1 //===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the DenseMap class.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_ADT_DENSEMAP_H
14 #define LLVM_ADT_DENSEMAP_H
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/ADT/EpochTracker.h"
18 #include "llvm/Support/AlignOf.h"
19 #include "llvm/Support/Compiler.h"
20 #include "llvm/Support/MathExtras.h"
21 #include "llvm/Support/ReverseIteration.h"
22 #include "llvm/Support/type_traits.h"
27 #include <initializer_list>
30 #include <type_traits>
37 // We extend a pair to allow users to override the bucket type with their own
38 // implementation without requiring two members.
39 template <typename KeyT
, typename ValueT
>
40 struct DenseMapPair
: public std::pair
<KeyT
, ValueT
> {
42 // FIXME: Switch to inheriting constructors when we drop support for older
44 // NOTE: This default constructor is declared with '{}' rather than
45 // '= default' to work around a separate bug in clang-3.8. This can
46 // also go when we switch to inheriting constructors.
49 DenseMapPair(const KeyT
&Key
, const ValueT
&Value
)
50 : std::pair
<KeyT
, ValueT
>(Key
, Value
) {}
52 DenseMapPair(KeyT
&&Key
, ValueT
&&Value
)
53 : std::pair
<KeyT
, ValueT
>(std::move(Key
), std::move(Value
)) {}
55 template <typename AltKeyT
, typename AltValueT
>
56 DenseMapPair(AltKeyT
&&AltKey
, AltValueT
&&AltValue
,
57 typename
std::enable_if
<
58 std::is_convertible
<AltKeyT
, KeyT
>::value
&&
59 std::is_convertible
<AltValueT
, ValueT
>::value
>::type
* = 0)
60 : std::pair
<KeyT
, ValueT
>(std::forward
<AltKeyT
>(AltKey
),
61 std::forward
<AltValueT
>(AltValue
)) {}
63 template <typename AltPairT
>
64 DenseMapPair(AltPairT
&&AltPair
,
65 typename
std::enable_if
<std::is_convertible
<
66 AltPairT
, std::pair
<KeyT
, ValueT
>>::value
>::type
* = 0)
67 : std::pair
<KeyT
, ValueT
>(std::forward
<AltPairT
>(AltPair
)) {}
69 KeyT
&getFirst() { return std::pair
<KeyT
, ValueT
>::first
; }
70 const KeyT
&getFirst() const { return std::pair
<KeyT
, ValueT
>::first
; }
71 ValueT
&getSecond() { return std::pair
<KeyT
, ValueT
>::second
; }
72 const ValueT
&getSecond() const { return std::pair
<KeyT
, ValueT
>::second
; }
75 } // end namespace detail
77 template <typename KeyT
, typename ValueT
,
78 typename KeyInfoT
= DenseMapInfo
<KeyT
>,
79 typename Bucket
= llvm::detail::DenseMapPair
<KeyT
, ValueT
>,
81 class DenseMapIterator
;
83 template <typename DerivedT
, typename KeyT
, typename ValueT
, typename KeyInfoT
,
85 class DenseMapBase
: public DebugEpochBase
{
87 using const_arg_type_t
= typename const_pointer_or_const_ref
<T
>::type
;
90 using size_type
= unsigned;
91 using key_type
= KeyT
;
92 using mapped_type
= ValueT
;
93 using value_type
= BucketT
;
95 using iterator
= DenseMapIterator
<KeyT
, ValueT
, KeyInfoT
, BucketT
>;
96 using const_iterator
=
97 DenseMapIterator
<KeyT
, ValueT
, KeyInfoT
, BucketT
, true>;
99 inline iterator
begin() {
100 // When the map is empty, avoid the overhead of advancing/retreating past
104 if (shouldReverseIterate
<KeyT
>())
105 return makeIterator(getBucketsEnd() - 1, getBuckets(), *this);
106 return makeIterator(getBuckets(), getBucketsEnd(), *this);
108 inline iterator
end() {
109 return makeIterator(getBucketsEnd(), getBucketsEnd(), *this, true);
111 inline const_iterator
begin() const {
114 if (shouldReverseIterate
<KeyT
>())
115 return makeConstIterator(getBucketsEnd() - 1, getBuckets(), *this);
116 return makeConstIterator(getBuckets(), getBucketsEnd(), *this);
118 inline const_iterator
end() const {
119 return makeConstIterator(getBucketsEnd(), getBucketsEnd(), *this, true);
122 LLVM_NODISCARD
bool empty() const {
123 return getNumEntries() == 0;
125 unsigned size() const { return getNumEntries(); }
127 /// Grow the densemap so that it can contain at least \p NumEntries items
128 /// before resizing again.
129 void reserve(size_type NumEntries
) {
130 auto NumBuckets
= getMinBucketToReserveForEntries(NumEntries
);
132 if (NumBuckets
> getNumBuckets())
138 if (getNumEntries() == 0 && getNumTombstones() == 0) return;
140 // If the capacity of the array is huge, and the # elements used is small,
142 if (getNumEntries() * 4 < getNumBuckets() && getNumBuckets() > 64) {
147 const KeyT EmptyKey
= getEmptyKey(), TombstoneKey
= getTombstoneKey();
148 if (is_trivially_copyable
<KeyT
>::value
&&
149 is_trivially_copyable
<ValueT
>::value
) {
150 // Use a simpler loop when these are trivial types.
151 for (BucketT
*P
= getBuckets(), *E
= getBucketsEnd(); P
!= E
; ++P
)
152 P
->getFirst() = EmptyKey
;
154 unsigned NumEntries
= getNumEntries();
155 for (BucketT
*P
= getBuckets(), *E
= getBucketsEnd(); P
!= E
; ++P
) {
156 if (!KeyInfoT::isEqual(P
->getFirst(), EmptyKey
)) {
157 if (!KeyInfoT::isEqual(P
->getFirst(), TombstoneKey
)) {
158 P
->getSecond().~ValueT();
161 P
->getFirst() = EmptyKey
;
164 assert(NumEntries
== 0 && "Node count imbalance!");
170 /// Return 1 if the specified key is in the map, 0 otherwise.
171 size_type
count(const_arg_type_t
<KeyT
> Val
) const {
172 const BucketT
*TheBucket
;
173 return LookupBucketFor(Val
, TheBucket
) ? 1 : 0;
176 iterator
find(const_arg_type_t
<KeyT
> Val
) {
178 if (LookupBucketFor(Val
, TheBucket
))
179 return makeIterator(TheBucket
, getBucketsEnd(), *this, true);
182 const_iterator
find(const_arg_type_t
<KeyT
> Val
) const {
183 const BucketT
*TheBucket
;
184 if (LookupBucketFor(Val
, TheBucket
))
185 return makeConstIterator(TheBucket
, getBucketsEnd(), *this, true);
189 /// Alternate version of find() which allows a different, and possibly
190 /// less expensive, key type.
191 /// The DenseMapInfo is responsible for supplying methods
192 /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
194 template<class LookupKeyT
>
195 iterator
find_as(const LookupKeyT
&Val
) {
197 if (LookupBucketFor(Val
, TheBucket
))
198 return makeIterator(TheBucket
, getBucketsEnd(), *this, true);
201 template<class LookupKeyT
>
202 const_iterator
find_as(const LookupKeyT
&Val
) const {
203 const BucketT
*TheBucket
;
204 if (LookupBucketFor(Val
, TheBucket
))
205 return makeConstIterator(TheBucket
, getBucketsEnd(), *this, true);
209 /// lookup - Return the entry for the specified key, or a default
210 /// constructed value if no such entry exists.
211 ValueT
lookup(const_arg_type_t
<KeyT
> Val
) const {
212 const BucketT
*TheBucket
;
213 if (LookupBucketFor(Val
, TheBucket
))
214 return TheBucket
->getSecond();
218 // Inserts key,value pair into the map if the key isn't already in the map.
219 // If the key is already in the map, it returns false and doesn't update the
221 std::pair
<iterator
, bool> insert(const std::pair
<KeyT
, ValueT
> &KV
) {
222 return try_emplace(KV
.first
, KV
.second
);
225 // Inserts key,value pair into the map if the key isn't already in the map.
226 // If the key is already in the map, it returns false and doesn't update the
228 std::pair
<iterator
, bool> insert(std::pair
<KeyT
, ValueT
> &&KV
) {
229 return try_emplace(std::move(KV
.first
), std::move(KV
.second
));
232 // Inserts key,value pair into the map if the key isn't already in the map.
233 // The value is constructed in-place if the key is not in the map, otherwise
235 template <typename
... Ts
>
236 std::pair
<iterator
, bool> try_emplace(KeyT
&&Key
, Ts
&&... Args
) {
238 if (LookupBucketFor(Key
, TheBucket
))
239 return std::make_pair(
240 makeIterator(TheBucket
, getBucketsEnd(), *this, true),
241 false); // Already in map.
243 // Otherwise, insert the new element.
245 InsertIntoBucket(TheBucket
, std::move(Key
), std::forward
<Ts
>(Args
)...);
246 return std::make_pair(
247 makeIterator(TheBucket
, getBucketsEnd(), *this, true),
251 // Inserts key,value pair into the map if the key isn't already in the map.
252 // The value is constructed in-place if the key is not in the map, otherwise
254 template <typename
... Ts
>
255 std::pair
<iterator
, bool> try_emplace(const KeyT
&Key
, Ts
&&... Args
) {
257 if (LookupBucketFor(Key
, TheBucket
))
258 return std::make_pair(
259 makeIterator(TheBucket
, getBucketsEnd(), *this, true),
260 false); // Already in map.
262 // Otherwise, insert the new element.
263 TheBucket
= InsertIntoBucket(TheBucket
, Key
, std::forward
<Ts
>(Args
)...);
264 return std::make_pair(
265 makeIterator(TheBucket
, getBucketsEnd(), *this, true),
269 /// Alternate version of insert() which allows a different, and possibly
270 /// less expensive, key type.
271 /// The DenseMapInfo is responsible for supplying methods
272 /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
274 template <typename LookupKeyT
>
275 std::pair
<iterator
, bool> insert_as(std::pair
<KeyT
, ValueT
> &&KV
,
276 const LookupKeyT
&Val
) {
278 if (LookupBucketFor(Val
, TheBucket
))
279 return std::make_pair(
280 makeIterator(TheBucket
, getBucketsEnd(), *this, true),
281 false); // Already in map.
283 // Otherwise, insert the new element.
284 TheBucket
= InsertIntoBucketWithLookup(TheBucket
, std::move(KV
.first
),
285 std::move(KV
.second
), Val
);
286 return std::make_pair(
287 makeIterator(TheBucket
, getBucketsEnd(), *this, true),
291 /// insert - Range insertion of pairs.
292 template<typename InputIt
>
293 void insert(InputIt I
, InputIt E
) {
298 bool erase(const KeyT
&Val
) {
300 if (!LookupBucketFor(Val
, TheBucket
))
301 return false; // not in map.
303 TheBucket
->getSecond().~ValueT();
304 TheBucket
->getFirst() = getTombstoneKey();
305 decrementNumEntries();
306 incrementNumTombstones();
309 void erase(iterator I
) {
310 BucketT
*TheBucket
= &*I
;
311 TheBucket
->getSecond().~ValueT();
312 TheBucket
->getFirst() = getTombstoneKey();
313 decrementNumEntries();
314 incrementNumTombstones();
317 value_type
& FindAndConstruct(const KeyT
&Key
) {
319 if (LookupBucketFor(Key
, TheBucket
))
322 return *InsertIntoBucket(TheBucket
, Key
);
325 ValueT
&operator[](const KeyT
&Key
) {
326 return FindAndConstruct(Key
).second
;
329 value_type
& FindAndConstruct(KeyT
&&Key
) {
331 if (LookupBucketFor(Key
, TheBucket
))
334 return *InsertIntoBucket(TheBucket
, std::move(Key
));
337 ValueT
&operator[](KeyT
&&Key
) {
338 return FindAndConstruct(std::move(Key
)).second
;
341 /// isPointerIntoBucketsArray - Return true if the specified pointer points
342 /// somewhere into the DenseMap's array of buckets (i.e. either to a key or
343 /// value in the DenseMap).
344 bool isPointerIntoBucketsArray(const void *Ptr
) const {
345 return Ptr
>= getBuckets() && Ptr
< getBucketsEnd();
348 /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
349 /// array. In conjunction with the previous method, this can be used to
350 /// determine whether an insertion caused the DenseMap to reallocate.
351 const void *getPointerIntoBucketsArray() const { return getBuckets(); }
354 DenseMapBase() = default;
357 if (getNumBuckets() == 0) // Nothing to do.
360 const KeyT EmptyKey
= getEmptyKey(), TombstoneKey
= getTombstoneKey();
361 for (BucketT
*P
= getBuckets(), *E
= getBucketsEnd(); P
!= E
; ++P
) {
362 if (!KeyInfoT::isEqual(P
->getFirst(), EmptyKey
) &&
363 !KeyInfoT::isEqual(P
->getFirst(), TombstoneKey
))
364 P
->getSecond().~ValueT();
365 P
->getFirst().~KeyT();
373 assert((getNumBuckets() & (getNumBuckets()-1)) == 0 &&
374 "# initial buckets must be a power of two!");
375 const KeyT EmptyKey
= getEmptyKey();
376 for (BucketT
*B
= getBuckets(), *E
= getBucketsEnd(); B
!= E
; ++B
)
377 ::new (&B
->getFirst()) KeyT(EmptyKey
);
380 /// Returns the number of buckets to allocate to ensure that the DenseMap can
381 /// accommodate \p NumEntries without need to grow().
382 unsigned getMinBucketToReserveForEntries(unsigned NumEntries
) {
383 // Ensure that "NumEntries * 4 < NumBuckets * 3"
386 // +1 is required because of the strict equality.
387 // For example if NumEntries is 48, we need to return 401.
388 return NextPowerOf2(NumEntries
* 4 / 3 + 1);
391 void moveFromOldBuckets(BucketT
*OldBucketsBegin
, BucketT
*OldBucketsEnd
) {
394 // Insert all the old elements.
395 const KeyT EmptyKey
= getEmptyKey();
396 const KeyT TombstoneKey
= getTombstoneKey();
397 for (BucketT
*B
= OldBucketsBegin
, *E
= OldBucketsEnd
; B
!= E
; ++B
) {
398 if (!KeyInfoT::isEqual(B
->getFirst(), EmptyKey
) &&
399 !KeyInfoT::isEqual(B
->getFirst(), TombstoneKey
)) {
400 // Insert the key/value into the new table.
402 bool FoundVal
= LookupBucketFor(B
->getFirst(), DestBucket
);
403 (void)FoundVal
; // silence warning.
404 assert(!FoundVal
&& "Key already in new map?");
405 DestBucket
->getFirst() = std::move(B
->getFirst());
406 ::new (&DestBucket
->getSecond()) ValueT(std::move(B
->getSecond()));
407 incrementNumEntries();
410 B
->getSecond().~ValueT();
412 B
->getFirst().~KeyT();
416 template <typename OtherBaseT
>
418 const DenseMapBase
<OtherBaseT
, KeyT
, ValueT
, KeyInfoT
, BucketT
> &other
) {
419 assert(&other
!= this);
420 assert(getNumBuckets() == other
.getNumBuckets());
422 setNumEntries(other
.getNumEntries());
423 setNumTombstones(other
.getNumTombstones());
425 if (is_trivially_copyable
<KeyT
>::value
&&
426 is_trivially_copyable
<ValueT
>::value
)
427 memcpy(reinterpret_cast<void *>(getBuckets()), other
.getBuckets(),
428 getNumBuckets() * sizeof(BucketT
));
430 for (size_t i
= 0; i
< getNumBuckets(); ++i
) {
431 ::new (&getBuckets()[i
].getFirst())
432 KeyT(other
.getBuckets()[i
].getFirst());
433 if (!KeyInfoT::isEqual(getBuckets()[i
].getFirst(), getEmptyKey()) &&
434 !KeyInfoT::isEqual(getBuckets()[i
].getFirst(), getTombstoneKey()))
435 ::new (&getBuckets()[i
].getSecond())
436 ValueT(other
.getBuckets()[i
].getSecond());
440 static unsigned getHashValue(const KeyT
&Val
) {
441 return KeyInfoT::getHashValue(Val
);
444 template<typename LookupKeyT
>
445 static unsigned getHashValue(const LookupKeyT
&Val
) {
446 return KeyInfoT::getHashValue(Val
);
449 static const KeyT
getEmptyKey() {
450 static_assert(std::is_base_of
<DenseMapBase
, DerivedT
>::value
,
451 "Must pass the derived type to this template!");
452 return KeyInfoT::getEmptyKey();
455 static const KeyT
getTombstoneKey() {
456 return KeyInfoT::getTombstoneKey();
460 iterator
makeIterator(BucketT
*P
, BucketT
*E
,
461 DebugEpochBase
&Epoch
,
462 bool NoAdvance
=false) {
463 if (shouldReverseIterate
<KeyT
>()) {
464 BucketT
*B
= P
== getBucketsEnd() ? getBuckets() : P
+ 1;
465 return iterator(B
, E
, Epoch
, NoAdvance
);
467 return iterator(P
, E
, Epoch
, NoAdvance
);
470 const_iterator
makeConstIterator(const BucketT
*P
, const BucketT
*E
,
471 const DebugEpochBase
&Epoch
,
472 const bool NoAdvance
=false) const {
473 if (shouldReverseIterate
<KeyT
>()) {
474 const BucketT
*B
= P
== getBucketsEnd() ? getBuckets() : P
+ 1;
475 return const_iterator(B
, E
, Epoch
, NoAdvance
);
477 return const_iterator(P
, E
, Epoch
, NoAdvance
);
480 unsigned getNumEntries() const {
481 return static_cast<const DerivedT
*>(this)->getNumEntries();
484 void setNumEntries(unsigned Num
) {
485 static_cast<DerivedT
*>(this)->setNumEntries(Num
);
488 void incrementNumEntries() {
489 setNumEntries(getNumEntries() + 1);
492 void decrementNumEntries() {
493 setNumEntries(getNumEntries() - 1);
496 unsigned getNumTombstones() const {
497 return static_cast<const DerivedT
*>(this)->getNumTombstones();
500 void setNumTombstones(unsigned Num
) {
501 static_cast<DerivedT
*>(this)->setNumTombstones(Num
);
504 void incrementNumTombstones() {
505 setNumTombstones(getNumTombstones() + 1);
508 void decrementNumTombstones() {
509 setNumTombstones(getNumTombstones() - 1);
512 const BucketT
*getBuckets() const {
513 return static_cast<const DerivedT
*>(this)->getBuckets();
516 BucketT
*getBuckets() {
517 return static_cast<DerivedT
*>(this)->getBuckets();
520 unsigned getNumBuckets() const {
521 return static_cast<const DerivedT
*>(this)->getNumBuckets();
524 BucketT
*getBucketsEnd() {
525 return getBuckets() + getNumBuckets();
528 const BucketT
*getBucketsEnd() const {
529 return getBuckets() + getNumBuckets();
532 void grow(unsigned AtLeast
) {
533 static_cast<DerivedT
*>(this)->grow(AtLeast
);
536 void shrink_and_clear() {
537 static_cast<DerivedT
*>(this)->shrink_and_clear();
540 template <typename KeyArg
, typename
... ValueArgs
>
541 BucketT
*InsertIntoBucket(BucketT
*TheBucket
, KeyArg
&&Key
,
542 ValueArgs
&&... Values
) {
543 TheBucket
= InsertIntoBucketImpl(Key
, Key
, TheBucket
);
545 TheBucket
->getFirst() = std::forward
<KeyArg
>(Key
);
546 ::new (&TheBucket
->getSecond()) ValueT(std::forward
<ValueArgs
>(Values
)...);
550 template <typename LookupKeyT
>
551 BucketT
*InsertIntoBucketWithLookup(BucketT
*TheBucket
, KeyT
&&Key
,
552 ValueT
&&Value
, LookupKeyT
&Lookup
) {
553 TheBucket
= InsertIntoBucketImpl(Key
, Lookup
, TheBucket
);
555 TheBucket
->getFirst() = std::move(Key
);
556 ::new (&TheBucket
->getSecond()) ValueT(std::move(Value
));
560 template <typename LookupKeyT
>
561 BucketT
*InsertIntoBucketImpl(const KeyT
&Key
, const LookupKeyT
&Lookup
,
562 BucketT
*TheBucket
) {
565 // If the load of the hash table is more than 3/4, or if fewer than 1/8 of
566 // the buckets are empty (meaning that many are filled with tombstones),
569 // The later case is tricky. For example, if we had one empty bucket with
570 // tons of tombstones, failing lookups (e.g. for insertion) would have to
571 // probe almost the entire table until it found the empty bucket. If the
572 // table completely filled with tombstones, no lookup would ever succeed,
573 // causing infinite loops in lookup.
574 unsigned NewNumEntries
= getNumEntries() + 1;
575 unsigned NumBuckets
= getNumBuckets();
576 if (LLVM_UNLIKELY(NewNumEntries
* 4 >= NumBuckets
* 3)) {
577 this->grow(NumBuckets
* 2);
578 LookupBucketFor(Lookup
, TheBucket
);
579 NumBuckets
= getNumBuckets();
580 } else if (LLVM_UNLIKELY(NumBuckets
-(NewNumEntries
+getNumTombstones()) <=
582 this->grow(NumBuckets
);
583 LookupBucketFor(Lookup
, TheBucket
);
587 // Only update the state after we've grown our bucket space appropriately
588 // so that when growing buckets we have self-consistent entry count.
589 incrementNumEntries();
591 // If we are writing over a tombstone, remember this.
592 const KeyT EmptyKey
= getEmptyKey();
593 if (!KeyInfoT::isEqual(TheBucket
->getFirst(), EmptyKey
))
594 decrementNumTombstones();
599 /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in
600 /// FoundBucket. If the bucket contains the key and a value, this returns
601 /// true, otherwise it returns a bucket with an empty marker or tombstone and
603 template<typename LookupKeyT
>
604 bool LookupBucketFor(const LookupKeyT
&Val
,
605 const BucketT
*&FoundBucket
) const {
606 const BucketT
*BucketsPtr
= getBuckets();
607 const unsigned NumBuckets
= getNumBuckets();
609 if (NumBuckets
== 0) {
610 FoundBucket
= nullptr;
614 // FoundTombstone - Keep track of whether we find a tombstone while probing.
615 const BucketT
*FoundTombstone
= nullptr;
616 const KeyT EmptyKey
= getEmptyKey();
617 const KeyT TombstoneKey
= getTombstoneKey();
618 assert(!KeyInfoT::isEqual(Val
, EmptyKey
) &&
619 !KeyInfoT::isEqual(Val
, TombstoneKey
) &&
620 "Empty/Tombstone value shouldn't be inserted into map!");
622 unsigned BucketNo
= getHashValue(Val
) & (NumBuckets
-1);
623 unsigned ProbeAmt
= 1;
625 const BucketT
*ThisBucket
= BucketsPtr
+ BucketNo
;
626 // Found Val's bucket? If so, return it.
627 if (LLVM_LIKELY(KeyInfoT::isEqual(Val
, ThisBucket
->getFirst()))) {
628 FoundBucket
= ThisBucket
;
632 // If we found an empty bucket, the key doesn't exist in the set.
633 // Insert it and return the default value.
634 if (LLVM_LIKELY(KeyInfoT::isEqual(ThisBucket
->getFirst(), EmptyKey
))) {
635 // If we've already seen a tombstone while probing, fill it in instead
636 // of the empty bucket we eventually probed to.
637 FoundBucket
= FoundTombstone
? FoundTombstone
: ThisBucket
;
641 // If this is a tombstone, remember it. If Val ends up not in the map, we
642 // prefer to return it than something that would require more probing.
643 if (KeyInfoT::isEqual(ThisBucket
->getFirst(), TombstoneKey
) &&
645 FoundTombstone
= ThisBucket
; // Remember the first tombstone found.
647 // Otherwise, it's a hash collision or a tombstone, continue quadratic
649 BucketNo
+= ProbeAmt
++;
650 BucketNo
&= (NumBuckets
-1);
654 template <typename LookupKeyT
>
655 bool LookupBucketFor(const LookupKeyT
&Val
, BucketT
*&FoundBucket
) {
656 const BucketT
*ConstFoundBucket
;
657 bool Result
= const_cast<const DenseMapBase
*>(this)
658 ->LookupBucketFor(Val
, ConstFoundBucket
);
659 FoundBucket
= const_cast<BucketT
*>(ConstFoundBucket
);
664 /// Return the approximate size (in bytes) of the actual map.
665 /// This is just the raw memory used by DenseMap.
666 /// If entries are pointers to objects, the size of the referenced objects
667 /// are not included.
668 size_t getMemorySize() const {
669 return getNumBuckets() * sizeof(BucketT
);
673 /// Equality comparison for DenseMap.
675 /// Iterates over elements of LHS confirming that each (key, value) pair in LHS
676 /// is also in RHS, and that no additional pairs are in RHS.
677 /// Equivalent to N calls to RHS.find and N value comparisons. Amortized
678 /// complexity is linear, worst case is O(N^2) (if every hash collides).
679 template <typename DerivedT
, typename KeyT
, typename ValueT
, typename KeyInfoT
,
682 const DenseMapBase
<DerivedT
, KeyT
, ValueT
, KeyInfoT
, BucketT
> &LHS
,
683 const DenseMapBase
<DerivedT
, KeyT
, ValueT
, KeyInfoT
, BucketT
> &RHS
) {
684 if (LHS
.size() != RHS
.size())
687 for (auto &KV
: LHS
) {
688 auto I
= RHS
.find(KV
.first
);
689 if (I
== RHS
.end() || I
->second
!= KV
.second
)
696 /// Inequality comparison for DenseMap.
698 /// Equivalent to !(LHS == RHS). See operator== for performance notes.
699 template <typename DerivedT
, typename KeyT
, typename ValueT
, typename KeyInfoT
,
702 const DenseMapBase
<DerivedT
, KeyT
, ValueT
, KeyInfoT
, BucketT
> &LHS
,
703 const DenseMapBase
<DerivedT
, KeyT
, ValueT
, KeyInfoT
, BucketT
> &RHS
) {
704 return !(LHS
== RHS
);
707 template <typename KeyT
, typename ValueT
,
708 typename KeyInfoT
= DenseMapInfo
<KeyT
>,
709 typename BucketT
= llvm::detail::DenseMapPair
<KeyT
, ValueT
>>
710 class DenseMap
: public DenseMapBase
<DenseMap
<KeyT
, ValueT
, KeyInfoT
, BucketT
>,
711 KeyT
, ValueT
, KeyInfoT
, BucketT
> {
712 friend class DenseMapBase
<DenseMap
, KeyT
, ValueT
, KeyInfoT
, BucketT
>;
714 // Lift some types from the dependent base class into this class for
715 // simplicity of referring to them.
716 using BaseT
= DenseMapBase
<DenseMap
, KeyT
, ValueT
, KeyInfoT
, BucketT
>;
720 unsigned NumTombstones
;
724 /// Create a DenseMap wth an optional \p InitialReserve that guarantee that
725 /// this number of elements can be inserted in the map without grow()
726 explicit DenseMap(unsigned InitialReserve
= 0) { init(InitialReserve
); }
728 DenseMap(const DenseMap
&other
) : BaseT() {
733 DenseMap(DenseMap
&&other
) : BaseT() {
738 template<typename InputIt
>
739 DenseMap(const InputIt
&I
, const InputIt
&E
) {
740 init(std::distance(I
, E
));
744 DenseMap(std::initializer_list
<typename
BaseT::value_type
> Vals
) {
746 this->insert(Vals
.begin(), Vals
.end());
751 operator delete(Buckets
);
754 void swap(DenseMap
& RHS
) {
755 this->incrementEpoch();
756 RHS
.incrementEpoch();
757 std::swap(Buckets
, RHS
.Buckets
);
758 std::swap(NumEntries
, RHS
.NumEntries
);
759 std::swap(NumTombstones
, RHS
.NumTombstones
);
760 std::swap(NumBuckets
, RHS
.NumBuckets
);
763 DenseMap
& operator=(const DenseMap
& other
) {
769 DenseMap
& operator=(DenseMap
&&other
) {
771 operator delete(Buckets
);
777 void copyFrom(const DenseMap
& other
) {
779 operator delete(Buckets
);
780 if (allocateBuckets(other
.NumBuckets
)) {
781 this->BaseT::copyFrom(other
);
788 void init(unsigned InitNumEntries
) {
789 auto InitBuckets
= BaseT::getMinBucketToReserveForEntries(InitNumEntries
);
790 if (allocateBuckets(InitBuckets
)) {
791 this->BaseT::initEmpty();
798 void grow(unsigned AtLeast
) {
799 unsigned OldNumBuckets
= NumBuckets
;
800 BucketT
*OldBuckets
= Buckets
;
802 allocateBuckets(std::max
<unsigned>(64, static_cast<unsigned>(NextPowerOf2(AtLeast
-1))));
805 this->BaseT::initEmpty();
809 this->moveFromOldBuckets(OldBuckets
, OldBuckets
+OldNumBuckets
);
811 // Free the old table.
812 operator delete(OldBuckets
);
815 void shrink_and_clear() {
816 unsigned OldNumEntries
= NumEntries
;
819 // Reduce the number of buckets.
820 unsigned NewNumBuckets
= 0;
822 NewNumBuckets
= std::max(64, 1 << (Log2_32_Ceil(OldNumEntries
) + 1));
823 if (NewNumBuckets
== NumBuckets
) {
824 this->BaseT::initEmpty();
828 operator delete(Buckets
);
833 unsigned getNumEntries() const {
837 void setNumEntries(unsigned Num
) {
841 unsigned getNumTombstones() const {
842 return NumTombstones
;
845 void setNumTombstones(unsigned Num
) {
849 BucketT
*getBuckets() const {
853 unsigned getNumBuckets() const {
857 bool allocateBuckets(unsigned Num
) {
859 if (NumBuckets
== 0) {
864 Buckets
= static_cast<BucketT
*>(operator new(sizeof(BucketT
) * NumBuckets
));
869 template <typename KeyT
, typename ValueT
, unsigned InlineBuckets
= 4,
870 typename KeyInfoT
= DenseMapInfo
<KeyT
>,
871 typename BucketT
= llvm::detail::DenseMapPair
<KeyT
, ValueT
>>
873 : public DenseMapBase
<
874 SmallDenseMap
<KeyT
, ValueT
, InlineBuckets
, KeyInfoT
, BucketT
>, KeyT
,
875 ValueT
, KeyInfoT
, BucketT
> {
876 friend class DenseMapBase
<SmallDenseMap
, KeyT
, ValueT
, KeyInfoT
, BucketT
>;
878 // Lift some types from the dependent base class into this class for
879 // simplicity of referring to them.
880 using BaseT
= DenseMapBase
<SmallDenseMap
, KeyT
, ValueT
, KeyInfoT
, BucketT
>;
882 static_assert(isPowerOf2_64(InlineBuckets
),
883 "InlineBuckets must be a power of 2.");
886 unsigned NumEntries
: 31;
887 unsigned NumTombstones
;
894 /// A "union" of an inline bucket array and the struct representing
895 /// a large bucket. This union will be discriminated by the 'Small' bit.
896 AlignedCharArrayUnion
<BucketT
[InlineBuckets
], LargeRep
> storage
;
899 explicit SmallDenseMap(unsigned NumInitBuckets
= 0) {
900 init(NumInitBuckets
);
903 SmallDenseMap(const SmallDenseMap
&other
) : BaseT() {
908 SmallDenseMap(SmallDenseMap
&&other
) : BaseT() {
913 template<typename InputIt
>
914 SmallDenseMap(const InputIt
&I
, const InputIt
&E
) {
915 init(NextPowerOf2(std::distance(I
, E
)));
924 void swap(SmallDenseMap
& RHS
) {
925 unsigned TmpNumEntries
= RHS
.NumEntries
;
926 RHS
.NumEntries
= NumEntries
;
927 NumEntries
= TmpNumEntries
;
928 std::swap(NumTombstones
, RHS
.NumTombstones
);
930 const KeyT EmptyKey
= this->getEmptyKey();
931 const KeyT TombstoneKey
= this->getTombstoneKey();
932 if (Small
&& RHS
.Small
) {
933 // If we're swapping inline bucket arrays, we have to cope with some of
934 // the tricky bits of DenseMap's storage system: the buckets are not
935 // fully initialized. Thus we swap every key, but we may have
936 // a one-directional move of the value.
937 for (unsigned i
= 0, e
= InlineBuckets
; i
!= e
; ++i
) {
938 BucketT
*LHSB
= &getInlineBuckets()[i
],
939 *RHSB
= &RHS
.getInlineBuckets()[i
];
940 bool hasLHSValue
= (!KeyInfoT::isEqual(LHSB
->getFirst(), EmptyKey
) &&
941 !KeyInfoT::isEqual(LHSB
->getFirst(), TombstoneKey
));
942 bool hasRHSValue
= (!KeyInfoT::isEqual(RHSB
->getFirst(), EmptyKey
) &&
943 !KeyInfoT::isEqual(RHSB
->getFirst(), TombstoneKey
));
944 if (hasLHSValue
&& hasRHSValue
) {
945 // Swap together if we can...
946 std::swap(*LHSB
, *RHSB
);
949 // Swap separately and handle any assymetry.
950 std::swap(LHSB
->getFirst(), RHSB
->getFirst());
952 ::new (&RHSB
->getSecond()) ValueT(std::move(LHSB
->getSecond()));
953 LHSB
->getSecond().~ValueT();
954 } else if (hasRHSValue
) {
955 ::new (&LHSB
->getSecond()) ValueT(std::move(RHSB
->getSecond()));
956 RHSB
->getSecond().~ValueT();
961 if (!Small
&& !RHS
.Small
) {
962 std::swap(getLargeRep()->Buckets
, RHS
.getLargeRep()->Buckets
);
963 std::swap(getLargeRep()->NumBuckets
, RHS
.getLargeRep()->NumBuckets
);
967 SmallDenseMap
&SmallSide
= Small
? *this : RHS
;
968 SmallDenseMap
&LargeSide
= Small
? RHS
: *this;
970 // First stash the large side's rep and move the small side across.
971 LargeRep TmpRep
= std::move(*LargeSide
.getLargeRep());
972 LargeSide
.getLargeRep()->~LargeRep();
973 LargeSide
.Small
= true;
974 // This is similar to the standard move-from-old-buckets, but the bucket
975 // count hasn't actually rotated in this case. So we have to carefully
976 // move construct the keys and values into their new locations, but there
977 // is no need to re-hash things.
978 for (unsigned i
= 0, e
= InlineBuckets
; i
!= e
; ++i
) {
979 BucketT
*NewB
= &LargeSide
.getInlineBuckets()[i
],
980 *OldB
= &SmallSide
.getInlineBuckets()[i
];
981 ::new (&NewB
->getFirst()) KeyT(std::move(OldB
->getFirst()));
982 OldB
->getFirst().~KeyT();
983 if (!KeyInfoT::isEqual(NewB
->getFirst(), EmptyKey
) &&
984 !KeyInfoT::isEqual(NewB
->getFirst(), TombstoneKey
)) {
985 ::new (&NewB
->getSecond()) ValueT(std::move(OldB
->getSecond()));
986 OldB
->getSecond().~ValueT();
990 // The hard part of moving the small buckets across is done, just move
991 // the TmpRep into its new home.
992 SmallSide
.Small
= false;
993 new (SmallSide
.getLargeRep()) LargeRep(std::move(TmpRep
));
996 SmallDenseMap
& operator=(const SmallDenseMap
& other
) {
1002 SmallDenseMap
& operator=(SmallDenseMap
&&other
) {
1004 deallocateBuckets();
1010 void copyFrom(const SmallDenseMap
& other
) {
1012 deallocateBuckets();
1014 if (other
.getNumBuckets() > InlineBuckets
) {
1016 new (getLargeRep()) LargeRep(allocateBuckets(other
.getNumBuckets()));
1018 this->BaseT::copyFrom(other
);
1021 void init(unsigned InitBuckets
) {
1023 if (InitBuckets
> InlineBuckets
) {
1025 new (getLargeRep()) LargeRep(allocateBuckets(InitBuckets
));
1027 this->BaseT::initEmpty();
1030 void grow(unsigned AtLeast
) {
1031 if (AtLeast
>= InlineBuckets
)
1032 AtLeast
= std::max
<unsigned>(64, NextPowerOf2(AtLeast
-1));
1035 if (AtLeast
< InlineBuckets
)
1036 return; // Nothing to do.
1038 // First move the inline buckets into a temporary storage.
1039 AlignedCharArrayUnion
<BucketT
[InlineBuckets
]> TmpStorage
;
1040 BucketT
*TmpBegin
= reinterpret_cast<BucketT
*>(TmpStorage
.buffer
);
1041 BucketT
*TmpEnd
= TmpBegin
;
1043 // Loop over the buckets, moving non-empty, non-tombstones into the
1044 // temporary storage. Have the loop move the TmpEnd forward as it goes.
1045 const KeyT EmptyKey
= this->getEmptyKey();
1046 const KeyT TombstoneKey
= this->getTombstoneKey();
1047 for (BucketT
*P
= getBuckets(), *E
= P
+ InlineBuckets
; P
!= E
; ++P
) {
1048 if (!KeyInfoT::isEqual(P
->getFirst(), EmptyKey
) &&
1049 !KeyInfoT::isEqual(P
->getFirst(), TombstoneKey
)) {
1050 assert(size_t(TmpEnd
- TmpBegin
) < InlineBuckets
&&
1051 "Too many inline buckets!");
1052 ::new (&TmpEnd
->getFirst()) KeyT(std::move(P
->getFirst()));
1053 ::new (&TmpEnd
->getSecond()) ValueT(std::move(P
->getSecond()));
1055 P
->getSecond().~ValueT();
1057 P
->getFirst().~KeyT();
1060 // Now make this map use the large rep, and move all the entries back
1063 new (getLargeRep()) LargeRep(allocateBuckets(AtLeast
));
1064 this->moveFromOldBuckets(TmpBegin
, TmpEnd
);
1068 LargeRep OldRep
= std::move(*getLargeRep());
1069 getLargeRep()->~LargeRep();
1070 if (AtLeast
<= InlineBuckets
) {
1073 new (getLargeRep()) LargeRep(allocateBuckets(AtLeast
));
1076 this->moveFromOldBuckets(OldRep
.Buckets
, OldRep
.Buckets
+OldRep
.NumBuckets
);
1078 // Free the old table.
1079 operator delete(OldRep
.Buckets
);
1082 void shrink_and_clear() {
1083 unsigned OldSize
= this->size();
1086 // Reduce the number of buckets.
1087 unsigned NewNumBuckets
= 0;
1089 NewNumBuckets
= 1 << (Log2_32_Ceil(OldSize
) + 1);
1090 if (NewNumBuckets
> InlineBuckets
&& NewNumBuckets
< 64u)
1093 if ((Small
&& NewNumBuckets
<= InlineBuckets
) ||
1094 (!Small
&& NewNumBuckets
== getLargeRep()->NumBuckets
)) {
1095 this->BaseT::initEmpty();
1099 deallocateBuckets();
1100 init(NewNumBuckets
);
1104 unsigned getNumEntries() const {
1108 void setNumEntries(unsigned Num
) {
1109 // NumEntries is hardcoded to be 31 bits wide.
1110 assert(Num
< (1U << 31) && "Cannot support more than 1<<31 entries");
1114 unsigned getNumTombstones() const {
1115 return NumTombstones
;
1118 void setNumTombstones(unsigned Num
) {
1119 NumTombstones
= Num
;
1122 const BucketT
*getInlineBuckets() const {
1124 // Note that this cast does not violate aliasing rules as we assert that
1125 // the memory's dynamic type is the small, inline bucket buffer, and the
1126 // 'storage.buffer' static type is 'char *'.
1127 return reinterpret_cast<const BucketT
*>(storage
.buffer
);
1130 BucketT
*getInlineBuckets() {
1131 return const_cast<BucketT
*>(
1132 const_cast<const SmallDenseMap
*>(this)->getInlineBuckets());
1135 const LargeRep
*getLargeRep() const {
1137 // Note, same rule about aliasing as with getInlineBuckets.
1138 return reinterpret_cast<const LargeRep
*>(storage
.buffer
);
1141 LargeRep
*getLargeRep() {
1142 return const_cast<LargeRep
*>(
1143 const_cast<const SmallDenseMap
*>(this)->getLargeRep());
1146 const BucketT
*getBuckets() const {
1147 return Small
? getInlineBuckets() : getLargeRep()->Buckets
;
1150 BucketT
*getBuckets() {
1151 return const_cast<BucketT
*>(
1152 const_cast<const SmallDenseMap
*>(this)->getBuckets());
1155 unsigned getNumBuckets() const {
1156 return Small
? InlineBuckets
: getLargeRep()->NumBuckets
;
1159 void deallocateBuckets() {
1163 operator delete(getLargeRep()->Buckets
);
1164 getLargeRep()->~LargeRep();
1167 LargeRep
allocateBuckets(unsigned Num
) {
1168 assert(Num
> InlineBuckets
&& "Must allocate more buckets than are inline");
1170 static_cast<BucketT
*>(operator new(sizeof(BucketT
) * Num
)), Num
1176 template <typename KeyT
, typename ValueT
, typename KeyInfoT
, typename Bucket
,
1178 class DenseMapIterator
: DebugEpochBase::HandleBase
{
1179 friend class DenseMapIterator
<KeyT
, ValueT
, KeyInfoT
, Bucket
, true>;
1180 friend class DenseMapIterator
<KeyT
, ValueT
, KeyInfoT
, Bucket
, false>;
1182 using ConstIterator
= DenseMapIterator
<KeyT
, ValueT
, KeyInfoT
, Bucket
, true>;
1185 using difference_type
= ptrdiff_t;
1187 typename
std::conditional
<IsConst
, const Bucket
, Bucket
>::type
;
1188 using pointer
= value_type
*;
1189 using reference
= value_type
&;
1190 using iterator_category
= std::forward_iterator_tag
;
1193 pointer Ptr
= nullptr;
1194 pointer End
= nullptr;
1197 DenseMapIterator() = default;
1199 DenseMapIterator(pointer Pos
, pointer E
, const DebugEpochBase
&Epoch
,
1200 bool NoAdvance
= false)
1201 : DebugEpochBase::HandleBase(&Epoch
), Ptr(Pos
), End(E
) {
1202 assert(isHandleInSync() && "invalid construction!");
1204 if (NoAdvance
) return;
1205 if (shouldReverseIterate
<KeyT
>()) {
1206 RetreatPastEmptyBuckets();
1209 AdvancePastEmptyBuckets();
1212 // Converting ctor from non-const iterators to const iterators. SFINAE'd out
1213 // for const iterator destinations so it doesn't end up as a user defined copy
1215 template <bool IsConstSrc
,
1216 typename
= typename
std::enable_if
<!IsConstSrc
&& IsConst
>::type
>
1218 const DenseMapIterator
<KeyT
, ValueT
, KeyInfoT
, Bucket
, IsConstSrc
> &I
)
1219 : DebugEpochBase::HandleBase(I
), Ptr(I
.Ptr
), End(I
.End
) {}
1221 reference
operator*() const {
1222 assert(isHandleInSync() && "invalid iterator access!");
1223 if (shouldReverseIterate
<KeyT
>())
1227 pointer
operator->() const {
1228 assert(isHandleInSync() && "invalid iterator access!");
1229 if (shouldReverseIterate
<KeyT
>())
1234 bool operator==(const ConstIterator
&RHS
) const {
1235 assert((!Ptr
|| isHandleInSync()) && "handle not in sync!");
1236 assert((!RHS
.Ptr
|| RHS
.isHandleInSync()) && "handle not in sync!");
1237 assert(getEpochAddress() == RHS
.getEpochAddress() &&
1238 "comparing incomparable iterators!");
1239 return Ptr
== RHS
.Ptr
;
1241 bool operator!=(const ConstIterator
&RHS
) const {
1242 assert((!Ptr
|| isHandleInSync()) && "handle not in sync!");
1243 assert((!RHS
.Ptr
|| RHS
.isHandleInSync()) && "handle not in sync!");
1244 assert(getEpochAddress() == RHS
.getEpochAddress() &&
1245 "comparing incomparable iterators!");
1246 return Ptr
!= RHS
.Ptr
;
1249 inline DenseMapIterator
& operator++() { // Preincrement
1250 assert(isHandleInSync() && "invalid iterator access!");
1251 if (shouldReverseIterate
<KeyT
>()) {
1253 RetreatPastEmptyBuckets();
1257 AdvancePastEmptyBuckets();
1260 DenseMapIterator
operator++(int) { // Postincrement
1261 assert(isHandleInSync() && "invalid iterator access!");
1262 DenseMapIterator tmp
= *this; ++*this; return tmp
;
1266 void AdvancePastEmptyBuckets() {
1268 const KeyT Empty
= KeyInfoT::getEmptyKey();
1269 const KeyT Tombstone
= KeyInfoT::getTombstoneKey();
1271 while (Ptr
!= End
&& (KeyInfoT::isEqual(Ptr
->getFirst(), Empty
) ||
1272 KeyInfoT::isEqual(Ptr
->getFirst(), Tombstone
)))
1276 void RetreatPastEmptyBuckets() {
1278 const KeyT Empty
= KeyInfoT::getEmptyKey();
1279 const KeyT Tombstone
= KeyInfoT::getTombstoneKey();
1281 while (Ptr
!= End
&& (KeyInfoT::isEqual(Ptr
[-1].getFirst(), Empty
) ||
1282 KeyInfoT::isEqual(Ptr
[-1].getFirst(), Tombstone
)))
1287 template <typename KeyT
, typename ValueT
, typename KeyInfoT
>
1288 inline size_t capacity_in_bytes(const DenseMap
<KeyT
, ValueT
, KeyInfoT
> &X
) {
1289 return X
.getMemorySize();
1292 } // end namespace llvm
1294 #endif // LLVM_ADT_DENSEMAP_H