Recommit [NFC] Better encapsulation of llvm::Optional Storage
[llvm-complete.git] / include / llvm / ADT / STLExtras.h
blob9a891d193e687598282176ec830af3f4a715f8b2
1 //===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains some templates that are useful if you are working with the
10 // STL at all.
12 // No library is required when using these functions.
14 //===----------------------------------------------------------------------===//
16 #ifndef LLVM_ADT_STLEXTRAS_H
17 #define LLVM_ADT_STLEXTRAS_H
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/iterator.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Config/abi-breaking.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include <algorithm>
26 #include <cassert>
27 #include <cstddef>
28 #include <cstdint>
29 #include <cstdlib>
30 #include <functional>
31 #include <initializer_list>
32 #include <iterator>
33 #include <limits>
34 #include <memory>
35 #include <tuple>
36 #include <type_traits>
37 #include <utility>
39 #ifdef EXPENSIVE_CHECKS
40 #include <random> // for std::mt19937
41 #endif
43 namespace llvm {
45 // Only used by compiler if both template types are the same. Useful when
46 // using SFINAE to test for the existence of member functions.
47 template <typename T, T> struct SameType;
49 namespace detail {
51 template <typename RangeT>
52 using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));
54 template <typename RangeT>
55 using ValueOfRange = typename std::remove_reference<decltype(
56 *std::begin(std::declval<RangeT &>()))>::type;
58 } // end namespace detail
60 //===----------------------------------------------------------------------===//
61 // Extra additions to <type_traits>
62 //===----------------------------------------------------------------------===//
64 template <typename T>
65 struct negation : std::integral_constant<bool, !bool(T::value)> {};
67 template <typename...> struct conjunction : std::true_type {};
68 template <typename B1> struct conjunction<B1> : B1 {};
69 template <typename B1, typename... Bn>
70 struct conjunction<B1, Bn...>
71 : std::conditional<bool(B1::value), conjunction<Bn...>, B1>::type {};
73 template <typename T> struct make_const_ptr {
74 using type =
75 typename std::add_pointer<typename std::add_const<T>::type>::type;
78 template <typename T> struct make_const_ref {
79 using type = typename std::add_lvalue_reference<
80 typename std::add_const<T>::type>::type;
83 //===----------------------------------------------------------------------===//
84 // Extra additions to <functional>
85 //===----------------------------------------------------------------------===//
87 template <class Ty> struct identity {
88 using argument_type = Ty;
90 Ty &operator()(Ty &self) const {
91 return self;
93 const Ty &operator()(const Ty &self) const {
94 return self;
98 template <class Ty> struct less_ptr {
99 bool operator()(const Ty* left, const Ty* right) const {
100 return *left < *right;
104 template <class Ty> struct greater_ptr {
105 bool operator()(const Ty* left, const Ty* right) const {
106 return *right < *left;
110 /// An efficient, type-erasing, non-owning reference to a callable. This is
111 /// intended for use as the type of a function parameter that is not used
112 /// after the function in question returns.
114 /// This class does not own the callable, so it is not in general safe to store
115 /// a function_ref.
116 template<typename Fn> class function_ref;
118 template<typename Ret, typename ...Params>
119 class function_ref<Ret(Params...)> {
120 Ret (*callback)(intptr_t callable, Params ...params) = nullptr;
121 intptr_t callable;
123 template<typename Callable>
124 static Ret callback_fn(intptr_t callable, Params ...params) {
125 return (*reinterpret_cast<Callable*>(callable))(
126 std::forward<Params>(params)...);
129 public:
130 function_ref() = default;
131 function_ref(std::nullptr_t) {}
133 template <typename Callable>
134 function_ref(Callable &&callable,
135 typename std::enable_if<
136 !std::is_same<typename std::remove_reference<Callable>::type,
137 function_ref>::value>::type * = nullptr)
138 : callback(callback_fn<typename std::remove_reference<Callable>::type>),
139 callable(reinterpret_cast<intptr_t>(&callable)) {}
141 Ret operator()(Params ...params) const {
142 return callback(callable, std::forward<Params>(params)...);
145 operator bool() const { return callback; }
148 // deleter - Very very very simple method that is used to invoke operator
149 // delete on something. It is used like this:
151 // for_each(V.begin(), B.end(), deleter<Interval>);
152 template <class T>
153 inline void deleter(T *Ptr) {
154 delete Ptr;
157 //===----------------------------------------------------------------------===//
158 // Extra additions to <iterator>
159 //===----------------------------------------------------------------------===//
161 namespace adl_detail {
163 using std::begin;
165 template <typename ContainerTy>
166 auto adl_begin(ContainerTy &&container)
167 -> decltype(begin(std::forward<ContainerTy>(container))) {
168 return begin(std::forward<ContainerTy>(container));
171 using std::end;
173 template <typename ContainerTy>
174 auto adl_end(ContainerTy &&container)
175 -> decltype(end(std::forward<ContainerTy>(container))) {
176 return end(std::forward<ContainerTy>(container));
179 using std::swap;
181 template <typename T>
182 void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(),
183 std::declval<T>()))) {
184 swap(std::forward<T>(lhs), std::forward<T>(rhs));
187 } // end namespace adl_detail
189 template <typename ContainerTy>
190 auto adl_begin(ContainerTy &&container)
191 -> decltype(adl_detail::adl_begin(std::forward<ContainerTy>(container))) {
192 return adl_detail::adl_begin(std::forward<ContainerTy>(container));
195 template <typename ContainerTy>
196 auto adl_end(ContainerTy &&container)
197 -> decltype(adl_detail::adl_end(std::forward<ContainerTy>(container))) {
198 return adl_detail::adl_end(std::forward<ContainerTy>(container));
201 template <typename T>
202 void adl_swap(T &&lhs, T &&rhs) noexcept(
203 noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) {
204 adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs));
207 /// Test whether \p RangeOrContainer is empty. Similar to C++17 std::empty.
208 template <typename T>
209 constexpr bool empty(const T &RangeOrContainer) {
210 return adl_begin(RangeOrContainer) == adl_end(RangeOrContainer);
213 // mapped_iterator - This is a simple iterator adapter that causes a function to
214 // be applied whenever operator* is invoked on the iterator.
216 template <typename ItTy, typename FuncTy,
217 typename FuncReturnTy =
218 decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
219 class mapped_iterator
220 : public iterator_adaptor_base<
221 mapped_iterator<ItTy, FuncTy>, ItTy,
222 typename std::iterator_traits<ItTy>::iterator_category,
223 typename std::remove_reference<FuncReturnTy>::type> {
224 public:
225 mapped_iterator(ItTy U, FuncTy F)
226 : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
228 ItTy getCurrent() { return this->I; }
230 FuncReturnTy operator*() { return F(*this->I); }
232 private:
233 FuncTy F;
236 // map_iterator - Provide a convenient way to create mapped_iterators, just like
237 // make_pair is useful for creating pairs...
238 template <class ItTy, class FuncTy>
239 inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
240 return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
243 /// Helper to determine if type T has a member called rbegin().
244 template <typename Ty> class has_rbegin_impl {
245 using yes = char[1];
246 using no = char[2];
248 template <typename Inner>
249 static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
251 template <typename>
252 static no& test(...);
254 public:
255 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
258 /// Metafunction to determine if T& or T has a member called rbegin().
259 template <typename Ty>
260 struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> {
263 // Returns an iterator_range over the given container which iterates in reverse.
264 // Note that the container must have rbegin()/rend() methods for this to work.
265 template <typename ContainerTy>
266 auto reverse(ContainerTy &&C,
267 typename std::enable_if<has_rbegin<ContainerTy>::value>::type * =
268 nullptr) -> decltype(make_range(C.rbegin(), C.rend())) {
269 return make_range(C.rbegin(), C.rend());
272 // Returns a std::reverse_iterator wrapped around the given iterator.
273 template <typename IteratorTy>
274 std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) {
275 return std::reverse_iterator<IteratorTy>(It);
278 // Returns an iterator_range over the given container which iterates in reverse.
279 // Note that the container must have begin()/end() methods which return
280 // bidirectional iterators for this to work.
281 template <typename ContainerTy>
282 auto reverse(
283 ContainerTy &&C,
284 typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * = nullptr)
285 -> decltype(make_range(llvm::make_reverse_iterator(std::end(C)),
286 llvm::make_reverse_iterator(std::begin(C)))) {
287 return make_range(llvm::make_reverse_iterator(std::end(C)),
288 llvm::make_reverse_iterator(std::begin(C)));
291 /// An iterator adaptor that filters the elements of given inner iterators.
293 /// The predicate parameter should be a callable object that accepts the wrapped
294 /// iterator's reference type and returns a bool. When incrementing or
295 /// decrementing the iterator, it will call the predicate on each element and
296 /// skip any where it returns false.
298 /// \code
299 /// int A[] = { 1, 2, 3, 4 };
300 /// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
301 /// // R contains { 1, 3 }.
302 /// \endcode
304 /// Note: filter_iterator_base implements support for forward iteration.
305 /// filter_iterator_impl exists to provide support for bidirectional iteration,
306 /// conditional on whether the wrapped iterator supports it.
307 template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
308 class filter_iterator_base
309 : public iterator_adaptor_base<
310 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
311 WrappedIteratorT,
312 typename std::common_type<
313 IterTag, typename std::iterator_traits<
314 WrappedIteratorT>::iterator_category>::type> {
315 using BaseT = iterator_adaptor_base<
316 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
317 WrappedIteratorT,
318 typename std::common_type<
319 IterTag, typename std::iterator_traits<
320 WrappedIteratorT>::iterator_category>::type>;
322 protected:
323 WrappedIteratorT End;
324 PredicateT Pred;
326 void findNextValid() {
327 while (this->I != End && !Pred(*this->I))
328 BaseT::operator++();
331 // Construct the iterator. The begin iterator needs to know where the end
332 // is, so that it can properly stop when it gets there. The end iterator only
333 // needs the predicate to support bidirectional iteration.
334 filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
335 PredicateT Pred)
336 : BaseT(Begin), End(End), Pred(Pred) {
337 findNextValid();
340 public:
341 using BaseT::operator++;
343 filter_iterator_base &operator++() {
344 BaseT::operator++();
345 findNextValid();
346 return *this;
350 /// Specialization of filter_iterator_base for forward iteration only.
351 template <typename WrappedIteratorT, typename PredicateT,
352 typename IterTag = std::forward_iterator_tag>
353 class filter_iterator_impl
354 : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
355 using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>;
357 public:
358 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
359 PredicateT Pred)
360 : BaseT(Begin, End, Pred) {}
363 /// Specialization of filter_iterator_base for bidirectional iteration.
364 template <typename WrappedIteratorT, typename PredicateT>
365 class filter_iterator_impl<WrappedIteratorT, PredicateT,
366 std::bidirectional_iterator_tag>
367 : public filter_iterator_base<WrappedIteratorT, PredicateT,
368 std::bidirectional_iterator_tag> {
369 using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT,
370 std::bidirectional_iterator_tag>;
371 void findPrevValid() {
372 while (!this->Pred(*this->I))
373 BaseT::operator--();
376 public:
377 using BaseT::operator--;
379 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
380 PredicateT Pred)
381 : BaseT(Begin, End, Pred) {}
383 filter_iterator_impl &operator--() {
384 BaseT::operator--();
385 findPrevValid();
386 return *this;
390 namespace detail {
392 template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
393 using type = std::forward_iterator_tag;
396 template <> struct fwd_or_bidi_tag_impl<true> {
397 using type = std::bidirectional_iterator_tag;
400 /// Helper which sets its type member to forward_iterator_tag if the category
401 /// of \p IterT does not derive from bidirectional_iterator_tag, and to
402 /// bidirectional_iterator_tag otherwise.
403 template <typename IterT> struct fwd_or_bidi_tag {
404 using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
405 std::bidirectional_iterator_tag,
406 typename std::iterator_traits<IterT>::iterator_category>::value>::type;
409 } // namespace detail
411 /// Defines filter_iterator to a suitable specialization of
412 /// filter_iterator_impl, based on the underlying iterator's category.
413 template <typename WrappedIteratorT, typename PredicateT>
414 using filter_iterator = filter_iterator_impl<
415 WrappedIteratorT, PredicateT,
416 typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>;
418 /// Convenience function that takes a range of elements and a predicate,
419 /// and return a new filter_iterator range.
421 /// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
422 /// lifetime of that temporary is not kept by the returned range object, and the
423 /// temporary is going to be dropped on the floor after the make_iterator_range
424 /// full expression that contains this function call.
425 template <typename RangeT, typename PredicateT>
426 iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
427 make_filter_range(RangeT &&Range, PredicateT Pred) {
428 using FilterIteratorT =
429 filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
430 return make_range(
431 FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
432 std::end(std::forward<RangeT>(Range)), Pred),
433 FilterIteratorT(std::end(std::forward<RangeT>(Range)),
434 std::end(std::forward<RangeT>(Range)), Pred));
437 /// A pseudo-iterator adaptor that is designed to implement "early increment"
438 /// style loops.
440 /// This is *not a normal iterator* and should almost never be used directly. It
441 /// is intended primarily to be used with range based for loops and some range
442 /// algorithms.
444 /// The iterator isn't quite an `OutputIterator` or an `InputIterator` but
445 /// somewhere between them. The constraints of these iterators are:
447 /// - On construction or after being incremented, it is comparable and
448 /// dereferencable. It is *not* incrementable.
449 /// - After being dereferenced, it is neither comparable nor dereferencable, it
450 /// is only incrementable.
452 /// This means you can only dereference the iterator once, and you can only
453 /// increment it once between dereferences.
454 template <typename WrappedIteratorT>
455 class early_inc_iterator_impl
456 : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
457 WrappedIteratorT, std::input_iterator_tag> {
458 using BaseT =
459 iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
460 WrappedIteratorT, std::input_iterator_tag>;
462 using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer;
464 protected:
465 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
466 bool IsEarlyIncremented = false;
467 #endif
469 public:
470 early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {}
472 using BaseT::operator*;
473 typename BaseT::reference operator*() {
474 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
475 assert(!IsEarlyIncremented && "Cannot dereference twice!");
476 IsEarlyIncremented = true;
477 #endif
478 return *(this->I)++;
481 using BaseT::operator++;
482 early_inc_iterator_impl &operator++() {
483 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
484 assert(IsEarlyIncremented && "Cannot increment before dereferencing!");
485 IsEarlyIncremented = false;
486 #endif
487 return *this;
490 using BaseT::operator==;
491 bool operator==(const early_inc_iterator_impl &RHS) const {
492 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
493 assert(!IsEarlyIncremented && "Cannot compare after dereferencing!");
494 #endif
495 return BaseT::operator==(RHS);
499 /// Make a range that does early increment to allow mutation of the underlying
500 /// range without disrupting iteration.
502 /// The underlying iterator will be incremented immediately after it is
503 /// dereferenced, allowing deletion of the current node or insertion of nodes to
504 /// not disrupt iteration provided they do not invalidate the *next* iterator --
505 /// the current iterator can be invalidated.
507 /// This requires a very exact pattern of use that is only really suitable to
508 /// range based for loops and other range algorithms that explicitly guarantee
509 /// to dereference exactly once each element, and to increment exactly once each
510 /// element.
511 template <typename RangeT>
512 iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>>
513 make_early_inc_range(RangeT &&Range) {
514 using EarlyIncIteratorT =
515 early_inc_iterator_impl<detail::IterOfRange<RangeT>>;
516 return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))),
517 EarlyIncIteratorT(std::end(std::forward<RangeT>(Range))));
520 // forward declarations required by zip_shortest/zip_first/zip_longest
521 template <typename R, typename UnaryPredicate>
522 bool all_of(R &&range, UnaryPredicate P);
523 template <typename R, typename UnaryPredicate>
524 bool any_of(R &&range, UnaryPredicate P);
526 template <size_t... I> struct index_sequence;
528 template <class... Ts> struct index_sequence_for;
530 namespace detail {
532 using std::declval;
534 // We have to alias this since inlining the actual type at the usage site
535 // in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
536 template<typename... Iters> struct ZipTupleType {
537 using type = std::tuple<decltype(*declval<Iters>())...>;
540 template <typename ZipType, typename... Iters>
541 using zip_traits = iterator_facade_base<
542 ZipType, typename std::common_type<std::bidirectional_iterator_tag,
543 typename std::iterator_traits<
544 Iters>::iterator_category...>::type,
545 // ^ TODO: Implement random access methods.
546 typename ZipTupleType<Iters...>::type,
547 typename std::iterator_traits<typename std::tuple_element<
548 0, std::tuple<Iters...>>::type>::difference_type,
549 // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
550 // inner iterators have the same difference_type. It would fail if, for
551 // instance, the second field's difference_type were non-numeric while the
552 // first is.
553 typename ZipTupleType<Iters...>::type *,
554 typename ZipTupleType<Iters...>::type>;
556 template <typename ZipType, typename... Iters>
557 struct zip_common : public zip_traits<ZipType, Iters...> {
558 using Base = zip_traits<ZipType, Iters...>;
559 using value_type = typename Base::value_type;
561 std::tuple<Iters...> iterators;
563 protected:
564 template <size_t... Ns> value_type deref(index_sequence<Ns...>) const {
565 return value_type(*std::get<Ns>(iterators)...);
568 template <size_t... Ns>
569 decltype(iterators) tup_inc(index_sequence<Ns...>) const {
570 return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...);
573 template <size_t... Ns>
574 decltype(iterators) tup_dec(index_sequence<Ns...>) const {
575 return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...);
578 public:
579 zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
581 value_type operator*() { return deref(index_sequence_for<Iters...>{}); }
583 const value_type operator*() const {
584 return deref(index_sequence_for<Iters...>{});
587 ZipType &operator++() {
588 iterators = tup_inc(index_sequence_for<Iters...>{});
589 return *reinterpret_cast<ZipType *>(this);
592 ZipType &operator--() {
593 static_assert(Base::IsBidirectional,
594 "All inner iterators must be at least bidirectional.");
595 iterators = tup_dec(index_sequence_for<Iters...>{});
596 return *reinterpret_cast<ZipType *>(this);
600 template <typename... Iters>
601 struct zip_first : public zip_common<zip_first<Iters...>, Iters...> {
602 using Base = zip_common<zip_first<Iters...>, Iters...>;
604 bool operator==(const zip_first<Iters...> &other) const {
605 return std::get<0>(this->iterators) == std::get<0>(other.iterators);
608 zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
611 template <typename... Iters>
612 class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> {
613 template <size_t... Ns>
614 bool test(const zip_shortest<Iters...> &other, index_sequence<Ns...>) const {
615 return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
616 std::get<Ns>(other.iterators)...},
617 identity<bool>{});
620 public:
621 using Base = zip_common<zip_shortest<Iters...>, Iters...>;
623 zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
625 bool operator==(const zip_shortest<Iters...> &other) const {
626 return !test(other, index_sequence_for<Iters...>{});
630 template <template <typename...> class ItType, typename... Args> class zippy {
631 public:
632 using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>;
633 using iterator_category = typename iterator::iterator_category;
634 using value_type = typename iterator::value_type;
635 using difference_type = typename iterator::difference_type;
636 using pointer = typename iterator::pointer;
637 using reference = typename iterator::reference;
639 private:
640 std::tuple<Args...> ts;
642 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const {
643 return iterator(std::begin(std::get<Ns>(ts))...);
645 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const {
646 return iterator(std::end(std::get<Ns>(ts))...);
649 public:
650 zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
652 iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); }
653 iterator end() const { return end_impl(index_sequence_for<Args...>{}); }
656 } // end namespace detail
658 /// zip iterator for two or more iteratable types.
659 template <typename T, typename U, typename... Args>
660 detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
661 Args &&... args) {
662 return detail::zippy<detail::zip_shortest, T, U, Args...>(
663 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
666 /// zip iterator that, for the sake of efficiency, assumes the first iteratee to
667 /// be the shortest.
668 template <typename T, typename U, typename... Args>
669 detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
670 Args &&... args) {
671 return detail::zippy<detail::zip_first, T, U, Args...>(
672 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
675 namespace detail {
676 template <typename Iter>
677 static Iter next_or_end(const Iter &I, const Iter &End) {
678 if (I == End)
679 return End;
680 return std::next(I);
683 template <typename Iter>
684 static auto deref_or_none(const Iter &I, const Iter &End)
685 -> llvm::Optional<typename std::remove_const<
686 typename std::remove_reference<decltype(*I)>::type>::type> {
687 if (I == End)
688 return None;
689 return *I;
692 template <typename Iter> struct ZipLongestItemType {
693 using type =
694 llvm::Optional<typename std::remove_const<typename std::remove_reference<
695 decltype(*std::declval<Iter>())>::type>::type>;
698 template <typename... Iters> struct ZipLongestTupleType {
699 using type = std::tuple<typename ZipLongestItemType<Iters>::type...>;
702 template <typename... Iters>
703 class zip_longest_iterator
704 : public iterator_facade_base<
705 zip_longest_iterator<Iters...>,
706 typename std::common_type<
707 std::forward_iterator_tag,
708 typename std::iterator_traits<Iters>::iterator_category...>::type,
709 typename ZipLongestTupleType<Iters...>::type,
710 typename std::iterator_traits<typename std::tuple_element<
711 0, std::tuple<Iters...>>::type>::difference_type,
712 typename ZipLongestTupleType<Iters...>::type *,
713 typename ZipLongestTupleType<Iters...>::type> {
714 public:
715 using value_type = typename ZipLongestTupleType<Iters...>::type;
717 private:
718 std::tuple<Iters...> iterators;
719 std::tuple<Iters...> end_iterators;
721 template <size_t... Ns>
722 bool test(const zip_longest_iterator<Iters...> &other,
723 index_sequence<Ns...>) const {
724 return llvm::any_of(
725 std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
726 std::get<Ns>(other.iterators)...},
727 identity<bool>{});
730 template <size_t... Ns> value_type deref(index_sequence<Ns...>) const {
731 return value_type(
732 deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
735 template <size_t... Ns>
736 decltype(iterators) tup_inc(index_sequence<Ns...>) const {
737 return std::tuple<Iters...>(
738 next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
741 public:
742 zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts)
743 : iterators(std::forward<Iters>(ts.first)...),
744 end_iterators(std::forward<Iters>(ts.second)...) {}
746 value_type operator*() { return deref(index_sequence_for<Iters...>{}); }
748 value_type operator*() const { return deref(index_sequence_for<Iters...>{}); }
750 zip_longest_iterator<Iters...> &operator++() {
751 iterators = tup_inc(index_sequence_for<Iters...>{});
752 return *this;
755 bool operator==(const zip_longest_iterator<Iters...> &other) const {
756 return !test(other, index_sequence_for<Iters...>{});
760 template <typename... Args> class zip_longest_range {
761 public:
762 using iterator =
763 zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>;
764 using iterator_category = typename iterator::iterator_category;
765 using value_type = typename iterator::value_type;
766 using difference_type = typename iterator::difference_type;
767 using pointer = typename iterator::pointer;
768 using reference = typename iterator::reference;
770 private:
771 std::tuple<Args...> ts;
773 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const {
774 return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)),
775 adl_end(std::get<Ns>(ts)))...);
778 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const {
779 return iterator(std::make_pair(adl_end(std::get<Ns>(ts)),
780 adl_end(std::get<Ns>(ts)))...);
783 public:
784 zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
786 iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); }
787 iterator end() const { return end_impl(index_sequence_for<Args...>{}); }
789 } // namespace detail
791 /// Iterate over two or more iterators at the same time. Iteration continues
792 /// until all iterators reach the end. The llvm::Optional only contains a value
793 /// if the iterator has not reached the end.
794 template <typename T, typename U, typename... Args>
795 detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u,
796 Args &&... args) {
797 return detail::zip_longest_range<T, U, Args...>(
798 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
801 /// Iterator wrapper that concatenates sequences together.
803 /// This can concatenate different iterators, even with different types, into
804 /// a single iterator provided the value types of all the concatenated
805 /// iterators expose `reference` and `pointer` types that can be converted to
806 /// `ValueT &` and `ValueT *` respectively. It doesn't support more
807 /// interesting/customized pointer or reference types.
809 /// Currently this only supports forward or higher iterator categories as
810 /// inputs and always exposes a forward iterator interface.
811 template <typename ValueT, typename... IterTs>
812 class concat_iterator
813 : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
814 std::forward_iterator_tag, ValueT> {
815 using BaseT = typename concat_iterator::iterator_facade_base;
817 /// We store both the current and end iterators for each concatenated
818 /// sequence in a tuple of pairs.
820 /// Note that something like iterator_range seems nice at first here, but the
821 /// range properties are of little benefit and end up getting in the way
822 /// because we need to do mutation on the current iterators.
823 std::tuple<IterTs...> Begins;
824 std::tuple<IterTs...> Ends;
826 /// Attempts to increment a specific iterator.
828 /// Returns true if it was able to increment the iterator. Returns false if
829 /// the iterator is already at the end iterator.
830 template <size_t Index> bool incrementHelper() {
831 auto &Begin = std::get<Index>(Begins);
832 auto &End = std::get<Index>(Ends);
833 if (Begin == End)
834 return false;
836 ++Begin;
837 return true;
840 /// Increments the first non-end iterator.
842 /// It is an error to call this with all iterators at the end.
843 template <size_t... Ns> void increment(index_sequence<Ns...>) {
844 // Build a sequence of functions to increment each iterator if possible.
845 bool (concat_iterator::*IncrementHelperFns[])() = {
846 &concat_iterator::incrementHelper<Ns>...};
848 // Loop over them, and stop as soon as we succeed at incrementing one.
849 for (auto &IncrementHelperFn : IncrementHelperFns)
850 if ((this->*IncrementHelperFn)())
851 return;
853 llvm_unreachable("Attempted to increment an end concat iterator!");
856 /// Returns null if the specified iterator is at the end. Otherwise,
857 /// dereferences the iterator and returns the address of the resulting
858 /// reference.
859 template <size_t Index> ValueT *getHelper() const {
860 auto &Begin = std::get<Index>(Begins);
861 auto &End = std::get<Index>(Ends);
862 if (Begin == End)
863 return nullptr;
865 return &*Begin;
868 /// Finds the first non-end iterator, dereferences, and returns the resulting
869 /// reference.
871 /// It is an error to call this with all iterators at the end.
872 template <size_t... Ns> ValueT &get(index_sequence<Ns...>) const {
873 // Build a sequence of functions to get from iterator if possible.
874 ValueT *(concat_iterator::*GetHelperFns[])() const = {
875 &concat_iterator::getHelper<Ns>...};
877 // Loop over them, and return the first result we find.
878 for (auto &GetHelperFn : GetHelperFns)
879 if (ValueT *P = (this->*GetHelperFn)())
880 return *P;
882 llvm_unreachable("Attempted to get a pointer from an end concat iterator!");
885 public:
886 /// Constructs an iterator from a squence of ranges.
888 /// We need the full range to know how to switch between each of the
889 /// iterators.
890 template <typename... RangeTs>
891 explicit concat_iterator(RangeTs &&... Ranges)
892 : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {}
894 using BaseT::operator++;
896 concat_iterator &operator++() {
897 increment(index_sequence_for<IterTs...>());
898 return *this;
901 ValueT &operator*() const { return get(index_sequence_for<IterTs...>()); }
903 bool operator==(const concat_iterator &RHS) const {
904 return Begins == RHS.Begins && Ends == RHS.Ends;
908 namespace detail {
910 /// Helper to store a sequence of ranges being concatenated and access them.
912 /// This is designed to facilitate providing actual storage when temporaries
913 /// are passed into the constructor such that we can use it as part of range
914 /// based for loops.
915 template <typename ValueT, typename... RangeTs> class concat_range {
916 public:
917 using iterator =
918 concat_iterator<ValueT,
919 decltype(std::begin(std::declval<RangeTs &>()))...>;
921 private:
922 std::tuple<RangeTs...> Ranges;
924 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) {
925 return iterator(std::get<Ns>(Ranges)...);
927 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) {
928 return iterator(make_range(std::end(std::get<Ns>(Ranges)),
929 std::end(std::get<Ns>(Ranges)))...);
932 public:
933 concat_range(RangeTs &&... Ranges)
934 : Ranges(std::forward<RangeTs>(Ranges)...) {}
936 iterator begin() { return begin_impl(index_sequence_for<RangeTs...>{}); }
937 iterator end() { return end_impl(index_sequence_for<RangeTs...>{}); }
940 } // end namespace detail
942 /// Concatenated range across two or more ranges.
944 /// The desired value type must be explicitly specified.
945 template <typename ValueT, typename... RangeTs>
946 detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
947 static_assert(sizeof...(RangeTs) > 1,
948 "Need more than one range to concatenate!");
949 return detail::concat_range<ValueT, RangeTs...>(
950 std::forward<RangeTs>(Ranges)...);
953 //===----------------------------------------------------------------------===//
954 // Extra additions to <utility>
955 //===----------------------------------------------------------------------===//
957 /// Function object to check whether the first component of a std::pair
958 /// compares less than the first component of another std::pair.
959 struct less_first {
960 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
961 return lhs.first < rhs.first;
965 /// Function object to check whether the second component of a std::pair
966 /// compares less than the second component of another std::pair.
967 struct less_second {
968 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
969 return lhs.second < rhs.second;
973 /// \brief Function object to apply a binary function to the first component of
974 /// a std::pair.
975 template<typename FuncTy>
976 struct on_first {
977 FuncTy func;
979 template <typename T>
980 auto operator()(const T &lhs, const T &rhs) const
981 -> decltype(func(lhs.first, rhs.first)) {
982 return func(lhs.first, rhs.first);
986 // A subset of N3658. More stuff can be added as-needed.
988 /// Represents a compile-time sequence of integers.
989 template <class T, T... I> struct integer_sequence {
990 using value_type = T;
992 static constexpr size_t size() { return sizeof...(I); }
995 /// Alias for the common case of a sequence of size_ts.
996 template <size_t... I>
997 struct index_sequence : integer_sequence<std::size_t, I...> {};
999 template <std::size_t N, std::size_t... I>
1000 struct build_index_impl : build_index_impl<N - 1, N - 1, I...> {};
1001 template <std::size_t... I>
1002 struct build_index_impl<0, I...> : index_sequence<I...> {};
1004 /// Creates a compile-time integer sequence for a parameter pack.
1005 template <class... Ts>
1006 struct index_sequence_for : build_index_impl<sizeof...(Ts)> {};
1008 /// Utility type to build an inheritance chain that makes it easy to rank
1009 /// overload candidates.
1010 template <int N> struct rank : rank<N - 1> {};
1011 template <> struct rank<0> {};
1013 /// traits class for checking whether type T is one of any of the given
1014 /// types in the variadic list.
1015 template <typename T, typename... Ts> struct is_one_of {
1016 static const bool value = false;
1019 template <typename T, typename U, typename... Ts>
1020 struct is_one_of<T, U, Ts...> {
1021 static const bool value =
1022 std::is_same<T, U>::value || is_one_of<T, Ts...>::value;
1025 /// traits class for checking whether type T is a base class for all
1026 /// the given types in the variadic list.
1027 template <typename T, typename... Ts> struct are_base_of {
1028 static const bool value = true;
1031 template <typename T, typename U, typename... Ts>
1032 struct are_base_of<T, U, Ts...> {
1033 static const bool value =
1034 std::is_base_of<T, U>::value && are_base_of<T, Ts...>::value;
1037 //===----------------------------------------------------------------------===//
1038 // Extra additions for arrays
1039 //===----------------------------------------------------------------------===//
1041 /// Find the length of an array.
1042 template <class T, std::size_t N>
1043 constexpr inline size_t array_lengthof(T (&)[N]) {
1044 return N;
1047 /// Adapt std::less<T> for array_pod_sort.
1048 template<typename T>
1049 inline int array_pod_sort_comparator(const void *P1, const void *P2) {
1050 if (std::less<T>()(*reinterpret_cast<const T*>(P1),
1051 *reinterpret_cast<const T*>(P2)))
1052 return -1;
1053 if (std::less<T>()(*reinterpret_cast<const T*>(P2),
1054 *reinterpret_cast<const T*>(P1)))
1055 return 1;
1056 return 0;
1059 /// get_array_pod_sort_comparator - This is an internal helper function used to
1060 /// get type deduction of T right.
1061 template<typename T>
1062 inline int (*get_array_pod_sort_comparator(const T &))
1063 (const void*, const void*) {
1064 return array_pod_sort_comparator<T>;
1067 /// array_pod_sort - This sorts an array with the specified start and end
1068 /// extent. This is just like std::sort, except that it calls qsort instead of
1069 /// using an inlined template. qsort is slightly slower than std::sort, but
1070 /// most sorts are not performance critical in LLVM and std::sort has to be
1071 /// template instantiated for each type, leading to significant measured code
1072 /// bloat. This function should generally be used instead of std::sort where
1073 /// possible.
1075 /// This function assumes that you have simple POD-like types that can be
1076 /// compared with std::less and can be moved with memcpy. If this isn't true,
1077 /// you should use std::sort.
1079 /// NOTE: If qsort_r were portable, we could allow a custom comparator and
1080 /// default to std::less.
1081 template<class IteratorTy>
1082 inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
1083 // Don't inefficiently call qsort with one element or trigger undefined
1084 // behavior with an empty sequence.
1085 auto NElts = End - Start;
1086 if (NElts <= 1) return;
1087 #ifdef EXPENSIVE_CHECKS
1088 std::mt19937 Generator(std::random_device{}());
1089 std::shuffle(Start, End, Generator);
1090 #endif
1091 qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
1094 template <class IteratorTy>
1095 inline void array_pod_sort(
1096 IteratorTy Start, IteratorTy End,
1097 int (*Compare)(
1098 const typename std::iterator_traits<IteratorTy>::value_type *,
1099 const typename std::iterator_traits<IteratorTy>::value_type *)) {
1100 // Don't inefficiently call qsort with one element or trigger undefined
1101 // behavior with an empty sequence.
1102 auto NElts = End - Start;
1103 if (NElts <= 1) return;
1104 #ifdef EXPENSIVE_CHECKS
1105 std::mt19937 Generator(std::random_device{}());
1106 std::shuffle(Start, End, Generator);
1107 #endif
1108 qsort(&*Start, NElts, sizeof(*Start),
1109 reinterpret_cast<int (*)(const void *, const void *)>(Compare));
1112 // Provide wrappers to std::sort which shuffle the elements before sorting
1113 // to help uncover non-deterministic behavior (PR35135).
1114 template <typename IteratorTy>
1115 inline void sort(IteratorTy Start, IteratorTy End) {
1116 #ifdef EXPENSIVE_CHECKS
1117 std::mt19937 Generator(std::random_device{}());
1118 std::shuffle(Start, End, Generator);
1119 #endif
1120 std::sort(Start, End);
1123 template <typename Container> inline void sort(Container &&C) {
1124 llvm::sort(adl_begin(C), adl_end(C));
1127 template <typename IteratorTy, typename Compare>
1128 inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
1129 #ifdef EXPENSIVE_CHECKS
1130 std::mt19937 Generator(std::random_device{}());
1131 std::shuffle(Start, End, Generator);
1132 #endif
1133 std::sort(Start, End, Comp);
1136 template <typename Container, typename Compare>
1137 inline void sort(Container &&C, Compare Comp) {
1138 llvm::sort(adl_begin(C), adl_end(C), Comp);
1141 //===----------------------------------------------------------------------===//
1142 // Extra additions to <algorithm>
1143 //===----------------------------------------------------------------------===//
1145 /// For a container of pointers, deletes the pointers and then clears the
1146 /// container.
1147 template<typename Container>
1148 void DeleteContainerPointers(Container &C) {
1149 for (auto V : C)
1150 delete V;
1151 C.clear();
1154 /// In a container of pairs (usually a map) whose second element is a pointer,
1155 /// deletes the second elements and then clears the container.
1156 template<typename Container>
1157 void DeleteContainerSeconds(Container &C) {
1158 for (auto &V : C)
1159 delete V.second;
1160 C.clear();
1163 /// Get the size of a range. This is a wrapper function around std::distance
1164 /// which is only enabled when the operation is O(1).
1165 template <typename R>
1166 auto size(R &&Range, typename std::enable_if<
1167 std::is_same<typename std::iterator_traits<decltype(
1168 Range.begin())>::iterator_category,
1169 std::random_access_iterator_tag>::value,
1170 void>::type * = nullptr)
1171 -> decltype(std::distance(Range.begin(), Range.end())) {
1172 return std::distance(Range.begin(), Range.end());
1175 /// Provide wrappers to std::for_each which take ranges instead of having to
1176 /// pass begin/end explicitly.
1177 template <typename R, typename UnaryPredicate>
1178 UnaryPredicate for_each(R &&Range, UnaryPredicate P) {
1179 return std::for_each(adl_begin(Range), adl_end(Range), P);
1182 /// Provide wrappers to std::all_of which take ranges instead of having to pass
1183 /// begin/end explicitly.
1184 template <typename R, typename UnaryPredicate>
1185 bool all_of(R &&Range, UnaryPredicate P) {
1186 return std::all_of(adl_begin(Range), adl_end(Range), P);
1189 /// Provide wrappers to std::any_of which take ranges instead of having to pass
1190 /// begin/end explicitly.
1191 template <typename R, typename UnaryPredicate>
1192 bool any_of(R &&Range, UnaryPredicate P) {
1193 return std::any_of(adl_begin(Range), adl_end(Range), P);
1196 /// Provide wrappers to std::none_of which take ranges instead of having to pass
1197 /// begin/end explicitly.
1198 template <typename R, typename UnaryPredicate>
1199 bool none_of(R &&Range, UnaryPredicate P) {
1200 return std::none_of(adl_begin(Range), adl_end(Range), P);
1203 /// Provide wrappers to std::find which take ranges instead of having to pass
1204 /// begin/end explicitly.
1205 template <typename R, typename T>
1206 auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range)) {
1207 return std::find(adl_begin(Range), adl_end(Range), Val);
1210 /// Provide wrappers to std::find_if which take ranges instead of having to pass
1211 /// begin/end explicitly.
1212 template <typename R, typename UnaryPredicate>
1213 auto find_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1214 return std::find_if(adl_begin(Range), adl_end(Range), P);
1217 template <typename R, typename UnaryPredicate>
1218 auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1219 return std::find_if_not(adl_begin(Range), adl_end(Range), P);
1222 /// Provide wrappers to std::remove_if which take ranges instead of having to
1223 /// pass begin/end explicitly.
1224 template <typename R, typename UnaryPredicate>
1225 auto remove_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1226 return std::remove_if(adl_begin(Range), adl_end(Range), P);
1229 /// Provide wrappers to std::copy_if which take ranges instead of having to
1230 /// pass begin/end explicitly.
1231 template <typename R, typename OutputIt, typename UnaryPredicate>
1232 OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
1233 return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
1236 template <typename R, typename OutputIt>
1237 OutputIt copy(R &&Range, OutputIt Out) {
1238 return std::copy(adl_begin(Range), adl_end(Range), Out);
1241 /// Wrapper function around std::find to detect if an element exists
1242 /// in a container.
1243 template <typename R, typename E>
1244 bool is_contained(R &&Range, const E &Element) {
1245 return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range);
1248 /// Wrapper function around std::count to count the number of times an element
1249 /// \p Element occurs in the given range \p Range.
1250 template <typename R, typename E>
1251 auto count(R &&Range, const E &Element) ->
1252 typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
1253 return std::count(adl_begin(Range), adl_end(Range), Element);
1256 /// Wrapper function around std::count_if to count the number of times an
1257 /// element satisfying a given predicate occurs in a range.
1258 template <typename R, typename UnaryPredicate>
1259 auto count_if(R &&Range, UnaryPredicate P) ->
1260 typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
1261 return std::count_if(adl_begin(Range), adl_end(Range), P);
1264 /// Wrapper function around std::transform to apply a function to a range and
1265 /// store the result elsewhere.
1266 template <typename R, typename OutputIt, typename UnaryPredicate>
1267 OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P) {
1268 return std::transform(adl_begin(Range), adl_end(Range), d_first, P);
1271 /// Provide wrappers to std::partition which take ranges instead of having to
1272 /// pass begin/end explicitly.
1273 template <typename R, typename UnaryPredicate>
1274 auto partition(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1275 return std::partition(adl_begin(Range), adl_end(Range), P);
1278 /// Provide wrappers to std::lower_bound which take ranges instead of having to
1279 /// pass begin/end explicitly.
1280 template <typename R, typename ForwardIt>
1281 auto lower_bound(R &&Range, ForwardIt I) -> decltype(adl_begin(Range)) {
1282 return std::lower_bound(adl_begin(Range), adl_end(Range), I);
1285 template <typename R, typename ForwardIt, typename Compare>
1286 auto lower_bound(R &&Range, ForwardIt I, Compare C)
1287 -> decltype(adl_begin(Range)) {
1288 return std::lower_bound(adl_begin(Range), adl_end(Range), I, C);
1291 /// Provide wrappers to std::upper_bound which take ranges instead of having to
1292 /// pass begin/end explicitly.
1293 template <typename R, typename ForwardIt>
1294 auto upper_bound(R &&Range, ForwardIt I) -> decltype(adl_begin(Range)) {
1295 return std::upper_bound(adl_begin(Range), adl_end(Range), I);
1298 template <typename R, typename ForwardIt, typename Compare>
1299 auto upper_bound(R &&Range, ForwardIt I, Compare C)
1300 -> decltype(adl_begin(Range)) {
1301 return std::upper_bound(adl_begin(Range), adl_end(Range), I, C);
1303 /// Wrapper function around std::equal to detect if all elements
1304 /// in a container are same.
1305 template <typename R>
1306 bool is_splat(R &&Range) {
1307 size_t range_size = size(Range);
1308 return range_size != 0 && (range_size == 1 ||
1309 std::equal(adl_begin(Range) + 1, adl_end(Range), adl_begin(Range)));
1312 /// Given a range of type R, iterate the entire range and return a
1313 /// SmallVector with elements of the vector. This is useful, for example,
1314 /// when you want to iterate a range and then sort the results.
1315 template <unsigned Size, typename R>
1316 SmallVector<typename std::remove_const<detail::ValueOfRange<R>>::type, Size>
1317 to_vector(R &&Range) {
1318 return {adl_begin(Range), adl_end(Range)};
1321 /// Provide a container algorithm similar to C++ Library Fundamentals v2's
1322 /// `erase_if` which is equivalent to:
1324 /// C.erase(remove_if(C, pred), C.end());
1326 /// This version works for any container with an erase method call accepting
1327 /// two iterators.
1328 template <typename Container, typename UnaryPredicate>
1329 void erase_if(Container &C, UnaryPredicate P) {
1330 C.erase(remove_if(C, P), C.end());
1333 //===----------------------------------------------------------------------===//
1334 // Extra additions to <memory>
1335 //===----------------------------------------------------------------------===//
1337 // Implement make_unique according to N3656.
1339 /// Constructs a `new T()` with the given args and returns a
1340 /// `unique_ptr<T>` which owns the object.
1342 /// Example:
1344 /// auto p = make_unique<int>();
1345 /// auto p = make_unique<std::tuple<int, int>>(0, 1);
1346 template <class T, class... Args>
1347 typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
1348 make_unique(Args &&... args) {
1349 return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
1352 /// Constructs a `new T[n]` with the given args and returns a
1353 /// `unique_ptr<T[]>` which owns the object.
1355 /// \param n size of the new array.
1357 /// Example:
1359 /// auto p = make_unique<int[]>(2); // value-initializes the array with 0's.
1360 template <class T>
1361 typename std::enable_if<std::is_array<T>::value && std::extent<T>::value == 0,
1362 std::unique_ptr<T>>::type
1363 make_unique(size_t n) {
1364 return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]());
1367 /// This function isn't used and is only here to provide better compile errors.
1368 template <class T, class... Args>
1369 typename std::enable_if<std::extent<T>::value != 0>::type
1370 make_unique(Args &&...) = delete;
1372 struct FreeDeleter {
1373 void operator()(void* v) {
1374 ::free(v);
1378 template<typename First, typename Second>
1379 struct pair_hash {
1380 size_t operator()(const std::pair<First, Second> &P) const {
1381 return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
1385 /// A functor like C++14's std::less<void> in its absence.
1386 struct less {
1387 template <typename A, typename B> bool operator()(A &&a, B &&b) const {
1388 return std::forward<A>(a) < std::forward<B>(b);
1392 /// A functor like C++14's std::equal<void> in its absence.
1393 struct equal {
1394 template <typename A, typename B> bool operator()(A &&a, B &&b) const {
1395 return std::forward<A>(a) == std::forward<B>(b);
1399 /// Binary functor that adapts to any other binary functor after dereferencing
1400 /// operands.
1401 template <typename T> struct deref {
1402 T func;
1404 // Could be further improved to cope with non-derivable functors and
1405 // non-binary functors (should be a variadic template member function
1406 // operator()).
1407 template <typename A, typename B>
1408 auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) {
1409 assert(lhs);
1410 assert(rhs);
1411 return func(*lhs, *rhs);
1415 namespace detail {
1417 template <typename R> class enumerator_iter;
1419 template <typename R> struct result_pair {
1420 friend class enumerator_iter<R>;
1422 result_pair() = default;
1423 result_pair(std::size_t Index, IterOfRange<R> Iter)
1424 : Index(Index), Iter(Iter) {}
1426 result_pair<R> &operator=(const result_pair<R> &Other) {
1427 Index = Other.Index;
1428 Iter = Other.Iter;
1429 return *this;
1432 std::size_t index() const { return Index; }
1433 const ValueOfRange<R> &value() const { return *Iter; }
1434 ValueOfRange<R> &value() { return *Iter; }
1436 private:
1437 std::size_t Index = std::numeric_limits<std::size_t>::max();
1438 IterOfRange<R> Iter;
1441 template <typename R>
1442 class enumerator_iter
1443 : public iterator_facade_base<
1444 enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>,
1445 typename std::iterator_traits<IterOfRange<R>>::difference_type,
1446 typename std::iterator_traits<IterOfRange<R>>::pointer,
1447 typename std::iterator_traits<IterOfRange<R>>::reference> {
1448 using result_type = result_pair<R>;
1450 public:
1451 explicit enumerator_iter(IterOfRange<R> EndIter)
1452 : Result(std::numeric_limits<size_t>::max(), EndIter) {}
1454 enumerator_iter(std::size_t Index, IterOfRange<R> Iter)
1455 : Result(Index, Iter) {}
1457 result_type &operator*() { return Result; }
1458 const result_type &operator*() const { return Result; }
1460 enumerator_iter<R> &operator++() {
1461 assert(Result.Index != std::numeric_limits<size_t>::max());
1462 ++Result.Iter;
1463 ++Result.Index;
1464 return *this;
1467 bool operator==(const enumerator_iter<R> &RHS) const {
1468 // Don't compare indices here, only iterators. It's possible for an end
1469 // iterator to have different indices depending on whether it was created
1470 // by calling std::end() versus incrementing a valid iterator.
1471 return Result.Iter == RHS.Result.Iter;
1474 enumerator_iter<R> &operator=(const enumerator_iter<R> &Other) {
1475 Result = Other.Result;
1476 return *this;
1479 private:
1480 result_type Result;
1483 template <typename R> class enumerator {
1484 public:
1485 explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {}
1487 enumerator_iter<R> begin() {
1488 return enumerator_iter<R>(0, std::begin(TheRange));
1491 enumerator_iter<R> end() {
1492 return enumerator_iter<R>(std::end(TheRange));
1495 private:
1496 R TheRange;
1499 } // end namespace detail
1501 /// Given an input range, returns a new range whose values are are pair (A,B)
1502 /// such that A is the 0-based index of the item in the sequence, and B is
1503 /// the value from the original sequence. Example:
1505 /// std::vector<char> Items = {'A', 'B', 'C', 'D'};
1506 /// for (auto X : enumerate(Items)) {
1507 /// printf("Item %d - %c\n", X.index(), X.value());
1508 /// }
1510 /// Output:
1511 /// Item 0 - A
1512 /// Item 1 - B
1513 /// Item 2 - C
1514 /// Item 3 - D
1516 template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
1517 return detail::enumerator<R>(std::forward<R>(TheRange));
1520 namespace detail {
1522 template <typename F, typename Tuple, std::size_t... I>
1523 auto apply_tuple_impl(F &&f, Tuple &&t, index_sequence<I...>)
1524 -> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...)) {
1525 return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
1528 } // end namespace detail
1530 /// Given an input tuple (a1, a2, ..., an), pass the arguments of the
1531 /// tuple variadically to f as if by calling f(a1, a2, ..., an) and
1532 /// return the result.
1533 template <typename F, typename Tuple>
1534 auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl(
1535 std::forward<F>(f), std::forward<Tuple>(t),
1536 build_index_impl<
1537 std::tuple_size<typename std::decay<Tuple>::type>::value>{})) {
1538 using Indices = build_index_impl<
1539 std::tuple_size<typename std::decay<Tuple>::type>::value>;
1541 return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t),
1542 Indices{});
1545 /// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N)
1546 /// time. Not meant for use with random-access iterators.
1547 template <typename IterTy>
1548 bool hasNItems(
1549 IterTy &&Begin, IterTy &&End, unsigned N,
1550 typename std::enable_if<
1551 !std::is_same<
1552 typename std::iterator_traits<typename std::remove_reference<
1553 decltype(Begin)>::type>::iterator_category,
1554 std::random_access_iterator_tag>::value,
1555 void>::type * = nullptr) {
1556 for (; N; --N, ++Begin)
1557 if (Begin == End)
1558 return false; // Too few.
1559 return Begin == End;
1562 /// Return true if the sequence [Begin, End) has N or more items. Runs in O(N)
1563 /// time. Not meant for use with random-access iterators.
1564 template <typename IterTy>
1565 bool hasNItemsOrMore(
1566 IterTy &&Begin, IterTy &&End, unsigned N,
1567 typename std::enable_if<
1568 !std::is_same<
1569 typename std::iterator_traits<typename std::remove_reference<
1570 decltype(Begin)>::type>::iterator_category,
1571 std::random_access_iterator_tag>::value,
1572 void>::type * = nullptr) {
1573 for (; N; --N, ++Begin)
1574 if (Begin == End)
1575 return false; // Too few.
1576 return true;
1579 } // end namespace llvm
1581 #endif // LLVM_ADT_STLEXTRAS_H