1 //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This file implements a class to represent arbitrary precision
11 /// integral constant values and operations on them.
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_ADT_APINT_H
16 #define LLVM_ADT_APINT_H
18 #include "llvm/Support/Compiler.h"
19 #include "llvm/Support/MathExtras.h"
26 class FoldingSetNodeID
;
31 template <typename T
> class SmallVectorImpl
;
32 template <typename T
> class ArrayRef
;
33 template <typename T
> class Optional
;
37 inline APInt
operator-(APInt
);
39 //===----------------------------------------------------------------------===//
41 //===----------------------------------------------------------------------===//
43 /// Class for arbitrary precision integers.
45 /// APInt is a functional replacement for common case unsigned integer type like
46 /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
47 /// integer sizes and large integer value types such as 3-bits, 15-bits, or more
48 /// than 64-bits of precision. APInt provides a variety of arithmetic operators
49 /// and methods to manipulate integer values of any bit-width. It supports both
50 /// the typical integer arithmetic and comparison operations as well as bitwise
53 /// The class has several invariants worth noting:
54 /// * All bit, byte, and word positions are zero-based.
55 /// * Once the bit width is set, it doesn't change except by the Truncate,
56 /// SignExtend, or ZeroExtend operations.
57 /// * All binary operators must be on APInt instances of the same bit width.
58 /// Attempting to use these operators on instances with different bit
59 /// widths will yield an assertion.
60 /// * The value is stored canonically as an unsigned value. For operations
61 /// where it makes a difference, there are both signed and unsigned variants
62 /// of the operation. For example, sdiv and udiv. However, because the bit
63 /// widths must be the same, operations such as Mul and Add produce the same
64 /// results regardless of whether the values are interpreted as signed or
66 /// * In general, the class tries to follow the style of computation that LLVM
67 /// uses in its IR. This simplifies its use for LLVM.
69 class LLVM_NODISCARD APInt
{
71 typedef uint64_t WordType
;
73 /// This enum is used to hold the constants we needed for APInt.
75 /// Byte size of a word.
76 APINT_WORD_SIZE
= sizeof(WordType
),
78 APINT_BITS_PER_WORD
= APINT_WORD_SIZE
* CHAR_BIT
87 static const WordType WORDTYPE_MAX
= ~WordType(0);
90 /// This union is used to store the integer value. When the
91 /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
93 uint64_t VAL
; ///< Used to store the <= 64 bits integer value.
94 uint64_t *pVal
; ///< Used to store the >64 bits integer value.
97 unsigned BitWidth
; ///< The number of bits in this APInt.
99 friend struct DenseMapAPIntKeyInfo
;
103 /// Fast internal constructor
105 /// This constructor is used only internally for speed of construction of
106 /// temporaries. It is unsafe for general use so it is not public.
107 APInt(uint64_t *val
, unsigned bits
) : BitWidth(bits
) {
111 /// Determine if this APInt just has one word to store value.
113 /// \returns true if the number of bits <= 64, false otherwise.
114 bool isSingleWord() const { return BitWidth
<= APINT_BITS_PER_WORD
; }
116 /// Determine which word a bit is in.
118 /// \returns the word position for the specified bit position.
119 static unsigned whichWord(unsigned bitPosition
) {
120 return bitPosition
/ APINT_BITS_PER_WORD
;
123 /// Determine which bit in a word a bit is in.
125 /// \returns the bit position in a word for the specified bit position
127 static unsigned whichBit(unsigned bitPosition
) {
128 return bitPosition
% APINT_BITS_PER_WORD
;
131 /// Get a single bit mask.
133 /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
134 /// This method generates and returns a uint64_t (word) mask for a single
135 /// bit at a specific bit position. This is used to mask the bit in the
136 /// corresponding word.
137 static uint64_t maskBit(unsigned bitPosition
) {
138 return 1ULL << whichBit(bitPosition
);
141 /// Clear unused high order bits
143 /// This method is used internally to clear the top "N" bits in the high order
144 /// word that are not used by the APInt. This is needed after the most
145 /// significant word is assigned a value to ensure that those bits are
147 APInt
&clearUnusedBits() {
148 // Compute how many bits are used in the final word
149 unsigned WordBits
= ((BitWidth
-1) % APINT_BITS_PER_WORD
) + 1;
151 // Mask out the high bits.
152 uint64_t mask
= WORDTYPE_MAX
>> (APINT_BITS_PER_WORD
- WordBits
);
156 U
.pVal
[getNumWords() - 1] &= mask
;
160 /// Get the word corresponding to a bit position
161 /// \returns the corresponding word for the specified bit position.
162 uint64_t getWord(unsigned bitPosition
) const {
163 return isSingleWord() ? U
.VAL
: U
.pVal
[whichWord(bitPosition
)];
166 /// Utility method to change the bit width of this APInt to new bit width,
167 /// allocating and/or deallocating as necessary. There is no guarantee on the
168 /// value of any bits upon return. Caller should populate the bits after.
169 void reallocate(unsigned NewBitWidth
);
171 /// Convert a char array into an APInt
173 /// \param radix 2, 8, 10, 16, or 36
174 /// Converts a string into a number. The string must be non-empty
175 /// and well-formed as a number of the given base. The bit-width
176 /// must be sufficient to hold the result.
178 /// This is used by the constructors that take string arguments.
180 /// StringRef::getAsInteger is superficially similar but (1) does
181 /// not assume that the string is well-formed and (2) grows the
182 /// result to hold the input.
183 void fromString(unsigned numBits
, StringRef str
, uint8_t radix
);
185 /// An internal division function for dividing APInts.
187 /// This is used by the toString method to divide by the radix. It simply
188 /// provides a more convenient form of divide for internal use since KnuthDiv
189 /// has specific constraints on its inputs. If those constraints are not met
190 /// then it provides a simpler form of divide.
191 static void divide(const WordType
*LHS
, unsigned lhsWords
,
192 const WordType
*RHS
, unsigned rhsWords
, WordType
*Quotient
,
193 WordType
*Remainder
);
195 /// out-of-line slow case for inline constructor
196 void initSlowCase(uint64_t val
, bool isSigned
);
198 /// shared code between two array constructors
199 void initFromArray(ArrayRef
<uint64_t> array
);
201 /// out-of-line slow case for inline copy constructor
202 void initSlowCase(const APInt
&that
);
204 /// out-of-line slow case for shl
205 void shlSlowCase(unsigned ShiftAmt
);
207 /// out-of-line slow case for lshr.
208 void lshrSlowCase(unsigned ShiftAmt
);
210 /// out-of-line slow case for ashr.
211 void ashrSlowCase(unsigned ShiftAmt
);
213 /// out-of-line slow case for operator=
214 void AssignSlowCase(const APInt
&RHS
);
216 /// out-of-line slow case for operator==
217 bool EqualSlowCase(const APInt
&RHS
) const LLVM_READONLY
;
219 /// out-of-line slow case for countLeadingZeros
220 unsigned countLeadingZerosSlowCase() const LLVM_READONLY
;
222 /// out-of-line slow case for countLeadingOnes.
223 unsigned countLeadingOnesSlowCase() const LLVM_READONLY
;
225 /// out-of-line slow case for countTrailingZeros.
226 unsigned countTrailingZerosSlowCase() const LLVM_READONLY
;
228 /// out-of-line slow case for countTrailingOnes
229 unsigned countTrailingOnesSlowCase() const LLVM_READONLY
;
231 /// out-of-line slow case for countPopulation
232 unsigned countPopulationSlowCase() const LLVM_READONLY
;
234 /// out-of-line slow case for intersects.
235 bool intersectsSlowCase(const APInt
&RHS
) const LLVM_READONLY
;
237 /// out-of-line slow case for isSubsetOf.
238 bool isSubsetOfSlowCase(const APInt
&RHS
) const LLVM_READONLY
;
240 /// out-of-line slow case for setBits.
241 void setBitsSlowCase(unsigned loBit
, unsigned hiBit
);
243 /// out-of-line slow case for flipAllBits.
244 void flipAllBitsSlowCase();
246 /// out-of-line slow case for operator&=.
247 void AndAssignSlowCase(const APInt
& RHS
);
249 /// out-of-line slow case for operator|=.
250 void OrAssignSlowCase(const APInt
& RHS
);
252 /// out-of-line slow case for operator^=.
253 void XorAssignSlowCase(const APInt
& RHS
);
255 /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
256 /// to, or greater than RHS.
257 int compare(const APInt
&RHS
) const LLVM_READONLY
;
259 /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
260 /// to, or greater than RHS.
261 int compareSigned(const APInt
&RHS
) const LLVM_READONLY
;
264 /// \name Constructors
267 /// Create a new APInt of numBits width, initialized as val.
269 /// If isSigned is true then val is treated as if it were a signed value
270 /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
271 /// will be done. Otherwise, no sign extension occurs (high order bits beyond
272 /// the range of val are zero filled).
274 /// \param numBits the bit width of the constructed APInt
275 /// \param val the initial value of the APInt
276 /// \param isSigned how to treat signedness of val
277 APInt(unsigned numBits
, uint64_t val
, bool isSigned
= false)
278 : BitWidth(numBits
) {
279 assert(BitWidth
&& "bitwidth too small");
280 if (isSingleWord()) {
284 initSlowCase(val
, isSigned
);
288 /// Construct an APInt of numBits width, initialized as bigVal[].
290 /// Note that bigVal.size() can be smaller or larger than the corresponding
291 /// bit width but any extraneous bits will be dropped.
293 /// \param numBits the bit width of the constructed APInt
294 /// \param bigVal a sequence of words to form the initial value of the APInt
295 APInt(unsigned numBits
, ArrayRef
<uint64_t> bigVal
);
297 /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
298 /// deprecated because this constructor is prone to ambiguity with the
299 /// APInt(unsigned, uint64_t, bool) constructor.
301 /// If this overload is ever deleted, care should be taken to prevent calls
302 /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
304 APInt(unsigned numBits
, unsigned numWords
, const uint64_t bigVal
[]);
306 /// Construct an APInt from a string representation.
308 /// This constructor interprets the string \p str in the given radix. The
309 /// interpretation stops when the first character that is not suitable for the
310 /// radix is encountered, or the end of the string. Acceptable radix values
311 /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
312 /// string to require more bits than numBits.
314 /// \param numBits the bit width of the constructed APInt
315 /// \param str the string to be interpreted
316 /// \param radix the radix to use for the conversion
317 APInt(unsigned numBits
, StringRef str
, uint8_t radix
);
319 /// Simply makes *this a copy of that.
320 /// Copy Constructor.
321 APInt(const APInt
&that
) : BitWidth(that
.BitWidth
) {
328 /// Move Constructor.
329 APInt(APInt
&&that
) : BitWidth(that
.BitWidth
) {
330 memcpy(&U
, &that
.U
, sizeof(U
));
340 /// Default constructor that creates an uninteresting APInt
341 /// representing a 1-bit zero value.
343 /// This is useful for object deserialization (pair this with the static
345 explicit APInt() : BitWidth(1) { U
.VAL
= 0; }
347 /// Returns whether this instance allocated memory.
348 bool needsCleanup() const { return !isSingleWord(); }
350 /// Used to insert APInt objects, or objects that contain APInt objects, into
352 void Profile(FoldingSetNodeID
&id
) const;
355 /// \name Value Tests
358 /// Determine sign of this APInt.
360 /// This tests the high bit of this APInt to determine if it is set.
362 /// \returns true if this APInt is negative, false otherwise
363 bool isNegative() const { return (*this)[BitWidth
- 1]; }
365 /// Determine if this APInt Value is non-negative (>= 0)
367 /// This tests the high bit of the APInt to determine if it is unset.
368 bool isNonNegative() const { return !isNegative(); }
370 /// Determine if sign bit of this APInt is set.
372 /// This tests the high bit of this APInt to determine if it is set.
374 /// \returns true if this APInt has its sign bit set, false otherwise.
375 bool isSignBitSet() const { return (*this)[BitWidth
-1]; }
377 /// Determine if sign bit of this APInt is clear.
379 /// This tests the high bit of this APInt to determine if it is clear.
381 /// \returns true if this APInt has its sign bit clear, false otherwise.
382 bool isSignBitClear() const { return !isSignBitSet(); }
384 /// Determine if this APInt Value is positive.
386 /// This tests if the value of this APInt is positive (> 0). Note
387 /// that 0 is not a positive value.
389 /// \returns true if this APInt is positive.
390 bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); }
392 /// Determine if all bits are set
394 /// This checks to see if the value has all bits of the APInt are set or not.
395 bool isAllOnesValue() const {
397 return U
.VAL
== WORDTYPE_MAX
>> (APINT_BITS_PER_WORD
- BitWidth
);
398 return countTrailingOnesSlowCase() == BitWidth
;
401 /// Determine if all bits are clear
403 /// This checks to see if the value has all bits of the APInt are clear or
405 bool isNullValue() const { return !*this; }
407 /// Determine if this is a value of 1.
409 /// This checks to see if the value of this APInt is one.
410 bool isOneValue() const {
413 return countLeadingZerosSlowCase() == BitWidth
- 1;
416 /// Determine if this is the largest unsigned value.
418 /// This checks to see if the value of this APInt is the maximum unsigned
419 /// value for the APInt's bit width.
420 bool isMaxValue() const { return isAllOnesValue(); }
422 /// Determine if this is the largest signed value.
424 /// This checks to see if the value of this APInt is the maximum signed
425 /// value for the APInt's bit width.
426 bool isMaxSignedValue() const {
428 return U
.VAL
== ((WordType(1) << (BitWidth
- 1)) - 1);
429 return !isNegative() && countTrailingOnesSlowCase() == BitWidth
- 1;
432 /// Determine if this is the smallest unsigned value.
434 /// This checks to see if the value of this APInt is the minimum unsigned
435 /// value for the APInt's bit width.
436 bool isMinValue() const { return isNullValue(); }
438 /// Determine if this is the smallest signed value.
440 /// This checks to see if the value of this APInt is the minimum signed
441 /// value for the APInt's bit width.
442 bool isMinSignedValue() const {
444 return U
.VAL
== (WordType(1) << (BitWidth
- 1));
445 return isNegative() && countTrailingZerosSlowCase() == BitWidth
- 1;
448 /// Check if this APInt has an N-bits unsigned integer value.
449 bool isIntN(unsigned N
) const {
450 assert(N
&& "N == 0 ???");
451 return getActiveBits() <= N
;
454 /// Check if this APInt has an N-bits signed integer value.
455 bool isSignedIntN(unsigned N
) const {
456 assert(N
&& "N == 0 ???");
457 return getMinSignedBits() <= N
;
460 /// Check if this APInt's value is a power of two greater than zero.
462 /// \returns true if the argument APInt value is a power of two > 0.
463 bool isPowerOf2() const {
465 return isPowerOf2_64(U
.VAL
);
466 return countPopulationSlowCase() == 1;
469 /// Check if the APInt's value is returned by getSignMask.
471 /// \returns true if this is the value returned by getSignMask.
472 bool isSignMask() const { return isMinSignedValue(); }
474 /// Convert APInt to a boolean value.
476 /// This converts the APInt to a boolean value as a test against zero.
477 bool getBoolValue() const { return !!*this; }
479 /// If this value is smaller than the specified limit, return it, otherwise
480 /// return the limit value. This causes the value to saturate to the limit.
481 uint64_t getLimitedValue(uint64_t Limit
= UINT64_MAX
) const {
482 return ugt(Limit
) ? Limit
: getZExtValue();
485 /// Check if the APInt consists of a repeated bit pattern.
487 /// e.g. 0x01010101 satisfies isSplat(8).
488 /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
489 /// width without remainder.
490 bool isSplat(unsigned SplatSizeInBits
) const;
492 /// \returns true if this APInt value is a sequence of \param numBits ones
493 /// starting at the least significant bit with the remainder zero.
494 bool isMask(unsigned numBits
) const {
495 assert(numBits
!= 0 && "numBits must be non-zero");
496 assert(numBits
<= BitWidth
&& "numBits out of range");
498 return U
.VAL
== (WORDTYPE_MAX
>> (APINT_BITS_PER_WORD
- numBits
));
499 unsigned Ones
= countTrailingOnesSlowCase();
500 return (numBits
== Ones
) &&
501 ((Ones
+ countLeadingZerosSlowCase()) == BitWidth
);
504 /// \returns true if this APInt is a non-empty sequence of ones starting at
505 /// the least significant bit with the remainder zero.
506 /// Ex. isMask(0x0000FFFFU) == true.
507 bool isMask() const {
509 return isMask_64(U
.VAL
);
510 unsigned Ones
= countTrailingOnesSlowCase();
511 return (Ones
> 0) && ((Ones
+ countLeadingZerosSlowCase()) == BitWidth
);
514 /// Return true if this APInt value contains a sequence of ones with
515 /// the remainder zero.
516 bool isShiftedMask() const {
518 return isShiftedMask_64(U
.VAL
);
519 unsigned Ones
= countPopulationSlowCase();
520 unsigned LeadZ
= countLeadingZerosSlowCase();
521 return (Ones
+ LeadZ
+ countTrailingZeros()) == BitWidth
;
525 /// \name Value Generators
528 /// Gets maximum unsigned value of APInt for specific bit width.
529 static APInt
getMaxValue(unsigned numBits
) {
530 return getAllOnesValue(numBits
);
533 /// Gets maximum signed value of APInt for a specific bit width.
534 static APInt
getSignedMaxValue(unsigned numBits
) {
535 APInt API
= getAllOnesValue(numBits
);
536 API
.clearBit(numBits
- 1);
540 /// Gets minimum unsigned value of APInt for a specific bit width.
541 static APInt
getMinValue(unsigned numBits
) { return APInt(numBits
, 0); }
543 /// Gets minimum signed value of APInt for a specific bit width.
544 static APInt
getSignedMinValue(unsigned numBits
) {
545 APInt
API(numBits
, 0);
546 API
.setBit(numBits
- 1);
550 /// Get the SignMask for a specific bit width.
552 /// This is just a wrapper function of getSignedMinValue(), and it helps code
553 /// readability when we want to get a SignMask.
554 static APInt
getSignMask(unsigned BitWidth
) {
555 return getSignedMinValue(BitWidth
);
558 /// Get the all-ones value.
560 /// \returns the all-ones value for an APInt of the specified bit-width.
561 static APInt
getAllOnesValue(unsigned numBits
) {
562 return APInt(numBits
, WORDTYPE_MAX
, true);
565 /// Get the '0' value.
567 /// \returns the '0' value for an APInt of the specified bit-width.
568 static APInt
getNullValue(unsigned numBits
) { return APInt(numBits
, 0); }
570 /// Compute an APInt containing numBits highbits from this APInt.
572 /// Get an APInt with the same BitWidth as this APInt, just zero mask
573 /// the low bits and right shift to the least significant bit.
575 /// \returns the high "numBits" bits of this APInt.
576 APInt
getHiBits(unsigned numBits
) const;
578 /// Compute an APInt containing numBits lowbits from this APInt.
580 /// Get an APInt with the same BitWidth as this APInt, just zero mask
583 /// \returns the low "numBits" bits of this APInt.
584 APInt
getLoBits(unsigned numBits
) const;
586 /// Return an APInt with exactly one bit set in the result.
587 static APInt
getOneBitSet(unsigned numBits
, unsigned BitNo
) {
588 APInt
Res(numBits
, 0);
593 /// Get a value with a block of bits set.
595 /// Constructs an APInt value that has a contiguous range of bits set. The
596 /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
597 /// bits will be zero. For example, with parameters(32, 0, 16) you would get
598 /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
599 /// example, with parameters (32, 28, 4), you would get 0xF000000F.
601 /// \param numBits the intended bit width of the result
602 /// \param loBit the index of the lowest bit set.
603 /// \param hiBit the index of the highest bit set.
605 /// \returns An APInt value with the requested bits set.
606 static APInt
getBitsSet(unsigned numBits
, unsigned loBit
, unsigned hiBit
) {
607 APInt
Res(numBits
, 0);
608 Res
.setBits(loBit
, hiBit
);
612 /// Get a value with upper bits starting at loBit set.
614 /// Constructs an APInt value that has a contiguous range of bits set. The
615 /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
616 /// bits will be zero. For example, with parameters(32, 12) you would get
619 /// \param numBits the intended bit width of the result
620 /// \param loBit the index of the lowest bit to set.
622 /// \returns An APInt value with the requested bits set.
623 static APInt
getBitsSetFrom(unsigned numBits
, unsigned loBit
) {
624 APInt
Res(numBits
, 0);
625 Res
.setBitsFrom(loBit
);
629 /// Get a value with high bits set
631 /// Constructs an APInt value that has the top hiBitsSet bits set.
633 /// \param numBits the bitwidth of the result
634 /// \param hiBitsSet the number of high-order bits set in the result.
635 static APInt
getHighBitsSet(unsigned numBits
, unsigned hiBitsSet
) {
636 APInt
Res(numBits
, 0);
637 Res
.setHighBits(hiBitsSet
);
641 /// Get a value with low bits set
643 /// Constructs an APInt value that has the bottom loBitsSet bits set.
645 /// \param numBits the bitwidth of the result
646 /// \param loBitsSet the number of low-order bits set in the result.
647 static APInt
getLowBitsSet(unsigned numBits
, unsigned loBitsSet
) {
648 APInt
Res(numBits
, 0);
649 Res
.setLowBits(loBitsSet
);
653 /// Return a value containing V broadcasted over NewLen bits.
654 static APInt
getSplat(unsigned NewLen
, const APInt
&V
);
656 /// Determine if two APInts have the same value, after zero-extending
657 /// one of them (if needed!) to ensure that the bit-widths match.
658 static bool isSameValue(const APInt
&I1
, const APInt
&I2
) {
659 if (I1
.getBitWidth() == I2
.getBitWidth())
662 if (I1
.getBitWidth() > I2
.getBitWidth())
663 return I1
== I2
.zext(I1
.getBitWidth());
665 return I1
.zext(I2
.getBitWidth()) == I2
;
668 /// Overload to compute a hash_code for an APInt value.
669 friend hash_code
hash_value(const APInt
&Arg
);
671 /// This function returns a pointer to the internal storage of the APInt.
672 /// This is useful for writing out the APInt in binary form without any
674 const uint64_t *getRawData() const {
681 /// \name Unary Operators
684 /// Postfix increment operator.
686 /// Increments *this by 1.
688 /// \returns a new APInt value representing the original value of *this.
689 const APInt
operator++(int) {
695 /// Prefix increment operator.
697 /// \returns *this incremented by one
700 /// Postfix decrement operator.
702 /// Decrements *this by 1.
704 /// \returns a new APInt value representing the original value of *this.
705 const APInt
operator--(int) {
711 /// Prefix decrement operator.
713 /// \returns *this decremented by one.
716 /// Logical negation operator.
718 /// Performs logical negation operation on this APInt.
720 /// \returns true if *this is zero, false otherwise.
721 bool operator!() const {
724 return countLeadingZerosSlowCase() == BitWidth
;
728 /// \name Assignment Operators
731 /// Copy assignment operator.
733 /// \returns *this after assignment of RHS.
734 APInt
&operator=(const APInt
&RHS
) {
735 // If the bitwidths are the same, we can avoid mucking with memory
736 if (isSingleWord() && RHS
.isSingleWord()) {
738 BitWidth
= RHS
.BitWidth
;
739 return clearUnusedBits();
746 /// Move assignment operator.
747 APInt
&operator=(APInt
&&that
) {
749 // The MSVC std::shuffle implementation still does self-assignment.
753 assert(this != &that
&& "Self-move not supported");
757 // Use memcpy so that type based alias analysis sees both VAL and pVal
759 memcpy(&U
, &that
.U
, sizeof(U
));
761 BitWidth
= that
.BitWidth
;
767 /// Assignment operator.
769 /// The RHS value is assigned to *this. If the significant bits in RHS exceed
770 /// the bit width, the excess bits are truncated. If the bit width is larger
771 /// than 64, the value is zero filled in the unspecified high order bits.
773 /// \returns *this after assignment of RHS value.
774 APInt
&operator=(uint64_t RHS
) {
775 if (isSingleWord()) {
780 memset(U
.pVal
+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE
);
785 /// Bitwise AND assignment operator.
787 /// Performs a bitwise AND operation on this APInt and RHS. The result is
788 /// assigned to *this.
790 /// \returns *this after ANDing with RHS.
791 APInt
&operator&=(const APInt
&RHS
) {
792 assert(BitWidth
== RHS
.BitWidth
&& "Bit widths must be the same");
796 AndAssignSlowCase(RHS
);
800 /// Bitwise AND assignment operator.
802 /// Performs a bitwise AND operation on this APInt and RHS. RHS is
803 /// logically zero-extended or truncated to match the bit-width of
805 APInt
&operator&=(uint64_t RHS
) {
806 if (isSingleWord()) {
811 memset(U
.pVal
+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE
);
815 /// Bitwise OR assignment operator.
817 /// Performs a bitwise OR operation on this APInt and RHS. The result is
820 /// \returns *this after ORing with RHS.
821 APInt
&operator|=(const APInt
&RHS
) {
822 assert(BitWidth
== RHS
.BitWidth
&& "Bit widths must be the same");
826 OrAssignSlowCase(RHS
);
830 /// Bitwise OR assignment operator.
832 /// Performs a bitwise OR operation on this APInt and RHS. RHS is
833 /// logically zero-extended or truncated to match the bit-width of
835 APInt
&operator|=(uint64_t RHS
) {
836 if (isSingleWord()) {
845 /// Bitwise XOR assignment operator.
847 /// Performs a bitwise XOR operation on this APInt and RHS. The result is
848 /// assigned to *this.
850 /// \returns *this after XORing with RHS.
851 APInt
&operator^=(const APInt
&RHS
) {
852 assert(BitWidth
== RHS
.BitWidth
&& "Bit widths must be the same");
856 XorAssignSlowCase(RHS
);
860 /// Bitwise XOR assignment operator.
862 /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
863 /// logically zero-extended or truncated to match the bit-width of
865 APInt
&operator^=(uint64_t RHS
) {
866 if (isSingleWord()) {
875 /// Multiplication assignment operator.
877 /// Multiplies this APInt by RHS and assigns the result to *this.
880 APInt
&operator*=(const APInt
&RHS
);
881 APInt
&operator*=(uint64_t RHS
);
883 /// Addition assignment operator.
885 /// Adds RHS to *this and assigns the result to *this.
888 APInt
&operator+=(const APInt
&RHS
);
889 APInt
&operator+=(uint64_t RHS
);
891 /// Subtraction assignment operator.
893 /// Subtracts RHS from *this and assigns the result to *this.
896 APInt
&operator-=(const APInt
&RHS
);
897 APInt
&operator-=(uint64_t RHS
);
899 /// Left-shift assignment function.
901 /// Shifts *this left by shiftAmt and assigns the result to *this.
903 /// \returns *this after shifting left by ShiftAmt
904 APInt
&operator<<=(unsigned ShiftAmt
) {
905 assert(ShiftAmt
<= BitWidth
&& "Invalid shift amount");
906 if (isSingleWord()) {
907 if (ShiftAmt
== BitWidth
)
911 return clearUnusedBits();
913 shlSlowCase(ShiftAmt
);
917 /// Left-shift assignment function.
919 /// Shifts *this left by shiftAmt and assigns the result to *this.
921 /// \returns *this after shifting left by ShiftAmt
922 APInt
&operator<<=(const APInt
&ShiftAmt
);
925 /// \name Binary Operators
928 /// Multiplication operator.
930 /// Multiplies this APInt by RHS and returns the result.
931 APInt
operator*(const APInt
&RHS
) const;
933 /// Left logical shift operator.
935 /// Shifts this APInt left by \p Bits and returns the result.
936 APInt
operator<<(unsigned Bits
) const { return shl(Bits
); }
938 /// Left logical shift operator.
940 /// Shifts this APInt left by \p Bits and returns the result.
941 APInt
operator<<(const APInt
&Bits
) const { return shl(Bits
); }
943 /// Arithmetic right-shift function.
945 /// Arithmetic right-shift this APInt by shiftAmt.
946 APInt
ashr(unsigned ShiftAmt
) const {
948 R
.ashrInPlace(ShiftAmt
);
952 /// Arithmetic right-shift this APInt by ShiftAmt in place.
953 void ashrInPlace(unsigned ShiftAmt
) {
954 assert(ShiftAmt
<= BitWidth
&& "Invalid shift amount");
955 if (isSingleWord()) {
956 int64_t SExtVAL
= SignExtend64(U
.VAL
, BitWidth
);
957 if (ShiftAmt
== BitWidth
)
958 U
.VAL
= SExtVAL
>> (APINT_BITS_PER_WORD
- 1); // Fill with sign bit.
960 U
.VAL
= SExtVAL
>> ShiftAmt
;
964 ashrSlowCase(ShiftAmt
);
967 /// Logical right-shift function.
969 /// Logical right-shift this APInt by shiftAmt.
970 APInt
lshr(unsigned shiftAmt
) const {
972 R
.lshrInPlace(shiftAmt
);
976 /// Logical right-shift this APInt by ShiftAmt in place.
977 void lshrInPlace(unsigned ShiftAmt
) {
978 assert(ShiftAmt
<= BitWidth
&& "Invalid shift amount");
979 if (isSingleWord()) {
980 if (ShiftAmt
== BitWidth
)
986 lshrSlowCase(ShiftAmt
);
989 /// Left-shift function.
991 /// Left-shift this APInt by shiftAmt.
992 APInt
shl(unsigned shiftAmt
) const {
998 /// Rotate left by rotateAmt.
999 APInt
rotl(unsigned rotateAmt
) const;
1001 /// Rotate right by rotateAmt.
1002 APInt
rotr(unsigned rotateAmt
) const;
1004 /// Arithmetic right-shift function.
1006 /// Arithmetic right-shift this APInt by shiftAmt.
1007 APInt
ashr(const APInt
&ShiftAmt
) const {
1009 R
.ashrInPlace(ShiftAmt
);
1013 /// Arithmetic right-shift this APInt by shiftAmt in place.
1014 void ashrInPlace(const APInt
&shiftAmt
);
1016 /// Logical right-shift function.
1018 /// Logical right-shift this APInt by shiftAmt.
1019 APInt
lshr(const APInt
&ShiftAmt
) const {
1021 R
.lshrInPlace(ShiftAmt
);
1025 /// Logical right-shift this APInt by ShiftAmt in place.
1026 void lshrInPlace(const APInt
&ShiftAmt
);
1028 /// Left-shift function.
1030 /// Left-shift this APInt by shiftAmt.
1031 APInt
shl(const APInt
&ShiftAmt
) const {
1037 /// Rotate left by rotateAmt.
1038 APInt
rotl(const APInt
&rotateAmt
) const;
1040 /// Rotate right by rotateAmt.
1041 APInt
rotr(const APInt
&rotateAmt
) const;
1043 /// Unsigned division operation.
1045 /// Perform an unsigned divide operation on this APInt by RHS. Both this and
1046 /// RHS are treated as unsigned quantities for purposes of this division.
1048 /// \returns a new APInt value containing the division result, rounded towards
1050 APInt
udiv(const APInt
&RHS
) const;
1051 APInt
udiv(uint64_t RHS
) const;
1053 /// Signed division function for APInt.
1055 /// Signed divide this APInt by APInt RHS.
1057 /// The result is rounded towards zero.
1058 APInt
sdiv(const APInt
&RHS
) const;
1059 APInt
sdiv(int64_t RHS
) const;
1061 /// Unsigned remainder operation.
1063 /// Perform an unsigned remainder operation on this APInt with RHS being the
1064 /// divisor. Both this and RHS are treated as unsigned quantities for purposes
1065 /// of this operation. Note that this is a true remainder operation and not a
1066 /// modulo operation because the sign follows the sign of the dividend which
1069 /// \returns a new APInt value containing the remainder result
1070 APInt
urem(const APInt
&RHS
) const;
1071 uint64_t urem(uint64_t RHS
) const;
1073 /// Function for signed remainder operation.
1075 /// Signed remainder operation on APInt.
1076 APInt
srem(const APInt
&RHS
) const;
1077 int64_t srem(int64_t RHS
) const;
1079 /// Dual division/remainder interface.
1081 /// Sometimes it is convenient to divide two APInt values and obtain both the
1082 /// quotient and remainder. This function does both operations in the same
1083 /// computation making it a little more efficient. The pair of input arguments
1084 /// may overlap with the pair of output arguments. It is safe to call
1085 /// udivrem(X, Y, X, Y), for example.
1086 static void udivrem(const APInt
&LHS
, const APInt
&RHS
, APInt
&Quotient
,
1088 static void udivrem(const APInt
&LHS
, uint64_t RHS
, APInt
&Quotient
,
1089 uint64_t &Remainder
);
1091 static void sdivrem(const APInt
&LHS
, const APInt
&RHS
, APInt
&Quotient
,
1093 static void sdivrem(const APInt
&LHS
, int64_t RHS
, APInt
&Quotient
,
1094 int64_t &Remainder
);
1096 // Operations that return overflow indicators.
1097 APInt
sadd_ov(const APInt
&RHS
, bool &Overflow
) const;
1098 APInt
uadd_ov(const APInt
&RHS
, bool &Overflow
) const;
1099 APInt
ssub_ov(const APInt
&RHS
, bool &Overflow
) const;
1100 APInt
usub_ov(const APInt
&RHS
, bool &Overflow
) const;
1101 APInt
sdiv_ov(const APInt
&RHS
, bool &Overflow
) const;
1102 APInt
smul_ov(const APInt
&RHS
, bool &Overflow
) const;
1103 APInt
umul_ov(const APInt
&RHS
, bool &Overflow
) const;
1104 APInt
sshl_ov(const APInt
&Amt
, bool &Overflow
) const;
1105 APInt
ushl_ov(const APInt
&Amt
, bool &Overflow
) const;
1107 // Operations that saturate
1108 APInt
sadd_sat(const APInt
&RHS
) const;
1109 APInt
uadd_sat(const APInt
&RHS
) const;
1110 APInt
ssub_sat(const APInt
&RHS
) const;
1111 APInt
usub_sat(const APInt
&RHS
) const;
1113 /// Array-indexing support.
1115 /// \returns the bit value at bitPosition
1116 bool operator[](unsigned bitPosition
) const {
1117 assert(bitPosition
< getBitWidth() && "Bit position out of bounds!");
1118 return (maskBit(bitPosition
) & getWord(bitPosition
)) != 0;
1122 /// \name Comparison Operators
1125 /// Equality operator.
1127 /// Compares this APInt with RHS for the validity of the equality
1129 bool operator==(const APInt
&RHS
) const {
1130 assert(BitWidth
== RHS
.BitWidth
&& "Comparison requires equal bit widths");
1132 return U
.VAL
== RHS
.U
.VAL
;
1133 return EqualSlowCase(RHS
);
1136 /// Equality operator.
1138 /// Compares this APInt with a uint64_t for the validity of the equality
1141 /// \returns true if *this == Val
1142 bool operator==(uint64_t Val
) const {
1143 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val
;
1146 /// Equality comparison.
1148 /// Compares this APInt with RHS for the validity of the equality
1151 /// \returns true if *this == Val
1152 bool eq(const APInt
&RHS
) const { return (*this) == RHS
; }
1154 /// Inequality operator.
1156 /// Compares this APInt with RHS for the validity of the inequality
1159 /// \returns true if *this != Val
1160 bool operator!=(const APInt
&RHS
) const { return !((*this) == RHS
); }
1162 /// Inequality operator.
1164 /// Compares this APInt with a uint64_t for the validity of the inequality
1167 /// \returns true if *this != Val
1168 bool operator!=(uint64_t Val
) const { return !((*this) == Val
); }
1170 /// Inequality comparison
1172 /// Compares this APInt with RHS for the validity of the inequality
1175 /// \returns true if *this != Val
1176 bool ne(const APInt
&RHS
) const { return !((*this) == RHS
); }
1178 /// Unsigned less than comparison
1180 /// Regards both *this and RHS as unsigned quantities and compares them for
1181 /// the validity of the less-than relationship.
1183 /// \returns true if *this < RHS when both are considered unsigned.
1184 bool ult(const APInt
&RHS
) const { return compare(RHS
) < 0; }
1186 /// Unsigned less than comparison
1188 /// Regards both *this as an unsigned quantity and compares it with RHS for
1189 /// the validity of the less-than relationship.
1191 /// \returns true if *this < RHS when considered unsigned.
1192 bool ult(uint64_t RHS
) const {
1193 // Only need to check active bits if not a single word.
1194 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS
;
1197 /// Signed less than comparison
1199 /// Regards both *this and RHS as signed quantities and compares them for
1200 /// validity of the less-than relationship.
1202 /// \returns true if *this < RHS when both are considered signed.
1203 bool slt(const APInt
&RHS
) const { return compareSigned(RHS
) < 0; }
1205 /// Signed less than comparison
1207 /// Regards both *this as a signed quantity and compares it with RHS for
1208 /// the validity of the less-than relationship.
1210 /// \returns true if *this < RHS when considered signed.
1211 bool slt(int64_t RHS
) const {
1212 return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative()
1213 : getSExtValue() < RHS
;
1216 /// Unsigned less or equal comparison
1218 /// Regards both *this and RHS as unsigned quantities and compares them for
1219 /// validity of the less-or-equal relationship.
1221 /// \returns true if *this <= RHS when both are considered unsigned.
1222 bool ule(const APInt
&RHS
) const { return compare(RHS
) <= 0; }
1224 /// Unsigned less or equal comparison
1226 /// Regards both *this as an unsigned quantity and compares it with RHS for
1227 /// the validity of the less-or-equal relationship.
1229 /// \returns true if *this <= RHS when considered unsigned.
1230 bool ule(uint64_t RHS
) const { return !ugt(RHS
); }
1232 /// Signed less or equal comparison
1234 /// Regards both *this and RHS as signed quantities and compares them for
1235 /// validity of the less-or-equal relationship.
1237 /// \returns true if *this <= RHS when both are considered signed.
1238 bool sle(const APInt
&RHS
) const { return compareSigned(RHS
) <= 0; }
1240 /// Signed less or equal comparison
1242 /// Regards both *this as a signed quantity and compares it with RHS for the
1243 /// validity of the less-or-equal relationship.
1245 /// \returns true if *this <= RHS when considered signed.
1246 bool sle(uint64_t RHS
) const { return !sgt(RHS
); }
1248 /// Unsigned greather than comparison
1250 /// Regards both *this and RHS as unsigned quantities and compares them for
1251 /// the validity of the greater-than relationship.
1253 /// \returns true if *this > RHS when both are considered unsigned.
1254 bool ugt(const APInt
&RHS
) const { return !ule(RHS
); }
1256 /// Unsigned greater than comparison
1258 /// Regards both *this as an unsigned quantity and compares it with RHS for
1259 /// the validity of the greater-than relationship.
1261 /// \returns true if *this > RHS when considered unsigned.
1262 bool ugt(uint64_t RHS
) const {
1263 // Only need to check active bits if not a single word.
1264 return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS
;
1267 /// Signed greather than comparison
1269 /// Regards both *this and RHS as signed quantities and compares them for the
1270 /// validity of the greater-than relationship.
1272 /// \returns true if *this > RHS when both are considered signed.
1273 bool sgt(const APInt
&RHS
) const { return !sle(RHS
); }
1275 /// Signed greater than comparison
1277 /// Regards both *this as a signed quantity and compares it with RHS for
1278 /// the validity of the greater-than relationship.
1280 /// \returns true if *this > RHS when considered signed.
1281 bool sgt(int64_t RHS
) const {
1282 return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative()
1283 : getSExtValue() > RHS
;
1286 /// Unsigned greater or equal comparison
1288 /// Regards both *this and RHS as unsigned quantities and compares them for
1289 /// validity of the greater-or-equal relationship.
1291 /// \returns true if *this >= RHS when both are considered unsigned.
1292 bool uge(const APInt
&RHS
) const { return !ult(RHS
); }
1294 /// Unsigned greater or equal comparison
1296 /// Regards both *this as an unsigned quantity and compares it with RHS for
1297 /// the validity of the greater-or-equal relationship.
1299 /// \returns true if *this >= RHS when considered unsigned.
1300 bool uge(uint64_t RHS
) const { return !ult(RHS
); }
1302 /// Signed greater or equal comparison
1304 /// Regards both *this and RHS as signed quantities and compares them for
1305 /// validity of the greater-or-equal relationship.
1307 /// \returns true if *this >= RHS when both are considered signed.
1308 bool sge(const APInt
&RHS
) const { return !slt(RHS
); }
1310 /// Signed greater or equal comparison
1312 /// Regards both *this as a signed quantity and compares it with RHS for
1313 /// the validity of the greater-or-equal relationship.
1315 /// \returns true if *this >= RHS when considered signed.
1316 bool sge(int64_t RHS
) const { return !slt(RHS
); }
1318 /// This operation tests if there are any pairs of corresponding bits
1319 /// between this APInt and RHS that are both set.
1320 bool intersects(const APInt
&RHS
) const {
1321 assert(BitWidth
== RHS
.BitWidth
&& "Bit widths must be the same");
1323 return (U
.VAL
& RHS
.U
.VAL
) != 0;
1324 return intersectsSlowCase(RHS
);
1327 /// This operation checks that all bits set in this APInt are also set in RHS.
1328 bool isSubsetOf(const APInt
&RHS
) const {
1329 assert(BitWidth
== RHS
.BitWidth
&& "Bit widths must be the same");
1331 return (U
.VAL
& ~RHS
.U
.VAL
) == 0;
1332 return isSubsetOfSlowCase(RHS
);
1336 /// \name Resizing Operators
1339 /// Truncate to new width.
1341 /// Truncate the APInt to a specified width. It is an error to specify a width
1342 /// that is greater than or equal to the current width.
1343 APInt
trunc(unsigned width
) const;
1345 /// Sign extend to a new width.
1347 /// This operation sign extends the APInt to a new width. If the high order
1348 /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1349 /// It is an error to specify a width that is less than or equal to the
1351 APInt
sext(unsigned width
) const;
1353 /// Zero extend to a new width.
1355 /// This operation zero extends the APInt to a new width. The high order bits
1356 /// are filled with 0 bits. It is an error to specify a width that is less
1357 /// than or equal to the current width.
1358 APInt
zext(unsigned width
) const;
1360 /// Sign extend or truncate to width
1362 /// Make this APInt have the bit width given by \p width. The value is sign
1363 /// extended, truncated, or left alone to make it that width.
1364 APInt
sextOrTrunc(unsigned width
) const;
1366 /// Zero extend or truncate to width
1368 /// Make this APInt have the bit width given by \p width. The value is zero
1369 /// extended, truncated, or left alone to make it that width.
1370 APInt
zextOrTrunc(unsigned width
) const;
1372 /// Sign extend or truncate to width
1374 /// Make this APInt have the bit width given by \p width. The value is sign
1375 /// extended, or left alone to make it that width.
1376 APInt
sextOrSelf(unsigned width
) const;
1378 /// Zero extend or truncate to width
1380 /// Make this APInt have the bit width given by \p width. The value is zero
1381 /// extended, or left alone to make it that width.
1382 APInt
zextOrSelf(unsigned width
) const;
1385 /// \name Bit Manipulation Operators
1388 /// Set every bit to 1.
1391 U
.VAL
= WORDTYPE_MAX
;
1393 // Set all the bits in all the words.
1394 memset(U
.pVal
, -1, getNumWords() * APINT_WORD_SIZE
);
1395 // Clear the unused ones
1399 /// Set a given bit to 1.
1401 /// Set the given bit to 1 whose position is given as "bitPosition".
1402 void setBit(unsigned BitPosition
) {
1403 assert(BitPosition
< BitWidth
&& "BitPosition out of range");
1404 WordType Mask
= maskBit(BitPosition
);
1408 U
.pVal
[whichWord(BitPosition
)] |= Mask
;
1411 /// Set the sign bit to 1.
1413 setBit(BitWidth
- 1);
1416 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1417 void setBits(unsigned loBit
, unsigned hiBit
) {
1418 assert(hiBit
<= BitWidth
&& "hiBit out of range");
1419 assert(loBit
<= BitWidth
&& "loBit out of range");
1420 assert(loBit
<= hiBit
&& "loBit greater than hiBit");
1423 if (loBit
< APINT_BITS_PER_WORD
&& hiBit
<= APINT_BITS_PER_WORD
) {
1424 uint64_t mask
= WORDTYPE_MAX
>> (APINT_BITS_PER_WORD
- (hiBit
- loBit
));
1431 setBitsSlowCase(loBit
, hiBit
);
1435 /// Set the top bits starting from loBit.
1436 void setBitsFrom(unsigned loBit
) {
1437 return setBits(loBit
, BitWidth
);
1440 /// Set the bottom loBits bits.
1441 void setLowBits(unsigned loBits
) {
1442 return setBits(0, loBits
);
1445 /// Set the top hiBits bits.
1446 void setHighBits(unsigned hiBits
) {
1447 return setBits(BitWidth
- hiBits
, BitWidth
);
1450 /// Set every bit to 0.
1451 void clearAllBits() {
1455 memset(U
.pVal
, 0, getNumWords() * APINT_WORD_SIZE
);
1458 /// Set a given bit to 0.
1460 /// Set the given bit to 0 whose position is given as "bitPosition".
1461 void clearBit(unsigned BitPosition
) {
1462 assert(BitPosition
< BitWidth
&& "BitPosition out of range");
1463 WordType Mask
= ~maskBit(BitPosition
);
1467 U
.pVal
[whichWord(BitPosition
)] &= Mask
;
1470 /// Set the sign bit to 0.
1471 void clearSignBit() {
1472 clearBit(BitWidth
- 1);
1475 /// Toggle every bit to its opposite value.
1476 void flipAllBits() {
1477 if (isSingleWord()) {
1478 U
.VAL
^= WORDTYPE_MAX
;
1481 flipAllBitsSlowCase();
1485 /// Toggles a given bit to its opposite value.
1487 /// Toggle a given bit to its opposite value whose position is given
1488 /// as "bitPosition".
1489 void flipBit(unsigned bitPosition
);
1491 /// Negate this APInt in place.
1497 /// Insert the bits from a smaller APInt starting at bitPosition.
1498 void insertBits(const APInt
&SubBits
, unsigned bitPosition
);
1500 /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
1501 APInt
extractBits(unsigned numBits
, unsigned bitPosition
) const;
1504 /// \name Value Characterization Functions
1507 /// Return the number of bits in the APInt.
1508 unsigned getBitWidth() const { return BitWidth
; }
1510 /// Get the number of words.
1512 /// Here one word's bitwidth equals to that of uint64_t.
1514 /// \returns the number of words to hold the integer value of this APInt.
1515 unsigned getNumWords() const { return getNumWords(BitWidth
); }
1517 /// Get the number of words.
1519 /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1521 /// \returns the number of words to hold the integer value with a given bit
1523 static unsigned getNumWords(unsigned BitWidth
) {
1524 return ((uint64_t)BitWidth
+ APINT_BITS_PER_WORD
- 1) / APINT_BITS_PER_WORD
;
1527 /// Compute the number of active bits in the value
1529 /// This function returns the number of active bits which is defined as the
1530 /// bit width minus the number of leading zeros. This is used in several
1531 /// computations to see how "wide" the value is.
1532 unsigned getActiveBits() const { return BitWidth
- countLeadingZeros(); }
1534 /// Compute the number of active words in the value of this APInt.
1536 /// This is used in conjunction with getActiveData to extract the raw value of
1538 unsigned getActiveWords() const {
1539 unsigned numActiveBits
= getActiveBits();
1540 return numActiveBits
? whichWord(numActiveBits
- 1) + 1 : 1;
1543 /// Get the minimum bit size for this signed APInt
1545 /// Computes the minimum bit width for this APInt while considering it to be a
1546 /// signed (and probably negative) value. If the value is not negative, this
1547 /// function returns the same value as getActiveBits()+1. Otherwise, it
1548 /// returns the smallest bit width that will retain the negative value. For
1549 /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1550 /// for -1, this function will always return 1.
1551 unsigned getMinSignedBits() const {
1553 return BitWidth
- countLeadingOnes() + 1;
1554 return getActiveBits() + 1;
1557 /// Get zero extended value
1559 /// This method attempts to return the value of this APInt as a zero extended
1560 /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1561 /// uint64_t. Otherwise an assertion will result.
1562 uint64_t getZExtValue() const {
1565 assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1569 /// Get sign extended value
1571 /// This method attempts to return the value of this APInt as a sign extended
1572 /// int64_t. The bit width must be <= 64 or the value must fit within an
1573 /// int64_t. Otherwise an assertion will result.
1574 int64_t getSExtValue() const {
1576 return SignExtend64(U
.VAL
, BitWidth
);
1577 assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
1578 return int64_t(U
.pVal
[0]);
1581 /// Get bits required for string value.
1583 /// This method determines how many bits are required to hold the APInt
1584 /// equivalent of the string given by \p str.
1585 static unsigned getBitsNeeded(StringRef str
, uint8_t radix
);
1587 /// The APInt version of the countLeadingZeros functions in
1590 /// It counts the number of zeros from the most significant bit to the first
1593 /// \returns BitWidth if the value is zero, otherwise returns the number of
1594 /// zeros from the most significant bit to the first one bits.
1595 unsigned countLeadingZeros() const {
1596 if (isSingleWord()) {
1597 unsigned unusedBits
= APINT_BITS_PER_WORD
- BitWidth
;
1598 return llvm::countLeadingZeros(U
.VAL
) - unusedBits
;
1600 return countLeadingZerosSlowCase();
1603 /// Count the number of leading one bits.
1605 /// This function is an APInt version of the countLeadingOnes
1606 /// functions in MathExtras.h. It counts the number of ones from the most
1607 /// significant bit to the first zero bit.
1609 /// \returns 0 if the high order bit is not set, otherwise returns the number
1610 /// of 1 bits from the most significant to the least
1611 unsigned countLeadingOnes() const {
1613 return llvm::countLeadingOnes(U
.VAL
<< (APINT_BITS_PER_WORD
- BitWidth
));
1614 return countLeadingOnesSlowCase();
1617 /// Computes the number of leading bits of this APInt that are equal to its
1619 unsigned getNumSignBits() const {
1620 return isNegative() ? countLeadingOnes() : countLeadingZeros();
1623 /// Count the number of trailing zero bits.
1625 /// This function is an APInt version of the countTrailingZeros
1626 /// functions in MathExtras.h. It counts the number of zeros from the least
1627 /// significant bit to the first set bit.
1629 /// \returns BitWidth if the value is zero, otherwise returns the number of
1630 /// zeros from the least significant bit to the first one bit.
1631 unsigned countTrailingZeros() const {
1633 return std::min(unsigned(llvm::countTrailingZeros(U
.VAL
)), BitWidth
);
1634 return countTrailingZerosSlowCase();
1637 /// Count the number of trailing one bits.
1639 /// This function is an APInt version of the countTrailingOnes
1640 /// functions in MathExtras.h. It counts the number of ones from the least
1641 /// significant bit to the first zero bit.
1643 /// \returns BitWidth if the value is all ones, otherwise returns the number
1644 /// of ones from the least significant bit to the first zero bit.
1645 unsigned countTrailingOnes() const {
1647 return llvm::countTrailingOnes(U
.VAL
);
1648 return countTrailingOnesSlowCase();
1651 /// Count the number of bits set.
1653 /// This function is an APInt version of the countPopulation functions
1654 /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
1656 /// \returns 0 if the value is zero, otherwise returns the number of set bits.
1657 unsigned countPopulation() const {
1659 return llvm::countPopulation(U
.VAL
);
1660 return countPopulationSlowCase();
1664 /// \name Conversion Functions
1666 void print(raw_ostream
&OS
, bool isSigned
) const;
1668 /// Converts an APInt to a string and append it to Str. Str is commonly a
1670 void toString(SmallVectorImpl
<char> &Str
, unsigned Radix
, bool Signed
,
1671 bool formatAsCLiteral
= false) const;
1673 /// Considers the APInt to be unsigned and converts it into a string in the
1674 /// radix given. The radix can be 2, 8, 10 16, or 36.
1675 void toStringUnsigned(SmallVectorImpl
<char> &Str
, unsigned Radix
= 10) const {
1676 toString(Str
, Radix
, false, false);
1679 /// Considers the APInt to be signed and converts it into a string in the
1680 /// radix given. The radix can be 2, 8, 10, 16, or 36.
1681 void toStringSigned(SmallVectorImpl
<char> &Str
, unsigned Radix
= 10) const {
1682 toString(Str
, Radix
, true, false);
1685 /// Return the APInt as a std::string.
1687 /// Note that this is an inefficient method. It is better to pass in a
1688 /// SmallVector/SmallString to the methods above to avoid thrashing the heap
1690 std::string
toString(unsigned Radix
, bool Signed
) const;
1692 /// \returns a byte-swapped representation of this APInt Value.
1693 APInt
byteSwap() const;
1695 /// \returns the value with the bit representation reversed of this APInt
1697 APInt
reverseBits() const;
1699 /// Converts this APInt to a double value.
1700 double roundToDouble(bool isSigned
) const;
1702 /// Converts this unsigned APInt to a double value.
1703 double roundToDouble() const { return roundToDouble(false); }
1705 /// Converts this signed APInt to a double value.
1706 double signedRoundToDouble() const { return roundToDouble(true); }
1708 /// Converts APInt bits to a double
1710 /// The conversion does not do a translation from integer to double, it just
1711 /// re-interprets the bits as a double. Note that it is valid to do this on
1712 /// any bit width. Exactly 64 bits will be translated.
1713 double bitsToDouble() const {
1714 return BitsToDouble(getWord(0));
1717 /// Converts APInt bits to a double
1719 /// The conversion does not do a translation from integer to float, it just
1720 /// re-interprets the bits as a float. Note that it is valid to do this on
1721 /// any bit width. Exactly 32 bits will be translated.
1722 float bitsToFloat() const {
1723 return BitsToFloat(getWord(0));
1726 /// Converts a double to APInt bits.
1728 /// The conversion does not do a translation from double to integer, it just
1729 /// re-interprets the bits of the double.
1730 static APInt
doubleToBits(double V
) {
1731 return APInt(sizeof(double) * CHAR_BIT
, DoubleToBits(V
));
1734 /// Converts a float to APInt bits.
1736 /// The conversion does not do a translation from float to integer, it just
1737 /// re-interprets the bits of the float.
1738 static APInt
floatToBits(float V
) {
1739 return APInt(sizeof(float) * CHAR_BIT
, FloatToBits(V
));
1743 /// \name Mathematics Operations
1746 /// \returns the floor log base 2 of this APInt.
1747 unsigned logBase2() const { return getActiveBits() - 1; }
1749 /// \returns the ceil log base 2 of this APInt.
1750 unsigned ceilLogBase2() const {
1753 return temp
.getActiveBits();
1756 /// \returns the nearest log base 2 of this APInt. Ties round up.
1758 /// NOTE: When we have a BitWidth of 1, we define:
1760 /// log2(0) = UINT32_MAX
1763 /// to get around any mathematical concerns resulting from
1764 /// referencing 2 in a space where 2 does no exist.
1765 unsigned nearestLogBase2() const {
1766 // Special case when we have a bitwidth of 1. If VAL is 1, then we
1767 // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to
1772 // Handle the zero case.
1776 // The non-zero case is handled by computing:
1778 // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1780 // where x[i] is referring to the value of the ith bit of x.
1781 unsigned lg
= logBase2();
1782 return lg
+ unsigned((*this)[lg
- 1]);
1785 /// \returns the log base 2 of this APInt if its an exact power of two, -1
1787 int32_t exactLogBase2() const {
1793 /// Compute the square root
1796 /// Get the absolute value;
1798 /// If *this is < 0 then return -(*this), otherwise *this;
1805 /// \returns the multiplicative inverse for a given modulo.
1806 APInt
multiplicativeInverse(const APInt
&modulo
) const;
1809 /// \name Support for division by constant
1812 /// Calculate the magic number for signed division by a constant.
1816 /// Calculate the magic number for unsigned division by a constant.
1818 mu
magicu(unsigned LeadingZeros
= 0) const;
1821 /// \name Building-block Operations for APInt and APFloat
1824 // These building block operations operate on a representation of arbitrary
1825 // precision, two's-complement, bignum integer values. They should be
1826 // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1827 // generally a pointer to the base of an array of integer parts, representing
1828 // an unsigned bignum, and a count of how many parts there are.
1830 /// Sets the least significant part of a bignum to the input value, and zeroes
1831 /// out higher parts.
1832 static void tcSet(WordType
*, WordType
, unsigned);
1834 /// Assign one bignum to another.
1835 static void tcAssign(WordType
*, const WordType
*, unsigned);
1837 /// Returns true if a bignum is zero, false otherwise.
1838 static bool tcIsZero(const WordType
*, unsigned);
1840 /// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
1841 static int tcExtractBit(const WordType
*, unsigned bit
);
1843 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1844 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1845 /// significant bit of DST. All high bits above srcBITS in DST are
1847 static void tcExtract(WordType
*, unsigned dstCount
,
1848 const WordType
*, unsigned srcBits
,
1851 /// Set the given bit of a bignum. Zero-based.
1852 static void tcSetBit(WordType
*, unsigned bit
);
1854 /// Clear the given bit of a bignum. Zero-based.
1855 static void tcClearBit(WordType
*, unsigned bit
);
1857 /// Returns the bit number of the least or most significant set bit of a
1858 /// number. If the input number has no bits set -1U is returned.
1859 static unsigned tcLSB(const WordType
*, unsigned n
);
1860 static unsigned tcMSB(const WordType
*parts
, unsigned n
);
1862 /// Negate a bignum in-place.
1863 static void tcNegate(WordType
*, unsigned);
1865 /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1866 static WordType
tcAdd(WordType
*, const WordType
*,
1867 WordType carry
, unsigned);
1868 /// DST += RHS. Returns the carry flag.
1869 static WordType
tcAddPart(WordType
*, WordType
, unsigned);
1871 /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1872 static WordType
tcSubtract(WordType
*, const WordType
*,
1873 WordType carry
, unsigned);
1874 /// DST -= RHS. Returns the carry flag.
1875 static WordType
tcSubtractPart(WordType
*, WordType
, unsigned);
1877 /// DST += SRC * MULTIPLIER + PART if add is true
1878 /// DST = SRC * MULTIPLIER + PART if add is false
1880 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must
1881 /// start at the same point, i.e. DST == SRC.
1883 /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1884 /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1885 /// result, and if all of the omitted higher parts were zero return zero,
1886 /// otherwise overflow occurred and return one.
1887 static int tcMultiplyPart(WordType
*dst
, const WordType
*src
,
1888 WordType multiplier
, WordType carry
,
1889 unsigned srcParts
, unsigned dstParts
,
1892 /// DST = LHS * RHS, where DST has the same width as the operands and is
1893 /// filled with the least significant parts of the result. Returns one if
1894 /// overflow occurred, otherwise zero. DST must be disjoint from both
1896 static int tcMultiply(WordType
*, const WordType
*, const WordType
*,
1899 /// DST = LHS * RHS, where DST has width the sum of the widths of the
1900 /// operands. No overflow occurs. DST must be disjoint from both operands.
1901 static void tcFullMultiply(WordType
*, const WordType
*,
1902 const WordType
*, unsigned, unsigned);
1904 /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1905 /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1906 /// REMAINDER to the remainder, return zero. i.e.
1908 /// OLD_LHS = RHS * LHS + REMAINDER
1910 /// SCRATCH is a bignum of the same size as the operands and result for use by
1911 /// the routine; its contents need not be initialized and are destroyed. LHS,
1912 /// REMAINDER and SCRATCH must be distinct.
1913 static int tcDivide(WordType
*lhs
, const WordType
*rhs
,
1914 WordType
*remainder
, WordType
*scratch
,
1917 /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
1918 /// restrictions on Count.
1919 static void tcShiftLeft(WordType
*, unsigned Words
, unsigned Count
);
1921 /// Shift a bignum right Count bits. Shifted in bits are zero. There are no
1922 /// restrictions on Count.
1923 static void tcShiftRight(WordType
*, unsigned Words
, unsigned Count
);
1925 /// The obvious AND, OR and XOR and complement operations.
1926 static void tcAnd(WordType
*, const WordType
*, unsigned);
1927 static void tcOr(WordType
*, const WordType
*, unsigned);
1928 static void tcXor(WordType
*, const WordType
*, unsigned);
1929 static void tcComplement(WordType
*, unsigned);
1931 /// Comparison (unsigned) of two bignums.
1932 static int tcCompare(const WordType
*, const WordType
*, unsigned);
1934 /// Increment a bignum in-place. Return the carry flag.
1935 static WordType
tcIncrement(WordType
*dst
, unsigned parts
) {
1936 return tcAddPart(dst
, 1, parts
);
1939 /// Decrement a bignum in-place. Return the borrow flag.
1940 static WordType
tcDecrement(WordType
*dst
, unsigned parts
) {
1941 return tcSubtractPart(dst
, 1, parts
);
1944 /// Set the least significant BITS and clear the rest.
1945 static void tcSetLeastSignificantBits(WordType
*, unsigned, unsigned bits
);
1953 /// Magic data for optimising signed division by a constant.
1955 APInt m
; ///< magic number
1956 unsigned s
; ///< shift amount
1959 /// Magic data for optimising unsigned division by a constant.
1961 APInt m
; ///< magic number
1962 bool a
; ///< add indicator
1963 unsigned s
; ///< shift amount
1966 inline bool operator==(uint64_t V1
, const APInt
&V2
) { return V2
== V1
; }
1968 inline bool operator!=(uint64_t V1
, const APInt
&V2
) { return V2
!= V1
; }
1970 /// Unary bitwise complement operator.
1972 /// \returns an APInt that is the bitwise complement of \p v.
1973 inline APInt
operator~(APInt v
) {
1978 inline APInt
operator&(APInt a
, const APInt
&b
) {
1983 inline APInt
operator&(const APInt
&a
, APInt
&&b
) {
1985 return std::move(b
);
1988 inline APInt
operator&(APInt a
, uint64_t RHS
) {
1993 inline APInt
operator&(uint64_t LHS
, APInt b
) {
1998 inline APInt
operator|(APInt a
, const APInt
&b
) {
2003 inline APInt
operator|(const APInt
&a
, APInt
&&b
) {
2005 return std::move(b
);
2008 inline APInt
operator|(APInt a
, uint64_t RHS
) {
2013 inline APInt
operator|(uint64_t LHS
, APInt b
) {
2018 inline APInt
operator^(APInt a
, const APInt
&b
) {
2023 inline APInt
operator^(const APInt
&a
, APInt
&&b
) {
2025 return std::move(b
);
2028 inline APInt
operator^(APInt a
, uint64_t RHS
) {
2033 inline APInt
operator^(uint64_t LHS
, APInt b
) {
2038 inline raw_ostream
&operator<<(raw_ostream
&OS
, const APInt
&I
) {
2043 inline APInt
operator-(APInt v
) {
2048 inline APInt
operator+(APInt a
, const APInt
&b
) {
2053 inline APInt
operator+(const APInt
&a
, APInt
&&b
) {
2055 return std::move(b
);
2058 inline APInt
operator+(APInt a
, uint64_t RHS
) {
2063 inline APInt
operator+(uint64_t LHS
, APInt b
) {
2068 inline APInt
operator-(APInt a
, const APInt
&b
) {
2073 inline APInt
operator-(const APInt
&a
, APInt
&&b
) {
2076 return std::move(b
);
2079 inline APInt
operator-(APInt a
, uint64_t RHS
) {
2084 inline APInt
operator-(uint64_t LHS
, APInt b
) {
2090 inline APInt
operator*(APInt a
, uint64_t RHS
) {
2095 inline APInt
operator*(uint64_t LHS
, APInt b
) {
2101 namespace APIntOps
{
2103 /// Determine the smaller of two APInts considered to be signed.
2104 inline const APInt
&smin(const APInt
&A
, const APInt
&B
) {
2105 return A
.slt(B
) ? A
: B
;
2108 /// Determine the larger of two APInts considered to be signed.
2109 inline const APInt
&smax(const APInt
&A
, const APInt
&B
) {
2110 return A
.sgt(B
) ? A
: B
;
2113 /// Determine the smaller of two APInts considered to be signed.
2114 inline const APInt
&umin(const APInt
&A
, const APInt
&B
) {
2115 return A
.ult(B
) ? A
: B
;
2118 /// Determine the larger of two APInts considered to be unsigned.
2119 inline const APInt
&umax(const APInt
&A
, const APInt
&B
) {
2120 return A
.ugt(B
) ? A
: B
;
2123 /// Compute GCD of two unsigned APInt values.
2125 /// This function returns the greatest common divisor of the two APInt values
2126 /// using Stein's algorithm.
2128 /// \returns the greatest common divisor of A and B.
2129 APInt
GreatestCommonDivisor(APInt A
, APInt B
);
2131 /// Converts the given APInt to a double value.
2133 /// Treats the APInt as an unsigned value for conversion purposes.
2134 inline double RoundAPIntToDouble(const APInt
&APIVal
) {
2135 return APIVal
.roundToDouble();
2138 /// Converts the given APInt to a double value.
2140 /// Treats the APInt as a signed value for conversion purposes.
2141 inline double RoundSignedAPIntToDouble(const APInt
&APIVal
) {
2142 return APIVal
.signedRoundToDouble();
2145 /// Converts the given APInt to a float vlalue.
2146 inline float RoundAPIntToFloat(const APInt
&APIVal
) {
2147 return float(RoundAPIntToDouble(APIVal
));
2150 /// Converts the given APInt to a float value.
2152 /// Treast the APInt as a signed value for conversion purposes.
2153 inline float RoundSignedAPIntToFloat(const APInt
&APIVal
) {
2154 return float(APIVal
.signedRoundToDouble());
2157 /// Converts the given double value into a APInt.
2159 /// This function convert a double value to an APInt value.
2160 APInt
RoundDoubleToAPInt(double Double
, unsigned width
);
2162 /// Converts a float value into a APInt.
2164 /// Converts a float value into an APInt value.
2165 inline APInt
RoundFloatToAPInt(float Float
, unsigned width
) {
2166 return RoundDoubleToAPInt(double(Float
), width
);
2169 /// Return A unsign-divided by B, rounded by the given rounding mode.
2170 APInt
RoundingUDiv(const APInt
&A
, const APInt
&B
, APInt::Rounding RM
);
2172 /// Return A sign-divided by B, rounded by the given rounding mode.
2173 APInt
RoundingSDiv(const APInt
&A
, const APInt
&B
, APInt::Rounding RM
);
2175 /// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range
2176 /// (e.g. 32 for i32).
2177 /// This function finds the smallest number n, such that
2178 /// (a) n >= 0 and q(n) = 0, or
2179 /// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all
2180 /// integers, belong to two different intervals [Rk, Rk+R),
2181 /// where R = 2^BW, and k is an integer.
2182 /// The idea here is to find when q(n) "overflows" 2^BW, while at the
2183 /// same time "allowing" subtraction. In unsigned modulo arithmetic a
2184 /// subtraction (treated as addition of negated numbers) would always
2185 /// count as an overflow, but here we want to allow values to decrease
2186 /// and increase as long as they are within the same interval.
2187 /// Specifically, adding of two negative numbers should not cause an
2188 /// overflow (as long as the magnitude does not exceed the bith width).
2189 /// On the other hand, given a positive number, adding a negative
2190 /// number to it can give a negative result, which would cause the
2191 /// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is
2192 /// treated as a special case of an overflow.
2194 /// This function returns None if after finding k that minimizes the
2195 /// positive solution to q(n) = kR, both solutions are contained between
2196 /// two consecutive integers.
2198 /// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation
2199 /// in arithmetic modulo 2^BW, and treating the values as signed) by the
2200 /// virtue of *signed* overflow. This function will *not* find such an n,
2201 /// however it may find a value of n satisfying the inequalities due to
2202 /// an *unsigned* overflow (if the values are treated as unsigned).
2203 /// To find a solution for a signed overflow, treat it as a problem of
2204 /// finding an unsigned overflow with a range with of BW-1.
2206 /// The returned value may have a different bit width from the input
2208 Optional
<APInt
> SolveQuadraticEquationWrap(APInt A
, APInt B
, APInt C
,
2209 unsigned RangeWidth
);
2210 } // End of APIntOps namespace
2212 // See friend declaration above. This additional declaration is required in
2213 // order to compile LLVM with IBM xlC compiler.
2214 hash_code
hash_value(const APInt
&Arg
);
2215 } // End of llvm namespace