1 //===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains some templates that are useful if you are working with the
12 // No library is required when using these functions.
14 //===----------------------------------------------------------------------===//
16 #ifndef LLVM_ADT_STLEXTRAS_H
17 #define LLVM_ADT_STLEXTRAS_H
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/iterator.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Config/abi-breaking.h"
24 #include "llvm/Support/ErrorHandling.h"
31 #include <initializer_list>
36 #include <type_traits>
39 #ifdef EXPENSIVE_CHECKS
40 #include <random> // for std::mt19937
45 // Only used by compiler if both template types are the same. Useful when
46 // using SFINAE to test for the existence of member functions.
47 template <typename T
, T
> struct SameType
;
51 template <typename RangeT
>
52 using IterOfRange
= decltype(std::begin(std::declval
<RangeT
&>()));
54 template <typename RangeT
>
55 using ValueOfRange
= typename
std::remove_reference
<decltype(
56 *std::begin(std::declval
<RangeT
&>()))>::type
;
58 } // end namespace detail
60 //===----------------------------------------------------------------------===//
61 // Extra additions to <type_traits>
62 //===----------------------------------------------------------------------===//
65 struct negation
: std::integral_constant
<bool, !bool(T::value
)> {};
67 template <typename
...> struct conjunction
: std::true_type
{};
68 template <typename B1
> struct conjunction
<B1
> : B1
{};
69 template <typename B1
, typename
... Bn
>
70 struct conjunction
<B1
, Bn
...>
71 : std::conditional
<bool(B1::value
), conjunction
<Bn
...>, B1
>::type
{};
73 template <typename T
> struct make_const_ptr
{
75 typename
std::add_pointer
<typename
std::add_const
<T
>::type
>::type
;
78 template <typename T
> struct make_const_ref
{
79 using type
= typename
std::add_lvalue_reference
<
80 typename
std::add_const
<T
>::type
>::type
;
83 //===----------------------------------------------------------------------===//
84 // Extra additions to <functional>
85 //===----------------------------------------------------------------------===//
87 template <class Ty
> struct identity
{
88 using argument_type
= Ty
;
90 Ty
&operator()(Ty
&self
) const {
93 const Ty
&operator()(const Ty
&self
) const {
98 template <class Ty
> struct less_ptr
{
99 bool operator()(const Ty
* left
, const Ty
* right
) const {
100 return *left
< *right
;
104 template <class Ty
> struct greater_ptr
{
105 bool operator()(const Ty
* left
, const Ty
* right
) const {
106 return *right
< *left
;
110 /// An efficient, type-erasing, non-owning reference to a callable. This is
111 /// intended for use as the type of a function parameter that is not used
112 /// after the function in question returns.
114 /// This class does not own the callable, so it is not in general safe to store
116 template<typename Fn
> class function_ref
;
118 template<typename Ret
, typename
...Params
>
119 class function_ref
<Ret(Params
...)> {
120 Ret (*callback
)(intptr_t callable
, Params
...params
) = nullptr;
123 template<typename Callable
>
124 static Ret
callback_fn(intptr_t callable
, Params
...params
) {
125 return (*reinterpret_cast<Callable
*>(callable
))(
126 std::forward
<Params
>(params
)...);
130 function_ref() = default;
131 function_ref(std::nullptr_t
) {}
133 template <typename Callable
>
134 function_ref(Callable
&&callable
,
135 typename
std::enable_if
<
136 !std::is_same
<typename
std::remove_reference
<Callable
>::type
,
137 function_ref
>::value
>::type
* = nullptr)
138 : callback(callback_fn
<typename
std::remove_reference
<Callable
>::type
>),
139 callable(reinterpret_cast<intptr_t>(&callable
)) {}
141 Ret
operator()(Params
...params
) const {
142 return callback(callable
, std::forward
<Params
>(params
)...);
145 operator bool() const { return callback
; }
148 // deleter - Very very very simple method that is used to invoke operator
149 // delete on something. It is used like this:
151 // for_each(V.begin(), B.end(), deleter<Interval>);
153 inline void deleter(T
*Ptr
) {
157 //===----------------------------------------------------------------------===//
158 // Extra additions to <iterator>
159 //===----------------------------------------------------------------------===//
161 namespace adl_detail
{
165 template <typename ContainerTy
>
166 auto adl_begin(ContainerTy
&&container
)
167 -> decltype(begin(std::forward
<ContainerTy
>(container
))) {
168 return begin(std::forward
<ContainerTy
>(container
));
173 template <typename ContainerTy
>
174 auto adl_end(ContainerTy
&&container
)
175 -> decltype(end(std::forward
<ContainerTy
>(container
))) {
176 return end(std::forward
<ContainerTy
>(container
));
181 template <typename T
>
182 void adl_swap(T
&&lhs
, T
&&rhs
) noexcept(noexcept(swap(std::declval
<T
>(),
183 std::declval
<T
>()))) {
184 swap(std::forward
<T
>(lhs
), std::forward
<T
>(rhs
));
187 } // end namespace adl_detail
189 template <typename ContainerTy
>
190 auto adl_begin(ContainerTy
&&container
)
191 -> decltype(adl_detail::adl_begin(std::forward
<ContainerTy
>(container
))) {
192 return adl_detail::adl_begin(std::forward
<ContainerTy
>(container
));
195 template <typename ContainerTy
>
196 auto adl_end(ContainerTy
&&container
)
197 -> decltype(adl_detail::adl_end(std::forward
<ContainerTy
>(container
))) {
198 return adl_detail::adl_end(std::forward
<ContainerTy
>(container
));
201 template <typename T
>
202 void adl_swap(T
&&lhs
, T
&&rhs
) noexcept(
203 noexcept(adl_detail::adl_swap(std::declval
<T
>(), std::declval
<T
>()))) {
204 adl_detail::adl_swap(std::forward
<T
>(lhs
), std::forward
<T
>(rhs
));
207 /// Test whether \p RangeOrContainer is empty. Similar to C++17 std::empty.
208 template <typename T
>
209 constexpr bool empty(const T
&RangeOrContainer
) {
210 return adl_begin(RangeOrContainer
) == adl_end(RangeOrContainer
);
213 // mapped_iterator - This is a simple iterator adapter that causes a function to
214 // be applied whenever operator* is invoked on the iterator.
216 template <typename ItTy
, typename FuncTy
,
217 typename FuncReturnTy
=
218 decltype(std::declval
<FuncTy
>()(*std::declval
<ItTy
>()))>
219 class mapped_iterator
220 : public iterator_adaptor_base
<
221 mapped_iterator
<ItTy
, FuncTy
>, ItTy
,
222 typename
std::iterator_traits
<ItTy
>::iterator_category
,
223 typename
std::remove_reference
<FuncReturnTy
>::type
> {
225 mapped_iterator(ItTy U
, FuncTy F
)
226 : mapped_iterator::iterator_adaptor_base(std::move(U
)), F(std::move(F
)) {}
228 ItTy
getCurrent() { return this->I
; }
230 FuncReturnTy
operator*() { return F(*this->I
); }
236 // map_iterator - Provide a convenient way to create mapped_iterators, just like
237 // make_pair is useful for creating pairs...
238 template <class ItTy
, class FuncTy
>
239 inline mapped_iterator
<ItTy
, FuncTy
> map_iterator(ItTy I
, FuncTy F
) {
240 return mapped_iterator
<ItTy
, FuncTy
>(std::move(I
), std::move(F
));
243 /// Helper to determine if type T has a member called rbegin().
244 template <typename Ty
> class has_rbegin_impl
{
248 template <typename Inner
>
249 static yes
& test(Inner
*I
, decltype(I
->rbegin()) * = nullptr);
252 static no
& test(...);
255 static const bool value
= sizeof(test
<Ty
>(nullptr)) == sizeof(yes
);
258 /// Metafunction to determine if T& or T has a member called rbegin().
259 template <typename Ty
>
260 struct has_rbegin
: has_rbegin_impl
<typename
std::remove_reference
<Ty
>::type
> {
263 // Returns an iterator_range over the given container which iterates in reverse.
264 // Note that the container must have rbegin()/rend() methods for this to work.
265 template <typename ContainerTy
>
266 auto reverse(ContainerTy
&&C
,
267 typename
std::enable_if
<has_rbegin
<ContainerTy
>::value
>::type
* =
268 nullptr) -> decltype(make_range(C
.rbegin(), C
.rend())) {
269 return make_range(C
.rbegin(), C
.rend());
272 // Returns a std::reverse_iterator wrapped around the given iterator.
273 template <typename IteratorTy
>
274 std::reverse_iterator
<IteratorTy
> make_reverse_iterator(IteratorTy It
) {
275 return std::reverse_iterator
<IteratorTy
>(It
);
278 // Returns an iterator_range over the given container which iterates in reverse.
279 // Note that the container must have begin()/end() methods which return
280 // bidirectional iterators for this to work.
281 template <typename ContainerTy
>
284 typename
std::enable_if
<!has_rbegin
<ContainerTy
>::value
>::type
* = nullptr)
285 -> decltype(make_range(llvm::make_reverse_iterator(std::end(C
)),
286 llvm::make_reverse_iterator(std::begin(C
)))) {
287 return make_range(llvm::make_reverse_iterator(std::end(C
)),
288 llvm::make_reverse_iterator(std::begin(C
)));
291 /// An iterator adaptor that filters the elements of given inner iterators.
293 /// The predicate parameter should be a callable object that accepts the wrapped
294 /// iterator's reference type and returns a bool. When incrementing or
295 /// decrementing the iterator, it will call the predicate on each element and
296 /// skip any where it returns false.
299 /// int A[] = { 1, 2, 3, 4 };
300 /// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
301 /// // R contains { 1, 3 }.
304 /// Note: filter_iterator_base implements support for forward iteration.
305 /// filter_iterator_impl exists to provide support for bidirectional iteration,
306 /// conditional on whether the wrapped iterator supports it.
307 template <typename WrappedIteratorT
, typename PredicateT
, typename IterTag
>
308 class filter_iterator_base
309 : public iterator_adaptor_base
<
310 filter_iterator_base
<WrappedIteratorT
, PredicateT
, IterTag
>,
312 typename
std::common_type
<
313 IterTag
, typename
std::iterator_traits
<
314 WrappedIteratorT
>::iterator_category
>::type
> {
315 using BaseT
= iterator_adaptor_base
<
316 filter_iterator_base
<WrappedIteratorT
, PredicateT
, IterTag
>,
318 typename
std::common_type
<
319 IterTag
, typename
std::iterator_traits
<
320 WrappedIteratorT
>::iterator_category
>::type
>;
323 WrappedIteratorT End
;
326 void findNextValid() {
327 while (this->I
!= End
&& !Pred(*this->I
))
331 // Construct the iterator. The begin iterator needs to know where the end
332 // is, so that it can properly stop when it gets there. The end iterator only
333 // needs the predicate to support bidirectional iteration.
334 filter_iterator_base(WrappedIteratorT Begin
, WrappedIteratorT End
,
336 : BaseT(Begin
), End(End
), Pred(Pred
) {
341 using BaseT::operator++;
343 filter_iterator_base
&operator++() {
350 /// Specialization of filter_iterator_base for forward iteration only.
351 template <typename WrappedIteratorT
, typename PredicateT
,
352 typename IterTag
= std::forward_iterator_tag
>
353 class filter_iterator_impl
354 : public filter_iterator_base
<WrappedIteratorT
, PredicateT
, IterTag
> {
355 using BaseT
= filter_iterator_base
<WrappedIteratorT
, PredicateT
, IterTag
>;
358 filter_iterator_impl(WrappedIteratorT Begin
, WrappedIteratorT End
,
360 : BaseT(Begin
, End
, Pred
) {}
363 /// Specialization of filter_iterator_base for bidirectional iteration.
364 template <typename WrappedIteratorT
, typename PredicateT
>
365 class filter_iterator_impl
<WrappedIteratorT
, PredicateT
,
366 std::bidirectional_iterator_tag
>
367 : public filter_iterator_base
<WrappedIteratorT
, PredicateT
,
368 std::bidirectional_iterator_tag
> {
369 using BaseT
= filter_iterator_base
<WrappedIteratorT
, PredicateT
,
370 std::bidirectional_iterator_tag
>;
371 void findPrevValid() {
372 while (!this->Pred(*this->I
))
377 using BaseT::operator--;
379 filter_iterator_impl(WrappedIteratorT Begin
, WrappedIteratorT End
,
381 : BaseT(Begin
, End
, Pred
) {}
383 filter_iterator_impl
&operator--() {
392 template <bool is_bidirectional
> struct fwd_or_bidi_tag_impl
{
393 using type
= std::forward_iterator_tag
;
396 template <> struct fwd_or_bidi_tag_impl
<true> {
397 using type
= std::bidirectional_iterator_tag
;
400 /// Helper which sets its type member to forward_iterator_tag if the category
401 /// of \p IterT does not derive from bidirectional_iterator_tag, and to
402 /// bidirectional_iterator_tag otherwise.
403 template <typename IterT
> struct fwd_or_bidi_tag
{
404 using type
= typename fwd_or_bidi_tag_impl
<std::is_base_of
<
405 std::bidirectional_iterator_tag
,
406 typename
std::iterator_traits
<IterT
>::iterator_category
>::value
>::type
;
409 } // namespace detail
411 /// Defines filter_iterator to a suitable specialization of
412 /// filter_iterator_impl, based on the underlying iterator's category.
413 template <typename WrappedIteratorT
, typename PredicateT
>
414 using filter_iterator
= filter_iterator_impl
<
415 WrappedIteratorT
, PredicateT
,
416 typename
detail::fwd_or_bidi_tag
<WrappedIteratorT
>::type
>;
418 /// Convenience function that takes a range of elements and a predicate,
419 /// and return a new filter_iterator range.
421 /// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
422 /// lifetime of that temporary is not kept by the returned range object, and the
423 /// temporary is going to be dropped on the floor after the make_iterator_range
424 /// full expression that contains this function call.
425 template <typename RangeT
, typename PredicateT
>
426 iterator_range
<filter_iterator
<detail::IterOfRange
<RangeT
>, PredicateT
>>
427 make_filter_range(RangeT
&&Range
, PredicateT Pred
) {
428 using FilterIteratorT
=
429 filter_iterator
<detail::IterOfRange
<RangeT
>, PredicateT
>;
431 FilterIteratorT(std::begin(std::forward
<RangeT
>(Range
)),
432 std::end(std::forward
<RangeT
>(Range
)), Pred
),
433 FilterIteratorT(std::end(std::forward
<RangeT
>(Range
)),
434 std::end(std::forward
<RangeT
>(Range
)), Pred
));
437 /// A pseudo-iterator adaptor that is designed to implement "early increment"
440 /// This is *not a normal iterator* and should almost never be used directly. It
441 /// is intended primarily to be used with range based for loops and some range
444 /// The iterator isn't quite an `OutputIterator` or an `InputIterator` but
445 /// somewhere between them. The constraints of these iterators are:
447 /// - On construction or after being incremented, it is comparable and
448 /// dereferencable. It is *not* incrementable.
449 /// - After being dereferenced, it is neither comparable nor dereferencable, it
450 /// is only incrementable.
452 /// This means you can only dereference the iterator once, and you can only
453 /// increment it once between dereferences.
454 template <typename WrappedIteratorT
>
455 class early_inc_iterator_impl
456 : public iterator_adaptor_base
<early_inc_iterator_impl
<WrappedIteratorT
>,
457 WrappedIteratorT
, std::input_iterator_tag
> {
459 iterator_adaptor_base
<early_inc_iterator_impl
<WrappedIteratorT
>,
460 WrappedIteratorT
, std::input_iterator_tag
>;
462 using PointerT
= typename
std::iterator_traits
<WrappedIteratorT
>::pointer
;
465 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
466 bool IsEarlyIncremented
= false;
470 early_inc_iterator_impl(WrappedIteratorT I
) : BaseT(I
) {}
472 using BaseT::operator*;
473 typename
BaseT::reference
operator*() {
474 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
475 assert(!IsEarlyIncremented
&& "Cannot dereference twice!");
476 IsEarlyIncremented
= true;
481 using BaseT::operator++;
482 early_inc_iterator_impl
&operator++() {
483 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
484 assert(IsEarlyIncremented
&& "Cannot increment before dereferencing!");
485 IsEarlyIncremented
= false;
490 using BaseT::operator==;
491 bool operator==(const early_inc_iterator_impl
&RHS
) const {
492 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
493 assert(!IsEarlyIncremented
&& "Cannot compare after dereferencing!");
495 return BaseT::operator==(RHS
);
499 /// Make a range that does early increment to allow mutation of the underlying
500 /// range without disrupting iteration.
502 /// The underlying iterator will be incremented immediately after it is
503 /// dereferenced, allowing deletion of the current node or insertion of nodes to
504 /// not disrupt iteration provided they do not invalidate the *next* iterator --
505 /// the current iterator can be invalidated.
507 /// This requires a very exact pattern of use that is only really suitable to
508 /// range based for loops and other range algorithms that explicitly guarantee
509 /// to dereference exactly once each element, and to increment exactly once each
511 template <typename RangeT
>
512 iterator_range
<early_inc_iterator_impl
<detail::IterOfRange
<RangeT
>>>
513 make_early_inc_range(RangeT
&&Range
) {
514 using EarlyIncIteratorT
=
515 early_inc_iterator_impl
<detail::IterOfRange
<RangeT
>>;
516 return make_range(EarlyIncIteratorT(std::begin(std::forward
<RangeT
>(Range
))),
517 EarlyIncIteratorT(std::end(std::forward
<RangeT
>(Range
))));
520 // forward declarations required by zip_shortest/zip_first/zip_longest
521 template <typename R
, typename UnaryPredicate
>
522 bool all_of(R
&&range
, UnaryPredicate P
);
523 template <typename R
, typename UnaryPredicate
>
524 bool any_of(R
&&range
, UnaryPredicate P
);
526 template <size_t... I
> struct index_sequence
;
528 template <class... Ts
> struct index_sequence_for
;
534 // We have to alias this since inlining the actual type at the usage site
535 // in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
536 template<typename
... Iters
> struct ZipTupleType
{
537 using type
= std::tuple
<decltype(*declval
<Iters
>())...>;
540 template <typename ZipType
, typename
... Iters
>
541 using zip_traits
= iterator_facade_base
<
542 ZipType
, typename
std::common_type
<std::bidirectional_iterator_tag
,
543 typename
std::iterator_traits
<
544 Iters
>::iterator_category
...>::type
,
545 // ^ TODO: Implement random access methods.
546 typename ZipTupleType
<Iters
...>::type
,
547 typename
std::iterator_traits
<typename
std::tuple_element
<
548 0, std::tuple
<Iters
...>>::type
>::difference_type
,
549 // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
550 // inner iterators have the same difference_type. It would fail if, for
551 // instance, the second field's difference_type were non-numeric while the
553 typename ZipTupleType
<Iters
...>::type
*,
554 typename ZipTupleType
<Iters
...>::type
>;
556 template <typename ZipType
, typename
... Iters
>
557 struct zip_common
: public zip_traits
<ZipType
, Iters
...> {
558 using Base
= zip_traits
<ZipType
, Iters
...>;
559 using value_type
= typename
Base::value_type
;
561 std::tuple
<Iters
...> iterators
;
564 template <size_t... Ns
> value_type
deref(index_sequence
<Ns
...>) const {
565 return value_type(*std::get
<Ns
>(iterators
)...);
568 template <size_t... Ns
>
569 decltype(iterators
) tup_inc(index_sequence
<Ns
...>) const {
570 return std::tuple
<Iters
...>(std::next(std::get
<Ns
>(iterators
))...);
573 template <size_t... Ns
>
574 decltype(iterators
) tup_dec(index_sequence
<Ns
...>) const {
575 return std::tuple
<Iters
...>(std::prev(std::get
<Ns
>(iterators
))...);
579 zip_common(Iters
&&... ts
) : iterators(std::forward
<Iters
>(ts
)...) {}
581 value_type
operator*() { return deref(index_sequence_for
<Iters
...>{}); }
583 const value_type
operator*() const {
584 return deref(index_sequence_for
<Iters
...>{});
587 ZipType
&operator++() {
588 iterators
= tup_inc(index_sequence_for
<Iters
...>{});
589 return *reinterpret_cast<ZipType
*>(this);
592 ZipType
&operator--() {
593 static_assert(Base::IsBidirectional
,
594 "All inner iterators must be at least bidirectional.");
595 iterators
= tup_dec(index_sequence_for
<Iters
...>{});
596 return *reinterpret_cast<ZipType
*>(this);
600 template <typename
... Iters
>
601 struct zip_first
: public zip_common
<zip_first
<Iters
...>, Iters
...> {
602 using Base
= zip_common
<zip_first
<Iters
...>, Iters
...>;
604 bool operator==(const zip_first
<Iters
...> &other
) const {
605 return std::get
<0>(this->iterators
) == std::get
<0>(other
.iterators
);
608 zip_first(Iters
&&... ts
) : Base(std::forward
<Iters
>(ts
)...) {}
611 template <typename
... Iters
>
612 class zip_shortest
: public zip_common
<zip_shortest
<Iters
...>, Iters
...> {
613 template <size_t... Ns
>
614 bool test(const zip_shortest
<Iters
...> &other
, index_sequence
<Ns
...>) const {
615 return all_of(std::initializer_list
<bool>{std::get
<Ns
>(this->iterators
) !=
616 std::get
<Ns
>(other
.iterators
)...},
621 using Base
= zip_common
<zip_shortest
<Iters
...>, Iters
...>;
623 zip_shortest(Iters
&&... ts
) : Base(std::forward
<Iters
>(ts
)...) {}
625 bool operator==(const zip_shortest
<Iters
...> &other
) const {
626 return !test(other
, index_sequence_for
<Iters
...>{});
630 template <template <typename
...> class ItType
, typename
... Args
> class zippy
{
632 using iterator
= ItType
<decltype(std::begin(std::declval
<Args
>()))...>;
633 using iterator_category
= typename
iterator::iterator_category
;
634 using value_type
= typename
iterator::value_type
;
635 using difference_type
= typename
iterator::difference_type
;
636 using pointer
= typename
iterator::pointer
;
637 using reference
= typename
iterator::reference
;
640 std::tuple
<Args
...> ts
;
642 template <size_t... Ns
> iterator
begin_impl(index_sequence
<Ns
...>) const {
643 return iterator(std::begin(std::get
<Ns
>(ts
))...);
645 template <size_t... Ns
> iterator
end_impl(index_sequence
<Ns
...>) const {
646 return iterator(std::end(std::get
<Ns
>(ts
))...);
650 zippy(Args
&&... ts_
) : ts(std::forward
<Args
>(ts_
)...) {}
652 iterator
begin() const { return begin_impl(index_sequence_for
<Args
...>{}); }
653 iterator
end() const { return end_impl(index_sequence_for
<Args
...>{}); }
656 } // end namespace detail
658 /// zip iterator for two or more iteratable types.
659 template <typename T
, typename U
, typename
... Args
>
660 detail::zippy
<detail::zip_shortest
, T
, U
, Args
...> zip(T
&&t
, U
&&u
,
662 return detail::zippy
<detail::zip_shortest
, T
, U
, Args
...>(
663 std::forward
<T
>(t
), std::forward
<U
>(u
), std::forward
<Args
>(args
)...);
666 /// zip iterator that, for the sake of efficiency, assumes the first iteratee to
668 template <typename T
, typename U
, typename
... Args
>
669 detail::zippy
<detail::zip_first
, T
, U
, Args
...> zip_first(T
&&t
, U
&&u
,
671 return detail::zippy
<detail::zip_first
, T
, U
, Args
...>(
672 std::forward
<T
>(t
), std::forward
<U
>(u
), std::forward
<Args
>(args
)...);
676 template <typename Iter
>
677 static Iter
next_or_end(const Iter
&I
, const Iter
&End
) {
683 template <typename Iter
>
684 static auto deref_or_none(const Iter
&I
, const Iter
&End
)
685 -> llvm::Optional
<typename
std::remove_const
<
686 typename
std::remove_reference
<decltype(*I
)>::type
>::type
> {
692 template <typename Iter
> struct ZipLongestItemType
{
694 llvm::Optional
<typename
std::remove_const
<typename
std::remove_reference
<
695 decltype(*std::declval
<Iter
>())>::type
>::type
>;
698 template <typename
... Iters
> struct ZipLongestTupleType
{
699 using type
= std::tuple
<typename ZipLongestItemType
<Iters
>::type
...>;
702 template <typename
... Iters
>
703 class zip_longest_iterator
704 : public iterator_facade_base
<
705 zip_longest_iterator
<Iters
...>,
706 typename
std::common_type
<
707 std::forward_iterator_tag
,
708 typename
std::iterator_traits
<Iters
>::iterator_category
...>::type
,
709 typename ZipLongestTupleType
<Iters
...>::type
,
710 typename
std::iterator_traits
<typename
std::tuple_element
<
711 0, std::tuple
<Iters
...>>::type
>::difference_type
,
712 typename ZipLongestTupleType
<Iters
...>::type
*,
713 typename ZipLongestTupleType
<Iters
...>::type
> {
715 using value_type
= typename ZipLongestTupleType
<Iters
...>::type
;
718 std::tuple
<Iters
...> iterators
;
719 std::tuple
<Iters
...> end_iterators
;
721 template <size_t... Ns
>
722 bool test(const zip_longest_iterator
<Iters
...> &other
,
723 index_sequence
<Ns
...>) const {
725 std::initializer_list
<bool>{std::get
<Ns
>(this->iterators
) !=
726 std::get
<Ns
>(other
.iterators
)...},
730 template <size_t... Ns
> value_type
deref(index_sequence
<Ns
...>) const {
732 deref_or_none(std::get
<Ns
>(iterators
), std::get
<Ns
>(end_iterators
))...);
735 template <size_t... Ns
>
736 decltype(iterators
) tup_inc(index_sequence
<Ns
...>) const {
737 return std::tuple
<Iters
...>(
738 next_or_end(std::get
<Ns
>(iterators
), std::get
<Ns
>(end_iterators
))...);
742 zip_longest_iterator(std::pair
<Iters
&&, Iters
&&>... ts
)
743 : iterators(std::forward
<Iters
>(ts
.first
)...),
744 end_iterators(std::forward
<Iters
>(ts
.second
)...) {}
746 value_type
operator*() { return deref(index_sequence_for
<Iters
...>{}); }
748 value_type
operator*() const { return deref(index_sequence_for
<Iters
...>{}); }
750 zip_longest_iterator
<Iters
...> &operator++() {
751 iterators
= tup_inc(index_sequence_for
<Iters
...>{});
755 bool operator==(const zip_longest_iterator
<Iters
...> &other
) const {
756 return !test(other
, index_sequence_for
<Iters
...>{});
760 template <typename
... Args
> class zip_longest_range
{
763 zip_longest_iterator
<decltype(adl_begin(std::declval
<Args
>()))...>;
764 using iterator_category
= typename
iterator::iterator_category
;
765 using value_type
= typename
iterator::value_type
;
766 using difference_type
= typename
iterator::difference_type
;
767 using pointer
= typename
iterator::pointer
;
768 using reference
= typename
iterator::reference
;
771 std::tuple
<Args
...> ts
;
773 template <size_t... Ns
> iterator
begin_impl(index_sequence
<Ns
...>) const {
774 return iterator(std::make_pair(adl_begin(std::get
<Ns
>(ts
)),
775 adl_end(std::get
<Ns
>(ts
)))...);
778 template <size_t... Ns
> iterator
end_impl(index_sequence
<Ns
...>) const {
779 return iterator(std::make_pair(adl_end(std::get
<Ns
>(ts
)),
780 adl_end(std::get
<Ns
>(ts
)))...);
784 zip_longest_range(Args
&&... ts_
) : ts(std::forward
<Args
>(ts_
)...) {}
786 iterator
begin() const { return begin_impl(index_sequence_for
<Args
...>{}); }
787 iterator
end() const { return end_impl(index_sequence_for
<Args
...>{}); }
789 } // namespace detail
791 /// Iterate over two or more iterators at the same time. Iteration continues
792 /// until all iterators reach the end. The llvm::Optional only contains a value
793 /// if the iterator has not reached the end.
794 template <typename T
, typename U
, typename
... Args
>
795 detail::zip_longest_range
<T
, U
, Args
...> zip_longest(T
&&t
, U
&&u
,
797 return detail::zip_longest_range
<T
, U
, Args
...>(
798 std::forward
<T
>(t
), std::forward
<U
>(u
), std::forward
<Args
>(args
)...);
801 /// Iterator wrapper that concatenates sequences together.
803 /// This can concatenate different iterators, even with different types, into
804 /// a single iterator provided the value types of all the concatenated
805 /// iterators expose `reference` and `pointer` types that can be converted to
806 /// `ValueT &` and `ValueT *` respectively. It doesn't support more
807 /// interesting/customized pointer or reference types.
809 /// Currently this only supports forward or higher iterator categories as
810 /// inputs and always exposes a forward iterator interface.
811 template <typename ValueT
, typename
... IterTs
>
812 class concat_iterator
813 : public iterator_facade_base
<concat_iterator
<ValueT
, IterTs
...>,
814 std::forward_iterator_tag
, ValueT
> {
815 using BaseT
= typename
concat_iterator::iterator_facade_base
;
817 /// We store both the current and end iterators for each concatenated
818 /// sequence in a tuple of pairs.
820 /// Note that something like iterator_range seems nice at first here, but the
821 /// range properties are of little benefit and end up getting in the way
822 /// because we need to do mutation on the current iterators.
823 std::tuple
<IterTs
...> Begins
;
824 std::tuple
<IterTs
...> Ends
;
826 /// Attempts to increment a specific iterator.
828 /// Returns true if it was able to increment the iterator. Returns false if
829 /// the iterator is already at the end iterator.
830 template <size_t Index
> bool incrementHelper() {
831 auto &Begin
= std::get
<Index
>(Begins
);
832 auto &End
= std::get
<Index
>(Ends
);
840 /// Increments the first non-end iterator.
842 /// It is an error to call this with all iterators at the end.
843 template <size_t... Ns
> void increment(index_sequence
<Ns
...>) {
844 // Build a sequence of functions to increment each iterator if possible.
845 bool (concat_iterator::*IncrementHelperFns
[])() = {
846 &concat_iterator::incrementHelper
<Ns
>...};
848 // Loop over them, and stop as soon as we succeed at incrementing one.
849 for (auto &IncrementHelperFn
: IncrementHelperFns
)
850 if ((this->*IncrementHelperFn
)())
853 llvm_unreachable("Attempted to increment an end concat iterator!");
856 /// Returns null if the specified iterator is at the end. Otherwise,
857 /// dereferences the iterator and returns the address of the resulting
859 template <size_t Index
> ValueT
*getHelper() const {
860 auto &Begin
= std::get
<Index
>(Begins
);
861 auto &End
= std::get
<Index
>(Ends
);
868 /// Finds the first non-end iterator, dereferences, and returns the resulting
871 /// It is an error to call this with all iterators at the end.
872 template <size_t... Ns
> ValueT
&get(index_sequence
<Ns
...>) const {
873 // Build a sequence of functions to get from iterator if possible.
874 ValueT
*(concat_iterator::*GetHelperFns
[])() const = {
875 &concat_iterator::getHelper
<Ns
>...};
877 // Loop over them, and return the first result we find.
878 for (auto &GetHelperFn
: GetHelperFns
)
879 if (ValueT
*P
= (this->*GetHelperFn
)())
882 llvm_unreachable("Attempted to get a pointer from an end concat iterator!");
886 /// Constructs an iterator from a squence of ranges.
888 /// We need the full range to know how to switch between each of the
890 template <typename
... RangeTs
>
891 explicit concat_iterator(RangeTs
&&... Ranges
)
892 : Begins(std::begin(Ranges
)...), Ends(std::end(Ranges
)...) {}
894 using BaseT::operator++;
896 concat_iterator
&operator++() {
897 increment(index_sequence_for
<IterTs
...>());
901 ValueT
&operator*() const { return get(index_sequence_for
<IterTs
...>()); }
903 bool operator==(const concat_iterator
&RHS
) const {
904 return Begins
== RHS
.Begins
&& Ends
== RHS
.Ends
;
910 /// Helper to store a sequence of ranges being concatenated and access them.
912 /// This is designed to facilitate providing actual storage when temporaries
913 /// are passed into the constructor such that we can use it as part of range
915 template <typename ValueT
, typename
... RangeTs
> class concat_range
{
918 concat_iterator
<ValueT
,
919 decltype(std::begin(std::declval
<RangeTs
&>()))...>;
922 std::tuple
<RangeTs
...> Ranges
;
924 template <size_t... Ns
> iterator
begin_impl(index_sequence
<Ns
...>) {
925 return iterator(std::get
<Ns
>(Ranges
)...);
927 template <size_t... Ns
> iterator
end_impl(index_sequence
<Ns
...>) {
928 return iterator(make_range(std::end(std::get
<Ns
>(Ranges
)),
929 std::end(std::get
<Ns
>(Ranges
)))...);
933 concat_range(RangeTs
&&... Ranges
)
934 : Ranges(std::forward
<RangeTs
>(Ranges
)...) {}
936 iterator
begin() { return begin_impl(index_sequence_for
<RangeTs
...>{}); }
937 iterator
end() { return end_impl(index_sequence_for
<RangeTs
...>{}); }
940 } // end namespace detail
942 /// Concatenated range across two or more ranges.
944 /// The desired value type must be explicitly specified.
945 template <typename ValueT
, typename
... RangeTs
>
946 detail::concat_range
<ValueT
, RangeTs
...> concat(RangeTs
&&... Ranges
) {
947 static_assert(sizeof...(RangeTs
) > 1,
948 "Need more than one range to concatenate!");
949 return detail::concat_range
<ValueT
, RangeTs
...>(
950 std::forward
<RangeTs
>(Ranges
)...);
953 //===----------------------------------------------------------------------===//
954 // Extra additions to <utility>
955 //===----------------------------------------------------------------------===//
957 /// Function object to check whether the first component of a std::pair
958 /// compares less than the first component of another std::pair.
960 template <typename T
> bool operator()(const T
&lhs
, const T
&rhs
) const {
961 return lhs
.first
< rhs
.first
;
965 /// Function object to check whether the second component of a std::pair
966 /// compares less than the second component of another std::pair.
968 template <typename T
> bool operator()(const T
&lhs
, const T
&rhs
) const {
969 return lhs
.second
< rhs
.second
;
973 /// \brief Function object to apply a binary function to the first component of
975 template<typename FuncTy
>
979 template <typename T
>
980 auto operator()(const T
&lhs
, const T
&rhs
) const
981 -> decltype(func(lhs
.first
, rhs
.first
)) {
982 return func(lhs
.first
, rhs
.first
);
986 // A subset of N3658. More stuff can be added as-needed.
988 /// Represents a compile-time sequence of integers.
989 template <class T
, T
... I
> struct integer_sequence
{
990 using value_type
= T
;
992 static constexpr size_t size() { return sizeof...(I
); }
995 /// Alias for the common case of a sequence of size_ts.
996 template <size_t... I
>
997 struct index_sequence
: integer_sequence
<std::size_t, I
...> {};
999 template <std::size_t N
, std::size_t... I
>
1000 struct build_index_impl
: build_index_impl
<N
- 1, N
- 1, I
...> {};
1001 template <std::size_t... I
>
1002 struct build_index_impl
<0, I
...> : index_sequence
<I
...> {};
1004 /// Creates a compile-time integer sequence for a parameter pack.
1005 template <class... Ts
>
1006 struct index_sequence_for
: build_index_impl
<sizeof...(Ts
)> {};
1008 /// Utility type to build an inheritance chain that makes it easy to rank
1009 /// overload candidates.
1010 template <int N
> struct rank
: rank
<N
- 1> {};
1011 template <> struct rank
<0> {};
1013 /// traits class for checking whether type T is one of any of the given
1014 /// types in the variadic list.
1015 template <typename T
, typename
... Ts
> struct is_one_of
{
1016 static const bool value
= false;
1019 template <typename T
, typename U
, typename
... Ts
>
1020 struct is_one_of
<T
, U
, Ts
...> {
1021 static const bool value
=
1022 std::is_same
<T
, U
>::value
|| is_one_of
<T
, Ts
...>::value
;
1025 /// traits class for checking whether type T is a base class for all
1026 /// the given types in the variadic list.
1027 template <typename T
, typename
... Ts
> struct are_base_of
{
1028 static const bool value
= true;
1031 template <typename T
, typename U
, typename
... Ts
>
1032 struct are_base_of
<T
, U
, Ts
...> {
1033 static const bool value
=
1034 std::is_base_of
<T
, U
>::value
&& are_base_of
<T
, Ts
...>::value
;
1037 //===----------------------------------------------------------------------===//
1038 // Extra additions for arrays
1039 //===----------------------------------------------------------------------===//
1041 /// Find the length of an array.
1042 template <class T
, std::size_t N
>
1043 constexpr inline size_t array_lengthof(T (&)[N
]) {
1047 /// Adapt std::less<T> for array_pod_sort.
1048 template<typename T
>
1049 inline int array_pod_sort_comparator(const void *P1
, const void *P2
) {
1050 if (std::less
<T
>()(*reinterpret_cast<const T
*>(P1
),
1051 *reinterpret_cast<const T
*>(P2
)))
1053 if (std::less
<T
>()(*reinterpret_cast<const T
*>(P2
),
1054 *reinterpret_cast<const T
*>(P1
)))
1059 /// get_array_pod_sort_comparator - This is an internal helper function used to
1060 /// get type deduction of T right.
1061 template<typename T
>
1062 inline int (*get_array_pod_sort_comparator(const T
&))
1063 (const void*, const void*) {
1064 return array_pod_sort_comparator
<T
>;
1067 /// array_pod_sort - This sorts an array with the specified start and end
1068 /// extent. This is just like std::sort, except that it calls qsort instead of
1069 /// using an inlined template. qsort is slightly slower than std::sort, but
1070 /// most sorts are not performance critical in LLVM and std::sort has to be
1071 /// template instantiated for each type, leading to significant measured code
1072 /// bloat. This function should generally be used instead of std::sort where
1075 /// This function assumes that you have simple POD-like types that can be
1076 /// compared with std::less and can be moved with memcpy. If this isn't true,
1077 /// you should use std::sort.
1079 /// NOTE: If qsort_r were portable, we could allow a custom comparator and
1080 /// default to std::less.
1081 template<class IteratorTy
>
1082 inline void array_pod_sort(IteratorTy Start
, IteratorTy End
) {
1083 // Don't inefficiently call qsort with one element or trigger undefined
1084 // behavior with an empty sequence.
1085 auto NElts
= End
- Start
;
1086 if (NElts
<= 1) return;
1087 #ifdef EXPENSIVE_CHECKS
1088 std::mt19937
Generator(std::random_device
{}());
1089 std::shuffle(Start
, End
, Generator
);
1091 qsort(&*Start
, NElts
, sizeof(*Start
), get_array_pod_sort_comparator(*Start
));
1094 template <class IteratorTy
>
1095 inline void array_pod_sort(
1096 IteratorTy Start
, IteratorTy End
,
1098 const typename
std::iterator_traits
<IteratorTy
>::value_type
*,
1099 const typename
std::iterator_traits
<IteratorTy
>::value_type
*)) {
1100 // Don't inefficiently call qsort with one element or trigger undefined
1101 // behavior with an empty sequence.
1102 auto NElts
= End
- Start
;
1103 if (NElts
<= 1) return;
1104 #ifdef EXPENSIVE_CHECKS
1105 std::mt19937
Generator(std::random_device
{}());
1106 std::shuffle(Start
, End
, Generator
);
1108 qsort(&*Start
, NElts
, sizeof(*Start
),
1109 reinterpret_cast<int (*)(const void *, const void *)>(Compare
));
1112 // Provide wrappers to std::sort which shuffle the elements before sorting
1113 // to help uncover non-deterministic behavior (PR35135).
1114 template <typename IteratorTy
>
1115 inline void sort(IteratorTy Start
, IteratorTy End
) {
1116 #ifdef EXPENSIVE_CHECKS
1117 std::mt19937
Generator(std::random_device
{}());
1118 std::shuffle(Start
, End
, Generator
);
1120 std::sort(Start
, End
);
1123 template <typename Container
> inline void sort(Container
&&C
) {
1124 llvm::sort(adl_begin(C
), adl_end(C
));
1127 template <typename IteratorTy
, typename Compare
>
1128 inline void sort(IteratorTy Start
, IteratorTy End
, Compare Comp
) {
1129 #ifdef EXPENSIVE_CHECKS
1130 std::mt19937
Generator(std::random_device
{}());
1131 std::shuffle(Start
, End
, Generator
);
1133 std::sort(Start
, End
, Comp
);
1136 template <typename Container
, typename Compare
>
1137 inline void sort(Container
&&C
, Compare Comp
) {
1138 llvm::sort(adl_begin(C
), adl_end(C
), Comp
);
1141 //===----------------------------------------------------------------------===//
1142 // Extra additions to <algorithm>
1143 //===----------------------------------------------------------------------===//
1145 /// For a container of pointers, deletes the pointers and then clears the
1147 template<typename Container
>
1148 void DeleteContainerPointers(Container
&C
) {
1154 /// In a container of pairs (usually a map) whose second element is a pointer,
1155 /// deletes the second elements and then clears the container.
1156 template<typename Container
>
1157 void DeleteContainerSeconds(Container
&C
) {
1163 /// Get the size of a range. This is a wrapper function around std::distance
1164 /// which is only enabled when the operation is O(1).
1165 template <typename R
>
1166 auto size(R
&&Range
, typename
std::enable_if
<
1167 std::is_same
<typename
std::iterator_traits
<decltype(
1168 Range
.begin())>::iterator_category
,
1169 std::random_access_iterator_tag
>::value
,
1170 void>::type
* = nullptr)
1171 -> decltype(std::distance(Range
.begin(), Range
.end())) {
1172 return std::distance(Range
.begin(), Range
.end());
1175 /// Provide wrappers to std::for_each which take ranges instead of having to
1176 /// pass begin/end explicitly.
1177 template <typename R
, typename UnaryPredicate
>
1178 UnaryPredicate
for_each(R
&&Range
, UnaryPredicate P
) {
1179 return std::for_each(adl_begin(Range
), adl_end(Range
), P
);
1182 /// Provide wrappers to std::all_of which take ranges instead of having to pass
1183 /// begin/end explicitly.
1184 template <typename R
, typename UnaryPredicate
>
1185 bool all_of(R
&&Range
, UnaryPredicate P
) {
1186 return std::all_of(adl_begin(Range
), adl_end(Range
), P
);
1189 /// Provide wrappers to std::any_of which take ranges instead of having to pass
1190 /// begin/end explicitly.
1191 template <typename R
, typename UnaryPredicate
>
1192 bool any_of(R
&&Range
, UnaryPredicate P
) {
1193 return std::any_of(adl_begin(Range
), adl_end(Range
), P
);
1196 /// Provide wrappers to std::none_of which take ranges instead of having to pass
1197 /// begin/end explicitly.
1198 template <typename R
, typename UnaryPredicate
>
1199 bool none_of(R
&&Range
, UnaryPredicate P
) {
1200 return std::none_of(adl_begin(Range
), adl_end(Range
), P
);
1203 /// Provide wrappers to std::find which take ranges instead of having to pass
1204 /// begin/end explicitly.
1205 template <typename R
, typename T
>
1206 auto find(R
&&Range
, const T
&Val
) -> decltype(adl_begin(Range
)) {
1207 return std::find(adl_begin(Range
), adl_end(Range
), Val
);
1210 /// Provide wrappers to std::find_if which take ranges instead of having to pass
1211 /// begin/end explicitly.
1212 template <typename R
, typename UnaryPredicate
>
1213 auto find_if(R
&&Range
, UnaryPredicate P
) -> decltype(adl_begin(Range
)) {
1214 return std::find_if(adl_begin(Range
), adl_end(Range
), P
);
1217 template <typename R
, typename UnaryPredicate
>
1218 auto find_if_not(R
&&Range
, UnaryPredicate P
) -> decltype(adl_begin(Range
)) {
1219 return std::find_if_not(adl_begin(Range
), adl_end(Range
), P
);
1222 /// Provide wrappers to std::remove_if which take ranges instead of having to
1223 /// pass begin/end explicitly.
1224 template <typename R
, typename UnaryPredicate
>
1225 auto remove_if(R
&&Range
, UnaryPredicate P
) -> decltype(adl_begin(Range
)) {
1226 return std::remove_if(adl_begin(Range
), adl_end(Range
), P
);
1229 /// Provide wrappers to std::copy_if which take ranges instead of having to
1230 /// pass begin/end explicitly.
1231 template <typename R
, typename OutputIt
, typename UnaryPredicate
>
1232 OutputIt
copy_if(R
&&Range
, OutputIt Out
, UnaryPredicate P
) {
1233 return std::copy_if(adl_begin(Range
), adl_end(Range
), Out
, P
);
1236 template <typename R
, typename OutputIt
>
1237 OutputIt
copy(R
&&Range
, OutputIt Out
) {
1238 return std::copy(adl_begin(Range
), adl_end(Range
), Out
);
1241 /// Wrapper function around std::find to detect if an element exists
1243 template <typename R
, typename E
>
1244 bool is_contained(R
&&Range
, const E
&Element
) {
1245 return std::find(adl_begin(Range
), adl_end(Range
), Element
) != adl_end(Range
);
1248 /// Wrapper function around std::count to count the number of times an element
1249 /// \p Element occurs in the given range \p Range.
1250 template <typename R
, typename E
>
1251 auto count(R
&&Range
, const E
&Element
) ->
1252 typename
std::iterator_traits
<decltype(adl_begin(Range
))>::difference_type
{
1253 return std::count(adl_begin(Range
), adl_end(Range
), Element
);
1256 /// Wrapper function around std::count_if to count the number of times an
1257 /// element satisfying a given predicate occurs in a range.
1258 template <typename R
, typename UnaryPredicate
>
1259 auto count_if(R
&&Range
, UnaryPredicate P
) ->
1260 typename
std::iterator_traits
<decltype(adl_begin(Range
))>::difference_type
{
1261 return std::count_if(adl_begin(Range
), adl_end(Range
), P
);
1264 /// Wrapper function around std::transform to apply a function to a range and
1265 /// store the result elsewhere.
1266 template <typename R
, typename OutputIt
, typename UnaryPredicate
>
1267 OutputIt
transform(R
&&Range
, OutputIt d_first
, UnaryPredicate P
) {
1268 return std::transform(adl_begin(Range
), adl_end(Range
), d_first
, P
);
1271 /// Provide wrappers to std::partition which take ranges instead of having to
1272 /// pass begin/end explicitly.
1273 template <typename R
, typename UnaryPredicate
>
1274 auto partition(R
&&Range
, UnaryPredicate P
) -> decltype(adl_begin(Range
)) {
1275 return std::partition(adl_begin(Range
), adl_end(Range
), P
);
1278 /// Provide wrappers to std::lower_bound which take ranges instead of having to
1279 /// pass begin/end explicitly.
1280 template <typename R
, typename ForwardIt
>
1281 auto lower_bound(R
&&Range
, ForwardIt I
) -> decltype(adl_begin(Range
)) {
1282 return std::lower_bound(adl_begin(Range
), adl_end(Range
), I
);
1285 template <typename R
, typename ForwardIt
, typename Compare
>
1286 auto lower_bound(R
&&Range
, ForwardIt I
, Compare C
)
1287 -> decltype(adl_begin(Range
)) {
1288 return std::lower_bound(adl_begin(Range
), adl_end(Range
), I
, C
);
1291 /// Provide wrappers to std::upper_bound which take ranges instead of having to
1292 /// pass begin/end explicitly.
1293 template <typename R
, typename ForwardIt
>
1294 auto upper_bound(R
&&Range
, ForwardIt I
) -> decltype(adl_begin(Range
)) {
1295 return std::upper_bound(adl_begin(Range
), adl_end(Range
), I
);
1298 template <typename R
, typename ForwardIt
, typename Compare
>
1299 auto upper_bound(R
&&Range
, ForwardIt I
, Compare C
)
1300 -> decltype(adl_begin(Range
)) {
1301 return std::upper_bound(adl_begin(Range
), adl_end(Range
), I
, C
);
1303 /// Wrapper function around std::equal to detect if all elements
1304 /// in a container are same.
1305 template <typename R
>
1306 bool is_splat(R
&&Range
) {
1307 size_t range_size
= size(Range
);
1308 return range_size
!= 0 && (range_size
== 1 ||
1309 std::equal(adl_begin(Range
) + 1, adl_end(Range
), adl_begin(Range
)));
1312 /// Given a range of type R, iterate the entire range and return a
1313 /// SmallVector with elements of the vector. This is useful, for example,
1314 /// when you want to iterate a range and then sort the results.
1315 template <unsigned Size
, typename R
>
1316 SmallVector
<typename
std::remove_const
<detail::ValueOfRange
<R
>>::type
, Size
>
1317 to_vector(R
&&Range
) {
1318 return {adl_begin(Range
), adl_end(Range
)};
1321 /// Provide a container algorithm similar to C++ Library Fundamentals v2's
1322 /// `erase_if` which is equivalent to:
1324 /// C.erase(remove_if(C, pred), C.end());
1326 /// This version works for any container with an erase method call accepting
1328 template <typename Container
, typename UnaryPredicate
>
1329 void erase_if(Container
&C
, UnaryPredicate P
) {
1330 C
.erase(remove_if(C
, P
), C
.end());
1333 //===----------------------------------------------------------------------===//
1334 // Extra additions to <memory>
1335 //===----------------------------------------------------------------------===//
1337 // Implement make_unique according to N3656.
1339 /// Constructs a `new T()` with the given args and returns a
1340 /// `unique_ptr<T>` which owns the object.
1344 /// auto p = make_unique<int>();
1345 /// auto p = make_unique<std::tuple<int, int>>(0, 1);
1346 template <class T
, class... Args
>
1347 typename
std::enable_if
<!std::is_array
<T
>::value
, std::unique_ptr
<T
>>::type
1348 make_unique(Args
&&... args
) {
1349 return std::unique_ptr
<T
>(new T(std::forward
<Args
>(args
)...));
1352 /// Constructs a `new T[n]` with the given args and returns a
1353 /// `unique_ptr<T[]>` which owns the object.
1355 /// \param n size of the new array.
1359 /// auto p = make_unique<int[]>(2); // value-initializes the array with 0's.
1361 typename
std::enable_if
<std::is_array
<T
>::value
&& std::extent
<T
>::value
== 0,
1362 std::unique_ptr
<T
>>::type
1363 make_unique(size_t n
) {
1364 return std::unique_ptr
<T
>(new typename
std::remove_extent
<T
>::type
[n
]());
1367 /// This function isn't used and is only here to provide better compile errors.
1368 template <class T
, class... Args
>
1369 typename
std::enable_if
<std::extent
<T
>::value
!= 0>::type
1370 make_unique(Args
&&...) = delete;
1372 struct FreeDeleter
{
1373 void operator()(void* v
) {
1378 template<typename First
, typename Second
>
1380 size_t operator()(const std::pair
<First
, Second
> &P
) const {
1381 return std::hash
<First
>()(P
.first
) * 31 + std::hash
<Second
>()(P
.second
);
1385 /// A functor like C++14's std::less<void> in its absence.
1387 template <typename A
, typename B
> bool operator()(A
&&a
, B
&&b
) const {
1388 return std::forward
<A
>(a
) < std::forward
<B
>(b
);
1392 /// A functor like C++14's std::equal<void> in its absence.
1394 template <typename A
, typename B
> bool operator()(A
&&a
, B
&&b
) const {
1395 return std::forward
<A
>(a
) == std::forward
<B
>(b
);
1399 /// Binary functor that adapts to any other binary functor after dereferencing
1401 template <typename T
> struct deref
{
1404 // Could be further improved to cope with non-derivable functors and
1405 // non-binary functors (should be a variadic template member function
1407 template <typename A
, typename B
>
1408 auto operator()(A
&lhs
, B
&rhs
) const -> decltype(func(*lhs
, *rhs
)) {
1411 return func(*lhs
, *rhs
);
1417 template <typename R
> class enumerator_iter
;
1419 template <typename R
> struct result_pair
{
1420 friend class enumerator_iter
<R
>;
1422 result_pair() = default;
1423 result_pair(std::size_t Index
, IterOfRange
<R
> Iter
)
1424 : Index(Index
), Iter(Iter
) {}
1426 result_pair
<R
> &operator=(const result_pair
<R
> &Other
) {
1427 Index
= Other
.Index
;
1432 std::size_t index() const { return Index
; }
1433 const ValueOfRange
<R
> &value() const { return *Iter
; }
1434 ValueOfRange
<R
> &value() { return *Iter
; }
1437 std::size_t Index
= std::numeric_limits
<std::size_t>::max();
1438 IterOfRange
<R
> Iter
;
1441 template <typename R
>
1442 class enumerator_iter
1443 : public iterator_facade_base
<
1444 enumerator_iter
<R
>, std::forward_iterator_tag
, result_pair
<R
>,
1445 typename
std::iterator_traits
<IterOfRange
<R
>>::difference_type
,
1446 typename
std::iterator_traits
<IterOfRange
<R
>>::pointer
,
1447 typename
std::iterator_traits
<IterOfRange
<R
>>::reference
> {
1448 using result_type
= result_pair
<R
>;
1451 explicit enumerator_iter(IterOfRange
<R
> EndIter
)
1452 : Result(std::numeric_limits
<size_t>::max(), EndIter
) {}
1454 enumerator_iter(std::size_t Index
, IterOfRange
<R
> Iter
)
1455 : Result(Index
, Iter
) {}
1457 result_type
&operator*() { return Result
; }
1458 const result_type
&operator*() const { return Result
; }
1460 enumerator_iter
<R
> &operator++() {
1461 assert(Result
.Index
!= std::numeric_limits
<size_t>::max());
1467 bool operator==(const enumerator_iter
<R
> &RHS
) const {
1468 // Don't compare indices here, only iterators. It's possible for an end
1469 // iterator to have different indices depending on whether it was created
1470 // by calling std::end() versus incrementing a valid iterator.
1471 return Result
.Iter
== RHS
.Result
.Iter
;
1474 enumerator_iter
<R
> &operator=(const enumerator_iter
<R
> &Other
) {
1475 Result
= Other
.Result
;
1483 template <typename R
> class enumerator
{
1485 explicit enumerator(R
&&Range
) : TheRange(std::forward
<R
>(Range
)) {}
1487 enumerator_iter
<R
> begin() {
1488 return enumerator_iter
<R
>(0, std::begin(TheRange
));
1491 enumerator_iter
<R
> end() {
1492 return enumerator_iter
<R
>(std::end(TheRange
));
1499 } // end namespace detail
1501 /// Given an input range, returns a new range whose values are are pair (A,B)
1502 /// such that A is the 0-based index of the item in the sequence, and B is
1503 /// the value from the original sequence. Example:
1505 /// std::vector<char> Items = {'A', 'B', 'C', 'D'};
1506 /// for (auto X : enumerate(Items)) {
1507 /// printf("Item %d - %c\n", X.index(), X.value());
1516 template <typename R
> detail::enumerator
<R
> enumerate(R
&&TheRange
) {
1517 return detail::enumerator
<R
>(std::forward
<R
>(TheRange
));
1522 template <typename F
, typename Tuple
, std::size_t... I
>
1523 auto apply_tuple_impl(F
&&f
, Tuple
&&t
, index_sequence
<I
...>)
1524 -> decltype(std::forward
<F
>(f
)(std::get
<I
>(std::forward
<Tuple
>(t
))...)) {
1525 return std::forward
<F
>(f
)(std::get
<I
>(std::forward
<Tuple
>(t
))...);
1528 } // end namespace detail
1530 /// Given an input tuple (a1, a2, ..., an), pass the arguments of the
1531 /// tuple variadically to f as if by calling f(a1, a2, ..., an) and
1532 /// return the result.
1533 template <typename F
, typename Tuple
>
1534 auto apply_tuple(F
&&f
, Tuple
&&t
) -> decltype(detail::apply_tuple_impl(
1535 std::forward
<F
>(f
), std::forward
<Tuple
>(t
),
1537 std::tuple_size
<typename
std::decay
<Tuple
>::type
>::value
>{})) {
1538 using Indices
= build_index_impl
<
1539 std::tuple_size
<typename
std::decay
<Tuple
>::type
>::value
>;
1541 return detail::apply_tuple_impl(std::forward
<F
>(f
), std::forward
<Tuple
>(t
),
1545 /// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N)
1546 /// time. Not meant for use with random-access iterators.
1547 template <typename IterTy
>
1549 IterTy
&&Begin
, IterTy
&&End
, unsigned N
,
1550 typename
std::enable_if
<
1552 typename
std::iterator_traits
<typename
std::remove_reference
<
1553 decltype(Begin
)>::type
>::iterator_category
,
1554 std::random_access_iterator_tag
>::value
,
1555 void>::type
* = nullptr) {
1556 for (; N
; --N
, ++Begin
)
1558 return false; // Too few.
1559 return Begin
== End
;
1562 /// Return true if the sequence [Begin, End) has N or more items. Runs in O(N)
1563 /// time. Not meant for use with random-access iterators.
1564 template <typename IterTy
>
1565 bool hasNItemsOrMore(
1566 IterTy
&&Begin
, IterTy
&&End
, unsigned N
,
1567 typename
std::enable_if
<
1569 typename
std::iterator_traits
<typename
std::remove_reference
<
1570 decltype(Begin
)>::type
>::iterator_category
,
1571 std::random_access_iterator_tag
>::value
,
1572 void>::type
* = nullptr) {
1573 for (; N
; --N
, ++Begin
)
1575 return false; // Too few.
1579 } // end namespace llvm
1581 #endif // LLVM_ADT_STLEXTRAS_H