Recommit [NFC] Better encapsulation of llvm::Optional Storage
[llvm-complete.git] / include / llvm / Analysis / AliasAnalysis.h
blob4e55f0179af7a49bea770e93dedeceb66f715f69
1 //===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the generic AliasAnalysis interface, which is used as the
10 // common interface used by all clients of alias analysis information, and
11 // implemented by all alias analysis implementations. Mod/Ref information is
12 // also captured by this interface.
14 // Implementations of this interface must implement the various virtual methods,
15 // which automatically provides functionality for the entire suite of client
16 // APIs.
18 // This API identifies memory regions with the MemoryLocation class. The pointer
19 // component specifies the base memory address of the region. The Size specifies
20 // the maximum size (in address units) of the memory region, or
21 // MemoryLocation::UnknownSize if the size is not known. The TBAA tag
22 // identifies the "type" of the memory reference; see the
23 // TypeBasedAliasAnalysis class for details.
25 // Some non-obvious details include:
26 // - Pointers that point to two completely different objects in memory never
27 // alias, regardless of the value of the Size component.
28 // - NoAlias doesn't imply inequal pointers. The most obvious example of this
29 // is two pointers to constant memory. Even if they are equal, constant
30 // memory is never stored to, so there will never be any dependencies.
31 // In this and other situations, the pointers may be both NoAlias and
32 // MustAlias at the same time. The current API can only return one result,
33 // though this is rarely a problem in practice.
35 //===----------------------------------------------------------------------===//
37 #ifndef LLVM_ANALYSIS_ALIASANALYSIS_H
38 #define LLVM_ANALYSIS_ALIASANALYSIS_H
40 #include "llvm/ADT/None.h"
41 #include "llvm/ADT/Optional.h"
42 #include "llvm/ADT/SmallVector.h"
43 #include "llvm/Analysis/MemoryLocation.h"
44 #include "llvm/Analysis/TargetLibraryInfo.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/PassManager.h"
49 #include "llvm/Pass.h"
50 #include <cstdint>
51 #include <functional>
52 #include <memory>
53 #include <vector>
55 namespace llvm {
57 class AnalysisUsage;
58 class BasicAAResult;
59 class BasicBlock;
60 class DominatorTree;
61 class OrderedBasicBlock;
62 class Value;
64 /// The possible results of an alias query.
65 ///
66 /// These results are always computed between two MemoryLocation objects as
67 /// a query to some alias analysis.
68 ///
69 /// Note that these are unscoped enumerations because we would like to support
70 /// implicitly testing a result for the existence of any possible aliasing with
71 /// a conversion to bool, but an "enum class" doesn't support this. The
72 /// canonical names from the literature are suffixed and unique anyways, and so
73 /// they serve as global constants in LLVM for these results.
74 ///
75 /// See docs/AliasAnalysis.html for more information on the specific meanings
76 /// of these values.
77 enum AliasResult : uint8_t {
78 /// The two locations do not alias at all.
79 ///
80 /// This value is arranged to convert to false, while all other values
81 /// convert to true. This allows a boolean context to convert the result to
82 /// a binary flag indicating whether there is the possibility of aliasing.
83 NoAlias = 0,
84 /// The two locations may or may not alias. This is the least precise result.
85 MayAlias,
86 /// The two locations alias, but only due to a partial overlap.
87 PartialAlias,
88 /// The two locations precisely alias each other.
89 MustAlias,
92 /// << operator for AliasResult.
93 raw_ostream &operator<<(raw_ostream &OS, AliasResult AR);
95 /// Flags indicating whether a memory access modifies or references memory.
96 ///
97 /// This is no access at all, a modification, a reference, or both
98 /// a modification and a reference. These are specifically structured such that
99 /// they form a three bit matrix and bit-tests for 'mod' or 'ref' or 'must'
100 /// work with any of the possible values.
101 enum class ModRefInfo : uint8_t {
102 /// Must is provided for completeness, but no routines will return only
103 /// Must today. See definition of Must below.
104 Must = 0,
105 /// The access may reference the value stored in memory,
106 /// a mustAlias relation was found, and no mayAlias or partialAlias found.
107 MustRef = 1,
108 /// The access may modify the value stored in memory,
109 /// a mustAlias relation was found, and no mayAlias or partialAlias found.
110 MustMod = 2,
111 /// The access may reference, modify or both the value stored in memory,
112 /// a mustAlias relation was found, and no mayAlias or partialAlias found.
113 MustModRef = MustRef | MustMod,
114 /// The access neither references nor modifies the value stored in memory.
115 NoModRef = 4,
116 /// The access may reference the value stored in memory.
117 Ref = NoModRef | MustRef,
118 /// The access may modify the value stored in memory.
119 Mod = NoModRef | MustMod,
120 /// The access may reference and may modify the value stored in memory.
121 ModRef = Ref | Mod,
123 /// About Must:
124 /// Must is set in a best effort manner.
125 /// We usually do not try our best to infer Must, instead it is merely
126 /// another piece of "free" information that is presented when available.
127 /// Must set means there was certainly a MustAlias found. For calls,
128 /// where multiple arguments are checked (argmemonly), this translates to
129 /// only MustAlias or NoAlias was found.
130 /// Must is not set for RAR accesses, even if the two locations must
131 /// alias. The reason is that two read accesses translate to an early return
132 /// of NoModRef. An additional alias check to set Must may be
133 /// expensive. Other cases may also not set Must(e.g. callCapturesBefore).
134 /// We refer to Must being *set* when the most significant bit is *cleared*.
135 /// Conversely we *clear* Must information by *setting* the Must bit to 1.
138 LLVM_NODISCARD inline bool isNoModRef(const ModRefInfo MRI) {
139 return (static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef)) ==
140 static_cast<int>(ModRefInfo::Must);
142 LLVM_NODISCARD inline bool isModOrRefSet(const ModRefInfo MRI) {
143 return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef);
145 LLVM_NODISCARD inline bool isModAndRefSet(const ModRefInfo MRI) {
146 return (static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef)) ==
147 static_cast<int>(ModRefInfo::MustModRef);
149 LLVM_NODISCARD inline bool isModSet(const ModRefInfo MRI) {
150 return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustMod);
152 LLVM_NODISCARD inline bool isRefSet(const ModRefInfo MRI) {
153 return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustRef);
155 LLVM_NODISCARD inline bool isMustSet(const ModRefInfo MRI) {
156 return !(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::NoModRef));
159 LLVM_NODISCARD inline ModRefInfo setMod(const ModRefInfo MRI) {
160 return ModRefInfo(static_cast<int>(MRI) |
161 static_cast<int>(ModRefInfo::MustMod));
163 LLVM_NODISCARD inline ModRefInfo setRef(const ModRefInfo MRI) {
164 return ModRefInfo(static_cast<int>(MRI) |
165 static_cast<int>(ModRefInfo::MustRef));
167 LLVM_NODISCARD inline ModRefInfo setMust(const ModRefInfo MRI) {
168 return ModRefInfo(static_cast<int>(MRI) &
169 static_cast<int>(ModRefInfo::MustModRef));
171 LLVM_NODISCARD inline ModRefInfo setModAndRef(const ModRefInfo MRI) {
172 return ModRefInfo(static_cast<int>(MRI) |
173 static_cast<int>(ModRefInfo::MustModRef));
175 LLVM_NODISCARD inline ModRefInfo clearMod(const ModRefInfo MRI) {
176 return ModRefInfo(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::Ref));
178 LLVM_NODISCARD inline ModRefInfo clearRef(const ModRefInfo MRI) {
179 return ModRefInfo(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::Mod));
181 LLVM_NODISCARD inline ModRefInfo clearMust(const ModRefInfo MRI) {
182 return ModRefInfo(static_cast<int>(MRI) |
183 static_cast<int>(ModRefInfo::NoModRef));
185 LLVM_NODISCARD inline ModRefInfo unionModRef(const ModRefInfo MRI1,
186 const ModRefInfo MRI2) {
187 return ModRefInfo(static_cast<int>(MRI1) | static_cast<int>(MRI2));
189 LLVM_NODISCARD inline ModRefInfo intersectModRef(const ModRefInfo MRI1,
190 const ModRefInfo MRI2) {
191 return ModRefInfo(static_cast<int>(MRI1) & static_cast<int>(MRI2));
194 /// The locations at which a function might access memory.
196 /// These are primarily used in conjunction with the \c AccessKind bits to
197 /// describe both the nature of access and the locations of access for a
198 /// function call.
199 enum FunctionModRefLocation {
200 /// Base case is no access to memory.
201 FMRL_Nowhere = 0,
202 /// Access to memory via argument pointers.
203 FMRL_ArgumentPointees = 8,
204 /// Memory that is inaccessible via LLVM IR.
205 FMRL_InaccessibleMem = 16,
206 /// Access to any memory.
207 FMRL_Anywhere = 32 | FMRL_InaccessibleMem | FMRL_ArgumentPointees
210 /// Summary of how a function affects memory in the program.
212 /// Loads from constant globals are not considered memory accesses for this
213 /// interface. Also, functions may freely modify stack space local to their
214 /// invocation without having to report it through these interfaces.
215 enum FunctionModRefBehavior {
216 /// This function does not perform any non-local loads or stores to memory.
218 /// This property corresponds to the GCC 'const' attribute.
219 /// This property corresponds to the LLVM IR 'readnone' attribute.
220 /// This property corresponds to the IntrNoMem LLVM intrinsic flag.
221 FMRB_DoesNotAccessMemory =
222 FMRL_Nowhere | static_cast<int>(ModRefInfo::NoModRef),
224 /// The only memory references in this function (if it has any) are
225 /// non-volatile loads from objects pointed to by its pointer-typed
226 /// arguments, with arbitrary offsets.
228 /// This property corresponds to the IntrReadArgMem LLVM intrinsic flag.
229 FMRB_OnlyReadsArgumentPointees =
230 FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::Ref),
232 /// The only memory references in this function (if it has any) are
233 /// non-volatile loads and stores from objects pointed to by its
234 /// pointer-typed arguments, with arbitrary offsets.
236 /// This property corresponds to the IntrArgMemOnly LLVM intrinsic flag.
237 FMRB_OnlyAccessesArgumentPointees =
238 FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::ModRef),
240 /// The only memory references in this function (if it has any) are
241 /// references of memory that is otherwise inaccessible via LLVM IR.
243 /// This property corresponds to the LLVM IR inaccessiblememonly attribute.
244 FMRB_OnlyAccessesInaccessibleMem =
245 FMRL_InaccessibleMem | static_cast<int>(ModRefInfo::ModRef),
247 /// The function may perform non-volatile loads and stores of objects
248 /// pointed to by its pointer-typed arguments, with arbitrary offsets, and
249 /// it may also perform loads and stores of memory that is otherwise
250 /// inaccessible via LLVM IR.
252 /// This property corresponds to the LLVM IR
253 /// inaccessiblemem_or_argmemonly attribute.
254 FMRB_OnlyAccessesInaccessibleOrArgMem = FMRL_InaccessibleMem |
255 FMRL_ArgumentPointees |
256 static_cast<int>(ModRefInfo::ModRef),
258 /// This function does not perform any non-local stores or volatile loads,
259 /// but may read from any memory location.
261 /// This property corresponds to the GCC 'pure' attribute.
262 /// This property corresponds to the LLVM IR 'readonly' attribute.
263 /// This property corresponds to the IntrReadMem LLVM intrinsic flag.
264 FMRB_OnlyReadsMemory = FMRL_Anywhere | static_cast<int>(ModRefInfo::Ref),
266 // This function does not read from memory anywhere, but may write to any
267 // memory location.
269 // This property corresponds to the LLVM IR 'writeonly' attribute.
270 // This property corresponds to the IntrWriteMem LLVM intrinsic flag.
271 FMRB_DoesNotReadMemory = FMRL_Anywhere | static_cast<int>(ModRefInfo::Mod),
273 /// This indicates that the function could not be classified into one of the
274 /// behaviors above.
275 FMRB_UnknownModRefBehavior =
276 FMRL_Anywhere | static_cast<int>(ModRefInfo::ModRef)
279 // Wrapper method strips bits significant only in FunctionModRefBehavior,
280 // to obtain a valid ModRefInfo. The benefit of using the wrapper is that if
281 // ModRefInfo enum changes, the wrapper can be updated to & with the new enum
282 // entry with all bits set to 1.
283 LLVM_NODISCARD inline ModRefInfo
284 createModRefInfo(const FunctionModRefBehavior FMRB) {
285 return ModRefInfo(FMRB & static_cast<int>(ModRefInfo::ModRef));
288 class AAResults {
289 public:
290 // Make these results default constructable and movable. We have to spell
291 // these out because MSVC won't synthesize them.
292 AAResults(const TargetLibraryInfo &TLI) : TLI(TLI) {}
293 AAResults(AAResults &&Arg);
294 ~AAResults();
296 /// Register a specific AA result.
297 template <typename AAResultT> void addAAResult(AAResultT &AAResult) {
298 // FIXME: We should use a much lighter weight system than the usual
299 // polymorphic pattern because we don't own AAResult. It should
300 // ideally involve two pointers and no separate allocation.
301 AAs.emplace_back(new Model<AAResultT>(AAResult, *this));
304 /// Register a function analysis ID that the results aggregation depends on.
306 /// This is used in the new pass manager to implement the invalidation logic
307 /// where we must invalidate the results aggregation if any of our component
308 /// analyses become invalid.
309 void addAADependencyID(AnalysisKey *ID) { AADeps.push_back(ID); }
311 /// Handle invalidation events in the new pass manager.
313 /// The aggregation is invalidated if any of the underlying analyses is
314 /// invalidated.
315 bool invalidate(Function &F, const PreservedAnalyses &PA,
316 FunctionAnalysisManager::Invalidator &Inv);
318 //===--------------------------------------------------------------------===//
319 /// \name Alias Queries
320 /// @{
322 /// The main low level interface to the alias analysis implementation.
323 /// Returns an AliasResult indicating whether the two pointers are aliased to
324 /// each other. This is the interface that must be implemented by specific
325 /// alias analysis implementations.
326 AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB);
328 /// A convenience wrapper around the primary \c alias interface.
329 AliasResult alias(const Value *V1, LocationSize V1Size, const Value *V2,
330 LocationSize V2Size) {
331 return alias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
334 /// A convenience wrapper around the primary \c alias interface.
335 AliasResult alias(const Value *V1, const Value *V2) {
336 return alias(V1, LocationSize::unknown(), V2, LocationSize::unknown());
339 /// A trivial helper function to check to see if the specified pointers are
340 /// no-alias.
341 bool isNoAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
342 return alias(LocA, LocB) == NoAlias;
345 /// A convenience wrapper around the \c isNoAlias helper interface.
346 bool isNoAlias(const Value *V1, LocationSize V1Size, const Value *V2,
347 LocationSize V2Size) {
348 return isNoAlias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
351 /// A convenience wrapper around the \c isNoAlias helper interface.
352 bool isNoAlias(const Value *V1, const Value *V2) {
353 return isNoAlias(MemoryLocation(V1), MemoryLocation(V2));
356 /// A trivial helper function to check to see if the specified pointers are
357 /// must-alias.
358 bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
359 return alias(LocA, LocB) == MustAlias;
362 /// A convenience wrapper around the \c isMustAlias helper interface.
363 bool isMustAlias(const Value *V1, const Value *V2) {
364 return alias(V1, LocationSize::precise(1), V2, LocationSize::precise(1)) ==
365 MustAlias;
368 /// Checks whether the given location points to constant memory, or if
369 /// \p OrLocal is true whether it points to a local alloca.
370 bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false);
372 /// A convenience wrapper around the primary \c pointsToConstantMemory
373 /// interface.
374 bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
375 return pointsToConstantMemory(MemoryLocation(P), OrLocal);
378 /// @}
379 //===--------------------------------------------------------------------===//
380 /// \name Simple mod/ref information
381 /// @{
383 /// Get the ModRef info associated with a pointer argument of a call. The
384 /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
385 /// that these bits do not necessarily account for the overall behavior of
386 /// the function, but rather only provide additional per-argument
387 /// information. This never sets ModRefInfo::Must.
388 ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx);
390 /// Return the behavior of the given call site.
391 FunctionModRefBehavior getModRefBehavior(const CallBase *Call);
393 /// Return the behavior when calling the given function.
394 FunctionModRefBehavior getModRefBehavior(const Function *F);
396 /// Checks if the specified call is known to never read or write memory.
398 /// Note that if the call only reads from known-constant memory, it is also
399 /// legal to return true. Also, calls that unwind the stack are legal for
400 /// this predicate.
402 /// Many optimizations (such as CSE and LICM) can be performed on such calls
403 /// without worrying about aliasing properties, and many calls have this
404 /// property (e.g. calls to 'sin' and 'cos').
406 /// This property corresponds to the GCC 'const' attribute.
407 bool doesNotAccessMemory(const CallBase *Call) {
408 return getModRefBehavior(Call) == FMRB_DoesNotAccessMemory;
411 /// Checks if the specified function is known to never read or write memory.
413 /// Note that if the function only reads from known-constant memory, it is
414 /// also legal to return true. Also, function that unwind the stack are legal
415 /// for this predicate.
417 /// Many optimizations (such as CSE and LICM) can be performed on such calls
418 /// to such functions without worrying about aliasing properties, and many
419 /// functions have this property (e.g. 'sin' and 'cos').
421 /// This property corresponds to the GCC 'const' attribute.
422 bool doesNotAccessMemory(const Function *F) {
423 return getModRefBehavior(F) == FMRB_DoesNotAccessMemory;
426 /// Checks if the specified call is known to only read from non-volatile
427 /// memory (or not access memory at all).
429 /// Calls that unwind the stack are legal for this predicate.
431 /// This property allows many common optimizations to be performed in the
432 /// absence of interfering store instructions, such as CSE of strlen calls.
434 /// This property corresponds to the GCC 'pure' attribute.
435 bool onlyReadsMemory(const CallBase *Call) {
436 return onlyReadsMemory(getModRefBehavior(Call));
439 /// Checks if the specified function is known to only read from non-volatile
440 /// memory (or not access memory at all).
442 /// Functions that unwind the stack are legal for this predicate.
444 /// This property allows many common optimizations to be performed in the
445 /// absence of interfering store instructions, such as CSE of strlen calls.
447 /// This property corresponds to the GCC 'pure' attribute.
448 bool onlyReadsMemory(const Function *F) {
449 return onlyReadsMemory(getModRefBehavior(F));
452 /// Checks if functions with the specified behavior are known to only read
453 /// from non-volatile memory (or not access memory at all).
454 static bool onlyReadsMemory(FunctionModRefBehavior MRB) {
455 return !isModSet(createModRefInfo(MRB));
458 /// Checks if functions with the specified behavior are known to only write
459 /// memory (or not access memory at all).
460 static bool doesNotReadMemory(FunctionModRefBehavior MRB) {
461 return !isRefSet(createModRefInfo(MRB));
464 /// Checks if functions with the specified behavior are known to read and
465 /// write at most from objects pointed to by their pointer-typed arguments
466 /// (with arbitrary offsets).
467 static bool onlyAccessesArgPointees(FunctionModRefBehavior MRB) {
468 return !(MRB & FMRL_Anywhere & ~FMRL_ArgumentPointees);
471 /// Checks if functions with the specified behavior are known to potentially
472 /// read or write from objects pointed to be their pointer-typed arguments
473 /// (with arbitrary offsets).
474 static bool doesAccessArgPointees(FunctionModRefBehavior MRB) {
475 return isModOrRefSet(createModRefInfo(MRB)) &&
476 (MRB & FMRL_ArgumentPointees);
479 /// Checks if functions with the specified behavior are known to read and
480 /// write at most from memory that is inaccessible from LLVM IR.
481 static bool onlyAccessesInaccessibleMem(FunctionModRefBehavior MRB) {
482 return !(MRB & FMRL_Anywhere & ~FMRL_InaccessibleMem);
485 /// Checks if functions with the specified behavior are known to potentially
486 /// read or write from memory that is inaccessible from LLVM IR.
487 static bool doesAccessInaccessibleMem(FunctionModRefBehavior MRB) {
488 return isModOrRefSet(createModRefInfo(MRB)) && (MRB & FMRL_InaccessibleMem);
491 /// Checks if functions with the specified behavior are known to read and
492 /// write at most from memory that is inaccessible from LLVM IR or objects
493 /// pointed to by their pointer-typed arguments (with arbitrary offsets).
494 static bool onlyAccessesInaccessibleOrArgMem(FunctionModRefBehavior MRB) {
495 return !(MRB & FMRL_Anywhere &
496 ~(FMRL_InaccessibleMem | FMRL_ArgumentPointees));
499 /// getModRefInfo (for call sites) - Return information about whether
500 /// a particular call site modifies or reads the specified memory location.
501 ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc);
503 /// getModRefInfo (for call sites) - A convenience wrapper.
504 ModRefInfo getModRefInfo(const CallBase *Call, const Value *P,
505 LocationSize Size) {
506 return getModRefInfo(Call, MemoryLocation(P, Size));
509 /// getModRefInfo (for loads) - Return information about whether
510 /// a particular load modifies or reads the specified memory location.
511 ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc);
513 /// getModRefInfo (for loads) - A convenience wrapper.
514 ModRefInfo getModRefInfo(const LoadInst *L, const Value *P,
515 LocationSize Size) {
516 return getModRefInfo(L, MemoryLocation(P, Size));
519 /// getModRefInfo (for stores) - Return information about whether
520 /// a particular store modifies or reads the specified memory location.
521 ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc);
523 /// getModRefInfo (for stores) - A convenience wrapper.
524 ModRefInfo getModRefInfo(const StoreInst *S, const Value *P,
525 LocationSize Size) {
526 return getModRefInfo(S, MemoryLocation(P, Size));
529 /// getModRefInfo (for fences) - Return information about whether
530 /// a particular store modifies or reads the specified memory location.
531 ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc);
533 /// getModRefInfo (for fences) - A convenience wrapper.
534 ModRefInfo getModRefInfo(const FenceInst *S, const Value *P,
535 LocationSize Size) {
536 return getModRefInfo(S, MemoryLocation(P, Size));
539 /// getModRefInfo (for cmpxchges) - Return information about whether
540 /// a particular cmpxchg modifies or reads the specified memory location.
541 ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
542 const MemoryLocation &Loc);
544 /// getModRefInfo (for cmpxchges) - A convenience wrapper.
545 ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX, const Value *P,
546 LocationSize Size) {
547 return getModRefInfo(CX, MemoryLocation(P, Size));
550 /// getModRefInfo (for atomicrmws) - Return information about whether
551 /// a particular atomicrmw modifies or reads the specified memory location.
552 ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc);
554 /// getModRefInfo (for atomicrmws) - A convenience wrapper.
555 ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const Value *P,
556 LocationSize Size) {
557 return getModRefInfo(RMW, MemoryLocation(P, Size));
560 /// getModRefInfo (for va_args) - Return information about whether
561 /// a particular va_arg modifies or reads the specified memory location.
562 ModRefInfo getModRefInfo(const VAArgInst *I, const MemoryLocation &Loc);
564 /// getModRefInfo (for va_args) - A convenience wrapper.
565 ModRefInfo getModRefInfo(const VAArgInst *I, const Value *P,
566 LocationSize Size) {
567 return getModRefInfo(I, MemoryLocation(P, Size));
570 /// getModRefInfo (for catchpads) - Return information about whether
571 /// a particular catchpad modifies or reads the specified memory location.
572 ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc);
574 /// getModRefInfo (for catchpads) - A convenience wrapper.
575 ModRefInfo getModRefInfo(const CatchPadInst *I, const Value *P,
576 LocationSize Size) {
577 return getModRefInfo(I, MemoryLocation(P, Size));
580 /// getModRefInfo (for catchrets) - Return information about whether
581 /// a particular catchret modifies or reads the specified memory location.
582 ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc);
584 /// getModRefInfo (for catchrets) - A convenience wrapper.
585 ModRefInfo getModRefInfo(const CatchReturnInst *I, const Value *P,
586 LocationSize Size) {
587 return getModRefInfo(I, MemoryLocation(P, Size));
590 /// Check whether or not an instruction may read or write the optionally
591 /// specified memory location.
594 /// An instruction that doesn't read or write memory may be trivially LICM'd
595 /// for example.
597 /// For function calls, this delegates to the alias-analysis specific
598 /// call-site mod-ref behavior queries. Otherwise it delegates to the specific
599 /// helpers above.
600 ModRefInfo getModRefInfo(const Instruction *I,
601 const Optional<MemoryLocation> &OptLoc) {
602 if (OptLoc == None) {
603 if (const auto *Call = dyn_cast<CallBase>(I)) {
604 return createModRefInfo(getModRefBehavior(Call));
608 const MemoryLocation &Loc = OptLoc.getValueOr(MemoryLocation());
610 switch (I->getOpcode()) {
611 case Instruction::VAArg: return getModRefInfo((const VAArgInst*)I, Loc);
612 case Instruction::Load: return getModRefInfo((const LoadInst*)I, Loc);
613 case Instruction::Store: return getModRefInfo((const StoreInst*)I, Loc);
614 case Instruction::Fence: return getModRefInfo((const FenceInst*)I, Loc);
615 case Instruction::AtomicCmpXchg:
616 return getModRefInfo((const AtomicCmpXchgInst*)I, Loc);
617 case Instruction::AtomicRMW:
618 return getModRefInfo((const AtomicRMWInst*)I, Loc);
619 case Instruction::Call: return getModRefInfo((const CallInst*)I, Loc);
620 case Instruction::Invoke: return getModRefInfo((const InvokeInst*)I,Loc);
621 case Instruction::CatchPad:
622 return getModRefInfo((const CatchPadInst *)I, Loc);
623 case Instruction::CatchRet:
624 return getModRefInfo((const CatchReturnInst *)I, Loc);
625 default:
626 return ModRefInfo::NoModRef;
630 /// A convenience wrapper for constructing the memory location.
631 ModRefInfo getModRefInfo(const Instruction *I, const Value *P,
632 LocationSize Size) {
633 return getModRefInfo(I, MemoryLocation(P, Size));
636 /// Return information about whether a call and an instruction may refer to
637 /// the same memory locations.
638 ModRefInfo getModRefInfo(Instruction *I, const CallBase *Call);
640 /// Return information about whether two call sites may refer to the same set
641 /// of memory locations. See the AA documentation for details:
642 /// http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
643 ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2);
645 /// Return information about whether a particular call site modifies
646 /// or reads the specified memory location \p MemLoc before instruction \p I
647 /// in a BasicBlock. An ordered basic block \p OBB can be used to speed up
648 /// instruction ordering queries inside the BasicBlock containing \p I.
649 /// Early exits in callCapturesBefore may lead to ModRefInfo::Must not being
650 /// set.
651 ModRefInfo callCapturesBefore(const Instruction *I,
652 const MemoryLocation &MemLoc, DominatorTree *DT,
653 OrderedBasicBlock *OBB = nullptr);
655 /// A convenience wrapper to synthesize a memory location.
656 ModRefInfo callCapturesBefore(const Instruction *I, const Value *P,
657 LocationSize Size, DominatorTree *DT,
658 OrderedBasicBlock *OBB = nullptr) {
659 return callCapturesBefore(I, MemoryLocation(P, Size), DT, OBB);
662 /// @}
663 //===--------------------------------------------------------------------===//
664 /// \name Higher level methods for querying mod/ref information.
665 /// @{
667 /// Check if it is possible for execution of the specified basic block to
668 /// modify the location Loc.
669 bool canBasicBlockModify(const BasicBlock &BB, const MemoryLocation &Loc);
671 /// A convenience wrapper synthesizing a memory location.
672 bool canBasicBlockModify(const BasicBlock &BB, const Value *P,
673 LocationSize Size) {
674 return canBasicBlockModify(BB, MemoryLocation(P, Size));
677 /// Check if it is possible for the execution of the specified instructions
678 /// to mod\ref (according to the mode) the location Loc.
680 /// The instructions to consider are all of the instructions in the range of
681 /// [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block.
682 bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
683 const MemoryLocation &Loc,
684 const ModRefInfo Mode);
686 /// A convenience wrapper synthesizing a memory location.
687 bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
688 const Value *Ptr, LocationSize Size,
689 const ModRefInfo Mode) {
690 return canInstructionRangeModRef(I1, I2, MemoryLocation(Ptr, Size), Mode);
693 private:
694 class Concept;
696 template <typename T> class Model;
698 template <typename T> friend class AAResultBase;
700 const TargetLibraryInfo &TLI;
702 std::vector<std::unique_ptr<Concept>> AAs;
704 std::vector<AnalysisKey *> AADeps;
707 /// Temporary typedef for legacy code that uses a generic \c AliasAnalysis
708 /// pointer or reference.
709 using AliasAnalysis = AAResults;
711 /// A private abstract base class describing the concept of an individual alias
712 /// analysis implementation.
714 /// This interface is implemented by any \c Model instantiation. It is also the
715 /// interface which a type used to instantiate the model must provide.
717 /// All of these methods model methods by the same name in the \c
718 /// AAResults class. Only differences and specifics to how the
719 /// implementations are called are documented here.
720 class AAResults::Concept {
721 public:
722 virtual ~Concept() = 0;
724 /// An update API used internally by the AAResults to provide
725 /// a handle back to the top level aggregation.
726 virtual void setAAResults(AAResults *NewAAR) = 0;
728 //===--------------------------------------------------------------------===//
729 /// \name Alias Queries
730 /// @{
732 /// The main low level interface to the alias analysis implementation.
733 /// Returns an AliasResult indicating whether the two pointers are aliased to
734 /// each other. This is the interface that must be implemented by specific
735 /// alias analysis implementations.
736 virtual AliasResult alias(const MemoryLocation &LocA,
737 const MemoryLocation &LocB) = 0;
739 /// Checks whether the given location points to constant memory, or if
740 /// \p OrLocal is true whether it points to a local alloca.
741 virtual bool pointsToConstantMemory(const MemoryLocation &Loc,
742 bool OrLocal) = 0;
744 /// @}
745 //===--------------------------------------------------------------------===//
746 /// \name Simple mod/ref information
747 /// @{
749 /// Get the ModRef info associated with a pointer argument of a callsite. The
750 /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
751 /// that these bits do not necessarily account for the overall behavior of
752 /// the function, but rather only provide additional per-argument
753 /// information.
754 virtual ModRefInfo getArgModRefInfo(const CallBase *Call,
755 unsigned ArgIdx) = 0;
757 /// Return the behavior of the given call site.
758 virtual FunctionModRefBehavior getModRefBehavior(const CallBase *Call) = 0;
760 /// Return the behavior when calling the given function.
761 virtual FunctionModRefBehavior getModRefBehavior(const Function *F) = 0;
763 /// getModRefInfo (for call sites) - Return information about whether
764 /// a particular call site modifies or reads the specified memory location.
765 virtual ModRefInfo getModRefInfo(const CallBase *Call,
766 const MemoryLocation &Loc) = 0;
768 /// Return information about whether two call sites may refer to the same set
769 /// of memory locations. See the AA documentation for details:
770 /// http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
771 virtual ModRefInfo getModRefInfo(const CallBase *Call1,
772 const CallBase *Call2) = 0;
774 /// @}
777 /// A private class template which derives from \c Concept and wraps some other
778 /// type.
780 /// This models the concept by directly forwarding each interface point to the
781 /// wrapped type which must implement a compatible interface. This provides
782 /// a type erased binding.
783 template <typename AAResultT> class AAResults::Model final : public Concept {
784 AAResultT &Result;
786 public:
787 explicit Model(AAResultT &Result, AAResults &AAR) : Result(Result) {
788 Result.setAAResults(&AAR);
790 ~Model() override = default;
792 void setAAResults(AAResults *NewAAR) override { Result.setAAResults(NewAAR); }
794 AliasResult alias(const MemoryLocation &LocA,
795 const MemoryLocation &LocB) override {
796 return Result.alias(LocA, LocB);
799 bool pointsToConstantMemory(const MemoryLocation &Loc,
800 bool OrLocal) override {
801 return Result.pointsToConstantMemory(Loc, OrLocal);
804 ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) override {
805 return Result.getArgModRefInfo(Call, ArgIdx);
808 FunctionModRefBehavior getModRefBehavior(const CallBase *Call) override {
809 return Result.getModRefBehavior(Call);
812 FunctionModRefBehavior getModRefBehavior(const Function *F) override {
813 return Result.getModRefBehavior(F);
816 ModRefInfo getModRefInfo(const CallBase *Call,
817 const MemoryLocation &Loc) override {
818 return Result.getModRefInfo(Call, Loc);
821 ModRefInfo getModRefInfo(const CallBase *Call1,
822 const CallBase *Call2) override {
823 return Result.getModRefInfo(Call1, Call2);
827 /// A CRTP-driven "mixin" base class to help implement the function alias
828 /// analysis results concept.
830 /// Because of the nature of many alias analysis implementations, they often
831 /// only implement a subset of the interface. This base class will attempt to
832 /// implement the remaining portions of the interface in terms of simpler forms
833 /// of the interface where possible, and otherwise provide conservatively
834 /// correct fallback implementations.
836 /// Implementors of an alias analysis should derive from this CRTP, and then
837 /// override specific methods that they wish to customize. There is no need to
838 /// use virtual anywhere, the CRTP base class does static dispatch to the
839 /// derived type passed into it.
840 template <typename DerivedT> class AAResultBase {
841 // Expose some parts of the interface only to the AAResults::Model
842 // for wrapping. Specifically, this allows the model to call our
843 // setAAResults method without exposing it as a fully public API.
844 friend class AAResults::Model<DerivedT>;
846 /// A pointer to the AAResults object that this AAResult is
847 /// aggregated within. May be null if not aggregated.
848 AAResults *AAR;
850 /// Helper to dispatch calls back through the derived type.
851 DerivedT &derived() { return static_cast<DerivedT &>(*this); }
853 /// A setter for the AAResults pointer, which is used to satisfy the
854 /// AAResults::Model contract.
855 void setAAResults(AAResults *NewAAR) { AAR = NewAAR; }
857 protected:
858 /// This proxy class models a common pattern where we delegate to either the
859 /// top-level \c AAResults aggregation if one is registered, or to the
860 /// current result if none are registered.
861 class AAResultsProxy {
862 AAResults *AAR;
863 DerivedT &CurrentResult;
865 public:
866 AAResultsProxy(AAResults *AAR, DerivedT &CurrentResult)
867 : AAR(AAR), CurrentResult(CurrentResult) {}
869 AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
870 return AAR ? AAR->alias(LocA, LocB) : CurrentResult.alias(LocA, LocB);
873 bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal) {
874 return AAR ? AAR->pointsToConstantMemory(Loc, OrLocal)
875 : CurrentResult.pointsToConstantMemory(Loc, OrLocal);
878 ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
879 return AAR ? AAR->getArgModRefInfo(Call, ArgIdx)
880 : CurrentResult.getArgModRefInfo(Call, ArgIdx);
883 FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
884 return AAR ? AAR->getModRefBehavior(Call)
885 : CurrentResult.getModRefBehavior(Call);
888 FunctionModRefBehavior getModRefBehavior(const Function *F) {
889 return AAR ? AAR->getModRefBehavior(F) : CurrentResult.getModRefBehavior(F);
892 ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc) {
893 return AAR ? AAR->getModRefInfo(Call, Loc)
894 : CurrentResult.getModRefInfo(Call, Loc);
897 ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2) {
898 return AAR ? AAR->getModRefInfo(Call1, Call2)
899 : CurrentResult.getModRefInfo(Call1, Call2);
903 explicit AAResultBase() = default;
905 // Provide all the copy and move constructors so that derived types aren't
906 // constrained.
907 AAResultBase(const AAResultBase &Arg) {}
908 AAResultBase(AAResultBase &&Arg) {}
910 /// Get a proxy for the best AA result set to query at this time.
912 /// When this result is part of a larger aggregation, this will proxy to that
913 /// aggregation. When this result is used in isolation, it will just delegate
914 /// back to the derived class's implementation.
916 /// Note that callers of this need to take considerable care to not cause
917 /// performance problems when they use this routine, in the case of a large
918 /// number of alias analyses being aggregated, it can be expensive to walk
919 /// back across the chain.
920 AAResultsProxy getBestAAResults() { return AAResultsProxy(AAR, derived()); }
922 public:
923 AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
924 return MayAlias;
927 bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal) {
928 return false;
931 ModRefInfo getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
932 return ModRefInfo::ModRef;
935 FunctionModRefBehavior getModRefBehavior(const CallBase *Call) {
936 return FMRB_UnknownModRefBehavior;
939 FunctionModRefBehavior getModRefBehavior(const Function *F) {
940 return FMRB_UnknownModRefBehavior;
943 ModRefInfo getModRefInfo(const CallBase *Call, const MemoryLocation &Loc) {
944 return ModRefInfo::ModRef;
947 ModRefInfo getModRefInfo(const CallBase *Call1, const CallBase *Call2) {
948 return ModRefInfo::ModRef;
952 /// Return true if this pointer is returned by a noalias function.
953 bool isNoAliasCall(const Value *V);
955 /// Return true if this is an argument with the noalias attribute.
956 bool isNoAliasArgument(const Value *V);
958 /// Return true if this pointer refers to a distinct and identifiable object.
959 /// This returns true for:
960 /// Global Variables and Functions (but not Global Aliases)
961 /// Allocas
962 /// ByVal and NoAlias Arguments
963 /// NoAlias returns (e.g. calls to malloc)
965 bool isIdentifiedObject(const Value *V);
967 /// Return true if V is umabigously identified at the function-level.
968 /// Different IdentifiedFunctionLocals can't alias.
969 /// Further, an IdentifiedFunctionLocal can not alias with any function
970 /// arguments other than itself, which is not necessarily true for
971 /// IdentifiedObjects.
972 bool isIdentifiedFunctionLocal(const Value *V);
974 /// A manager for alias analyses.
976 /// This class can have analyses registered with it and when run, it will run
977 /// all of them and aggregate their results into single AA results interface
978 /// that dispatches across all of the alias analysis results available.
980 /// Note that the order in which analyses are registered is very significant.
981 /// That is the order in which the results will be aggregated and queried.
983 /// This manager effectively wraps the AnalysisManager for registering alias
984 /// analyses. When you register your alias analysis with this manager, it will
985 /// ensure the analysis itself is registered with its AnalysisManager.
986 class AAManager : public AnalysisInfoMixin<AAManager> {
987 public:
988 using Result = AAResults;
990 /// Register a specific AA result.
991 template <typename AnalysisT> void registerFunctionAnalysis() {
992 ResultGetters.push_back(&getFunctionAAResultImpl<AnalysisT>);
995 /// Register a specific AA result.
996 template <typename AnalysisT> void registerModuleAnalysis() {
997 ResultGetters.push_back(&getModuleAAResultImpl<AnalysisT>);
1000 Result run(Function &F, FunctionAnalysisManager &AM) {
1001 Result R(AM.getResult<TargetLibraryAnalysis>(F));
1002 for (auto &Getter : ResultGetters)
1003 (*Getter)(F, AM, R);
1004 return R;
1007 private:
1008 friend AnalysisInfoMixin<AAManager>;
1010 static AnalysisKey Key;
1012 SmallVector<void (*)(Function &F, FunctionAnalysisManager &AM,
1013 AAResults &AAResults),
1014 4> ResultGetters;
1016 template <typename AnalysisT>
1017 static void getFunctionAAResultImpl(Function &F,
1018 FunctionAnalysisManager &AM,
1019 AAResults &AAResults) {
1020 AAResults.addAAResult(AM.template getResult<AnalysisT>(F));
1021 AAResults.addAADependencyID(AnalysisT::ID());
1024 template <typename AnalysisT>
1025 static void getModuleAAResultImpl(Function &F, FunctionAnalysisManager &AM,
1026 AAResults &AAResults) {
1027 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1028 auto &MAM = MAMProxy.getManager();
1029 if (auto *R = MAM.template getCachedResult<AnalysisT>(*F.getParent())) {
1030 AAResults.addAAResult(*R);
1031 MAMProxy
1032 .template registerOuterAnalysisInvalidation<AnalysisT, AAManager>();
1037 /// A wrapper pass to provide the legacy pass manager access to a suitably
1038 /// prepared AAResults object.
1039 class AAResultsWrapperPass : public FunctionPass {
1040 std::unique_ptr<AAResults> AAR;
1042 public:
1043 static char ID;
1045 AAResultsWrapperPass();
1047 AAResults &getAAResults() { return *AAR; }
1048 const AAResults &getAAResults() const { return *AAR; }
1050 bool runOnFunction(Function &F) override;
1052 void getAnalysisUsage(AnalysisUsage &AU) const override;
1055 /// A wrapper pass for external alias analyses. This just squirrels away the
1056 /// callback used to run any analyses and register their results.
1057 struct ExternalAAWrapperPass : ImmutablePass {
1058 using CallbackT = std::function<void(Pass &, Function &, AAResults &)>;
1060 CallbackT CB;
1062 static char ID;
1064 ExternalAAWrapperPass() : ImmutablePass(ID) {
1065 initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
1068 explicit ExternalAAWrapperPass(CallbackT CB)
1069 : ImmutablePass(ID), CB(std::move(CB)) {
1070 initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
1073 void getAnalysisUsage(AnalysisUsage &AU) const override {
1074 AU.setPreservesAll();
1078 FunctionPass *createAAResultsWrapperPass();
1080 /// A wrapper pass around a callback which can be used to populate the
1081 /// AAResults in the AAResultsWrapperPass from an external AA.
1083 /// The callback provided here will be used each time we prepare an AAResults
1084 /// object, and will receive a reference to the function wrapper pass, the
1085 /// function, and the AAResults object to populate. This should be used when
1086 /// setting up a custom pass pipeline to inject a hook into the AA results.
1087 ImmutablePass *createExternalAAWrapperPass(
1088 std::function<void(Pass &, Function &, AAResults &)> Callback);
1090 /// A helper for the legacy pass manager to create a \c AAResults
1091 /// object populated to the best of our ability for a particular function when
1092 /// inside of a \c ModulePass or a \c CallGraphSCCPass.
1094 /// If a \c ModulePass or a \c CallGraphSCCPass calls \p
1095 /// createLegacyPMAAResults, it also needs to call \p addUsedAAAnalyses in \p
1096 /// getAnalysisUsage.
1097 AAResults createLegacyPMAAResults(Pass &P, Function &F, BasicAAResult &BAR);
1099 /// A helper for the legacy pass manager to populate \p AU to add uses to make
1100 /// sure the analyses required by \p createLegacyPMAAResults are available.
1101 void getAAResultsAnalysisUsage(AnalysisUsage &AU);
1103 } // end namespace llvm
1105 #endif // LLVM_ANALYSIS_ALIASANALYSIS_H