910 /// 0 <= Value < ElementBits for a left shift; or
7911 /// 0 <= Value <= ElementBits for a long left shift.
7912 static bool isVShiftLImm(SDValue Op
, EVT VT
, bool isLong
, int64_t &Cnt
) {
7913 assert(VT
.isVector() && "vector shift count is not a vector type");
7914 int64_t ElementBits
= VT
.getScalarSizeInBits();
7915 if (!getVShiftImm(Op
, ElementBits
, Cnt
))
7917 return (Cnt
>= 0 && (isLong
? Cnt
- 1 : Cnt
) < ElementBits
);
7920 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
7921 /// operand of a vector shift right operation. The value must be in the range:
7922 /// 1 <= Value <= ElementBits for a right shift; or
7923 static bool isVShiftRImm(SDValue Op
, EVT VT
, bool isNarrow
, int64_t &Cnt
) {
7924 assert(VT
.isVector() && "vector shift count is not a vector type");
7925 int64_t ElementBits
= VT
.getScalarSizeInBits();
7926 if (!getVShiftImm(Op
, ElementBits
, Cnt
))
7928 return (Cnt
>= 1 && Cnt
<= (isNarrow
? ElementBits
/ 2 : ElementBits
));
7931 SDValue
AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op
,
7932 SelectionDAG
&DAG
) const {
7933 EVT VT
= Op
.getValueType();
7937 if (!Op
.getOperand(1).getValueType().isVector())
7939 unsigned EltSize
= VT
.getScalarSizeInBits();
7941 switch (Op
.getOpcode()) {
7943 llvm_unreachable("unexpected shift opcode");
7946 if (isVShiftLImm(Op
.getOperand(1), VT
, false, Cnt
) && Cnt
< EltSize
)
7947 return DAG
.getNode(AArch64ISD::VSHL
, DL
, VT
, Op
.getOperand(0),
7948 DAG
.getConstant(Cnt
, DL
, MVT::i32
));
7949 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
7950 DAG
.getConstant(Intrinsic::aarch64_neon_ushl
, DL
,
7952 Op
.getOperand(0), Op
.getOperand(1));
7955 // Right shift immediate
7956 if (isVShiftRImm(Op
.getOperand(1), VT
, false, Cnt
) && Cnt
< EltSize
) {
7958 (Op
.getOpcode() == ISD::SRA
) ? AArch64ISD::VASHR
: AArch64ISD::VLSHR
;
7959 return DAG
.getNode(Opc
, DL
, VT
, Op
.getOperand(0),
7960 DAG
.getConstant(Cnt
, DL
, MVT::i32
));
7963 // Right shift register. Note, there is not a shift right register
7964 // instruction, but the shift left register instruction takes a signed
7965 // value, where negative numbers specify a right shift.
7966 unsigned Opc
= (Op
.getOpcode() == ISD::SRA
) ? Intrinsic::aarch64_neon_sshl
7967 : Intrinsic::aarch64_neon_ushl
;
7968 // negate the shift amount
7969 SDValue NegShift
= DAG
.getNode(AArch64ISD::NEG
, DL
, VT
, Op
.getOperand(1));
7970 SDValue NegShiftLeft
=
7971 DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
7972 DAG
.getConstant(Opc
, DL
, MVT::i32
), Op
.getOperand(0),
7974 return NegShiftLeft
;
7980 static SDValue
EmitVectorComparison(SDValue LHS
, SDValue RHS
,
7981 AArch64CC::CondCode CC
, bool NoNans
, EVT VT
,
7982 const SDLoc
&dl
, SelectionDAG
&DAG
) {
7983 EVT SrcVT
= LHS
.getValueType();
7984 assert(VT
.getSizeInBits() == SrcVT
.getSizeInBits() &&
7985 "function only supposed to emit natural comparisons");
7987 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(RHS
.getNode());
7988 APInt
CnstBits(VT
.getSizeInBits(), 0);
7989 APInt
UndefBits(VT
.getSizeInBits(), 0);
7990 bool IsCnst
= BVN
&& resolveBuildVector(BVN
, CnstBits
, UndefBits
);
7991 bool IsZero
= IsCnst
&& (CnstBits
== 0);
7993 if (SrcVT
.getVectorElementType().isFloatingPoint()) {
7997 case AArch64CC::NE
: {
8000 Fcmeq
= DAG
.getNode(AArch64ISD::FCMEQz
, dl
, VT
, LHS
);
8002 Fcmeq
= DAG
.getNode(AArch64ISD::FCMEQ
, dl
, VT
, LHS
, RHS
);
8003 return DAG
.getNode(AArch64ISD::NOT
, dl
, VT
, Fcmeq
);
8007 return DAG
.getNode(AArch64ISD::FCMEQz
, dl
, VT
, LHS
);
8008 return DAG
.getNode(AArch64ISD::FCMEQ
, dl
, VT
, LHS
, RHS
);
8011 return DAG
.getNode(AArch64ISD::FCMGEz
, dl
, VT
, LHS
);
8012 return DAG
.getNode(AArch64ISD::FCMGE
, dl
, VT
, LHS
, RHS
);
8015 return DAG
.getNode(AArch64ISD::FCMGTz
, dl
, VT
, LHS
);
8016 return DAG
.getNode(AArch64ISD::FCMGT
, dl
, VT
, LHS
, RHS
);
8019 return DAG
.getNode(AArch64ISD::FCMLEz
, dl
, VT
, LHS
);
8020 return DAG
.getNode(AArch64ISD::FCMGE
, dl
, VT
, RHS
, LHS
);
8024 // If we ignore NaNs then we can use to the MI implementation.
8028 return DAG
.getNode(AArch64ISD::FCMLTz
, dl
, VT
, LHS
);
8029 return DAG
.getNode(AArch64ISD::FCMGT
, dl
, VT
, RHS
, LHS
);
8036 case AArch64CC::NE
: {
8039 Cmeq
= DAG
.getNode(AArch64ISD::CMEQz
, dl
, VT
, LHS
);
8041 Cmeq
= DAG
.getNode(AArch64ISD::CMEQ
, dl
, VT
, LHS
, RHS
);
8042 return DAG
.getNode(AArch64ISD::NOT
, dl
, VT
, Cmeq
);
8046 return DAG
.getNode(AArch64ISD::CMEQz
, dl
, VT
, LHS
);
8047 return DAG
.getNode(AArch64ISD::CMEQ
, dl
, VT
, LHS
, RHS
);
8050 return DAG
.getNode(AArch64ISD::CMGEz
, dl
, VT
, LHS
);
8051 return DAG
.getNode(AArch64ISD::CMGE
, dl
, VT
, LHS
, RHS
);
8054 return DAG
.getNode(AArch64ISD::CMGTz
, dl
, VT
, LHS
);
8055 return DAG
.getNode(AArch64ISD::CMGT
, dl
, VT
, LHS
, RHS
);
8058 return DAG
.getNode(AArch64ISD::CMLEz
, dl
, VT
, LHS
);
8059 return DAG
.getNode(AArch64ISD::CMGE
, dl
, VT
, RHS
, LHS
);
8061 return DAG
.getNode(AArch64ISD::CMHS
, dl
, VT
, RHS
, LHS
);
8063 return DAG
.getNode(AArch64ISD::CMHI
, dl
, VT
, RHS
, LHS
);
8066 return DAG
.getNode(AArch64ISD::CMLTz
, dl
, VT
, LHS
);
8067 return DAG
.getNode(AArch64ISD::CMGT
, dl
, VT
, RHS
, LHS
);
8069 return DAG
.getNode(AArch64ISD::CMHI
, dl
, VT
, LHS
, RHS
);
8071 return DAG
.getNode(AArch64ISD::CMHS
, dl
, VT
, LHS
, RHS
);
8075 SDValue
AArch64TargetLowering::LowerVSETCC(SDValue Op
,
8076 SelectionDAG
&DAG
) const {
8077 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(2))->get();
8078 SDValue LHS
= Op
.getOperand(0);
8079 SDValue RHS
= Op
.getOperand(1);
8080 EVT CmpVT
= LHS
.getValueType().changeVectorElementTypeToInteger();
8083 if (LHS
.getValueType().getVectorElementType().isInteger()) {
8084 assert(LHS
.getValueType() == RHS
.getValueType());
8085 AArch64CC::CondCode AArch64CC
= changeIntCCToAArch64CC(CC
);
8087 EmitVectorComparison(LHS
, RHS
, AArch64CC
, false, CmpVT
, dl
, DAG
);
8088 return DAG
.getSExtOrTrunc(Cmp
, dl
, Op
.getValueType());
8091 const bool FullFP16
=
8092 static_cast<const AArch64Subtarget
&>(DAG
.getSubtarget()).hasFullFP16();
8094 // Make v4f16 (only) fcmp operations utilise vector instructions
8095 // v8f16 support will be a litle more complicated
8096 if (!FullFP16
&& LHS
.getValueType().getVectorElementType() == MVT::f16
) {
8097 if (LHS
.getValueType().getVectorNumElements() == 4) {
8098 LHS
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::v4f32
, LHS
);
8099 RHS
= DAG
.getNode(ISD::FP_EXTEND
, dl
, MVT::v4f32
, RHS
);
8100 SDValue NewSetcc
= DAG
.getSetCC(dl
, MVT::v4i16
, LHS
, RHS
, CC
);
8101 DAG
.ReplaceAllUsesWith(Op
, NewSetcc
);
8107 assert((!FullFP16
&& LHS
.getValueType().getVectorElementType() != MVT::f16
) ||
8108 LHS
.getValueType().getVectorElementType() != MVT::f128
);
8110 // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally
8111 // clean. Some of them require two branches to implement.
8112 AArch64CC::CondCode CC1
, CC2
;
8114 changeVectorFPCCToAArch64CC(CC
, CC1
, CC2
, ShouldInvert
);
8116 bool NoNaNs
= getTargetMachine().Options
.NoNaNsFPMath
;
8118 EmitVectorComparison(LHS
, RHS
, CC1
, NoNaNs
, CmpVT
, dl
, DAG
);
8122 if (CC2
!= AArch64CC::AL
) {
8124 EmitVectorComparison(LHS
, RHS
, CC2
, NoNaNs
, CmpVT
, dl
, DAG
);
8125 if (!Cmp2
.getNode())
8128 Cmp
= DAG
.getNode(ISD::OR
, dl
, CmpVT
, Cmp
, Cmp2
);
8131 Cmp
= DAG
.getSExtOrTrunc(Cmp
, dl
, Op
.getValueType());
8134 Cmp
= DAG
.getNOT(dl
, Cmp
, Cmp
.getValueType());
8139 static SDValue
getReductionSDNode(unsigned Op
, SDLoc DL
, SDValue ScalarOp
,
8140 SelectionDAG
&DAG
) {
8141 SDValue VecOp
= ScalarOp
.getOperand(0);
8142 auto Rdx
= DAG
.getNode(Op
, DL
, VecOp
.getSimpleValueType(), VecOp
);
8143 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, ScalarOp
.getValueType(), Rdx
,
8144 DAG
.getConstant(0, DL
, MVT::i64
));
8147 SDValue
AArch64TargetLowering::LowerVECREDUCE(SDValue Op
,
8148 SelectionDAG
&DAG
) const {
8150 switch (Op
.getOpcode()) {
8151 case ISD::VECREDUCE_ADD
:
8152 return getReductionSDNode(AArch64ISD::UADDV
, dl
, Op
, DAG
);
8153 case ISD::VECREDUCE_SMAX
:
8154 return getReductionSDNode(AArch64ISD::SMAXV
, dl
, Op
, DAG
);
8155 case ISD::VECREDUCE_SMIN
:
8156 return getReductionSDNode(AArch64ISD::SMINV
, dl
, Op
, DAG
);
8157 case ISD::VECREDUCE_UMAX
:
8158 return getReductionSDNode(AArch64ISD::UMAXV
, dl
, Op
, DAG
);
8159 case ISD::VECREDUCE_UMIN
:
8160 return getReductionSDNode(AArch64ISD::UMINV
, dl
, Op
, DAG
);
8161 case ISD::VECREDUCE_FMAX
: {
8162 assert(Op
->getFlags().hasNoNaNs() && "fmax vector reduction needs NoNaN flag");
8164 ISD::INTRINSIC_WO_CHAIN
, dl
, Op
.getValueType(),
8165 DAG
.getConstant(Intrinsic::aarch64_neon_fmaxnmv
, dl
, MVT::i32
),
8168 case ISD::VECREDUCE_FMIN
: {
8169 assert(Op
->getFlags().hasNoNaNs() && "fmin vector reduction needs NoNaN flag");
8171 ISD::INTRINSIC_WO_CHAIN
, dl
, Op
.getValueType(),
8172 DAG
.getConstant(Intrinsic::aarch64_neon_fminnmv
, dl
, MVT::i32
),
8176 llvm_unreachable("Unhandled reduction");
8180 SDValue
AArch64TargetLowering::LowerATOMIC_LOAD_SUB(SDValue Op
,
8181 SelectionDAG
&DAG
) const {
8182 auto &Subtarget
= static_cast<const AArch64Subtarget
&>(DAG
.getSubtarget());
8183 if (!Subtarget
.hasLSE())
8186 // LSE has an atomic load-add instruction, but not a load-sub.
8188 MVT VT
= Op
.getSimpleValueType();
8189 SDValue RHS
= Op
.getOperand(2);
8190 AtomicSDNode
*AN
= cast
<AtomicSDNode
>(Op
.getNode());
8191 RHS
= DAG
.getNode(ISD::SUB
, dl
, VT
, DAG
.getConstant(0, dl
, VT
), RHS
);
8192 return DAG
.getAtomic(ISD::ATOMIC_LOAD_ADD
, dl
, AN
->getMemoryVT(),
8193 Op
.getOperand(0), Op
.getOperand(1), RHS
,
8194 AN
->getMemOperand());
8197 SDValue
AArch64TargetLowering::LowerATOMIC_LOAD_AND(SDValue Op
,
8198 SelectionDAG
&DAG
) const {
8199 auto &Subtarget
= static_cast<const AArch64Subtarget
&>(DAG
.getSubtarget());
8200 if (!Subtarget
.hasLSE())
8203 // LSE has an atomic load-clear instruction, but not a load-and.
8205 MVT VT
= Op
.getSimpleValueType();
8206 SDValue RHS
= Op
.getOperand(2);
8207 AtomicSDNode
*AN
= cast
<AtomicSDNode
>(Op
.getNode());
8208 RHS
= DAG
.getNode(ISD::XOR
, dl
, VT
, DAG
.getConstant(-1ULL, dl
, VT
), RHS
);
8209 return DAG
.getAtomic(ISD::ATOMIC_LOAD_CLR
, dl
, AN
->getMemoryVT(),
8210 Op
.getOperand(0), Op
.getOperand(1), RHS
,
8211 AN
->getMemOperand());
8214 SDValue
AArch64TargetLowering::LowerWindowsDYNAMIC_STACKALLOC(
8215 SDValue Op
, SDValue Chain
, SDValue
&Size
, SelectionDAG
&DAG
) const {
8217 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
8218 SDValue Callee
= DAG
.getTargetExternalSymbol("__chkstk", PtrVT
, 0);
8220 const AArch64RegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
8221 const uint32_t *Mask
= TRI
->getWindowsStackProbePreservedMask();
8222 if (Subtarget
->hasCustomCallingConv())
8223 TRI
->UpdateCustomCallPreservedMask(DAG
.getMachineFunction(), &Mask
);
8225 Size
= DAG
.getNode(ISD::SRL
, dl
, MVT::i64
, Size
,
8226 DAG
.getConstant(4, dl
, MVT::i64
));
8227 Chain
= DAG
.getCopyToReg(Chain
, dl
, AArch64::X15
, Size
, SDValue());
8229 DAG
.getNode(AArch64ISD::CALL
, dl
, DAG
.getVTList(MVT::Other
, MVT::Glue
),
8230 Chain
, Callee
, DAG
.getRegister(AArch64::X15
, MVT::i64
),
8231 DAG
.getRegisterMask(Mask
), Chain
.getValue(1));
8232 // To match the actual intent better, we should read the output from X15 here
8233 // again (instead of potentially spilling it to the stack), but rereading Size
8234 // from X15 here doesn't work at -O0, since it thinks that X15 is undefined
8237 Size
= DAG
.getNode(ISD::SHL
, dl
, MVT::i64
, Size
,
8238 DAG
.getConstant(4, dl
, MVT::i64
));
8243 AArch64TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op
,
8244 SelectionDAG
&DAG
) const {
8245 assert(Subtarget
->isTargetWindows() &&
8246 "Only Windows alloca probing supported");
8249 SDNode
*Node
= Op
.getNode();
8250 SDValue Chain
= Op
.getOperand(0);
8251 SDValue Size
= Op
.getOperand(1);
8252 unsigned Align
= cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue();
8253 EVT VT
= Node
->getValueType(0);
8255 if (DAG
.getMachineFunction().getFunction().hasFnAttribute(
8256 "no-stack-arg-probe")) {
8257 SDValue SP
= DAG
.getCopyFromReg(Chain
, dl
, AArch64::SP
, MVT::i64
);
8258 Chain
= SP
.getValue(1);
8259 SP
= DAG
.getNode(ISD::SUB
, dl
, MVT::i64
, SP
, Size
);
8261 SP
= DAG
.getNode(ISD::AND
, dl
, VT
, SP
.getValue(0),
8262 DAG
.getConstant(-(uint64_t)Align
, dl
, VT
));
8263 Chain
= DAG
.getCopyToReg(Chain
, dl
, AArch64::SP
, SP
);
8264 SDValue Ops
[2] = {SP
, Chain
};
8265 return DAG
.getMergeValues(Ops
, dl
);
8268 Chain
= DAG
.getCALLSEQ_START(Chain
, 0, 0, dl
);
8270 Chain
= LowerWindowsDYNAMIC_STACKALLOC(Op
, Chain
, Size
, DAG
);
8272 SDValue SP
= DAG
.getCopyFromReg(Chain
, dl
, AArch64::SP
, MVT::i64
);
8273 Chain
= SP
.getValue(1);
8274 SP
= DAG
.getNode(ISD::SUB
, dl
, MVT::i64
, SP
, Size
);
8276 SP
= DAG
.getNode(ISD::AND
, dl
, VT
, SP
.getValue(0),
8277 DAG
.getConstant(-(uint64_t)Align
, dl
, VT
));
8278 Chain
= DAG
.getCopyToReg(Chain
, dl
, AArch64::SP
, SP
);
8280 Chain
= DAG
.getCALLSEQ_END(Chain
, DAG
.getIntPtrConstant(0, dl
, true),
8281 DAG
.getIntPtrConstant(0, dl
, true), SDValue(), dl
);
8283 SDValue Ops
[2] = {SP
, Chain
};
8284 return DAG
.getMergeValues(Ops
, dl
);
8287 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
8288 /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
8289 /// specified in the intrinsic calls.
8290 bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo
&Info
,
8292 MachineFunction
&MF
,
8293 unsigned Intrinsic
) const {
8294 auto &DL
= I
.getModule()->getDataLayout();
8295 switch (Intrinsic
) {
8296 case Intrinsic::aarch64_neon_ld2
:
8297 case Intrinsic::aarch64_neon_ld3
:
8298 case Intrinsic::aarch64_neon_ld4
:
8299 case Intrinsic::aarch64_neon_ld1x2
:
8300 case Intrinsic::aarch64_neon_ld1x3
:
8301 case Intrinsic::aarch64_neon_ld1x4
:
8302 case Intrinsic::aarch64_neon_ld2lane
:
8303 case Intrinsic::aarch64_neon_ld3lane
:
8304 case Intrinsic::aarch64_neon_ld4lane
:
8305 case Intrinsic::aarch64_neon_ld2r
:
8306 case Intrinsic::aarch64_neon_ld3r
:
8307 case Intrinsic::aarch64_neon_ld4r
: {
8308 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
8309 // Conservatively set memVT to the entire set of vectors loaded.
8310 uint64_t NumElts
= DL
.getTypeSizeInBits(I
.getType()) / 64;
8311 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
8312 Info
.ptrVal
= I
.getArgOperand(I
.getNumArgOperands() - 1);
8315 // volatile loads with NEON intrinsics not supported
8316 Info
.flags
= MachineMemOperand::MOLoad
;
8319 case Intrinsic::aarch64_neon_st2
:
8320 case Intrinsic::aarch64_neon_st3
:
8321 case Intrinsic::aarch64_neon_st4
:
8322 case Intrinsic::aarch64_neon_st1x2
:
8323 case Intrinsic::aarch64_neon_st1x3
:
8324 case Intrinsic::aarch64_neon_st1x4
:
8325 case Intrinsic::aarch64_neon_st2lane
:
8326 case Intrinsic::aarch64_neon_st3lane
:
8327 case Intrinsic::aarch64_neon_st4lane
: {
8328 Info
.opc
= ISD::INTRINSIC_VOID
;
8329 // Conservatively set memVT to the entire set of vectors stored.
8330 unsigned NumElts
= 0;
8331 for (unsigned ArgI
= 0, ArgE
= I
.getNumArgOperands(); ArgI
< ArgE
; ++ArgI
) {
8332 Type
*ArgTy
= I
.getArgOperand(ArgI
)->getType();
8333 if (!ArgTy
->isVectorTy())
8335 NumElts
+= DL
.getTypeSizeInBits(ArgTy
) / 64;
8337 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
8338 Info
.ptrVal
= I
.getArgOperand(I
.getNumArgOperands() - 1);
8341 // volatile stores with NEON intrinsics not supported
8342 Info
.flags
= MachineMemOperand::MOStore
;
8345 case Intrinsic::aarch64_ldaxr
:
8346 case Intrinsic::aarch64_ldxr
: {
8347 PointerType
*PtrTy
= cast
<PointerType
>(I
.getArgOperand(0)->getType());
8348 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
8349 Info
.memVT
= MVT::getVT(PtrTy
->getElementType());
8350 Info
.ptrVal
= I
.getArgOperand(0);
8352 Info
.align
= MaybeAlign(DL
.getABITypeAlignment(PtrTy
->getElementType()));
8353 Info
.flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
;
8356 case Intrinsic::aarch64_stlxr
:
8357 case Intrinsic::aarch64_stxr
: {
8358 PointerType
*PtrTy
= cast
<PointerType
>(I
.getArgOperand(1)->getType());
8359 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
8360 Info
.memVT
= MVT::getVT(PtrTy
->getElementType());
8361 Info
.ptrVal
= I
.getArgOperand(1);
8363 Info
.align
= MaybeAlign(DL
.getABITypeAlignment(PtrTy
->getElementType()));
8364 Info
.flags
= MachineMemOperand::MOStore
| MachineMemOperand::MOVolatile
;
8367 case Intrinsic::aarch64_ldaxp
:
8368 case Intrinsic::aarch64_ldxp
:
8369 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
8370 Info
.memVT
= MVT::i128
;
8371 Info
.ptrVal
= I
.getArgOperand(0);
8373 Info
.align
= Align(16);
8374 Info
.flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
;
8376 case Intrinsic::aarch64_stlxp
:
8377 case Intrinsic::aarch64_stxp
:
8378 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
8379 Info
.memVT
= MVT::i128
;
8380 Info
.ptrVal
= I
.getArgOperand(2);
8382 Info
.align
= Align(16);
8383 Info
.flags
= MachineMemOperand::MOStore
| MachineMemOperand::MOVolatile
;
8392 bool AArch64TargetLowering::shouldReduceLoadWidth(SDNode
*Load
,
8393 ISD::LoadExtType ExtTy
,
8395 // TODO: This may be worth removing. Check regression tests for diffs.
8396 if (!TargetLoweringBase::shouldReduceLoadWidth(Load
, ExtTy
, NewVT
))
8399 // If we're reducing the load width in order to avoid having to use an extra
8400 // instruction to do extension then it's probably a good idea.
8401 if (ExtTy
!= ISD::NON_EXTLOAD
)
8403 // Don't reduce load width if it would prevent us from combining a shift into
8405 MemSDNode
*Mem
= dyn_cast
<MemSDNode
>(Load
);
8407 const SDValue
&Base
= Mem
->getBasePtr();
8408 if (Base
.getOpcode() == ISD::ADD
&&
8409 Base
.getOperand(1).getOpcode() == ISD::SHL
&&
8410 Base
.getOperand(1).hasOneUse() &&
8411 Base
.getOperand(1).getOperand(1).getOpcode() == ISD::Constant
) {
8412 // The shift can be combined if it matches the size of the value being
8413 // loaded (and so reducing the width would make it not match).
8414 uint64_t ShiftAmount
= Base
.getOperand(1).getConstantOperandVal(1);
8415 uint64_t LoadBytes
= Mem
->getMemoryVT().getSizeInBits()/8;
8416 if (ShiftAmount
== Log2_32(LoadBytes
))
8419 // We have no reason to disallow reducing the load width, so allow it.
8423 // Truncations from 64-bit GPR to 32-bit GPR is free.
8424 bool AArch64TargetLowering::isTruncateFree(Type
*Ty1
, Type
*Ty2
) const {
8425 if (!Ty1
->isIntegerTy() || !Ty2
->isIntegerTy())
8427 unsigned NumBits1
= Ty1
->getPrimitiveSizeInBits();
8428 unsigned NumBits2
= Ty2
->getPrimitiveSizeInBits();
8429 return NumBits1
> NumBits2
;
8431 bool AArch64TargetLowering::isTruncateFree(EVT VT1
, EVT VT2
) const {
8432 if (VT1
.isVector() || VT2
.isVector() || !VT1
.isInteger() || !VT2
.isInteger())
8434 unsigned NumBits1
= VT1
.getSizeInBits();
8435 unsigned NumBits2
= VT2
.getSizeInBits();
8436 return NumBits1
> NumBits2
;
8439 /// Check if it is profitable to hoist instruction in then/else to if.
8440 /// Not profitable if I and it's user can form a FMA instruction
8441 /// because we prefer FMSUB/FMADD.
8442 bool AArch64TargetLowering::isProfitableToHoist(Instruction
*I
) const {
8443 if (I
->getOpcode() != Instruction::FMul
)
8446 if (!I
->hasOneUse())
8449 Instruction
*User
= I
->user_back();
8452 !(User
->getOpcode() == Instruction::FSub
||
8453 User
->getOpcode() == Instruction::FAdd
))
8456 const TargetOptions
&Options
= getTargetMachine().Options
;
8457 const DataLayout
&DL
= I
->getModule()->getDataLayout();
8458 EVT VT
= getValueType(DL
, User
->getOperand(0)->getType());
8460 return !(isFMAFasterThanFMulAndFAdd(VT
) &&
8461 isOperationLegalOrCustom(ISD::FMA
, VT
) &&
8462 (Options
.AllowFPOpFusion
== FPOpFusion::Fast
||
8463 Options
.UnsafeFPMath
));
8466 // All 32-bit GPR operations implicitly zero the high-half of the corresponding
8468 bool AArch64TargetLowering::isZExtFree(Type
*Ty1
, Type
*Ty2
) const {
8469 if (!Ty1
->isIntegerTy() || !Ty2
->isIntegerTy())
8471 unsigned NumBits1
= Ty1
->getPrimitiveSizeInBits();
8472 unsigned NumBits2
= Ty2
->getPrimitiveSizeInBits();
8473 return NumBits1
== 32 && NumBits2
== 64;
8475 bool AArch64TargetLowering::isZExtFree(EVT VT1
, EVT VT2
) const {
8476 if (VT1
.isVector() || VT2
.isVector() || !VT1
.isInteger() || !VT2
.isInteger())
8478 unsigned NumBits1
= VT1
.getSizeInBits();
8479 unsigned NumBits2
= VT2
.getSizeInBits();
8480 return NumBits1
== 32 && NumBits2
== 64;
8483 bool AArch64TargetLowering::isZExtFree(SDValue Val
, EVT VT2
) const {
8484 EVT VT1
= Val
.getValueType();
8485 if (isZExtFree(VT1
, VT2
)) {
8489 if (Val
.getOpcode() != ISD::LOAD
)
8492 // 8-, 16-, and 32-bit integer loads all implicitly zero-extend.
8493 return (VT1
.isSimple() && !VT1
.isVector() && VT1
.isInteger() &&
8494 VT2
.isSimple() && !VT2
.isVector() && VT2
.isInteger() &&
8495 VT1
.getSizeInBits() <= 32);
8498 bool AArch64TargetLowering::isExtFreeImpl(const Instruction
*Ext
) const {
8499 if (isa
<FPExtInst
>(Ext
))
8502 // Vector types are not free.
8503 if (Ext
->getType()->isVectorTy())
8506 for (const Use
&U
: Ext
->uses()) {
8507 // The extension is free if we can fold it with a left shift in an
8508 // addressing mode or an arithmetic operation: add, sub, and cmp.
8510 // Is there a shift?
8511 const Instruction
*Instr
= cast
<Instruction
>(U
.getUser());
8513 // Is this a constant shift?
8514 switch (Instr
->getOpcode()) {
8515 case Instruction::Shl
:
8516 if (!isa
<ConstantInt
>(Instr
->getOperand(1)))
8519 case Instruction::GetElementPtr
: {
8520 gep_type_iterator GTI
= gep_type_begin(Instr
);
8521 auto &DL
= Ext
->getModule()->getDataLayout();
8522 std::advance(GTI
, U
.getOperandNo()-1);
8523 Type
*IdxTy
= GTI
.getIndexedType();
8524 // This extension will end up with a shift because of the scaling factor.
8525 // 8-bit sized types have a scaling factor of 1, thus a shift amount of 0.
8526 // Get the shift amount based on the scaling factor:
8527 // log2(sizeof(IdxTy)) - log2(8).
8529 countTrailingZeros(DL
.getTypeStoreSizeInBits(IdxTy
).getFixedSize()) - 3;
8530 // Is the constant foldable in the shift of the addressing mode?
8531 // I.e., shift amount is between 1 and 4 inclusive.
8532 if (ShiftAmt
== 0 || ShiftAmt
> 4)
8536 case Instruction::Trunc
:
8537 // Check if this is a noop.
8538 // trunc(sext ty1 to ty2) to ty1.
8539 if (Instr
->getType() == Ext
->getOperand(0)->getType())
8546 // At this point we can use the bfm family, so this extension is free
8552 /// Check if both Op1 and Op2 are shufflevector extracts of either the lower
8553 /// or upper half of the vector elements.
8554 static bool areExtractShuffleVectors(Value
*Op1
, Value
*Op2
) {
8555 auto areTypesHalfed
= [](Value
*FullV
, Value
*HalfV
) {
8556 auto *FullVT
= cast
<VectorType
>(FullV
->getType());
8557 auto *HalfVT
= cast
<VectorType
>(HalfV
->getType());
8558 return FullVT
->getBitWidth() == 2 * HalfVT
->getBitWidth();
8561 auto extractHalf
= [](Value
*FullV
, Value
*HalfV
) {
8562 auto *FullVT
= cast
<VectorType
>(FullV
->getType());
8563 auto *HalfVT
= cast
<VectorType
>(HalfV
->getType());
8564 return FullVT
->getNumElements() == 2 * HalfVT
->getNumElements();
8568 Value
*S1Op1
, *S2Op1
;
8569 if (!match(Op1
, m_ShuffleVector(m_Value(S1Op1
), m_Undef(), m_Constant(M1
))) ||
8570 !match(Op2
, m_ShuffleVector(m_Value(S2Op1
), m_Undef(), m_Constant(M2
))))
8573 // Check that the operands are half as wide as the result and we extract
8574 // half of the elements of the input vectors.
8575 if (!areTypesHalfed(S1Op1
, Op1
) || !areTypesHalfed(S2Op1
, Op2
) ||
8576 !extractHalf(S1Op1
, Op1
) || !extractHalf(S2Op1
, Op2
))
8579 // Check the mask extracts either the lower or upper half of vector
8583 int NumElements
= cast
<VectorType
>(Op1
->getType())->getNumElements() * 2;
8584 if (!ShuffleVectorInst::isExtractSubvectorMask(M1
, NumElements
, M1Start
) ||
8585 !ShuffleVectorInst::isExtractSubvectorMask(M2
, NumElements
, M2Start
) ||
8586 M1Start
!= M2Start
|| (M1Start
!= 0 && M2Start
!= (NumElements
/ 2)))
8592 /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth
8593 /// of the vector elements.
8594 static bool areExtractExts(Value
*Ext1
, Value
*Ext2
) {
8595 auto areExtDoubled
= [](Instruction
*Ext
) {
8596 return Ext
->getType()->getScalarSizeInBits() ==
8597 2 * Ext
->getOperand(0)->getType()->getScalarSizeInBits();
8600 if (!match(Ext1
, m_ZExtOrSExt(m_Value())) ||
8601 !match(Ext2
, m_ZExtOrSExt(m_Value())) ||
8602 !areExtDoubled(cast
<Instruction
>(Ext1
)) ||
8603 !areExtDoubled(cast
<Instruction
>(Ext2
)))
8609 /// Check if sinking \p I's operands to I's basic block is profitable, because
8610 /// the operands can be folded into a target instruction, e.g.
8611 /// shufflevectors extracts and/or sext/zext can be folded into (u,s)subl(2).
8612 bool AArch64TargetLowering::shouldSinkOperands(
8613 Instruction
*I
, SmallVectorImpl
<Use
*> &Ops
) const {
8614 if (!I
->getType()->isVectorTy())
8617 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
)) {
8618 switch (II
->getIntrinsicID()) {
8619 case Intrinsic::aarch64_neon_umull
:
8620 if (!areExtractShuffleVectors(II
->getOperand(0), II
->getOperand(1)))
8622 Ops
.push_back(&II
->getOperandUse(0));
8623 Ops
.push_back(&II
->getOperandUse(1));
8630 switch (I
->getOpcode()) {
8631 case Instruction::Sub
:
8632 case Instruction::Add
: {
8633 if (!areExtractExts(I
->getOperand(0), I
->getOperand(1)))
8636 // If the exts' operands extract either the lower or upper elements, we
8637 // can sink them too.
8638 auto Ext1
= cast
<Instruction
>(I
->getOperand(0));
8639 auto Ext2
= cast
<Instruction
>(I
->getOperand(1));
8640 if (areExtractShuffleVectors(Ext1
, Ext2
)) {
8641 Ops
.push_back(&Ext1
->getOperandUse(0));
8642 Ops
.push_back(&Ext2
->getOperandUse(0));
8645 Ops
.push_back(&I
->getOperandUse(0));
8646 Ops
.push_back(&I
->getOperandUse(1));
8656 bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType
,
8657 unsigned &RequiredAligment
) const {
8658 if (!LoadedType
.isSimple() ||
8659 (!LoadedType
.isInteger() && !LoadedType
.isFloatingPoint()))
8661 // Cyclone supports unaligned accesses.
8662 RequiredAligment
= 0;
8663 unsigned NumBits
= LoadedType
.getSizeInBits();
8664 return NumBits
== 32 || NumBits
== 64;
8667 /// A helper function for determining the number of interleaved accesses we
8668 /// will generate when lowering accesses of the given type.
8670 AArch64TargetLowering::getNumInterleavedAccesses(VectorType
*VecTy
,
8671 const DataLayout
&DL
) const {
8672 return (DL
.getTypeSizeInBits(VecTy
) + 127) / 128;
8675 MachineMemOperand::Flags
8676 AArch64TargetLowering::getMMOFlags(const Instruction
&I
) const {
8677 if (Subtarget
->getProcFamily() == AArch64Subtarget::Falkor
&&
8678 I
.getMetadata(FALKOR_STRIDED_ACCESS_MD
) != nullptr)
8679 return MOStridedAccess
;
8680 return MachineMemOperand::MONone
;
8683 bool AArch64TargetLowering::isLegalInterleavedAccessType(
8684 VectorType
*VecTy
, const DataLayout
&DL
) const {
8686 unsigned VecSize
= DL
.getTypeSizeInBits(VecTy
);
8687 unsigned ElSize
= DL
.getTypeSizeInBits(VecTy
->getElementType());
8689 // Ensure the number of vector elements is greater than 1.
8690 if (VecTy
->getNumElements() < 2)
8693 // Ensure the element type is legal.
8694 if (ElSize
!= 8 && ElSize
!= 16 && ElSize
!= 32 && ElSize
!= 64)
8697 // Ensure the total vector size is 64 or a multiple of 128. Types larger than
8698 // 128 will be split into multiple interleaved accesses.
8699 return VecSize
== 64 || VecSize
% 128 == 0;
8702 /// Lower an interleaved load into a ldN intrinsic.
8704 /// E.g. Lower an interleaved load (Factor = 2):
8705 /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr
8706 /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
8707 /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
8710 /// %ld2 = { <4 x i32>, <4 x i32> } call llvm.aarch64.neon.ld2(%ptr)
8711 /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 0
8712 /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 1
8713 bool AArch64TargetLowering::lowerInterleavedLoad(
8714 LoadInst
*LI
, ArrayRef
<ShuffleVectorInst
*> Shuffles
,
8715 ArrayRef
<unsigned> Indices
, unsigned Factor
) const {
8716 assert(Factor
>= 2 && Factor
<= getMaxSupportedInterleaveFactor() &&
8717 "Invalid interleave factor");
8718 assert(!Shuffles
.empty() && "Empty shufflevector input");
8719 assert(Shuffles
.size() == Indices
.size() &&
8720 "Unmatched number of shufflevectors and indices");
8722 const DataLayout
&DL
= LI
->getModule()->getDataLayout();
8724 VectorType
*VecTy
= Shuffles
[0]->getType();
8726 // Skip if we do not have NEON and skip illegal vector types. We can
8727 // "legalize" wide vector types into multiple interleaved accesses as long as
8728 // the vector types are divisible by 128.
8729 if (!Subtarget
->hasNEON() || !isLegalInterleavedAccessType(VecTy
, DL
))
8732 unsigned NumLoads
= getNumInterleavedAccesses(VecTy
, DL
);
8734 // A pointer vector can not be the return type of the ldN intrinsics. Need to
8735 // load integer vectors first and then convert to pointer vectors.
8736 Type
*EltTy
= VecTy
->getVectorElementType();
8737 if (EltTy
->isPointerTy())
8739 VectorType::get(DL
.getIntPtrType(EltTy
), VecTy
->getVectorNumElements());
8741 IRBuilder
<> Builder(LI
);
8743 // The base address of the load.
8744 Value
*BaseAddr
= LI
->getPointerOperand();
8747 // If we're going to generate more than one load, reset the sub-vector type
8748 // to something legal.
8749 VecTy
= VectorType::get(VecTy
->getVectorElementType(),
8750 VecTy
->getVectorNumElements() / NumLoads
);
8752 // We will compute the pointer operand of each load from the original base
8753 // address using GEPs. Cast the base address to a pointer to the scalar
8755 BaseAddr
= Builder
.CreateBitCast(
8756 BaseAddr
, VecTy
->getVectorElementType()->getPointerTo(
8757 LI
->getPointerAddressSpace()));
8760 Type
*PtrTy
= VecTy
->getPointerTo(LI
->getPointerAddressSpace());
8761 Type
*Tys
[2] = {VecTy
, PtrTy
};
8762 static const Intrinsic::ID LoadInts
[3] = {Intrinsic::aarch64_neon_ld2
,
8763 Intrinsic::aarch64_neon_ld3
,
8764 Intrinsic::aarch64_neon_ld4
};
8766 Intrinsic::getDeclaration(LI
->getModule(), LoadInts
[Factor
- 2], Tys
);
8768 // Holds sub-vectors extracted from the load intrinsic return values. The
8769 // sub-vectors are associated with the shufflevector instructions they will
8771 DenseMap
<ShuffleVectorInst
*, SmallVector
<Value
*, 4>> SubVecs
;
8773 for (unsigned LoadCount
= 0; LoadCount
< NumLoads
; ++LoadCount
) {
8775 // If we're generating more than one load, compute the base address of
8776 // subsequent loads as an offset from the previous.
8779 Builder
.CreateConstGEP1_32(VecTy
->getVectorElementType(), BaseAddr
,
8780 VecTy
->getVectorNumElements() * Factor
);
8782 CallInst
*LdN
= Builder
.CreateCall(
8783 LdNFunc
, Builder
.CreateBitCast(BaseAddr
, PtrTy
), "ldN");
8785 // Extract and store the sub-vectors returned by the load intrinsic.
8786 for (unsigned i
= 0; i
< Shuffles
.size(); i
++) {
8787 ShuffleVectorInst
*SVI
= Shuffles
[i
];
8788 unsigned Index
= Indices
[i
];
8790 Value
*SubVec
= Builder
.CreateExtractValue(LdN
, Index
);
8792 // Convert the integer vector to pointer vector if the element is pointer.
8793 if (EltTy
->isPointerTy())
8794 SubVec
= Builder
.CreateIntToPtr(
8795 SubVec
, VectorType::get(SVI
->getType()->getVectorElementType(),
8796 VecTy
->getVectorNumElements()));
8797 SubVecs
[SVI
].push_back(SubVec
);
8801 // Replace uses of the shufflevector instructions with the sub-vectors
8802 // returned by the load intrinsic. If a shufflevector instruction is
8803 // associated with more than one sub-vector, those sub-vectors will be
8804 // concatenated into a single wide vector.
8805 for (ShuffleVectorInst
*SVI
: Shuffles
) {
8806 auto &SubVec
= SubVecs
[SVI
];
8808 SubVec
.size() > 1 ? concatenateVectors(Builder
, SubVec
) : SubVec
[0];
8809 SVI
->replaceAllUsesWith(WideVec
);
8815 /// Lower an interleaved store into a stN intrinsic.
8817 /// E.g. Lower an interleaved store (Factor = 3):
8818 /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
8819 /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
8820 /// store <12 x i32> %i.vec, <12 x i32>* %ptr
8823 /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
8824 /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
8825 /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
8826 /// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
8828 /// Note that the new shufflevectors will be removed and we'll only generate one
8829 /// st3 instruction in CodeGen.
8831 /// Example for a more general valid mask (Factor 3). Lower:
8832 /// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
8833 /// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
8834 /// store <12 x i32> %i.vec, <12 x i32>* %ptr
8837 /// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
8838 /// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
8839 /// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
8840 /// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr)
8841 bool AArch64TargetLowering::lowerInterleavedStore(StoreInst
*SI
,
8842 ShuffleVectorInst
*SVI
,
8843 unsigned Factor
) const {
8844 assert(Factor
>= 2 && Factor
<= getMaxSupportedInterleaveFactor() &&
8845 "Invalid interleave factor");
8847 VectorType
*VecTy
= SVI
->getType();
8848 assert(VecTy
->getVectorNumElements() % Factor
== 0 &&
8849 "Invalid interleaved store");
8851 unsigned LaneLen
= VecTy
->getVectorNumElements() / Factor
;
8852 Type
*EltTy
= VecTy
->getVectorElementType();
8853 VectorType
*SubVecTy
= VectorType::get(EltTy
, LaneLen
);
8855 const DataLayout
&DL
= SI
->getModule()->getDataLayout();
8857 // Skip if we do not have NEON and skip illegal vector types. We can
8858 // "legalize" wide vector types into multiple interleaved accesses as long as
8859 // the vector types are divisible by 128.
8860 if (!Subtarget
->hasNEON() || !isLegalInterleavedAccessType(SubVecTy
, DL
))
8863 unsigned NumStores
= getNumInterleavedAccesses(SubVecTy
, DL
);
8865 Value
*Op0
= SVI
->getOperand(0);
8866 Value
*Op1
= SVI
->getOperand(1);
8867 IRBuilder
<> Builder(SI
);
8869 // StN intrinsics don't support pointer vectors as arguments. Convert pointer
8870 // vectors to integer vectors.
8871 if (EltTy
->isPointerTy()) {
8872 Type
*IntTy
= DL
.getIntPtrType(EltTy
);
8873 unsigned NumOpElts
= Op0
->getType()->getVectorNumElements();
8875 // Convert to the corresponding integer vector.
8876 Type
*IntVecTy
= VectorType::get(IntTy
, NumOpElts
);
8877 Op0
= Builder
.CreatePtrToInt(Op0
, IntVecTy
);
8878 Op1
= Builder
.CreatePtrToInt(Op1
, IntVecTy
);
8880 SubVecTy
= VectorType::get(IntTy
, LaneLen
);
8883 // The base address of the store.
8884 Value
*BaseAddr
= SI
->getPointerOperand();
8886 if (NumStores
> 1) {
8887 // If we're going to generate more than one store, reset the lane length
8888 // and sub-vector type to something legal.
8889 LaneLen
/= NumStores
;
8890 SubVecTy
= VectorType::get(SubVecTy
->getVectorElementType(), LaneLen
);
8892 // We will compute the pointer operand of each store from the original base
8893 // address using GEPs. Cast the base address to a pointer to the scalar
8895 BaseAddr
= Builder
.CreateBitCast(
8896 BaseAddr
, SubVecTy
->getVectorElementType()->getPointerTo(
8897 SI
->getPointerAddressSpace()));
8900 auto Mask
= SVI
->getShuffleMask();
8902 Type
*PtrTy
= SubVecTy
->getPointerTo(SI
->getPointerAddressSpace());
8903 Type
*Tys
[2] = {SubVecTy
, PtrTy
};
8904 static const Intrinsic::ID StoreInts
[3] = {Intrinsic::aarch64_neon_st2
,
8905 Intrinsic::aarch64_neon_st3
,
8906 Intrinsic::aarch64_neon_st4
};
8908 Intrinsic::getDeclaration(SI
->getModule(), StoreInts
[Factor
- 2], Tys
);
8910 for (unsigned StoreCount
= 0; StoreCount
< NumStores
; ++StoreCount
) {
8912 SmallVector
<Value
*, 5> Ops
;
8914 // Split the shufflevector operands into sub vectors for the new stN call.
8915 for (unsigned i
= 0; i
< Factor
; i
++) {
8916 unsigned IdxI
= StoreCount
* LaneLen
* Factor
+ i
;
8917 if (Mask
[IdxI
] >= 0) {
8918 Ops
.push_back(Builder
.CreateShuffleVector(
8919 Op0
, Op1
, createSequentialMask(Builder
, Mask
[IdxI
], LaneLen
, 0)));
8921 unsigned StartMask
= 0;
8922 for (unsigned j
= 1; j
< LaneLen
; j
++) {
8923 unsigned IdxJ
= StoreCount
* LaneLen
* Factor
+ j
;
8924 if (Mask
[IdxJ
* Factor
+ IdxI
] >= 0) {
8925 StartMask
= Mask
[IdxJ
* Factor
+ IdxI
] - IdxJ
;
8929 // Note: Filling undef gaps with random elements is ok, since
8930 // those elements were being written anyway (with undefs).
8931 // In the case of all undefs we're defaulting to using elems from 0
8932 // Note: StartMask cannot be negative, it's checked in
8933 // isReInterleaveMask
8934 Ops
.push_back(Builder
.CreateShuffleVector(
8935 Op0
, Op1
, createSequentialMask(Builder
, StartMask
, LaneLen
, 0)));
8939 // If we generating more than one store, we compute the base address of
8940 // subsequent stores as an offset from the previous.
8942 BaseAddr
= Builder
.CreateConstGEP1_32(SubVecTy
->getVectorElementType(),
8943 BaseAddr
, LaneLen
* Factor
);
8945 Ops
.push_back(Builder
.CreateBitCast(BaseAddr
, PtrTy
));
8946 Builder
.CreateCall(StNFunc
, Ops
);
8951 static bool memOpAlign(unsigned DstAlign
, unsigned SrcAlign
,
8952 unsigned AlignCheck
) {
8953 return ((SrcAlign
== 0 || SrcAlign
% AlignCheck
== 0) &&
8954 (DstAlign
== 0 || DstAlign
% AlignCheck
== 0));
8957 EVT
AArch64TargetLowering::getOptimalMemOpType(
8958 uint64_t Size
, unsigned DstAlign
, unsigned SrcAlign
, bool IsMemset
,
8959 bool ZeroMemset
, bool MemcpyStrSrc
,
8960 const AttributeList
&FuncAttributes
) const {
8961 bool CanImplicitFloat
=
8962 !FuncAttributes
.hasFnAttribute(Attribute::NoImplicitFloat
);
8963 bool CanUseNEON
= Subtarget
->hasNEON() && CanImplicitFloat
;
8964 bool CanUseFP
= Subtarget
->hasFPARMv8() && CanImplicitFloat
;
8965 // Only use AdvSIMD to implement memset of 32-byte and above. It would have
8966 // taken one instruction to materialize the v2i64 zero and one store (with
8967 // restrictive addressing mode). Just do i64 stores.
8968 bool IsSmallMemset
= IsMemset
&& Size
< 32;
8969 auto AlignmentIsAcceptable
= [&](EVT VT
, unsigned AlignCheck
) {
8970 if (memOpAlign(SrcAlign
, DstAlign
, AlignCheck
))
8973 return allowsMisalignedMemoryAccesses(VT
, 0, 1, MachineMemOperand::MONone
,
8978 if (CanUseNEON
&& IsMemset
&& !IsSmallMemset
&&
8979 AlignmentIsAcceptable(MVT::v2i64
, 16))
8981 if (CanUseFP
&& !IsSmallMemset
&& AlignmentIsAcceptable(MVT::f128
, 16))
8983 if (Size
>= 8 && AlignmentIsAcceptable(MVT::i64
, 8))
8985 if (Size
>= 4 && AlignmentIsAcceptable(MVT::i32
, 4))
8990 LLT
AArch64TargetLowering::getOptimalMemOpLLT(
8991 uint64_t Size
, unsigned DstAlign
, unsigned SrcAlign
, bool IsMemset
,
8992 bool ZeroMemset
, bool MemcpyStrSrc
,
8993 const AttributeList
&FuncAttributes
) const {
8994 bool CanImplicitFloat
=
8995 !FuncAttributes
.hasFnAttribute(Attribute::NoImplicitFloat
);
8996 bool CanUseNEON
= Subtarget
->hasNEON() && CanImplicitFloat
;
8997 bool CanUseFP
= Subtarget
->hasFPARMv8() && CanImplicitFloat
;
8998 // Only use AdvSIMD to implement memset of 32-byte and above. It would have
8999 // taken one instruction to materialize the v2i64 zero and one store (with
9000 // restrictive addressing mode). Just do i64 stores.
9001 bool IsSmallMemset
= IsMemset
&& Size
< 32;
9002 auto AlignmentIsAcceptable
= [&](EVT VT
, unsigned AlignCheck
) {
9003 if (memOpAlign(SrcAlign
, DstAlign
, AlignCheck
))
9006 return allowsMisalignedMemoryAccesses(VT
, 0, 1, MachineMemOperand::MONone
,
9011 if (CanUseNEON
&& IsMemset
&& !IsSmallMemset
&&
9012 AlignmentIsAcceptable(MVT::v2i64
, 16))
9013 return LLT::vector(2, 64);
9014 if (CanUseFP
&& !IsSmallMemset
&& AlignmentIsAcceptable(MVT::f128
, 16))
9015 return LLT::scalar(128);
9016 if (Size
>= 8 && AlignmentIsAcceptable(MVT::i64
, 8))
9017 return LLT::scalar(64);
9018 if (Size
>= 4 && AlignmentIsAcceptable(MVT::i32
, 4))
9019 return LLT::scalar(32);
9023 // 12-bit optionally shifted immediates are legal for adds.
9024 bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed
) const {
9025 if (Immed
== std::numeric_limits
<int64_t>::min()) {
9026 LLVM_DEBUG(dbgs() << "Illegal add imm " << Immed
9027 << ": avoid UB for INT64_MIN\n");
9030 // Same encoding for add/sub, just flip the sign.
9031 Immed
= std::abs(Immed
);
9032 bool IsLegal
= ((Immed
>> 12) == 0 ||
9033 ((Immed
& 0xfff) == 0 && Immed
>> 24 == 0));
9034 LLVM_DEBUG(dbgs() << "Is " << Immed
9035 << " legal add imm: " << (IsLegal
? "yes" : "no") << "\n");
9039 // Integer comparisons are implemented with ADDS/SUBS, so the range of valid
9040 // immediates is the same as for an add or a sub.
9041 bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed
) const {
9042 return isLegalAddImmediate(Immed
);
9045 /// isLegalAddressingMode - Return true if the addressing mode represented
9046 /// by AM is legal for this target, for a load/store of the specified type.
9047 bool AArch64TargetLowering::isLegalAddressingMode(const DataLayout
&DL
,
9048 const AddrMode
&AM
, Type
*Ty
,
9049 unsigned AS
, Instruction
*I
) const {
9050 // AArch64 has five basic addressing modes:
9052 // reg + 9-bit signed offset
9053 // reg + SIZE_IN_BYTES * 12-bit unsigned offset
9055 // reg + SIZE_IN_BYTES * reg
9057 // No global is ever allowed as a base.
9061 // No reg+reg+imm addressing.
9062 if (AM
.HasBaseReg
&& AM
.BaseOffs
&& AM
.Scale
)
9065 // check reg + imm case:
9066 // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12
9067 uint64_t NumBytes
= 0;
9068 if (Ty
->isSized()) {
9069 uint64_t NumBits
= DL
.getTypeSizeInBits(Ty
);
9070 NumBytes
= NumBits
/ 8;
9071 if (!isPowerOf2_64(NumBits
))
9076 int64_t Offset
= AM
.BaseOffs
;
9078 // 9-bit signed offset
9079 if (isInt
<9>(Offset
))
9082 // 12-bit unsigned offset
9083 unsigned shift
= Log2_64(NumBytes
);
9084 if (NumBytes
&& Offset
> 0 && (Offset
/ NumBytes
) <= (1LL << 12) - 1 &&
9085 // Must be a multiple of NumBytes (NumBytes is a power of 2)
9086 (Offset
>> shift
) << shift
== Offset
)
9091 // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2
9093 return AM
.Scale
== 1 || (AM
.Scale
> 0 && (uint64_t)AM
.Scale
== NumBytes
);
9096 bool AArch64TargetLowering::shouldConsiderGEPOffsetSplit() const {
9097 // Consider splitting large offset of struct or array.
9101 int AArch64TargetLowering::getScalingFactorCost(const DataLayout
&DL
,
9102 const AddrMode
&AM
, Type
*Ty
,
9103 unsigned AS
) const {
9104 // Scaling factors are not free at all.
9105 // Operands | Rt Latency
9106 // -------------------------------------------
9108 // -------------------------------------------
9109 // Rt, [Xn, Xm, lsl #imm] | Rn: 4 Rm: 5
9110 // Rt, [Xn, Wm, <extend> #imm] |
9111 if (isLegalAddressingMode(DL
, AM
, Ty
, AS
))
9112 // Scale represents reg2 * scale, thus account for 1 if
9113 // it is not equal to 0 or 1.
9114 return AM
.Scale
!= 0 && AM
.Scale
!= 1;
9118 bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT
) const {
9119 VT
= VT
.getScalarType();
9124 switch (VT
.getSimpleVT().SimpleTy
) {
9136 AArch64TargetLowering::getScratchRegisters(CallingConv::ID
) const {
9137 // LR is a callee-save register, but we must treat it as clobbered by any call
9138 // site. Hence we include LR in the scratch registers, which are in turn added
9139 // as implicit-defs for stackmaps and patchpoints.
9140 static const MCPhysReg ScratchRegs
[] = {
9141 AArch64::X16
, AArch64::X17
, AArch64::LR
, 0
9147 AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode
*N
,
9148 CombineLevel Level
) const {
9149 N
= N
->getOperand(0).getNode();
9150 EVT VT
= N
->getValueType(0);
9151 // If N is unsigned bit extraction: ((x >> C) & mask), then do not combine
9152 // it with shift to let it be lowered to UBFX.
9153 if (N
->getOpcode() == ISD::AND
&& (VT
== MVT::i32
|| VT
== MVT::i64
) &&
9154 isa
<ConstantSDNode
>(N
->getOperand(1))) {
9155 uint64_t TruncMask
= N
->getConstantOperandVal(1);
9156 if (isMask_64(TruncMask
) &&
9157 N
->getOperand(0).getOpcode() == ISD::SRL
&&
9158 isa
<ConstantSDNode
>(N
->getOperand(0)->getOperand(1)))
9164 bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt
&Imm
,
9166 assert(Ty
->isIntegerTy());
9168 unsigned BitSize
= Ty
->getPrimitiveSizeInBits();
9172 int64_t Val
= Imm
.getSExtValue();
9173 if (Val
== 0 || AArch64_AM::isLogicalImmediate(Val
, BitSize
))
9176 if ((int64_t)Val
< 0)
9179 Val
&= (1LL << 32) - 1;
9181 unsigned LZ
= countLeadingZeros((uint64_t)Val
);
9182 unsigned Shift
= (63 - LZ
) / 16;
9183 // MOVZ is free so return true for one or fewer MOVK.
9187 bool AArch64TargetLowering::isExtractSubvectorCheap(EVT ResVT
, EVT SrcVT
,
9188 unsigned Index
) const {
9189 if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR
, ResVT
))
9192 return (Index
== 0 || Index
== ResVT
.getVectorNumElements());
9195 /// Turn vector tests of the signbit in the form of:
9196 /// xor (sra X, elt_size(X)-1), -1
9199 static SDValue
foldVectorXorShiftIntoCmp(SDNode
*N
, SelectionDAG
&DAG
,
9200 const AArch64Subtarget
*Subtarget
) {
9201 EVT VT
= N
->getValueType(0);
9202 if (!Subtarget
->hasNEON() || !VT
.isVector())
9205 // There must be a shift right algebraic before the xor, and the xor must be a
9207 SDValue Shift
= N
->getOperand(0);
9208 SDValue Ones
= N
->getOperand(1);
9209 if (Shift
.getOpcode() != AArch64ISD::VASHR
|| !Shift
.hasOneUse() ||
9210 !ISD::isBuildVectorAllOnes(Ones
.getNode()))
9213 // The shift should be smearing the sign bit across each vector element.
9214 auto *ShiftAmt
= dyn_cast
<ConstantSDNode
>(Shift
.getOperand(1));
9215 EVT ShiftEltTy
= Shift
.getValueType().getVectorElementType();
9216 if (!ShiftAmt
|| ShiftAmt
->getZExtValue() != ShiftEltTy
.getSizeInBits() - 1)
9219 return DAG
.getNode(AArch64ISD::CMGEz
, SDLoc(N
), VT
, Shift
.getOperand(0));
9222 // Generate SUBS and CSEL for integer abs.
9223 static SDValue
performIntegerAbsCombine(SDNode
*N
, SelectionDAG
&DAG
) {
9224 EVT VT
= N
->getValueType(0);
9226 SDValue N0
= N
->getOperand(0);
9227 SDValue N1
= N
->getOperand(1);
9230 // Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
9231 // and change it to SUB and CSEL.
9232 if (VT
.isInteger() && N
->getOpcode() == ISD::XOR
&&
9233 N0
.getOpcode() == ISD::ADD
&& N0
.getOperand(1) == N1
&&
9234 N1
.getOpcode() == ISD::SRA
&& N1
.getOperand(0) == N0
.getOperand(0))
9235 if (ConstantSDNode
*Y1C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1)))
9236 if (Y1C
->getAPIntValue() == VT
.getSizeInBits() - 1) {
9237 SDValue Neg
= DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
),
9239 // Generate SUBS & CSEL.
9241 DAG
.getNode(AArch64ISD::SUBS
, DL
, DAG
.getVTList(VT
, MVT::i32
),
9242 N0
.getOperand(0), DAG
.getConstant(0, DL
, VT
));
9243 return DAG
.getNode(AArch64ISD::CSEL
, DL
, VT
, N0
.getOperand(0), Neg
,
9244 DAG
.getConstant(AArch64CC::PL
, DL
, MVT::i32
),
9245 SDValue(Cmp
.getNode(), 1));
9250 static SDValue
performXorCombine(SDNode
*N
, SelectionDAG
&DAG
,
9251 TargetLowering::DAGCombinerInfo
&DCI
,
9252 const AArch64Subtarget
*Subtarget
) {
9253 if (DCI
.isBeforeLegalizeOps())
9256 if (SDValue Cmp
= foldVectorXorShiftIntoCmp(N
, DAG
, Subtarget
))
9259 return performIntegerAbsCombine(N
, DAG
);
9263 AArch64TargetLowering::BuildSDIVPow2(SDNode
*N
, const APInt
&Divisor
,
9265 SmallVectorImpl
<SDNode
*> &Created
) const {
9266 AttributeList Attr
= DAG
.getMachineFunction().getFunction().getAttributes();
9267 if (isIntDivCheap(N
->getValueType(0), Attr
))
9268 return SDValue(N
,0); // Lower SDIV as SDIV
9270 // fold (sdiv X, pow2)
9271 EVT VT
= N
->getValueType(0);
9272 if ((VT
!= MVT::i32
&& VT
!= MVT::i64
) ||
9273 !(Divisor
.isPowerOf2() || (-Divisor
).isPowerOf2()))
9277 SDValue N0
= N
->getOperand(0);
9278 unsigned Lg2
= Divisor
.countTrailingZeros();
9279 SDValue Zero
= DAG
.getConstant(0, DL
, VT
);
9280 SDValue Pow2MinusOne
= DAG
.getConstant((1ULL << Lg2
) - 1, DL
, VT
);
9282 // Add (N0 < 0) ? Pow2 - 1 : 0;
9284 SDValue Cmp
= getAArch64Cmp(N0
, Zero
, ISD::SETLT
, CCVal
, DAG
, DL
);
9285 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, VT
, N0
, Pow2MinusOne
);
9286 SDValue CSel
= DAG
.getNode(AArch64ISD::CSEL
, DL
, VT
, Add
, N0
, CCVal
, Cmp
);
9288 Created
.push_back(Cmp
.getNode());
9289 Created
.push_back(Add
.getNode());
9290 Created
.push_back(CSel
.getNode());
9294 DAG
.getNode(ISD::SRA
, DL
, VT
, CSel
, DAG
.getConstant(Lg2
, DL
, MVT::i64
));
9296 // If we're dividing by a positive value, we're done. Otherwise, we must
9297 // negate the result.
9298 if (Divisor
.isNonNegative())
9301 Created
.push_back(SRA
.getNode());
9302 return DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
), SRA
);
9305 static SDValue
performMulCombine(SDNode
*N
, SelectionDAG
&DAG
,
9306 TargetLowering::DAGCombinerInfo
&DCI
,
9307 const AArch64Subtarget
*Subtarget
) {
9308 if (DCI
.isBeforeLegalizeOps())
9311 // The below optimizations require a constant RHS.
9312 if (!isa
<ConstantSDNode
>(N
->getOperand(1)))
9315 ConstantSDNode
*C
= cast
<ConstantSDNode
>(N
->getOperand(1));
9316 const APInt
&ConstValue
= C
->getAPIntValue();
9318 // Multiplication of a power of two plus/minus one can be done more
9319 // cheaply as as shift+add/sub. For now, this is true unilaterally. If
9320 // future CPUs have a cheaper MADD instruction, this may need to be
9321 // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and
9322 // 64-bit is 5 cycles, so this is always a win.
9323 // More aggressively, some multiplications N0 * C can be lowered to
9324 // shift+add+shift if the constant C = A * B where A = 2^N + 1 and B = 2^M,
9325 // e.g. 6=3*2=(2+1)*2.
9326 // TODO: consider lowering more cases, e.g. C = 14, -6, -14 or even 45
9327 // which equals to (1+2)*16-(1+2).
9328 SDValue N0
= N
->getOperand(0);
9329 // TrailingZeroes is used to test if the mul can be lowered to
9331 unsigned TrailingZeroes
= ConstValue
.countTrailingZeros();
9332 if (TrailingZeroes
) {
9333 // Conservatively do not lower to shift+add+shift if the mul might be
9334 // folded into smul or umul.
9335 if (N0
->hasOneUse() && (isSignExtended(N0
.getNode(), DAG
) ||
9336 isZeroExtended(N0
.getNode(), DAG
)))
9338 // Conservatively do not lower to shift+add+shift if the mul might be
9339 // folded into madd or msub.
9340 if (N
->hasOneUse() && (N
->use_begin()->getOpcode() == ISD::ADD
||
9341 N
->use_begin()->getOpcode() == ISD::SUB
))
9344 // Use ShiftedConstValue instead of ConstValue to support both shift+add/sub
9345 // and shift+add+shift.
9346 APInt ShiftedConstValue
= ConstValue
.ashr(TrailingZeroes
);
9348 unsigned ShiftAmt
, AddSubOpc
;
9349 // Is the shifted value the LHS operand of the add/sub?
9350 bool ShiftValUseIsN0
= true;
9351 // Do we need to negate the result?
9352 bool NegateResult
= false;
9354 if (ConstValue
.isNonNegative()) {
9355 // (mul x, 2^N + 1) => (add (shl x, N), x)
9356 // (mul x, 2^N - 1) => (sub (shl x, N), x)
9357 // (mul x, (2^N + 1) * 2^M) => (shl (add (shl x, N), x), M)
9358 APInt SCVMinus1
= ShiftedConstValue
- 1;
9359 APInt CVPlus1
= ConstValue
+ 1;
9360 if (SCVMinus1
.isPowerOf2()) {
9361 ShiftAmt
= SCVMinus1
.logBase2();
9362 AddSubOpc
= ISD::ADD
;
9363 } else if (CVPlus1
.isPowerOf2()) {
9364 ShiftAmt
= CVPlus1
.logBase2();
9365 AddSubOpc
= ISD::SUB
;
9369 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
9370 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
9371 APInt CVNegPlus1
= -ConstValue
+ 1;
9372 APInt CVNegMinus1
= -ConstValue
- 1;
9373 if (CVNegPlus1
.isPowerOf2()) {
9374 ShiftAmt
= CVNegPlus1
.logBase2();
9375 AddSubOpc
= ISD::SUB
;
9376 ShiftValUseIsN0
= false;
9377 } else if (CVNegMinus1
.isPowerOf2()) {
9378 ShiftAmt
= CVNegMinus1
.logBase2();
9379 AddSubOpc
= ISD::ADD
;
9380 NegateResult
= true;
9386 EVT VT
= N
->getValueType(0);
9387 SDValue ShiftedVal
= DAG
.getNode(ISD::SHL
, DL
, VT
, N0
,
9388 DAG
.getConstant(ShiftAmt
, DL
, MVT::i64
));
9390 SDValue AddSubN0
= ShiftValUseIsN0
? ShiftedVal
: N0
;
9391 SDValue AddSubN1
= ShiftValUseIsN0
? N0
: ShiftedVal
;
9392 SDValue Res
= DAG
.getNode(AddSubOpc
, DL
, VT
, AddSubN0
, AddSubN1
);
9393 assert(!(NegateResult
&& TrailingZeroes
) &&
9394 "NegateResult and TrailingZeroes cannot both be true for now.");
9395 // Negate the result.
9397 return DAG
.getNode(ISD::SUB
, DL
, VT
, DAG
.getConstant(0, DL
, VT
), Res
);
9398 // Shift the result.
9400 return DAG
.getNode(ISD::SHL
, DL
, VT
, Res
,
9401 DAG
.getConstant(TrailingZeroes
, DL
, MVT::i64
));
9405 static SDValue
performVectorCompareAndMaskUnaryOpCombine(SDNode
*N
,
9406 SelectionDAG
&DAG
) {
9407 // Take advantage of vector comparisons producing 0 or -1 in each lane to
9408 // optimize away operation when it's from a constant.
9410 // The general transformation is:
9411 // UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
9412 // AND(VECTOR_CMP(x,y), constant2)
9413 // constant2 = UNARYOP(constant)
9415 // Early exit if this isn't a vector operation, the operand of the
9416 // unary operation isn't a bitwise AND, or if the sizes of the operations
9418 EVT VT
= N
->getValueType(0);
9419 if (!VT
.isVector() || N
->getOperand(0)->getOpcode() != ISD::AND
||
9420 N
->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC
||
9421 VT
.getSizeInBits() != N
->getOperand(0)->getValueType(0).getSizeInBits())
9424 // Now check that the other operand of the AND is a constant. We could
9425 // make the transformation for non-constant splats as well, but it's unclear
9426 // that would be a benefit as it would not eliminate any operations, just
9427 // perform one more step in scalar code before moving to the vector unit.
9428 if (BuildVectorSDNode
*BV
=
9429 dyn_cast
<BuildVectorSDNode
>(N
->getOperand(0)->getOperand(1))) {
9430 // Bail out if the vector isn't a constant.
9431 if (!BV
->isConstant())
9434 // Everything checks out. Build up the new and improved node.
9436 EVT IntVT
= BV
->getValueType(0);
9437 // Create a new constant of the appropriate type for the transformed
9439 SDValue SourceConst
= DAG
.getNode(N
->getOpcode(), DL
, VT
, SDValue(BV
, 0));
9440 // The AND node needs bitcasts to/from an integer vector type around it.
9441 SDValue MaskConst
= DAG
.getNode(ISD::BITCAST
, DL
, IntVT
, SourceConst
);
9442 SDValue NewAnd
= DAG
.getNode(ISD::AND
, DL
, IntVT
,
9443 N
->getOperand(0)->getOperand(0), MaskConst
);
9444 SDValue Res
= DAG
.getNode(ISD::BITCAST
, DL
, VT
, NewAnd
);
9451 static SDValue
performIntToFpCombine(SDNode
*N
, SelectionDAG
&DAG
,
9452 const AArch64Subtarget
*Subtarget
) {
9453 // First try to optimize away the conversion when it's conditionally from
9454 // a constant. Vectors only.
9455 if (SDValue Res
= performVectorCompareAndMaskUnaryOpCombine(N
, DAG
))
9458 EVT VT
= N
->getValueType(0);
9459 if (VT
!= MVT::f32
&& VT
!= MVT::f64
)
9462 // Only optimize when the source and destination types have the same width.
9463 if (VT
.getSizeInBits() != N
->getOperand(0).getValueSizeInBits())
9466 // If the result of an integer load is only used by an integer-to-float
9467 // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead.
9468 // This eliminates an "integer-to-vector-move" UOP and improves throughput.
9469 SDValue N0
= N
->getOperand(0);
9470 if (Subtarget
->hasNEON() && ISD::isNormalLoad(N0
.getNode()) && N0
.hasOneUse() &&
9471 // Do not change the width of a volatile load.
9472 !cast
<LoadSDNode
>(N0
)->isVolatile()) {
9473 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
9474 SDValue Load
= DAG
.getLoad(VT
, SDLoc(N
), LN0
->getChain(), LN0
->getBasePtr(),
9475 LN0
->getPointerInfo(), LN0
->getAlignment(),
9476 LN0
->getMemOperand()->getFlags());
9478 // Make sure successors of the original load stay after it by updating them
9479 // to use the new Chain.
9480 DAG
.ReplaceAllUsesOfValueWith(SDValue(LN0
, 1), Load
.getValue(1));
9483 (N
->getOpcode() == ISD::SINT_TO_FP
) ? AArch64ISD::SITOF
: AArch64ISD::UITOF
;
9484 return DAG
.getNode(Opcode
, SDLoc(N
), VT
, Load
);
9490 /// Fold a floating-point multiply by power of two into floating-point to
9491 /// fixed-point conversion.
9492 static SDValue
performFpToIntCombine(SDNode
*N
, SelectionDAG
&DAG
,
9493 TargetLowering::DAGCombinerInfo
&DCI
,
9494 const AArch64Subtarget
*Subtarget
) {
9495 if (!Subtarget
->hasNEON())
9498 if (!N
->getValueType(0).isSimple())
9501 SDValue Op
= N
->getOperand(0);
9502 if (!Op
.getValueType().isVector() || !Op
.getValueType().isSimple() ||
9503 Op
.getOpcode() != ISD::FMUL
)
9506 SDValue ConstVec
= Op
->getOperand(1);
9507 if (!isa
<BuildVectorSDNode
>(ConstVec
))
9510 MVT FloatTy
= Op
.getSimpleValueType().getVectorElementType();
9511 uint32_t FloatBits
= FloatTy
.getSizeInBits();
9512 if (FloatBits
!= 32 && FloatBits
!= 64)
9515 MVT IntTy
= N
->getSimpleValueType(0).getVectorElementType();
9516 uint32_t IntBits
= IntTy
.getSizeInBits();
9517 if (IntBits
!= 16 && IntBits
!= 32 && IntBits
!= 64)
9520 // Avoid conversions where iN is larger than the float (e.g., float -> i64).
9521 if (IntBits
> FloatBits
)
9524 BitVector UndefElements
;
9525 BuildVectorSDNode
*BV
= cast
<BuildVectorSDNode
>(ConstVec
);
9526 int32_t Bits
= IntBits
== 64 ? 64 : 32;
9527 int32_t C
= BV
->getConstantFPSplatPow2ToLog2Int(&UndefElements
, Bits
+ 1);
9528 if (C
== -1 || C
== 0 || C
> Bits
)
9532 unsigned NumLanes
= Op
.getValueType().getVectorNumElements();
9537 ResTy
= FloatBits
== 32 ? MVT::v2i32
: MVT::v2i64
;
9540 ResTy
= FloatBits
== 32 ? MVT::v4i32
: MVT::v4i64
;
9544 if (ResTy
== MVT::v4i64
&& DCI
.isBeforeLegalizeOps())
9547 assert((ResTy
!= MVT::v4i64
|| DCI
.isBeforeLegalizeOps()) &&
9548 "Illegal vector type after legalization");
9551 bool IsSigned
= N
->getOpcode() == ISD::FP_TO_SINT
;
9552 unsigned IntrinsicOpcode
= IsSigned
? Intrinsic::aarch64_neon_vcvtfp2fxs
9553 : Intrinsic::aarch64_neon_vcvtfp2fxu
;
9555 DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, ResTy
,
9556 DAG
.getConstant(IntrinsicOpcode
, DL
, MVT::i32
),
9557 Op
->getOperand(0), DAG
.getConstant(C
, DL
, MVT::i32
));
9558 // We can handle smaller integers by generating an extra trunc.
9559 if (IntBits
< FloatBits
)
9560 FixConv
= DAG
.getNode(ISD::TRUNCATE
, DL
, N
->getValueType(0), FixConv
);
9565 /// Fold a floating-point divide by power of two into fixed-point to
9566 /// floating-point conversion.
9567 static SDValue
performFDivCombine(SDNode
*N
, SelectionDAG
&DAG
,
9568 TargetLowering::DAGCombinerInfo
&DCI
,
9569 const AArch64Subtarget
*Subtarget
) {
9570 if (!Subtarget
->hasNEON())
9573 SDValue Op
= N
->getOperand(0);
9574 unsigned Opc
= Op
->getOpcode();
9575 if (!Op
.getValueType().isVector() || !Op
.getValueType().isSimple() ||
9576 !Op
.getOperand(0).getValueType().isSimple() ||
9577 (Opc
!= ISD::SINT_TO_FP
&& Opc
!= ISD::UINT_TO_FP
))
9580 SDValue ConstVec
= N
->getOperand(1);
9581 if (!isa
<BuildVectorSDNode
>(ConstVec
))
9584 MVT IntTy
= Op
.getOperand(0).getSimpleValueType().getVectorElementType();
9585 int32_t IntBits
= IntTy
.getSizeInBits();
9586 if (IntBits
!= 16 && IntBits
!= 32 && IntBits
!= 64)
9589 MVT FloatTy
= N
->getSimpleValueType(0).getVectorElementType();
9590 int32_t FloatBits
= FloatTy
.getSizeInBits();
9591 if (FloatBits
!= 32 && FloatBits
!= 64)
9594 // Avoid conversions where iN is larger than the float (e.g., i64 -> float).
9595 if (IntBits
> FloatBits
)
9598 BitVector UndefElements
;
9599 BuildVectorSDNode
*BV
= cast
<BuildVectorSDNode
>(ConstVec
);
9600 int32_t C
= BV
->getConstantFPSplatPow2ToLog2Int(&UndefElements
, FloatBits
+ 1);
9601 if (C
== -1 || C
== 0 || C
> FloatBits
)
9605 unsigned NumLanes
= Op
.getValueType().getVectorNumElements();
9610 ResTy
= FloatBits
== 32 ? MVT::v2i32
: MVT::v2i64
;
9613 ResTy
= FloatBits
== 32 ? MVT::v4i32
: MVT::v4i64
;
9617 if (ResTy
== MVT::v4i64
&& DCI
.isBeforeLegalizeOps())
9621 SDValue ConvInput
= Op
.getOperand(0);
9622 bool IsSigned
= Opc
== ISD::SINT_TO_FP
;
9623 if (IntBits
< FloatBits
)
9624 ConvInput
= DAG
.getNode(IsSigned
? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
, DL
,
9627 unsigned IntrinsicOpcode
= IsSigned
? Intrinsic::aarch64_neon_vcvtfxs2fp
9628 : Intrinsic::aarch64_neon_vcvtfxu2fp
;
9629 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, Op
.getValueType(),
9630 DAG
.getConstant(IntrinsicOpcode
, DL
, MVT::i32
), ConvInput
,
9631 DAG
.getConstant(C
, DL
, MVT::i32
));
9634 /// An EXTR instruction is made up of two shifts, ORed together. This helper
9635 /// searches for and classifies those shifts.
9636 static bool findEXTRHalf(SDValue N
, SDValue
&Src
, uint32_t &ShiftAmount
,
9638 if (N
.getOpcode() == ISD::SHL
)
9640 else if (N
.getOpcode() == ISD::SRL
)
9645 if (!isa
<ConstantSDNode
>(N
.getOperand(1)))
9648 ShiftAmount
= N
->getConstantOperandVal(1);
9649 Src
= N
->getOperand(0);
9653 /// EXTR instruction extracts a contiguous chunk of bits from two existing
9654 /// registers viewed as a high/low pair. This function looks for the pattern:
9655 /// <tt>(or (shl VAL1, \#N), (srl VAL2, \#RegWidth-N))</tt> and replaces it
9656 /// with an EXTR. Can't quite be done in TableGen because the two immediates
9657 /// aren't independent.
9658 static SDValue
tryCombineToEXTR(SDNode
*N
,
9659 TargetLowering::DAGCombinerInfo
&DCI
) {
9660 SelectionDAG
&DAG
= DCI
.DAG
;
9662 EVT VT
= N
->getValueType(0);
9664 assert(N
->getOpcode() == ISD::OR
&& "Unexpected root");
9666 if (VT
!= MVT::i32
&& VT
!= MVT::i64
)
9670 uint32_t ShiftLHS
= 0;
9671 bool LHSFromHi
= false;
9672 if (!findEXTRHalf(N
->getOperand(0), LHS
, ShiftLHS
, LHSFromHi
))
9676 uint32_t ShiftRHS
= 0;
9677 bool RHSFromHi
= false;
9678 if (!findEXTRHalf(N
->getOperand(1), RHS
, ShiftRHS
, RHSFromHi
))
9681 // If they're both trying to come from the high part of the register, they're
9682 // not really an EXTR.
9683 if (LHSFromHi
== RHSFromHi
)
9686 if (ShiftLHS
+ ShiftRHS
!= VT
.getSizeInBits())
9690 std::swap(LHS
, RHS
);
9691 std::swap(ShiftLHS
, ShiftRHS
);
9694 return DAG
.getNode(AArch64ISD::EXTR
, DL
, VT
, LHS
, RHS
,
9695 DAG
.getConstant(ShiftRHS
, DL
, MVT::i64
));
9698 static SDValue
tryCombineToBSL(SDNode
*N
,
9699 TargetLowering::DAGCombinerInfo
&DCI
) {
9700 EVT VT
= N
->getValueType(0);
9701 SelectionDAG
&DAG
= DCI
.DAG
;
9707 SDValue N0
= N
->getOperand(0);
9708 if (N0
.getOpcode() != ISD::AND
)
9711 SDValue N1
= N
->getOperand(1);
9712 if (N1
.getOpcode() != ISD::AND
)
9715 // We only have to look for constant vectors here since the general, variable
9716 // case can be handled in TableGen.
9717 unsigned Bits
= VT
.getScalarSizeInBits();
9718 uint64_t BitMask
= Bits
== 64 ? -1ULL : ((1ULL << Bits
) - 1);
9719 for (int i
= 1; i
>= 0; --i
)
9720 for (int j
= 1; j
>= 0; --j
) {
9721 BuildVectorSDNode
*BVN0
= dyn_cast
<BuildVectorSDNode
>(N0
->getOperand(i
));
9722 BuildVectorSDNode
*BVN1
= dyn_cast
<BuildVectorSDNode
>(N1
->getOperand(j
));
9726 bool FoundMatch
= true;
9727 for (unsigned k
= 0; k
< VT
.getVectorNumElements(); ++k
) {
9728 ConstantSDNode
*CN0
= dyn_cast
<ConstantSDNode
>(BVN0
->getOperand(k
));
9729 ConstantSDNode
*CN1
= dyn_cast
<ConstantSDNode
>(BVN1
->getOperand(k
));
9731 CN0
->getZExtValue() != (BitMask
& ~CN1
->getZExtValue())) {
9738 return DAG
.getNode(AArch64ISD::BSL
, DL
, VT
, SDValue(BVN0
, 0),
9739 N0
->getOperand(1 - i
), N1
->getOperand(1 - j
));
9745 static SDValue
performORCombine(SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
,
9746 const AArch64Subtarget
*Subtarget
) {
9747 // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N))
9748 SelectionDAG
&DAG
= DCI
.DAG
;
9749 EVT VT
= N
->getValueType(0);
9751 if (!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
9754 if (SDValue Res
= tryCombineToEXTR(N
, DCI
))
9757 if (SDValue Res
= tryCombineToBSL(N
, DCI
))
9763 static SDValue
performANDCombine(SDNode
*N
,
9764 TargetLowering::DAGCombinerInfo
&DCI
) {
9765 SelectionDAG
&DAG
= DCI
.DAG
;
9766 SDValue LHS
= N
->getOperand(0);
9767 EVT VT
= N
->getValueType(0);
9768 if (!VT
.isVector() || !DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
9771 BuildVectorSDNode
*BVN
=
9772 dyn_cast
<BuildVectorSDNode
>(N
->getOperand(1).getNode());
9776 // AND does not accept an immediate, so check if we can use a BIC immediate
9777 // instruction instead. We do this here instead of using a (and x, (mvni imm))
9778 // pattern in isel, because some immediates may be lowered to the preferred
9779 // (and x, (movi imm)) form, even though an mvni representation also exists.
9780 APInt
DefBits(VT
.getSizeInBits(), 0);
9781 APInt
UndefBits(VT
.getSizeInBits(), 0);
9782 if (resolveBuildVector(BVN
, DefBits
, UndefBits
)) {
9786 if ((NewOp
= tryAdvSIMDModImm32(AArch64ISD::BICi
, SDValue(N
, 0), DAG
,
9788 (NewOp
= tryAdvSIMDModImm16(AArch64ISD::BICi
, SDValue(N
, 0), DAG
,
9792 UndefBits
= ~UndefBits
;
9793 if ((NewOp
= tryAdvSIMDModImm32(AArch64ISD::BICi
, SDValue(N
, 0), DAG
,
9794 UndefBits
, &LHS
)) ||
9795 (NewOp
= tryAdvSIMDModImm16(AArch64ISD::BICi
, SDValue(N
, 0), DAG
,
9803 static SDValue
performSRLCombine(SDNode
*N
,
9804 TargetLowering::DAGCombinerInfo
&DCI
) {
9805 SelectionDAG
&DAG
= DCI
.DAG
;
9806 EVT VT
= N
->getValueType(0);
9807 if (VT
!= MVT::i32
&& VT
!= MVT::i64
)
9810 // Canonicalize (srl (bswap i32 x), 16) to (rotr (bswap i32 x), 16), if the
9811 // high 16-bits of x are zero. Similarly, canonicalize (srl (bswap i64 x), 32)
9812 // to (rotr (bswap i64 x), 32), if the high 32-bits of x are zero.
9813 SDValue N0
= N
->getOperand(0);
9814 if (N0
.getOpcode() == ISD::BSWAP
) {
9816 SDValue N1
= N
->getOperand(1);
9817 SDValue N00
= N0
.getOperand(0);
9818 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N1
)) {
9819 uint64_t ShiftAmt
= C
->getZExtValue();
9820 if (VT
== MVT::i32
&& ShiftAmt
== 16 &&
9821 DAG
.MaskedValueIsZero(N00
, APInt::getHighBitsSet(32, 16)))
9822 return DAG
.getNode(ISD::ROTR
, DL
, VT
, N0
, N1
);
9823 if (VT
== MVT::i64
&& ShiftAmt
== 32 &&
9824 DAG
.MaskedValueIsZero(N00
, APInt::getHighBitsSet(64, 32)))
9825 return DAG
.getNode(ISD::ROTR
, DL
, VT
, N0
, N1
);
9831 static SDValue
performBitcastCombine(SDNode
*N
,
9832 TargetLowering::DAGCombinerInfo
&DCI
,
9833 SelectionDAG
&DAG
) {
9834 // Wait 'til after everything is legalized to try this. That way we have
9835 // legal vector types and such.
9836 if (DCI
.isBeforeLegalizeOps())
9839 // Remove extraneous bitcasts around an extract_subvector.
9841 // (v4i16 (bitconvert
9842 // (extract_subvector (v2i64 (bitconvert (v8i16 ...)), (i64 1)))))
9844 // (extract_subvector ((v8i16 ...), (i64 4)))
9846 // Only interested in 64-bit vectors as the ultimate result.
9847 EVT VT
= N
->getValueType(0);
9850 if (VT
.getSimpleVT().getSizeInBits() != 64)
9852 // Is the operand an extract_subvector starting at the beginning or halfway
9853 // point of the vector? A low half may also come through as an
9854 // EXTRACT_SUBREG, so look for that, too.
9855 SDValue Op0
= N
->getOperand(0);
9856 if (Op0
->getOpcode() != ISD::EXTRACT_SUBVECTOR
&&
9857 !(Op0
->isMachineOpcode() &&
9858 Op0
->getMachineOpcode() == AArch64::EXTRACT_SUBREG
))
9860 uint64_t idx
= cast
<ConstantSDNode
>(Op0
->getOperand(1))->getZExtValue();
9861 if (Op0
->getOpcode() == ISD::EXTRACT_SUBVECTOR
) {
9862 if (Op0
->getValueType(0).getVectorNumElements() != idx
&& idx
!= 0)
9864 } else if (Op0
->getMachineOpcode() == AArch64::EXTRACT_SUBREG
) {
9865 if (idx
!= AArch64::dsub
)
9867 // The dsub reference is equivalent to a lane zero subvector reference.
9870 // Look through the bitcast of the input to the extract.
9871 if (Op0
->getOperand(0)->getOpcode() != ISD::BITCAST
)
9873 SDValue Source
= Op0
->getOperand(0)->getOperand(0);
9874 // If the source type has twice the number of elements as our destination
9875 // type, we know this is an extract of the high or low half of the vector.
9876 EVT SVT
= Source
->getValueType(0);
9877 if (!SVT
.isVector() ||
9878 SVT
.getVectorNumElements() != VT
.getVectorNumElements() * 2)
9882 dbgs() << "aarch64-lower: bitcast extract_subvector simplification\n");
9884 // Create the simplified form to just extract the low or high half of the
9885 // vector directly rather than bothering with the bitcasts.
9887 unsigned NumElements
= VT
.getVectorNumElements();
9889 SDValue HalfIdx
= DAG
.getConstant(NumElements
, dl
, MVT::i64
);
9890 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, VT
, Source
, HalfIdx
);
9892 SDValue SubReg
= DAG
.getTargetConstant(AArch64::dsub
, dl
, MVT::i32
);
9893 return SDValue(DAG
.getMachineNode(TargetOpcode::EXTRACT_SUBREG
, dl
, VT
,
9899 static SDValue
performConcatVectorsCombine(SDNode
*N
,
9900 TargetLowering::DAGCombinerInfo
&DCI
,
9901 SelectionDAG
&DAG
) {
9903 EVT VT
= N
->getValueType(0);
9904 SDValue N0
= N
->getOperand(0), N1
= N
->getOperand(1);
9906 // Optimize concat_vectors of truncated vectors, where the intermediate
9907 // type is illegal, to avoid said illegality, e.g.,
9908 // (v4i16 (concat_vectors (v2i16 (truncate (v2i64))),
9909 // (v2i16 (truncate (v2i64)))))
9911 // (v4i16 (truncate (vector_shuffle (v4i32 (bitcast (v2i64))),
9912 // (v4i32 (bitcast (v2i64))),
9914 // This isn't really target-specific, but ISD::TRUNCATE legality isn't keyed
9915 // on both input and result type, so we might generate worse code.
9916 // On AArch64 we know it's fine for v2i64->v4i16 and v4i32->v8i8.
9917 if (N
->getNumOperands() == 2 &&
9918 N0
->getOpcode() == ISD::TRUNCATE
&&
9919 N1
->getOpcode() == ISD::TRUNCATE
) {
9920 SDValue N00
= N0
->getOperand(0);
9921 SDValue N10
= N1
->getOperand(0);
9922 EVT N00VT
= N00
.getValueType();
9924 if (N00VT
== N10
.getValueType() &&
9925 (N00VT
== MVT::v2i64
|| N00VT
== MVT::v4i32
) &&
9926 N00VT
.getScalarSizeInBits() == 4 * VT
.getScalarSizeInBits()) {
9927 MVT MidVT
= (N00VT
== MVT::v2i64
? MVT::v4i32
: MVT::v8i16
);
9928 SmallVector
<int, 8> Mask(MidVT
.getVectorNumElements());
9929 for (size_t i
= 0; i
< Mask
.size(); ++i
)
9931 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
,
9932 DAG
.getVectorShuffle(
9934 DAG
.getNode(ISD::BITCAST
, dl
, MidVT
, N00
),
9935 DAG
.getNode(ISD::BITCAST
, dl
, MidVT
, N10
), Mask
));
9939 // Wait 'til after everything is legalized to try this. That way we have
9940 // legal vector types and such.
9941 if (DCI
.isBeforeLegalizeOps())
9944 // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector
9945 // splat. The indexed instructions are going to be expecting a DUPLANE64, so
9946 // canonicalise to that.
9947 if (N0
== N1
&& VT
.getVectorNumElements() == 2) {
9948 assert(VT
.getScalarSizeInBits() == 64);
9949 return DAG
.getNode(AArch64ISD::DUPLANE64
, dl
, VT
, WidenVector(N0
, DAG
),
9950 DAG
.getConstant(0, dl
, MVT::i64
));
9953 // Canonicalise concat_vectors so that the right-hand vector has as few
9954 // bit-casts as possible before its real operation. The primary matching
9955 // destination for these operations will be the narrowing "2" instructions,
9956 // which depend on the operation being performed on this right-hand vector.
9958 // (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS))))
9960 // (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS))
9962 if (N1
->getOpcode() != ISD::BITCAST
)
9964 SDValue RHS
= N1
->getOperand(0);
9965 MVT RHSTy
= RHS
.getValueType().getSimpleVT();
9966 // If the RHS is not a vector, this is not the pattern we're looking for.
9967 if (!RHSTy
.isVector())
9971 dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n");
9973 MVT ConcatTy
= MVT::getVectorVT(RHSTy
.getVectorElementType(),
9974 RHSTy
.getVectorNumElements() * 2);
9975 return DAG
.getNode(ISD::BITCAST
, dl
, VT
,
9976 DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, ConcatTy
,
9977 DAG
.getNode(ISD::BITCAST
, dl
, RHSTy
, N0
),
9981 static SDValue
tryCombineFixedPointConvert(SDNode
*N
,
9982 TargetLowering::DAGCombinerInfo
&DCI
,
9983 SelectionDAG
&DAG
) {
9984 // Wait until after everything is legalized to try this. That way we have
9985 // legal vector types and such.
9986 if (DCI
.isBeforeLegalizeOps())
9988 // Transform a scalar conversion of a value from a lane extract into a
9989 // lane extract of a vector conversion. E.g., from foo1 to foo2:
9990 // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); }
9991 // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; }
9993 // The second form interacts better with instruction selection and the
9994 // register allocator to avoid cross-class register copies that aren't
9995 // coalescable due to a lane reference.
9997 // Check the operand and see if it originates from a lane extract.
9998 SDValue Op1
= N
->getOperand(1);
9999 if (Op1
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
10000 // Yep, no additional predication needed. Perform the transform.
10001 SDValue IID
= N
->getOperand(0);
10002 SDValue Shift
= N
->getOperand(2);
10003 SDValue Vec
= Op1
.getOperand(0);
10004 SDValue Lane
= Op1
.getOperand(1);
10005 EVT ResTy
= N
->getValueType(0);
10009 // The vector width should be 128 bits by the time we get here, even
10010 // if it started as 64 bits (the extract_vector handling will have
10012 assert(Vec
.getValueSizeInBits() == 128 &&
10013 "unexpected vector size on extract_vector_elt!");
10014 if (Vec
.getValueType() == MVT::v4i32
)
10015 VecResTy
= MVT::v4f32
;
10016 else if (Vec
.getValueType() == MVT::v2i64
)
10017 VecResTy
= MVT::v2f64
;
10019 llvm_unreachable("unexpected vector type!");
10022 DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VecResTy
, IID
, Vec
, Shift
);
10023 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, ResTy
, Convert
, Lane
);
10028 // AArch64 high-vector "long" operations are formed by performing the non-high
10029 // version on an extract_subvector of each operand which gets the high half:
10031 // (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS))
10033 // However, there are cases which don't have an extract_high explicitly, but
10034 // have another operation that can be made compatible with one for free. For
10037 // (dupv64 scalar) --> (extract_high (dup128 scalar))
10039 // This routine does the actual conversion of such DUPs, once outer routines
10040 // have determined that everything else is in order.
10041 // It also supports immediate DUP-like nodes (MOVI/MVNi), which we can fold
10043 static SDValue
tryExtendDUPToExtractHigh(SDValue N
, SelectionDAG
&DAG
) {
10044 switch (N
.getOpcode()) {
10045 case AArch64ISD::DUP
:
10046 case AArch64ISD::DUPLANE8
:
10047 case AArch64ISD::DUPLANE16
:
10048 case AArch64ISD::DUPLANE32
:
10049 case AArch64ISD::DUPLANE64
:
10050 case AArch64ISD::MOVI
:
10051 case AArch64ISD::MOVIshift
:
10052 case AArch64ISD::MOVIedit
:
10053 case AArch64ISD::MOVImsl
:
10054 case AArch64ISD::MVNIshift
:
10055 case AArch64ISD::MVNImsl
:
10058 // FMOV could be supported, but isn't very useful, as it would only occur
10059 // if you passed a bitcast' floating point immediate to an eligible long
10060 // integer op (addl, smull, ...).
10064 MVT NarrowTy
= N
.getSimpleValueType();
10065 if (!NarrowTy
.is64BitVector())
10068 MVT ElementTy
= NarrowTy
.getVectorElementType();
10069 unsigned NumElems
= NarrowTy
.getVectorNumElements();
10070 MVT NewVT
= MVT::getVectorVT(ElementTy
, NumElems
* 2);
10073 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, NarrowTy
,
10074 DAG
.getNode(N
->getOpcode(), dl
, NewVT
, N
->ops()),
10075 DAG
.getConstant(NumElems
, dl
, MVT::i64
));
10078 static bool isEssentiallyExtractHighSubvector(SDValue N
) {
10079 if (N
.getOpcode() == ISD::BITCAST
)
10080 N
= N
.getOperand(0);
10081 if (N
.getOpcode() != ISD::EXTRACT_SUBVECTOR
)
10083 return cast
<ConstantSDNode
>(N
.getOperand(1))->getAPIntValue() ==
10084 N
.getOperand(0).getValueType().getVectorNumElements() / 2;
10087 /// Helper structure to keep track of ISD::SET_CC operands.
10088 struct GenericSetCCInfo
{
10089 const SDValue
*Opnd0
;
10090 const SDValue
*Opnd1
;
10094 /// Helper structure to keep track of a SET_CC lowered into AArch64 code.
10095 struct AArch64SetCCInfo
{
10096 const SDValue
*Cmp
;
10097 AArch64CC::CondCode CC
;
10100 /// Helper structure to keep track of SetCC information.
10102 GenericSetCCInfo Generic
;
10103 AArch64SetCCInfo AArch64
;
10106 /// Helper structure to be able to read SetCC information. If set to
10107 /// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a
10108 /// GenericSetCCInfo.
10109 struct SetCCInfoAndKind
{
10114 /// Check whether or not \p Op is a SET_CC operation, either a generic or
10116 /// AArch64 lowered one.
10117 /// \p SetCCInfo is filled accordingly.
10118 /// \post SetCCInfo is meanginfull only when this function returns true.
10119 /// \return True when Op is a kind of SET_CC operation.
10120 static bool isSetCC(SDValue Op
, SetCCInfoAndKind
&SetCCInfo
) {
10121 // If this is a setcc, this is straight forward.
10122 if (Op
.getOpcode() == ISD::SETCC
) {
10123 SetCCInfo
.Info
.Generic
.Opnd0
= &Op
.getOperand(0);
10124 SetCCInfo
.Info
.Generic
.Opnd1
= &Op
.getOperand(1);
10125 SetCCInfo
.Info
.Generic
.CC
= cast
<CondCodeSDNode
>(Op
.getOperand(2))->get();
10126 SetCCInfo
.IsAArch64
= false;
10129 // Otherwise, check if this is a matching csel instruction.
10132 // - csel 0, 1, !cc
10133 if (Op
.getOpcode() != AArch64ISD::CSEL
)
10135 // Set the information about the operands.
10136 // TODO: we want the operands of the Cmp not the csel
10137 SetCCInfo
.Info
.AArch64
.Cmp
= &Op
.getOperand(3);
10138 SetCCInfo
.IsAArch64
= true;
10139 SetCCInfo
.Info
.AArch64
.CC
= static_cast<AArch64CC::CondCode
>(
10140 cast
<ConstantSDNode
>(Op
.getOperand(2))->getZExtValue());
10142 // Check that the operands matches the constraints:
10143 // (1) Both operands must be constants.
10144 // (2) One must be 1 and the other must be 0.
10145 ConstantSDNode
*TValue
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(0));
10146 ConstantSDNode
*FValue
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
10149 if (!TValue
|| !FValue
)
10153 if (!TValue
->isOne()) {
10154 // Update the comparison when we are interested in !cc.
10155 std::swap(TValue
, FValue
);
10156 SetCCInfo
.Info
.AArch64
.CC
=
10157 AArch64CC::getInvertedCondCode(SetCCInfo
.Info
.AArch64
.CC
);
10159 return TValue
->isOne() && FValue
->isNullValue();
10162 // Returns true if Op is setcc or zext of setcc.
10163 static bool isSetCCOrZExtSetCC(const SDValue
& Op
, SetCCInfoAndKind
&Info
) {
10164 if (isSetCC(Op
, Info
))
10166 return ((Op
.getOpcode() == ISD::ZERO_EXTEND
) &&
10167 isSetCC(Op
->getOperand(0), Info
));
10170 // The folding we want to perform is:
10171 // (add x, [zext] (setcc cc ...) )
10173 // (csel x, (add x, 1), !cc ...)
10175 // The latter will get matched to a CSINC instruction.
10176 static SDValue
performSetccAddFolding(SDNode
*Op
, SelectionDAG
&DAG
) {
10177 assert(Op
&& Op
->getOpcode() == ISD::ADD
&& "Unexpected operation!");
10178 SDValue LHS
= Op
->getOperand(0);
10179 SDValue RHS
= Op
->getOperand(1);
10180 SetCCInfoAndKind InfoAndKind
;
10182 // If neither operand is a SET_CC, give up.
10183 if (!isSetCCOrZExtSetCC(LHS
, InfoAndKind
)) {
10184 std::swap(LHS
, RHS
);
10185 if (!isSetCCOrZExtSetCC(LHS
, InfoAndKind
))
10189 // FIXME: This could be generatized to work for FP comparisons.
10190 EVT CmpVT
= InfoAndKind
.IsAArch64
10191 ? InfoAndKind
.Info
.AArch64
.Cmp
->getOperand(0).getValueType()
10192 : InfoAndKind
.Info
.Generic
.Opnd0
->getValueType();
10193 if (CmpVT
!= MVT::i32
&& CmpVT
!= MVT::i64
)
10199 if (InfoAndKind
.IsAArch64
) {
10200 CCVal
= DAG
.getConstant(
10201 AArch64CC::getInvertedCondCode(InfoAndKind
.Info
.AArch64
.CC
), dl
,
10203 Cmp
= *InfoAndKind
.Info
.AArch64
.Cmp
;
10205 Cmp
= getAArch64Cmp(*InfoAndKind
.Info
.Generic
.Opnd0
,
10206 *InfoAndKind
.Info
.Generic
.Opnd1
,
10207 ISD::getSetCCInverse(InfoAndKind
.Info
.Generic
.CC
, true),
10210 EVT VT
= Op
->getValueType(0);
10211 LHS
= DAG
.getNode(ISD::ADD
, dl
, VT
, RHS
, DAG
.getConstant(1, dl
, VT
));
10212 return DAG
.getNode(AArch64ISD::CSEL
, dl
, VT
, RHS
, LHS
, CCVal
, Cmp
);
10215 // The basic add/sub long vector instructions have variants with "2" on the end
10216 // which act on the high-half of their inputs. They are normally matched by
10219 // (add (zeroext (extract_high LHS)),
10220 // (zeroext (extract_high RHS)))
10221 // -> uaddl2 vD, vN, vM
10223 // However, if one of the extracts is something like a duplicate, this
10224 // instruction can still be used profitably. This function puts the DAG into a
10225 // more appropriate form for those patterns to trigger.
10226 static SDValue
performAddSubLongCombine(SDNode
*N
,
10227 TargetLowering::DAGCombinerInfo
&DCI
,
10228 SelectionDAG
&DAG
) {
10229 if (DCI
.isBeforeLegalizeOps())
10232 MVT VT
= N
->getSimpleValueType(0);
10233 if (!VT
.is128BitVector()) {
10234 if (N
->getOpcode() == ISD::ADD
)
10235 return performSetccAddFolding(N
, DAG
);
10239 // Make sure both branches are extended in the same way.
10240 SDValue LHS
= N
->getOperand(0);
10241 SDValue RHS
= N
->getOperand(1);
10242 if ((LHS
.getOpcode() != ISD::ZERO_EXTEND
&&
10243 LHS
.getOpcode() != ISD::SIGN_EXTEND
) ||
10244 LHS
.getOpcode() != RHS
.getOpcode())
10247 unsigned ExtType
= LHS
.getOpcode();
10249 // It's not worth doing if at least one of the inputs isn't already an
10250 // extract, but we don't know which it'll be so we have to try both.
10251 if (isEssentiallyExtractHighSubvector(LHS
.getOperand(0))) {
10252 RHS
= tryExtendDUPToExtractHigh(RHS
.getOperand(0), DAG
);
10253 if (!RHS
.getNode())
10256 RHS
= DAG
.getNode(ExtType
, SDLoc(N
), VT
, RHS
);
10257 } else if (isEssentiallyExtractHighSubvector(RHS
.getOperand(0))) {
10258 LHS
= tryExtendDUPToExtractHigh(LHS
.getOperand(0), DAG
);
10259 if (!LHS
.getNode())
10262 LHS
= DAG
.getNode(ExtType
, SDLoc(N
), VT
, LHS
);
10265 return DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
, LHS
, RHS
);
10268 // Massage DAGs which we can use the high-half "long" operations on into
10269 // something isel will recognize better. E.g.
10271 // (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) -->
10272 // (aarch64_neon_umull (extract_high (v2i64 vec)))
10273 // (extract_high (v2i64 (dup128 scalar)))))
10275 static SDValue
tryCombineLongOpWithDup(unsigned IID
, SDNode
*N
,
10276 TargetLowering::DAGCombinerInfo
&DCI
,
10277 SelectionDAG
&DAG
) {
10278 if (DCI
.isBeforeLegalizeOps())
10281 SDValue LHS
= N
->getOperand(1);
10282 SDValue RHS
= N
->getOperand(2);
10283 assert(LHS
.getValueType().is64BitVector() &&
10284 RHS
.getValueType().is64BitVector() &&
10285 "unexpected shape for long operation");
10287 // Either node could be a DUP, but it's not worth doing both of them (you'd
10288 // just as well use the non-high version) so look for a corresponding extract
10289 // operation on the other "wing".
10290 if (isEssentiallyExtractHighSubvector(LHS
)) {
10291 RHS
= tryExtendDUPToExtractHigh(RHS
, DAG
);
10292 if (!RHS
.getNode())
10294 } else if (isEssentiallyExtractHighSubvector(RHS
)) {
10295 LHS
= tryExtendDUPToExtractHigh(LHS
, DAG
);
10296 if (!LHS
.getNode())
10300 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, SDLoc(N
), N
->getValueType(0),
10301 N
->getOperand(0), LHS
, RHS
);
10304 static SDValue
tryCombineShiftImm(unsigned IID
, SDNode
*N
, SelectionDAG
&DAG
) {
10305 MVT ElemTy
= N
->getSimpleValueType(0).getScalarType();
10306 unsigned ElemBits
= ElemTy
.getSizeInBits();
10308 int64_t ShiftAmount
;
10309 if (BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(N
->getOperand(2))) {
10310 APInt SplatValue
, SplatUndef
;
10311 unsigned SplatBitSize
;
10313 if (!BVN
->isConstantSplat(SplatValue
, SplatUndef
, SplatBitSize
,
10314 HasAnyUndefs
, ElemBits
) ||
10315 SplatBitSize
!= ElemBits
)
10318 ShiftAmount
= SplatValue
.getSExtValue();
10319 } else if (ConstantSDNode
*CVN
= dyn_cast
<ConstantSDNode
>(N
->getOperand(2))) {
10320 ShiftAmount
= CVN
->getSExtValue();
10328 llvm_unreachable("Unknown shift intrinsic");
10329 case Intrinsic::aarch64_neon_sqshl
:
10330 Opcode
= AArch64ISD::SQSHL_I
;
10331 IsRightShift
= false;
10333 case Intrinsic::aarch64_neon_uqshl
:
10334 Opcode
= AArch64ISD::UQSHL_I
;
10335 IsRightShift
= false;
10337 case Intrinsic::aarch64_neon_srshl
:
10338 Opcode
= AArch64ISD::SRSHR_I
;
10339 IsRightShift
= true;
10341 case Intrinsic::aarch64_neon_urshl
:
10342 Opcode
= AArch64ISD::URSHR_I
;
10343 IsRightShift
= true;
10345 case Intrinsic::aarch64_neon_sqshlu
:
10346 Opcode
= AArch64ISD::SQSHLU_I
;
10347 IsRightShift
= false;
10349 case Intrinsic::aarch64_neon_sshl
:
10350 case Intrinsic::aarch64_neon_ushl
:
10351 // For positive shift amounts we can use SHL, as ushl/sshl perform a regular
10352 // left shift for positive shift amounts. Below, we only replace the current
10353 // node with VSHL, if this condition is met.
10354 Opcode
= AArch64ISD::VSHL
;
10355 IsRightShift
= false;
10359 if (IsRightShift
&& ShiftAmount
<= -1 && ShiftAmount
>= -(int)ElemBits
) {
10361 return DAG
.getNode(Opcode
, dl
, N
->getValueType(0), N
->getOperand(1),
10362 DAG
.getConstant(-ShiftAmount
, dl
, MVT::i32
));
10363 } else if (!IsRightShift
&& ShiftAmount
>= 0 && ShiftAmount
< ElemBits
) {
10365 return DAG
.getNode(Opcode
, dl
, N
->getValueType(0), N
->getOperand(1),
10366 DAG
.getConstant(ShiftAmount
, dl
, MVT::i32
));
10372 // The CRC32[BH] instructions ignore the high bits of their data operand. Since
10373 // the intrinsics must be legal and take an i32, this means there's almost
10374 // certainly going to be a zext in the DAG which we can eliminate.
10375 static SDValue
tryCombineCRC32(unsigned Mask
, SDNode
*N
, SelectionDAG
&DAG
) {
10376 SDValue AndN
= N
->getOperand(2);
10377 if (AndN
.getOpcode() != ISD::AND
)
10380 ConstantSDNode
*CMask
= dyn_cast
<ConstantSDNode
>(AndN
.getOperand(1));
10381 if (!CMask
|| CMask
->getZExtValue() != Mask
)
10384 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, SDLoc(N
), MVT::i32
,
10385 N
->getOperand(0), N
->getOperand(1), AndN
.getOperand(0));
10388 static SDValue
combineAcrossLanesIntrinsic(unsigned Opc
, SDNode
*N
,
10389 SelectionDAG
&DAG
) {
10391 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, N
->getValueType(0),
10392 DAG
.getNode(Opc
, dl
,
10393 N
->getOperand(1).getSimpleValueType(),
10395 DAG
.getConstant(0, dl
, MVT::i64
));
10398 static SDValue
performIntrinsicCombine(SDNode
*N
,
10399 TargetLowering::DAGCombinerInfo
&DCI
,
10400 const AArch64Subtarget
*Subtarget
) {
10401 SelectionDAG
&DAG
= DCI
.DAG
;
10402 unsigned IID
= getIntrinsicID(N
);
10406 case Intrinsic::aarch64_neon_vcvtfxs2fp
:
10407 case Intrinsic::aarch64_neon_vcvtfxu2fp
:
10408 return tryCombineFixedPointConvert(N
, DCI
, DAG
);
10409 case Intrinsic::aarch64_neon_saddv
:
10410 return combineAcrossLanesIntrinsic(AArch64ISD::SADDV
, N
, DAG
);
10411 case Intrinsic::aarch64_neon_uaddv
:
10412 return combineAcrossLanesIntrinsic(AArch64ISD::UADDV
, N
, DAG
);
10413 case Intrinsic::aarch64_neon_sminv
:
10414 return combineAcrossLanesIntrinsic(AArch64ISD::SMINV
, N
, DAG
);
10415 case Intrinsic::aarch64_neon_uminv
:
10416 return combineAcrossLanesIntrinsic(AArch64ISD::UMINV
, N
, DAG
);
10417 case Intrinsic::aarch64_neon_smaxv
:
10418 return combineAcrossLanesIntrinsic(AArch64ISD::SMAXV
, N
, DAG
);
10419 case Intrinsic::aarch64_neon_umaxv
:
10420 return combineAcrossLanesIntrinsic(AArch64ISD::UMAXV
, N
, DAG
);
10421 case Intrinsic::aarch64_neon_fmax
:
10422 return DAG
.getNode(ISD::FMAXIMUM
, SDLoc(N
), N
->getValueType(0),
10423 N
->getOperand(1), N
->getOperand(2));
10424 case Intrinsic::aarch64_neon_fmin
:
10425 return DAG
.getNode(ISD::FMINIMUM
, SDLoc(N
), N
->getValueType(0),
10426 N
->getOperand(1), N
->getOperand(2));
10427 case Intrinsic::aarch64_neon_fmaxnm
:
10428 return DAG
.getNode(ISD::FMAXNUM
, SDLoc(N
), N
->getValueType(0),
10429 N
->getOperand(1), N
->getOperand(2));
10430 case Intrinsic::aarch64_neon_fminnm
:
10431 return DAG
.getNode(ISD::FMINNUM
, SDLoc(N
), N
->getValueType(0),
10432 N
->getOperand(1), N
->getOperand(2));
10433 case Intrinsic::aarch64_neon_smull
:
10434 case Intrinsic::aarch64_neon_umull
:
10435 case Intrinsic::aarch64_neon_pmull
:
10436 case Intrinsic::aarch64_neon_sqdmull
:
10437 return tryCombineLongOpWithDup(IID
, N
, DCI
, DAG
);
10438 case Intrinsic::aarch64_neon_sqshl
:
10439 case Intrinsic::aarch64_neon_uqshl
:
10440 case Intrinsic::aarch64_neon_sqshlu
:
10441 case Intrinsic::aarch64_neon_srshl
:
10442 case Intrinsic::aarch64_neon_urshl
:
10443 case Intrinsic::aarch64_neon_sshl
:
10444 case Intrinsic::aarch64_neon_ushl
:
10445 return tryCombineShiftImm(IID
, N
, DAG
);
10446 case Intrinsic::aarch64_crc32b
:
10447 case Intrinsic::aarch64_crc32cb
:
10448 return tryCombineCRC32(0xff, N
, DAG
);
10449 case Intrinsic::aarch64_crc32h
:
10450 case Intrinsic::aarch64_crc32ch
:
10451 return tryCombineCRC32(0xffff, N
, DAG
);
10456 static SDValue
performExtendCombine(SDNode
*N
,
10457 TargetLowering::DAGCombinerInfo
&DCI
,
10458 SelectionDAG
&DAG
) {
10459 // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then
10460 // we can convert that DUP into another extract_high (of a bigger DUP), which
10461 // helps the backend to decide that an sabdl2 would be useful, saving a real
10462 // extract_high operation.
10463 if (!DCI
.isBeforeLegalizeOps() && N
->getOpcode() == ISD::ZERO_EXTEND
&&
10464 N
->getOperand(0).getOpcode() == ISD::INTRINSIC_WO_CHAIN
) {
10465 SDNode
*ABDNode
= N
->getOperand(0).getNode();
10466 unsigned IID
= getIntrinsicID(ABDNode
);
10467 if (IID
== Intrinsic::aarch64_neon_sabd
||
10468 IID
== Intrinsic::aarch64_neon_uabd
) {
10469 SDValue NewABD
= tryCombineLongOpWithDup(IID
, ABDNode
, DCI
, DAG
);
10470 if (!NewABD
.getNode())
10473 return DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N
), N
->getValueType(0),
10478 // This is effectively a custom type legalization for AArch64.
10480 // Type legalization will split an extend of a small, legal, type to a larger
10481 // illegal type by first splitting the destination type, often creating
10482 // illegal source types, which then get legalized in isel-confusing ways,
10483 // leading to really terrible codegen. E.g.,
10484 // %result = v8i32 sext v8i8 %value
10486 // %losrc = extract_subreg %value, ...
10487 // %hisrc = extract_subreg %value, ...
10488 // %lo = v4i32 sext v4i8 %losrc
10489 // %hi = v4i32 sext v4i8 %hisrc
10490 // Things go rapidly downhill from there.
10492 // For AArch64, the [sz]ext vector instructions can only go up one element
10493 // size, so we can, e.g., extend from i8 to i16, but to go from i8 to i32
10494 // take two instructions.
10496 // This implies that the most efficient way to do the extend from v8i8
10497 // to two v4i32 values is to first extend the v8i8 to v8i16, then do
10498 // the normal splitting to happen for the v8i16->v8i32.
10500 // This is pre-legalization to catch some cases where the default
10501 // type legalization will create ill-tempered code.
10502 if (!DCI
.isBeforeLegalizeOps())
10505 // We're only interested in cleaning things up for non-legal vector types
10506 // here. If both the source and destination are legal, things will just
10507 // work naturally without any fiddling.
10508 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10509 EVT ResVT
= N
->getValueType(0);
10510 if (!ResVT
.isVector() || TLI
.isTypeLegal(ResVT
))
10512 // If the vector type isn't a simple VT, it's beyond the scope of what
10513 // we're worried about here. Let legalization do its thing and hope for
10515 SDValue Src
= N
->getOperand(0);
10516 EVT SrcVT
= Src
->getValueType(0);
10517 if (!ResVT
.isSimple() || !SrcVT
.isSimple())
10520 // If the source VT is a 64-bit vector, we can play games and get the
10521 // better results we want.
10522 if (SrcVT
.getSizeInBits() != 64)
10525 unsigned SrcEltSize
= SrcVT
.getScalarSizeInBits();
10526 unsigned ElementCount
= SrcVT
.getVectorNumElements();
10527 SrcVT
= MVT::getVectorVT(MVT::getIntegerVT(SrcEltSize
* 2), ElementCount
);
10529 Src
= DAG
.getNode(N
->getOpcode(), DL
, SrcVT
, Src
);
10531 // Now split the rest of the operation into two halves, each with a 64
10535 unsigned NumElements
= ResVT
.getVectorNumElements();
10536 assert(!(NumElements
& 1) && "Splitting vector, but not in half!");
10537 LoVT
= HiVT
= EVT::getVectorVT(*DAG
.getContext(),
10538 ResVT
.getVectorElementType(), NumElements
/ 2);
10540 EVT InNVT
= EVT::getVectorVT(*DAG
.getContext(), SrcVT
.getVectorElementType(),
10541 LoVT
.getVectorNumElements());
10542 Lo
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, InNVT
, Src
,
10543 DAG
.getConstant(0, DL
, MVT::i64
));
10544 Hi
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, InNVT
, Src
,
10545 DAG
.getConstant(InNVT
.getVectorNumElements(), DL
, MVT::i64
));
10546 Lo
= DAG
.getNode(N
->getOpcode(), DL
, LoVT
, Lo
);
10547 Hi
= DAG
.getNode(N
->getOpcode(), DL
, HiVT
, Hi
);
10549 // Now combine the parts back together so we still have a single result
10550 // like the combiner expects.
10551 return DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, ResVT
, Lo
, Hi
);
10554 static SDValue
splitStoreSplat(SelectionDAG
&DAG
, StoreSDNode
&St
,
10555 SDValue SplatVal
, unsigned NumVecElts
) {
10556 assert(!St
.isTruncatingStore() && "cannot split truncating vector store");
10557 unsigned OrigAlignment
= St
.getAlignment();
10558 unsigned EltOffset
= SplatVal
.getValueType().getSizeInBits() / 8;
10560 // Create scalar stores. This is at least as good as the code sequence for a
10561 // split unaligned store which is a dup.s, ext.b, and two stores.
10562 // Most of the time the three stores should be replaced by store pair
10563 // instructions (stp).
10565 SDValue BasePtr
= St
.getBasePtr();
10566 uint64_t BaseOffset
= 0;
10568 const MachinePointerInfo
&PtrInfo
= St
.getPointerInfo();
10570 DAG
.getStore(St
.getChain(), DL
, SplatVal
, BasePtr
, PtrInfo
,
10571 OrigAlignment
, St
.getMemOperand()->getFlags());
10573 // As this in ISel, we will not merge this add which may degrade results.
10574 if (BasePtr
->getOpcode() == ISD::ADD
&&
10575 isa
<ConstantSDNode
>(BasePtr
->getOperand(1))) {
10576 BaseOffset
= cast
<ConstantSDNode
>(BasePtr
->getOperand(1))->getSExtValue();
10577 BasePtr
= BasePtr
->getOperand(0);
10580 unsigned Offset
= EltOffset
;
10581 while (--NumVecElts
) {
10582 unsigned Alignment
= MinAlign(OrigAlignment
, Offset
);
10583 SDValue OffsetPtr
=
10584 DAG
.getNode(ISD::ADD
, DL
, MVT::i64
, BasePtr
,
10585 DAG
.getConstant(BaseOffset
+ Offset
, DL
, MVT::i64
));
10586 NewST1
= DAG
.getStore(NewST1
.getValue(0), DL
, SplatVal
, OffsetPtr
,
10587 PtrInfo
.getWithOffset(Offset
), Alignment
,
10588 St
.getMemOperand()->getFlags());
10589 Offset
+= EltOffset
;
10594 /// Replace a splat of zeros to a vector store by scalar stores of WZR/XZR. The
10595 /// load store optimizer pass will merge them to store pair stores. This should
10596 /// be better than a movi to create the vector zero followed by a vector store
10597 /// if the zero constant is not re-used, since one instructions and one register
10598 /// live range will be removed.
10600 /// For example, the final generated code should be:
10602 /// stp xzr, xzr, [x0]
10609 static SDValue
replaceZeroVectorStore(SelectionDAG
&DAG
, StoreSDNode
&St
) {
10610 SDValue StVal
= St
.getValue();
10611 EVT VT
= StVal
.getValueType();
10613 // It is beneficial to scalarize a zero splat store for 2 or 3 i64 elements or
10614 // 2, 3 or 4 i32 elements.
10615 int NumVecElts
= VT
.getVectorNumElements();
10616 if (!(((NumVecElts
== 2 || NumVecElts
== 3) &&
10617 VT
.getVectorElementType().getSizeInBits() == 64) ||
10618 ((NumVecElts
== 2 || NumVecElts
== 3 || NumVecElts
== 4) &&
10619 VT
.getVectorElementType().getSizeInBits() == 32)))
10622 if (StVal
.getOpcode() != ISD::BUILD_VECTOR
)
10625 // If the zero constant has more than one use then the vector store could be
10626 // better since the constant mov will be amortized and stp q instructions
10627 // should be able to be formed.
10628 if (!StVal
.hasOneUse())
10631 // If the store is truncating then it's going down to i16 or smaller, which
10632 // means it can be implemented in a single store anyway.
10633 if (St
.isTruncatingStore())
10636 // If the immediate offset of the address operand is too large for the stp
10637 // instruction, then bail out.
10638 if (DAG
.isBaseWithConstantOffset(St
.getBasePtr())) {
10639 int64_t Offset
= St
.getBasePtr()->getConstantOperandVal(1);
10640 if (Offset
< -512 || Offset
> 504)
10644 for (int I
= 0; I
< NumVecElts
; ++I
) {
10645 SDValue EltVal
= StVal
.getOperand(I
);
10646 if (!isNullConstant(EltVal
) && !isNullFPConstant(EltVal
))
10650 // Use a CopyFromReg WZR/XZR here to prevent
10651 // DAGCombiner::MergeConsecutiveStores from undoing this transformation.
10655 if (VT
.getVectorElementType().getSizeInBits() == 32) {
10656 ZeroReg
= AArch64::WZR
;
10659 ZeroReg
= AArch64::XZR
;
10663 DAG
.getCopyFromReg(DAG
.getEntryNode(), DL
, ZeroReg
, ZeroVT
);
10664 return splitStoreSplat(DAG
, St
, SplatVal
, NumVecElts
);
10667 /// Replace a splat of a scalar to a vector store by scalar stores of the scalar
10668 /// value. The load store optimizer pass will merge them to store pair stores.
10669 /// This has better performance than a splat of the scalar followed by a split
10670 /// vector store. Even if the stores are not merged it is four stores vs a dup,
10671 /// followed by an ext.b and two stores.
10672 static SDValue
replaceSplatVectorStore(SelectionDAG
&DAG
, StoreSDNode
&St
) {
10673 SDValue StVal
= St
.getValue();
10674 EVT VT
= StVal
.getValueType();
10676 // Don't replace floating point stores, they possibly won't be transformed to
10677 // stp because of the store pair suppress pass.
10678 if (VT
.isFloatingPoint())
10681 // We can express a splat as store pair(s) for 2 or 4 elements.
10682 unsigned NumVecElts
= VT
.getVectorNumElements();
10683 if (NumVecElts
!= 4 && NumVecElts
!= 2)
10686 // If the store is truncating then it's going down to i16 or smaller, which
10687 // means it can be implemented in a single store anyway.
10688 if (St
.isTruncatingStore())
10691 // Check that this is a splat.
10692 // Make sure that each of the relevant vector element locations are inserted
10693 // to, i.e. 0 and 1 for v2i64 and 0, 1, 2, 3 for v4i32.
10694 std::bitset
<4> IndexNotInserted((1 << NumVecElts
) - 1);
10696 for (unsigned I
= 0; I
< NumVecElts
; ++I
) {
10697 // Check for insert vector elements.
10698 if (StVal
.getOpcode() != ISD::INSERT_VECTOR_ELT
)
10701 // Check that same value is inserted at each vector element.
10703 SplatVal
= StVal
.getOperand(1);
10704 else if (StVal
.getOperand(1) != SplatVal
)
10707 // Check insert element index.
10708 ConstantSDNode
*CIndex
= dyn_cast
<ConstantSDNode
>(StVal
.getOperand(2));
10711 uint64_t IndexVal
= CIndex
->getZExtValue();
10712 if (IndexVal
>= NumVecElts
)
10714 IndexNotInserted
.reset(IndexVal
);
10716 StVal
= StVal
.getOperand(0);
10718 // Check that all vector element locations were inserted to.
10719 if (IndexNotInserted
.any())
10722 return splitStoreSplat(DAG
, St
, SplatVal
, NumVecElts
);
10725 static SDValue
splitStores(SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
,
10727 const AArch64Subtarget
*Subtarget
) {
10729 StoreSDNode
*S
= cast
<StoreSDNode
>(N
);
10730 if (S
->isVolatile() || S
->isIndexed())
10733 SDValue StVal
= S
->getValue();
10734 EVT VT
= StVal
.getValueType();
10735 if (!VT
.isVector())
10738 // If we get a splat of zeros, convert this vector store to a store of
10739 // scalars. They will be merged into store pairs of xzr thereby removing one
10740 // instruction and one register.
10741 if (SDValue ReplacedZeroSplat
= replaceZeroVectorStore(DAG
, *S
))
10742 return ReplacedZeroSplat
;
10744 // FIXME: The logic for deciding if an unaligned store should be split should
10745 // be included in TLI.allowsMisalignedMemoryAccesses(), and there should be
10746 // a call to that function here.
10748 if (!Subtarget
->isMisaligned128StoreSlow())
10751 // Don't split at -Oz.
10752 if (DAG
.getMachineFunction().getFunction().hasMinSize())
10755 // Don't split v2i64 vectors. Memcpy lowering produces those and splitting
10756 // those up regresses performance on micro-benchmarks and olden/bh.
10757 if (VT
.getVectorNumElements() < 2 || VT
== MVT::v2i64
)
10760 // Split unaligned 16B stores. They are terrible for performance.
10761 // Don't split stores with alignment of 1 or 2. Code that uses clang vector
10762 // extensions can use this to mark that it does not want splitting to happen
10763 // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of
10764 // eliminating alignment hazards is only 1 in 8 for alignment of 2.
10765 if (VT
.getSizeInBits() != 128 || S
->getAlignment() >= 16 ||
10766 S
->getAlignment() <= 2)
10769 // If we get a splat of a scalar convert this vector store to a store of
10770 // scalars. They will be merged into store pairs thereby removing two
10772 if (SDValue ReplacedSplat
= replaceSplatVectorStore(DAG
, *S
))
10773 return ReplacedSplat
;
10777 // Split VT into two.
10778 EVT HalfVT
= VT
.getHalfNumVectorElementsVT(*DAG
.getContext());
10779 unsigned NumElts
= HalfVT
.getVectorNumElements();
10780 SDValue SubVector0
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, HalfVT
, StVal
,
10781 DAG
.getConstant(0, DL
, MVT::i64
));
10782 SDValue SubVector1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, HalfVT
, StVal
,
10783 DAG
.getConstant(NumElts
, DL
, MVT::i64
));
10784 SDValue BasePtr
= S
->getBasePtr();
10786 DAG
.getStore(S
->getChain(), DL
, SubVector0
, BasePtr
, S
->getPointerInfo(),
10787 S
->getAlignment(), S
->getMemOperand()->getFlags());
10788 SDValue OffsetPtr
= DAG
.getNode(ISD::ADD
, DL
, MVT::i64
, BasePtr
,
10789 DAG
.getConstant(8, DL
, MVT::i64
));
10790 return DAG
.getStore(NewST1
.getValue(0), DL
, SubVector1
, OffsetPtr
,
10791 S
->getPointerInfo(), S
->getAlignment(),
10792 S
->getMemOperand()->getFlags());
10795 /// Target-specific DAG combine function for post-increment LD1 (lane) and
10796 /// post-increment LD1R.
10797 static SDValue
performPostLD1Combine(SDNode
*N
,
10798 TargetLowering::DAGCombinerInfo
&DCI
,
10800 if (DCI
.isBeforeLegalizeOps())
10803 SelectionDAG
&DAG
= DCI
.DAG
;
10804 EVT VT
= N
->getValueType(0);
10806 unsigned LoadIdx
= IsLaneOp
? 1 : 0;
10807 SDNode
*LD
= N
->getOperand(LoadIdx
).getNode();
10808 // If it is not LOAD, can not do such combine.
10809 if (LD
->getOpcode() != ISD::LOAD
)
10812 // The vector lane must be a constant in the LD1LANE opcode.
10815 Lane
= N
->getOperand(2);
10816 auto *LaneC
= dyn_cast
<ConstantSDNode
>(Lane
);
10817 if (!LaneC
|| LaneC
->getZExtValue() >= VT
.getVectorNumElements())
10821 LoadSDNode
*LoadSDN
= cast
<LoadSDNode
>(LD
);
10822 EVT MemVT
= LoadSDN
->getMemoryVT();
10823 // Check if memory operand is the same type as the vector element.
10824 if (MemVT
!= VT
.getVectorElementType())
10827 // Check if there are other uses. If so, do not combine as it will introduce
10829 for (SDNode::use_iterator UI
= LD
->use_begin(), UE
= LD
->use_end(); UI
!= UE
;
10831 if (UI
.getUse().getResNo() == 1) // Ignore uses of the chain result.
10837 SDValue Addr
= LD
->getOperand(1);
10838 SDValue Vector
= N
->getOperand(0);
10839 // Search for a use of the address operand that is an increment.
10840 for (SDNode::use_iterator UI
= Addr
.getNode()->use_begin(), UE
=
10841 Addr
.getNode()->use_end(); UI
!= UE
; ++UI
) {
10842 SDNode
*User
= *UI
;
10843 if (User
->getOpcode() != ISD::ADD
10844 || UI
.getUse().getResNo() != Addr
.getResNo())
10847 // If the increment is a constant, it must match the memory ref size.
10848 SDValue Inc
= User
->getOperand(User
->getOperand(0) == Addr
? 1 : 0);
10849 if (ConstantSDNode
*CInc
= dyn_cast
<ConstantSDNode
>(Inc
.getNode())) {
10850 uint32_t IncVal
= CInc
->getZExtValue();
10851 unsigned NumBytes
= VT
.getScalarSizeInBits() / 8;
10852 if (IncVal
!= NumBytes
)
10854 Inc
= DAG
.getRegister(AArch64::XZR
, MVT::i64
);
10857 // To avoid cycle construction make sure that neither the load nor the add
10858 // are predecessors to each other or the Vector.
10859 SmallPtrSet
<const SDNode
*, 32> Visited
;
10860 SmallVector
<const SDNode
*, 16> Worklist
;
10861 Visited
.insert(Addr
.getNode());
10862 Worklist
.push_back(User
);
10863 Worklist
.push_back(LD
);
10864 Worklist
.push_back(Vector
.getNode());
10865 if (SDNode::hasPredecessorHelper(LD
, Visited
, Worklist
) ||
10866 SDNode::hasPredecessorHelper(User
, Visited
, Worklist
))
10869 SmallVector
<SDValue
, 8> Ops
;
10870 Ops
.push_back(LD
->getOperand(0)); // Chain
10872 Ops
.push_back(Vector
); // The vector to be inserted
10873 Ops
.push_back(Lane
); // The lane to be inserted in the vector
10875 Ops
.push_back(Addr
);
10876 Ops
.push_back(Inc
);
10878 EVT Tys
[3] = { VT
, MVT::i64
, MVT::Other
};
10879 SDVTList SDTys
= DAG
.getVTList(Tys
);
10880 unsigned NewOp
= IsLaneOp
? AArch64ISD::LD1LANEpost
: AArch64ISD::LD1DUPpost
;
10881 SDValue UpdN
= DAG
.getMemIntrinsicNode(NewOp
, SDLoc(N
), SDTys
, Ops
,
10883 LoadSDN
->getMemOperand());
10885 // Update the uses.
10886 SDValue NewResults
[] = {
10887 SDValue(LD
, 0), // The result of load
10888 SDValue(UpdN
.getNode(), 2) // Chain
10890 DCI
.CombineTo(LD
, NewResults
);
10891 DCI
.CombineTo(N
, SDValue(UpdN
.getNode(), 0)); // Dup/Inserted Result
10892 DCI
.CombineTo(User
, SDValue(UpdN
.getNode(), 1)); // Write back register
10899 /// Simplify ``Addr`` given that the top byte of it is ignored by HW during
10900 /// address translation.
10901 static bool performTBISimplification(SDValue Addr
,
10902 TargetLowering::DAGCombinerInfo
&DCI
,
10903 SelectionDAG
&DAG
) {
10904 APInt DemandedMask
= APInt::getLowBitsSet(64, 56);
10906 TargetLowering::TargetLoweringOpt
TLO(DAG
, !DCI
.isBeforeLegalize(),
10907 !DCI
.isBeforeLegalizeOps());
10908 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10909 if (TLI
.SimplifyDemandedBits(Addr
, DemandedMask
, Known
, TLO
)) {
10910 DCI
.CommitTargetLoweringOpt(TLO
);
10916 static SDValue
performSTORECombine(SDNode
*N
,
10917 TargetLowering::DAGCombinerInfo
&DCI
,
10919 const AArch64Subtarget
*Subtarget
) {
10920 if (SDValue Split
= splitStores(N
, DCI
, DAG
, Subtarget
))
10923 if (Subtarget
->supportsAddressTopByteIgnored() &&
10924 performTBISimplification(N
->getOperand(2), DCI
, DAG
))
10925 return SDValue(N
, 0);
10931 /// Target-specific DAG combine function for NEON load/store intrinsics
10932 /// to merge base address updates.
10933 static SDValue
performNEONPostLDSTCombine(SDNode
*N
,
10934 TargetLowering::DAGCombinerInfo
&DCI
,
10935 SelectionDAG
&DAG
) {
10936 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
10939 unsigned AddrOpIdx
= N
->getNumOperands() - 1;
10940 SDValue Addr
= N
->getOperand(AddrOpIdx
);
10942 // Search for a use of the address operand that is an increment.
10943 for (SDNode::use_iterator UI
= Addr
.getNode()->use_begin(),
10944 UE
= Addr
.getNode()->use_end(); UI
!= UE
; ++UI
) {
10945 SDNode
*User
= *UI
;
10946 if (User
->getOpcode() != ISD::ADD
||
10947 UI
.getUse().getResNo() != Addr
.getResNo())
10950 // Check that the add is independent of the load/store. Otherwise, folding
10951 // it would create a cycle.
10952 SmallPtrSet
<const SDNode
*, 32> Visited
;
10953 SmallVector
<const SDNode
*, 16> Worklist
;
10954 Visited
.insert(Addr
.getNode());
10955 Worklist
.push_back(N
);
10956 Worklist
.push_back(User
);
10957 if (SDNode::hasPredecessorHelper(N
, Visited
, Worklist
) ||
10958 SDNode::hasPredecessorHelper(User
, Visited
, Worklist
))
10961 // Find the new opcode for the updating load/store.
10962 bool IsStore
= false;
10963 bool IsLaneOp
= false;
10964 bool IsDupOp
= false;
10965 unsigned NewOpc
= 0;
10966 unsigned NumVecs
= 0;
10967 unsigned IntNo
= cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue();
10969 default: llvm_unreachable("unexpected intrinsic for Neon base update");
10970 case Intrinsic::aarch64_neon_ld2
: NewOpc
= AArch64ISD::LD2post
;
10971 NumVecs
= 2; break;
10972 case Intrinsic::aarch64_neon_ld3
: NewOpc
= AArch64ISD::LD3post
;
10973 NumVecs
= 3; break;
10974 case Intrinsic::aarch64_neon_ld4
: NewOpc
= AArch64ISD::LD4post
;
10975 NumVecs
= 4; break;
10976 case Intrinsic::aarch64_neon_st2
: NewOpc
= AArch64ISD::ST2post
;
10977 NumVecs
= 2; IsStore
= true; break;
10978 case Intrinsic::aarch64_neon_st3
: NewOpc
= AArch64ISD::ST3post
;
10979 NumVecs
= 3; IsStore
= true; break;
10980 case Intrinsic::aarch64_neon_st4
: NewOpc
= AArch64ISD::ST4post
;
10981 NumVecs
= 4; IsStore
= true; break;
10982 case Intrinsic::aarch64_neon_ld1x2
: NewOpc
= AArch64ISD::LD1x2post
;
10983 NumVecs
= 2; break;
10984 case Intrinsic::aarch64_neon_ld1x3
: NewOpc
= AArch64ISD::LD1x3post
;
10985 NumVecs
= 3; break;
10986 case Intrinsic::aarch64_neon_ld1x4
: NewOpc
= AArch64ISD::LD1x4post
;
10987 NumVecs
= 4; break;
10988 case Intrinsic::aarch64_neon_st1x2
: NewOpc
= AArch64ISD::ST1x2post
;
10989 NumVecs
= 2; IsStore
= true; break;
10990 case Intrinsic::aarch64_neon_st1x3
: NewOpc
= AArch64ISD::ST1x3post
;
10991 NumVecs
= 3; IsStore
= true; break;
10992 case Intrinsic::aarch64_neon_st1x4
: NewOpc
= AArch64ISD::ST1x4post
;
10993 NumVecs
= 4; IsStore
= true; break;
10994 case Intrinsic::aarch64_neon_ld2r
: NewOpc
= AArch64ISD::LD2DUPpost
;
10995 NumVecs
= 2; IsDupOp
= true; break;
10996 case Intrinsic::aarch64_neon_ld3r
: NewOpc
= AArch64ISD::LD3DUPpost
;
10997 NumVecs
= 3; IsDupOp
= true; break;
10998 case Intrinsic::aarch64_neon_ld4r
: NewOpc
= AArch64ISD::LD4DUPpost
;
10999 NumVecs
= 4; IsDupOp
= true; break;
11000 case Intrinsic::aarch64_neon_ld2lane
: NewOpc
= AArch64ISD::LD2LANEpost
;
11001 NumVecs
= 2; IsLaneOp
= true; break;
11002 case Intrinsic::aarch64_neon_ld3lane
: NewOpc
= AArch64ISD::LD3LANEpost
;
11003 NumVecs
= 3; IsLaneOp
= true; break;
11004 case Intrinsic::aarch64_neon_ld4lane
: NewOpc
= AArch64ISD::LD4LANEpost
;
11005 NumVecs
= 4; IsLaneOp
= true; break;
11006 case Intrinsic::aarch64_neon_st2lane
: NewOpc
= AArch64ISD::ST2LANEpost
;
11007 NumVecs
= 2; IsStore
= true; IsLaneOp
= true; break;
11008 case Intrinsic::aarch64_neon_st3lane
: NewOpc
= AArch64ISD::ST3LANEpost
;
11009 NumVecs
= 3; IsStore
= true; IsLaneOp
= true; break;
11010 case Intrinsic::aarch64_neon_st4lane
: NewOpc
= AArch64ISD::ST4LANEpost
;
11011 NumVecs
= 4; IsStore
= true; IsLaneOp
= true; break;
11016 VecTy
= N
->getOperand(2).getValueType();
11018 VecTy
= N
->getValueType(0);
11020 // If the increment is a constant, it must match the memory ref size.
11021 SDValue Inc
= User
->getOperand(User
->getOperand(0) == Addr
? 1 : 0);
11022 if (ConstantSDNode
*CInc
= dyn_cast
<ConstantSDNode
>(Inc
.getNode())) {
11023 uint32_t IncVal
= CInc
->getZExtValue();
11024 unsigned NumBytes
= NumVecs
* VecTy
.getSizeInBits() / 8;
11025 if (IsLaneOp
|| IsDupOp
)
11026 NumBytes
/= VecTy
.getVectorNumElements();
11027 if (IncVal
!= NumBytes
)
11029 Inc
= DAG
.getRegister(AArch64::XZR
, MVT::i64
);
11031 SmallVector
<SDValue
, 8> Ops
;
11032 Ops
.push_back(N
->getOperand(0)); // Incoming chain
11033 // Load lane and store have vector list as input.
11034 if (IsLaneOp
|| IsStore
)
11035 for (unsigned i
= 2; i
< AddrOpIdx
; ++i
)
11036 Ops
.push_back(N
->getOperand(i
));
11037 Ops
.push_back(Addr
); // Base register
11038 Ops
.push_back(Inc
);
11042 unsigned NumResultVecs
= (IsStore
? 0 : NumVecs
);
11044 for (n
= 0; n
< NumResultVecs
; ++n
)
11046 Tys
[n
++] = MVT::i64
; // Type of write back register
11047 Tys
[n
] = MVT::Other
; // Type of the chain
11048 SDVTList SDTys
= DAG
.getVTList(makeArrayRef(Tys
, NumResultVecs
+ 2));
11050 MemIntrinsicSDNode
*MemInt
= cast
<MemIntrinsicSDNode
>(N
);
11051 SDValue UpdN
= DAG
.getMemIntrinsicNode(NewOpc
, SDLoc(N
), SDTys
, Ops
,
11052 MemInt
->getMemoryVT(),
11053 MemInt
->getMemOperand());
11055 // Update the uses.
11056 std::vector
<SDValue
> NewResults
;
11057 for (unsigned i
= 0; i
< NumResultVecs
; ++i
) {
11058 NewResults
.push_back(SDValue(UpdN
.getNode(), i
));
11060 NewResults
.push_back(SDValue(UpdN
.getNode(), NumResultVecs
+ 1));
11061 DCI
.CombineTo(N
, NewResults
);
11062 DCI
.CombineTo(User
, SDValue(UpdN
.getNode(), NumResultVecs
));
11069 // Checks to see if the value is the prescribed width and returns information
11070 // about its extension mode.
11072 bool checkValueWidth(SDValue V
, unsigned width
, ISD::LoadExtType
&ExtType
) {
11073 ExtType
= ISD::NON_EXTLOAD
;
11074 switch(V
.getNode()->getOpcode()) {
11078 LoadSDNode
*LoadNode
= cast
<LoadSDNode
>(V
.getNode());
11079 if ((LoadNode
->getMemoryVT() == MVT::i8
&& width
== 8)
11080 || (LoadNode
->getMemoryVT() == MVT::i16
&& width
== 16)) {
11081 ExtType
= LoadNode
->getExtensionType();
11086 case ISD::AssertSext
: {
11087 VTSDNode
*TypeNode
= cast
<VTSDNode
>(V
.getNode()->getOperand(1));
11088 if ((TypeNode
->getVT() == MVT::i8
&& width
== 8)
11089 || (TypeNode
->getVT() == MVT::i16
&& width
== 16)) {
11090 ExtType
= ISD::SEXTLOAD
;
11095 case ISD::AssertZext
: {
11096 VTSDNode
*TypeNode
= cast
<VTSDNode
>(V
.getNode()->getOperand(1));
11097 if ((TypeNode
->getVT() == MVT::i8
&& width
== 8)
11098 || (TypeNode
->getVT() == MVT::i16
&& width
== 16)) {
11099 ExtType
= ISD::ZEXTLOAD
;
11104 case ISD::Constant
:
11105 case ISD::TargetConstant
: {
11106 return std::abs(cast
<ConstantSDNode
>(V
.getNode())->getSExtValue()) <
11107 1LL << (width
- 1);
11114 // This function does a whole lot of voodoo to determine if the tests are
11115 // equivalent without and with a mask. Essentially what happens is that given a
11118 // +-------------+ +-------------+ +-------------+ +-------------+
11119 // | Input | | AddConstant | | CompConstant| | CC |
11120 // +-------------+ +-------------+ +-------------+ +-------------+
11122 // V V | +----------+
11123 // +-------------+ +----+ | |
11124 // | ADD | |0xff| | |
11125 // +-------------+ +----+ | |
11128 // +-------------+ | |
11130 // +-------------+ | |
11139 // The AND node may be safely removed for some combinations of inputs. In
11140 // particular we need to take into account the extension type of the Input,
11141 // the exact values of AddConstant, CompConstant, and CC, along with the nominal
11142 // width of the input (this can work for any width inputs, the above graph is
11143 // specific to 8 bits.
11145 // The specific equations were worked out by generating output tables for each
11146 // AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The
11147 // problem was simplified by working with 4 bit inputs, which means we only
11148 // needed to reason about 24 distinct bit patterns: 8 patterns unique to zero
11149 // extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8
11150 // patterns present in both extensions (0,7). For every distinct set of
11151 // AddConstant and CompConstants bit patterns we can consider the masked and
11152 // unmasked versions to be equivalent if the result of this function is true for
11153 // all 16 distinct bit patterns of for the current extension type of Input (w0).
11156 // and w10, w8, #0x0f
11158 // cset w9, AArch64CC
11160 // cset w11, AArch64CC
11165 // Since the above function shows when the outputs are equivalent it defines
11166 // when it is safe to remove the AND. Unfortunately it only runs on AArch64 and
11167 // would be expensive to run during compiles. The equations below were written
11168 // in a test harness that confirmed they gave equivalent outputs to the above
11169 // for all inputs function, so they can be used determine if the removal is
11172 // isEquivalentMaskless() is the code for testing if the AND can be removed
11173 // factored out of the DAG recognition as the DAG can take several forms.
11175 static bool isEquivalentMaskless(unsigned CC
, unsigned width
,
11176 ISD::LoadExtType ExtType
, int AddConstant
,
11177 int CompConstant
) {
11178 // By being careful about our equations and only writing the in term
11179 // symbolic values and well known constants (0, 1, -1, MaxUInt) we can
11180 // make them generally applicable to all bit widths.
11181 int MaxUInt
= (1 << width
);
11183 // For the purposes of these comparisons sign extending the type is
11184 // equivalent to zero extending the add and displacing it by half the integer
11185 // width. Provided we are careful and make sure our equations are valid over
11186 // the whole range we can just adjust the input and avoid writing equations
11187 // for sign extended inputs.
11188 if (ExtType
== ISD::SEXTLOAD
)
11189 AddConstant
-= (1 << (width
-1));
11192 case AArch64CC::LE
:
11193 case AArch64CC::GT
:
11194 if ((AddConstant
== 0) ||
11195 (CompConstant
== MaxUInt
- 1 && AddConstant
< 0) ||
11196 (AddConstant
>= 0 && CompConstant
< 0) ||
11197 (AddConstant
<= 0 && CompConstant
<= 0 && CompConstant
< AddConstant
))
11200 case AArch64CC::LT
:
11201 case AArch64CC::GE
:
11202 if ((AddConstant
== 0) ||
11203 (AddConstant
>= 0 && CompConstant
<= 0) ||
11204 (AddConstant
<= 0 && CompConstant
<= 0 && CompConstant
<= AddConstant
))
11207 case AArch64CC::HI
:
11208 case AArch64CC::LS
:
11209 if ((AddConstant
>= 0 && CompConstant
< 0) ||
11210 (AddConstant
<= 0 && CompConstant
>= -1 &&
11211 CompConstant
< AddConstant
+ MaxUInt
))
11214 case AArch64CC::PL
:
11215 case AArch64CC::MI
:
11216 if ((AddConstant
== 0) ||
11217 (AddConstant
> 0 && CompConstant
<= 0) ||
11218 (AddConstant
< 0 && CompConstant
<= AddConstant
))
11221 case AArch64CC::LO
:
11222 case AArch64CC::HS
:
11223 if ((AddConstant
>= 0 && CompConstant
<= 0) ||
11224 (AddConstant
<= 0 && CompConstant
>= 0 &&
11225 CompConstant
<= AddConstant
+ MaxUInt
))
11228 case AArch64CC::EQ
:
11229 case AArch64CC::NE
:
11230 if ((AddConstant
> 0 && CompConstant
< 0) ||
11231 (AddConstant
< 0 && CompConstant
>= 0 &&
11232 CompConstant
< AddConstant
+ MaxUInt
) ||
11233 (AddConstant
>= 0 && CompConstant
>= 0 &&
11234 CompConstant
>= AddConstant
) ||
11235 (AddConstant
<= 0 && CompConstant
< 0 && CompConstant
< AddConstant
))
11238 case AArch64CC::VS
:
11239 case AArch64CC::VC
:
11240 case AArch64CC::AL
:
11241 case AArch64CC::NV
:
11243 case AArch64CC::Invalid
:
11251 SDValue
performCONDCombine(SDNode
*N
,
11252 TargetLowering::DAGCombinerInfo
&DCI
,
11253 SelectionDAG
&DAG
, unsigned CCIndex
,
11254 unsigned CmpIndex
) {
11255 unsigned CC
= cast
<ConstantSDNode
>(N
->getOperand(CCIndex
))->getSExtValue();
11256 SDNode
*SubsNode
= N
->getOperand(CmpIndex
).getNode();
11257 unsigned CondOpcode
= SubsNode
->getOpcode();
11259 if (CondOpcode
!= AArch64ISD::SUBS
)
11262 // There is a SUBS feeding this condition. Is it fed by a mask we can
11265 SDNode
*AndNode
= SubsNode
->getOperand(0).getNode();
11266 unsigned MaskBits
= 0;
11268 if (AndNode
->getOpcode() != ISD::AND
)
11271 if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(AndNode
->getOperand(1))) {
11272 uint32_t CNV
= CN
->getZExtValue();
11275 else if (CNV
== 65535)
11282 SDValue AddValue
= AndNode
->getOperand(0);
11284 if (AddValue
.getOpcode() != ISD::ADD
)
11287 // The basic dag structure is correct, grab the inputs and validate them.
11289 SDValue AddInputValue1
= AddValue
.getNode()->getOperand(0);
11290 SDValue AddInputValue2
= AddValue
.getNode()->getOperand(1);
11291 SDValue SubsInputValue
= SubsNode
->getOperand(1);
11293 // The mask is present and the provenance of all the values is a smaller type,
11294 // lets see if the mask is superfluous.
11296 if (!isa
<ConstantSDNode
>(AddInputValue2
.getNode()) ||
11297 !isa
<ConstantSDNode
>(SubsInputValue
.getNode()))
11300 ISD::LoadExtType ExtType
;
11302 if (!checkValueWidth(SubsInputValue
, MaskBits
, ExtType
) ||
11303 !checkValueWidth(AddInputValue2
, MaskBits
, ExtType
) ||
11304 !checkValueWidth(AddInputValue1
, MaskBits
, ExtType
) )
11307 if(!isEquivalentMaskless(CC
, MaskBits
, ExtType
,
11308 cast
<ConstantSDNode
>(AddInputValue2
.getNode())->getSExtValue(),
11309 cast
<ConstantSDNode
>(SubsInputValue
.getNode())->getSExtValue()))
11312 // The AND is not necessary, remove it.
11314 SDVTList VTs
= DAG
.getVTList(SubsNode
->getValueType(0),
11315 SubsNode
->getValueType(1));
11316 SDValue Ops
[] = { AddValue
, SubsNode
->getOperand(1) };
11318 SDValue NewValue
= DAG
.getNode(CondOpcode
, SDLoc(SubsNode
), VTs
, Ops
);
11319 DAG
.ReplaceAllUsesWith(SubsNode
, NewValue
.getNode());
11321 return SDValue(N
, 0);
11324 // Optimize compare with zero and branch.
11325 static SDValue
performBRCONDCombine(SDNode
*N
,
11326 TargetLowering::DAGCombinerInfo
&DCI
,
11327 SelectionDAG
&DAG
) {
11328 MachineFunction
&MF
= DAG
.getMachineFunction();
11329 // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions
11330 // will not be produced, as they are conditional branch instructions that do
11332 if (MF
.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening
))
11335 if (SDValue NV
= performCONDCombine(N
, DCI
, DAG
, 2, 3))
11337 SDValue Chain
= N
->getOperand(0);
11338 SDValue Dest
= N
->getOperand(1);
11339 SDValue CCVal
= N
->getOperand(2);
11340 SDValue Cmp
= N
->getOperand(3);
11342 assert(isa
<ConstantSDNode
>(CCVal
) && "Expected a ConstantSDNode here!");
11343 unsigned CC
= cast
<ConstantSDNode
>(CCVal
)->getZExtValue();
11344 if (CC
!= AArch64CC::EQ
&& CC
!= AArch64CC::NE
)
11347 unsigned CmpOpc
= Cmp
.getOpcode();
11348 if (CmpOpc
!= AArch64ISD::ADDS
&& CmpOpc
!= AArch64ISD::SUBS
)
11351 // Only attempt folding if there is only one use of the flag and no use of the
11353 if (!Cmp
->hasNUsesOfValue(0, 0) || !Cmp
->hasNUsesOfValue(1, 1))
11356 SDValue LHS
= Cmp
.getOperand(0);
11357 SDValue RHS
= Cmp
.getOperand(1);
11359 assert(LHS
.getValueType() == RHS
.getValueType() &&
11360 "Expected the value type to be the same for both operands!");
11361 if (LHS
.getValueType() != MVT::i32
&& LHS
.getValueType() != MVT::i64
)
11364 if (isNullConstant(LHS
))
11365 std::swap(LHS
, RHS
);
11367 if (!isNullConstant(RHS
))
11370 if (LHS
.getOpcode() == ISD::SHL
|| LHS
.getOpcode() == ISD::SRA
||
11371 LHS
.getOpcode() == ISD::SRL
)
11374 // Fold the compare into the branch instruction.
11376 if (CC
== AArch64CC::EQ
)
11377 BR
= DAG
.getNode(AArch64ISD::CBZ
, SDLoc(N
), MVT::Other
, Chain
, LHS
, Dest
);
11379 BR
= DAG
.getNode(AArch64ISD::CBNZ
, SDLoc(N
), MVT::Other
, Chain
, LHS
, Dest
);
11381 // Do not add new nodes to DAG combiner worklist.
11382 DCI
.CombineTo(N
, BR
, false);
11387 // Optimize some simple tbz/tbnz cases. Returns the new operand and bit to test
11388 // as well as whether the test should be inverted. This code is required to
11389 // catch these cases (as opposed to standard dag combines) because
11390 // AArch64ISD::TBZ is matched during legalization.
11391 static SDValue
getTestBitOperand(SDValue Op
, unsigned &Bit
, bool &Invert
,
11392 SelectionDAG
&DAG
) {
11394 if (!Op
->hasOneUse())
11397 // We don't handle undef/constant-fold cases below, as they should have
11398 // already been taken care of (e.g. and of 0, test of undefined shifted bits,
11401 // (tbz (trunc x), b) -> (tbz x, b)
11402 // This case is just here to enable more of the below cases to be caught.
11403 if (Op
->getOpcode() == ISD::TRUNCATE
&&
11404 Bit
< Op
->getValueType(0).getSizeInBits()) {
11405 return getTestBitOperand(Op
->getOperand(0), Bit
, Invert
, DAG
);
11408 // (tbz (any_ext x), b) -> (tbz x, b) if we don't use the extended bits.
11409 if (Op
->getOpcode() == ISD::ANY_EXTEND
&&
11410 Bit
< Op
->getOperand(0).getValueSizeInBits()) {
11411 return getTestBitOperand(Op
->getOperand(0), Bit
, Invert
, DAG
);
11414 if (Op
->getNumOperands() != 2)
11417 auto *C
= dyn_cast
<ConstantSDNode
>(Op
->getOperand(1));
11421 switch (Op
->getOpcode()) {
11425 // (tbz (and x, m), b) -> (tbz x, b)
11427 if ((C
->getZExtValue() >> Bit
) & 1)
11428 return getTestBitOperand(Op
->getOperand(0), Bit
, Invert
, DAG
);
11431 // (tbz (shl x, c), b) -> (tbz x, b-c)
11433 if (C
->getZExtValue() <= Bit
&&
11434 (Bit
- C
->getZExtValue()) < Op
->getValueType(0).getSizeInBits()) {
11435 Bit
= Bit
- C
->getZExtValue();
11436 return getTestBitOperand(Op
->getOperand(0), Bit
, Invert
, DAG
);
11440 // (tbz (sra x, c), b) -> (tbz x, b+c) or (tbz x, msb) if b+c is > # bits in x
11442 Bit
= Bit
+ C
->getZExtValue();
11443 if (Bit
>= Op
->getValueType(0).getSizeInBits())
11444 Bit
= Op
->getValueType(0).getSizeInBits() - 1;
11445 return getTestBitOperand(Op
->getOperand(0), Bit
, Invert
, DAG
);
11447 // (tbz (srl x, c), b) -> (tbz x, b+c)
11449 if ((Bit
+ C
->getZExtValue()) < Op
->getValueType(0).getSizeInBits()) {
11450 Bit
= Bit
+ C
->getZExtValue();
11451 return getTestBitOperand(Op
->getOperand(0), Bit
, Invert
, DAG
);
11455 // (tbz (xor x, -1), b) -> (tbnz x, b)
11457 if ((C
->getZExtValue() >> Bit
) & 1)
11459 return getTestBitOperand(Op
->getOperand(0), Bit
, Invert
, DAG
);
11463 // Optimize test single bit zero/non-zero and branch.
11464 static SDValue
performTBZCombine(SDNode
*N
,
11465 TargetLowering::DAGCombinerInfo
&DCI
,
11466 SelectionDAG
&DAG
) {
11467 unsigned Bit
= cast
<ConstantSDNode
>(N
->getOperand(2))->getZExtValue();
11468 bool Invert
= false;
11469 SDValue TestSrc
= N
->getOperand(1);
11470 SDValue NewTestSrc
= getTestBitOperand(TestSrc
, Bit
, Invert
, DAG
);
11472 if (TestSrc
== NewTestSrc
)
11475 unsigned NewOpc
= N
->getOpcode();
11477 if (NewOpc
== AArch64ISD::TBZ
)
11478 NewOpc
= AArch64ISD::TBNZ
;
11480 assert(NewOpc
== AArch64ISD::TBNZ
);
11481 NewOpc
= AArch64ISD::TBZ
;
11486 return DAG
.getNode(NewOpc
, DL
, MVT::Other
, N
->getOperand(0), NewTestSrc
,
11487 DAG
.getConstant(Bit
, DL
, MVT::i64
), N
->getOperand(3));
11490 // vselect (v1i1 setcc) ->
11491 // vselect (v1iXX setcc) (XX is the size of the compared operand type)
11492 // FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as
11493 // condition. If it can legalize "VSELECT v1i1" correctly, no need to combine
11495 static SDValue
performVSelectCombine(SDNode
*N
, SelectionDAG
&DAG
) {
11496 SDValue N0
= N
->getOperand(0);
11497 EVT CCVT
= N0
.getValueType();
11499 if (N0
.getOpcode() != ISD::SETCC
|| CCVT
.getVectorNumElements() != 1 ||
11500 CCVT
.getVectorElementType() != MVT::i1
)
11503 EVT ResVT
= N
->getValueType(0);
11504 EVT CmpVT
= N0
.getOperand(0).getValueType();
11505 // Only combine when the result type is of the same size as the compared
11507 if (ResVT
.getSizeInBits() != CmpVT
.getSizeInBits())
11510 SDValue IfTrue
= N
->getOperand(1);
11511 SDValue IfFalse
= N
->getOperand(2);
11513 DAG
.getSetCC(SDLoc(N
), CmpVT
.changeVectorElementTypeToInteger(),
11514 N0
.getOperand(0), N0
.getOperand(1),
11515 cast
<CondCodeSDNode
>(N0
.getOperand(2))->get());
11516 return DAG
.getNode(ISD::VSELECT
, SDLoc(N
), ResVT
, SetCC
,
11520 /// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with
11521 /// the compare-mask instructions rather than going via NZCV, even if LHS and
11522 /// RHS are really scalar. This replaces any scalar setcc in the above pattern
11523 /// with a vector one followed by a DUP shuffle on the result.
11524 static SDValue
performSelectCombine(SDNode
*N
,
11525 TargetLowering::DAGCombinerInfo
&DCI
) {
11526 SelectionDAG
&DAG
= DCI
.DAG
;
11527 SDValue N0
= N
->getOperand(0);
11528 EVT ResVT
= N
->getValueType(0);
11530 if (N0
.getOpcode() != ISD::SETCC
)
11533 // Make sure the SETCC result is either i1 (initial DAG), or i32, the lowered
11534 // scalar SetCCResultType. We also don't expect vectors, because we assume
11535 // that selects fed by vector SETCCs are canonicalized to VSELECT.
11536 assert((N0
.getValueType() == MVT::i1
|| N0
.getValueType() == MVT::i32
) &&
11537 "Scalar-SETCC feeding SELECT has unexpected result type!");
11539 // If NumMaskElts == 0, the comparison is larger than select result. The
11540 // largest real NEON comparison is 64-bits per lane, which means the result is
11541 // at most 32-bits and an illegal vector. Just bail out for now.
11542 EVT SrcVT
= N0
.getOperand(0).getValueType();
11544 // Don't try to do this optimization when the setcc itself has i1 operands.
11545 // There are no legal vectors of i1, so this would be pointless.
11546 if (SrcVT
== MVT::i1
)
11549 int NumMaskElts
= ResVT
.getSizeInBits() / SrcVT
.getSizeInBits();
11550 if (!ResVT
.isVector() || NumMaskElts
== 0)
11553 SrcVT
= EVT::getVectorVT(*DAG
.getContext(), SrcVT
, NumMaskElts
);
11554 EVT CCVT
= SrcVT
.changeVectorElementTypeToInteger();
11556 // Also bail out if the vector CCVT isn't the same size as ResVT.
11557 // This can happen if the SETCC operand size doesn't divide the ResVT size
11558 // (e.g., f64 vs v3f32).
11559 if (CCVT
.getSizeInBits() != ResVT
.getSizeInBits())
11562 // Make sure we didn't create illegal types, if we're not supposed to.
11563 assert(DCI
.isBeforeLegalize() ||
11564 DAG
.getTargetLoweringInfo().isTypeLegal(SrcVT
));
11566 // First perform a vector comparison, where lane 0 is the one we're interested
11570 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, DL
, SrcVT
, N0
.getOperand(0));
11572 DAG
.getNode(ISD::SCALAR_TO_VECTOR
, DL
, SrcVT
, N0
.getOperand(1));
11573 SDValue SetCC
= DAG
.getNode(ISD::SETCC
, DL
, CCVT
, LHS
, RHS
, N0
.getOperand(2));
11575 // Now duplicate the comparison mask we want across all other lanes.
11576 SmallVector
<int, 8> DUPMask(CCVT
.getVectorNumElements(), 0);
11577 SDValue Mask
= DAG
.getVectorShuffle(CCVT
, DL
, SetCC
, SetCC
, DUPMask
);
11578 Mask
= DAG
.getNode(ISD::BITCAST
, DL
,
11579 ResVT
.changeVectorElementTypeToInteger(), Mask
);
11581 return DAG
.getSelect(DL
, ResVT
, Mask
, N
->getOperand(1), N
->getOperand(2));
11584 /// Get rid of unnecessary NVCASTs (that don't change the type).
11585 static SDValue
performNVCASTCombine(SDNode
*N
) {
11586 if (N
->getValueType(0) == N
->getOperand(0).getValueType())
11587 return N
->getOperand(0);
11592 // If all users of the globaladdr are of the form (globaladdr + constant), find
11593 // the smallest constant, fold it into the globaladdr's offset and rewrite the
11594 // globaladdr as (globaladdr + constant) - constant.
11595 static SDValue
performGlobalAddressCombine(SDNode
*N
, SelectionDAG
&DAG
,
11596 const AArch64Subtarget
*Subtarget
,
11597 const TargetMachine
&TM
) {
11598 auto *GN
= cast
<GlobalAddressSDNode
>(N
);
11599 if (Subtarget
->ClassifyGlobalReference(GN
->getGlobal(), TM
) !=
11600 AArch64II::MO_NO_FLAG
)
11603 uint64_t MinOffset
= -1ull;
11604 for (SDNode
*N
: GN
->uses()) {
11605 if (N
->getOpcode() != ISD::ADD
)
11607 auto *C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(0));
11609 C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
11612 MinOffset
= std::min(MinOffset
, C
->getZExtValue());
11614 uint64_t Offset
= MinOffset
+ GN
->getOffset();
11616 // Require that the new offset is larger than the existing one. Otherwise, we
11617 // can end up oscillating between two possible DAGs, for example,
11618 // (add (add globaladdr + 10, -1), 1) and (add globaladdr + 9, 1).
11619 if (Offset
<= uint64_t(GN
->getOffset()))
11622 // Check whether folding this offset is legal. It must not go out of bounds of
11623 // the referenced object to avoid violating the code model, and must be
11624 // smaller than 2^21 because this is the largest offset expressible in all
11627 // This check also prevents us from folding negative offsets, which will end
11628 // up being treated in the same way as large positive ones. They could also
11629 // cause code model violations, and aren't really common enough to matter.
11630 if (Offset
>= (1 << 21))
11633 const GlobalValue
*GV
= GN
->getGlobal();
11634 Type
*T
= GV
->getValueType();
11635 if (!T
->isSized() ||
11636 Offset
> GV
->getParent()->getDataLayout().getTypeAllocSize(T
))
11640 SDValue Result
= DAG
.getGlobalAddress(GV
, DL
, MVT::i64
, Offset
);
11641 return DAG
.getNode(ISD::SUB
, DL
, MVT::i64
, Result
,
11642 DAG
.getConstant(MinOffset
, DL
, MVT::i64
));
11645 SDValue
AArch64TargetLowering::PerformDAGCombine(SDNode
*N
,
11646 DAGCombinerInfo
&DCI
) const {
11647 SelectionDAG
&DAG
= DCI
.DAG
;
11648 switch (N
->getOpcode()) {
11650 LLVM_DEBUG(dbgs() << "Custom combining: skipping\n");
11654 return performAddSubLongCombine(N
, DCI
, DAG
);
11656 return performXorCombine(N
, DAG
, DCI
, Subtarget
);
11658 return performMulCombine(N
, DAG
, DCI
, Subtarget
);
11659 case ISD::SINT_TO_FP
:
11660 case ISD::UINT_TO_FP
:
11661 return performIntToFpCombine(N
, DAG
, Subtarget
);
11662 case ISD::FP_TO_SINT
:
11663 case ISD::FP_TO_UINT
:
11664 return performFpToIntCombine(N
, DAG
, DCI
, Subtarget
);
11666 return performFDivCombine(N
, DAG
, DCI
, Subtarget
);
11668 return performORCombine(N
, DCI
, Subtarget
);
11670 return performANDCombine(N
, DCI
);
11672 return performSRLCombine(N
, DCI
);
11673 case ISD::INTRINSIC_WO_CHAIN
:
11674 return performIntrinsicCombine(N
, DCI
, Subtarget
);
11675 case ISD::ANY_EXTEND
:
11676 case ISD::ZERO_EXTEND
:
11677 case ISD::SIGN_EXTEND
:
11678 return performExtendCombine(N
, DCI
, DAG
);
11680 return performBitcastCombine(N
, DCI
, DAG
);
11681 case ISD::CONCAT_VECTORS
:
11682 return performConcatVectorsCombine(N
, DCI
, DAG
);
11684 return performSelectCombine(N
, DCI
);
11686 return performVSelectCombine(N
, DCI
.DAG
);
11688 if (performTBISimplification(N
->getOperand(1), DCI
, DAG
))
11689 return SDValue(N
, 0);
11692 return performSTORECombine(N
, DCI
, DAG
, Subtarget
);
11693 case AArch64ISD::BRCOND
:
11694 return performBRCONDCombine(N
, DCI
, DAG
);
11695 case AArch64ISD::TBNZ
:
11696 case AArch64ISD::TBZ
:
11697 return performTBZCombine(N
, DCI
, DAG
);
11698 case AArch64ISD::CSEL
:
11699 return performCONDCombine(N
, DCI
, DAG
, 2, 3);
11700 case AArch64ISD::DUP
:
11701 return performPostLD1Combine(N
, DCI
, false);
11702 case AArch64ISD::NVCAST
:
11703 return performNVCASTCombine(N
);
11704 case ISD::INSERT_VECTOR_ELT
:
11705 return performPostLD1Combine(N
, DCI
, true);
11706 case ISD::INTRINSIC_VOID
:
11707 case ISD::INTRINSIC_W_CHAIN
:
11708 switch (cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue()) {
11709 case Intrinsic::aarch64_neon_ld2
:
11710 case Intrinsic::aarch64_neon_ld3
:
11711 case Intrinsic::aarch64_neon_ld4
:
11712 case Intrinsic::aarch64_neon_ld1x2
:
11713 case Intrinsic::aarch64_neon_ld1x3
:
11714 case Intrinsic::aarch64_neon_ld1x4
:
11715 case Intrinsic::aarch64_neon_ld2lane
:
11716 case Intrinsic::aarch64_neon_ld3lane
:
11717 case Intrinsic::aarch64_neon_ld4lane
:
11718 case Intrinsic::aarch64_neon_ld2r
:
11719 case Intrinsic::aarch64_neon_ld3r
:
11720 case Intrinsic::aarch64_neon_ld4r
:
11721 case Intrinsic::aarch64_neon_st2
:
11722 case Intrinsic::aarch64_neon_st3
:
11723 case Intrinsic::aarch64_neon_st4
:
11724 case Intrinsic::aarch64_neon_st1x2
:
11725 case Intrinsic::aarch64_neon_st1x3
:
11726 case Intrinsic::aarch64_neon_st1x4
:
11727 case Intrinsic::aarch64_neon_st2lane
:
11728 case Intrinsic::aarch64_neon_st3lane
:
11729 case Intrinsic::aarch64_neon_st4lane
:
11730 return performNEONPostLDSTCombine(N
, DCI
, DAG
);
11735 case ISD::GlobalAddress
:
11736 return performGlobalAddressCombine(N
, DAG
, Subtarget
, getTargetMachine());
11741 // Check if the return value is used as only a return value, as otherwise
11742 // we can't perform a tail-call. In particular, we need to check for
11743 // target ISD nodes that are returns and any other "odd" constructs
11744 // that the generic analysis code won't necessarily catch.
11745 bool AArch64TargetLowering::isUsedByReturnOnly(SDNode
*N
,
11746 SDValue
&Chain
) const {
11747 if (N
->getNumValues() != 1)
11749 if (!N
->hasNUsesOfValue(1, 0))
11752 SDValue TCChain
= Chain
;
11753 SDNode
*Copy
= *N
->use_begin();
11754 if (Copy
->getOpcode() == ISD::CopyToReg
) {
11755 // If the copy has a glue operand, we conservatively assume it isn't safe to
11756 // perform a tail call.
11757 if (Copy
->getOperand(Copy
->getNumOperands() - 1).getValueType() ==
11760 TCChain
= Copy
->getOperand(0);
11761 } else if (Copy
->getOpcode() != ISD::FP_EXTEND
)
11764 bool HasRet
= false;
11765 for (SDNode
*Node
: Copy
->uses()) {
11766 if (Node
->getOpcode() != AArch64ISD::RET_FLAG
)
11778 // Return whether the an instruction can potentially be optimized to a tail
11779 // call. This will cause the optimizers to attempt to move, or duplicate,
11780 // return instructions to help enable tail call optimizations for this
11782 bool AArch64TargetLowering::mayBeEmittedAsTailCall(const CallInst
*CI
) const {
11783 return CI
->isTailCall();
11786 bool AArch64TargetLowering::getIndexedAddressParts(SDNode
*Op
, SDValue
&Base
,
11788 ISD::MemIndexedMode
&AM
,
11790 SelectionDAG
&DAG
) const {
11791 if (Op
->getOpcode() != ISD::ADD
&& Op
->getOpcode() != ISD::SUB
)
11794 Base
= Op
->getOperand(0);
11795 // All of the indexed addressing mode instructions take a signed
11796 // 9 bit immediate offset.
11797 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Op
->getOperand(1))) {
11798 int64_t RHSC
= RHS
->getSExtValue();
11799 if (Op
->getOpcode() == ISD::SUB
)
11800 RHSC
= -(uint64_t)RHSC
;
11801 if (!isInt
<9>(RHSC
))
11803 IsInc
= (Op
->getOpcode() == ISD::ADD
);
11804 Offset
= Op
->getOperand(1);
11810 bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode
*N
, SDValue
&Base
,
11812 ISD::MemIndexedMode
&AM
,
11813 SelectionDAG
&DAG
) const {
11816 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
11817 VT
= LD
->getMemoryVT();
11818 Ptr
= LD
->getBasePtr();
11819 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
11820 VT
= ST
->getMemoryVT();
11821 Ptr
= ST
->getBasePtr();
11826 if (!getIndexedAddressParts(Ptr
.getNode(), Base
, Offset
, AM
, IsInc
, DAG
))
11828 AM
= IsInc
? ISD::PRE_INC
: ISD::PRE_DEC
;
11832 bool AArch64TargetLowering::getPostIndexedAddressParts(
11833 SDNode
*N
, SDNode
*Op
, SDValue
&Base
, SDValue
&Offset
,
11834 ISD::MemIndexedMode
&AM
, SelectionDAG
&DAG
) const {
11837 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
11838 VT
= LD
->getMemoryVT();
11839 Ptr
= LD
->getBasePtr();
11840 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
11841 VT
= ST
->getMemoryVT();
11842 Ptr
= ST
->getBasePtr();
11847 if (!getIndexedAddressParts(Op
, Base
, Offset
, AM
, IsInc
, DAG
))
11849 // Post-indexing updates the base, so it's not a valid transform
11850 // if that's not the same as the load's pointer.
11853 AM
= IsInc
? ISD::POST_INC
: ISD::POST_DEC
;
11857 static void ReplaceBITCASTResults(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
11858 SelectionDAG
&DAG
) {
11860 SDValue Op
= N
->getOperand(0);
11862 if (N
->getValueType(0) != MVT::i16
|| Op
.getValueType() != MVT::f16
)
11866 DAG
.getMachineNode(TargetOpcode::INSERT_SUBREG
, DL
, MVT::f32
,
11867 DAG
.getUNDEF(MVT::i32
), Op
,
11868 DAG
.getTargetConstant(AArch64::hsub
, DL
, MVT::i32
)),
11870 Op
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::i32
, Op
);
11871 Results
.push_back(DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i16
, Op
));
11874 static void ReplaceReductionResults(SDNode
*N
,
11875 SmallVectorImpl
<SDValue
> &Results
,
11876 SelectionDAG
&DAG
, unsigned InterOp
,
11877 unsigned AcrossOp
) {
11881 std::tie(LoVT
, HiVT
) = DAG
.GetSplitDestVTs(N
->getValueType(0));
11882 std::tie(Lo
, Hi
) = DAG
.SplitVectorOperand(N
, 0);
11883 SDValue InterVal
= DAG
.getNode(InterOp
, dl
, LoVT
, Lo
, Hi
);
11884 SDValue SplitVal
= DAG
.getNode(AcrossOp
, dl
, LoVT
, InterVal
);
11885 Results
.push_back(SplitVal
);
11888 static std::pair
<SDValue
, SDValue
> splitInt128(SDValue N
, SelectionDAG
&DAG
) {
11890 SDValue Lo
= DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i64
, N
);
11891 SDValue Hi
= DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i64
,
11892 DAG
.getNode(ISD::SRL
, DL
, MVT::i128
, N
,
11893 DAG
.getConstant(64, DL
, MVT::i64
)));
11894 return std::make_pair(Lo
, Hi
);
11897 // Create an even/odd pair of X registers holding integer value V.
11898 static SDValue
createGPRPairNode(SelectionDAG
&DAG
, SDValue V
) {
11899 SDLoc
dl(V
.getNode());
11900 SDValue VLo
= DAG
.getAnyExtOrTrunc(V
, dl
, MVT::i64
);
11901 SDValue VHi
= DAG
.getAnyExtOrTrunc(
11902 DAG
.getNode(ISD::SRL
, dl
, MVT::i128
, V
, DAG
.getConstant(64, dl
, MVT::i64
)),
11904 if (DAG
.getDataLayout().isBigEndian())
11905 std::swap (VLo
, VHi
);
11907 DAG
.getTargetConstant(AArch64::XSeqPairsClassRegClassID
, dl
, MVT::i32
);
11908 SDValue SubReg0
= DAG
.getTargetConstant(AArch64::sube64
, dl
, MVT::i32
);
11909 SDValue SubReg1
= DAG
.getTargetConstant(AArch64::subo64
, dl
, MVT::i32
);
11910 const SDValue Ops
[] = { RegClass
, VLo
, SubReg0
, VHi
, SubReg1
};
11912 DAG
.getMachineNode(TargetOpcode::REG_SEQUENCE
, dl
, MVT::Untyped
, Ops
), 0);
11915 static void ReplaceCMP_SWAP_128Results(SDNode
*N
,
11916 SmallVectorImpl
<SDValue
> &Results
,
11918 const AArch64Subtarget
*Subtarget
) {
11919 assert(N
->getValueType(0) == MVT::i128
&&
11920 "AtomicCmpSwap on types less than 128 should be legal");
11922 if (Subtarget
->hasLSE()) {
11923 // LSE has a 128-bit compare and swap (CASP), but i128 is not a legal type,
11924 // so lower it here, wrapped in REG_SEQUENCE and EXTRACT_SUBREG.
11926 createGPRPairNode(DAG
, N
->getOperand(2)), // Compare value
11927 createGPRPairNode(DAG
, N
->getOperand(3)), // Store value
11928 N
->getOperand(1), // Ptr
11929 N
->getOperand(0), // Chain in
11932 MachineMemOperand
*MemOp
= cast
<MemSDNode
>(N
)->getMemOperand();
11935 switch (MemOp
->getOrdering()) {
11936 case AtomicOrdering::Monotonic
:
11937 Opcode
= AArch64::CASPX
;
11939 case AtomicOrdering::Acquire
:
11940 Opcode
= AArch64::CASPAX
;
11942 case AtomicOrdering::Release
:
11943 Opcode
= AArch64::CASPLX
;
11945 case AtomicOrdering::AcquireRelease
:
11946 case AtomicOrdering::SequentiallyConsistent
:
11947 Opcode
= AArch64::CASPALX
;
11950 llvm_unreachable("Unexpected ordering!");
11953 MachineSDNode
*CmpSwap
= DAG
.getMachineNode(
11954 Opcode
, SDLoc(N
), DAG
.getVTList(MVT::Untyped
, MVT::Other
), Ops
);
11955 DAG
.setNodeMemRefs(CmpSwap
, {MemOp
});
11957 unsigned SubReg1
= AArch64::sube64
, SubReg2
= AArch64::subo64
;
11958 if (DAG
.getDataLayout().isBigEndian())
11959 std::swap(SubReg1
, SubReg2
);
11960 Results
.push_back(DAG
.getTargetExtractSubreg(SubReg1
, SDLoc(N
), MVT::i64
,
11961 SDValue(CmpSwap
, 0)));
11962 Results
.push_back(DAG
.getTargetExtractSubreg(SubReg2
, SDLoc(N
), MVT::i64
,
11963 SDValue(CmpSwap
, 0)));
11964 Results
.push_back(SDValue(CmpSwap
, 1)); // Chain out
11968 auto Desired
= splitInt128(N
->getOperand(2), DAG
);
11969 auto New
= splitInt128(N
->getOperand(3), DAG
);
11970 SDValue Ops
[] = {N
->getOperand(1), Desired
.first
, Desired
.second
,
11971 New
.first
, New
.second
, N
->getOperand(0)};
11972 SDNode
*CmpSwap
= DAG
.getMachineNode(
11973 AArch64::CMP_SWAP_128
, SDLoc(N
),
11974 DAG
.getVTList(MVT::i64
, MVT::i64
, MVT::i32
, MVT::Other
), Ops
);
11976 MachineMemOperand
*MemOp
= cast
<MemSDNode
>(N
)->getMemOperand();
11977 DAG
.setNodeMemRefs(cast
<MachineSDNode
>(CmpSwap
), {MemOp
});
11979 Results
.push_back(SDValue(CmpSwap
, 0));
11980 Results
.push_back(SDValue(CmpSwap
, 1));
11981 Results
.push_back(SDValue(CmpSwap
, 3));
11984 void AArch64TargetLowering::ReplaceNodeResults(
11985 SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
, SelectionDAG
&DAG
) const {
11986 switch (N
->getOpcode()) {
11988 llvm_unreachable("Don't know how to custom expand this");
11990 ReplaceBITCASTResults(N
, Results
, DAG
);
11992 case ISD::VECREDUCE_ADD
:
11993 case ISD::VECREDUCE_SMAX
:
11994 case ISD::VECREDUCE_SMIN
:
11995 case ISD::VECREDUCE_UMAX
:
11996 case ISD::VECREDUCE_UMIN
:
11997 Results
.push_back(LowerVECREDUCE(SDValue(N
, 0), DAG
));
12000 case AArch64ISD::SADDV
:
12001 ReplaceReductionResults(N
, Results
, DAG
, ISD::ADD
, AArch64ISD::SADDV
);
12003 case AArch64ISD::UADDV
:
12004 ReplaceReductionResults(N
, Results
, DAG
, ISD::ADD
, AArch64ISD::UADDV
);
12006 case AArch64ISD::SMINV
:
12007 ReplaceReductionResults(N
, Results
, DAG
, ISD::SMIN
, AArch64ISD::SMINV
);
12009 case AArch64ISD::UMINV
:
12010 ReplaceReductionResults(N
, Results
, DAG
, ISD::UMIN
, AArch64ISD::UMINV
);
12012 case AArch64ISD::SMAXV
:
12013 ReplaceReductionResults(N
, Results
, DAG
, ISD::SMAX
, AArch64ISD::SMAXV
);
12015 case AArch64ISD::UMAXV
:
12016 ReplaceReductionResults(N
, Results
, DAG
, ISD::UMAX
, AArch64ISD::UMAXV
);
12018 case ISD::FP_TO_UINT
:
12019 case ISD::FP_TO_SINT
:
12020 assert(N
->getValueType(0) == MVT::i128
&& "unexpected illegal conversion");
12021 // Let normal code take care of it by not adding anything to Results.
12023 case ISD::ATOMIC_CMP_SWAP
:
12024 ReplaceCMP_SWAP_128Results(N
, Results
, DAG
, Subtarget
);
12029 bool AArch64TargetLowering::useLoadStackGuardNode() const {
12030 if (Subtarget
->isTargetAndroid() || Subtarget
->isTargetFuchsia())
12031 return TargetLowering::useLoadStackGuardNode();
12035 unsigned AArch64TargetLowering::combineRepeatedFPDivisors() const {
12036 // Combine multiple FDIVs with the same divisor into multiple FMULs by the
12037 // reciprocal if there are three or more FDIVs.
12041 TargetLoweringBase::LegalizeTypeAction
12042 AArch64TargetLowering::getPreferredVectorAction(MVT VT
) const {
12043 // During type legalization, we prefer to widen v1i8, v1i16, v1i32 to v8i8,
12044 // v4i16, v2i32 instead of to promote.
12045 if (VT
== MVT::v1i8
|| VT
== MVT::v1i16
|| VT
== MVT::v1i32
||
12047 return TypeWidenVector
;
12049 return TargetLoweringBase::getPreferredVectorAction(VT
);
12052 // Loads and stores less than 128-bits are already atomic; ones above that
12053 // are doomed anyway, so defer to the default libcall and blame the OS when
12054 // things go wrong.
12055 bool AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst
*SI
) const {
12056 unsigned Size
= SI
->getValueOperand()->getType()->getPrimitiveSizeInBits();
12057 return Size
== 128;
12060 // Loads and stores less than 128-bits are already atomic; ones above that
12061 // are doomed anyway, so defer to the default libcall and blame the OS when
12062 // things go wrong.
12063 TargetLowering::AtomicExpansionKind
12064 AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst
*LI
) const {
12065 unsigned Size
= LI
->getType()->getPrimitiveSizeInBits();
12066 return Size
== 128 ? AtomicExpansionKind::LLSC
: AtomicExpansionKind::None
;
12069 // For the real atomic operations, we have ldxr/stxr up to 128 bits,
12070 TargetLowering::AtomicExpansionKind
12071 AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst
*AI
) const {
12072 if (AI
->isFloatingPointOperation())
12073 return AtomicExpansionKind::CmpXChg
;
12075 unsigned Size
= AI
->getType()->getPrimitiveSizeInBits();
12076 if (Size
> 128) return AtomicExpansionKind::None
;
12077 // Nand not supported in LSE.
12078 if (AI
->getOperation() == AtomicRMWInst::Nand
) return AtomicExpansionKind::LLSC
;
12079 // Leave 128 bits to LLSC.
12080 return (Subtarget
->hasLSE() && Size
< 128) ? AtomicExpansionKind::None
: AtomicExpansionKind::LLSC
;
12083 TargetLowering::AtomicExpansionKind
12084 AArch64TargetLowering::shouldExpandAtomicCmpXchgInIR(
12085 AtomicCmpXchgInst
*AI
) const {
12086 // If subtarget has LSE, leave cmpxchg intact for codegen.
12087 if (Subtarget
->hasLSE())
12088 return AtomicExpansionKind::None
;
12089 // At -O0, fast-regalloc cannot cope with the live vregs necessary to
12090 // implement cmpxchg without spilling. If the address being exchanged is also
12091 // on the stack and close enough to the spill slot, this can lead to a
12092 // situation where the monitor always gets cleared and the atomic operation
12093 // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
12094 if (getTargetMachine().getOptLevel() == 0)
12095 return AtomicExpansionKind::None
;
12096 return AtomicExpansionKind::LLSC
;
12099 Value
*AArch64TargetLowering::emitLoadLinked(IRBuilder
<> &Builder
, Value
*Addr
,
12100 AtomicOrdering Ord
) const {
12101 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
12102 Type
*ValTy
= cast
<PointerType
>(Addr
->getType())->getElementType();
12103 bool IsAcquire
= isAcquireOrStronger(Ord
);
12105 // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd
12106 // intrinsic must return {i64, i64} and we have to recombine them into a
12107 // single i128 here.
12108 if (ValTy
->getPrimitiveSizeInBits() == 128) {
12109 Intrinsic::ID Int
=
12110 IsAcquire
? Intrinsic::aarch64_ldaxp
: Intrinsic::aarch64_ldxp
;
12111 Function
*Ldxr
= Intrinsic::getDeclaration(M
, Int
);
12113 Addr
= Builder
.CreateBitCast(Addr
, Type::getInt8PtrTy(M
->getContext()));
12114 Value
*LoHi
= Builder
.CreateCall(Ldxr
, Addr
, "lohi");
12116 Value
*Lo
= Builder
.CreateExtractValue(LoHi
, 0, "lo");
12117 Value
*Hi
= Builder
.CreateExtractValue(LoHi
, 1, "hi");
12118 Lo
= Builder
.CreateZExt(Lo
, ValTy
, "lo64");
12119 Hi
= Builder
.CreateZExt(Hi
, ValTy
, "hi64");
12120 return Builder
.CreateOr(
12121 Lo
, Builder
.CreateShl(Hi
, ConstantInt::get(ValTy
, 64)), "val64");
12124 Type
*Tys
[] = { Addr
->getType() };
12125 Intrinsic::ID Int
=
12126 IsAcquire
? Intrinsic::aarch64_ldaxr
: Intrinsic::aarch64_ldxr
;
12127 Function
*Ldxr
= Intrinsic::getDeclaration(M
, Int
, Tys
);
12129 Type
*EltTy
= cast
<PointerType
>(Addr
->getType())->getElementType();
12131 const DataLayout
&DL
= M
->getDataLayout();
12132 IntegerType
*IntEltTy
= Builder
.getIntNTy(DL
.getTypeSizeInBits(EltTy
));
12133 Value
*Trunc
= Builder
.CreateTrunc(Builder
.CreateCall(Ldxr
, Addr
), IntEltTy
);
12135 return Builder
.CreateBitCast(Trunc
, EltTy
);
12138 void AArch64TargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
12139 IRBuilder
<> &Builder
) const {
12140 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
12141 Builder
.CreateCall(Intrinsic::getDeclaration(M
, Intrinsic::aarch64_clrex
));
12144 Value
*AArch64TargetLowering::emitStoreConditional(IRBuilder
<> &Builder
,
12145 Value
*Val
, Value
*Addr
,
12146 AtomicOrdering Ord
) const {
12147 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
12148 bool IsRelease
= isReleaseOrStronger(Ord
);
12150 // Since the intrinsics must have legal type, the i128 intrinsics take two
12151 // parameters: "i64, i64". We must marshal Val into the appropriate form
12152 // before the call.
12153 if (Val
->getType()->getPrimitiveSizeInBits() == 128) {
12154 Intrinsic::ID Int
=
12155 IsRelease
? Intrinsic::aarch64_stlxp
: Intrinsic::aarch64_stxp
;
12156 Function
*Stxr
= Intrinsic::getDeclaration(M
, Int
);
12157 Type
*Int64Ty
= Type::getInt64Ty(M
->getContext());
12159 Value
*Lo
= Builder
.CreateTrunc(Val
, Int64Ty
, "lo");
12160 Value
*Hi
= Builder
.CreateTrunc(Builder
.CreateLShr(Val
, 64), Int64Ty
, "hi");
12161 Addr
= Builder
.CreateBitCast(Addr
, Type::getInt8PtrTy(M
->getContext()));
12162 return Builder
.CreateCall(Stxr
, {Lo
, Hi
, Addr
});
12165 Intrinsic::ID Int
=
12166 IsRelease
? Intrinsic::aarch64_stlxr
: Intrinsic::aarch64_stxr
;
12167 Type
*Tys
[] = { Addr
->getType() };
12168 Function
*Stxr
= Intrinsic::getDeclaration(M
, Int
, Tys
);
12170 const DataLayout
&DL
= M
->getDataLayout();
12171 IntegerType
*IntValTy
= Builder
.getIntNTy(DL
.getTypeSizeInBits(Val
->getType()));
12172 Val
= Builder
.CreateBitCast(Val
, IntValTy
);
12174 return Builder
.CreateCall(Stxr
,
12175 {Builder
.CreateZExtOrBitCast(
12176 Val
, Stxr
->getFunctionType()->getParamType(0)),
12180 bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters(
12181 Type
*Ty
, CallingConv::ID CallConv
, bool isVarArg
) const {
12182 return Ty
->isArrayTy();
12185 bool AArch64TargetLowering::shouldNormalizeToSelectSequence(LLVMContext
&,
12190 static Value
*UseTlsOffset(IRBuilder
<> &IRB
, unsigned Offset
) {
12191 Module
*M
= IRB
.GetInsertBlock()->getParent()->getParent();
12192 Function
*ThreadPointerFunc
=
12193 Intrinsic::getDeclaration(M
, Intrinsic::thread_pointer
);
12194 return IRB
.CreatePointerCast(
12195 IRB
.CreateConstGEP1_32(IRB
.getInt8Ty(), IRB
.CreateCall(ThreadPointerFunc
),
12197 IRB
.getInt8PtrTy()->getPointerTo(0));
12200 Value
*AArch64TargetLowering::getIRStackGuard(IRBuilder
<> &IRB
) const {
12201 // Android provides a fixed TLS slot for the stack cookie. See the definition
12202 // of TLS_SLOT_STACK_GUARD in
12203 // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
12204 if (Subtarget
->isTargetAndroid())
12205 return UseTlsOffset(IRB
, 0x28);
12207 // Fuchsia is similar.
12208 // <zircon/tls.h> defines ZX_TLS_STACK_GUARD_OFFSET with this value.
12209 if (Subtarget
->isTargetFuchsia())
12210 return UseTlsOffset(IRB
, -0x10);
12212 return TargetLowering::getIRStackGuard(IRB
);
12215 void AArch64TargetLowering::insertSSPDeclarations(Module
&M
) const {
12216 // MSVC CRT provides functionalities for stack protection.
12217 if (Subtarget
->getTargetTriple().isWindowsMSVCEnvironment()) {
12218 // MSVC CRT has a global variable holding security cookie.
12219 M
.getOrInsertGlobal("__security_cookie",
12220 Type::getInt8PtrTy(M
.getContext()));
12222 // MSVC CRT has a function to validate security cookie.
12223 FunctionCallee SecurityCheckCookie
= M
.getOrInsertFunction(
12224 "__security_check_cookie", Type::getVoidTy(M
.getContext()),
12225 Type::getInt8PtrTy(M
.getContext()));
12226 if (Function
*F
= dyn_cast
<Function
>(SecurityCheckCookie
.getCallee())) {
12227 F
->setCallingConv(CallingConv::Win64
);
12228 F
->addAttribute(1, Attribute::AttrKind::InReg
);
12232 TargetLowering::insertSSPDeclarations(M
);
12235 Value
*AArch64TargetLowering::getSDagStackGuard(const Module
&M
) const {
12236 // MSVC CRT has a global variable holding security cookie.
12237 if (Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
12238 return M
.getGlobalVariable("__security_cookie");
12239 return TargetLowering::getSDagStackGuard(M
);
12242 Function
*AArch64TargetLowering::getSSPStackGuardCheck(const Module
&M
) const {
12243 // MSVC CRT has a function to validate security cookie.
12244 if (Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
12245 return M
.getFunction("__security_check_cookie");
12246 return TargetLowering::getSSPStackGuardCheck(M
);
12249 Value
*AArch64TargetLowering::getSafeStackPointerLocation(IRBuilder
<> &IRB
) const {
12250 // Android provides a fixed TLS slot for the SafeStack pointer. See the
12251 // definition of TLS_SLOT_SAFESTACK in
12252 // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
12253 if (Subtarget
->isTargetAndroid())
12254 return UseTlsOffset(IRB
, 0x48);
12256 // Fuchsia is similar.
12257 // <zircon/tls.h> defines ZX_TLS_UNSAFE_SP_OFFSET with this value.
12258 if (Subtarget
->isTargetFuchsia())
12259 return UseTlsOffset(IRB
, -0x8);
12261 return TargetLowering::getSafeStackPointerLocation(IRB
);
12264 bool AArch64TargetLowering::isMaskAndCmp0FoldingBeneficial(
12265 const Instruction
&AndI
) const {
12266 // Only sink 'and' mask to cmp use block if it is masking a single bit, since
12267 // this is likely to be fold the and/cmp/br into a single tbz instruction. It
12268 // may be beneficial to sink in other cases, but we would have to check that
12269 // the cmp would not get folded into the br to form a cbz for these to be
12271 ConstantInt
* Mask
= dyn_cast
<ConstantInt
>(AndI
.getOperand(1));
12274 return Mask
->getValue().isPowerOf2();
12277 bool AArch64TargetLowering::
12278 shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
12279 SDValue X
, ConstantSDNode
*XC
, ConstantSDNode
*CC
, SDValue Y
,
12280 unsigned OldShiftOpcode
, unsigned NewShiftOpcode
,
12281 SelectionDAG
&DAG
) const {
12282 // Does baseline recommend not to perform the fold by default?
12283 if (!TargetLowering::shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
12284 X
, XC
, CC
, Y
, OldShiftOpcode
, NewShiftOpcode
, DAG
))
12286 // Else, if this is a vector shift, prefer 'shl'.
12287 return X
.getValueType().isScalarInteger() || NewShiftOpcode
== ISD::SHL
;
12290 bool AArch64TargetLowering::shouldExpandShift(SelectionDAG
&DAG
,
12292 if (DAG
.getMachineFunction().getFunction().hasMinSize() &&
12293 !Subtarget
->isTargetWindows())
12298 void AArch64TargetLowering::initializeSplitCSR(MachineBasicBlock
*Entry
) const {
12299 // Update IsSplitCSR in AArch64unctionInfo.
12300 AArch64FunctionInfo
*AFI
= Entry
->getParent()->getInfo
<AArch64FunctionInfo
>();
12301 AFI
->setIsSplitCSR(true);
12304 void AArch64TargetLowering::insertCopiesSplitCSR(
12305 MachineBasicBlock
*Entry
,
12306 const SmallVectorImpl
<MachineBasicBlock
*> &Exits
) const {
12307 const AArch64RegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
12308 const MCPhysReg
*IStart
= TRI
->getCalleeSavedRegsViaCopy(Entry
->getParent());
12312 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
12313 MachineRegisterInfo
*MRI
= &Entry
->getParent()->getRegInfo();
12314 MachineBasicBlock::iterator MBBI
= Entry
->begin();
12315 for (const MCPhysReg
*I
= IStart
; *I
; ++I
) {
12316 const TargetRegisterClass
*RC
= nullptr;
12317 if (AArch64::GPR64RegClass
.contains(*I
))
12318 RC
= &AArch64::GPR64RegClass
;
12319 else if (AArch64::FPR64RegClass
.contains(*I
))
12320 RC
= &AArch64::FPR64RegClass
;
12322 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
12324 Register NewVR
= MRI
->createVirtualRegister(RC
);
12325 // Create copy from CSR to a virtual register.
12326 // FIXME: this currently does not emit CFI pseudo-instructions, it works
12327 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
12328 // nounwind. If we want to generalize this later, we may need to emit
12329 // CFI pseudo-instructions.
12330 assert(Entry
->getParent()->getFunction().hasFnAttribute(
12331 Attribute::NoUnwind
) &&
12332 "Function should be nounwind in insertCopiesSplitCSR!");
12333 Entry
->addLiveIn(*I
);
12334 BuildMI(*Entry
, MBBI
, DebugLoc(), TII
->get(TargetOpcode::COPY
), NewVR
)
12337 // Insert the copy-back instructions right before the terminator.
12338 for (auto *Exit
: Exits
)
12339 BuildMI(*Exit
, Exit
->getFirstTerminator(), DebugLoc(),
12340 TII
->get(TargetOpcode::COPY
), *I
)
12345 bool AArch64TargetLowering::isIntDivCheap(EVT VT
, AttributeList Attr
) const {
12346 // Integer division on AArch64 is expensive. However, when aggressively
12347 // optimizing for code size, we prefer to use a div instruction, as it is
12348 // usually smaller than the alternative sequence.
12349 // The exception to this is vector division. Since AArch64 doesn't have vector
12350 // integer division, leaving the division as-is is a loss even in terms of
12351 // size, because it will have to be scalarized, while the alternative code
12352 // sequence can be performed in vector form.
12354 Attr
.hasAttribute(AttributeList::FunctionIndex
, Attribute::MinSize
);
12355 return OptSize
&& !VT
.isVector();
12358 bool AArch64TargetLowering::preferIncOfAddToSubOfNot(EVT VT
) const {
12359 // We want inc-of-add for scalars and sub-of-not for vectors.
12360 return VT
.isScalarInteger();
12363 bool AArch64TargetLowering::enableAggressiveFMAFusion(EVT VT
) const {
12364 return Subtarget
->hasAggressiveFMA() && VT
.isFloatingPoint();
12368 AArch64TargetLowering::getVaListSizeInBits(const DataLayout
&DL
) const {
12369 if (Subtarget
->isTargetDarwin() || Subtarget
->isTargetWindows())
12370 return getPointerTy(DL
).getSizeInBits();
12372 return 3 * getPointerTy(DL
).getSizeInBits() + 2 * 32;
12375 void AArch64TargetLowering::finalizeLowering(MachineFunction
&MF
) const {
12376 MF
.getFrameInfo().computeMaxCallFrameSize(MF
);
12377 TargetLoweringBase::finalizeLowering(MF
);
12380 // Unlike X86, we let frame lowering assign offsets to all catch objects.
12381 bool AArch64TargetLowering::needsFixedCatchObjects() const {